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Nekrolog

An dem wolkenlosen Morgen des sechzehnten Aprils des krisengeschüttelten Jahres 2021 um
präzise 10:37 Uhr Ortszeit ereilte mich in Heidelberg die niederschmetternde Kunde der erst
kürzlich diagnostizierten, schwerwiegenden Krebserkrankung meines Vaters, welche den Auftakt
einer über Monate währenden Chronologie sich gegenseitig abwechselnder Hoffnungen, des
ständigen Bangens und herber Niederschläge markierte. Diese dornenreiche Zeit hat meinen
Blickwinkel auf die Welt nachhaltig verschoben und mir vergegenwärtigt, dass lediglich zwei
Aspekte des menschlichen Lebens wirklich von Relevanz zu sein scheinen: die Liebe und der
Tod – beide als Brennpunkte der Ellipse des menschlichen hienieden Daseins.

Wenige Momente im Leben vermögen die Welt auf vergleichbare Weise aus ihren Angeln
zu heben, die tönernen Füße wankender Existenz zu zertrümmern, wie die unbeschreibliche,
zermarternde Furcht, einen über alle Maßen geliebten Menschen zu verlieren. Die permanente
Sorge und Angst erfüllt den gesamten Gedankenraum und tätigt psychosomatische Symptome;
drohend steht das Menetekel an der Wand; unaufhörlich wetzt sich die Klinge funkensprühend
am Walzstein; beständig schwebt des Damokles’ Schwert bedrohlich über dem bangenden
Haupt. Als Familie haben wir – mein Vater, meine Mutter sowie meine Person – diese schwere
Zeit der Bedrängnis gemeinsam bewältigt und gegenseitig das Joch des anderen zu Tragen
versucht, wobei insbesondere mein Vater sein schweres Los in ritterlicher, bewundernswürdiger
Tapferkeit ertrug. Seinem ganzen Wesen entsprechend galten seine Gedanken (auch in größter
persönlicher Drangsal!) seiner Familie, die stets das Zentrum seines Lebens bildete und der er
aufopferungsvoll seine ganze Hingabe – fürderhin: seine gesamte Existenz – schenkte.

Des Weiteren ist die fast übermenschliche Leistung und Selbstaufopferung meiner Mutter
hervorzuheben, die in unbedingter Hingabe und grenzenloser Liebe zu ihrem schwer erkrankten
Gatten (unter Vernachlässigung der eigenen Person) nichts unversucht ließ, seine Genesung zu
erzielen, sein Leid zu mindern und ihm ohne Unterlass die Hand zum Troste reichte sowie in
inniger Liebe das tränenbenetzte Haupt zum Kusse senkte. Hier wirkten Kräfte, mächtiger als
der Tod.

Nichts in meiner bisherigen Existenz prägte mich wie diese Zeit; nichts hat das Koordinaten-
system meines Lebens auf vergleichbare Art und Weise verschoben und mich daran erinnert,
dass das, was wirklich zählt, die Liebe ist, welche die wenigen, schattenverwirrten Jahrzehnten
unseres hienieden Daseins mit Sinn und Glückseligkeit erfüllt. Was sonst sollte Sinn stiften
sein in einem Leben, in dem jeder aus kalter Materie geformte Nagel, den wir kraftvoll in das
Holz treiben, das Potential in sich trägt, langer zu weilen, als unser fleichlicher, sterblicher
Leib es jemals vermöchte? Im furchtbarsten Elend offenbart sich das Prinzip der schönsten
und schöpferischsten Kraft im gesamten Kosmos. Was sind die wenigen Kostbarkeiten, diese
unbeschreiblichen Glücksmomente, welche wir am Ende unseres irdischen Seins zutage fördern,
wenn wir den Sand vergangener Reminiszenzen durch das grobmaschige Sieb der Erinnerung
schütteln? Was bleibt am Ende, wenn wir die löchrigen Gewänder der Zivilisation und ihre
wertlosen Abzeichen und Epauletten abstreifen? Es ist das Wissen, bedingungslos geliebt zu
werden durch eine Kraft, die möchte, dass wir sind und bleiben. Hierin nun liegt das Unerhörte
des Todes: dass er zu trennen trachtet, was die Liebe zur unscheidbaren Einheit geschmiedet.
Doch selbst wenn die Moiren den Lebensfaden endgültig durchtrennen, so lässt sich das Band
der Liebe nicht zerscheiden; es besteht weiter und verbindet uns durch Raum und Zeit – durch
Dies- und Jenseits. Wer im Brennpunkt der Liebe steht (oder stand), stirbt wahrlich nie.

Eines Tages kehren wir alle zurück in den Schoß der Mutter. Unsere sterblichen Überreste
vergehen und in wenigen Generationen verflüchtigen sich ebenso die Erinnerungen an uns, wenn
niemand mehr ist, der unserer gedenken könnte. Die ägyptischen Pharaonen fürchteten dies
so sehr, dass sie ihre Monumente mit Mriaden Kartuschen übersäten, welche in kunstvollen
Rahmen und Hieroglyphen ihren Namen trugen und als Kristallisationspunkte der Erinnerung
dienlich sein sollten. Doch dies ist ohne Belang, denn wir sind und damit werden wir auch
immer gewesen sein, so wie jedes Präsenz zwangsläufig zum Futurum exaktum reift, selbst
dann, wenn die letzte Sonne verglüht ist und sich der Kosmos in ewige Dunkelheit hüllt. Die
Tatsache, dass wir sind und waren, dass wir gemeinsam lachten, uns zankten und liebten, ist
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auf alle Ewigkeit geschrieben in das kollektive Gedächtnis der Alleinheit unabhängig davon, ob
jemand sich dessen entsinnt.

Mein lieber Vater, der Gevatter Tod hat dich viel zu früh von uns genommen; alle Tage
unsres Lebens tragen wir Dich im Herzen geborgen; kein Moment vergeht, an dem du nicht
bei uns bist. Der Wind trägt deine Stimme zu uns, über den Äther versprüht sich deine
Herzensgüte, als seist Du noch mitten unter uns. Unsere Liebe spricht zu dir, wo auch immer
du dich verborgen hältst. Schließe ich meine schweren Lieder abends zur Ruhe, so sehe ich
dein freudestrahlend’ Antlitz frei von Schmerz vor mir erscheinen. In der Dunkelheit der Nacht
zeichnet das Mondlich zärtlich deine Silhouette. Wo ich auch bin, trage ich den Gedanken an
Dich und all meine Dankbarkeit in mir. Dein Beispiel lehrte mich ein mannhaft Herz, das stark
bleibt in Freuden und Leiden, im Triumphe nicht prahlt und im Sturze nicht verzagt. Wenn
die Sonne sich senkt hinterm Horizont und mein Haupt gen Himmel ich erhebe, zu schauen,
wie Stern um Stern sich entzündet zum Ballett der Nacht, dann schwingt mein Geist fort zu
dir in die Unendlichkeit. Und wenn die Trauer mich übermannt in düsteren Winternächten,
dann denke ich, wie leise und unbemerkt unter dem kalten Schnee, der draußen glitzert, schon
der kommende Frühling wieder keimt. Dann tröste ich mich und weiß: Sämtlicher Tod ist nur
Schein.

Ich, Christof Sauer, widme die vorliegende Dissertationsschrift zur Erlangung des akademischen
Grades „Doktor der Naturwissenschaften“ mitsamt aller darin gewonnenen Erkenntnisse und
dargelegten Einsichten meinen beiden geliebten Eltern: meinem Vater, Hubertus Udo Sauer –
dem es unseligerweise nicht mehr vergönnt war, diesen Moment leibhaftig mitzuerleben –, sowie
meiner Mutter, Ursula Elaine Sauer. Dieses bescheidene Denkmal (nicht aus Stein geschlagen,
nicht aus Gold gegossen, sondern aus Wissen geformt und in Liebe gebunden) sei ewig für euch
errichtet.

Wir wissen nichts von diesem Hingehn, das\ nicht mit uns teilt. Wir haben
keinen Grund,\ Bewunderung und Liebe oder Haß\ dem Tod zu zeigen, den ein
Maskenmund\

tragischer Klage wunderlich entstellt.\ Noch ist die Welt voll Rollen, die wir
spielen.\ Solang wir sorgen, ob wir auch gefielen,\ spielt auch der Tod, obwohl er
nicht gefällt.\

Doch als du gingst, da brach in diese Bühne\ ein Streifen Wirklichkeit durch
jenen Spalt\ durch den du hingingst: Grün wirklicher Grüne,\ wirklicher Sonnen-
schein, wirklicher Wald.\

Wir spielen weiter. Bang und schwer Erlerntes\ hersagend und Gebärden dann
und wann\ aufhebend; aber dein von uns entferntes,\ aus unserm Stück entrücktes
Dasein kann\

uns manchmal überkommen, wie ein Wissen\ von jener Wirklichkeit sich nieder-
senkend,\ so daß wir eine Weile hingerissen\ das Leben spielen, nicht an Beifall
denkend.

– Rainer Maria Rilke (1875 – 1926), aus “Neue Gedichte” (1907)
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Obituary

On the cloudless morning of the sixteenth of April in the crisis-ridden year of 2021 at precisely
10:37 a.m., I received devastating news about the recently diagnosed serious cancer of my
father, which was the prelude to a period of alternating hopes, constant trepidation and bitter
defeats that lasted for months. This thorny time has permanently shifted my perspective on
the world as a whole and made me aware that there are only two aspects of human life that
are really of relevance: love and death – both as foci of the ellipsis of human life.

Just a few moments in someone’s life unhinge the world the same way as the indescribable,
gruelling fear of losing a loved one does. The state of constant worry consumes all energy
and takes up all thoughts. The omen stands threateningly written on the wall; the blade is
constantly sharpened, spraying sparks on the whetstones; Damocles’ sword permanently hovers
menacingly above the trembling head. As a family, the three of us – my father, my mother and
myself – have overcome this difficult time of affliction together. We tried to bear each other’s
yoke, whereby my father in particular endured his difficult fate with chivalrous, admirable
bravery. In accordance with his whole nature, his thoughts were always surrounding his family
(even in the greatest personal tribulations!), which always formed the centre of his life and to
which he sacrificially dedicated all his devotion as well as his entire existence.

Furthermore, I’d like to emphasise and honour the almost Herculean performance and
self-sacrifice of my mother who, in unconditional devotion and boundless love for her seriously
ill husband, left no stone unturned to bring about his recovery, to alleviate his suffering, and
at any moment held out her hand to comfort him and in heartfelt love always lowered her
tear-stained head to a kiss. Here were forces at work far more powerful than death.

Nothing in my existence to date has shaped me like this time; nothing has shifted the
coordinate system of my life comparably and reminded me that what actually counts is the
love that gives meaning to the few shadowy decades of our existence here on earth with
meaning and bliss. What else should give meaning to our existence in a universe in which each
nail driven into wood has the potential to last longer than our ephemera body. However, in
the most terrible misery, the principle of the most beautiful and creative force in the entire
cosmos reveals itself to us mortal beings. What are the precious instances, these indescribable
moments of happiness, which we bring to light at the end of our earthly existence when we
scrape the sand of past reminiscences through the coarse-meshed sieve of memories? What
remains at the end when we strip off the holey robes of civilization and its worthless badges?
It is the knowledge that we are loved unconditionally by a power that wants us to be and to
remain. This now the outrageousness of death: it seeks to separate what love has forged into
an indistinguishable unity. But even if the Mœræ finally cut the thread of life, the bond of
love cannot be severed; it continues to exist and connects us through space and time – through
this world and the hereafter. Whoever stands (or stood) in the focal point of love never dies.

One day we all return to the womb of Mother Earth. Our remains will pass away and
just in a few generations, the memories of us will fade away when there is no one left to
remember. The Egyptian pharaohs feared this condition to such an extent that they decorated
their monuments with myriads of cartouches, which bore their names in elaborate frames and
hieroglyphics to serve as a focal point of memory for future generations to come. But this is of
no importance because we are and thus we will always have been just as every simple presence
inevitably matures to the past perfect simple even when the last sun has burned up and the
cosmos has been wrapped in eternal darkness. The fact that we are (and have been), that we
laughed together, quarreled occasionally and loved together, is written for all eternity in the
collective memory of all-encompassing unity – regardless of whether anyone remembers it or
not.

My dear father, the Grim Reaper has taken you from us far too soon; all the days of our
lives we carry you in our hearts; not a moment passes when you are not with us. The wind
carries your voice to us; your kindness of heart spreads over the ether as if you were still among
us. Our love speaks to you wherever you are hidden. When I close my heavy eyelids to rest in
the evening, I see your joy-beaming face freed from pain appearing before me. In the darkness
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of night, the moonlight tenderly draws your silhouette. Wherever I am, I carry the thought of
you and all my gratitude. Your example taught me a manly heart that remains strong in joys
and sufferings, does not boast in triumph and does not despair in troublesome times. When
the sun sinks behind the horizon and I raise my head to the sky to see how star after star is
ignited the ballet of the night, then my spirit swings away to you in the infinity. And when
sadness overcomes me on gloomy winter nights, I think how quietly and unnoticed under the
cold snow, that glitters outside, the coming spring is already sprouting again. Then I comfort
myself and know: all death is only an illusion.

I, Christof Sauer, dedicate the thesis at hand for the degree “Doctor of Natural Sciences”
together with all the knowledge gained during my studies including any insights presented
therein to my two beloved parents: my father, Hubertus Udo Sauer – who, unfortunately, was
not able to experience this moment in flesh – and my mother, Ursula Elaine Sauer. This
modest memorial (not carved from stone, not cast in gold, but formed from knowledge and
bound in love) be eternally erected for you.

We know nothing of this going away, that\ shares nothing with us. We have
no reason,\ whether astonishment and love or hate,\ to display Death, whom a
fantastic mask\

of tragic lament astonishingly disfigures.\ Now the world is still full of roles
which we play\ as long as we make sure, that, like it or not,\ Death plays, too,
although he does not please us.\

But when you left, a strip of reality broke\ upon the stage through the very
opening\ through which you vanished: Green, true green,\ true sunshine, true
forest.\

We continue our play. Picking up gestures\ now and then, and anxiously recit-
ing\ that which was difficult to learn; but your far away,\ removed out of our
performance existence,\

sometimes overcomes us, as an awareness\ descending upon us of this very real-
ity,\ so that for a while we play Life\ rapturously, not thinking of any applause1.

– Rainer Maria Rilke (1875 – 1926), from “New Poems” (1907)

1This wonderfull translation by Cliff Crego of Rainer Maria Rilke’s poem “Death Experience”, which
somehow manages to keep the peculiar feeling of this text, has been taken from Ref. [1].
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“Descend Into the Sun’s Barque ...”
Oh father! Already the last grains pearls through the glass of life; Oh father! Not a single
spark is caught in the candel’s wick anymore; the light of life is extinguished in a plume of
smoke; the last embers die out. Behold, The last grain has slid through the hourglass. You
are no more ... Dear Father, as your tormented head rested in my hands, as you blew out the
breath of life, I suddenly remembered a verse from ancient Egypt – several millennia old –,
which gave me comfort at that moment.

Death is in my sight today, a cure of a sick man, like going outside

confinement. Death is in my sight today,after

myrrh, like sitting under a saillike the smell of

on a windy day. Death is in my sight today.

– “Dispute of a man with his ‘ba’ ” [2] (anon.), XIIth Dynasty (1991BC–1802BC)
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Dedicated to my beloved parents, Hubertus Udo† and Ursula Elaine Sauer.

‘Ποῦ σου, θάνατε, τό κέντρον; Ποῦ σου, ἅδη, τό νῖκος;’

(»Tod, wo ist dein Stachel? Totenreich, wo ist dein Sieg?«)

– 1. Korinther 15:55-58, Schlachter-Bibel, (1905)

†05.04.1956–09.11.2021
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Abstract

At hadron-hadron colliders, it is almost impossible to obtain pure samples in either quark-
or gluon-initialized hadronic showers as one always deals with a mixture of particle jets.
The analysis presented in this dissertation aims to break the aforementioned degeneracy by
extracting the underlying fractions of (light) quarks and gluons through a measurement of the
relative production rates of multijet events.

A measurement of the triple-differential multijet cross section at a centre-of-mass energy of
13 TeV using an integrated luminosity of 139 fb−1 of data collected with the ATLAS detector
in proton-proton collisions at the Large Hadron Collider (LHC) is presented. The cross section
is measured as a function of the transverse momentum pT, two categories of pseudorapidity
ηrel defined by the relative orientation between the jets, as well as a Jet Sub-Structure (JSS)
observable OJSS, sensitive to the quark- or gluon-like nature of the hadronic shower of the two
leading-pT jets with 250 GeV < pT < 4.5 TeV and |η| < 2.1 in the event.

The JSS variables, which have been studied within the context of this thesis, can broadly be
divided into two categories: one set of JSS observables is constructed by iteratively declustering
and counting the jet’s charged constituents; the second set is based on the output predicted by
Deep Neural Networks (DNNs) derived from the “deep sets” paradigm to implement permutation
invariant functions over sets, which are trained to discriminate between quark- and gluon-
initialized showers in a supervised fashion.

All JSS observables are measured based on Inner Detector tracks with pT > 500 MeV
and |η| < 2.5 to maintain strong correlations between detector- and particle-level objects.
The reconstructed spectra are fully corrected for acceptance and detector effects, and the
unfolded cross section is compared to various state-of-the-art parton shower Monte Carlo
models. Several sources of systematic and statistical uncertainties are taken into account that
are fully propagated through the entire unfolding procedure onto the final cross section. The
total uncertainty on the cross section varies between 5 % and 20 % depending on the region of
phase space.

The unfolded multi-differential cross sections are used to extract the underlying fractions
and probability distributions of quark- and gluon-initialized jets in a solely data-driven, model-
independent manner using a statistical demixing procedure (“jet topics”), which has originally
been developed as a tool for extracting emergent themes in an extensive corpus of text-based
documents. The obtained fractions are model-independent and are based on an operational
definition of quark and gluon jets that does not seek to assign a binary label on a jet-to-jet basis,
but rather identifies quark- and gluon-related features on the level of individual distributions,
avoiding common theoretical and conceptional pitfalls regarding the definition of quark and
gluon jets.

The total fraction of gluon-initialized jets in the multijet sample is (IRC-safely) measured
to be 60.5± 0.4(Stat)⊕ 2.4(Syst) % and 52.3± 0.4(Stat)⊕ 2.6(Syst) % in central and forward
region, respectively. Furthermore, the gluon fractions are extracted in several exclusive regions
of transverse momentum.
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Kurzzusammenfassung

An Hadronenbeschleunigern ist es schwerlich möglich, Datensätze zu generieren, welche
sich jeweils ausschließlich aus quark- sowie gluonen-basierten Teilchenjets zusammensetzen;
entsprechend schwierig gestaltet sich das Studium spezifischer Eigenschaften dieser funda-
mentalen Elementarteilchen an besagten Apparaturen. Die im Rahmen dieser Dissertation
dargebotene Analyse ist ein Beitrag, die vorgenannte Problematik bezüglich der unbekannten
Komposition hinsichtlich Quarks und Gluonen zu adressieren, um deren prozentuale Anteile in
einem Ensemble von hadronischen Jets zu bestimmen.

Die vorliegenden Arbeit präsentiert eine Messung des dreifach differentiellen Wirkungs-
querschnitts der relativen Rate von Kollisions-Ereignissen mit mindestens zweier Teilchenjets
(Multijets), basierend auf insgesamt 139 fb−1 Proton-Proton Kollisionen, welche mit dem
ATLAS-Detektor am Großen Hadronen-Speicherring am CERN im Zeitraum von 2015 bis
einschließlich 2018 mit eine Schwerpunktsenergie von 13 TeV aufgezeichnet wurden. Der
Produktions-Wirkungsquerschnitt wird in Abhängigkeit des transversalen Impulses pT, zwei
Kategorien der relativen Jet-(Pseudo-)Rapitität ηrel sowie einer topologischen Jet-SubStruktur-
Variablen (JSS) OJSS, welche sensitiv bezüglich des hadronischen Endzustandes in Gluon-
und Quark-Schauern ist, für die beiden hochenergetischsten Teilchenjets der Kollision mit
250 GeV < pT < 4.5 TeV und |η| < 2.1 gemessen.

Die JSS-Variablen, die im Rahmen dieser Arbeit gemessen werden, lassen sich grob in
zwei Kategorien unterteilen: Ein Satz von Struktur-Observablen ergibt sich aus dem iter-
ativen „Zählen“ der Emissionen eines mittels des Soft-Drop-Algorithmus’ rekonstruierten
beziehungsweise rekombinierten Teilchenjets; die zweite Gruppe bildet die Ausgabe zweier
Neuronaler Netzwerke, welche allesamt auf der „Deep-Set-Architecktur“ basieren und derart
trainiert wird, um zwischen quark- und gluonen-initialisierten Jets zu diskriminieren.

Alle JSS-Observablen werden auf Grundlage innerer Detektorspuren mit einem Transver-
salimpuls von pT > 500 MeV sowie |η| < 2.5 gemessen, um eine ausrechende Korrelation zwis-
chen Detektor- und Teilchenebene für den nachfolgenden Entfaltungsprozess zu gewährleisten.
Die gemessenen Spektren werden vollständig entfaltet und für Detektor- sowie Akzeptanz-
effekte korrigiert und die finalen Wirkungsquerschnitte mit den Vorhersagen einiger mod-
erner, zeitgenössischer Monte-Carlo-Generatoren verglichen. Zusätzlich werden eine Vielzahl
an zugehörigen systematischen und statistischen Messunsicherheiten bezüglich des relativen
Produktions-Wirkungsquerschnitts bestimmt. Resümierend lässt sich sagen, dass die Unsicher-
heit des Wirkungsquerschnittes zwischen 5 % und 20 % je nach Phasenraumelement variiert.

Der gemessene (differentielle) Wirkungsquerschnitt dient als Grundlage, die zugrunde liegen-
den Anteile an quark- und gluonen-initialisierten Jets sowie deren Wahrscheinlichkeitsverteilun-
gen auf eine rein datengestützte, modellunabhängige Art und Weise zu ermitteln. Dabei wird
auf eine adaptiertes Verfahren namens „Jet-Topics“ zurückgegriffen, welches ursprünglich
im Rahmen der Computerwissenschaften zur Extrahierung thematischer Inhalte in einem
umfangreichen Korpus von textbasierten Dokumenten entwickelt wurde. Die gewonnenen
Anteile an Quarks und Gluonen sowie die dazugehörigen Wahrscheinlichkeitsverteilungen sind
vollständig modellunabhängig und basieren auf einer operationalen Definition von Quark- und
Gluonen-Jets, die quark- und gluonen-bezogene Charakteristika auf Ebene des rekonstruierten
Wirkungsquerschnitts anstatt auf der Stufe individueller Teilchenjets definiert.

Der prozentuale Anteil an mit Gluonen kompatiblen Jets liegt bei 60.5 ± 0.4(Stat) ⊕
2.4(Syst) % sowie 52.3±0.4(Stat)⊕2.6(Syst) % in den jeweiligen (Pseudo-)Rapiditäts-Kategorien.
Des Weiteren werden die Anteile an Gluonen in mehreren disjunkten Intervallen des Transversal-
Impulses bestimmt.
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Preface

In the context of this dissertation project – which lasted over a period of three-odd years –, the
author of this thesis (Christof Sauer) was involved in several activities beyond the central theme
(multijet cross section measurement and quark/gluon fraction extraction with the ATLAS
experiment at the LHC) like, for instance, heavy flavor jet (top) tagging based on ATLAS’
(large-R) Unified Flow Objects (UFOs); anomaly searches/tagging (“one-class classification”)
based on the latent space learned by (variational) autoencoders; as well as possible applications
of “jet topics“ in the context of an αS-extraction based on a measurement of a JSS observables
that are sensitive to quark- and gluon-initialized jets. The above-mentioned involvements
within the context of this PhD resulted in the two publications listed below.

Abstract

Autoencoders as tools behind anomaly searches at the LHC have the structural problem that
they only work in one direction, extracting jets with higher complexity but not the other way
around. To address this, we derive classifiers from the latent space of (variational) autoencoders,
specifically in Gaussian mixture and Dirichlet latent spaces. In particular, the Dirichlet setup
solves the problem and improves both the performance and the interpretability of the networks.

Abstract

Quantum chromodynamics is the theory of the strong interaction between quarks and gluons;
the coupling strength of the interaction, αS, is the least precisely-known of all interactions
in nature. An extraction of the strong coupling from the radiation pattern within jets would
provide a complementary approach to conventional extractions from jet production rates and
hadronic event shapes, and would be a key achievement of jet substructure at the Large Hadron
Collider (LHC). Presently, the relative fraction of quark and gluon jets in a sample is the
limiting factor in such extractions, as this fraction is degenerate with the value of αS for the
most well-understood observables. To overcome this limitation, we apply recently proposed
techniques to statistically demix multiple mixtures of jets and obtain purified quark and gluon
distributions based on an operational definition. We illustrate that studying quark and gluon jet
substructure separately can significantly improve the sensitivity of such extractions of the strong
coupling. We also discuss how using machine learning techniques or infrared- and collinear-
unsafe information can improve the demixing performance without the loss of theoretical control.
While theoretical research is required to connect the extract topics with the quark and gluon
objects in cross section calculations, our study illustrates the potential of demixing to reduce
the dominant uncertainty for the αS extraction from jet substructure at the LHC.
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»Versuche es, geneigter Leser!, in dem feenhaften Reiche voll herrlicher Wunder, die höchste
Wonne wie das tiefste Entsetzen in gewaltigen Schlägen hervorrufen [...] – ja! in diesem
Reiche, das uns der Geist so oft, wenigstens im Traume aufschließt, versuche es, geneigter
Leser!, die bekannten Gestalten, wie sie täglich, wie man zu sagen pflegt im gemeinen Leben,

um dich herwandeln, wieder zu erkennen.«

– E. T. A. Hoffmann (1776 – 1822), »Der goldne Topf« (1814)
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Introduction
The subject of (high-energy) elementary particle physics aims to fathom the most fundamental
entities of material being that make up the (in a figurative sense) “tangible” proportion of
the surrounding (physical) reality. To what extent this reductionist approach may lead to
true insights in a holistic world is another matter3 ... The author of this thesis fully agrees
to Arthur Schoppenhauer’s opinion according to which ”[p]hysics is unable to stand on its
own feet, but needs a metaphysics on which to support itself, whatever fine airs it may assume
towards the latter” – Arthur Schopenhauer, “The World as Will and Representation” (orig. title:
“Die Welt als Wille und Vorstellung”), trans. E. F. J. Byrne (1958), Vol. 2, 1724. Regardless
of whether this claim is foolish or not5, the research area of elementary particle physics has
undoubtedly made a significant and precious contribution to the general understanding of
surrounding material reality that surrounds us and led to valuable, exciting insights into the
underlying laws that conduct nature.

Through the years, a huge variety of methods have been developed to gain knowledge and
insight of the elementary particle content of the universe as well as the fundamental forces
of nature that govern their interactions. One method, which has proven itself very successful
throughout modern history, is the analysis of the scattering products produced in particle
collisions at high energies. Strictly speaking, this is the logical continuation of microscopes
after they reached their physical limitations. This well-tried method is employed, for instance,
at the Large Hadron Collider (LHC) in gigantic dimensions at the European Organization
for Nuclear Research, in general better known as CERN (French: Conseil Européen pour la
Recherche Nucléaire). At the LHC, protons are accelerated to unprecedented energies and
their collision products are studied in dedicated measuring apparatuses (like, e.g., the ATLAS
detector) to gain insights into the fundamental mechanism of nature.

One of the four known fundamental forces of nature is the strong interactions that is
described by the (gauge) field theory of Quantum Chromo(Greek: χρῶμα, “color”)Dynamics
(QCD). The strong (nuclear) force is responsible for the confinement of the fundamental
quanta of the elementary fields in QCD, i.e., quarks and gluons, to color-single hadron
states; furthermore, the strong interaction is the underlying force that binds neutrons and
protons into atomic nuclei. The strength of the interaction in QCD is described by the strong
coupling “constant” αS, which is the least precisely-known interaction in nature in terms of its
uncertainties. The coupling constant actually depends on the energy scale of the interaction.

3After some years in physics, I more and more arrive at the (personal) conclusion that the reductionist
approach to gain understanding of “the world” may lead to a continuously increased precision (in a quantitative
sense) and is indeed beneficial in terms of the unbundling of “cause-and-effect relations” (principle/axiom of
causality) that can be translated into technical artifacts, but – inevitably! – results in a drain of ontological
meaning of the gained “insights”. While getting more precise in the calculation of physical quantities (physicists
are, for instance, very proud of measuring an agreement to more than ten significant figures with respect
to calculations of the magnetic moment of the electron), the ontological correspondence is gradually lost –
“what does this actually mean?” It appears to me that precision and ontological meaning are contrasting each
other and move into opposite directions. After all, the term “precision” (from the Latin word praecisionem)
means “cutting off”, “abstraction” – literally: “cutting of [reality]”. Consequently, a reductionist’s approach
– I’m convinced – will never result in a “true” insight of the world. Like the great Russian novelist Nikolai
Vasilyevich Gogol (1809–1852) wrote in his famous, unfinished novel “Dead Souls” (spoken by the philosopher
Kiefa Makejitsch): “[...] ‘Je mehr du dich in die Natur versenkst, desto weniger begreifst du sie’ [...]” (Gogol,
“Die toten Seelen” oder “Tschitschikows Abenteuer”, 1842 (1. Teil) beziehungsweise 1855 (2. Teil, Fragment);
Herausgeber: Diogenes (1. Januar 1977), Übersetzung von Philipp Löbenstein 1846, S. 352). To cite a beautiful
verse from Novalis’ “Von der geheimen Welt“: “[...] Unendliche Ferne der Blumenwelt [...]”. Indeed, no matter
how far humans will disassemble the world (of flowers), the thing-in-itself (Kant) will remain unreachable – at
least in mind-based relationship between a subject and an object under investigation.

4This is by no means a degradation of this wonderful research area – on the contrary: only taking its
epistemological limitations into account, (natural) science can be fully appreciated.

5Surrounded by a reality in which the inhuman philosophy of so-called “transhumanism” spreads like the
plague, it is important to remember that (at least according to the author’s opinion) the reducionist approach
of today’s natural science will not provide an answer to non of the questions that are actually important to
human existence (first formulated by Immanuel Kant in the “Critique of Pure Reason” (KrV, A 805/B 833)):
(1) What can I know? (2) What ought I to do? (3) What may I hope for? [(4) What is man?]
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This so-called “running of the coupling” encodes the underlying dynamics of hadron physics,
which results in (color) confinement at large distances and asymptotic freedom at high energies,
i.e., short distances.

Protons are composite objects that are composed of quarks and gluons, which are commonly
referred to as partons. Those partons are the particles that actually undergo interactions
in proton-proton collisions. The internal structure of the proton (as well as other hadrons)
is described by the Parton Distribution Functions (PDFs) that describe the probability of
finding a parton of some flavor6 at some energy scale Q with a certain fraction of the proton’s
momentum x. The evolution of the PDFs as a function of the energy scale Q is predicted by
means of perturbative QCD – in contrast, the dependence on the momentum faction x can
not be calculated from first principles in QCD directly and therefore must be extracted from
experimental data. The PDFs of all flavors are well constrained in the low- and medium-x
regime, mainly done in deep inelastic scattering experiments. In the case of high momentum
fractions, however, the uncertainty on the gluon’s (as well as for the quark’s) PDF is still
“comparatively” large.

The PDF of the various quark flavors as well as the gluon are related to the fractions of
the respective parton in the final state of the event. Those fractions play an important role
in the extraction of the strong coupling from the radiation pattern within jets by means of a
fit to a jet substructure observable with a known cross section. The main challenge in this
extraction of the strong coupling constant from the measurement of a substructure observable
at hadron colliders like the LHC is the degeneracy of quark- and gluon-initialized jet, that is,
the fraction of those particles is generally unknown as one always deals with a mixture of jets
instead of “pure” regions in phase space given a certain type of jet. This situation makes it
very challenging to study quark/gluon-related properties at hadron colliders, like the LHC, in
general.

In principle, the relative fraction of quark and gluon jets can be calculated using the
aforementioned PDFs and propagating the probability of the respective parton flavor throughout
the calculation of the underlying hard interaction. This approach, however, is sensitive to the
non-negligible uncertainties on the PDFs as well as theoretical uncertainties due to limited
precision of the calculation of the underlying event and variations of the renormalization
and factorization scale, which results in large uncertainties on the calculated quark/gluon
fractions. Alternatively, the quark/gluon fractions can be extracted from data by means of a
cross section measurement. The latter approach suffers from the already mentioned degeneracy
of quarks and gluons at hadron colliders because neither the fractions nor the distributions
are known. Usually, this problem is addressed by extracting the underlying fractions from
simulations by means of some state-of-the-art Monte Carlo event generators or by generating
templates of the cross section for quark and gluon jets7. This approach works well and breaks
the degeneracy; however, it poses the problem of resulting in model-dependent fractions of
unknown uncertainty (model-dependent because using a different generator will yield different
results for the extracted quark/gluon templates/fractions), which is particular important for
the aforementioned (fit-based) extraction of αS. Furthermore, the fractions derived from
simulation rely on a jet-by-jet assignment of the jet’s flavor. Despite being commonly treated
as well-defined objects, there is no precise definition of quark and gluon jets to the present
day. This complication arises because higher-order contributions (at Born-level, the jet flavor
can unambiguously be defined) to parton-level quarks and gluons may result in identical, i.e.,
indistinguishable final state configurations, which – according to quantum mechanics – results

6Flavor is a quantum number that corresponds to the “type” of an elementary particle. In QCD, there are
six (known) flavors of quarks.

7This important aspect will be dealt with later in adequate detail, but for the sake of understanding,
consider the following decomposition:

PMα (x) = fqP
q
Mα

(x) + fgP
g
Mα

(x),

whereby PMα(x) denotes the measured distribution with respect to some jet substructure feature space ‘x’
over two M ixtures Mα of jets, e.g., α ∈ {central, forward} or α ∈ {multijet, Z+jets}. The assumption is that
the measured spectra are a linear composition of contributions from quarks and gluons, whereby the weights
fq/g |Mα are given by the fractions over the jet mixtures Mα. This system of equations is usually degenerate.
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in a superposition of states. The reconstructed jets therefore can not uniquely be assigned to a
quark or gluon anymore on a jet-on-jet basis.

The analysis presented in this report pursues an alternative approach to the extraction
of quark- and gluon-related jet features based on a cross section measurement that does not
suffer from the above-mentioned issue of imposing model-dependence on the final fractions or
distributions, but tries to solve the degeneracy of jet samples at hadron colliders in a solely
data-driven, model-independent manner. This is done by using an operational definition of
quark- and gluon-like jets (that treats the jet-flavor rather as an adjective than a noun) as well
as a statistical demixing procedure called “jet topics” [29], which is based on probabilistic topic
modeling [48] that has originally been developed as a tool for extracting emergent themes in an
extensive corpus of text-based documents. Generally, the method assumes the measured cross
section of, e.g., multijet or Z+jets events, to be a mixture of contributions from quarks and
gluons, independent of their precise definition. The cross section is measured as a function of
some jet substructure observables that provides sensitivity to the quark- or gluon-like nature of
the hadronic shower, as well as in several regions of transverse momentum with the objective
to extract the fraction of quark- and gluon-like jets in several pT bins. Furthermore, the
unmixing procedure requires two orthogonal samples that are enriched by either of quarks
and gluons, respectively, to extract the underlying features associated with the two classes.
For this purpose, the cross section is measured in two disjoint categories of different regions,
central and forward, that are defined by the relative orientation of the two leading-pT jets in
the event. Generally, the jet being reconstructed with the smaller absolute pseudorapidity
|η| is assigned to the central rapidity category, while the other jets populate all distributions
in the forward region8. In total, the data-driven extraction of quark and gluon fractions is
based on the measurement of the (inclusive) triple-differential multijet (dijet) cross section as
a function of the transverse momentum pT, the relative pseudorapidity ηrel, as well as a jet
substructure observable OJSS that acts as a quark-gluon discriminator according to

1

σfid

d3σ

dpT dηrel dOJSS
=

1

Ntot

Nmultijet

∆pT ∆ηrel ∆OJSS
, (1)

whereby Nmultijet denotes the number of (inclusive dijet) multijet events in a given phase
space element ∆pT ∆ηrel ∆OJSS. The measurement is inclusive because all events with at least
two jets that pass the event selection contribute to the cross section measurement, but only
the two leading-pT jets being used to reconstruct the distributions. The relative event rate
(normalized cross section) is measured because systematic uncertainties between nominator
and denominator cancel to the degree of their correlation. For instance, the uncertainty related
to the Luminosity drops out completely in this measurement. The cross section is measured
from jets with 250 GeV < pT < 4.5 TeV and |η| < 2.1 from an integrated luminosity of 139 fb−1

of proton-proton collisions at
√
s = 13 TeV that was reconstructed with the ATLAS detector

during Run 2 (2015–2018).
One challenge of this measurement is the unfolding of the measured spectra to correct for

detector and acceptance effects due to the jets substructure observable. For the unfolding of
JSS observable to work, sufficient correlations between detector- and particle-level objects must
be maintained in order to obtain sufficiently diagonal response matrices. For this reason, the
substructure variable is measured based on Inner Detector (|η| < 2.5) tracks with pT > 500 MeV
that have been matched to the reconstructed small-R(= 0.4) anti-kt Particle Flow (PFlow)
jets – the topo-cluster or PFlow-based jets can not be used to calculate the JSS variable as
the resolution is far too low to maintain the necessary correlations; single-particle resolution
is needed. This can easily be understood since the (comparatively) coarse granularity of the
calorimeter (compared with the tracking-part of the detector at least) often results in several
particles being reconstructed/absorbed in the very same cell of the calorimeter, which reduces
resolution.

The unmixing procedure described above (unmix the contributions from quarks and gluons

8The pseudorapidity has some sensitivity to differences between quark and gluon jets, because the forward
particles are correlated with the longitudinal momentum fraction, which for larger momenta is more likely to
correspond to a quark due to the structure of the underlying PDF of the proton.
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to the measured cross section in central and forward region) is still underconstrained; in order
for the extraction to result in unique underlying quark/gluon probability distributions and
fractions, the utilized jet substructure observable must fulfill an additional (mathematical)
property, i.e., it must results in regions in phase space that are (almost) pure in quark and gluon
jets. In more technical terms, the underlying (probability) distributions of the JSS observables
must be mutually irreducible (loosely speaking: not a mixture by itself). The jet shapes used in
this analysis have been selected in light of this property as well as their sensitivity to differences
between quark and gluons. Broadly speaking, two classes of observables have been studied
that can be subsumed as being counting- or NN -based.

In the first category, the cross section was measured with respect to the number of tracks
ntrk (which is a proxy for the number of charged constituents) in the jet, as well as the Soft Drop
(SD) multiplicity nSD, with the latter one being constructed by iteratively declustering and
counting charged jet constituents that pass the SD condition, which constraints the emissions’
phase space. Those observables are “simple” regarding their interpretation, yet sufficiently
powerful to not be limited by Casimir scaling and hence being mutual irreducible.

The second class of observables is based on the output provided by a Deep Neural Network
(DNN) that has been trained as a quark-gluon classifier. The models are based on the “Deep
Sets” architecture that allows to constrain the set of possible functions learned by the DNN to
permutation invariant maps over sets. This parameterization is tempting because it natively
respects symmetries associated with jets. The resulting quark/gluon discriminators are very
powerful, however, the decision-making process is hard to keep track of. Both categories there-
fore provide a balance between performance (in terms of classification) as well as interpretability
of the result. Besides that, extracting the quark/gluon fractions for several measurements
with respect to various observables provides a valuable cross check. Of course, the individual
measurements of the differential multijet cross section are not independent in the sense of not
being correlated – on the contrary: the measurements presented in this report are (partially
highly) correlated as they are measured over the exact same set of jets.

To summarize, this thesis reports the measurement of the inclusive triple-differential dijet
cross section as a function of several jet substructure observables. The reconstructed spectra are
fully corrected for acceptance as well as detector effects and are unfolded to hadron level and
their degree of agreement compared to several state-of-the-art Monte Carlo event generators.
The uncertainty of the measurement is determined by taking several sources of systematic
and statistical uncertainties into account and fully propagating them through the unfolding
procedure onto the final cross section. After the (relative) cross section measurement has been
concluded, the distributions are unmixed to obtain the quark- as well as gluon-like features and
the corresponding quark/gluon fractions in each bin in transverse momentum using the “jet
topics” procedure outlined above. The uncertainties on the relative event rate are propagated
onto the extracted fractions and underlying quark/gluon probability distributions.

This thesis can broadly be divided into three parts. The first part (“fundamentals”) intro-
duces all the theoretical background needed to fully appreciate the physical motivation of the
studies presented in this report. The second part of this thesis (“methodology”) focuses on the
more technical aspects as well as the different methods that have been used throughout this
analysis. Finally, the third part (“Analysis and Results”) is dedicated to all steps relevant for
the actual analysis as well as the final results and conclusions.

In a bit more detail, this thesis is structured as follows: the very first Chapter 1 introduces
the necessary theoretical framework including an introduction into the Standard Model of
elementary particle physics, a quick review of (perturbative) QCD as well as some phenomeno-
logical aspects of QCD by means of jet physics. The next Chapter 2 builds on the previous one,
but turns the attention to the simulation and event generation using Monte Carlo methods.
The individual steps of an event generation chain in high-energy physics like, for instance,
the calculation of the hard sub-process by means of the matrix element, the simulation of
additional radiation using the parton shower approach, as well as the formation of color-singlet
states in the hadronization step and the subsequent decay to final state particles.

The next Chapter 3 opens the methodology part and introduces the experimental setup
that was used to produce the data that serves as the basis for the analysis at hand. The LHC at
CERN as well as the ATLAS detector (including its components) are explained in appropriate
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detail. Chapter 4 introduces the reconstruction of the physical objects from signals recorded
with the ATLAS detector with a main focus on the reconstruction and calibration of hadronic
jets. Once the physical objects are defined, the concept of detector unfolding is explained in
Chapter 5. Chapter 6 jumps to a different topic (careful: the word “topic” is quite overloaded
in this report as one might already guess). As previously mentioned, the triple-differential
multijet cross section is measured with respect to the score predicted by a neural network.
Accordingly, Chapter 6 provides a brief introduction into the broad area of machine learning
with a focus on DNNs as well as a basic explanation of the “Deep Set” architecture, which is
used for all models in this analysis. Chapter 7 explains all necessary background to understand
the aforementioned data-driven feature extraction using topic modeling. This includes a quick
review of some common pitfalls when talking about quark and gluon jets in general as well as
an introduction into the operation definition of those objects.

The next Chapter 8 opens the third and last part of the thesis and introduces all samples
in real pp-collision data and simulation that have been used in this analysis. In the subsequent
Chapter 9, the reconstruction of the physical objects (mainly jets and tracks) that enter the
measurement as well as the selection of events is discussed; furthermore, the trigger chain
for the selection of analysis-relevant events is defined. After that, the measurement of the
triple-differential cross section can – in principle – begin; however, one rather technical Chapter
10 is inserted that introduces all the sources of statistical and systematic uncertainties along
with their calculation. After that, Chapter 11 finally turns the attention to the measurement
of the triple-differential cross section with respect to the counting-based observables. This
includes the reconstructed spectra at detector level, the unfolding of the cross section as well
as the final, unfolded spectra including uncertainties. Chapter 12 basically mimics the previous
one but for the NN-based observables. In Chapter 13, the unfolded cross section is used to
extract the underlying quark/gluon probability distributions as well as their corresponding
fractions using topic modeling. This Thesis ends with a conclusion in Chapter 14 that includes
a discussion as well as some further research suggestions that could follow and build upon this
analysis.
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Part I

Fundamentals

The first part of this thesis establishes the theoretical foundations necessary to
provide a profound motivation of the analysis presented in the document at hand.
This minor excursion into the fundamentals of the broad field of elementary particle
physics is mostly limited to aspects that are considered relevant for the studies
carried out in the scope of this dissertation. Due to the sheer size of this matured
branch of physics, this introduction barely scratches the surface; hence, the reader
is assumed to be equip with a basic understanding of this discipline.

The first Chapter 1 of this introductory part provides a brief recap of the Standard
Model of elementary particle physics including its historical development as well
as its most important concepts. The main focus of this discussion is on the theory
of the strong interaction and its phenomenology, which is the field of research this
study is part of.

The second Chapter 2 builds on the lessons from the first one by providing an
introduction into the topic of event generation (and simulation) in high-energy
particle physics. It therefore builds a bridge between predictions in theory and
observations in experiments.
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1. Theoretical Framework1

The Standard Model (SM) is the fundamental theoretical (QFT-based) model of elementary
particle physics based on an underlying, spontaneously broken SU(3)c × SU(2)L × U(1)Y
symmetry group that encapsulates the gathered knowledge of the fundamental (according to
present knowledge), i.e., irreducible constituents of matter in a fertile interplay between theory
and experiment. It provides an astonishingly precise description of the elementary particles
known to mankind (see, e.g., Ref. [50]) and their mutual interactions that are governed by
three out of four known fundamental forces occurring in nature: the electromagnetic, the weak,
and the strong force – with the gravitational interaction withstanding a consistent quantum-
field-theoretical description and, therefore, not being incorporated into the theory so far. The
tumultuous history of the Standard Model (a name that has been given in the early ’70s) is
rich and goes back to the origin of modern particle physics at the beginning of the previous
century. As the hour of birth, one could take the unification of the electromagnetic and the
weak force by Sheldon Glashow, Abdus Salam, and Steven Weinberg in the ’60s [51, 52, 53].
Ever since, the Standard Model has been tested in numerous experiments around the world,
providing an accurate description of the microscopic world of elementary particles; making it
the most accurate scientific theory known to humankind to the present day. This culminated
in the successful discovery of the Higgs boson at the Large Hadron Collider (LHC) near the
French-Swiss border in 2012 [54]; finally, making the Standard Model a self-consistent (albeit
inherently incomplete [55]) theory of nature.

The purpose of this very first chapter is to serve as a general introduction into the topic
area of the Standard Model of particle physics. A comprehensive introduction into the subject
is, of course, beyond the scope of this work; hence, the focus lies on the fundamental aspects of
the theory as well as some of the milestones in its history.

The first section (1.1) gives an outline of the Standard Model’s history (1.1.1) as well as its
elementary particle content. This is followed by a very brief introduction into the fundamental
concepts behind Quantum Field Theory (QFT). Equipped with the necessary foundations, the
Lagrangian of the Standard Model along with its individual terms is introduced with a focus
on the strong sector of the theory (1.1.3). The subsequent section is dedicated to the domain
of perturbative Quantum Chromodynamics (pQCD) and key concepts like the running of the
strong coupling constant (1.2.1) and factorization theorems in QCD (1.2.2). This chapter
closes with a careful look at some phenomenological aspects of QCD by means of the important
concept of a particle jet (1.3.1, 1.3.2), which will be further developed later in this report.

1.1 The Standard Model of Particle Physics

This section roughly sketches the historical development of the Standard Model with the
objective to embed the theoretical concepts, which are introduced in the following section, into
its relative historical context and background that are relevant for the results presented in
this analysis. Furthermore, it introduces the known elementary particles and their associated
properties that are described by the Standard Model.

1Essential parts of the succeeding text passages have been adopted (almost) literally from my Master’s thesis
“Towards a Data-Driven Simulation of QCD Radiation with Generative Models utilizing Machine Learning
Methods”, 2019, Universität Heidelberg, Christof Sauer [49].
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1.1.1 History of the Standard Model

He (the author speaks based on his very own experience) who encounters the state-of-the-art
Standard Model of particle physics for the very first time might be dazzled and overwhelmed
by its complexity and the diverse (partially counterintuitive) physical phenomena it is able to
accurately describe. However, to understand and appreciate this highly advanced theory of
nature, it is vital to reflect its historical development over the last decades, starting from the
’30s of the previous century until today. Therefore, it is even more surprising that the history
of the Standard Model is virtually never part of its introduction.

The Standard Model’s history is an adventurous story full of misconceptions and embroil-
ments, all of which represent steps on the path to higher knowledge2. It is a beautiful story; but
unfortunately, too long to tell. Within the context of this thesis, only an incomplete overview
of the milestones in the history of the Standard Model – according to the author’s personal
view! – is given.

It is quite “simple” to set a starting point for the historical development of the Standard
Model. At the beginning of the ’20th century, the world was more or less classical and
described by classical fields as in Maxwell’s laws of electromagnetism [56] and Einstein’s theory
of gravitation [57] that replaced Netwon’s theory of gravity3 [58]. Both theories at that time
accurately described the two fundamental forces that are daily experienced by human beings
in their meso- and macroscopic world – and one of them still does to this very day. This was
the situation roughly up to the year 1930, when new discoveries and insights had changed the
fundamental understanding of nature, with an enhanced understanding of Quantum Mechanics
(QM) leading the charge. With the discovery of the neutron [59] – which was initially mis-
takenly assumed to be γ-radiation –, the postulation of weak interaction by Fermi to solve
the puzzle of the continuous energy spectrum of the electron emitted in the beta-decay in
his revolutionary essay “[t]entativo di una teoria dellaemissione di raggi β” [60] (“tentative
theory of beta-decay”) as well as the invention of Quantum Electrodynamics (QED) [61] by
quantizing Maxwell’s equations, the foundations of the Standard Model was laid. With the
procedure of renormalization – invented in 1947 –, QED agreed with astonishing accuracy with
the experiments (see, e.g., measurement of the anomalous magnetic dipole moment) and quickly
became the most well-tested theory in physics. After World War II, when many scientists
ended their rendezvous with the military and returned to their actual studies, the number of
known particles significantly increased, creating a zoo of hundreds of, apparently, elementary
particles; it was necessary to make sense out of this mess by trying to distill out the underlying
structures. This ordering was partially achieved by the observation of apparent similarities
between the different particles (e.g. mass, spin, electric charge etc.) and the discoveries of
(approximate) symmetries such as the famous “eight-fold way” [62] to name only one out of
many. It was a major “crisis”, when it became clear that most symmetries only represent an
approximation. The existence of numerous approximate symmetries confronted physicist with
a daunting problem of interpretation.

A brilliant idea, which was independently developed by Murray Gell-Mann and Georg Zweig
in 1961 [63, 64], gradually lifted the curtain of confusion: the so-called parton model pictures
hadrons as a collection of point-like, i.e., elementary particles, which today are associated with
the elementary quarks and gluons in quantum chromodynamics. It revealed an underlying
structure of known (composite) particles and reduced those to a small number of elementary
constituents of material being – the actual (at least according to our current knowledge) atomos.
The parton model played a similar role in the development of modern particles physics like
Pauli’s exclusion principle did for chemistry in explaining the ordering of the elements in the
periodic table.

Alongside the aforementioned parton model, the systematic development of gauge symmetry
(also known as local gauge symmetry) was yet another important step in the evolution of

2Was ist (Natur-)Wissenschaft anderes als eine systematische Form des Sich-empor-Irrens? – Gerhard
Vollmer (1943–today)

3Strictly speaking, this is not correct as the fundamental principles of quantum mechanics had already been
discovered at that time. However, compared to the theory of relativity, it took somewhat more time to get used
to the partially counter-intuitive insights.
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1.1. THE STANDARD MODEL OF PARTICLE PHYSICS

the Standard Model. Although classical Electrodynamics may also be regarded as a gauge
theory that is based on the U(1)Q symmetry group. The first methodical contribution in this
matter came from Chen Ning Yang (楊振寧/杨振宁) and Robert Laurence Mills [65] who
constructed a theory that was based on the non-abelian (Lie) group SU(2) with non-commuting
“charges”. The objective was to build a theory of the strong interaction; however, it was later
applied to weak interactions that were already known to be a mixture of vector and axial-vector
interactions.

The ’50s, as well as the ’60s, were eventful times full of revolutionary ideas and discoveries.
Another notable one was the concept of intermediate or mediator particles, respectively, vector
bosons to be more precise. This idea was independently developed by several scientists like
Julian Seymour Schwinger [66], Sheldon Lee Glashow [51] and in joint work between Abdus
Salam (ÐC�Ë@ YJ.«) and Ward John Clive [67]. It had a tremendous impact on our understand-
ing and interpretation of the fundamental nature of forces in nature as being transmitted by
vector (and possibly tensor) bosons in contrast to the rather “vague” concept of (classical)
potentials.

The Standard Model at that time was already able to describe a large range of phenomena;
especially QED had proven as the most accurate theory in physics of all time, with the
theoretical predicted electromagnetic fine-structure constant agreeing with the measured one
within ten-parts-per-billion (1ppb= 10−9) [68]. But despite these resounding successes and the
improved understanding of the subatomic world, the Standard Model (at that time) had an
apparent flaw: the requirement of local gauge invariance culminated in a theory with solely
massless particles – which is in clear contradiction to the obvious (partially very) “massive”
particles measured in the experiments ... This situation was a highly unsatisfactory since
it caused inconsistencies in the Standard Model between predictions and observations – the
merciless guillotine in physics that without hesitation beheads even the most elegant theories
if they disagree with observations. Full of despair, physicist had to put in masses by hand
into the theory; but, in doing so they accepted reduced predictability and predictive power
of the theory and, additionally, made the theory non-renormalizable! A “novel” idea finally
brought the long-awaited breakthrough with the desired way out of the dilemma: the concept
of Spontaneous Symmetry Breaking (SSB), which is the final part of this summary.

The path to SSB was paved with obstacles. The problem was that it was proven by Gold-
stone, Salam and Weinberg that for each exact symmetry that is spontaneously broken there
must be a mass- and spinless (scalar- resp. pseudoscalar) particle. At this time, a large number
of approximate symmetries have been known, e.g., isospin symmetry or the aforementioned
eight-fold way. But, besides the photon, no massless particle had been discovered (the gluon
was yet unknown). In the end, one problem was replaced by another. At that time, Peter Ware
Higgs [69] arrived on stage. He (and others) tried to find a way out of the Goldstone theorem
and its ominous mass- and spin-less particles. He realized that the Goldstone theorem does not
apply for local gauge symmetries, which are spontaneously broken. In this case, the Goldstone
bosons do not manifest as real particles but remain in the theory and turn into the helicity-zero
component of the gauge bosons (see Higgs-Kibble-Dinner). This not only gets rid of the
non-observed Goldstone particles but simultaneously results in a mass for the gauge bosons and
hence creates a theory of massive mediators (Higgs’ idea was contemporaneously also discovered
by the collaboration between Englert and Brout [70] and Guralnik, Hagen and Kibble [71] –
therefore also the somewhat cumbersome name Englert-Brout-Higgs-Guralnik-Hagen-Kibble
mechanism, usually just called Higgs mechanism). With the spontaneous breaking of the sym-
metry SU(2)L ×U(1)Y, the Higgs mechanism could also explain the masses of the fundamental
fermions in the Standard Model – excluding the neutronos, which are known to be massive –;
finally making it a consistent and (even more) predictive theory. Besides explaining the masses
of massive vector bosons and fermions, the Higgs mechanism also predicted the presence of a
new particle that is the quantum excitation of the respective Higgs field. This particle was
predicted to be massive; hence, it could have escaped detection due to limited energies in
particle colliding experiments at that time (e.g., at LEP at CERN). This was indeed the case.
It took more than 50 years to finally discover the Higgs boson in 2012. A great example of
human willpower.
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Besides the discovery of the Higgs, the Standard Model has proven its validity and predictive
power in a variety of other experiments. For example, the Standard Model predicted the
existence of the W± and Z bosons in electroweak interactions, with the first observations
of neutral currents in 1973 at the Gargamelle bubble chamber at CERN [72, 73] and the
discovery of the actual particles back in 1983 that have been observed in 1986 for the very first
time at the Super Proton Synchrotron also at CERN [74]. Or, the discovery of the gluon in
1979 with the PLUTO and TASSO experiment at DESY [75, 76, 77]. And, not to forget, the
several quark flavors predicted by the Standard Model all that have been observed later in the
experiment, like the charm and top quark [78, 79].

The Higgs mechanism finishes the journey through the history of the Standard Model. Of
course, there would be far more to tell. However, it would be a mistake to think that these
concepts have matured in an “ivory tower”. On the contrary, the evolution of the Standard
Model is a perfect example of how the interaction and mutual pollination of theoretical and
experimental physics leads to a path of higher knowledge and a better understanding of the
world around us [80].

1.1.2 Particle Content
As a quantum field theory, all the fundamental particles in the Standard Model are associ-
ated with a certain quantum field, more precisely, the quantum excitation that manifest as
fundamental particles of the respective field. Roughly speaking, the elementary particles in
the Standard Model can be subdivided into fermions (half-integer spin particles that obey
the Fermi-Dirac statistic), vector (tensor) bosons (integer spin particles that mediate the
fundamental forces), and one pseudoscalar particle, the Higgs, whose field plays an important
role in the essential Higgs mechanism and the Yukawa interaction. The known fundamental
fermions in the Standard Model are summarized in Table 1.1.

Flavour Mass Qel TL3 Discovery

Leptons

νe < 2.2 eV 0 + 1
2 1956

e 0.511± 10−8 MeV -1 − 1
2 1897

νµ < 0.19MeV 0 + 1
2 1962

µ 105.7± 4× 10−6 MeV -1 − 1
2 1936

ντ < 18.2MeV 0 + 1
2 2000

τ 1776.86± 0.12MeV -1 − 1
2 1975

Quarks

u 2.3± 0.7MeV + 2
3 + 1

2 1968
d 4.8± 0.5MeV − 1

3 − 1
2 1968

c 1.275± 0.025GeV + 2
3 + 1

2 1974
s 95± 5MeV − 1

3 − 1
2 1968

t 173.2± 0.9GeV + 2
3 + 1

2 1995
b 4.18± 0.03GeV − 1

3 − 1
2 1977

Table 1.1: Fermions (subdivided into leptons and quarks) in the Standard Model (masses
have been rounded) [47].

According to Table 1.1, the fermions in the Standard Model may be further subdivided into
leptons and quarks. A lepton is an elementary spin-1/2 particle that does not experience the
strong force. The known elementary leptons are the electron, the muon, the tauon, and the
corresponding electrically neutral neutrino flavors with their respective antiparticles. The second
category of fermions are the quarks that differ from leptons insofar as they carry a fractional
electric charge as well as color charge, which is the subject of quantum chromodynamics.
Usually, fermions are associated with matter, with quarks being the key building blocks of
composite particles (hadrons) such as protons and neutrons. With leptons and quarks, the
Standard Model knows twelve different fermion flavors and 24 fermions in total – including
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1.1. THE STANDARD MODEL OF PARTICLE PHYSICS

the corresponding antiparticles. Furthermore, a distinction is made between fermions and
bosons. Bosons (the name refers to the Indian physicist Satyendra Nath Bose (সেত নাথ বস)ু)
are described by the Bose-Einstein statistics. In the Standard Model, the elementary vector
bosons (s = 1) are responsible for the mediation of the fundamental forces of nature. These
elementary vector bosons are the photon γ, the gluon(s) g, as well as the neutral Z and the
charged W± bosons.

Boson Interaction Mass Qel

Scalar higgs H0 none 125.18± 0.16GeV 0

Vector

photon γ QED < 1016 eV 0
gluons g QCD 0 0

Z EW 91.1876± 0.0021GeV 0
W± 80.379± 0.012GeV ±1

Tensor graviton4G gravity < 6 · 10−32 eV 0

Table 1.2: Bosons in the Standard Model [47].

It should be mentioned that in a hypothetical quantum field theory of gravity there would
be an elementary tensor boson with spin-2, the graviton, that is the “force-carrier” of the
gravitational force. However, to be a consistent theory, the Standard Model requires the
existence of (at least) one scalar particle (s = 0) that is associated with the mechanism that
generates the mass of the fermions and bosons. This is the aforementioned Higgs boson. The
bosons in the Standard Model are summarized in the Table 1.2.

The appearance of gauge bosons in the theory is a consequence of the required local
gauge symmetry of the Standard Model Lagrangian. This concept is important in order
to understand how elementary particles interact with each other through the exchange of
force-carrying particles, which are quantum fields by themselves.

1.1.3 The QCD Lagrangian

The Standard Model of particle physics is a gauge-invariant quantum field theory that is based
on the (spontaneously broken) unitary, non-abelian symmetry group5

GSM := SU(3)c × SU(2)L ×U(1)Y, (1.1)

whereby each of the compact (Lie) subgroups SU(3)c, SU(2)L and U(1)Y introduces associated
gauge fields that defines the nature of the interactions allowed in the theory. The gauge fields
in the Standard Model ensures the underlying Lagrangian to be invariant under local gauge
transformations concerning the group GSM. The requirement of a local gauge symmetry is
highly non-trivial and comes with a long history. First, it was introduced in analogy to QED
and has then later been adopted to other theories. However, today there exists a deeper
understanding of gauge transformations as the connection between equivalent coordinate bases
for the same mathematical object (i.e., the field).

With the underlying group structure of the Standard Model introduced, it is about time
to present the actual Lagrangian of the theory that encodes the dynamic of the fundamental
quantum fields. The Lagrangian (density) LSM of the Standard Model (reduced and in simplified

4Hypothetical elementary particle that mediates the force of gravity.
5The actual gauge group of the Standard Model is the reduced (quotient) SU(3)c × SU(2)L ×U(1)Y /Z6

symmetry group [81].
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notation that fits on a coffee cup) in a legible form is given by:

LSM = −1

4
tr [BµνB

µν ]− 1

4
tr [WµνW

µν ] (1.2)

+ Ψ̄qγ
µDµΨq −−

1

4
tr [GµνG

µν ] (1.3)

+ (DµΦ)†(DµΦ) + µ2Φ†Φ− 1

2
λ(Φ†Φ)2 (1.4)

+ Ψ̄Lγ
µDµΨL +

1

2
ΨT
LCΦHΨL + h.c, (1.5)

whereby the term “h.c.” refers to the ”hermitian conjugate”, which is necessary in order to
obtain observables that are free of non-physical “ghost” fields artifacts. Phenomena surrounding
the strong force are described by Equation 1.3 in the expression above.

The strong force was (first phenomenologically) introduced in the 1930s to explain the
binding of the constituents that form the atomic nuclei. Today, quantum chromodynamics
(from Greek χρῶμα, “color”) is the theory of the strong interaction with the underlying non-
abelian symmetry group SU(3)c, whereby the subscript ‘c’ refers to the so-called color charge,
which remains unbroken in the Standard Model. In the Lagrangian of the Standard Model
according to Equation 1.5, QCD manifests itself by the term

LQCD =
∑
q

Ψ̄q,a(γµ∂µδab − ig3γ
µGαµtα)Ψq,b −

∑
q

Ψ̄q,aΨq,bmqδab −
1

4
tr [GµνG

µν ] , (1.6)

with tα being related to the Hermitian and traceless Gell-Mann matrices (which are generators
of the SU(3)c group) and α ∈ {1, ..., 8} that correspond to eight gluons (fields) with different
linear independent color charge combinations. The field strength tensor Gaµν is given by
Gaµν = ∂µG

a
ν − ∂νGaµ − g3fabcG

b
µG

c
ν , which describes the dynamic of the gluon fields.

The quarks acquire their mass via SSB of the subgroup SU(2)L × U(1)Y → U(1)Q that
also acts on the quark doublets Ψq. The gluons, which are considered to be in the adjoint
representation of the gauge group and an octet under SU(3)c, remain massless though (which
agrees with experimental observations) since the symmetry group SU(3)c is unbroken in the
Standard Model.

Quantum chromodynamics is a non-abelian gauge theory, i.e., the generators tα of the
underlying symmetry group SU(3)c do not commute with each other [ta, tb] = ifabct

c. This
property causes all kind of beautiful effects and makes QCD a rich theory. A well-known
phenomenon in quantum chromodynamics, as it is also known for the weak interaction, is the
so-called self coupling of the gauge bosons (see gluon self-interaction in Figure 1.1).

Ψi

Ψj

Gaµ

Gaν

Gbµ

Gcρ

Gaν

Gbµ

Gcρ

Gdσ

Fig. 1.1: The basic building blocks of QCD Feynman diagrams: (left) quark-gluon vertex
(middle) three-gluon vertex (right) four-gluon vertex.

Contrary to QED, the mediator bosons in QCD carry a (color) charge by themselves, which
induces self coupling. The corresponding terms can easily be identified by expanding and
rearranging the kinetic term of the gluon field strength tensor LQCD ⊃ 1

4 tr [GµνG
µν ].

The self-coupling of the gluon fields has further consequences with regards to the effective
charge or coupling of the theory that is related to the β-function, β(g) = µ dg

dµ of the theory,
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1.2. PERTURBATIVE QCD

which encodes the dependency of the “coupling constant” on the energy scale µ. In case of the
non-abelian gauge theory QCD, the situation is different because the β-function is negative
(antiscreening) [82, 83], which means that the effective strong coupling becomes small a short
distances, leading to the concept of running coupling. This is a characteristic feature of the
strong force, which gives rise to asymptotic freedom, which will be further discussed in Section
1.2.2.

Asymptotic freedom in QCD results in small couplings for sufficiently large energy scales
(short distances) that allows to consider quarks and gluons “quasi-free“ particles. In this limit,
perturbation theory is appropriate to compute the matrix element of the respective process
down to a characteristic energy scale ΛQCD(∼ O(100 MeV)) where non-perturbative dynamics
dominates. For small energies however, the coupling becomes large and perturbation theory is
no longer applicable; therefore, predictions in this domain mostly rely on phenomenological
model such as, e.g., the (Lund) string model [84]. Thus, the name non-perturbative regime.
This phenomenon where the underlying partons can not be isolated from the hadrons anymore
is known as confinement.

1.2 Perturbative QCD
As already stated above, the Standard Model of particle physics is the most accurate fundamen-
tal theory of the smallest building blocks of matter and their interaction by the fundamental
forces of nature except gravity. The previous section provided a brief outline of the Standard
Model’s history and introduced some most basic concepts as well as its particle content. This
section directly joins the previous one and serves as a basic introduction into the theoretical
framework of perturbative QCD. Furthermore, the very important phenomenon of the running
coupling constant and its physical and practical implications are discussed in more detail.

1.2.1 Renormalization and Running Coupling
Historically – very soon after its initial success – QFT faced a serious problem: the “naïve”
computation of higher-order terms in the perturbative expansion, such as loop diagrams
in the correlation functions, results in divergent integrals over the particle’s (intermediate)
momentum. As a consequence, most of the terms in the perturbative expansion are indeed
infinite, contradicting the finite observables measured in the experiments. It was a long-lasting
development process until this peculiar phenomenon and its physical meaning were finally
understood. Important contributions to a better understanding of renormalization in particular
came from Sin-Itiro Tomonaga (朝永 振一郎), Julian Schwinger and Richard Feynman, who all
were awarded the Nobel Price in 1965 “for their fundamental work in quantum electrodynamics,
with deep-ploughing consequences for the physics of elementary particles[.]” [85].

In a nutshell, the renormalization process aims to remove divergencies in the computations
of the physical observables. It usually starts with the regularization scheme by introducing an
additional (non-physical) parameter µ that allows the isolation of the part that gives rise to
divergencies. This parameter may be a cutoff (see cut-off regularization) or a modification of
the dimensionality of the respective integral (see dimensional regularization). The divergencies
are removed (“discarded”) by the redefinition, which is the actual renormalization step, of the
parameters, e.g. the mass, the fields or the charge, in the Lagrangian. This is an extraordinary
step that requires some reflection since it changes our perspective on the actual parameters
occurring in the Lagrangian 1.2–1.5. Due to the regularization procedure, the physical quantities
are finite without any divergencies; however, they are now a function of the artificially introduced
regularization parameter µ on which the final prediction of the actual observable must not
depend on.

The procedure described above, consisting of regularization and renormalization, allows to
obtain finite (renormalized) states if the theory (like, e.g., QCD) is inherently renormalizable.
Unfortunately, there is a certain degree of arbitrariness attributed to this technique, since the
individual regularization and renormalization steps are not unique. As a consequence, the
resulting QFT depends on the respective renormalization scheme. Hence, regularization and
renormalization result in a family of QFTs that depend on the specific choice of the scheme
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and the regularization parameter. To obtain a consistent procedure, the resulting quantum
field theory must be independent of those particular choices. This requirement induces the
aforementioned the so-called renormalization group equations (see Callan-Symanzik equations
in QED) that ensures scale invariance of the physical observables if the associated beta-function
vanishes. If the renormalization group equations are satisfied, the different regularization and
renormalization schemes are guaranteed to result in an equivalence class of QFTs.

Based on the renormalization group equation, the regularization parameter µ is absorbed
into the coupling of the theory, giving rise to the famous running coupling, i.e., the functional
dependence of αS on µ, which is the subject of the following section.

1.2.2 Asymptotic Freedom and Color Confinement

The renormalization procedure roughly outlined in Section 1.2.1, results in a dependence
of the coupling αS on the regularization parameter µ that is governed by the underlying
renormalization group equation(s). Of particular interest is the aforementioned beta-function
of QCD

β(αS) := 4πµ2 ∂αS
∂µ2

= 4π

∞∑
k=0

βk

(αS
4π

)k+2

≈ −α
2
S

4π

(
11

3
Nc −

2

3
Nf

)
, (1.7)

which encodes the information of how the “coupling constant” “runs” with the “energy scale” of
the interaction µ. The approximation of Equation 1.7 to O(α2

S), with β0 = 2
3Nf − 11

3 Nc, is the
so-called one-loop beta-function (one loop in the perturbative expansion), whereby Nc denotes
the number of colors and Nf the number of quark flavors in the theory. For three colors Nc = 3
and Nf = 6 quark flavors – as observed in nature –, the beta-function is negative β0 < 0, which
is a characteristic feature of QCD contrary to QED where β0 is strictly positive. Solving the
differential Equation 1.7 for the integral boundaries [Q,µ] within the one-loop approximation
and rewriting the resulting expression in terms of the energy scale ΛQCD := µ2 exp 4π

β0αS(µ2)
gives

αS(Q2) = − 1

β0

4π log
(

Q2

Λ2
QCD

) . (1.8)

Due to β0 < 0, the coupling α decreases with the energy scale Q2. This phenomenon is
known as asymptotic freedom since the coupling vanishes in the limit of very large energies
limQ2→∞ αS(Q2) = 0; therefore, QCD appears to be a free theory in the ultraviolet limit
(interestingly, according to Equation 1.7, theories based on the SU(3) are only asymptotically
free if Nf < 11

2 Nc). Figure 1.1 shows several measurements of the strong coupling constant αS
for different energy scales Q2 at various experiments that nicely illustrate the aforementioned
phenomena. The current world average value of αS evaluated at the mass of the Z boson
Q2 = MZ is given by αS(Q2 = M2

Z) = 0.1172± 0.0059 [47]. The characteristic scale ΛQCD is,
by construction, invariant under the renormalization group and corresponds roughly to the
energy scale at which αS(ΛQCD) ∼ O(1) where perturbation theory is no longer applicable.
Hence, ΛQCD, which is in the order of (light) hadron masses, determines the energetic boundary
between the perturbative and the non-perturbative regime in QCD. So, perturbative QCD is
able to provide meaningful results if E � ΛQCD.

Another characteristic property of QCD, besides asymptotic freedom, is the so-called color
confinement that accounts for the experimental evidence of quarks only existing within bound
states that are a color-singlets under SU(3)c transformations, i.e., “abstract” rotations in color
space. This is the reason why particles with fractional electric charge have never been directly
observed in any experiment up to the present day. Color confinement is phenomenologically
well-established and unquestioned; however, it still is remains a hypothesis in QCD because
until now there is no general mathematical proof of this property for non-abelian gauge theory
based on first principles in QFT6. Due to the lack of precise theoretical description, color

6The proof of confinement is equivalent to show that the quantum Yang-Mills theory exists and has a mass
gap [86], which is one of the Millenium Problems advertised by the Clay Mathematics Institute and awarded
with US$1 million for a righteous solution to the problem. Give it a try!
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1.2. PERTURBATIVE QCD

Plot 1.1: The strong coupling αS (full line) and its total uncertainty (band) as a function
of the respective choice for the scale Q. The four analyses of αS from CMS [30, 31, 32, 33]
are shown together with results from the H1 [34] [35], and D0 [36, 37] experiments at
the HERA and Tevatron colliders. Figure and caption taken from proceeding report
[38] “αS determinations from CMS (status and plans)”, Klaus Rabbertz (on behalf of
CMS), KIT, Karlsruhe, Germany, Figure 1.

confinement needs to be approximately described by a potential V (r) (which can actually be
computed in lattice QCD (see, e.g., Ref. [87])) between two quarks in a color-singlet state

V (r) = −4

3

αS
r

+ kr, (1.9)

with V (r)→∞ for r →∞ (confinement) and V (r)→ − 4
3
αS
r for large energies (asymptotic

freedom). This potential is extensively used in phenomenological hadronization models such
as, e.g., the already mentioned Lund string model [88], which will be further explained in the
next chapter in the context of hadronization models used in Monte Carlo simulation.

1.2.3 Soft and Collinear Limits of QCD
The previous section introduced the effect of asymptotic freedom at short distances (large
energies) and color confinement in the infrared regime (low energies), both of which are
a characteristic feature of QCD that follows from the dependence of the strong coupling
αS(Q2) on the momentum transfer Q2, i.e., the running coupling which in turn follows from
the self-coupling of the gluon fields. Perturbative QCD takes advantage of this property by
performing a perturbation expansion of, e.g., the cross section around the strong coupling if the
characteristic momentum transfer Q of the process under consideration is in the appropriate
domain Q� ΛQCD. The term perturbation expansion refers to a power series that divides a
problem, which can not be solved exactly, into several (usually infinitely many) subproblems
that in turn can be solved analytically or numerically. The quality of the approximation is
determined by the number of terms that are included in the power expansion. Formally, the
perturbative expansion of the cross section of a given process i→ fn with n particles in the
f inal state is given by

dσifn =

∞∑
k=0

αk+n
S dσ̃ifnk , (1.10)

whereby σ̃ifnk := σifnk /αk+n
S denotes kth expansion of the cross section σifn , factorized for the

coupling αS . For the method to be valid and give meaningful results, the expansion coefficient
(i.e, the coupling) must be sufficiently small (αS < 1) such that the contributing corrections to
the matrix element decrease for higher-orders in αS . In practice, however, the perturbative
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series according to Equation 1.10 has to be terminated prematurely.
It is instructive to study some general properties of the matrix element in QCD in the

soft and collinear limit (this will become very important in the next chapter in the context of
parton showers). The cross section, which is proportional to the squared amplitude, of the
process i→ fn can be computed according to

dσifn = dΦn
∣∣Mifn

∣∣2 , (1.11)

with n partons in the final state. Equation 1.11 comprised the kinematic information of the
available differential phase space dΦn as well as the information of the underlying physical
process that is encoded in the matrix elementMifn . If the nth particle is a collinear and soft
gluon – i.e., radiated “Bremsstrahlung” – the cross section according to Equation 1.11 can
be simplified (in anticipation of the factorization theorem to be introduced in Chapter 2.4.1)
according to

lim
θ→0
En→0

dΦn
∣∣Mifn

∣∣2 = dΦn−1

∣∣Mifn−1
∣∣2 αSCi

π

dθ2

θ2

dEn
En

. (1.12)

The factorized cross section according to Equation 1.12 has a non-integrable divergence if the
radiated gluon is very soft, i.e., En → 0 and/or the radiation angle is very small θ → 0. This
apparent contradiction to the finite observables measured in the experiments is explained by
the circumstance that the partonic cross section is not an actual physical observable. Due to
the color confinement explained in Section 1.2.2, quarks and gluons are not observed as freely
propagating particles but as a compound states, i.e., hadrons that are a singlet under rotations
in color space. This problem can be solved by “absorbing” the unpleasant divergencies in the
(renormalized) parton distribution functions (PDFs), which are the subject of the following
section.

1.2.4 Factorization Theorem and DGLAP Equations

In general, a QCD process always(!) includes both short- and long-distant behavior. Therefore,
perturbation theory alone is not sufficient to provide reliable predictions. Especially at lepton-
hadron and hadron-hadron colliding experiments, most QCD processes live in the low energetic
regime where the formation of color singlet states, i.e., bound hadrons takes place. The
factorization theorem divides the cross section into a hard process – that comes with large
momentum transfer Q2 and hence can be computed with perturbation theory (see Section
1.2.3) – and a long-distant part that describes processes with low momentum transfer, which
is mostly based on empirical models. Figure 1.2 provides a visualization of the factorization
theorem for the example of hadron-hadron interaction (1.2a) and deep inelastic scattering
(1.2b) through hadron-lepton interaction. In Figure 1.2, the structure of the hadrons (such as
protons) is described by the Parton Density Functions (PDFs), while the hard subprocess is
given by the scattering cross section. According to the factorization theorem, the differential
cross section dσh1h2→f of a physical process h1h2 → f (read: interaction between hadron h1

and h2 with the final state f) is given by the convolutional integral

dσh1h2→f =

∫
[0,1]

∫
[0,1]

dx1dx2

∑
i,j

fi/h1
(x1, µF )fj/h2

(x2, µF )dσij→f
(
x1, x2,

(
Q

µF

)2
)
,

(1.13)
with x1, x2 being the momentum fraction carried by the respective parton, and σij→f being the
partonic cross section and µF denoting the so-called factorization scale that can be thought of
the scale that separates long- and short-distance contributions. Emission below the factorization
scale (long distance effect with small energy scales Q2) are described by the PDFs. Equation
1.13 divides the computation of the cross section into two parts: the hard scattering cross
section dσh1h2→f at some order in perturbation theory and non-perturbative contribution that
accounts for the complex internal structure of the hadrons involved in the interaction. Loosely
speaking, the computation of the cross section has been separated in an “analytic” and an
“empirical” part. Equation 1.13 also provides experimental instruction on how to measure the
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PDFs in Deep Inelastic Scattering (DIS).

(a) Hadron-hadron interactions (b) Deep inelastic scattering

Fig. 1.2: Visualization of the factorization theorem for hadron-hadron interactions (1.2a)
and deep inelastic scattering (1.2b) with the respective flavor-dependent PDFs fi/h.

The precision of the cross section computation according to the factorization theorem
according to Equation 1.2 depends on the uncertainty of the hard scattering cross section and
the PDFs. While the former depends on the order of perturbation theory, i.e., the number
of terms that are included in the perturbative expansion of the cross section, the latter is
dominated by experimental uncertainties in the measurement of the PDFs. Therefore, a precise
measurement of fi/h(x, µF ) is indispensable and utterly important to obtain precise predictions
of the cross section at hadron-hadron colliders.

The PDFs as introduced above are used to provide a non-perturbative description of the
internal structure of hadrons. More specifically, at leading-order, the parton distribution
function fi/h(x,Q2) of a hadron h corresponds to the probability to find a parton of type i (a
quark of a certain flavor or a gluon) with a longitudinal momentum fraction x of the compound
object at an energy scale of Q2. While (at present) the PDFs itself cannot be derived from
first principles in QFT directly, their evolution with the energy scale Q2, which can be thought
of as the energy transfer between the hadron and its scattering partner, is accurately predicted
by the so-called DGLAP (Dokshitzer–Gribov–Lipatov–Altarelli–Parisi) equations [89, 90, 91],
which follows from the requirement that the observable structure functions are independent
of the non-physical factorization scale. The DGLAP equations, which describe the PDFs’
dependence on µF and momentum fraction x, are given by

µ2
F

∂fi/h(x, µ2
F )

∂ lnµ2
F

=
∑
j

αS
2π

∫ 1

x

dz
z
Pij(z)fj/h

(x
z
, µ2
F

)
, (1.14)

where Pij are the (leading-order) spin-averaged, regularized splitting functions/kernels that
describe the probability of a daughter parton i splitting from a parent parton [5]. A pictorial
representation of the DGLAP equations is given in Figure 1.3.

19



Fig. 1.3: Pictorial representation of the evolution of the parton distribution functions
via the DGLAP equations (adapted from Ref. 5, Fig. 1, p. 3).

With the DGLAP equation(s) at our disposal, the PDFs measured at some lower energy scale
Q2 – as it has been extensively done at the HERA and the Tevatron collider in DIS – can be
evolved to higher energy scales required by more recent colliders like the LHC. In this sense,
the PDFs are universal.
Figure 1.2 gives an example of two parton distribution functions (CTEQ6M) published by

(a) Q = 2GeV (b) Q = 100GeV

Plot 1.2: Parton distribution functions (CTEQ6M) for different partons at the energy
scale Q = 2GeV (left) and Q = 100GeV (right) (adapted from Ref. 39, Fig. 1, p. 8).

the CTEQ Collaboration [39]. The two plots illustrate the PDFs for different energy scales
Q = 2GeV and Q = 100GeV for different partons in the hadron. The up-type quarks are
the dominant distribution for small values of Q and large momentum fractions x. For smaller
values of x, however, the distribution is mostly dominated by gluons; hence, they carrying
small momentum fractions. The distribution changes significantly for higher energy scales. For
higher values of Q, the distribution becomes progressively flavor-independent for small values
of x, a flavor symmetry that is not present in the PDF for Q = 2GeV.

The parton distribution functions are, broadly speaking, experimentally determined by
fitting a large number of measured cross sections in deep inelastic scattering in a (Q2, x)-grid.
The precise and well controlled experimental conditions in deep nuclear-lepton scattering (see
Figure 1.2b) cross section measurements along with the accurate predictions in perturbative
QED provide an ideal environment for probing the internal structure of hadrons.

1.3 QCD Phenomenology
The previous section 1.2 reviewed the theoretical basics of perturbative QCD and how it
can be used to compute the hard-scattering matrix elements for given processes as well as
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the showering approximation to simulate all dominant collinear QCD radiation based the
factorization theorem (this very important subject will be further developed in the upcoming
chapter in the context of Monte Carlo event generators). As it was shown, the cascade of
splittings caused by the initial parton results in a large number of additional particles that all
carry a fraction of the primary parton’s four-momentum. To reconstruct the four-momentum
of the original parton, it is therefore necessary to measure and reconstruct the additional
particles that are a consequence of this showering process. However, a particle detector is by
no means a sterile environment. Usually, there are several interactions involved that cause
pile-up contamination of the environment as well as higher particle multiplicities in the final
state. As a result, the difficulty lies in the identification of active regions in the detector that
are assumed to originate from the same process and the same initializing particle. This is –
as one can imagine – a very sophisticated task. Over the years many different concepts and
techniques have been developed to solve this problem in a reasonable manner. The purpose of
this chapter is therefore to provide a short introduction into the extensive field of jet physics,
i.e., a phenomenological approach to QCD whereby it is limited to the main theoretical aspects
of this area.

1.3.1 Jets in Particle Physics
The abstract object that particle physicists refer to as jet is the remaining experimentally
accessible signature of quarks and gluons that are produced in high-energy particle collisions,
but escape direct detection in the experiment. Therefore, in many instances, the reconstruction
of jets is the only way to gain insight into the underlying process of an event involving the
strong force. Furthermore, hadron colliders such as the LHC are dominated by QCD process,
which is why the reconstruction of jets often is the only way to extract structures and make
sense out of an event in the first place. As a result, studying jets and its properties is utterly
important and the key element for many studies – in particular for the search of new physics
beyond the Standard Model.

Figure 1.4 shows to different jet typologies as they are steadily observed in experiments.
Each solid line in Figure 1.4 represents the path or track of a particle that originates from

(a) (b)

Fig. 1.4: A two-jet event with clear separation of the final state particles (left); a
three-jet event with significant overlap among radiation from two different sources. The
dashed, blue line indicated the direction of the respective underlying parton (right).

the interaction point of the event. The tracks of charged particles are measured in the Inner
Detector regions, which are usually equipped with semiconductor detectors, while the energy
deposition of the particles is measured in the so-called calorimeter (derived from Latin calor,
“heat”, and Greek metron (μέτρον), “measure”) of the detector. The left Figure in 1.4 is a
somewhat simplified illustration of a two-jet event, i.e. two separated collection of particles in
the final state to balance energy-momentum. The right hand side of the Figure, however, shows
a three-jet event with three final state particles. As seen in this topology, there is the possibility
of significant overlap between the particles measured in the detector, making the assignment
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to the underlying process difficult. This becomes even worse for higher jet multiplicities in the
final state. For many years, theorists and experimentalists alike worked on efficient methods
that allow the reconstruction of jets through clustering particles. In the course of these efforts,
a variety of different algorithms have been developed to fulfill this task. It is therefore evident
that the definition of a jet is based on the respective jet reconstruction algorithm that are used
since different reconstruction methods will result in non-identical jets with different particle
content.

It should be noted, that the general concept of a particle jet (as outlined above) is very
intuitive by no means unproblematic. The underlying picture of jet physics is often a one-to-one
correspondence with a particle jet that has been reconstructed in the detector and an underlying
(outgoing) particle/parton in the calculation of the hard subprocess. This assignment, however,
is – strictly speaking – ill defined, because the jet is (as a measure) a color-neutral object,
while the underlying parton is not a singlet under SU(3) transformations. A jet, therefore, is a
semiclassical concept. This problem will become important once the concept of quark- and
gluon-initialized jets (or jet flavor in general) are discissed in Chapter 7.

1.3.2 Infrared and Collinear Safety
Generally speaking, jet reconstruction is the task to group particles into orthogonal categories
that are assumed to originate from the same parton of the underlying hard scattering process7.
To organize the particles into groups, the jet reconstruction algorithm usually comes with a
distant measure, as well as recombination scheme that specifies how particles are (re-)combined
into a single four-vector for the next iterative step [92].

There exists a large variety of different jet algorithms since, historically, each experiment
used its own definition of a jet. In 1990, there was an attempt to specify a set of criteria based
on experimental and theoretical considerations that each jet reconstruction algorithm should
meet. This set of rules became later known as the “Snowmass Accord”, which was the first step
“[t]oward a standardization of jet definitions[.]” [93]. The CDF Collaboration at the Tevatron,
Illinois, USA, was the first collaboration that tried to implement this “accord” [94].

In the Snowmass accord from 1990 the Authors proposed “[s]everal important properties
that should be met by a jet definition[.]” [93]. Among other things, the jet definition should
“[y]ield[.] finite cross sections at any order of perturbation theory” as well as “[...] a cross section
that is relatively insensitive to hadronization” (Ref. 93, p. 6, property 4 & 5). Those properties
are guaranteed if the definition of a jet is infrared and collinear (IRC) safe. Formally, infrared
safeness can be defined as:

An observable [O] is infrared safe if, for any parton configuration,adding an infinitely
soft parton does not affect the observable at all (Ref. 95, Def. 4, p.5 ).

Om+1(..., ki, ...)→ Om(..., ki, kj , ...) if ki → 0[.] (1.15)

Similar, one defines collinear safeness:

An observable [O] is collinear safe if, for any parton configuration, replacing any
massless parton by an exactly collinear pair of massless partons does not affect the
observable at all (Ref. 95, Def. 5, p.5 ).

Om+1(..., ki, kj , ...)→ Om(..., ki + kj , ...) if ki ‖ kj [.] (1.16)

As described in Section 1.2, the parton in the hard interaction undergoes numerous soft and
collinear splittings as part of the fragmentation process that finally leads to stable hadrons
in the final state. A consistent jet definition should therefore be insensitive to those effects,
i.e., the radiation of additional soft and collinear partons shall not change the jet. Apart
from that, fixed-order calculations in perturbative QCD soft radiation and collinear splittings
are accompany by divergent matrix elements already at tree-level. Those divergences are
guaranteed to cancel with higher order loop diagrams that enter the calculation with an
opposite sign.

7A comprehensive introduction into several approaches to the reconstruction of jets along concrete examples
will be provided later in Chapter 4 in the second Part of this report.
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2. Event Generation/Simulation in HEP1,2

Until now, the focus was largely on theoretical and conceptional considerations. However,
in physics – as in natural sciences in general –, each theory must prove itself valid in the
experiment; otherwise, it will be buried in the vast cemetery of disproven theories.

In this chapter, both threads, theory and experiment, are wed together to provide an
introduction into the broad topic of event generators along with their practical applications
in experimental high-energy particle physics. A full description of this extensive subject is
far beyond the scope of this work; therefore, it is limited to merely convey an idea of the
underlying principles that are common to most event generators.

The title of this chapter already reflects parts of its structure. Starting from the Monte
Carlo method (2.1), the very general concept of Monte Carlo integration (2.1.1) and simulation
(2.1.2) is introduced (which will also be relevant for the subsequent chapters), as both methods
are fundamental and frequently used in high-energy particle physics. The next section (2.2)
then builds a bridge to the subject matter of the previous chapter by introducing the idea
behind of Monte Carlo event generators (2.2.1) in the context of high-energy particle physics.
Furthermore, special attention is devoted to the fixed-order computation of the matrix element
of the underlying hard subprocess (2.3) as well as the simulation of parton showers utilizing
the factorization theorem (2.4) that have been introduced in the previous chapter. The next
section (2.5) provides an introduction into the most common phenomenological models for the
simulation of the (non-perturbative) formation of color-singlet states by means of hadronization.
As most of the states produced in the previous hadronization step are energetically excited
and unstable, the next section (2.5.1) very briefly explains the subsequent decay to final state
particles that are measured in the detector. The last element of the simulation chain (2.6) is
the simulation of the specific measuring apparatus that is used to measure and reconstruct the
particles in the event.

2.1 The “Monte Carlo” Method

Generally speaking, the Monte Carlo method – a term first introduced by the Greek-American
physicist Nicholas Metropolis (Νικόλαος Μητρόπουλος) and an innuendo to the eponymic
Monégasque city – is, in its broadest sense, a class of numerical algorithms to solve complex
mathematical problems employing probabilistic principles. The application of this method can
be broadly divided into Monte Carlo integration (2.1.1) and simulation (2.1.2).

It was first made public in a theoretical essay by Nicholas Metropolis and the Polish-
American scientist Stanłslaw Ulam in 1949, mainly to take “[. . .] a statistical approach to the
study of differential equations [. . .]” [96]. However, the proposed method was already invented
several years before by Ulam when he took part in the nuclear weapons program at the Los

1Essential parts of the succeeding text passages have been adopted (almost) literally from my Master’s thesis
“Towards a Data-Driven Simulation of QCD Radiation with Generative Models utilizing Machine Learning
Methods”, 2019, Universität Heidelberg, Christof Sauer [49].

2This chapter may safely be skipped provided that the reader is already familiar with the basic concepts
(like parton showers, hadronization, factorization etc.) behind event simulation in HEP.

2Essential parts of the succeeding text passages have been adopted (almost) literally from my Master’s thesis
“Towards a Data-Driven Simulation of QCD Radiation with Generative Models utilizing Machine Learning
Methods”, 2019, Universität Heidelberg, Christof Sauer [49].
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Alamos National Laboratory, USA (where he was involved in the Manhattan Project during
World War II). The Hungarian-American scientist John von Neumann, who was involved in the
same project at that time, quickly recognized the importance of the novel method suggested by
his colleague. In a first practical application of the method, Ulam and von Neumann studied
– under strict secrecy self-evidently – the problem of neutron diffusion, which is essential to
build and design nuclear weapons [97].

Although the Monte Carlo method has a turbulent history that goes back to a period of
geopolitical tension and military confrontation, it has become an indispensable tool in a wide
spectrum of scientific applications: from industrial engineering; the simulation of physical,
chemical and biological processes of all different kinds; to economics and finance. Everywhere,
people “play dice”.

2.1.1 Monte Carlo Integration
Formally, Monte Carlo computations are equivalent to an approximate integration in higher-
dimensional space. Consider, for instance, the d-dimensional integral

I =

∫
[0,1]d

dx f(x) =

∫
[0,1]

dx1 · · ·
∫

[0,1]

dxd f(x1, . . . , xd), (2.1)

whereby f : [0, 1]d → Rd is a real-valued function over (for reasons of simplicity and without loss
of generality) the normalized hypercube [0, 1]d = Πd

i=1[0, 1]. Equation 2.1 may be interpreted
as an expectation value EX∼Ud(0,1) [f(X)] of the function f over the d-dimensional uniform
probability distribution Ud(0, 1), with X being an vector of i.i.d. random variables X ∼ Ud(0, 1),
meaning Xi ∈ [0, 1] with i ∈ N≤d \ {0}.

The Monte Carlo approximation of Equation 2.1 is then given by

Sn =
1

n

n∑
i=1

f(xi), (2.2)

where {xi}ni=1 are n independent samples of the random variable X. The convergence of the
Monte Carlo approximation according to Equation 2.2 to the Integral 2.1 is guaranteed by the
law of large numbers, i.e., the sample mean of a sequence of variables Sn = 1

n

∑n
i=1 Si converges

to the expectation value Sn → µ := I for n → ∞ iff the first two moments E[Sn] = µ ∈ R
and E

[
(Si − µ)

2
]

= σ2 ∈ R>0 exist. The circumstance that the sample mean converges to a
fixed number justifies the approximation of Equation 2.2 by means of Equation 2.1.

The statements above vindicates the estimation of integrals by means of the Monte Carlo
approximation. However, what are the benefits of Monte Carlo integration compared to other
numerical integration methods available (e.g., rectangular integration or Simpson’s rule)? The
advantage lies in the statistical nature of the method that not only connects it to the law of
large numbers but also to the central limit theorem3 in probability theory.

According to the central limit theorem, the sample mean Sn of a sequence {Si}ni=1 of with
E[Sn] = µ and Var(Si) = σ2 approximately follows a normally distribution N (µ, σ2/n). This
implies that the standard score

√
nSn−µσ converges to a stochastic variable that is normal

distributed with zero mean and unity variance, i.e.,
√
nXn−µσ

n→∞∼ N (0, 1).
To relate the statements above with Monte Carlo integration, consider the approximation

error Sn− I(f); according to the central limit theorem this quantity is (approximately) normal
distributed Sn − I(f) ∼̇ N (µ, σ2/n). Then, the following statement is true within the limits of
finite statistical precision: P

(
a σ√

n
< Sn − I(f) < b σ√

n
)
)
≈ Φ(b)− Φ(a), with Φ(·) being the

cumulative distribution function. From this simple consideration, it can be concluded that
the approximation error of the Monte Carlo method behaves like O (1/

√
n). The statement

holds – and this is the decisive aspect! – regardless of the dimensionality d ∈ N of the integral
according to Equation 2.1. This property, i.e., the approximation error being independent of

3For a proof of the central limit theorem see Ref. [98].
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2.2. PHYSICS OF MC EVENT GENERATORS

the dimensionality of the integral to be calculated, makes the Monte Carlo method superior
when it comes to evaluate higher dimensional integrals (for d ≤ 2 there are numerical methods
that give lower or similar errors with O

(
1/n1/d

)
, e.g., the general trapezoid approximation).

The line of arguments above explain the success of Monte Carlo integration in many scientific
fields, which usually deal with high-dimensional integrals. The same argument applies to high
energy particle physics due to the appearance of high-dimensional phase-space integrals in,
e.g., cross section computations. This makes the Monte Carlo method (integration) a natural
method of choice in particle physics and hence in the event generators discussed in Section 2.2.

2.1.2 Monte Carlo Simulation

As it has been mentioned, the code name “Monte Carlo” is derived from the city with the
same name in Monaco, situated along the French Riviera. It is well known for its numerous
casinos, which makes Monte Carlo the world’s largest gambling centre. The term is by no
means arbitrarily chosen: Nicholas Metropolis suggested the name as an allusion to Ulam’s
uncle who used to borrow money from its relative, only to squandering it for gambling [99].

A typical problem in statistical physics (as well as in many other fields) is to estimate the
mean value of some function h of a random variable x with respect to a (usually unknown)
probability density function f(x) (PDF)

〈h〉 := Ex∼f(x) [h(x)] =

∫
Ω

dxh(x)f(x). (2.3)

A typical example in experimental particle physics would be, for instance, the expected mean
energy 〈E〉 deposition in some region and part of the detector system or a cross section. The
probability of some particle to deposit energy in the interval [E,E + dE] is given by f(E) dE.
However, the PDF might be a very complicated function that is a priori unknown. This is
usually the case. The Monte Carlo method provides a procedure to estimate the unknown PDF,
f , through simulation of the actual (physical) processes assumed to be involved and hence is
referred to as Monte Carlo simulations. The objective is to numerically mimic and reproduce
the basic processes as accurately as possible to get a good estimation of the underlying PDF
that have generated the data. This requires precise theoretical and experimental models that
accounts for the stochastic nature of the respective process under consideration.

Monte Carlo simulations are used extensively in particle event generators to estimate the
expected number of events in some regions of phase space, and therefore it is an indispensable
tool in HEP.

2.2 Physics of MC Event Generators

From a philosophical perspective, theoretical concepts in physics are studied concerning their
ontological assumptions and implications in nature. Hence, the interplay between theory and
experiment in physics is an essential concept – one is not possible without the other. From
an epistemological point of view, the agreement of theoretical predictions and corresponding
observations in nature does not only allow for a description of the process under consideration
of a specific language, but also reveals a deep insight in the actual structure of the surrounding
reality [100]. This fundamental concept applies to all physics questions and fields. Indeed, one
could say that for a theory to be called physical it needs to describe measurable processes. A
theory that protects itself by being non-verifiable and hence non-falsifiable is not valid in a
physical sense; it is part of metaphysics.

To apply those concepts to particle physics, it is necessary to compare experimental
observations with theoretical predictions. Monte Carlo event generators have been developed to
satisfy exactly this need. Their purpose is to incorporate the current knowledge of elementary
particle physics into a tool that allows to make predictions of known processes. However, they
are also used to study and predict processes beyond the current Standard Model based on
theoretical considerations. Thus, Monte Carlo event generators are the bridge that links theory
and experiment in the broad field of elementary particle physics.
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This section intends to provide a brief introduction to Monte Carlo event generators and
their applications. By doing so, it refers to the physical fundamentals introduced in Chapter 1.

2.2.1 The Bigger Picture
As state above, the objective of MC event simulation is to give accurate predictions of some
physical observable O that can in the end be compared with data obtained in an experiment.
Generally, this observable is computed from the reconstructed four-momenta p1, . . . , pn in
the final state f , i.e., Of := Of (p1, . . . , pn)4, with n being the number of “particles” (this
may also be a jet or missing transverse energy) in the final state. Due to the underlying
statistics of quantum mechanics, the probability of a specific final state configuration to occur
is given by the differential cross section dpf (p1, . . . , pn) ∝ dσf (p1,...,pn)

d3p1...d3pn
. The cross section σ of

a physical process is a detector independent quantity; however, it is related to the number of
observed events N in an experiment/particle collider through the integrated luminosity L as
per N(t) = σ

∫
t
dt′L′. Therefore, the frequent repetition of an experiment allows to measure

the expectation value 〈Of 〉 of the observable Of based on the likelihood and the integrated
luminosity according to

〈Of 〉L = L
∑
i∈If

∫
V
d3p1 . . . d3pn

dσf (p1, . . . , pn)

d3p1 . . . d3pn
Of (p1, . . . , pn), (2.4)

(compare this with Equation 2.3). The dimensionality of the complicated integral in Equation
2.5 increases with the number of final state particles in an event. As a result, one relies on
Monte Carlo methods to get a reasonable estimation of the expectation value (see the comments
regarding Monte Carlo integration). The Monte Carlo approximation of Equation 2.5 according
to Equation 2.2 is therefore given by:

〈Of 〉L,N ≈ L
|V|
N

N∑
j=0

∑
i∈If

d3p1 . . . d3pn
dσf (p1, . . . , pn)

d3p1 . . . d3pn
Of (p1, . . . , pn), (2.5)

with |V| being the integration volume and If denoting the index set of final state particles.
Based on the statements in Section 2.1.1, the sample mean 〈Of 〉L,N converges to the true
expectation 〈Of 〉L = limN→∞〈Of 〉L,N for infinite statistics. Following Equation 2.5, the
expectation value for each observable may be computed based on the measured differential
cross section.

Now, to get a prediction for 〈Of 〉MC
L,N that can be compared with the experiment, the

probability, i.e., the differential cross section of a process, must be accurately predicted by
theory. Within the framework of pQCD (or perturbation theory in general), the precision
of the prediction is improved by including higher-order corrections into the expansion of the
matrix element. This is known as fixed-order expansion in the simulation chain of MC event
generators, which is the subject of the following section.

2.2.2 Event Simulation and Event Topology
The purpose of Monte Carlo event generators is to simulate high energy collisions in all process
steps up to the stable final-state particles that are measured in the detector. This process
chain and its individual component follows physical principles and should therefore mimic the
actual process that produced the event in the real world.

The generation of an event starts with the computation of the matrix element at fixed order
of perturbation theory for the underlying hard subprocess with some dedicated matrix-element-
generator like Powheg or MadGraph5_aMC@NLO. This very first step only computes
the partonic final-state without any hadronization involved (parton-level events). To simulate
the emissions of QCD radiation, the information of the parton-level event is further processed
by a shower Monte Carlo, such as Herwig6, Herwig++, Pythia6, Pythia8 or Sherpa,

4Of course, there is a much larger class of observables also including other properties.
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2.3. HARD SUBPROCESS

that simulates a cascade of showering particle up to the hadronization scale where color-less
hadrons are finally formed (see “color confinement” in Chapter 1.2.2), which may further decay
to stable final-state particles. With the simulation of the so-called particle-level events, the
event generation process is finished. However, due to the imperfection of measuring devices
at our disposal and the resulting limitations in the reconstruction of particles, the simulation
of detector effects is utterly important to get realistic predictions that can be compared to
the measurement with the actual detector. The simulation of detector effects is based on
Monte Carlo too (see Section 2.1.2). A well-known tool for detector simulations is Geant4
that actually “[. . .] is a toolkit for the simulation of the passage of particles through matter[.]”
[101]. After all those steps, the generated reco/detector-level events are comparable with the
measurement in the respective detector and only this detector.

Following now is a short description of the individual steps of the event generation process
and how they are related to the theoretical fundamentals introduce in this chapter.

2.3 Hard Subprocess
At modern particle colliders like, e.g., the LHC, the momentum transfer between the colliding
particles (or partons in case of hadron-hadron accelerators) is usually quite large. Due to the
asymptotic behavior of QCD at large energy scales and the running of the strong coupling
constant as a consequence thereof, the hard subprocess can be computed using perturbation
theory, whereby the term “hard” implies processes associated with large momentum transfer.
The usage of perturbation theory for those processes allows to use a pictographical representation
of the individual terms of the perturbative expansion using a set of Feynman diagrams {Fk}k
and to account for non-trivial interference effect between different processes yielding the same
final state.

The hard subprocess is one ingredient in the already introduced factorization theorem (see
Equation 1.13) that allows to factorize the calculation of the cross section at hadron colliders
into different components. The parton-level cross section σ̂ii→f is the cross section for a specific
final state f produced via the interaction of parton i and j in the respective colliding hadrons.
This cross section depends on the available phase space of the final state Φf , the factorization
µF and renormalization µR scale, the (initial-state) spin averaged squared matrix element∣∣M̄ij→f

∣∣2 as well as the parton flux, with the matrix element being given by a sum over all
terms in the perturbative expansion that contribute to the process up to a certain order in
perturbation theoryMij→f =

∑
iM

ij→f
i .

2.4 Parton Shower Simulation
The calculation of the hard subprocess is followed by the simulation of additional radiation.
This step is necessary because fully perturbative calculations of the cross section in QCD are
usually only available to NLO precision (up to NNLO for some observables) due to the factorial
increase of correction terms to the perturbative expansion of the scattering amplitude. This
poses a problem since, due to the running coupling constant, higher-order terms are enhanced
in some region in phase space and hence can not be discarded. This issue is addressed by
all-order resummation techniques and/or parton shower models.

Since the hard subprocess usually is associated with high energies of the final-state particles
at parton level, the accelerated particles that carry a color charge tend to emit radiation in
form of gluons (similar to the emitted photons in case of accelerated electric charges). In
contrast to QED, the non-Abelian nature of QCD causes self interactions between the gluons
(see Figure 1.1), which carry a color charge by themselves. This causes QCD radiation to
further emit radiation and so forth, causing a cascade of splittings until the energy of the
radiated particles reaches the hadronization threshold where the particles become “soft”(=low
energies) and the formation of color singlet hadrons sets in.

In high energy particle physics, there are different schemes available that try to provide an
approximate modeling of the process described above based on the parton shower philosophy.
The parton shower sum the leading contribution to all orders in perturbation theory, but only
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in the limit of soft and collinear splittings, otherwise, the underlying approximation fails and
diverges. This means in particular, that the showering algorithms preferably add soft and
collinear radiation to the partons from the hard subprocess. On the one hand, this is beneficial
since the computation of the matrix element “fails” for soft and collinear particles; hence, the
parton shower algorithm allows to fill regions in phase space that are inaccessible for the matrix
element. On the other hand, the emission of hard radiation with wide angles is suppressed.
This is also related to the problem of matching and merging between matrix element and
parton shower since both create and overlap in the phase space and hence give rise to double
counting of events.

2.4.1 Jet Factorization and Parton Emission

Is it instructive to start the motivation of parton showers by considering collinear enhancements
encountered in electron-positron annihilation e+e− → qq̄, keeping in mind that one of the
striking features of parton showers is their property of being independent of the underlying
process.

The leading-order or Born-level cross section σqq̄ for e+e− → qq̄ can easily be computed
based on Feynman rules in electroweak theory. To increase the number of particles in the final
state, one needs to consider higher-order corrections to the leading-order term; at NLO, the qq̄
system is accompanied by the emission of an additional gluon e+e− → qq̄g. This gives rise to a
three-particle phase space that can be kinematically conveniently parameterized by the opening
angle between the gluon and its mother quark θ as well as the energy fraction z defined as the
ratio between the energy of the gluon and the initializing quark prior to the emission. The
cross section for this process (neglecting contributions from non-divergent terms) is given by

1

σqq̄

dσqq̄g
d cos θdz

≈ CF
αS

2π

2

sin2 θ

1 + (1− z)
z

, (2.6)

whereby CF = 4/3 is the color factor of quarks, which are elements of the fundamental repre-
sentation of the QCD symmetry group. The NLO cross section according to Equation 2.6 has
a divergence associated to the emission of very soft gluons (z → 0) in the event independent of
the opening angle with respect to the quarks. Furthermore, there are two angular divergences:
one for the emitted gluon being collinear with the quark (θ → 0) and another one for the
gluon being back-to-back with the quark (θ → π) or – equivalently – being collinear to the
anti-quark. The collinear divergences are related to the propagators and the interference of the
two diagrams entering the calculation.

With the application of yet another approximation 2
sin2 θ

= 1
1−cos θ + 1

1+cos θ ≈ 1
1−cos θ1

+
1

1−cos θ2
, it is possible to separate the cross section according to Equation 2.6 into two disjoint

terms each one of which is related to either one of the two aforementioned collinear divergences.
This separation into two probability distributions is convenient because it allows for a simulta-
neous treatment of the gluon being associated to either one of the two quarks. Applying this
approximation to Equation 2.6 and expressing it in terms of θ2 (for reasons that will become
apparent very soon), the cross section for the process e+e− → qq̄g can be summarized as

σqq̄g ≈ σqq̄
∑
j

CF
αS

2π

dθ2

θ2
dz

1 + (1− z)
z

, (2.7)

whereby j represents the different partons. On closer inspection of Equation 2.6, it becomes
apparent that the NLO cross section naturally factorizes into the Born-level contribution and
a factor that accounts for the additional gluon and hence can be thought of as the probability
for the additional emission of such a particle. Despite the Expression 2.7 being derived for
the specific example of electron-positron annihilation, it can be shown that the factorization
of the hard sub-process holds valid for any collinear emission of a parton j of flavor i with a
momentum fraction z. This is a general feature of the squared matrix element in the limit of
collinear radiation and therefore commonly referred to as collinear factorization theorem.
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2.5. JET HADRONIZATION
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Fig. 2.1: The collinear factorization theorem for the example of a matrix elementMn+2

of a given process with n+ 2 external legs and a final state a that branches (splits) two
times with ordered splitting angles θ.

The collinear factorization theorem states that the (n+ 1)-parton differential cross section with
an additional soft and collinear gluon in the final state can be factorized into the n-parton
differential cross section prior to the splitting multiplied by an emission probability

dσn+1 ≈ dσn
αS
2π

dθ2

θ2
dz dφPi,jk(z, φ). (2.8)

whereby the (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) splitting functions Pi,jk(z, φ) give
the distribution of the fraction of energy of parton i carried by j. The factorization of the
cross section into a lower-order term multiplied by a sequence of emission probabilities (as
schematically illustrated in Figure 2.1) already indicates the iterative nature of the parton
shower branching algorithm based on it.

Before continuing with the formal development of the parton shower formalism, it is worth
to pause for a moment and reflect the importance of the seemingly inconspicuous term dθ2/θ2.

The factorization approximation according to Equation 2.8 already suggests an iterative
approach to calculate the contribution due to multiple emissions to the cross section that can
be considered as higher-order corrections. For reasons of simplicity, the following considerations
only take the branching or emission of a gluon from a quark into account.

2.5 Jet Hadronization

The parton shower formalism described in detail in the previous section allows to increase
the parton/particle multiplicity in an event by approximating higher-order corrections to
the hard subprocess (2.3) through the resummation of dominant logarithms in each order in
perturbation theory. Due to the infrared and collinear singularities present in the cross section,
those leading logarithm corrections are connected to the emission of soft, i.e., low energetic
gluons and the splitting of a parton into collinear daughters, e.g., g → gg. Based on the
factorization of the cross section in the collinear limit, the associated algorithm consecutively
adds emissions to the main branch and performs parton splittings up to some infrared cut-off
ΛQCD ∼ O(100 MeV) that corresponds to the “confinement scale” at which, due to the energy
dependence of the strong coupling constant, non-perturbative effects start to contribute or
even dominate. From this moment forth, a perturbative treatment of the evolution of the
event is not possible anymore and one usually makes use of effective models to describe the
formation of color-singlet hadronic jets phenomenologically. Two of the most commonly used
hadronization models, the so-called “(Lund) string model” as well as the “cluster-based model”,
are subject of this section.

Before taking a closer look at the aforementioned hadronization models, it should be noted
that the two terms “hadronization” and “fragmentation” model are often used interchangeably
while strictly speaking denoting non-identical concepts.

Following the definition according to B. R. Webber (one of the creators of the Herwig event
generator and its cluster-based hadronization model), the term factorization “[...] refer[s] [to]
inclusive hadron spectra, for which factorization ‘theorems’ are available[.] [...] [that] allow[s]
predictions to be made without any detailed assumptions concerning hadron formation.” [102].
This statement refers to the fragmentation functions Dh

p (z, pT), which describe the probability
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(a) String model (b) Cluster model

Fig. 2.2: Visual illustration of the two commonly used hadronization model: the string
(left) and the cluster (right) model (adapted and modified from Ref. 6, Fig. 5.14, p. 189
and Fig. 5.15, p. 190).

of finding a hadron h with an energy fraction z of the parton p with a transverse momentum
pT. Like the parton distribution functions, the fragmentation functions are not perturbatively
calculable; however, the scaling/evolution, i.e., the z dependence, is described by the DGLAP
equation

µ
∂

∂µ
Dh
p (z, pT) =

∑
j

∫ 1

z

dz′

z′
Pji (z, αS(z))Dh

p (z, pT), (2.9)

with Pji denoting once again the Altarelli-Parisi splitting functions. Of course, the fragmenta-
tion functions itself are inaccessible, but the summed integrand Fhp (z, pT) =

∑
i

∫ 1

z
dz′

z′ fi(pT)Dh
i (z, pT),

with fi(pT) being the fraction of parton i at transverse momentum pT, can be measured exper-
imentally.

In contrast to fragmentation – once again quoting B. R. Webber –, hadronization “refer[s]
specifically to the mechanism by which quarks and gluons [are] produced in hard processes form
the hadrons that are observed in the final state.“ [102]. Contrary to fragmentation, which still
contains perturbative elements through the evolution equations of the fragmentation functions,
hadronization is an inherently non-perturbative process that completely relies on effective
models or results from lattice QCD.

Within the context of this thesis, the term hadronization always refers to the semantic
content stated in the last paragraph, i.e., the transition from the partonic final state to the
actual hadronic final state that corresponds to the configuration of color-singlet states as “seen”
by the detector.

(Lund) String Model

Due to the non-abelian nature of the SU(3) gauge group and the resulting charge carrying
gauge bosons of QCD, the beta function is negative, which causes the gauge coupling of the
interaction to decrease in magnitude with an increasing energy scale; a phenomenon known as
asymptotic freedom (see Chapter 1.1.3). In case of long-distant physics (associated with low
energies), however, the coupling strength increases and eventually becomes ill-defined if αS ∼ 1
whereupon perturbation theory is no longer applicable.

The string-based family of hadronization models is based on the linear limit of the static qq̄
potential as it can be calculated in lattice QCD from the Wilson loop. The phenomenological
potential that describes the “force” between a quark and an anti-quark as a function of their
relative distance r is given by

Vqq̄(r) = V0 −
aqq̄
r

+ kqq̄r, (2.10)
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whereby aqq̄, kqq̄ ∈ R are constants that need to be determined experimentally or calculated in
lattice QCD. According to Equation 2.10, for sufficiently large spatial separations, the potential
energy between the quarks grows linearly Vqq̄(r) = V0 + kqq̄r with their distance giving rise
to a linear confinement of the two partons. The potential energy of the qq̄ system can be
provisional pictured as a “string” or a “color (flux) tube” connecting the particles in space. This
observation forms the basis of the string hadronization model that generally assumes that the
Coulomb term which is dominant at short distances, can be neglected in favor of a linearly
rising energy potential.

Among the earliest approaches towards a phenomenological description of the formation
of hadrons was an (very entertaining!) article by Kenneth A. Johnson titled “The Bag Model
of Quark Confinement” [103] in which he modeled the confinement of partons “analogous to
[...] bubbles in a liquid”. One of the first string-based formation models in today’s sense
is the one proposed by X. Artru G. Mennessier in their trend-setting paper “String model
and multiproduction” published in the year 1974. The suggested model, however, had a few
shortcomings, especially the prediction of an nonphysical mass spectrum that required the
application of a priori mass cuts in order to match the distributions measured in data.

To address the problems of the hadronization models common at that time, the development
of the Lund string model started in the year 1977, with the framework being available six years
later in 1983 [104], which – to this day! – is one of the most successful hadronization models
and still widely used today by many state-of-the-art event generators.

The vivid idea behind the string-based approach is illustrated in Figure 2.2a. In case of a qq̄
pair, the two particles quickly moving apart from each other with the potential energy increasing
linearly. To put things into perspective, the “tension” of the “flux tube” is kqq̄ ∼ O (1 GeV/fm),
which defines a characteristic length of 1 − 5 fm (corresponding to the order of hadrons) of
the string at which the system splits into two new color-singlets [105]. This simple picture
becomes more complicated if one includes additional partons like, for instance, a gluon as a
NLO correction to the qq̄ matrix element. For this reason, one usually works in the already
mentioned large Nc limit to ensure that each parton in the system only comes with exactly
one unique color partner to which it is connected by a tube. With this approximation, the
procedure closely follows the one described in case of the simple qq̄ system. The method is
applied consecutively to the newly emerged parton systems till a final configuration of (usually
excited) hadrons has been formed.

Cluster-Based Model

An alternative family of hadronization models is based on the observation that for sufficiently
low energy scales compared to the hard subprocess the emitted partons in the parton shower
algorithm can be naturally clustered in colorless groups of quarks anti-quarks, hence, commonly
referred to as cluster-based hadronization models. This discovery was made by D. Amati
and G. Veneziano and published in 1979 in their article “Preconfinement as a Property of
Perturbative QCD” [106]. The term preconfinement in this case (not to be confused with
“confinement”) refers to the observation of perturbative shower emissions in QCD to form the
aforementioned color-singlet “clusters” of partons, with the property to produce an universal
invariant mass distribution that only depends on the scale of the evolution as well as ΛQCD and
hence asymptotically independent of energy or the production process. The cluster-based model
therefore, simply speaking and summarizing, relies on the observation that color-singlet pairs
tend to be close in phase space in the large Nc approximation in which their is a well-defined
color connected partner for each final state parton.

A clear motivation for the cluster-based hadronization model is given by the invariant
mass spectra of light meson states, i.e., color-neutral, bounded quark-antiquark states. In this
spectrum, the lightest meson states appear as narrow resonances, while the heavier ones (with
masses above roughly 1.5 GeV) are broader, which suggest a continuum of overlapping states
[107]. The already mentioned preconfined color-anticolor pairs are then projected directly onto
this continuum of meson states, which gives rise to clusters. Those mesons are usually excited
and further decay into well-known stable hadron states.

One major advantage of the cluster-based approach to hadronization compared to the string
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model introduced in Section 2.5 is the significantly reduced number of parameters needed to
tune the model (in principle, all properties are fully determined by the mass spectrum of the
clustered color-singlet states). However, despite working well for most hadrons, it was quickly
realized that the cluster-based approach tends to produce hadrons that are too soft. This
problem was solved by introducing additional parameters to the model.

At this stage, it is worth pausing for a moment to highlight the differences the string- and
the cluster-based model that are conceptually and philosophically quite difference. The former
one focuses on the non-perturbative aspect of the confinement of partons, while the latter one
stresses on the perturbative phase space of the shower evolution [107].

2.5.1 Decay to Final-State Hadrons
The hadrons produced at the end of the hadronization procedure according to the (Lund) string
model or the cluster-based approach (or alternative models not mentioned at this occasion)
are referred to as “primary” hadrons that are color-singlet states, i.e., being – in principle
– observable. However, most of the generated hadrons are in an excited energy state and
therefore highly unstable given the time scales considered relevant for a measurement. As a
consequence, they quickly decay in to lower energy configurations (mostly pions and kaons)
with lifetimes long enough in order to be detected in an experiment. This subsequent chain of
consecutive decays to stable hadrons must be simulated posterior to the hadronization step
outlined in Chapter 2.5. This part of the event generation sequence is often an underestimated
ingredient to the full simulation chain; however, its modeling usually has a significant on the
final spectra and particle yield.

For instance, the process B∗0 → γB0 involves electromagnetic decays (involving the
emission of a photon), weak mixing of B mesons, weak decay (involving a neutrino), a strong
decay of hadrons into hadrons etc. Given the energy scales of hadrons, the decay to stable
particles is an inherently non-perturbative process which does – just as the hadronization step
– rely on phenomenological models as well as information gathered in plenty of measurements.
This information is usually encoded in particle summary tables that summarize the current
knowledge given the available experimental measurements. However, given the vast amount
of possible decay channels, the branching fractions of many processes are only known with
a limited precision, which is why in many cases the Monte Carlo must be tuned to data to
obtain reliable results.

2.6 Detector Simulation and Reconstruction
A detector that has been build to measure the final-state particles produced in hadron-hadron
interactions does not measure the particles directly but their “traces” left in the material due
to energy deposition in calorimeters or ionization in (Silicon) pixel cells (hits and tracks).
From the measured energy, transverse momentum, track curvature, position in η–φ etc., the
four-momentum of the particle(s) may be reconstructed. However, the measurement of the
detector is not perfect since the detector has a finite granularity as well as limited acceptance
in its materials. Furthermore, a detector does not cover the entire region (η, φ) ∈ R× [0, 2π)
and therefore potentially misses some decay products.

To account for the detector effects, the actual physical processes occurring in its subcompo-
nents are simulated with Monte Carlo methods (see Section 2.1.2). This includes, e.g., the
simulation of energy deposition, ionization and much more. After this step the generated data
is valid only for this particular measuring device since those simulations depend on the actual
detector architecture (number of layers, material etc.) that is used in the experiment

The last step is the identification and/or reconstruction of particles in the final state for
further analysis.
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Part II

Methodology

With the first part of this thesis being concluded, all theoretical foundations neces-
sary for understanding the physical background and motivation of the analysis have
been established. This introduction was rather general and only in a broader sense
related to the measurement(s) presented in this thesis. The following second part
now ties with the previous one by introducing analysis-specific methods and content
that are directly (or indirectly) relevant for the studies presented here.

The first Chapter 3 of this part provides an introduction of the experimental setup
(i.e., the LHC and the ATLAS experiment) that was used to record the proton-proton
collision data, which has been analyzed in the scope of this dissertation.

With the accelerator and the detector being introduced, the next Chapter 4 ex-
plains how physical objects (e.g., leptons, jets etc.) are derived based on the raw
collision data. The main focus of this chapter is on tracks and jets constructed
thereof, as this (besides the calorimeter clusters) is the only information directly
used in this analysis. Furthermore, ATLAS’ calibration scheme for jets introduced,
which is one of the main sources of uncertainty in this measurement.

Chapter 5 briefly introduces the concept of (detector) unfolding, which is used
to obtain a cross section measurement at particle level corrected for detector and
acceptance effects.

In Chapter 6, there is a change of subject by providing a very general introduction
into the vast field of machine learning, as one measurement of the triple-differential
multijet cross section is done as a function of a neural network score-based observ-
able.

Finally, the last Chapter 7 of this second part introduces the method that is
used to disentangle quark- and gluon-related contributions in a model independent
way from the final hadronic cross section measurement to obtain the underlying
probability distributions and fractions of quark/gluon-initialized jets.
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3. Experimental Setup1

The measurement described in the thesis at hand is based on proton-proton collision events
that have been recorded with the ATLAS detector over a period of four years of data-
taking between 2015 and 2018 (inclusive) at the world’s largest particle physics laboratory
at CERN. Conducting experiments at this level of complexity requires a tremendous amount
of organization, communication and cooperation between thousands of scientist around the
world from dozens of nations who all share a common goal and passion: to gain a better
understanding of how nature works at the most fundamental level of material being. Therefore,
all insights gained within the scope of this analysis are based on the indispensable groundwork
done by a multitude of people who should be acknowledged at this point once again. Today’s
science always is a joint effort as already mentioned in the acknowledgments of this thesis.

The purpose of this chapter is to provide an overview of the experimental apparatus
(ATLAS detector) as well as the research facility at which the data has been recorded that
forms the basis of the analysis outlined hereinafter. The first section (3.1) of this chapter
conceptually introduces the LHC accelerator complex as well as the particle physics laboratory
CERN at which the experiment is located and operated. By doing so, the section is limited to
the most important aspects without going too much into detail. Furthermore, it introduces
some important accelerator concepts that will provide helpful to understand the results
reported in this thesis. Following (3.3), the actual experimental apparatus, i.e., the ATLAS
experiment/collaboration as well as the detector, is introduced along with its individual
components – whereby the main focus is on the detector parts that are most relevant for this
measurement.

3.1 The Large Hadron Collider at CERN

The Large Hadron Collider (LHC) is the world’s largest superconducting hadron-hadron
accelerator located at the Centre for European Nuclear Research (CERN, French: Conseil
Europén pour la Recherche Nucléaire), which is situated near the French-Swiss border in the
vicinity of Geneva, Switzerland. At the time of writing this report (last quarter of 2022), the
collaboration has twenty-three member states (of which twelve are founding Members of the
organization) and several other nations around the world that hold an associated membership
or an observer status, respectively. The main focus of CERN comprises the development and
construction of high-energy accelerator-based particle physics experiments (of which the LHC
is the largest for the time being) as well as their maintenance and further improvement along
with the supply of computing infrastructure like, e.g., the (Worldwide) LHC Computing Grid
((W)LCG).

The LHC is a two-ring proton-proton synchrotron accelerator with a circumference of
roughly 27 km that started running in November 2009 and currently operates with a nominal
centre-of-mass collision energy of

√
s = 13 TeV, which makes it the highest energy particle

accelerator in the world. It supplies four main experiments – lined up along the accelerator
tunnel like pearls on a string – at dedicated collision points as shown in Figure 3.1a below. As
it can be seen in Figure 3.1a, the accelerator ring is subdivided into octants, each one fulfilling

1This chapter may safely be skipped provided that the reader is already familiar with the Large Hadron
Collider as well as the ATLAS experiment.
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their own purpose.
Going clockwise and starting from the first (1) collision point, the first collaboration one

encounters is the ATLAS (A Toroidal LHC ApparatuS) experiment, conveniently located at
the Meyrin site of CERN. This side serves as a collision point for proton-proton, proton-lead,
and lead-lead collisions; accordingly, the ATLAS experiment studies all of them with the main
focus being on proton-proton-related physics; however, collision point two (2) is reserved for
proton-lead and lead-lead collisions which is why ALICE (A Large Ion Collider Experiment)
build its nests at this cozy place close to the Jura Mountains. The third (3) access point does
not hold any larger particle physics experiment, but serves for monitoring and beam cleaning
purposes to remove particles that stray from the desired beam trajectory. The fourth (4)
octant provides another control point that hold the Radio Frequency (RF) cavities which are
responsible for accelerating the LHC beams to the operational centre-of-mass energy. Point
number five (5) is, once again, a collision point for proton-proton, proton-lead, and lead-lead
collisions at which the CMS (Compact Muon Solenoid) experiment is located. Service point
six (6) and seven (7) are responsible for beam dumping and beam cleaning, respectively. Last
but not least, the final octant (8) is a collision point for proton-proton collisions exclusively
where the LHCb (Large Hadron Collider beauty) experiment is doing its studies. The two
transfer lines TL2 and TL8 in Figure 3.1a establish a connection between the Super Proton
Synchrotron (SPS), which serves as a pre-accelerator and final injector, and the LHC.

The LHC accelerator ring is located in the 26.7 km tunnel that was formerly constructed for

(a) Geographic location of the LHC accelerator
ring including the SPS and access points at the
French-Swiss border (dashed line) and the CERN
area.

(b) Simplified illustration of the LHC acceleration
and injection chain. The components are not
drawn to scale nor does their position match the
exact location geographically.

Fig. 3.1: Schematic representation of the LHC ring and the CERN research facility (left)
including a simplified illustration of the acceleration and injection chain (adapted and
modified from Ref. 7, Fig. 1, p. 4).

the Large Electron-Positron (LEP) collider at CERN, which operated between 1989 and 2000.
Contrary to LEP and Tevatron at the Fermi National Accelerator Laboratory, United States
(that both collide opposite charged particles), the LHC is designed to work with hadron-hadron
collisions instead; hence, it can not use the same magnetic field to accelerate the counter-
rotating beams. Due to space limitations in the tunnel system, however, it is not possible
two support separate rings of superconducting bending magnets for the two counter-rotating
beams. This constraint motivates the so-called “2-in-1” concept used for the superconducting
niobium-titanium LHC bending magnets according to which the two pipes are contained in the
very same cryostat with the opposite running beams being held in their particular orbits by two
coupled magnetic fields with opposite polarity. Due to the aforementioned serious technological
challenges, the magnet system of the LHC is of considerable complexity consisting of 1232
main superconducting dipoles magnets with field strengths close to O(10 T) for bending and
tightening the particles’ trajectories. Taking the entire injection chain (with the LHC as the
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3.1. THE LARGE HADRON COLLIDER AT CERN

final step) into account, the entire acceleration system comprises more than 50 different types
of finely tuned magnets.

The process of accelerating the protons (or heavy ions) to the nominal collision energy
is done via a chain of successive pre-accelerators that gradually increase the energy of the
colliding beams. A simplified illustration of the main components of the LHC injection chain
is shown in Figure 3.1b. The protons2 are obtained from Hydrogen atoms that are exposed
to an intense electric field for ionization. The first element in the actual chain is the “new”
linear accelerator LINAC 4, which replaced the old LINAC 2 accelerator in 2020. The linear
accelerator accelerates the protons to an energy of roughly 50 MeV before they are injected
into Proton Synchrotron Booster (PSB). In the SPB, the protons are further accelerated up to
an beam energy of 1.4 GeV and injected into the Proton Synchrotron (PS), which is CERN’s
first synchrotron and the subsequent element in the acceleration chain. At the end of the PS,
the protons reach an energy of approximately 26 GeV. The penultimate step in the injection
chain is the Super Proton Synchrotron (SPS) that accelerates the protons to an energy of
450 GeV in a 7 km ring. It is worth mentioning that the SPS already started operating in 1976
and was involved in several groundbreaking discoveries such as, e.g., the discovery of the W±

and Z bosons in the year 1983 at the UA1 (Underground Area 1) experiment [108]. Following
the SPS, the particles are finally injected into the main LHC ring where they are accelerated
to the final nominal energy that depends on the respective year-dependent run of the machine.
The entire acceleration chain described in this paragraph takes roughly 20 minutes for the
particles to reach the final energy of the LHC.

At the time of commissioning during the first Run (2011–2012), the LHC reached a centre-
of-mass energy of 7 TeV and 8 TeV, respectively. During the second Run (2015–2018), the
collision energy was increased “significantly” to

√
s = 13 TeV, which is close to the designed

energy of the LHC of
√
s = 14 TeV. Once the particle bunches are circulating in opposing

orbits at the nominal centre-of-mass energy, they are deflected to collision course using specific
quadrupole magnets placed at the four collision points highlighted in Figure 3.1a.

The result of the previously described injection is not a continuous stream of protons
in the LHC ring, but an ensemble of hadrons referred to as (proton) bunches, whose final
geometry depends on the accelerator-specific parameters such as the oscillation frequency of
the longitudinal electromagnetic field defined by the RF cavities, which determines the spacing
and the maximum amount of bunches being present in the ring at the same time.

This gives rise to another very important parameter – besides the collision energy – that
characterizes the performance of an accelerator: the so-called (instantaneous) luminosity L.
The luminosity can be defined as a constant of proportionality between the number of events
N in a given interval of time ∆t and the physical, i.e., detector-independent cross section σ of
a given process. This relation is captured in Equation 3.1 below

dN

dt
= Lσ. (3.1)

Based on the observation that the luminosity connects a detector-dependent and a detector-
independent quantity, it is obvious that L must depend on the bunch-crossing frequency, the
cross section of the two colliding bunches as well as the number of particles per bunch. This
relation is described by the following formula

L =
N2

1,2nf

4πσxσy
· S, (3.2)

whereby S denotes a geometric factor that accounts for deviations from a assumed Gaussian
distribution of the transverse beam widths σx,y, and N1,2 being the number of particles per
bunch, which are assumed to be identical here. The number of protons for each bunch in the
LHC is roughly O(1011) particles that are temporally spaced by 25 ns. Consequently, each
bunch crossing results in many simultaneous proton-proton interactions at each interaction

2The acceleration and injection chain for heavy ions is basically the same as for protons with the difference
of starting at a different linear accelerator LINAC 3 instead of LINAC 4
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vertex whose final state particles are together reconstructed in what is referred to as a (collision)
event. The average number of interactions for each bunch crossing is usually denoted by the
Greek letter µ; the larger the average number of interactions µ, the more challenging the
selection of interesting events becomes.

Aiming for high luminosities is desirable in order to increase the sensitivity to signals
originating from new physical phenomena, which are usually associated with a low cross section,
i.e., low production rates. This can be seen by rewriting Equation 3.2 in terms of the integrated
luminosity L :=

∫
dtL(t) that is a measure of the number of collected data and hence often

quoted on many results. The design luminosity of the LHC is L = 1034 cm2s−1.

3.2 LHC and HL-LHC Timeline

The LHC successfully operates since 2008. In this time, it provided an answer to the important
question whether the Higgs boson actually exist or not. With its existence finally being
(officially) confirmed in July 2012, the Standard Model (see Chapter 1) is a consistent model
of particle physics. However, based on experimental evidence, it is unlikely that the current
SM does provide a complete description of nature – as a matter of fact: it does not. One of the
biggest unanswered questions is, to name just one, the origin of Dark Matter whose existence
is supported by several independent observations in astronomy (it should be noted that there
are alternative explanations for the origin of Dart Matter besides the particle-based hypothesis
like, for instance, modified gravity or superfluid Dark Matter). Other fields of studies involve
extensions to the current Standard Model like, for instance, supersymmetry, or a mechanism
that explains the generation of neutrino masses. Many of those theories predict the existence
of new fundamental particles that scientist were hoping to find evidence for at the LHC. In all
honesty, however, it should be noted that despite the undeniable success of the LHC – that
exceeded its technical expectations –, no hints of new (fundamental) particles besides the
Higgs have been observed. Of course, the high collision energy of the LHC allowed for plenty
constraints on the mass of hypothetical particles and also excluded a large range of theories
through “null result”3, but no indication of new physics beyond the Standard Model was found
– so far.

However, the operation of the LHC is far from over as illustrated in Figure 3.2 that shows
the aimed scheduled of the LHC and its foreseen upgrade(s): the High-Luminosity Large
Hadron Collider (HL-LHC). Already during the completed Run 1 and Run 2, the LHC showed

Fig. 3.2: Foreseen timeline of the LHC and the HL-LHC (adapted from Ref. [8]).

a performance far beyond expectations. Despite huge delays due to the global situation starting
in 2020, Run 3 of the LHC started (almost) according to schedule, beginning 2022 after a two
year lasting shutdown of the machine. Compared to Run 1, the amount of data that will be
collected is expected to be roughly O(102) larger with an increase of the luminosity by an
order of magnitude. Furthermore, several upgrades and extensions to the detector are included
compared to the previous Run.

The third Run of the LHC will end in the year 2023/4. Due to the very harsh environment
during Run 3 of high radiation dose (mainly due to increased pile-up), most detector components
of the individual experiments will be at the end of their life cycle and need to be completely
replaced for the follow-on project, i.e., the HL-LHC that was announced as the top priority

3“Nill results” are by no means worthless; however, they provide very little feedback to constrain theories.
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already in 2013 and is supposed to start operating from the end of 2027. The centre-of-mass
energy can not be further increased due to the radius of accelerator ring and the upper limit on
the field strength of the bending magnets, but the luminosity is intended to rise by yet another
order of magnitude to increase the potential for discoveries of rare processes. This environment
presents scientist and engineers with completely new challenges in terms of hardware and
software. Certainly interesting times to be a particle physicist!

3.3 The ATLAS Experiment
The ATLAS detector is a hermetic general-purpose particle detector located at the experimental
cavern at access point 1 (see Figure 3.1a showing the different access points of the accelerator
complex) at the LHC ring. The detector design is coaxial with respect to the beam pipe and
cylindrical in shape with a coverage of almost the entire solid angle 4π around the interaction
point at the center of the detector. It extends about 44m in length and 25m in height and
weights about 7000 tonnes, which makes it the largest (yet not the heaviest) particle detector
at the LHC.

Fig. 3.3: View on a computer-generated schematic representation of the whole ATLAS
detector including its individual sub-components (taken from Ref. [9]).

ATLAS uses a right-handed coordinate system with its origin at the nominal Interaction
Point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis
points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical
coordinates (r, φ) ∈ R× [0, 2π) are used in the transverse plane, with φ being the azimuthal
angle around the z-axis. The pseudorapidity η is defined in terms of the polar angle θ as
η = − ln tan(θ/2).

The ATLAS detector is build in cylindrical layers parallel to the beam line as well as several
disks perpendicular with respect to the beam. A simplified view of the whole ATLAS detector
and its individual components is provided by Figure 3.3.

Each subcomponent of the detector is designed for the identification and the reconstruction of
specific types of particles or dedicated to certain fundamental interactions. The innermost layer
– which is closest to the interaction point – serves as a tracking detector and is engulfed with a
solenoid magnetic field of 2 T to bend the particles’ trajectories for momentum reconstruction
in the pseudorapidity range |η| ≤ 2.5 (this will be relevant for this analysis and its event/object
selection as all jet substructure observables are reconstructed from tracks matched to calorimeter-
based jets). Following the inner detector, the subsequent layers are the electromagnetic and
hadronic calorimeters for energy measurement (and particle identification) of the absorbed
particles. For the calorimeters of the ATLAS detector, a distinction is made between the
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barrels, parallel to direction of the beam, and the end-caps that are perpendicular to the beam;
together, they cover a pseudorapidity range of |η| < 4.9. The outermost layer of the ATLAS
detector is a muon spectrometer taking account of the fact that muons are Minimum Ionizing
Particles (MIPs), which deposit little to none energy in the calorimeter system. The muon
spectrometer is placed in a separate toroidal magnetic field of 0.5 T for the barrel and 1 T in
the end-caps that allows for the reconstruction of the muons’ momentum within a range of
|η| < 2.7. Besides the aforementioned main detector components, the ATLAS experiment is
equipped with luminosity detectors, beam conditions monitors as well as the ATLAS Forward
Proton Detectors (AFP and ALFA) also known as “Roman Pot” detectors (not present in
Figure 3.3).

The detector itself is located in the cavern UX15 at point 1 roughly 100 meters below ground
in the neighborhood of the main CERN site very close to the village of Meyrin, Switzerland.
A schematic view of the underground ATLAS installation is sketched in Figure 3.1a, which
shows the actual cavern that houses the detector as well as installation shafts for surface access.
Cavern UX15 is almost completely filled out by the detector (which deprives ourselves of a

(a) (b)

Fig. 3.4: The ATLAS experimental Area and cavity at access point 1 (left, taken from
Ref. 10, Fig. 9, p. 9) and a cross section view of the ATLAS cavern including the outer
magnet system (right, taken from Ref. 11, Fig. 10.1, p. 161).

nice overall perspective of the measuring device unfortunately) as can be seen in Figure 3.4b,
which shows a cross section of the detector mounted in the cavern. The control room(s), which
monitor the functionality of the ATLAS detector and performs some basic data quality checks
during operation of the LHC, is not located in the cavern but in building SCX1/3162 on ground
level. In Figure 3.4a, the two outgoing arrows (labeled as “VERS”) indicate the direction of
the beam pipe pointing towards point 2 (PT2) and point 8 (PT8), respectively.

3.3.1 Brief History of the Project

Driven by the unified theory of the electroweak interaction by Glashow, Salam and Weinberg
[52? ] and the estimation of the weak mixing angle, sin2 θW, based on data of muon neutrino
and anti-neutrino scattering from the bubble chamber Gargamealle (see, e.g., early calculations
by Carl H. Albright [109]), the mass of the electroweak bosons was expected to be in the
order of something like O(10 GeV), which required future colliders capable of probing such
energies. While the W± and Z bosons have already been discovered at the Spp̄S in 1983,
the detailed exploration of the electroweak energy scale was one of the main motivations for
constructing the aforementioned LEP collider at CERN. It was realized that in order to reach
higher energies, a proton-proton collider was needed – the idea of the LHC was born and the
discussion of possible detector concepts started.

The first concepts of the detectors at the future LHC have been presented and discussed at
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the ECFA-CERN workshop in Lausanne, Switzerland in 1984 [110]. Based on studies presented
at this workshop, experimental and theoretical physicists from many Institutes worked together
to develop future detector concepts. Based on those attempts, the ATLAS Collaboration was
launched and presented their concept for a “[...] General-Purpose pp Experiment at the Large
Hadron Collider at CERN” [111] in the Letter of Intent (LoI) in the year 1992. The LoI was
submitted to the CERN LHC experiments committee that inspected the proposal with respect
to its scientific yield as well as its financial and technical feasibility. Some ideas presented in
the initial concept had to be adjusted and further developed; however, just two years later,
with the submission of the technical proposal in 1994 [112], the basic concept of the measuring
device was settled with the final approval of the project by the LHC Experiments Committee
in 1997.

With all organizational obstacles being out of the way, Institutes around the world began
building on the detector components. Just one year later, the excavation of the cavern for
the ATLAS detector began and was completed in 2003 with the installation of the detector
starting soon after. On October 4, 2008, the construction of the ATLAS detector was officially
completed, which was celebrated by a big ceremony at CERN’s magnet testing facility.

With the construction of the ATLAS detector being completed, it was about time to test the
functionality of the apparatus with some first collision events recorded on November 23, 2009
with an energy of 0.9TeV. This “baptism of fire” was a great success and the very first time
that real particle tracks from the interaction point of the detector had been reconstructed. This
moment of great awe was commented by the ATLAS spokesperson, Fabiola Gianotti, as follows:
“[t]his is great news, the start of a fantastic era of physics and hopefully discoveries after 20
years’ work by the international community to build a machine and detectors of unprecedented
complexity and performance.” First collision events from proton-proton interactions at a
centre-of-mass energy at 7 TeV followed just one year later – the operation of the detector for
physics analyses had begun.

3.3.2 General Requirements and Design Criteria

The design concept of the general purpose ATLAS detector (rudimentary outlined in the
previous section and further detailed in the following ones) reflects the physical objectives
defined by the collaboration as well as the constraints set by the LHC accelerator. The latter
ones basically determine the design luminosity and the interaction rate, compelling strict limits
on the electronics and sensors in terms of speed and radiation hardness, ATLAS’ complicated
trigger system and pile-up suppression due to, e.g., inelastic events occurring simultaneously
to the hard interaction.

Aside from constraints set by the LHC accelerator, the design of the ATLAS detector is
driven mainly by concrete physical processes and new phenomena expected to be observed at
the electroweak energy scale, which served as a benchmark.

First and foremost, the main physics goal of the ATLAS (as well as CMS) experiment was
the discovery of the Higgs boson to fix the aforementioned inconsistency in the Standard Model
that predicted all particles to be mass less. Therefore, the expected properties of the Higgs
bosons was an important benchmark process to set constraints on the design of the ATLAS
detector. Since the mass of the Higgs was a free parameter at that time – covering a wide range
of possible energies –, mass resolution was of utter importance. Hadronic decay modes are
dominated by the overwhelming QCD/multijet cross section and therefore were not considered
as potential discovery channel for the Higgs boson. The Higgs decay into leptons and photons
on the other hand provides a clean signature for discovery. This requires the ATLAS detector
to be equipped with a high resolution electromagnetic calorimeter with dedicated electron and
photon identification. Furthermore, the calorimeter was supposed cover almost the entire solid
angle around the interaction point to catch potential signals originating from Vector Boson
Fusion (VBF) WW and ZZ events anticipated to be important for Higgs masses close to 1 TeV.
The only hadronic final state of the Higgs decay expected to be experimentally accessible is
H → bb̄ due to b(-jet)-tagging allowing for a certain degree of discrimination with respect to the
QCD background. Since b-tagging fundamentally relies on the identification and measurement
of secondary, displaces vertices, precise vertex reconstruction was a crucial requirement in
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terms of setting constraints on the inner part of the detector for the reconstruction of charged
particles’ trajectories.

Supersymmetry was (and to some extend still is to this very day) another important
motivation for the construction of the LHC and the ATLAS detector, but one should not be
too vain to admit that the expectations were undoubtedly disappointed in this regard. In
general (whereby different supersymmetric models sometimes differ significantly), the decay
of supersymmetric particles was expected to be accompanied by a large imbalance of energy
in the detector reconstructed as missing transverse energy Emiss

T , which also is a signature
expected for events involving Dark Matter particles – provided that they exist. A precise
measurement of transverse momentum imbalance in an event requires an almost hermetic
detector to reconstruct all final state object associated with the hard interaction as well as an
electromagnetic and hadronic calorimeter system with high energy resolution.

Some physicists hoped to find signatures of extra spatial dimensions, which could manifest
itself through effects from quantum gravity. Roughly speaking, the energy scale at which
quantum gravity would provide non-negligible contributions would decreases with the number
of “hidden” spatial dimensions, which allows to set a limit on the number of dimensions for
energies probed by the LHC. Due to the expected properties of gravitons, signatures from
quantum gravity are expected to be, once again, a large missing transverse momentum in
the event as well as the evaporation of small and short-living black holes due to Hawking’s
radiation [113] – to this very day, no traces of such exotic objects have been found.

There are plenty more motivations from physics like, for instance, forward electron signatures,
hadronically decaying tau leptons and – not forgetting! – signatures expected from heavy ion
collisions. In summary, it can be stated that the ATLAS detector should meet the following
requirements in order to fulfill its physical objectives:

• a fine-granularity Inner Detector system for (partial) particle identification and efficient
charged particle track reconstruction up to high pT for precise lepton measurements as
well as high b-tagging efficiency;

• a superb electromagnetic calorimeter for precise energy and position measurements along
with particle identification based on electromagnetic showers;

• a hadronic calorimeter system for the measurement of hadronic jets and missing transverse
energy;

• a dedicated muon spectrometer for high-precision tracks measurements and identification
of muons;

• finally, the detector should be almost hermetic, i.e., full coverage of the entire solid angle
to capture all event remnants;

• a trigger system with high efficiency for physical processes of interest and capable of
triggering particles at low thresholds.

The criteria mentioned above suggest a rather traditional detector design with a forward–backward
symmetric cylindrical geometry of alternating detector layers. The following sections provide a
short introduction and description of each one of the aforesaid detector components.

3.3.3 The Inner Detector (ID)
The Inner Detector (ID) of the ATLAS experiment is, as the name already suggests, the
innermost sub-component of the detector closest to the interaction point. It consists of three
different systems of sensor technologies, i.e., the Pixel Detector (PD), the Semi-Conductor
Tracker (SCT) and the Transition Radiation Tracker (TRT), all of which are placed in a
solenoid magnetic field of 2 T that is oriented parallel to the beam line. A sectional view of
the barrel region of ATLAS’ Inner Detector is shown in Figure 3.5. The system (as a whole)
measures the trajectories of charged particles with a transverse momentum pT above the
nominal threshold of 500 MeV (lower thresholds are possible though) inside the pseudorapidity
range |η| < 2.5. A precise reconstruction of tracks is crucial for precise angular information
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ISB

Fig. 3.5: View on a cross section of the ID engineering layout through the beam axis of
the ATLAS Inner Detector system in ascending order: Pixel Detectors, Semiconductor
Tracker and Transition Radiation Tracker(has been adopted from the TDR of the ID
from Ref. 12, Fig. 1.1, p. 6 and was modified to account for the extended ISB).

as well as the reconstruction of primary and secondary vertices for, i.e., the identification of
b-hadrons as well as track-based pile-up suppression and the soft term of the missing transverse
energy. The designed tracking resolution of the ATLAS detector is given by

σpT
pT

= 0.05 % · pT ⊕ 1%, (3.3)

with the resolution decreasing for high-pT jet due to the reduced curvature of the trajectories.
Furthermore, it allows for electron identification within the pseudorapidity range |η| < 2.0 in
the TRT as well as by combining track information from the ID with characteristic energy
clusters in the electromagnetic calorimeter (see track-to-cluster matching).

As discussed later, the multi-differential multijet cross section measurement described in
this thesis is based on jets obtained from matching tracks to topo-cluster jets. Therefore, the
Inner Detector is of particular importance for this analysis and hence deserves a discussion in
adequate detail.

The following Sections provide a quick overview of the individual sub-components that
build the ID of the ATLAS detector. For a very detailed description of the Inner Detector,
the interested reader is referred to the technical design report of the sub-detector [12] (which
leaves nothing to be desired) provided by the ATLAS Collaboration.

The Pixel Detector (PD)

The Pixel Detector is the innermost component of the Inner Detector, just a few millimeters
apart from the beam line at its closest point up to a radial distance of 122.5 mm in the barrel
and 150.0 mm in the end-caps. It consists of four cylindrical barrel layers and three disk-shaped
end-cap layers that together extend over a pseudorapidity range of |η| < 2.5.

The Pixel detector is assembled from modules based on high-granularity semiconductor
sensors as well as front-end electronics for signal processing. The signal generation is based on
charge ionization due to charged particles passing through the active material of the sensor that
results in a measurable electric signals. If the measured voltage drop is above a pre-defined
threshold, a hit is registered.

Due to its proximity to the interaction point and the considerable dose of radiation as a
consequence thereof, the bias voltage for the drift fields varies significantly to counteract the
effect of radiation damage and increased leakage current. At the end of Run 2, this resulted in
a bias voltage close to the design maximum operating voltage of 600 V!

In total, the Pixel Detector consists of 1744 sensors each one of which holds 47232 individual
pixels (46080 independent read-out channels due to combination of pixels required by the
read-out system) with a thickness of 250µm. The segmentation of the Pixel Detector results

43



in a excellent position resolution of 10µm in the transverse (r, φ)-plane as well as 115µm in
the longitudinal z-direction.

The system outlined in the previous paragraphs describes the Pixel Detector as it was
during the first Run of data taking from 2011 to the end of 2012. Throughout the long
shutdown (lasting from the end Run 1 to 2015), the Pixel Detector got extended by an
additional pixel layer that is referred to as Insertable B-Layer (IBL). Contrary to the other
sub-systems of the ID, the IBL does not have end-cap regions. With this “new” layer at hand,
the Inner Detector allows measurements very close (33 mm) to the interaction point and hence
significantly improves interaction vertex reconstruction for the benefit of reducing pile-up and
improved b-hadron identification.

The Semiconductor Tracker (SCT)

The subsequent sub-component of the Inner Detector following the Pixel Detector system is
the so-called SemiConductor Tracker (SCT). The SCT is a semiconductor microstrip detector
(contrary to the innermost component that uses pixel instead of strips) that extends over a radial
distance from 299 mm to 560 mm with respect to the beam line and covers a pseudorapisity
range of |η| < 2.5, whereby the barrel module only extends to |η| < 1.5.

The operating principle is the same as for the Pixel Detector and works by measuring the
voltage drop due to the collection of ionized charges in an external electromagnetic field when
exciting electrons to the conduction band of the semiconductor.

Because of the strip design of the SCT and due to the larger detection area that needs to be
covered, the sensor size of the SCT is larger compared to the ones used for the Pixel Detector.
The entire SCT consists of 4088 sensors with a size of 126 mm× 80µm that distribute over 4
layers in the barrel region of the detector and over 9 end-cap disks perpendicular to the beam
line. In addition, each sensor is double-layered, with an angle of 207/162µrad to get rid of
ambiguities in hit reconstruction and to provide 2-dimensional positional information. This
results in a position resolution of 17µm in the (r, φ)-plane and 580µm in the z- and r-direction
respectively.

The Transition Radiation Tracker (TRT)

The Transition Radiation Tracker is the third and the outermost sub-component of the Inner
Detector system that combines two technologies; namely, measurement of particle-dependent
transition radiation, i.e., radiation emitted if charges passes through inhomogeneous media, as
well as tracking detectors for the reconstruction of positional information. Unlike the Pixel
Detector and the SCT – which are based on semiconductor material –, the TRT consists of
polyimide, gas-filled drift tubes (also referred to as “straws”) with a diameter of 4 mm that
cover a pseudorapidity range of |η| < 2.0 rather than |η| < 2.5 as it was the case for the
aforementioned sub-detectors.

As it was the case for the other components (with the exception of the IBL), the TRT
comprises a barrel region that encompasses a radial distance of r ∈ [563 mm, 1066 mm] with a
longitudinal range of |z| < 712 mm as well as an end-cap region with r ∈ [644 mm, 1004 mm] and
|z| ∈ [848 mm, 2710 mm]. The barrel part of the TRT consists of a total of 52,544 straws each
one being oriented alongside to the beam line and 1440 mm in length. The end-cap on the other
side is made up of 122,880 radially aligned straws with a length of 370 mm. Each individual
straw is made from a 35µm thick mantle of Kapton that is coated by an aluminum and a
graphite-polyimide film, with the latter one being responsible for good electrical conductivity as
well as protection of the gas content of the tubes. Inside each straw tube, there is gold-tungsten
wire with a diameter of 30µm that acts as an anode with an electric potential of roughly
15, 000 V with respect to the outer sheath.

The gas that fills the tubes consists of 70 % of the noble gas argon4 (Ar), 27 % carbon
dioxide (CO2) and 3 % oxygen (O2). The composition of the gas is chosen to optimize the

4During Run 1, xenon was used instead, but it got replaced by argon before Run 2, which is why the TRT
can not be used for electron identification anymore.
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absorption of photons originating from the transition radiation when the particles traverse
through inhomogeneous media.

As it was the case for the Pixel Detector and the SCT, if a charged particle passes through
the straw tubes, the gas inside the recipient is ionized and the excited electrons drift towards
the wire anode while the ions/holes drift to the straw wall. Due to the very large potential
difference between anode and cathode, the signal gets amplified by a factor of 20,000 due to an
avalanche of induced electrons.

The emission of transition radiation is triggered (with a certain probability) by a 3 mm
polypropylene-polyethylene fiber “mattress” which is placed between the straws and through
which charged particles passing through. The transition radiation is a consequence of the
difference between the index of refraction between the two media which creates a correlation
between different Lorenz factors γ and the energy of the emitted photon. This relation can be
used for particle identification as γ will be different for different kinds of particles due to mass
differences between those.

3.3.4 The Calorimeter Systems

After the particles traversed through the tracking detectors, they enter the calorimeter system
of the ATLAS detector, which is responsible for precise energy reconstruction and measurement.
Contrary to the Inner Detector, the calorimeter does measure the energy of all particles that
undergo either electromagnetic and/or strong interactions and therefore charged and neutral
particles alike – with the exception of the muon as it is a minimally ionizing particle at the
energy scale of the LHC. Generally, since neutrinos solely interact via the weak interaction,
they leave the detector without any trace, but causing a net momentum in the transverse
direction, which will be discussed later in this thesis when talking about the reconstruction of
physical objects. The particles originating from the hard interaction vertex are not directly

Fig. 3.6: View on a computer-generated schematic representation of the ATLAS calorime-
ters (taken from Ref. 13, Fig. 1.4, p. 9 ).

reconstructed by the calorimeters, but the cascade of secondary particles they initialize –
generally referred to as particle shower. The characteristics of this shower strongly depend
on the underlying interaction (electromagnetic or hadronic) that caused the cascade, which is
why the ATLAS detector is equipped with two calorimeter systems each one dedicated to one
specific type of shower.

Contrary to the inner detector, the energy resolution of the calorimeters improves with
increasing energy, inter alia, due to the collimation of showers. Generally, the (relative) energy
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resolution of the calorimeter can be expressed in terms of the following Equation

σ(E)

E
=

a√
E
⊕ b

E
⊕ c, (3.4)

whereby a ∈ R denotes the stochastic term that depends on the detector material; b ∈ R is the
noise term that corresponds to the noise level in the detector (which significantly depends on
the pile-up condition of the respective Run) and the constant term c ∈ R that dominates at
high energies and depends on detector layout like, for instance, the absorption/radiation length,
cracks between transitions of different detector modules, dead material etc. The constant term
can be reduced by means of calibration corrections as will be described later in Chapter 4.

The ATLAS calorimeter consists two sampling calorimeters, i.e., they are made of alternat-
ing layers of absorber material to induce particle showers followed by some active material to
measure the energy of the initialized cascade. The sampling design is a specific choice that
allows for very compact calorimeters with well controlled showers; however, only the active
material components of the sampling calorimeters allow for energy reconstruction, which gives
rise to energy loss in the absorbing material. This effect can be corrected based on simulations
and test beam measurements, but it comes with an additional uncertainty. Figure 3.6 shows
both calorimeters in the ATLAS detector with the Inner Detector (described in Section 3.3.4)
being in its center.

Consequently, the two calorimeters of the ATLAS detector are named based on the in-
teraction they are primary sensitive to, i.e., the electromagnetic calorimeter for the energy
reconstruction of showers originating from electrons or photons (muons are, as already men-
tioned, MIPs at the LHC and taus hadronize before they reach the calorimeter system) and
the hadronic calorimeter that measures the energy of all kind of hadronic showers involving
strong interactions. Together, the entire calorimeter system of the ATLAS detector, including
the (extended) barrel as well as the end-cap and forward regions, cover a pseudorapidity range
of |η| < 4.9, making the ATLAS detector almost hermetic (4π-detector).

The two following sections provide a quick overview of both calorimeters used at the ATLAS
detector starting with the electromagnetic calorimeter and followed by the hadronic calorimeter.
For a comprehensive discussion of the ATLAS calorimeter system, the reader is referred to the
corresponding TDR [114] as before.

The Electromagnetic Calorimeter

The Electromagnetic calorimeter of the ATLAS detector consists of three sub-components: the
presampler, the barrel and the end-cap calorimeter, that use Liquid Argon (LAr) as passive
material to initialize the electromagnetic shower due to its radiation-hardness. The active
material that measures the energy of the shower is lead because of its high density and short
radiations length, which contains the shower dept of the electromagnetic calorimeter. Figure 3.7
shows a segment of the barrel module of the electromagnetic calorimeter with the granularity
of the different layers in (φ, η)-space.

The electromagnetic calorimeter is optimized for showers originating from either elec-
trons(positrons) or photons. Since electrons emit photons via Bremsstrahlung at high energies
and photons convert to electron-positron pairs, both shower types are fundamentally connected.
In the progress of the particle cascade, the energy of the initial particle that started the
shower distributes over an increasing number of particles such that the energy scale of the
individual particles within the shower reduces, which gives rise to other interactions with the
detector material. For instance, at lower energies, the wavelength of the photons increases
due to the interaction with the atomic kernels through Compton scattering. At even lower
energies, photons are converted to low energy electrons by means of the photoelectric effect,
which are captured and therefore no longer available to further develop of the shower. The
electromagnetic shower finally terminates. The penetration dept of the described process
strongly depends on the radiation length of the material. As already mentioned, this is one
reason for using lead as an active material since it constraints the shower to the dept of the
electromagnetic calorimeter. If a particle traverses through the absorbing material of the
calorimeter, the LAr gets ionized and the excited electrons drift towards the copper electrodes
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(a) (b)

Fig. 3.7: Sketch of a barrel module of the electromagnetic LAr calorimeter showing the
detector granularity in (φ, η)-space for different layers including tower cells used by the
L1 trigger of the ATLAS experiment (left, adapted and modified from Ref. 14, Fig. 9, p.
9) as well as a view on a computer-generated schematic representation of the end-cap
(right, taken from Ref. 15, Fig. 1.1, p. 20).

in a strong electromagnetic field. This process takes about 450 ns, which is much longer (18×)
than the average distance between two bunches of 25 ns; hence, not the entire signal is read
out, but a signal shaper is applied to create a pulse with much shorter read-out time.

The design energy resolution of the electromagnetic calorimeter (barrel and forward compo-
nent) is

σECAL(E)

E
=

10 %√
E
⊕ 0.7 %, (3.5)

whereby the noise term has been neglected as it significantly depends on the pile-up conditions
which changes from Run to Run [115].

The Hadronic Calorimeter

ATLAS’ hadronic calorimeter system is an essential component for the energy measurement of
hadronic showers and thus crucial for the reconstruction of jets. It is placed outside of the
electromagnetic calorimeter and uses different types of sampling calorimeters depending on
the pseudorapidity region due to the accompanying varying demands regarding the radiation
hardness of the sensors. Contrary to the electromagnetic calorimeter introduced in the previous
section, the hadronic calorimeter also measures energy losses due to nuclear interactions and
is therefore sensitive to strong interactions. This results in a considerably more complicated
phenomenology of hadron-initialized showers compared to those caused by the interaction of,
e.g., electrons or photons with matter. It is not just that hadronic showers always contain
electromagnetic components to some extend, but the presence of strong interactions give rise
to nuclear interactions like, for instance, nuclear spallation, recoil effects with the atomic
nucleus, neutron capture, decay to stable hadrons etc. The strong interaction of a single
hadron with matter usually results in the production of may secondary particles giving rise
to hadronic cascades. Since the initial energy distributes over many secondary particles, the
energy scale of hadronic showers is lower, which results in significant event-by-event fluctuation
compared to electromagnetic showers. Those low energy hadrons may generate low energy
photons and neutrons due to nuclear deexcitation that are absorbed as nuclear binding energy
or recoil events; energy losses due to the latter one will remain undetected. Generally, a
significant fraction low-energy nuclear interactions are not reconstructed, with the consequence
being a reduced energy resolution of hadronic calorimeters. The high-energy interactions of
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hadronic showers, on the other hand, usually leads to the production of neutral pions which
predominantly decay via π0 → γγ, thus giving rise to electromagnetic showers. Similarly, the
photons emitted through the process of deexcitation may initialize electromagnetic showers
too.

Like the electromagnetic calorimeter, the hadronic calorimeter consists of a barrel and
a forward detector. The barrel region is a cylindrical shaped detector that comprises the
central barrel and two extended barrels in opposite ends of the central one. The hadronic
calorimeter surrounds the electromagnetic calorimeter and is the outermost component of
ATLAS’ calorimetr system. This arrangement is necessary since, firstly, the hadronic showers
contain, as mentioned above, electromagnetic components too, and, secondly, the absorption
length, i.e., the characteristic energy loss distance for hadrons, is usually significantly larger
compared to the radiation length of electromagnetic showers. The latter point is the reason for
hadronic calorimeters being thicker compared to their electromagnetic counterpart.

The barrel part of the hadronic calorimeter along with one of the HCAL modules is shown

(a) (b)

Fig. 3.8: Sketch of a central barrel module (left, taken from Ref. 15, Fig. 1.1, p. 20)
and an entire section (right, taken from Ref. 16, Fig. 1.3, p. 6) of the hadronic Tile
calorimeter showing the alternating layers of steel absorber plates and plastic scintillating
tiles connected to photomultipliers by means of wavelength shifting fibers.

in Figure 3.8. It is a Tile sampling calorimeter with the central barrel part covering a
pseudorapidity region of |η| < 1.0 and the extended barrels increasing (with an overlap) this
range up to 0.8 < |η| < 1.7. The individual modules are made from alternating steel absorber
plates followed by polystyrene scintillating tiles (the active material), with the latter one
sending the scintillation light via wavelength shifting fibers (to convert from the ultraviolet to
the visible range) to photomultipliers that convert the received light into electrical signals. A
particle traversing through the calorimeter gives rise to a shower if it interacts with the steel
absorbers, with the plastic scintillators producing photons that are converted in to electrical
signals as mentioned above. The entire Tile calorimeter contains approximately 420, 000 plastic
scintillators connected to 9500 photomultiplier tubes with a total weight of 2900 tonnes; making
it the heaviest component of the entire ATLAS detector.

The end-cap part of the hadronic calorimeter (HEC) covers a pseudorapidity range of 1.5 <
|η| < 3.2 and is based on the LAr technology due to its intrinsically increased radiation-hardness
to ensure smooth operation at larger pseudorapidity closer to the beam with significantly
increased radiation dose. The absorber plates are orthogonal to the beam axis and made from
Copper instead of steel/iron with a thickness of 25 mm and 50 mm, respectively. The entire
hadronic end-cap is contained in the same cryostats as the electromagnetic calorimeter end-cap.

The last part of the hadronic calorimeter is the Forward Calorimeter (FCal) that consists of
two end-caps and covers a pseudorapidity range of 3.1 < |η| < 4.9. This module is exposed to
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a very high degree of radiation dose, which is reflected in its composition and its structure. It
uses two longitudinal sampling layers with Copper as an absorber to improve the measurement
of electromagnetic interactions and Thungsten for hadronic showers. For all modules, LAr is
used as an active material accounting for the challenging radiation environment.

The design energy resolution of the hadronic calorimeter is different for the Tile, HEC and
FCal

σTile/HEC(E)

E
=

50 %√
E
⊕ 3 %, (3.6)

σFCal(E)

E
=

100 %√
E
⊕ 10 %, (3.7)

with the noise being neglected again. As one can see, the resolution of the hadronic calorimeter
considerably decreases in the forward region of the detector.

3.3.5 The Muon Spectrometer
The last component of the ATLAS detector is a spectrometer solely dedicated to the mea-
surement and detection of muons. As already mentioned in Section 3.3.2 and Section 3.3.8,
the muon played an important role in the discovery (or exclusion) of the Higgs boson as it
provides one of the cleanest signatures with very high background suppression. Figure 3.4

(a) (b)

Fig. 3.9: Cross section view of the muon spectrometer of the ATLAS detector including
its support structure (left, taken from Ref. 17, Fig. 1.2, p. 4) and a perspective view of
the detector component, showing barrel region and end-cap modules of the spectrometer
(right, Ref. 18, Fig. 1.1, p. 18).

shows the cross section of the spectrometer including its support structure it rests on, as well
as an angled view of the detector that shows the barrel part and the end-caps. The barrel
consists of three cylindrical tracking chambers around the beam axis; the end-caps (as well as
the transition regions on both sides) are planes perpendicular to the beam line.

As mentioned above, the information of the muon spectrometer is used by the first-level
trigger; consequently, this detector component is equipped with its own trigger system. The
high-precision track and position reconstruction is done by using a range of different detection
techniques such as the Monitored Drift Tubes (MDTs) that measure the bending of the tracks
in the three air-core toroids (see Section 3.3.6). Furthermore, depending on the pseudorapidity,
the muon spectrometer further uses Cathode Strip Chambers (CSCs) with fine granularity to
account for high event rates and higher doses of radiation close to the beam line.

The muon spectrometer does not make use of any methods for particle identification as
all particles produced in the interaction are assumed to be absorbed completely by preceding
detector components.
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3.3.6 ATLAS’ Magnetic System

To reconstruct the momentum and charge of charged particles passing through the detector,
the trajectories must be bend. For this purpose, the ATLAS detector is equipped with two
types of superconducting magnet systems – the so-called solenoidal and toroidal magnets –,
which needs to operate at a temperature close to absolute zero in an effort to achieve the field
strength necessary.

Figure 3.10 shows an overview of the ATLAS magnetic system. Starting from the innermost
component of the magnetic system, Figure 3.10b exposes the powerful Central Solenoid magnet
(CS) that encloses in Inner Detector of the ATLAS experiment. It has a longitudinal extension
along the beam line of around 5.6 m with a diameter of roughly 2.5 m (by the way, all numbers
related to the magnetic system are taken from the official “ATLAS Fact Sheet” [116]) and
a total weight of 5 tonnes. The magnet archives a field strength of up to 2 T with a casing
thickness of just 4.5 cm to reduce the interaction with particles to a minimum. The magnet
itself consists of over 9 km Niobium-titanium superconductor wires into fortified aluminum
strips.

(a) (b)

Fig. 3.10: The ATLAS magnet system and its components. The superconducting air-core
toroid magnet with the left-hand end-cap toroid being retracted from its operating
position (left, taken from Ref. 13, Fig. 1.7, p. 12), as well as, a perspective view on
ATLAS’ magnet system including the innermost central solenoid magnet enveloping the
ID (right, taken from Ref. 19, Fig. 2.2, p. 16 (TDR)).

The central solenoid is followed by the toroid magnet that is further subdivided into a barrel
and end-cap region as shown in Figure 3.10a. This is an incredible system with flabbergasting
dimensions.

The barrel toroid consists of a series of eight large coils with a length of approximately 20 m
and an outer diameter of the assembled system of 20 m (which makes it the largest toroidal
magnet constructed so far), providing a magnetic field up to 3.5 T. The eight coils are build
from 56 km of superconducting wire made of (super)conducting Aluminium, Niobium-titanium
and Copper. The entire structure is arranged radially and symmetrically around the beam
axis.

The End-Cap Toroid (ECT) is shown in Figure 3.10b, being retracted from its operating
position. The purpose of the two ECTs is to extend ATLAS’ magnetic field to forward particles
close to the beam line. Both end-caps have an axial length of roughly 5 m and an outer diameter
of 10.7 m with a bore in the center for the beam line. The two components are made from the
same material as the CBT but with a total weight of 240 tonnes and a magnetic field strength
of 4 T.

The operation of the entire magnet system in terms of cooling and current supply (8−21 kA)
is quite energy-intensive. The cooling is managed in a dedicated refrigeration plant located in
a separate cavern close to the main one UX15 as can be seen in Figure 3.4a.
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3.3.7 LUCID, ALFA and ZDC Experiments
The ATLAS experiment is equipped with a series of smaller experiments/detectors that monitor
beam conditions, provide luminosity determination and measure spectator beam remnants
(which is of particular importance for detection of diffractive processes).

The LUminosity measurement using a Cherenkov Integrating Detector (LUCID) is the
dedicated luminosity monitoring detector of the ATLAS experiment [117]. To meet the doubled
luminosity and the increase in the number of interactions per bunch-crossing for Run 2, LUCID
and its entire electronics have been completely rebuilt; as a consequence, the detector was
renamed to LUCID-2 to account for this fact. The detector itself consists of two modules
that are placed roughly 17 m symmetrical with respect to the interaction point of the ATLAS
experiment. A total number of 16 photomultipliers build the heart of the system that are used
to detect Cherenkov radiation. The photomultipliers are calibrated using radiactive sources,
and based on the integrated Cherenkov radiation, the luminosity can be determined. The
LUCID group also provides systematic uncertainties that are dominated by calibration errors
and Run-to-Run systematic errors; currently, the uncertainty on the luminosity is roughly
2.1 %, which is a significant improvement compared to Run 1. For the measurement described
in this thesis, the uncertainty on the luminosity is irrelevant since relative rates are measured
,with the luminosity being fully correlated between the nominator and the denominator.

The Absolute Luminosity For ATLAS (ALFA) is another interesting sub-detector system
of the ATLAS experiment that is located approximately 240 m from the interaction point. It
uses Roman Pots for the measurement of the total proton-proton cross section by counting
the number of forward protons. This measurement is based on the optical theorem σtot =
4π
k Imf(θ = 0) in QFT that relates forward scattering amplitude f(θ = 0) to the total cross
section σtot of a process.

Furthermore, the so-called Zero-Degree Calorimeter (ZDC) is installed very forward at
around 140 m at both sides from ATLAS’ interaction point. Its main task is to detect very
forward neutral particles – primarily (spectator) neutrons and photons – in proton-proton as
well as heavy-ion collisions. Recently, the detector has gained popularity in the search for
light-by-light scattering predicted by quantum electrodynamics.

3.3.8 “Data Flow” – Trigger and Data Acquisition
The ATLAS Trigger and Data AcQuisition (TDAQ) system is responsible for all the online
processing of the collision data such as the selection and storage of events containing signatures
considered interesting for physics analyses. It is a highly complicated, multi-component system
that has undergone considerable changes from Run 1 to Run 2 to meet the significant increase
of instantaneous luminosities and bunch crossings in a given time frame.

With the design parameters of the LHC, roughly one billion events occur within the time
frame of a second. Given the enormous amount of calorimeter cells, pixels etc., this corresponds
to an immense amount of data that would need to get permanently stored on disk. Due to
bandwidth limitations and capacity limits regarding the analysis as well as the storage of
data, the total event rate must be significantly reduced from O(109 kHz) to something in the
neighborhood of O(1 kHz). For this purpose, the ATLAS (Run 2) trigger is a two-stage system
that utilizes a fast hardware-based component as the first level in the trigger chain followed by
a software-based level for further rate reduction and event selection.

The Level-1 (L1) trigger is an entirely hardware-based system that is build from custom
electronics optimized to achieve the best performance. As an input, the L1 trigger uses reduced
information from the calorimeter (L1Calo) and the muon spectrometer (L1Muon); the Inner
Detector is not taken into account in the first step of the trigger decision as tracking is not
possible within the strict time budget of the L1 trigger. The calorimeter part of the L1 trigger
reads signals from the calorimeter with a reduced granularity. The hardware of the L1Calo
trigger is optimized to identify patterns in the calorimeter expected for electrons, photons,
taus, jets as well as an estimate of the missing transverse energy in an event. Since muons
are MIPs at the LHC, the dedicated L1Muon trigger searches for characteristic signals in the
muon spectrometer of the ATLAS detector. This is necessary since muons provide one of the
cleanest selection of interesting events like, e.g., H → ZZ∗ → µ+µ− `+`− with ` = e, µ. In
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the meanwhile, during analysis of the reduced-granularity calorimeter information, the analog
signals of all sub-components of the detector are processed and buffered. Depending on the L1’s
decision, the information in the event buffer is passed to the next trigger step or discarded. If
the L1 trigger identifies one of the previously mentioned objects, it defines Regions-of-Interest
(RoIs) in terms of η and φ and checks the results against entries in the predefined L1 trigger
menu. If at least one of these criteria is matched, the event is accepted by the L1 trigger and
the information temporarily stored in the buffer along with the RoIs is passed to the next step
in the trigger chain.

If the event is accepted in the first level, the full detector information is forwarded to
the second stage, i.e., the software-based High-Level-Trigger (HLT) using approximately 20 k
commercial CPUs; this trigger aims to reduce the event rate to manageable O(1 kHz). Before
the event is finally analyzed by the CPU-intensive algorithms similar to the ones used in offline
analyses, some devoted fast algorithms are used to estimate if this event is likely to pass the
HLT criteria. The HLT checks against a list of customizable criteria, the so-called trigger menu,
that reflect the physical goals of a given data-taking period. If the current event is accepted by
the HLT, the data is transferred to the CERN computing center Tier-0 for permanent storage.
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4. Object Reconstruction and Jet Physics

The previous chapter provided an introduction into the ATLAS detector, which is used to
measure the experimental signature of particles traversing through the measuring apparatus
originating from the interaction point. The information read out from the instrument are a
variety of electronic signals like, for instance, energy depositions in the calorimeter system,
hits in the Inner Detector, trigger information etc. Hence, particles are not measured directly
but rather implicitly via their interaction(s) with dedicated sub-components of the detector.
To draw conclusions about the particles involved in the event, the feedback provided by the
detector must be interpreted and connected to the actual physical objects that gave rise to
the measured signatures in the first place. This is a highly non-trivial task that is generally
referred to as (physical) object reconstruction. The objective is to use the detector information
to reconstruct the four-momentum of the object (which might be a fundamental lepton, the
experimental signature of a parton in form of a particle jet or a composed quantity like the
missing transverse momentum that accounts for momentum imbalance in the transverse plane)
in the event from which higher-level observables are derived.

This chapter covers the reconstruction of different physics objects. The measurement
outlined in this thesis mostly relies on jets that, consequently, will be the central theme of this
chapter. However, for the sake of completeness, a quick overview of other important physical
objects is provided as well.

The first section (4.1) provides a brief introduction into the reconstruction and identification
of electrons and photons at ATLAS. Since the reconstruction of the muon differs significantly, it
gets its own section (4.2) that quickly introduces muon reconstruction and identification as well
as the different definitions of muons and working points at the ATLAS experiment. To leave
no family member unmentioned, some very shallow comments regarding the reconstruction of
taus are provided. With the leptons and the photon being discusses, the subsequent section
(4.4) is devoted to jet physics at the ATLAS experiment. This is a very broad topic and quite
relevant for the studies presented in this report; hence, the material is divided into several
parts (whereby concepts introduced in Chapter 1.3 are used extensively) starting with the
experimental signatures of jets in the detector as well as the objects they are constructed from
(4.4.1), followed by common jet finding and reconstruction algorithms (4.4.2), and concluded
by an introduction to jet calibration (4.4.3) and some comments to jets build from charged
constituents (4.4.4).

4.1 Electrons and Photons

Electrons as well as photons are fundamental particles that are produced in may physics
processes at the LHC. Often, they provide a very clean signature in the final state and hence
allow for a pure selection of channels involving those particles. In case of this analysis – which is
exclusively based on jets in the final state –, electrons and photons play a comparatively minor
part (they only enter the measurement implicitly through overlap removal in the jets). However,
they still contribute due to detector mismeasurement effects and, following, the possibility of
misidentifying an electron or a photon with a jet. This effect, however, is vanishingly small
compared to the overwhelmingly large cross section of multijet events. Of course, hadronically
decaying taus may contribute as well. On the other hand, jets originating from QCD contribute
significantly to falsely identified electrons and photons also known as fakes.
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The identification and reconstruction of electrons and photons is based on measurements
done in the Inner Detector (inner tracking system) and the electromagnetic LAr calorimeter of
the ATLAS detector, which has already been described in Chapter 3.3.4.

The first reconstruction step is identical for electrons and photons alike; it starts in the
electromagnetic calorimeter on cell level, i.e., considering individual cells of the calorimeter that
have registered an energy deposition above a certain threshold. Those cells are the input to
the so-called sliding window algorithm that uses a fixed-size collection of 5× 5 calorimeter cells,
with the objective to identify a region that maximizes the amount of energy within the sliding
window. If a maximum has been found, the algorithm tries to identify a track (which – of course
– only exists in case of an electron) from the ID with a momentum measurement compatible
with the energy deposition in the localized region in the calorimeter. If this procedure turns out
to be successful, the electron could still be caused by photon conversion due to the interaction
of a photon with the detector material. This is checked by searching for the presence of an
associated conversion vertex. If no conversion vertex is found, the reconstructed particle is
labeled as an electron candidate; otherwise, if there is a conversion vertex, the particle is a
photon candidate.

After electron and/or photon candidates have been identified, the localized clusters inside
the calorimeter are rebuild using adjusted window sizes, whose extension in η and φ depends
on whether the candidate have been reconstructed in the barrel region ((3× 7)e and (3× 5)γ)
or the end-cap(s) ((5× 5)e,γ) of the calorimeter. The reason for using larger window sizes for
electrons than for photons is a consequence of their increased interaction probability in the
upstream material, as well as because of bending due to the magnetic field, which may result
in broader showers in case of the electron. Based on the sliding window, the basic kinematic
properties of the electron/photon candidate is calculated. The angular components η, φ are
calculated as the energy-weighted barycenter of the individual cells in the window while the
energy (the particles are assumed to be massless) are the sum of energy depositions inside the
individual layers as well as presampler of the calorimeter to correct for upstream energy losses.

As already mentioned, as a result of the overwhelmingly large multijet cross section,
the number of electron and photon candidates is completely dominated by fakes. This
problem is accounted for by using a set of variables that capture differences between jet- and
electron/photon-initialized showers like, to name but a few examples, the shower shape, the
quality of the tracks, information provided by the TRT (see Chapter 3.3.3) that serve as
input for cut-based as well as multivariate techniques. The classification score is optimized for
different efficiency that give rise distinct working points, e.g., a tight electron with an electron
identification efficiency of roughly 64 % and a jet rejection of approximately 105 [118].

4.2 Muons
Precise muon reconstruction and identification is of utter importance for many measurements
and in searches for particles beyond the current Standard Model. For instance, many theories
and extensions to the SM predict the existence of heavy resonances that predominantly couple
to the top quark, whose decay gives rise to a hadronic or a leptonic final state. A heavy particle
decaying into tt̄ therefore may become noticeable in a fully hadronic, a semi-leptonic or a fully
leptonic final state. The fully hadronic final state is completely dominated by QCD multijet
events, and the fully leptonic one is kinematically under constraint1 due to the presence of
two neutrinos in the final state. Furthermore, the fully-leptonic channel is limited by statistics
due to the small branching ratios of the decaying W bosons. The semi-leptonic decay channel
(one W decaying hadronically the other one leptonically) has a very clean signature and is
usually the one that is used in searches. In this channel, muons are often used to significantly
reduce contributions background to account for the aforementioned problem of QCD jets faking
electrons (see Section 4.1). The reliable identification of muons, therefore, directly results in

1Actually, the resulting system of kinematic equations in case of the fully-leptonic final state results in a
quartic polynomial that can be solved analytically if all masses entering the equations are fixed [119]. However,
the solution to this polynomial is not unique and the efficiency in selecting the correct solution is low which
decreases mass resolution.
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4.3. TAU LEPTON

reduced background and improved mass resolution.
This is just one example; there are plenty of other cases where muons are crucial in physics

analysis like, for instance, Z → µ+µ−.
As it was already outlined in Chapter 3.3, the reconstruction of muons is very different

from the one of electrons or photons described in the previous section. Like for the electron
and the photon, the muon reconstruction and identification algorithms make use of tracks
reconstructed in the Inner Detector; however, due to the minimal ionization nature of the
muons at the energy scales of the LHC, muons deposit little to no energy in the calorimeter
system of the ATLAS detector. For this reason, the ATLAS detector is equipped with a
dedicated muon spectrometer (see Chapter 3.3.5) for the reconstruction and identification of
muons originating from the central collision point as well as for the rejection of cosmic muons
reaching the detector despite being 100 m below ground.

There are several definitions of muons at the ATLAS experiment depending on which
information provided by the detector enters the reconstruction. In general, a muon candidate
is given by a set of five parameters that correspond to the five independent parameters
(d0, z0, φ, θ, q/p) obtained in a track fit.

If a muon originates from the collision point, its track follows a helix trajectory due to the
strong solenoid electromagnet field in the ID. With the innermost layers of the ID being very
close to the beam line, the impact parameter d0, z0 as well as φ, θ can be precisely determined.
After the calorimeter system, the muon candidate enters the muon spectrometer in the outer
layer of the ATLAS detector, with its own toroidal magnetic field as described in Chapter 3.3.6.
Since the muon spectrometer is the outermost layer of the ATLAS’ detector sub-components,
there is a long “lever arm” which results in an improved q/p resolution compared to the ID.

The actual muon four-momentum depends on the reconstruction algorithm that has been
used to reconstruct the muon. At ATLAS, there are four of such distinct reconstruction
algorithms that thus result in four definitions of muons: Combined (CB) muons from a global
fit of tracks from the ID and the muon spectrometer; Segment-Tagged (ST) muons from a fitted
track in a segment of the ID and the muon spectrometer; Calorimeter-Tagged (CT) muons
obtained from a fitted ID track and energy deposition2 in the electromagnetic calorimeter; and
Extrapolated (ME) muons that solely use tracks from the muon spectrometer.

Which types of muons are used strongly depends on the respective analysis and the selection
Working Point (WP) that has been chosen. At ATLAS, four of such working points for muons
exist: the loose WP that uses all muons defined above and hence maximizes reconstruction
efficiency; the medium WP (which is ATLAS’ default WP for muons) only uses CB and ME
muons; the tight WP only makes use of CB and ME while maximizing purity; and the high-pT

WP for, as the name suggests, high pT muons with an optimized momentum resolution.
This basically finishes the muon part. There are some more steps necessary not described

in this overview like the calibration of the muon’s momentum scale for the measurements in
the ID and the muon spectrometer to mach the measurements in data using the invariant mass
spectrum of the µ+µ− system originating from a Z or a J/ψ decay. However, compared to the
calibration of jets, the procedure for muons is rather straightforward.

A nice introduction into muon reconstruction and identification at the ATLAS experiment
can be found in the following note Ref. [120], which also formed the content-related basis of
this section.

4.3 Tau lepton

Wait ... there are three families of leptons – where is the tau? No one is left behind. With a
mass of roughly 1.78 GeV, the tau lepton is by far the heaviest lepton known, which opens
the window for the decay into light hadrons (predominantly pions). This is an extraordinary
property – absolutely unique in the Standard Model! Of course, the tau may also decay into

2Despite muons being MIPs at the LHC, there might be some trace of a passing muon in the electromagnetic
calorimeter of the detector. This energy deposition is usually small compared to, e.g., an electron or a photon,
but nevertheless may be used in muon reconstruction, provided that the energy deposition is isolated.

55



lighter particles in the lepton family (involving two neutrinos!), but the branching fraction
Γ(τ → hadrons) ≈ 68 % for hadrons dominates. From an instrumentalist’s point of view, how-
ever, this feature goes hand in hand with a lot of complications when it comes to reconstruct
and identification of the tau lepton in the experiment, which arise due to the fact that taus give
rise to hadronic showers, and because of its extremely short life time ττ = (290.3± 0.5) 10−15 s
[121]. Due to these distinct features of the tau lepton, the treatment is very different compared
to electrons and muons.

It was mentioned already that the tau may also decay leptonically into lighter leptons;
usually, it is not possible to distinguish electrons and muons originating from tau decay from
the ones starting from the collision point (or only with very low efficiency).

For the hadronic decay channel, however, several techniques have been invented to discrimi-
nate hadronic showers from top decays and showers being initialized by final state partons in
the underlying event. Essentially, hadronic tau decays can be categorized into one-pronged or
three-pronged events (of course, higher-pronged decays exists, but their contribution is rather
small such that they are irrelevant for almost all practically applications), depending on the
number of (charged) pions produces in the decay. Those different decays result (on average) in
different shower shapes with different substructure inside the produced jets.

Due to the large mass of the tau and the comparatively small mass of the final state particles
being produced, the decay products are usually highly boosted. For this reason ATLAS uses
small R(= 0.4) anti-kt jets build from locally calibrated topo-clusters for tau candidates. To
get a tau enriched region of phase space, multivariate-based methods are used, whereby the
efficiency of tau identification is somewhat low compared to the other members of the lepton
family.

4.4 Jets

This section opens the wide range of topics covering jet-related physics, which is of great
importance for the research presented in the thesis at hand. Since the analysis described in
this document measures the relative rates of dijet events, jets will be covered in much more
detail compared to the objects introduced in the previous sections, which play a subordinate
role in this study.

The basic concept of a hadronic shower and particle jet as a theoretical and phenomenological,
well-defined (see IRC-safety in Chapter 1.3.2) approach to QCD was already introduced in
Chapter 1.3.1. This section therefore focuses on the experimental aspects of jets, i.e., the
input used for the reconstruction that yields different jet definitions, the reconstruction of jets
in an event for different configurations of commonly used finding algorithms, the calibration
of the energy scale and energy resolution of jets to particle level as well as the ghost- or
∆R-association for track-to-jet matching and, finally, the measurement of jet substructure
information, which is the subject of this analysis.

4.4.1 Inputs to Jet Reconstruction

Jets are usually associated with a collimated spray of particles of electromagnetic or hadronic
origin; hence, the most important detector component for the reconstruction of jets is the
calorimeter system of the detector (lengthily described in Chapter 3.3.4). The experimental
signature of jets in the calorimeter is a spatially distributed energy deposition (in all three
spatial dimensions) that typically exceeds the size of a single cell of the calorimeter except for
very boosted jets. This energy deposition can be subdivided into the transverse profile, i.e.,
the arrangement of cells in the η − φ-plane, and the longitudinal energy deposition, namely,
the organization of cells along the radial direction that corresponds to the penetration dept of
the jet. Both, the transverse and the longitudinal shower profile, are important quantities with
regard to the discrimination of electromagnetic and hadronic jets.

Solely based on calorimeter information, two important objects can be defined that serve
as an input for jet reconstruction, i.e., calorimeter towers and calorimeter cluster
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Calorimeter Towers

Calorimeter towers are the most simplest jet object available at ATLAS. They play a funda-
mental for triggering events containing jets as well as missing transverse energy. For this object,
signal cells with sufficient activation are collected and the energy flow along the longitudinal
direction is project onto a two dimensional (η, φ) ∈ (−π, π]× (−5, 5] grid with a granularity of
η×φ = 0.1× 0.13. The tower algorithm simply collects signals cells and adds the energy, based
on the fraction the energy deposition of overlapping cells as the granularity of the calorimeter
changes. If the projected cell is smaller (or equal) to the bin size of the tower, its energy is
simply added to the total tower energy. However, the cells may overlap such that the energy
must be shared between towers. This is done by a simple geometrical reweighting of the energy
based on the overlap [123].

The calorimeter towers can be subdivided into electromagnetic and hadronic towers depend-
ing on whether cells from the electromagnetic calorimeters or the entire ATLAS calorimeter
are used. The former ones are primarily used as an input to the sliding window cluster finder
to define Regions of Interest (RoI) for the higher-level trigger or the topological clustering
algorithm described in the following section; the latter one is usually used for jet reconstruction.
Both objects (and hence the jets build from it) are on the electromagnetic energy scale, which
is one motivation for jet calibration introduced in one of the following section.

Calorimeter Clusters

Contrary to the previously introduced calorimeter towers, topological cell clusters are three
dimensional objects that are reconstructed following a seed-based clustering algorithm. The
resulting objects are referred to as Topological Clusters (TCs) and are a basic ingredient to
many jet objects – including this very analysis that uses jets build from (locally) calibrated
TCs as a basis to derive “track-based” jets! The underlying motivation behind the topological

(a) Seeding step (b) Growing step (c) Merge/split step

Fig. 4.1: The different steps of ATLAS’ topo-clustering algorithm for a simulated dijet
event in the FCAL0 module of the forward calorimeter. The first Figure 4.1a highlights
all cells with sufficient energy-to-noise ratio to seed a topo-cluster object. In the next
step 4.1b, neighboring cells are collected if their energy deposition is significant. The
last Figure 4.1c shows the final topo-clusters black outlined after the last merging step
and splitting of local energy maxima (the figure has been adopted from Ref. 20, Fig. 6,
p. 19).

cell clustering algorithm is the identification and reconstruction of characteristic showers in the
calorimeters. Even if the initial particle is highly boosted (such that the collation angle of the
decaying particles is in the order of the detector resolution), TCs are still strongly correlated
with the momentum flow of the initial particle that gave rise to the shower cascade. The cluster
algorithm itself is straightforward and will be covered in the following paragraph.

3It should be mentioned that the aforementioned scheme has been updated for the Phase-1 (Run 3) upgrade
of the ATLAS detector. The readout electronics as well as the granularity of the LAr calorimeter have been
updated which lead to the introduction of so-called “super cells” allowing to use shower shape information
already at the very first trigger level [122].
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The three main steps of the clustering algorithm are illustrated in Figure 4.1. As already
mentioned, the topo-clustering procedure is a seed-based clustering algorithm that starts with
a so-called seed cell, which is characterized by an energy deposition significantly above the noise
level of the detector (see Figure 4.1a). As such, it is naturally noise and pile-up suppressed,
which is of particular importance in an environment with significantly underlying activity like
the LHC.

Each cell in the calorimeter with an energy significance of EEM
cell /σ

EM
noise,cell > S(= 4),

whereby the noise term is a squared sum of electronic noise and contributions from pile-up
σEM

noise,cell = σelectronics
noise ⊕ σpile−up

noise , is able to seed a topo-cluster. In the following step, all cells
with EEM

cell /σ
EM
noise,cell > N(= 2) being directly adjacent to the seed cell are collected into the

so-called proto-cluster (including the seed cell itself). It is important to keep in mind that the
clustering of seed cells is done in all directions, i.e., the significance criterion is checked for
cells even in different detector modules. As such, a resulting topo-cluster may span modules of
the same calorimeter. This effect can nicely be observed in Figure 4.1b where all of a sudden
growing cells appear without a seed cell being present in Figure 4.1a. In this case, the seed
cell is located in a different module (e.g., FCAC1). This procedure is iteratively repeated; in
case of two proto-clusters sharing the same neighboring cell, the two are merged into one
cluster. The collection of cells stops until the last set of neighboring cells with significance
above EEM

cell /σ
EM
noise,cell > P (= 0). The significance levels S,N and P have been optimized for

the ATLAS experiment and are also known as the so-called “420 scheme”. One additional step
is applied that is of particular importance for jet substructure and to avoid biases in the jet
finding algorithm – this step is referred to as cluster splitting. Generally, the aforementioned
clustering algorithm results in large topo-clusters with more that one local energy maxima
(seeds). The topo-clusters are split and the energy is shared between the resulting new clusters
based on a simple geometrical reweighting.

The output of the clustering algorithm is a three-dimensional collection of cells that can
be used as an input to any jet finding algorithm (see Chapter 4.4.2) for jet reconstruction.
However, before using those objects for the reconstruction of jets, they must be corrected to
account for the non-compensating nature of the ATLAS calorimeter. Non-compensating means
that the reconstructed energy of two different types of particles with identical initial energy
may differ, resulting in different calorimeter responses. This problem is addressed by dedicated
calibration schemes of which there are two currently available at ATLAS: the Local Cluster
Weighting (LCW) and the EM scheme – with the latter one being more common and thus
used in this analysis. Both analysis schemes are based on a classification of topo clusters as
being of electromagnetic or hadronic origin. This can be done at high efficiency by means of
shower shape variables [124].

ATLAS’ Particle-Flow (PF) Jets

During the first Run of data-taking, all hadronic jets at ATLAS have been reconstructed
from either calorimeter cluster or inner detector tracks solely. Track-based jets, to name
an application, have been used in the calculation of the soft term in the missing transverse
momentum while calorimeter-based clusters are jet object of choice for most analyses due
to ATLAS excellent calorimeter system. In the final calibration of the jet energy scale that
included the full Run 1 data set, it was found that the inclusion of track matched to the
TC-based jets considerably improved the energy resolution of the jet (see Ref. [40]). Generally,
the advantage of combining information from both detector components (inner detector and
calorimeter) can be understood by the complementary behavior of the calorimeter and the
inner tracker in terms of the energy resolution of particles: in case of low-energetic charged
particles, the large curvature of the reconstructed tracks results in a very high energy resolution
compared to the one obtained from the calorimeter; on the other hand, as the curvature (and
hence the energy resolution) of tracks reduces inversely with the momentum of the particles,
the energy resolution of the calorimeter is usually better in case of high-energetic particles.
Hence, combining information from the tracker and the calorimeter of the detector results in
an optimal resolution over a large range of energies. Furthermore, the utilization of tracks
allows for a better identification of particles that are likely to be due to underlying activity in
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the event, which is particular important for experimental setups with high luminosities.
Combining measurement information from different subsystems of the detector results in

the risk of double counting energies; there are different approaches to solve this problem such as
weighting the inputs to the algorithm accordingly. At ATLAS, [a] cell-based energy subtraction
algorithm is employed to remove overlaps between the momentum and energy measurements
made in the inner detector and calorimeters, respectively. ([40]). The individual steps of
ATLAS’ particle flow algorithm are shown in Figure 4.1. The algorithm starts from a collection

Plot 4.1: A flow chart of how the particle flow algorithm proceeds, starting with track
selection and continuing until the energy associated with the selected tracks has been
removed from the calorimeter. At the end, charged particles, topo-clusters which have
not been modified by the algorithm, and remnants of topo-clusters which have had part
of their energy removed remain[.] (the figure as well as its caption have been adopted
and modified from Ref. 40, Fig. 2, p. 10).

of tracks and calorimeter cluster cells. In order for the tracks being possible candidates, they
must fulfill certain quality criteria (see Section 6.6 in Ref. [40] and/or Chapter 9.2.1 that
introduces the track selection for this analysis). Once a suitable, well-measured collection of
jets has been selected, jets are matched to the selected calorimeter clusters by means of the
∆R metric. The next step is to estimate the expected energy deposition of the charged particle
(given by the reconstructed track) in the calorimeter of the detector, which depends on the
track’s momentum as well as on the position of the calorimeter clusters. The expected energy
deposition is mostly derived from the simulation of π± events in Monte Carlo. Internally, the
algorithm performs an hypothesis test by evaluating the probability that the energy of the
charged particle has been deposited in more than just one single topo-cluster. Depending on the
outcome of this step, more tracks and topo clusters are added until a consistent configuration
gas been found. In each step, the expected energy deposition of the charged particle is subtracted
(hence the naming convention) from the energy that was actually measured in the calorimeter.
For a more detailed explanation of the individual steps, the interested reader is referred to the
following publication in Ref. [40].

4.4.2 Jet Finding and Jet Reconstruction

For a long time, the standard jet reconstruction algorithms have been so-called cone algorithms,
based on the geometric definition of, well ..., a cone (the first jet algorithm has been developed by
Sterman and Weinberg in 1977 [125]). Even though this definition might appear straightforward,
it still allows for numerous different implementations of reconstruction algorithms. However,
with the Snowmass Accord (see Chapter 1.3.2) as guidance regarding meaningful jet definitions,
most cone algorithms seek to extremize the hadronic energy flow through a cone with a fixed
radius R, with R2 = (∆η)

2
+ (∆φ)

2, in η−φ space. According to this definition, the transverse
energy of the jet is simply given by the scalar sum of the constituent’s transverse energy within
the cone

ET =
∑

i∈{Ri<R}

ET,i, (4.1)

while the pseudorapidity and azimuthal angle of the jet is the weighted sum of the constituent’s
position in η–φ-space

η =
1

ET

∑
i∈{Ri<R}

ET,iηi, φ =
1

ET

∑
i∈{Ri<R}

ET,iφi. (4.2)
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Those very simple definitions [126] already allow to reconstruct jets.
Most cone algorithms are seed-based, e.g., the particle with the largest momentum, and

make use of an iterative procedure to successively combine particles until stable configurations
are found. Within the group of iterative cone algorithms, the most prominent methods are the
iterative cone algorithm with progressive removal (IC-PR) – which uses the hardest cell as a seed
– and the iterative cone algorithm with the split-merge procedure – where all cells above a certain
energy threshold are seeds. In contrast to iterative cone algorithms, fixed cone algorithms
use a fixed geometry around the seed direction. Although cone algorithms are comparatively
simple – or perhaps exactly for this reason –, most of them suffer a serious problem: they
are soft (IC-SM) and collinear unsafe (IC-PR) [127]. The aforementioned problem has their
origin in the seed-based approach that is used by the algorithms. Therefore, the explicitly
seedless cone algorithm, SISCone (Seedless Infrared Safe Cone [128]) was developed, which
is the only representative of its family that is infrared as well as collinear safe (see Chapter
1.3.2). The algorithm used to identify stable pseudo-jets by SIScone is rather complicated since
it involves several nested iterations and depends on several parameters. This circumstance
also makes it complex regarding the implementation of the algorithm in a computer program.
Hence, it would not be very conducive to discuss its details at this point (a description of the
complete algorithm can be found in Ref. 128, Algorithm 2, p. 12). The problems regarding cone
based algorithms were one of the main motivations for the development of so-called sequential
recombination algorithms for jet clustering, which are the subject of the next section.

The second family of jet reconstruction algorithms are the so-called sequential recombination
algorithms that have been introduced in the ’80s by the JADE collaboration [129]; hence, have
their origin in studies of e+e−-collisions at PETRA at DESY, Hamburg, Germany. Within this
class, there exists a large variety of different algorithms that are based on different assumptions
such as the splitting functions in QCD for the kt algorithm [130, 131], angular ordering for
Cambridge-Aachen [132] and collimated jet cores as used by anti-kt [133] algorithm. The first
two are especially suited for studies regarding the substructure of jets, while the latter one
is often used to study single-parton jets. Sequential recombination algorithms are inherently
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(c) Anti-kt algorithm

Plot 4.2: Jets obtained with three different sequential recombination algorithms: the
kt (left), the Cambridge-Aachen (middle) and the anti-kt algorithm (right) for small-
R(= 0.4) jets. The colored regions correspond to the reconstructed detector region of
each jet, whereby the jet area has consistently been defined using “ghosts”. The red
points scattered over the detector area correspond to “hits”. The jets obtained with the
Cambridge/Aachen and the kt algorithm show quite complex, non-circular boundaries.
The anti-kt algorithm, on the other hand, gives perfectly circular jet shapes since the
hardest constituents of the jets are clustered first.

(by construction) infrared and collinear safe. This property makes them theoretical superior
to cone based reconstruction of jets, which is why those are generally favored by theorists
and experimentalist’s alike. The problem was, however, that this class of algorithms suffered
from a poor computational performance. This issue has mostly been resolved by the efficient
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4.4. JETS

implementation of the algorithms in the widely used FastJet package [134] in C++ that is
also used by the experiments at the LHC.

Generally, the three most commonly used sequential recombination algorithms can be
summarized by the following distance metric

dij = min
(
p2p
T,i, p

2p
T,j

) ∆R2
ij

R2
, diB = p2p

T,i, (4.3)

whereby p = 1 correspond to the kt algorithm, p = 0 the C/A algorithm and p = −1 correspond
to the anti-kt algorithm.

The following short subsections provide a quick overview of the three algorithms.

The kt Algorithm

When the kt algorithm was introduced by the JADE experiment at DESY in 1993, it was
designed in accordance with studies at lepton colliders. The (modified) distance measure of
the algorithm is given by

yij =
2 min(E2

i , E
2
j )

Q2
(1− cos θij), (4.4)

whereby Q is the total energy of the event. Equation 4.4 is evaluated for each pair of particles
from which the minimum ymin is determined. If ymin below some threshold value ycut, then i and
j are recombined into a new particle (referred to as a “pseudo-jet”); afterwards the procedure
is repeated until the iteration terminates. Due to the definition according to Equation 4.4, this
algorithms favors soft particles, which results in somewhat “diffuse” shapes as can be seen in
Figure 4.2a.

In the limit θ � 1, yij is reduced to yij
θ�1
= (min(Ei, Ej)θij/Q)

2 which is the squared
normalized transverse momentum – hence the name kt algorithm. As mentioned in Section
4.4.2, the kt algorithm can be related to the splitting functions in QCD by considering
a soft and collinear branching k → ij. In this case, the differential splitting is given by
∂Ei,θijPk→ij ∼ 1/min(Ei, Ej)θij .

Equation 4.4 has been constructed with regard to the application in lepton colliders. In
hadron colliders, however, the total energy of an event is not well defined along with other
complications. An adapted version of the kt algorithm for hadron collisions is given by

dij = min
(
p2
T,i, p

2
T,j
) ∆R2

ij

R2
, diB = p2

T,i, (4.5)

with each particle being assigned to either a beam-jet (diB) or a final state-jet [135].

The Cambridge-Aachen (C/A) Algorithm

The Cambridge-Aachen algorithm uses a distant measure similar to Equation 4.4 and 4.5
along with a second distant measure defined as vij = 2(1 − cos θij). The rationale behind
this method was to combine the kt algorithm with angular ordering that is related to the
ordering in multiple gluon emissions. The actual algorithm is simple: find the pair of particles
with minimum vij and recombine those particles to a new pseudo-jet if the corresponding
condition yij < ycut is satisfied and repeat the process accordingly. As it was the case for the
kt algorithm, the Cambridge-Aachen algorithm must be modified to meet the requirements of
hadron colliders; the updated metric is given by

dij = ∆Rij/R. (4.6)

Like the kt algorithm, the Cambridge-Aachen’s approach tends to result in irregular jet
shapes as seen in Figure 11.2a. This problem is, inter alia, addressed by the next sequential
recombination algorithms – the famous and widespread anti -kt algorithm.
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The Anti-kt Algorithm

The so-called anti-kt algorithm corresponds to a parameter configuration of p = −1 in the
distance measure as stated in Equation 4.3, which results in the following expression

dij = min
(
p−2
T,i, p

−2
T,j

) R2

∆R2
ij

, diB = p−2
T,i. (4.7)

According to Equation 4.7, the anti-kt algorithm assigns a small distance to pairs involving
a hard particle. The metric is therefore mostly determined by the transverse momentum of
the hard particles in the jet as well as the angular separation. This property implies that
soft particles inside the jet get clustered with hard ones long before they have the chance
to combine among themselves. For instance, given a jet with only one high-kt constituent
and plenty of soft particles (like in case of jets initialized by gluons or light quarks), since
there is no hard neighbor present, the anti-kt algorithm just collects all activity within the jet
radius parameter R. As a consequence, the anti-kt algorithm usually results in jets with a very
circular boundary as can be seen in Figure 4.2c. Generally, the key feature of this algorithm is
the resilience of the resulting shape of the jet with respect to soft particles [136], a property
shared with the SISCone algorithm [137].

4.4.3 Jet Energy Scale Calibration
As explained in Section 4.4.1, topo-clusters are usually calibrated with the EM (EMTC) scheme
and are therefore at the electromagnetic scale, i.e., the energy of electrons and photons is
correctly reconstructed, but the energy of hadrons is not. Accordingly, jets build from calibrated
topo-clusters are at the electromagnetic energy scale themselves, which does not correspond to
the actual energy scale of the jet due to the significant fraction of hadronic showers, which
exhibit a different detector response. The purpose of the calibration of the Jet Energy Scale
(JES) is to correct for differences between the truth jet energy and the reconstructed energy as
a function of the jet energy Ejet and pseudorapidity ηjet. The entire JES calibration scheme
follows a sequence of consecutive steps of corrections that are derived from Monte Carlo
studies for the most part, but also contain adjustments from in-situ measurements where the
transverse momentum of the jet is compared with the pT of a well-defined reference object.
Each step in the calibration chain – illustrated in Figure 4.2 – yields a multiplicative (for scalar

Fig. 4.2: Correction steps of the complete JES calibration sequence for jets at the EM
energy scale. All corrections shown in the flowchart above are applied to the scalar
component of the jet four-momentum; the origin correction is (usually) not part of the
calibration chain for small-R jets [21].

four-vector components) or an additive (in case of angular components) correction ci ∈ R and
i ∈ I = {PU, JES,GSC, in− situ} to the four-vector of the jet according to

pjet = (ccalibEjet, ηjet + ∆ηcalib, φjet, c
calibmjet), (4.8)

with ccalib being the final calibration factor that is a product of the individual corrections

ccalib
R=0.4 =

∏
i∈I

ci = cPU · cJES · cGSC · cin-situ. (4.9)

It should not go unmentioned that the above-mentioned calibration scheme is specific to
so-called small-R jets with radius parameter R = 0.4 (as used in this measurement); their exists
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an expanded scheme for large-R(= 1.0) jets that accounts for the increased pile-up sensitivity
of larger jet radii.

The following paragraphs provide a quick introduction in a nutshell into the individual
steps of the JES calibration chain mentioned in Equation 4.9.

Origin correction: The first step is an origin correction of the reconstructed jet that
recalculates the four-momentum of all reconstructed jets in the event to point to the hard-
scatter primary vertex instead of the geometrical center of the detector. This operation does
not change the energy of the jet but its position. This correction is done in order to improve
the resolution of the pseudorapidity.

Pile-up correction: The subsequent step of the calibration sequence is a correction of
the transverse momentum of the reconstructed jet to mitigate the effect of energy deposits due
to particles originating from pile-up events.

This correction consists of two parts: firstly, the expected/mean contribution due to pile-up,
ρ, is estimated and subtracted from the pT of the reconstructed jet based on the jet area A
calculated using ghost particles; secondly, to remove the remaining residual dependence of the
jet’s pT on the number of primary interaction vertices NPV (a proxy for the number of pile-up
interactions in the event), a simple affine transformation Lα,β between pT and NPV is derived
and subtracted to get a flat transverse momentum as a function of pile-up interactions.

The two corrections are subtracted from the reconstructed transverse momentum of the jet
according to

pcorr
T = preco

T − ρ×A− [α× (NPV − 1) + β × µ], (4.10)

with the first term being the area-based correction and the latter two belonging to the residual
correction.

Absolute MC-based calibration: This step corrects for a variety of effects that result in
an mismeasurement of the reconstructed jet energy compared to the true energy of the initial
hadron like, for instance, dead material, leakage, out-of-calorimeter jets and energy depositions
below noise thresholds of the calorimeter. One additional obvious contribution is the deviation
from the true energy scale of the jet due to the already mentioned non-compensating nature of
the ATLAS calorimeter.

The energy of the jet is corrected based on the inverse average jet response function 〈1/REM〉
defined via

cJES :=
〈
1/REM

〉
(η,pT)

=
〈
Etruth

jet /EEM
jet

〉
(η,pT)

, (4.11)

whereby Etruth
jet denotes the energy of the particle-level jet that was matched (based on an

∆R matching criterion) to the detector-level jet EEM
jet , i.e., the reconstructed jet after detector

effects calibrated to the EM energy scale. The correction factor is a function of the transverse
momentum and the pseudorapidity of the jet to account for varying responses due to different
detector components and transition between modules.

After the correction of the jet energy scale has been applied, one obtains a mostly uniform
response.

Global sequential calibration: The previous calibration steps corrects the energy of
the jets such that it results in an response that is uniform – on average. On an event-on-event
basis, however, the calorimeter response is sensitive to features of the shower development
like the distribution of energy in the calorimeter as well as the particle content of the jet.
On average, one observes a correlation between details of the shower development and the
initializing particle that gave rise to the jet in the first place. This dependence on the shape
of the shower and the original particle is particular pronounced for quarks and gluons that
differ in terms of the number of constituents as well as the shower width due to different
color factors (see Chapter 1.2.3). Furthermore, quark-initiated jets tend to come with higher
momentum emissions since the energy of the initial quark is distributed over a smaller number
of constituents. This results in an on average deeper shower dept of quark-initiated jets
compared to those originating from gluons. These fundamental differences between quark- and
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gluon-initialized jets can be used to derive a set of (simple) discrimination variables to further
improve the resolution of the jet energy scale by means of the so-called Global Sequential
Calibration (GSC).

The GSC corrects the dependence of the jet response for the following variables in order to
reduce flavor dependence (adopted from Ref. 21, list on p. 12):

• fTile0, the fraction of energy measured in the first layer of the hadronic Tile calorimeter;

• fLAr3, the fraction of energy measured in the third layer of the electromagnetic LAr
calorimeter;

• n>1 GeV
trk , the number of tracks with ghost-associated with the jet;

• Wtrk, the average pT-weighted transverse distance in the η − φ plane between the jet
axis and all tracks with pT > 1 GeV ghost-associated to the jet;

• nµseg, the number of muon track segments ghost-associated with the jet.

This list of variables clearly expresses the above mentioned statements regarding the difference
between quark- and gluon-initialized showers into simple one-dimensional discrimination vari-
ables.

The last term, nµseg, is also known as punch-through correction. It corrects for energy
leakage when a high-pT jet is not fully contained in the calorimeter, but “punches through” it
and leaves traces in the outer muon spectrometer. This is a rare phenomenon that usually
only occurs for the most energetic jets in the central region of the detector with the smallest
radiation/absorption lengths.

For each variable listed above ζ ∈ {fTile0, fLAr3, n
>1 GeV
trk ,Wtrk, n

µ
seg} =: I, a correction

factor c(ζ) ∝ 1/〈R(ζ)〉(pT,η) is derived successively. In this case, the response R is a function of
the transverse momentum and a jet feature ζ in bins of pseudorapidity η to take into account
different detector regions. The final correction factor due to the GS calibration is then given
by cGSC =

∏
i∈I ci(p

i−1
T , ζ).

Residual in-situ calibration: Up to this step, all calibration corrections are based solely
on Monte Carlo that aim to bring the EM jet energy scale to particle level. The fact that all
correction factors being derived from Monte Carlo involves the danger of biasing the adjusted
result towards mismodelings present in the simulations since MC – undoubtedly – does not
provide a perfect representation of data. To address this problem, a series of in-situ (meaning:
“Occurring or situated in its local or natural environment, or at the locality in question” [138])
validation techniques is applied in which the calibrated transverse momentum of the jet is
compared to the pT of a well-defined, -measured reference object in data.

The in-situ correction is based on a double-ratio of the transverse momentum measured in
data and MC according to

1

cin−situ
=
Rin−situ

data

Rin−situ
MC

=
〈pjet

T /pref
T 〉data

〈pjet
T /pref

T 〉MC

, (4.12)

whereby pref
T denotes the transverse momentum of the balanced reference object in data and

MC, respectively.
The in-situ calibration is sub-divided into three corrections: η-intercalibration, Z/γ+jet and

MultiJet Balance (MJB), all three of which are briefly introduced in the following paragraphs.
The η-intercalibration uses well-measured and well-calibrate jets in the (very) central region

of the detector with a pseudorapidity of |η| < 0.8 to derive a residual calibration for jets in the
forward region for jets with 0.8 < |η| < 4.5. The pT balance is quantified by the asymmetry
A = (pprobe

T − pref
T )/pavg

T , with pprobe
T belonging to the forward jet, and relative jet response is

computed accordingly
〈
pprobe

T /pref
T

〉
≈ (2 + 〈A〉)/(2− 〈A〉).

The Z + jet and γ + jet balance method allows for the calibration of jets up to a transverse
momentum of 950 GeV in the central region of the detector (|η| < 0.8) based on measurement
of well-measured leptons and photons through Z → e+e− and Z → µ+µ−. The reason for
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restricting this calibration method to the central region of the detector is the statistical limita-
tion of those events.

The multijet balance forms the last step of the in-situ calibration and serves the pur-
pose of extending the calibration to an transverse momentum of 2 TeV. In this correction,
events with at least three jets are selected with one jet being of “large” transverse momen-
tum (pT > 950 GeV) that is balanced against system consisting of several lower-pT jets.
The transverse momentum of the individual lower-pT recoiling jets must be adequately to
be in the regime of the Z/γ+jet calibration to ensure that only fully calibrated objects are used.

Flavor-related uncertainties: The flavor composition uncertainty accounts for differences
in the response for quark Rq and gluon Rg jets, with Rq and Rg being the responses as
“measured” in Pythia. This difference is, as already stated, a consequence of the quark and the
gluon being different representations of the SU(3) symmetry group of QCD, which results in
different couplings and hence different phenomenology regarding their showers. Generally, the
fraction of quark-initialized jets in a sample is much better determined due to constraints from
measurements at LEP, which have been used to tune the Pythia event generator (“including
flavor-dependent fragmentation measurements” [139]). Given the uncertainty σfg on the fraction
of gluon-initialized jets in a sample fg (the corresponding uncertainty on the quark fraction fq
is negligible due to σfg � σfq ), the uncertainty of the Flavor Composition (FC) is given by

σFC = σfg
|Rq −Rg|

fgRg + (1− fg)Rq
. (4.13)

As one can see, this uncertainty is directly proportional to the residual in the response and the
uncertainty on the gluon fraction [45].

The flavor response uncertainty is the second flavor-related uncertainty; it accounts for
the fact that while most of the commonly used Monte Carlo generators exhibit a good level
of agreement regarding the modeling of the quark response Rq, they differ “considerably”
concerning the response of gluon-initialized jets Rg. This is of course due to the already
described circumstance that most MC generators on the market incorporated LEP constraints
into their tunes – for gluon jets, those constraints are statistically quite limited4. Consequently,
this uncertainty is defined (due to the absence of alternatives) by the direct comparison of the
gluon response Rg between two Monte Carlo generators

σresp = fg
(
RPythia
g −RHerwig

g

)
. (4.14)

4.4.4 Charged Particle Jets

Jets build from topological clusters contain both: contributions from charged and neutral parti-
cles. This has the advantage of taking all constituents of the jets into account and hence allows
to reconstruct the full four-momentum of the particle that initialized the jet. Furthermore, it
permits analytic calculations of jet-related observables. The downside of using jets solely build
from calorimeter information is the significantly worse spatial resolution compared to the inner
part of the Detector. For this reason, jets exclusively build from topo-clusters are usually not
suitable for jet substructure measurements (like this one) – or only to a very limited extent.
To address this limitation, tracking information must be taken into account to allow for better
resolution of the individual constituents inside a jet. There are two main approaches:

Track jets: Track jets are jets directly build from reconstructed tracks in the inner de-
tector. This means, instead of topo-clusters, tracks are used in the jet finding algorithm to

4This can easily be understood by recalling that in a e+e−-collider with a centre-of-mass energy close to
the Z mass resonance (like LEP(II)), the cross section for e+e− → Z∗ → qq̄ is very large. To obtain a signature
of a gluon in the final state, needs at least three jets in the final state e+e− → Z∗ → qq̄g. Since this is a NLO
process, the rate of gluon jets is suppressed roughly by a factor of αS(MZ), resulting in approximately two
OOM less gluon jets compared to quarks.
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reconstruct jets; the result might be, for instance, an anti-kt R = 0.4 track jet. Since their isn’t
any calibration scheme for track jets available at ATLAS, those types of jets are usually not
used in measurements since no energy-scale-related uncertainties exists. They are, however,
commonly used in jet flavor tagging applications where the tagger’s decision is based on detailed
substructure information of the jet. Since taggers usually are calibrated to data directly, the
aforementioned lack of a calibration scheme for track jets does not pose a problem.

“Jet-associated tracks” : To avoid the above-mentioned problem involving track jets, one can
instead use the set of tracks that are associated to a jet that has been reconstructed using, e.g.,
calo-clusters or PFlow Objecs (PFOs) as an input. As described in the previous section, jets
build from topo-clusters are fully calibrated for jets with R = 0.4 and R = 1.0, respectively.
After the tracks are associated to the jets based on a criterion to be specified in the next
paragraph, the jet is reclustered using the matched tracks only and discarding the PFOs for
good5. This approach usually results in very different jets compared to those obtained directly
build from tracks and therefore excluding all neutral particles in the first place. One should
take note, however, that track jets (as described above) usually contain more information
about the substructure of a jet compared to associated track jets. Consider, for instance, the
following process gg → tt̄ → bW+(→ qq̄) b̄W−(→ q′q̄′′) with the decay products of the W
bosons being highly boosted. In case of topo-cluster jets, it’s likely for the remnants of the W
to be reconstructed in one single jet; for track jets, however, the higher angular resolution of
the ID still allows to distinguish between the two jets. The track-to-jet association is usually
done using ghost- or ∆R-association, which will be explained in the following paragraph.

The concept of a ghost particle was first introduced in an attempt to provide a meaningful
definition of the “area“ or (constituent) “catchment area” of a jet by “[...] adding a dense
coverage of infinitely soft ‘ghosts’ and counting how many are clustered inside a given jet[.]”
[136]. This sounds somewhat cumbersome, but it results in a well-defined notion of a jet area
contrary to just using point-like constituents. Ghost-track association adopts this idea and
utilizes it for track-to-jet association. In this association scheme, the momenta of all tracks
in the event are temporarily set “infinitesimally” small – they can not be simply set to zero
otherwise they are not clustered – prior to the application of the jet finding algorithm. After
this step, jets are reconstructed, using topo-clusters and the infinitesimally small-pT tracks,
applying the desired jet finder. This may result in pure ghost-jets artifacts with infinitesimally
small pT that are discarded. After this step, all tracks inside the catchment area are taken to
be associated to the respective jet.

An alternative approach to the ghost-based method would be a simple ∆R matching scheme
with respect to the jet axis. However, the ∆R-cone-based track association fails to provide
meaningful jets for recombination algorithms, which result in highly irregular jet areas, e.g.,
for C/A or kt (see Figure 4.2).

4.5 Missing Transverse Energy Emiss
T

At hadron colliders like the LHC, the full momentum p of the initial partons that participate
in the hard interaction is fundamentally inaccessible on an event-on-event basis as it is subject
to statistical fluctuations according to the parton density functions. This implies that the
initial state of the interaction is unknown. The three-momentum of the hadron, however, can
be decomposed into a component transverse, i.e., perpendicular pT and longitudinal p‖ to
the direction of motion along the beam line p = pT + p‖. Since the colliding protons move
at almost the speed of light, the proton can (to good approximation) be described in the
so-called “infinite momentum“ or “Breit” frame, in which the particle mass can be neglected.
Furthermore, the transverse component of the proton and its parton constituents is completely
negligible compared to the longitudinal part. If the transverse momentum pT vanishes in the

5This is not exactly what is done in this measurement. In this measurement, PFlow-based jets as well as
tracks matched to the former ones enter the calculation of the triple-differential multijet cross section. The set
of matched tracks is used to compute the jet substructure variable, while the PFlow-based jets are used to
reconstruct the transverse momentum as well as the relative pseudorapidity.
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T

initial state, the same must – of course – apply to the final state as well. This implies that
the total sum of all final state particles’ transverse momentum in the event must balance in
order for the initial condition

∑
i pT,i = 0 to be fulfilled. In practice, however, not all final

state particles are reconstructed in the detector either because, e.g., their energy is too low to
be detected, or, their interaction probability is very low as it is the case for neutrinos or for
hypothetical particles extending the Standard Model. Therefore, the total three-momentum
can be written as

∑
i pT,i =

∑
k p

inv
T,k +

∑
j p

vis
T,j = 0, whereby pvis

T,j denotes the total (visible)
momentum of the reconstructed particles and pinv

T,k being the contribution not reconstructed
(non-visible) in the detector. Summarizing the non-reconstructed part of the total transverse
momentum Emiss

T :=
∣∣∣∑k p

inv
T,k

∣∣∣, the missing transverse energy (or equivalently the missing
transverse momentum) is given by

Emiss
T = −

∣∣∣∑
j
pvis

T,j

∣∣∣ . (4.15)

The actual reconstruction of the missing transverse momentum is more complicated as one
might expect from Equation 4.15. At ATLAS, Emiss

T characterized by two main contributions:
firstly, a so-called hard term that is calculated based on fully reconstructed and calibrated
objects (leptons, photons and jets); secondly, a corresponding soft term summarizing signals
not associated with any of the aforementioned hard objects – Emiss

T = Emiss,hard
T + Emiss,soft

T .
The soft term is a significant contribution toä the total Emiss

T and it needs to be reconstructed
separately. Usually, the soft part is reconstructed from Inner Detector tracks that are associated
to the primary vertex in the event, but are not connected with any of the hard objects.
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5. Detector Unfolding1

Up to this point, the selection of chapters in this thesis represented a common workflow in
particle physics starting with a (mathematical/quantitative) theory (Chapter 1) that is used
to derive predictions by means of analytic calculations or MC simulation (Chapter 2) that can
be compared to measurements in an experiment (Chapter 3) from which physical observables
are derived (Chapter 4).

There is one step missing in this line of thought (besides the actual analysis idea of
course): the observables reconstructed from measurements usually depend on the conditions
the experiment has been performed. For instance, the cross section of a physical process is
a detector-independent quantity that is (among other things) related to the total number of
observed events in an particular experiment. In general, the measurement with the detector
will distort particle properties which is why one usually distinguish between Particle-Level (PL)
objects and Detector-Level (DL) objects. In order to make consistent comparisons to theory,
the measured observables must be corrected for detector effects; this procedure is referred to as
(detector) unfolding. After unfolding, the measured quantities are at PL, which not only allows
for a direct comparison to theory (provided that the given observable is IRC-safe), but also to
other results obtained from other experiments that have been corrected for detector effects.

5.1 Basic Concepts

Our picture of the underlying material reality surrounding us is invariably clouded due to the
limiting precision of imperfect measuring apparatuses that lead to a distorted perception of the
hidden “truth” similar to a view through gloomy glasses (this also includes our organs of percep-
tion of course). In physics – like in empirical sciences in general –, this discrepancy between the
actual form of an entity to be examined and the representation of the object that manifest in
the experiment must be taken into account when deriving general statements concerning reality
based on observations or measurements. The reasons for this blurred image of nature are
manifold ... ranging from limited technical precision of our experimental equipment, to known
(and unknown) phenomena that affect the measurement, to absolutely fundamental limitations
regarding our insight into the properties of most elementary constituents of material being (not
to mention mental or holistic characteristics of, e.g., consciousness, love, friendship, beauty
etc., which a priory withstand any gain of insight based on natural scientific approaches).

A simple example would be distortion of the light of the distant star on its way through the
earth’s atmosphere thence the light gets scattered which reduces the resolution on ground-based
telescopes.

In case of elementary particle physics, experimental measurements are typically based on
counting the occurrence of different categories of processes (commonly referred to as events),
which can be used to determine, for instance, the cross section of a certain mechanism of
interest given the luminosity of the accelerator. Depending on the researcher’s interest and
research goals, the measurement is further confined to specific phase space regions (usually
referred to as bins); for each measurement bin, the number of events is counted after selection
cuts have been applied to increase the purity of the specific process of interest. The measurand

1This chapter may safely be skipped provided that the reader is already familiar with the basic concepts of
detector unfolding.
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in this case is the event count, and there will be a disagreement between the expected number
of events and (if there is a theoretical model available) the expected ones. The origin of this
discrepancy can be reduced to the following three categories of effects (adapted from Ref.
[140]): detector effects, statistical fluctuations and contamination due to background processes.
Detector effects summarize differences between expected and observed distributions due to our
incomplete knowledge of the measuring devices as a whole. A concrete example (which is quite
relevant for the analysis presented in this thesis) is the imperfect reconstruction of the energy
of a jet due to inactive material in the detector that causes the jet to be reconstructed in a
wrong phase space bin. Those migrations between different phase space regions give rise to
fake events that bias the cross section.

Since cross section measurements are based on statistically independent counting experi-
ments, the observed number of events is expected to follow a Poisson distribution and hence
accompanied by a statistical uncertainty that is given by the square root of the number of
counted events. This uncertainty can be reduced by increasing the Luminosity (increase
probability for interaction of the process of interest), by collecting more data over time or by
combining several measurements – in summary: increase the number of events.

Last but not least, it is impossible to define perfectly pure regions of a specific process in
phase space, fundamentally, due quantum mechanical indistinguishability and, experimentally,
simply because of limited resolution and the therein resulting ambiguity of kinematic configu-
rations. Furthermore, the estimation of background processes contribution to the total event
count in one phase space bin may be inaccurate due to limited precision in the calculation of
the event rate of the respective process or unknown phenomena contributing without being
accounted for.

All of the aforementioned effects will result in the measured spectrum g of an observable
ODL (whereby “DL” is an abbreviation for Detector Level) to differ from the Particle Level
(PL) distribution f with OPL one would expect in case of an ideal detector with infinite event
statistics and perfectly pure process samples. This makes the comparison and interpretation
of measurements complicated since one assumed truth is associated to several experimental
outcomes each one supposed to be a representative of the same underlying object. For this
reason, one usually applies a correction to the measured observable in order to account for
effects that cause the DL and the PL distribution to disagree. This procedure, which aims to
map the observed measurement (which depends on the experimental conditions) to the truth
one, is generally referred to as (detector) unfolding.

Mathematically, unfolding is formulated based on a Fredholm integral equation that relates
the probability distribution over a PL observable f(OPL) to the corresponding DL distribution
g(ODL) through the convolution with a kernel function K(ODL,OPL) according to

g(ODL) =

∫
supp(f)

dOPL f(OPL)K(ODL,OPL), (5.1)

whereby the integration volume denotes the support, i.e., supp(f) := {OPL ∈ X | f(OPL) 6= 0}
of the density function f .

In particle physics, the probability densities f, g are usually one-dimensional distributions
over real numbers OPL/DL ∈ R that are approximated by discrete histograms with an expected
number of events νi (notation adopted from Ref. [41]) in the compact subset Ugi ⊂ supp(g)

νi =

∫
Ugi

dODL g(ODL), (5.2)

with
⋃N
i=1 U

g
i ⊆ supp(g) whereby N ∈ N denotes the number of bins. Similarly, the truth

distribution is discretized over the set {Ufi ⊂ supp(g) | ⋃Mi=1 U
f
i ⊆ supp(f) ∧ Ufi ∩ Ufj =

∅ with i 6= j } with M ∈ N denoting the number of bins of the truth-related histogram(s) with
an expected number of events

µj =

∫
Ufj

dOPL f(OPL). (5.3)

Consequently, the kernel function in Equation 5.1 is discretized too and approximated by a
matrix R with R ∈ RN × RM henceforth referred to as response matrix. Properly normalized,
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the response matrix R(i, j) =: Rij gives the probability to reconstruct an event with the truth
value µj in phase space bin j as νi in bin i, i.e., for i 6= j there are migrations between regions
of phase space, for instance, due to incorrect energy measurements.

After approximating the probability densities f, g by means of histograms and describing
the originally continuous kernel function K by a finite matrix with appropriate dimensionality,
the Fredholm integral Equation 5.1 can be expressed in terms of a simple system of linear
equations

νi =

M∑
j=1

Rijµj + βi, (5.4)

which can be compactly written as a matrix equation ν = Rµ+ β. The term βi was added to
account for the contributions of background events in the ith bin of the measurement.

In the (very) rare cases in which the PDF of the true distribution f is known analytically,
the response matrix can be directly calculated provided that the integral function of f is well
defined. Most of the time, however, the response matrix is derived from detailed simulations
based on Monte Carlo methods that aim to mimic the experimental conditions as close as
possible to account for effects not directly covered by uncertainties such as, e.g., dead material.

5.1.1 Construction of the Response Matrix

As outlined in Section 5.1, the response matrix encodes correlations between objects at PL and
DL. Properly normalized, it corresponds to the probability to reconstruct the truth-value µj in
phase space bin j as νi in bin i. Due to the limited resolution of all measuring apparatuses,
missing information of the event may result in (potentially significant) migrations (i 6= j)
between different regions of phase space, which in turn give rise to large off-diagonal elements
in the response matrix. Since the size of systematic uncertainties is (roughly) proportional to
the magnitude of the non-diagonal entries of the response matrix, the measurement should
be constructed with the aspiration to obtain response matrices being as diagonal as possible;
usually, the decisive factors that control the fraction of elements on the diagonal are the objects
being used to reconstruct the observable of interest (for instance topoclusters versus tracks) as
well as the binning of the phase space.

To construct the response matrix, the object of interest, e.g., a jet, must be reconstructed
at PL as well as at DL. If this is not the case, the event does not contribute to the response
matrix (because there is no jet to correlate with), but it affects the so-called efficiency or
fake factor depending on whether the PL or the DL object fails the event selection. The
reconstruction efficiency as well as the fake rate are the topic of the following section.

Subsequently, both object must be matched to each other in order to get a one-to-one
mapping between particle and detector level. This matching scheme (in case of jets, the ∆R
or ghost-matching scheme are common choices) should be as efficient as possible to avoid
biases and a dependence on the respective matching scheme. Once the assignment has been
established, the observables (with reference to the (differential) cross section) is measured can
be calculated at PL and at DL, which is the information that enters the response matrix.

5.1.2 Efficiency and Fake Factors

The response matrix corresponds to the correlation between the observable(s) measured at PL
and DL. In order to construct the response matrix, there must be a well-defined one-to-one
correspondence between an object reconstructed at particle level and a corresponding one at
detector level. This matching scheme, however, is not unique, and different assignment criteria
may result in different response matrices. However, for each mapping scheme, it may happen
that no suitable candidate at PL or DL is found. For instance: the limited resolution in some
regions of the detector may result in a significant underestimation of the actual jet energy,
giving rise to migrations into different regions of phase space2, which may fall outside of the

2For the sake of completeness, it should be mentioned that particle- and detector-level objects are elements
of two different spaces that are at most isomorphic to each other.
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phase space volume defined by the selection criteria of the respective analysis. In this case,
the event/jet can not be used to populate the response matrix as there is no correlative at PL
and/or DL to correlate to. This situation is schematically illustrated in Figure 5.1. In Figure

Ω

Ω

Fig. 5.1: Schematic illustration of the phase space volume of the measurement and some
elements of truth- and reco-level objects. For O(1), PD and DL are close to each other
and within the PS such that they can uniquely be matched; for O(2), both are inside
of the volume and the event is not filled in the response matrix; O(3), causes a loss in
efficiency, and O(4) causing fakes.

5.1, the reconstructed observable O(i)
PL/DL for event number i at PL and DL, respectively, both

fall into the active phase space volume defined by the selection and hence can be matched to
each other to populate the response matrix. In case of event j and k, however, the measured
value of the observable at DL O(j)

DL (or at PL O(k)
PL) fail the selection criteria. Of course, it also

happens that neither PL nor DL object are outside of the phase space boundary; those events,
however, are not considered to be of interest for the analysis.

Events for which no corresponding matching partner (either at PL or DL) exists can not
simply be ignored as those effects are subject to modeling differences between different Monte
Carlo generators and hence play an important role for the model-related uncertainties of the
measured cross section. Furthermore, the cross section would get under- or overestimated.

In the following, a distinction has to be made between, firstly, events for which the observable
at PL lies within the phase space volume while the corresponding object at DL does not pass
the event selection, and, secondly, vice versa.

The former scenario results in a loss in efficiency because the event should enter the
measurement as the truth-level object passes the selection. Mathematically, this effect is
described by the efficiency factor according to

εeff =
NDL∧PL

NPL
, (5.5)

whereby NDL∧PL denotes the number of events that pass the selection at DL and PL and NPL

being the total number of PL events that pass the truth-level selection.
Similarly, the latter one corresponds to the situation where the event is not supposed to

enter the active measurement volume, but due to migrations, the event is incorrectly accounted
for at DL. Those events are referred to as fakes because detector inefficiencies “fake” an event
which actually is supposed to be rejected by the selection. Thus, the corresponding variable
quantifying the amount of falsely counted events is referred to as fake factor defined as

εfake =
NPL∧DL

NDL
, (5.6)

with NDL being the total number of events passing the selection at DL.
Since both, efficiency (see Equation 5.5) and fake (see Equation 5.6) factor, affect the
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number of counted events, the final (triple-differential) cross section must be corrected for those
effects. Furthermore, because the reconstruction efficiency as well as the fake rate are derived
from simulation, they are sensitive to modeling effects of different Monte Carlo generators
and therefore must be taking into account in the model-related uncertainties (this topic will
be discussed in great detail later in Chapter 10 when all sources of statistical and systematic
uncertainties are discussed).

Finally, given the response matrix R, the efficiency factor εeff and fake factor εfake, the
corrected number of events at DL is given by

NPL
i =

∑
j

N j
DL

([
R−1

])PL,i

DL,j
· εfake,j

εeff,i
, (5.7)

whereby the sum runs over all phase space bins. In Equation 5.7,
([
R−1

])PL,i

DL,j
corresponds to

the (i, j)th element of the inverted response matrix R. Regarding the inversion of the response
matrix, different methods are available, which are subject of the upcoming section of this
chapter.

5.2 Unfolding Methods
Equation 5.4 suggests a “simple” inversion of the response matrix, which is then applied to the
measurement at DL to obtain the corresponding spectrum at PL. However, the “naive” inversion
of the response matrix may lead to undesired behavior as shown by the often cited (and just as
often misunderstood) example in Figure 5.1. The approach to the unfolding problem can also be

(a) True (b) Expected/measured (c) Unfolded

Plot 5.1: Illustration of possible “problems” of the unfolding procedure. The figures
show the underlying truth distributions (left), the expected (solid line) and the ob-
served/measured (dashed line) distribution (middle), as well as the unfolded result
(right) (the figures have been adopted and modified from Ref. 41, Fig. 4 p. 5).

thought of as the maximum likelihood solution, which therefore provides an unbiased estimator
with the smallest variance possible. However, it may cause some unwanted side effects. This is
shown in Figure 5.1. The leftmost figure shows a double-peaked true distribution; the solid line
in Figure 5.1b corresponds to the folded truth-level distribution with the dashed line being the
data that was sampled according to a Poisson distribution. Finally, the rightmost figure shows
the unfolded result. Obviously, the unfolded result in Figure 5.1a looks quite different than
the one expected from Figure 5.1a, which was supposed to be recovered. The reason for this
apparent “failure” of the method is due to the presence of considerable fraction of non-diagonal
elements in the response matrix, which may occur if, e.g., the chosen binning of distributions
does not account for the limited resolution of the detector. In this case, significant migrations
are the consequence. The large fluctuations that can be observed in Figure 5.1c follow from
the inverted response matrix that is applied to an instance vector of the data instead of the
expectation value it was derived from. In the later case, the unfolding procedure recovers the
correct truth value; fluctuations in the data, however, are magnified due to large correlations
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present between bins. It is very important to note that the unfolded spectrum is not wrong –
it just isn’t desirable because the resulting distribution is not smooth and does not look like
the one expected at truth level. Furthermore, the simple inversion approach does not allow
for different binning choices at PL and DL, but limits the family response matrices to square
matrices. The objective of alternative unfolding methods is therefore to find a reasonable
compromise between a bias (which is not present in the simple matrix-inversion method as
the estimator is unbiased) and the smoothness of the final unfolded distributions. A quick
summary for common unfolding methods is shown in this section [41].

The smoothing of the unfolded distribution is archived by applying a regularization scheme.
In the likelihood formulation of the unfolding problem (the estimator according to Equation
5.4 can be considered as the solution to a likelihood function L(µ) with ∂µi logL(µi) = 0),
regularization can be thought of as an additional term S(µ) to the (log-)likelihood logL(µ) +
λS(µ), whereby λ ∈ R denotes to regularization parameter that controls the strength of the
additional constrain and therefore can be interpreted in terms of a Lagrange multiplier. The
concrete form of the regularization function S(µ) is subject of the respective regularization
schemes. The following list contains a brief summary of regularization schemes commonly used
in particle physics (quoted almost verbatim from the following, excellent Reference [41] by
Francesco Spanó): Tikhonov schemes, Maximum-entropy schemes, the family of Non-iterative
Bayes-inspired schemes, Iterative unbinned schemes, using event-by-event weights etc.

The family of iterative schemes was not mentioned above since it is used to unfolding the
triple-differential cross section measurement presented in this thesis and therefore deserves a
little more detailed treatment.

The unfolding scheme used for this analysis (following the official recommendations of the
ATLAS collaboration) is based on a method that was introduced in 1994 by G. D’Agostini
and is commonly referred to as (iterative) Bayesian unfolding [141]. As the name already
insinuates, D’Agostini’s unfolding method is based on Bayes’ theorem. In this picture, the
smearing over a reconstructed observable at detector level ODL is interpreted as a conditioned
probability distribution P (ODL|OPL) given the truth value of the observable OPL. In an
ideal detector, this probability distribution would correspond to the Dirac delta distribution
δ(ODL −OPL). Correspondingly, there is a conditioned distribution P (OPL|ODL). The two
conditioned probability distributions, P (OPL|ODL) and P (ODL|OPL), are related by Bayes’
theorem according to

P (OPL
i |ODL

j ) =
P (ODL

j |OPL
i )P0

(
OPL
i

)∑
k P (ODL

j |OPL
k )P0(OPL

k )
, (5.8)

with P0(OPL
k ) denoting the prior over the truth values. The information of the conditioned

distribution P (ODL|OPL) is basically given by the response matrix that is derived in simulation
using Monte Carlo. The objective of the iterative Bayesian approach is to (approximately)
solve Equation 5.8 to obtain P (OPL

i |ODL
j ), i.e., the distribution over the observable at PL given

a measurement at DL. Given the solution to Equation 5.8, the unfolding problem according to
Equation 5.7 can be written as

NPL
i =

∑
j

P (ODL
j )P (OPL

i |ODL
j ) · εfake,j

εeff,i
. (5.9)

Equation 5.8 can be applied iteratively whereby the prior distribution is updated after each
iteration. Each iteration corresponds to a regularization of the resulting response matrix;
therefore, the number of iteration is a crucial parameter of the method that allows to balance
variance and the bias of the resulting estimator. In practice, the number of iterations is
determined based on the configuration that results in the smallest total uncertainty of the
measurement.
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6. Machine Learning1,2

Leaving particle physics aside for a moment, this chapter is supposed to provide a brief yet
substantial introduction into the broad area of machine learning with an emphasis on deep
neural networks. In the context of the measurement(s) presented in this report, machine
learning is used to train a binary classifier with the objective to discriminate between quark-
and gluon-initialized jets. The score predicted by the neural networks zNN is then used as
an (one-dimensional) jet substructure observable, with regard to which the triple-differential
multijet cross section is measured and unfolded to correct for detector-related effects (see
Chapter 5). This approach differs from the most common application of machine learning
within the context of high-energy particle physics, i.e., the utilization as a classifier model that
is used to discriminate between signal and background processes for, e.g., particle searches.
Nonetheless, all models used in this analysis are trained in a similar fashion to ordinary classifier
networks, that is, they are optimized regarding their discrimination power between showers
originating from (light) quarks and gluons, respectively.

The neural networks that are used to assign a score to each jet are based on the “Deep
Sets” architecture, which allows to constrain the function learned/approximated by the neural
network to be permutation invariant, i.e., the prediction of the model does not depend on
the arbitrary ordering scheme imposed on the input arguments. Limiting the set of models
to functions over sets that are permutation invariant and allow for variable-length inputs is
attractive because it naturally respects symmetries commonly associated with jets. For instance,
the number of emissions inside of a jet is a stochastic process that (within statistical physical
laws) varying from jet to jet; hence, the model should not be limited to a certain number of
constituents. Furthermore, the jet is a phenomenological object of underlying QCD-related
processes that is determined by its final state configuration. To “account” for quantum-
mechanical indistinguishability, the probability assigned to each jet should be agnostic with
respect to the arbitrary ordering imposed on the constituents. Besides the physics’ motivation,
the permutation, variable-length parameterization of the model is interesting as it improves
training stability and opens a complete new space of functions that can be approximated by
means of a neural network.

Regarding the structure of this chapter, the first section (6.1) serves as a description as
well as a recapitulation of the historical development of neural networks and machine learning –
from its modest beginnings in the mid-twentieth of the previous century to the highly complex,
state-of-the-art models that are in the focus of today’s research. By doing so, the section is
limited to “milestones” (according to the author’s subjective opinion) that caused a significant
step forward in the area of machine learning or even – to cite the words of the physicist and
philosopher Thomas S. Kuhn [142] –, a change of paradigm. Following the historical overview,
the fundamental principle behind artificial neural networks and the feed-forward (6.2) topology
are introduced. Now, equipped with a basic understanding of the fundamental concepts behind
neural networks, the next section (6.3) introduces the aforementioned “Deep Sets” architecture
that allows to learn permutation agnostic functions. This section is limited to the key essential

1Essential parts of the succeeding text passages have been adopted (almost) literally from my Master’s thesis
“Towards a Data-Driven Simulation of QCD Radiation with Generative Models utilizing Machine Learning
Methods”, 2019, Universität Heidelberg, Christof Sauer [49].

2This chapter may safely be skipped provided that the reader is already familiar with the basic concepts of
machine learining.
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aspects of the “Deep Sets” architecture/parameterization, with the concrete application in the
context of this measurement being subject to an subsequent chapter. Following the introduction
of the model, the next section (6.4) covers more technical aspects that are important when
working with machine-learning approaches like, e.g., the definition of the loss function or the
update of the model’s parameters by means of gradient descent and the backpropagation
algorithm.

6.1 A Brief History of Neural Networks

The highly advanced and complex computer models, which more and more find their way
into the daily life of modern societies, come with a long and rich history that goes back even
further than the appearance of the very first computers – at least conceptually. The principle
idea is/was to model the functionality of the (human) brain with its enormous amount of
interconnections between individual neurons and the activation potential within these cells.
The growing understanding of neurobiology and the processes that govern the human brain
in the last three centuries therefore greatly influenced the early concepts of artificial neural
networks .

At the beginning of the eighteenth century, biologists and physicists alike studied the effect of
electricity on the nervous system. The Italian naturalist Luigi Galvani [143] first demonstrated
the presence of electrical currents in animal tissues. Later in 1871, Julius Bernstein, with
the help of Emil du Bois-Reymond, deepened the knowledge of the processes in the nervous
system with his “Membrane Theory of Electrical Potentials” [144], which is considered to be
the first description of the action potential. Shortly thereafter, the Spanish neuroscientist and
pathologist Santiago Ramón y Cajal [145] reported the first detailed anatomy of the nervous
system, which later inspired scientists to adopt and apply those novel insights to mathematical
and computer models.

The idea to model the functionality of the brain with its interconnections of neurons –
a term that was first introduced by Heinrich W. G. von Waldeyer-Hartz [146] – and hence
the beginning of artificial neural networks is often taken to be the research article “A Logical
Calculus of Ideas Immanent in Nervous Activity” of Warren McCulloch and Walter Pitts in
1943 [147]. With the starting gun being fired, it did not take long until the concepts introduced
by McCulloch and Pits received the attention of the scientific community. The ’40s of the
previous century also had a profound influence on brain theory, whereby special emphasis
should be placed on Donald Hebb’s “Organization of Behavior: A Neuropsychological Theory”
in particular the therein introduced “[.] Neurophysiological Postulate” (also known as Hebb’s
rule) that describes the pre-post synaptic enhancement that is essential for the process of
“learning” [148]. This concept was then translated to the artificial McCulloch-Pitts neuron
by weighting each input. The gathered knowledge in neurobiology and the (at this time)
hypothetical neural network models can be considered as important preparation work for the
fast development of the field in the 1950s that was driven by the advancement of computers
with increased computational power as well as significantly increased memory capacities.

The discoveries and scientific research by Warren McCulloch and Walter Pitts, Hebbs et
al. culminated in Frank Rosenblatt’s perceptron in 1962, which can be considered as the first
artificial neural network in a modern sense. Frank Rosenblatt introduced the perceptron in
his famous book “Principles of Neurodynamics” [149]. The perceptron is a very simple model
that consists of a fixed number of inputs {x1, x2, . . . xn} (Rosenblatt only used five at the time)
that each one being weighted with a real number {w1, w2, . . . wn} and resulting a weighted
input {w1x1, w2x2, . . . wnxn} with xk, wk ∈ R to the node (artificial neuron) where the inputs
are finally added together

∑n
k=1 wkxk. Inspired by McCulloch and Pits’ work, the artificial

neuron had a binary activation according to the threshold value θ ∈ R with σ(x) = Θ(x− θ),
where Θ is the Heaviside step function.

This simple model introduced by Rosenblatt was already quite successful; though, it was
limited to a restricted family of functions it was able to approximate. For example, Rosenblatt
perceptron is incapable representing a simple logical XOR (eXclusive-OR) or XNOR (eXclusive-
NOR) gate due to its limitation to only learn a single, linear decision boundary. Rosenblatt was
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not aware of these limitations; he – overly enthusiastically – proclaimed: “Given an elementary
[..]perceptron, a stimulus world W , and any classification C(W ) for which a solution exists; let
all stimuli in W occur in any sequence, provided that each stimulus must reoccur in a finite time;
then beginning from an arbitrary initial state, an error correction procedure will always yield a
solution to C(W ) in a finite time [. . . ]” [149]. This initial elation caused the machine learning
community to completely exaggerate the potential and applicability of neural networks at that
time – disappointment and disillusionment was the consequence. In 1969, seven years after
Rosenblatt’s publication, however, Marvin Minsky and Seymour Papert published the essay
“An Introduction to Computational Geometry” [150], which drew the attention to the inherent
limitations of the perceptron and its restrictions to only learn linearly separable functions
(the aforementioned XOR and XNOR gate is a simple example for a non-linearly separable
function). The paper by Minsky and Papert had put the breaks on the initial euphoria of the
novel method introduced by Rosenblatt and almost caused a complete standstill of research in
the area until the beginning of the ’80s.

After the initial hype in the ’60s, the discipline of neural networks fell into a deep sleep. It
was not until the year 1982, that the area awoke from the dark ages; rose out of the ashes of its
eventful past in manifold dazzling colors, like the phoenix or the Egyptian Bennu. The age of
machine learning is yet to come – for the better or the worse remains to be seen3. The person
triggering the renaissance of neural networks was the American physicist John Hopfield of
Caltech. In his directive essay “Neural networks and physical systems with emergent collective
computational abilities” [151], he provided a structured and systematic analysis of the potential
as well as the limitations of a neural network at that time. In 1985, he, Hopfield, in cooperation
with D. W. Tank published another important paper: “ ‘Neural’ computation of decisions in
optimization problems” [152].

The ’80s mark a turning point and a rapid development of the field of machine learning
boosted by the essay of Hopfield and the political circumstances of the cold war and the fear of
the USA to be outperformed by other countries in this promising technology, the development
in machine learning accelerated rapidly. In 1986 another method experienced its revival: a
process called backpropagation. The backpropagation (automatic differentiation) algorithm was
first introduced by Seppo Linnainmaa in 1970 [153]; however, the method was not appreciated
until the year 1986 when David Rumelhart, Geoffrey Hinton, and Ronald Williams published a
paper that used “[l]earning representations by back-propagating errors” [154]. This algorithm
was the prerequisite to train the large complex networks emerging at that time.

Also, the theoretical understanding of the mechanisms and the mathematical fundamentals
grew, enabling great steps forward. The paper by George Cybenko “Approximation by Super-
positions of a Sigmoidal Function” from 1989 [155] is considered to be the first proof of the
so-called Universal Approximation Theorem (UAT) for the special case on sigmoid activation
functions solely. The theorem states as follows:

Theorem (UAT; Ref. 155, Thm. 1, p. 306). Let σ be any continuous discriminatory function. Then
finite sums of the form

G(x) =

N∑
j=1

αjσ(yTj + θj)

are dense in C(In) [space of real-valued continuous functions]. In other words, given any f ∈ C(In)
and ε > 0, there is a sum, G(x), of the above form, for which

|G(x)− f(x)| < ε for all x ∈ In.

(Proof: see Ref. 155, p. 306 )

Two years later, Kurth Hornik provided another, more general proof of the universal
approximation theorem [156]. The UAT can be considered as the theoretical basis of neural
networks that tells us that – in principle – there are no limitations in potential applications –

3Probably the latter one ...
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except the bounds of reality of course. Under the assumption of an arbitrary complex model, a
neural network can approximate, respectively, learn any continuous function.

The continuous growth in complexity of today’s networks come with an enormous amount
of trainable parameters (weights) goes hand in hand with an increased demand on computer
performance regarding the requirements of CPU power and RAM storage. For this reason,
the complexity and the performance of neural network models scale with the enhancement of
computing power, similar to parallelization of mathematical operations on modern GPUs.

With the universal approximation theorem at the beginning of the ’90s, neural networks have
established themselves. In the following decades, the field of machine learning and artificial
intelligence have made considerable progress and numerous discoveries. Today, artificial
intelligence is an integral part of our daily life – but not without controversy. It is hardly
possible to foresee the implications of the increasing presence of machine learning methods and
big-data analysis within the context of the progressive digitization and its repercussions on our
daily life. However, it is very likely that this age marks the beginning of the era of “artificial
intelligence”.

The increased interest at the beginning of the ’90s caused a cascade of numerous discoveries.
One milestone was followed by another one so that it becomes difficult to distill the major
steps that caused significant progress of the field as a whole. The most significant of these were
– according to the author’s opinion –: the “discovery” of recurrent artificial neural networks by
John Hopfield [151] and recurrent neural networks derived therefrom, the Long Short-Term
Memory (LSTM) (recurrent neural) networks introduced by Sepp Hochreiter and Jürgen
Schmidhuber in 1997 [157] (the development of LSTM, which are much better at capturing
long-term dependencies, were the main driver for the great success of RNNs in the applications
of speech recognition); the invention of support vector machines as an algorithm for optimal
margin classifiers [158]; reinforcement learning based on Markov decision processes [159] (for an
overview, see Ref. [160]); the realization of generative models by means of generative adversarial
neural networks [161] and autoencoders (conceptually introduced by Ballard [162]).

6.2 Artificial Neural Networks

The basic building blocks of an artificial neural network have already been introduced in
Theorem 6.1. More Formally, a neural network can be described in terms of a triple (N ,V, w),
whereby N corresponds to the set of neurons, whereat the connection between the pairs of
neurons (i, j) ∈ V is given by the set V :=

{
(i, j)|i, j ∈ N≥|N|

}
. The weights are defined by the

function w : V → R that gives the strength wij := w(i, j) of the connection (i, j) ∈ V. Hence,
a weight wi′j′ = 0 cuts of the connection between neuron i′ and j′ (no stimulus). Furthermore,
neural networks need a propagation/transfer function Tw that receives the output of several neu-
rons {i1, i2, · · · in} with the output (oi1 , oi2 , · · · oin) connected via weights {wi1,j , wi2,j · · ·win,j}
to one neutron j and transforms it to Twj := Tw(oi1 , · · · oin , wi1,j , · · ·win,j) ∈ R. In principle,
there is no restriction on Tw besides differentiability (which is required by the backpropagation
algorithm). In practice, however, in almost all practical applications, the so-called weighted
sum is used. This weighted sum is an affine transformation between outputs of the neurons
and the weights

Twj =
∑

i∈{1,··· ,n}

oiwi,j + bj , (6.1)

where bj is the so-called learnable bias bj ∈ B term [163]. The actual neural network f , i.e., the
function it learns/approximates defined above, is still rather limited in its applications since it
is restricted to affine functions solely due to the chosen form of the propagation function T .
Hence, the network is not able to approximate, e.g., non-linear functions since the concatenation
of linear (b = 0) functions is linear again (homomorphism) according to

f = ©
j∈N

T b=0
wj = ©

j∈N

 ∑
i∈{1,···n}

oiwi,j

 =
∑

i∈{1,···n}

(
oi ©
j∈N

wi,j

)
. (6.2)
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6.2. ARTIFICIAL NEURAL NETWORKS

A neural network defined like Equation 6.2 would be nothing but a simple linear regression
model. To improve the approximation power of general feed-forward neural networks, the
output of the propagation function Twj is further processed by what is called the activation
function (also known as transfer function) σ

σj = σ(Twj ;α1, · · · , αn), (6.3)

with α1, · · · , αn ∈ R being some adjustable hyperparameters (i.e., fixed parameters not learned
by the network). The output of the activation function may also be “time dependent” σj(t) and
hence depend on previous activation. There exists a huge variety of different activation functions
and choosing the “most appropriate” one is part of the model’s adjustment. For example,
Rosenblatt’s perceptron introduced in Section 6.1 had a threshold function Θ. The choice of
the activation function also depend on the network’s task whether it is, e.g. a regression or a
classification task. Thus, the latter one expects probabilities which requires an appropriate
activation function that maps the network’s output to the interval [0, 1]. The most popular
activation functions used today are the sigmoid, Fermi logistic function σ(z) = 1/ (1 + e−z) (as
it used for the proof of the UAT 6.1), the hyperbolic tangent cosh(z) = (ez + e−z) /2, and the
so-called Rectified Linear Units (ReLU) ReLU(z) = max(0, z) [164, 165] (for a comprehensive
list of activation functions see, e.g., 166).

...

...
...
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i3
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Input
layer
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layer

Output
layer

Fig. 6.1: “Shallow” feed-forward neural network with n inputs, one hidden layer with k
neurons, and m outputs. The trainable weights of the networks are represented by the
connections between the individual neurons.

ReLUs are the most frequently encountered activation functions in today’s neural networks
although it only has a non-linearly in one point. Compared to other saturating activation
functions, however, ReLUs do not suffer from the vanishing or exploding gradient problem.
Furthermore, the derivations needed for the backpropagation algorithm are simple to compute
and hence significantly improve performance. On the other hand, ReLUs tends to result in sparse
gradients. This effect can be reduced by using so-called Leaky ReLUs `ReLU(z) = max(−εz, z)
that adds a small slope ε ∈ R>0 for negative arguments [167].

Summarizing the statements above, it can be said that neural networks are a composition of
simple linear or affine transformations T and non-linear (activation) functions σ with trainable
weights w, which can be thought as the interconnections between the network’s neurons. These
are the main components that all neural networks have in common. However, there exists a
large number of different topologies or design concepts, i.e., the “geometrical” arrangement of
the weights and its interconnections in the network. The following section introduces some of
the most known and widespread network topologies.

The (by far) most common form of a network topology is the so-called feed-forward design.
In this “conservative” topology, the network’s neurons are grouped into different layers. A
distinction is made between the input layers, hidden layers. and the output layer. The input
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layer is the outermost level of a neural network that does not perform any computations on
the data but serves as the “interface” between the outside world and the network. The hidden
layers are the enclosed level of the neural network that is not directly connected to the outer
world. All layers besides the input and the output layers are referred to as hidden. Within the
hidden layers, the actual mathematical operations are performed that transform the data from
layer to layer into different representations. Last but not least, the final layer is the output of
the neural network that performs some final computations and returns the processed input
data. The arrangement of weights and nodes (respectively neurons) can be summarized in what
is known as a directed graph. Figure 6.1 shows a directed graph for a very simple feed-forward
neural network with only one hidden layer (also referred to as “shallow” neural network.). As
explained above, a feed-forward neural network is a composition of simple linear or affine
transformations T (l)

w : Rn → Rm and non-linear (activation) functions σ(l) : Rn → Rn (with l
denoting the lth layer in the network) that are arranged in layers without any feedback (loops),
i.e., the output of any layer does not affect that very same layer. With all those elements and
ingredients, a feed-forward neural network can be written as:

f(x) =
[
σ(L) ◦ T (L)

w

]
︸ ︷︷ ︸

output layer

◦
[
σ(L−1) ◦ T (L−1)

w

]
◦ · · · ◦

[
σ2 ◦ T (2)

w

]
︸ ︷︷ ︸

hidden layers

◦
[
σ(1) ◦ T (1)

w

]
(x)︸ ︷︷ ︸

input layer

, (6.4)

with x denoting the input to the input layer. So the output f (l)(x) of the lth layer is given by

f (l)
w (x) =

{
x : l = 0([
σ(l) ◦ T (l)

w

]
◦ f (l−1)

)
(x) : l > 0

. (6.5)

With the definition of a feed-forward neural network according to Equation 6.4, the system is
mathematically well defined by means of its trained/adjusted weights (see Section 6.4).
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Plot 6.1: Discrimination boundary, which was learned by the neural network, for the
raw data (left) and its new representation in the transformed coordinate system of the
second hidden layer (right).

Due to the choice of the propagation function to be linear or affine, the classification
network tries to learn a new representation of the data (by means of a (homotopic) coordinate
transformation) in each layer that allows for a separation of the transformed input by a
hyperplane (linear separation).To better understand the internal working mechanism of neural
networks, consider the “simple” classification problem in Figure 6.1. In order to visualize the
new representation of the data in the second hidden layer of the network, the input data
is forward passed form the first to the second layer x(2) = σ(2)(T

(2)
w (σ(1)(T

(1)
w (x)))). (The

architecture of the network is very primitive; hence, its complexity and capability is highly
limited. It was chosen such that the transformed coordinate system can be visualized easily)
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6.3. “DEEP SETS” [? ]
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Plot 6.2: Failed classification due to inopportune set of hyperparameters.

Figure 6.1 shows the learned classification boundary of the neural network (the training
has been terminated after the classification accuracy reached 100 %). In configuration space x,
the data points are separated by a complex, non-linear decision boundary. In the transformed
representation x′, however, the data points are transformed in a complicated way such that
they can be separated by a simple hyperplane. So, the network learns a new representation
of the data (through a complicated coordinate transformation) in which the classification is
simple.

The network may very well fail to learn an appropriate transformation that allows for a
linear separation (e.g., due to the architecture that limits the complexity of the network, the
amount of training data available, training steps or (most likely) an inopportune configuration of
hyperparameters). Figure 6.2 gives an example of a failed attempt to learn a decision boundary
due to a purposely ill-chosen setup. As shown in the this section, discriminative models (or feed-
forward neural networks with softmax output) try to learn a complex transformation that allows
for a linear separation of the transformed data in the representation of the penultimate layer.
This property does not come as a surprise since it is imposed by the requirement alternating
sequence of a linear (or affine) transformation Tw followed by a non-linear activation σ. One
may think of a more general transformation than T that allows for a better transformation of
the underlying manifold.

6.3 “Deep Sets” [3]

The kind of “simple” neural networks introduced in the previous section are limited to data
with fixed dimensionality, i.e., the length of the input vector x ∈ X , with X being the domain
of the input data, to the machine learning model does not change between elements. This
allows to approximate a vast space of function f : X → Y that transform the domain of
input variables X into the image set Y. The properties of the set of possible target values Y
usually determines whether the machine learning algorithm is a classification or a regression
task. In case of classification, the image set is discrete Y = ZNc whereby the number of
elements Nc corresponds to the number of classes or categories the model is supposed to
discriminate (Nc = 2 for binary classification). A common example is binary classification,
that is, the discrimination between just two classes or categories of data; in this case, the image
set usually is set to be {0, 1}. In case of regression, on the other hand, the neural network
approximates a function that maps the input variables to a continuous space of output values.
A simple example of a regression task would be a function f : X ⊂ Rd → Y ⊂ R that maps a
d-dimensional vector space onto the continuous space of real numbers.

This concept, however, can not be easily translated to set-valued data in the form of
X = {x1, x2, ..., xM} with xi ∈ X (notation has been adopted from Ref. [3]) where the input
domain X = 2X = ℘(X) is the power set, i.e., the set of all subsets of X including the empty set
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with cardinality of zero. The cardinality of each set xi ∈ X may vary from element to element.
While feed-forward neural networks assume time-independent data, many of today’s learning
tasks, actually have to deal with sequential data that changes over time. A natural example
would be predicting stock prices, analyzing DNA sequences or predicting protein folding,
composing a piece of music or, to mention a more prominent and relevant example, (natural)
language processing as it is needed for translation, speech recognition or text generation. In
general terms, it can be said that feed-forward neural networks reach their limits in cases where
the input data is varying in its length and highly “time”-correlated as they learn relationships
between input features. To this end Recurrent Neural Networks (RNNs) have been invented in
the ’80s of the previous century (see Section 6.1). This kind of architecture not only allows to
deal with variable-length inputs, but it also comes with in internal memory unit that allows to
learn correlations between different states and inputs.

In case of discrimination or a multi-class classification task, the network needs to assign
a probability to each label that maps it to a class with a certain probability. This adds the
constrain σ(L) : Rn → [0, 1]nc on the image set of the last layer, whereby nc denotes the
number of classes (in practice this restriction is enforced, e.g., by a softmax layer σ(x)j =
exj/

∑nc
k=1 e

xk).
In principle RNNs can (and have) been used to analyze set-valued data. However, it

was shown in Ref. [168] that the output of the function learned by an RNN highly depends
on the ordering of the input data. For this reason, when working with RNNs, an arbitrary
order must be imposed on the set and strictly hold during training and inference in order
to obtain consistent results. This circumstance disregards the fundamental property of sets
to be generally unordered, i.e., a randomly imposed permutation of the set’s elements still
corresponds to exactly the same object. Similarly, a proper function f defined on sets has
to respect this essential characteristic feature and should therefore be unresponsive to the
ordering of the elements of the input set. In mathematical terms: “a function f : 2X → Y
acting on sets must be permutation invariant to the order of objects in the set, i.e, for any
permutation π : f({x1, ...., xM}) = f({xπ(1), ..., xπ(M)})“ (Ref. 3, Property 1, p. 2).

The structure and properties of functions on sets have been extensively studied by Zaheer
et al. in 2017 [3]; all information provided in this section is based their excellent work if not
explicitly mentioned otherwise.

Since functions defined over a domain of sets are highly non-trivial, the authors start their
considerations following a strategy of increasing generality and therefore constrain the class
of permutation invariant functions to the case where X is countable set (i.e., there exists an
injective function that maps X to the set of natural numbers N) with the image being given
by the set of real numbers Y = R. Based on those simplifications, the following Theorem
characterizes the structure of the function f :

Theorem (Ref. 3, Thm. 2, p. 2). A function f(X) operating on a set X having elements from a
countable universe, is a valid set function, i.e., invariant to the permutation of instances in X, iff it
can be decomposed in the form

ρ

(∑
x∈X

φ(x)

)
,

for suitable transformations φ and ρ.
(Proof: see Ref. 3, Appendix A, p. 12)

For a full proof of Theorem 6.3, the interested reader is referred to the quoted publication.
Nonetheless, since the decomposition of the function f into φ and ρ is the basic motivation
for the neural network architecture derived from it and used in this measurement, it is worth
pausing for a moment and reflect on the statements made in the proposition above.

The quintessence of the Theorem is the observation that a permutation invariant function
f : X → Y defined over a set X with countable (|X| < ℵ0) elements can be constructed
through two continuous functions ρ : X → R and φ : R → R by the following rule f(X) =
ρ
(∑

x∈X φ(x)
)
. The important point is that in the decomposition of f , the functions ρ

and φ do not operate on sets directly but on fixed-size objects for which the sum over all
embeddings φ(x) corresponds to all elements of the set. In practice, the two functions ρ and
φ are approximated by neural networks. The requirement of permutation invariance follows
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6.4. TRAINING OF NEURAL NETWORKS

trivially form the form of decomposition by noting that all finite sums are commutative, i.e.,∑
x∈X φ(x) =

∑
x∈π(X) φ(x).

6.4 Training of Neural Networks

Section 6.2 introduced the basic concepts of neural networks regarding their mathematical
formulation in terms of weights, activation and propagation functions, as well as different
topologies in particular feed-forward (6.2) and “Deep Sets” (6.3). This section gives a short
introduction to the actual training procedure, in particular, on how to update the model’s
parameters through gradient descent (6.4.2) and how to efficiently compute gradients (6.4.3).
Furthermore, the elementary concept of a loss function in supervised and unsupervised learning
is covered in this section.

6.4.1 The Loss Function

In order to quantitatively measure the inconsistency between the predicted values by the
neural network ŷ = fθ(x) (now denoting the network’s weights by θ) and the actual label y
(available only in case of (semi-)supervised learning) for the training data (x,y) ∈ D one needs
to define a loss function L(ŷ,y). This loss function provides an estimate of the network’s
approximation error; hence, it should be defined to be a non-negative quantity (L ≥ 0), with
a decreasing loss corresponding to reduced approximation error. Furthermore, the loss must
be a differentiable function to get meaningful derivatives needed in the backpropagation and
gradient descent algorithm to update the network’s weights (the conceptually very different
paradigm of reinforcement learning also allows for non-differentiable loss functions to be used).

There are plenty of different loss functions available, most of them serving a particu-
lar purpose, e.g., whether the objective is a regression or a discrimination task. A promi-
nent example for a loss function in a simple regression task would be the Mean Squared
Error (MSE), L = 1

N

∑N
i=1

(
ŷ(i) − y(i)

)2
, while in a classification task the usual choice

would be the binary cross-entropy (multi-class cross-entropy for multi-class classification),
L = − 1

n

∑n
i=1

[
y(i) log(ŷ(i)) + (1− y(i)) log(1− ŷ(i))

]
.

At this point, there is nothing to be gained from providing a long enumeration of different
loss functions and their properties. But one should keep the loss function and its role in the
training process of neural networks in mind: the loss function is a measure of similarity between
predictions of the neural network and the training data and hence is utterly important for the
training process. It is the fundamental quantity to compute the corrections to the network’s
weights using gradient descent and backpropagation, which is subject to the next sections.

6.4.2 Gradient Descent and Optimizers

With the loss function at hand, the learning objective of neural networks is to find a configuration
of weights/parameters in a very (very!) high-dimensional space, which defines the model, that
minimizes L. If L is non-convex, there is no guarantee that the optimization procedure will yield
a global minimum of the loss function. Besides that, it is not expected that the minimization
will result in a perfect configuration of weights since exact optimization is NP-hard.

Most optimization algorithms used in machine learning today are based on a first-order
iterative optimization algorithm called gradient descent. The objective is to update the models
parameters θ ∈ Rd (i.e., the weight) in the opposite direction of the gradient – which points in
the direction of the “steepest slope” – of the cost function4 ∇θL(θ). The most simple form of
such an algorithm requires one additional, adjustable parameter, i.e., the so-called learning
rate α ∈ R>0 that corresponds to the step size taken towards the (local) minimum. It is
important to internalize that all optimization algorithms based on gradient descent are at
first-order. While the gradient of the loss function only measures the change of the slope, the
second-order derivative provides information about the direction based on the curvature of

4Through this thesis the terms loss, cost and objective function are used interchangeably.
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the cost’s error surfaces. So, the restriction to first-order gradients represents a significant
limitation. An example of an optimization algorithm that also uses second-order derivatives
would be Newton’s method. However, computing second derivatives is “expensive” and often
computationally intractable as for evaluating the Hessian matrix one needs to compute N2

θ

derivatives, whereby Nθ is the number of weights in the network. The networks presented in
this thesis have a total number of parameters in the order of approximately Nθ ∼ O(105). In
other words, the second-order optimization algorithm would have to compute, roughly, one
billion (O(1010)) derivatives for only one iteration step! This is unfeasible for high-dimensional
data sets; hence, the algorithms rely on first-order approximations.

Furthermore, a distinction is made between three different versions of gradient descent based
on the information that is used to compute the gradients. Batch gradient descent computes
the gradients for the entire data section and updates the parameters weighted by the constant
and global learning rate

θ → θ − α∇θL(θ). (6.6)

This optimization method might be intractable for large data sets that does not fit into memory
at once. The second variant is known by the name stochastic gradient descent. It is the other
extreme and performs an update of the training parameters for each training example

θ → θ − α∇θL(θ;x(i), y(i)), (6.7)

which might cause redundant computations and usually results in very volatile losses. Finally,
mini-batch gradient descent reaches a compromise among the two previous approaches by
performing an update of the model’s weights for each mini-batch consisting of nmb samples

θ → θ − α∇θL
(
θ;x(i:i+nmb), y(i:i+nmb)

)
. (6.8)

This one usually provides more stable convergence and hence is the method of choice – also in
this thesis.

As has been described above, gradient descent only uses the information of first-order
derivatives. However, some methods allow improving the estimation of the direction in the loss’
error surface by taking into account the information of previous iterations. This is important
since it has a profound impact on the performance of the optimization. There exists an
unmanageable and somewhat confusing variety of extensions to the vanilla gradient descent
that takes this approach; however, they can be broadly subdivided into methods that use
momentum respectively moving averages and adaptive learning rates.

6.4.3 The Backpropagation Algorithm
Gradient descent provides rules to update the weights based on the gradient of a predefined
error function. Backpropagation referrers to the numerical implementation of gradient descent
that provides a method for performing automatic differentiation of complex, nested functions
(such as multi-layer neural networks) by successive application of the chain and power rule.

The backpropagation algorithm consists of a forward-pass and a backward-pass (in this
order). In the forward-pass step, the training data is propagated forward through the entire
network that produces an output/prediction ŷ. Now, the loss function L(ŷ,y) is evaluated for
the network’s prediction (or a batch of predictions) and the actual label y of the data. (This
procedure, of course, is only reasonable in the context of supervised learning where the truth
information is available during training). The starting point of backpropagation is the very
intuitive and natural definition of the “error” according to

δ
(l)
k =

∂L
∂z

(l)
k

=
∂L
∂σ

(l)
k

∂σ
(l)
k

∂z
(l)
k

=
∑
i=1

δ
(l+1)
i w

(l+1)
ik

∂σ

∂z
(l)
k

, (6.9)

with z(l)
k referring to the output of the propagation function of the kth node/neuron in layer

l ∈ {1, . . . , L}. In Equation 6.9, the error has been (re-)express using the chain rule. Since
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6.4. TRAINING OF NEURAL NETWORKS

backpropagation starts from the output layer, the first step is to compute δ(L)
k for neurons in

this layer. In this case δ(L)
k , is simply given by δ(L)

k = ∂L
∂a

(L)
k

σ′
(
z

(L)
k

)
, whereby σ(L) denotes

the activation function in the output layer. Now, one needs to compute the gradients of L with
respect to the weights w(l)

kj . Using the chain rule again, this is given by

∂L
∂w

(l)
kj

=
∂L
∂z

(l)
k

∂z
(l)
k

∂w
(l)
kj

= δ
(l)
k

∂z
(l)
k

∂w
(l)
kj

(6.10)

The second multiplicand can be written as ∂z
(l)
k

∂w
(l)
kj

= σ
(l−1)
j so that ∂L

∂w
(l)
kj

= δ
(l)
k σ

(l−1)
j . (Analo-

gously, the very same can be done for the biases ∂L
∂b

(l)
k

= δ
(l)
k .) By subsequently applying the

chain rule to Equation 6.10, which yields

∂L
∂w

(l)
kl

=
∑

αβγ...ω

∂L
∂z

(L)
α

∂z
(L)
α

∂z
(L−1)
β

∂z
(L−1)
β

∂z
(L−2)
γ

· . . . · ∂z
(l+1)
γ

∂z
(l)
ω

σ
(l−1)
j ; (6.11)

it now becomes clear why the algorithm is called backpropagation: with the chain rule, the
“error” from the very first layer L is gradually backtracked to the respective layer l. The sum
in Equation 6.11 is complicated and goes over all connected paths in the neural network.

With Equation 6.11 and gradient descent (see Section 6.4.2) at one’s disposal, the weights
of the neural network can be iteratively updated until the cost function is justifiable minimized
and the model provides a reasonable approximation of the training data.
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7. Data-Driven Feature Extraction

Hadronic jets are the phenomenological manifestations of the fundamental, color-charged
particles of QCD measured an experiment; hence, they are a signature of the strong interaction.
This association between a parton and a particle jet is by no means unproblematic as the jet is
constructed from a spray of color-neutral hadrons and therefore, by construction, neutral in
color by itself. The jet (see Chapter 1.3), however, is directly connected to a color-charged
parton participating in the hard scattering process.

However, not only the association of a hadronic shower reconstructed in a detector and the
originating particle that initialized it is conceptually problematic; a careful reflection on the
everyday definition and notion of quark- and gluon-initialized jets quickly reveals that those
objects are indeed “ill”-defined in most circumstances. As described in the introduction of this
thesis, there is no “precise” definition quark and gluon jets to the present day. This problem
arises because higher-order contributions to fundamentally different processes involving quarks
and gluons in its final state may result in identical, i.e., indistinguishable configurations in the
detector, which results in a superposition of states due to quantum mechanical indistinguisha-
bility. The reconstructed jets therefore can not uniquely be assigned to a quark nor gluon
anymore. Furthermore, most definitions of quark- and gluon-initialized jets are theoretically
ill-defined, i.e., they are not IRC-safe.

For instance, a very common definition of the flavor of a jet is based on the (partially
arbitrary) event record (i.e., the set of particles produced by a Monte Carlo generator) by as-
signing the Particle Data Group IDentification (PDGID) number of the highest-pT constituent
clustered in the jet to the jet as a whole. This may seems intuitive because it is in harmony
with the simple picture supported by the parton shower that models the jets as a high-energetic
parton accompanied by consecutive emissions (see Chapter 2.4). Despite being commonly used,
this definition of quark and gluon jets is not collinear safe because, for instance, the additional
splitting of a gluon into two quarks g → qq̄ must result in the jet being identified as initialized
by a quark, provided that the gluon was the highest-momentum particle in the jet. There are
more examples to highlight inconsistencies in the definition of quark and gluon jets, however,
the examples given so far should be sufficient to illustrate the general problem, before going
into more detail. Generally, not having an IRC-safe definition of quark- and gluon-initialized
jets, result in considerable complications regarding the comparison of analytically calculated
features associated with quark and gluons and experimental measurements.

The lack of a well-defined notion of quarks and gluons at hadron level by means of their
phenomenological signatures in the detector makes it very complicated to consistently study
related properties thereof. The problem can be partially addressed by studying QCD-related
properties in regions in phase space that are know to be highly enriched (or even pure) in
quarks or gluons without the need of the precisely defining them. This is possible because the
quark and the gluon as an element of the fundamental and adjoint representation of the SU(3)
symmetry group gives rise to certain statistically distinctive features between both categories.
This was, for instance, done at the Large Electron-Positron Collider (LEP), which resulted in
highly enriched (almost pure) data of quark-initialized jets and therefore was perfectly suited
to study quark-related properties. Gluon-enriched samples, on the other hand, are very limited
(this would be a perfect argument for the construction of a Higgs-factory, which would result
in very pure samples of gluons). At hadron colliders like the LHC, there are plenty of gluons
produced, however, one always deals with mixed samples of quarks and gluons. This degeneracy

87



can not easily be broken as the fractions of quarks and gluons in the sample is unknown.
The fractions (or, alternatively, templates) can be extracted from simulation; however, the
obtained results are highly model dependent as using different Monte Carlo generators and
different definitions of jets originating from quarks and gluons will result in different results.
Furthermore, it is difficult to provide a well-defined uncertainty on the calculated results
besides the simple comparison of various generators – which (admit it ...) does not makes
any sense at all. Explaining a solely data-driven, model-independent method to break the
aforementioned degeneracy of mixed samples of quark- and gluon-initialized jets and extracting
their underlying fractions in different regions in phase space is subject of this chapter.

This chapter is structured as follows: The first section (7.1) provides a detailed introduction
into the problem of consistently defining quark- and gluon-initialized jets at hadron level.
Besides common pitfalls in their definition, this section also provides an overview of the most
common definitions of quark and gluon jets. A possible way out of the misery is provided in
the subsequent section (7.2) that introduces an operational definition of quark- and gluon-like
(the adjective use is important as will become clear in a moment) at distribution level, avoiding
aforementioned difficulties with jet-by-jet-based labeling schemes. This operational definition
is independent of model-related information; however, in order to break the degeneracy of
samples from hadron-hadron collisions, the underlying JSS observable that is used to measure
the cross section must result in phase space regions that are almost pure in either quark- or
gluon-initialized jets. Mathematically, this means that the underlying probability distributions
of the observable must be mutual irreducible. The rather “abstract concept” of mutual irre-
ducibility is studied in light of QCD in the next section (7.3). After that (A), the method for
extracting the underlying quark/gluon probability distributions as well as their fractions is
connected to a statistical demixing procedure called “topic modeling”, which has originally
been developed as a tool for extracting emergent themes in an extensive corpus of text-based
documents. Afterwards (7.4), the method is extended to non-mutual irreducible observables by
means of a simultaneous measurement with a mutual irreducible one, or, by making use of the
universality of the extracted fractions. Finally (7.5), a step-by-step introduction on how to
extract the underlying quark/gluon features and fractions from an unfolded multi-differential
cross section is provided.

7.1 Definition of Quark and Gluon Jets

“Quarks and gluons are the fundamental quanta (quantum fields) of QCD (see Chapter 1.1.3)
that are associated with two different representations of the underlying non-abelian SU(3)
symmetry group. In the Lagrangian of the theory (see Equation 1.6), the gluon field is given
by a tensor field of rank 2 defined over spacetime with its values being elements of the adjoint
(vector) bundle of the aforementioned symmetry group. The quark on the other hand is given
by the fundamental representation of SU(3).” – this (or something similar) might be the answer
to the question: “what are quarks and gluons?” if asked a theorist1. Certainly a good and valid
answer ..., but maybe not the one needed by an experimentalist or instrumentalist for his daily
working routine. From an experimentalist’s point of view, the more important question is how
the fundamental particles associated with the strong force manifest itself in an experiment
(i.e., their “phenomenology”) and how consistently define them. The answer to this questions is
harder than it may seems at first glance.

7.1.1 Problems Defining Quark and Gluon Jets

As a first example of quark- and gluon-initialized jets, take the two event displays recorded
with the JADE experiment at LEP in Figure 7.1 that shows a two- and a three jet event. At
LEP(II), electrons and positrons are collided at a centre-of-mass energy close to the resonance
mass of the Z boson. The two-jet event in Figure 7.1a therefore most likely resembles the

1This statement is supported by the author’s very own experience during lunch at R1 at CERN.
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(a) (b)

Fig. 7.1: Event display of a two-jet (left) and a three-jet (right) event, recorded with the
JADE detector at the Positron-Electron Tandem Ring Accelerator (PETRA) at DESY
in Hamburg, Germany. (Taken from Ref. 22, Fig. 9.6 p. 132).

process e+e− → Z → qq̄ with two quark-initialized jets in the final state. Since the two-jet
cross section for e+e−-collisions at this energy is very large, LEP data is highly enriched
with quarks and therefore perfectly suited to study quark-related properties. Basically, the
requirement of two jets (exclusively) in the final state defines a selection that results in almost
pure samples of quark-initialized jets.

In case of the gluon, the situation is different though. For a gluon-initialized jet to be
present in the final state, the process must be (in the language of perturbation theory) of
higher order (at least NLO). The lowest process that (probably) includes a gluon in the final
state is a three-jet event as the one shown in Figure 7.1b. The additional gluon usually is a
result of the accelerated color-charged quark emitting radiation similar to an electron emitting
electromagnetic radiation if accelerated. This higher-order process introduces an additional
factor of αS. In consequence, the number of gluon-initialized jets is suppressed by at least an
order of magnitude (αS(MZ) ≈ 1/10) compared to jets due to quarks; as a result, the former
ones are much less constrained from data, which results in larger uncertainties associated to
gluon-related features. Furthermore, for a three-jet event, the selection of the participating
gluon-initialized jet is not fully efficient because in some cases the radiated gluon can not be
distinguished from the other quark jets with high efficiency. Most of the time, however, it is
sufficient to associate the gluon with the energetically softest jet participating in the event,
eventually combined with a mass-window cut close to the mass of the Z boson. In the example
above, comparatively straightforward to consistently define quark and gluon jets at hadron
level based on the final state. In case of hadron colliders, like the LHC (see Chapter 3.1),
however, the situation changes dramatically as it (almost) becomes impossible to isolate pure
regions of quark- and gluon-initialized jets in phase space, while at the same time maintaining
sufficient statistics. Generally, at hadron colliders, one always deals with mixed samples of
quarks and gluons. As a further complication, the notion of quark and gluon jets becomes
theoretically ill-defined at parton level beyond Born level.

As an illustrative example, consider the two different second-order processes shown in
Figure 7.2 that both share the same initial and final state, i.e., they are experimentally
indistinguishable and irreducible. In the first processes (see Figure 7.2a), a quark-antiquark
pair couples to the gluon mediator with one of the quarks emitting a gluon because it is
an accelerated (color) charge. The three partons in the final state would give rise to three
jets (provided that the gluon is resolved) in the detector one of which being gluon initialized,
while the other two are caused by quarks. The situation, however, is more involved as other
processes with the same order in αS and the same final state configuration contribute too. An
example is shown in Figure 7.2 that represents the same initial state but with a tree-gluon
vertex instead. If one of the two gluons splits into a quark-antiquark pair (see Chapter 2.4
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Fig. 7.2: Example of two processes evolve from the same initial state involving the
emission of a gluon (left) and gluon splitting into two quarks (right) resulting in the
same final-state configuration.

concerning parton showers), the particle content of the final state will be identical and therefore
quantum mechanically indistinguishable with respect to process depicted in Figure 7.2b. Since
the two processes are indistinguishable regarding their final states, a super position of the two
contributions must be considered according to the laws of quantum mechanics, which may give
rise to highly non-trivial interference effects. Now, however, a “peculiarity” is revealed: both
processes in Figure 7.2 result in two quarks and one gluon being present in the final state;
but, on the underlying LO process (the emission of a gluon or the splitting of a gluon into a
quark-antiquark pair are considered higher-order corrections to the Born contribution) involve
two quarks in one case but two gluons in the other one. Since the two processes interfere with
each other, Figure 7.2 represents and example for the notion of quark and gluon jets becomes
“ill”-defined already at parton level.

This illustrative example only serves as a quick motivation for potential problems when
speaking about quarks and gluons, which are usually not considered in general linguistic usage.
The upcoming section provides a detailed overview of different approaches to define quark and
gluon jets based on the Les Houches workshop on “Physics at TeV Colliders” that took place in
2015 [23].

7.1.2 “What is a Quark/Gluon Jet?”

As it was shown in the previous section, the seemingly simple question of how to define quark
and gluon jets is much more subtle than expected at first glance. First of all, it should be
noted that there is no unambiguous definition of quark and gluon jets at hadron level. This is
due to the aforementioned interference effects in quantum mechanics that does not allow for
a one-to-one correspondence between the partons involved in the internal process and their
phenomenological manifestations, i.e., the jets, in the final state2. Furthermore, the showering
as well as the non-perturbative formation of stable hadrons add another layer of complexity to
the labeling of jets in terms of the two categories (light) quark or gluon. This circumstance of
not having a well-defined description of quark and gluon jets represents a problem as many
analyses rely on this information and therefore depend on the (partially arbitrary) information
in how the flavor of a jet was defined in this particular case, which also makes the comparison
of different studies with non-identical jet-labeling schemes somewhat inconsistent.

For instance, as shown in Chapter 4.4.3, the Global Sequential Calibration component
of the ATLAS calibration scheme of the jet energy scale aims to account for the different
calorimeter responses of quark- and gluon-initialized jets due to differences in their respective
shower shapes and response of the calorimeter. This correction is solely based on Monte Carlo;
hence, the concrete result, i.e., the associated correction factor (see Equation 4.9), depends
on the definition used to label jets being either quark- or gluon-initialized. Consequently, the

2In fact, this statement is perfectly consistent with QM in that sense that is not possible to make precise
statements concerning the outcome/result of a particular measurement. Instead, one can only make statements
about an ensemble of measurements.
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flavor-related uncertainty in the calorimeter response (which is given by the difference between
two Monte Carlo event generators3 (see Equation 4.14)) depends on the particular convention
of how quark and gluon jets are defined.

The following paragraphs are almost a verbatim representation of Section 2 of the excellent
publication “Systematics of quark/gluon tagging” [169]. Here, the different approaches to define
quark and gluon jets are grouped into three categories based on the underlying common “theme”
or “principles”. The order of suggested options for defining the flavor of a jet follow a path
of increasing “well-definiteness” of the respective definition, starting from most ill-defined
interpretation to the most well-defined statement of meaning.

The first group of definitions “[...] try to identify [.] quark[s] [and gluons] as [..] object[s]
unto itself, without reference to the specific final state of interest.” This approach assigns a
flavor jet-on-jet based, i.e., each jet in an event is (binary) labelled as a quark (of some flavor)
or a gluon based on some identification or classification scheme completely independent of the
actual underlying process. Using those methods hence allow to create completely labelled data
sets, which are, for instance, the prerequisite to train machine learning models in a supervised
fashion. This approach, however, suffers from the aforementioned problem of the superposition
of different processes involving different partons that yield an identical final state. Imposing
an unambiguous label beyond leading-order calculations for each jet consequently does not
take this intrinsic indefiniteness existing on jet-on-jet level into account. Besides the effect
of interference of final state, methods in this class of labeling schemes do not account for the
circumstance of jets being fundamentally process dependent in general due to, e.g., non-trivial
color connections etc. This phenomenon is refereed to as sample dependence, which simply
defines the well-established fact that a quark or a gluon may differ between different processes.
For instance, a gluon jet originating from a (pure) QCD/multijet event (i.e., only the strong
force being involved) differs from a gluon-associated jet created in an, e.g., Z + jet event. This
aspect will be of relevance again later on for the motivation of this measurement being done
in dijet events solely to not encounter (or rather reduce) the problem of sample-dependent
jets, which spoils one of the basic assumptions of the algorithm to extract the underlying
quark/gluon distributions introduced in the next section.

Following now, a quick summary of labeling schemes that fall into this category according to
the conclusions of the already mentioned Les Houches workshop on “Physics at TeV Colliders”
in 2015.

• “A quark parton. This definition (incorrectly) assumes that there is a one-to-one map
between a jet and its initiating parton. Because it neglects the important role of additional
radiation in determining the structure of a jet, we immediately dismiss this definition.”

• “A Born-level quark parton. This definition at least acknowledges the importance of
radiative corrections to jet production, but it leaves open the question of how exactly to
define the underlying Born-level process from an observed final state. (For one answer
valid at the parton level, see flavored jet algorithms below.)”

• “An initiating quark parton in a final state parton shower. We suspect that this is the
definition most LHC experimentalists have in mind. This definition assumes that the
parton-shower history is meaningful, though, which may not be the case beyond the
strongly-ordered or LL approximations. Because the parton shower is semi-classical,
this definition neglects the impact of genuinely quantum radiative corrections as well as
non-perturbative hadronization.”

• “A maximum-pT quark parton within a jet in a final state parton shower. This definition
uses the hardest parton within the active jet area encountered at any stage of the

3It is not obvious by any means that some “arbitrary” definition of quark and gluon jets are equally well
suited for any event generator. On the contrary, many jet-labeling schemes that are used in practice have been
optimized based on a particular model (e.g., Pythia), which may introduce inconsistencies when applying the
very same method to other generators.
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shower evolution, including the initial hard scattering process. This ‘max-pT’ the shower
evolution, including the initial hard scattering process. This ‘max-pT’ prescription is a
variant on the initiating parton prescription above (see further discussion in ref. [55]4).
It differs from the initiating parton by a calculable amount in a LL shower [36] and is
based on the same (naive) assumption that the parton-shower history is meaningful.”5

• “An eikonal [(from Greek εἰκών meaning “image”)] line with baryon number 1/3 and
carrying triplet color charge. This is another semi-classical definition that attempts
to use a well-defined limit of QCD to define quarks in terms of light-like Wilson lines.
Philosophically, this is similar to the parton-shower picture, with a similar concern about
how to extrapolate this definition away from the strict eikonal limit.”

• “A parton-level jet object that has been quark-tagged using an IRC-safe flavored jet
algorithm. This is the strategy adopted in Ref. [56]. While this definition neglects the
impact of hadronization, it does allow for the calculation of quark jet cross sections at all
perturbative orders, including quantum corrections.”

The upcoming definition of quark and gluon jets changes the perspective and tries to
provide a description based on the respective process. In a nutshell, the method utilizes a
feature of certain processes that allow (within certain limits in phase space) a factorization
of short-distance from the long-distance, non-perturbative fragmentation, which allows for a
definition of quark and gluons in terms of observables based on jet grooming.

• “A quark operator appearing in a hard matrix element in the context of a factorization
theorem.This is similar to the attitude taken in ref. [54]. In the context of a well-defined
cross section measurement, one can (sometimes) go to a limit in phase space where
the hard production of short-distance quarks and gluons factorizes from the subsequent
long-distance fragmentation. This yields a nice (gauge-covariant) operator definition of
a quark jet, which can be made precise for observables based on jet grooming [57, 58].
That said, even if a factorization theorem does exist for the measurement of interest, this
definition is potentially ambiguous beyond leading power.”

Last but not least, the next definition (which is relevant for the studies presented in this
thesis) aims to identify quarks and gluons in terms of the phase space given by the hadronic
cross section of some process, i.e., there is no aspiration to attribute the flavor of the jet to
some object at parton level. It is important to appreciate that this approach does treat quarks
and gluons as an adjective rather than a substantive – as it was the case for most of the
other definitions – because it assigns a “likeness” (“quark-likeness” and “gluon-likeness”) to
each jet according to its location in phase space instead of forcing a “hard”(=binary) label on
a jet-on-jet basis. Of course, in order for this approach to provide reasonable results, phase
space regions that are sufficiently (a mathematically exact criterion will be provided in the

4 The following references correspond to the actual bibliography entries present in Ref. [169].

[36] M. Dasgupta, F. Dreyer, G.P. Salam and G. Soyez, Small-radius jets to all orders in QCD, JHEP 04
(2015) 039 [arXiv:1411.5182]

[54] J. Gallicchio and M.D. Schwartz, Pure Samples of Quark and Gluon Jets at the LHC, JHEP 10
(2011) 103 [arXiv:1104.1175]

[55] A. Buckley and C. Pollard, QCD-aware partonic jet clustering for truth-jet flavor labeling, Eur.
Phys. J. C 76 (2016) 71 [arXiv:1507.00508]

[56] A. Banfi, G.P. Salam and G. Zanderighi, Infrared safe definition of jet flavor, Eur. Phys. J. C 47
(2006) 113 [hep-ph/0601139]

[57] C. Frye, A.J. Larkoski, M.DṠchwartz and K. Yan, Precision physics with pile-up substructure beyond
the next-to-leading logarithm, JHEP 07 (2016) 064 [arXiv:1603.09338]

5The above-described method that determines the flavor of the jet based on the PDG particle number of
the highest-pT constituent inside of a jet is commonly used by many analysis at the ATLAS experiment. It
provides the advantage of being infrared safe (by construction) because the additional emission of a soft parton
does not change the flavor of the jet abruptly. However, it is not collinear safe as, for instance, the additional
splitting of a gluon into two quarks g → qq̄ would result in the jet being identified as initialized by a quark.
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upcoming sections) enriched by either quark or gluon jets must exist in order to extract enough
information of the respective jet flavor. The last part of the statement appears like a circular
argument: to get a well-defined definition of quark and gluon jets in terms of a hadronic cross
section measurement, regions in phase space that are “adequately” pure in either of those two
categories must exist; however, the definition of those enriched regions in phase space are
usually determined based on an intuitive and (possibly) once again “ill”-defined understanding
of the nature of quarks and gluons. This problem is unavoidable to a certain degree. But,
given a minimal set of assumptions regarding our understanding of quarks and gluons as the
fundamental quanta of QCD as well as an appropriate class of observables, the method at hand
still yields a well-defined, meaningful definition of quark- and gluon-like jets (at distribution
level) while avoiding most of the issues attributed to the other schemes mentioned above.

• “A phase space region (as defined by an unambiguous hadronic fiducial cross section
measurement) that yields an enriched sample of quarks (as interpreted by some suitable,
though fundamentally ambiguous, criterion). Here, the goal is to tag a phase space region
as being quark-like, rather than try to determine a truth definition of a quark. This
definition has the advantage of being explicitly tied to hadronic final states and to the
discriminant variables of interest. The main challenge with this definition is how to
determine the criterion that corresponds to successful quark enrichment. For that, we
have to rely to some degree on the other less well-defined notions of what a quark jet is.”

Fig. 7.3: Summary of the different approaches to define quark and gluon jets from ill- to
well-defined interpretations based on the original slide from the June 10, 2015 summary
report of the quark/gluon Les Houches subgroup Ref. [23] shown in Figure (Fig.) IV.46.

The last definition deserves a little more attention because it forms the basis for the
interpretation of quark and gluon jets studied this analysis. As it was the case before, the
major part of the content of this paragraph was adopted from Ref. [23].

The idea is to unambiguously measure the hadronic cross section of some process of interest
(which results in a mixed sample of quark- and gluon-initialized jets) with respect to some jet
substructure observable OJSS that acts as a quark-gluon discriminant with a certain efficiency.
In general, the resulting differential cross section dn+1σ/dOJSSdnV , whereby dOJSSdnV denotes
the total phase space volume, does not correspond to the probability of the jet being a quark
or a gluon because the samples are mixtures of both as mentioned already. The probability
(distribution) of a jet J with an observed JSS value OJJSS being initialized by a quark or a
gluon Pq/g(OJJSS) can not be determined based on the cross section measurement of a single
sample of quark and gluon jets alone. To provide enough information to extract the underlying
target distributions, the aforementioned (differential) cross section measurement must be
supplemented by a second measurement of the same object but based on a sample consisting
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of a different mixture of quarks and gluons.
Regarding the substructure observable OJJSS, it should be possible to define regions in

phase space that are enriched (not necessarily pure!) by either quarks or gluons. Depending
on the exact form of OJSS, but without loss of generality, one can construct the quark-gluon
discriminant such that in the limit of its support, supp (OJSS), the distribution is dominated
(ideally pure) in one of the two categories, e.g.,

OJSS
“quark−like′′−−−−−−−−→ min supp (OJSS) , (7.1)

OJSS
“gluon−like′′−−−−−−−−→ max supp (OJSS) . (7.2)

Of course, this interpretation assumes that there is a rough understanding of how quarks and
gluons (as the fundamental particles of QCD) manifest itself in an experiment, which leads back
to the (supposedly) circular argument mentioned above. However, the statements according to
Equation 7.1 do not require a precise definition of the “true” nature of quarks and gluons, but
just a conjecture regarding their signature in an experiment. For instance, quarks and gluons
correspond to the fundamental and adjoint representation, respectively, of the SU(3) symmetry
group, which gives rise to different eigenvalues of the Casimir operator that can be considered
as different color charges assigned to quarks and gluons. This simple fact already implies
different experimental signatures expected for quark- and gluon-initialized jets. The number of
constituents nconst inside a jet, for instance, is proportional to the number of emissions of an
accelerated color charge. Because the color factor of gluons is greater than the color factor
of quarks, gluon jets (independently of the precise definition of this object!) come with more
emissions on average and hence more constituents, i.e., Enconst∼Pg [nconst] > Enconst∼Pq [nconst].
Consequently, due to energy-momentum conservation, one also expects jets to be broader on
average if initialized by a gluon because the same energy budget (which is on average identical
in case of quarks and gluons) is distributed over a larger number of particles. Those are just
two examples of a large amount of possible quark-gluon discriminators available that do not
require a precise definition of those objects. The quintessence of this paragraph is that there is
no need for a precise definition of quarks and gluons in order to define regions in phase space
enriched by jets initialized by the fundamental quanta of QCD.

Finally – to emphasize again –, the essence of this definition is to define quarks and gluons
in terms of the hadron-level cross section with respect to a discriminant variable that is sensitive
to the different representations of the QCD symmetry group. This means in particular that
there is no effort to assign a “hard“ (i.e., “must be either a (light) quark or a gluon”) label to
each jet in an event. The actual interpretation of the measurement in terms of quark-like and
gluon-like features is done on distribution level rather than on individual jets that are present
in an event.

7.2 An Operational Definition of Quark and Gluon Jets
The previous section introduced several possibilities of defining quark and gluon jets from ill-
to well-defined concepts. One insight was that in order to obtain a well-defined definition, the
notion of classifying jets on a jet-on-jet basis must be abandoned in favor of an approach that
interprets the result in terms of quark- and gluon-likes features with regard to the hadronic
cross section, i.e., at the level of individual distributions, making it consistent with quantum
mechanics.

This section directly connects to the foregoing one by introducing the actual definition
of quark and gluon jets that thenceforth will be used in this analysis; it also provides the
theoretical foundation for the measurement of quark and gluon fractions.

The path has already been – in broad terms – mapped out; the starting point of the
discussion leading towards the operational definition of quark and gluon jets is given by the
conceptional one, which – for the sake of completeness and lucidity – is repeated once more.

Definition 1 (Conceptual Definition of Quarks/Gluon Jets [23, 42]). A phase space
region (as defined by an unambiguous hadronic fiducial cross section measurement) that yields an
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enriched sample of quarks (as interpreted by some suitable, though fundamentally ambiguous criterion)

The advantages and disadvantages of Definition 2 was already discussed at length in Section
7.1.2. The aim now is to convert this conceptional definition (“conceptional” since it does not
provide clear instructions on how to apply this picture of quarks and gluons in practice) into
an operational6 recipe, which can be used in an actual analysis.

To arrive at an operational definition, this paragraph starts by reflecting on the basic
questions on how a final cross section measurement consists of contributions from (light) quarks
and gluons.

Consider two samples of hadronic jets (i.e., a proper set of jets that provide the basis for
the (multi-)differential cross section measurement) given by

Mk
i :=

{
J ∈ R(1,3) |Φi(J) ∧ pJT ∈ [pmin,k

T , pmax,k
T ]

}
⊂ R(1,3), (7.3)

whereby Φi with i ∈ {1, 2} denotes a (logical) predicate that may correspond to two processes
or two different selections with the same process and k ∈ N denoting the kth (histogram) bin of
transverse momentum such thatMi =

⋃
k∈NM

k
i gives the full ith mixture of the measurement7.

Furthermore, the mixtures Mk
i are mutually disjoint, meaning, Mk

i ∩Mk
j = ∅ if i 6= j. The

two samples M1 and M2 correspond to two mixtures of quark and gluon jets8, meaning that
the fractions of quark- and gluon-initialized jets in the two samples fM1/2,k

q/g (fM1,k
q/g 6= fM2,k

q/g )
are different.

The basic assumption of the operational definition is that the cross section PMi(OJSS) :=∫
dVidn+1σ/dnVidOJSS that has been reconstructed based on the ith sample of jets is a

mixture of contributions from quark and gluon jets according to

P kMi
(OJSS) = f

Mk
i

q P kq (OJSS) + f
Mk
i

g P kg (OJSS), (7.4)

with P kq/g(OJSS) being the distributions related to quarks and gluons in the kth transverse
momentum bin over the JSS variable OJSS that are supposed to be extracted. By assumption,
there are only two categories: (light) quarks and gluons; hence, fMi

q + fMi
g = 1.

This decomposition seems very plausible and reasonable, but it is not unproblematic not
to mention unreserved valid. One problem is that this assumption ignores the effect of the
already mentioned sample dependence which states that quark and gluon jets are not universal,
i.e., quark/gluon jets from different processes may differ fundamentally. In the context of this
study, this problem is mostly avoided by solely dealing with jets of the same process (multijet
event production).

The objective of the operational definition is to extract the quark/gluon fractions fM
k
i

q/g

as well as the underlying distributions P kq/g(OJSS). According to Equation 7.4, this problems
appears to be ill defined as the resulting linear system of (two) equations is underconstrained
(four unknowns). Usually, the additional information that is needed to solve Equation 7.4 is
inferred from theory or simulation by estimating the quark/gluon fractions or by extracting
templates from Monte Carlo (e.g., Pythia). In the operational definition of quark and gluon
jets, however, no information from simulation is supposed to be used. This problem is addressed
by an additional constrain that must be fulfilled by the observable OJSS, which limits the space
of possible JSS variables that can be used in combination with the operational definition of

6According to W. Edwards Deming’s book “The New Economics: For Industry, Government, Education”
“An operational definition is a procedure agreed upon for translation of a concept into measurement of some
kind[.]“ [170].

7Don’t be confused; this is just a smart ass’ way of saying that there are two different processes/mixtures
of jets (like, for instance, MQCD and MZ+jet) or, like it is done in this analysis, two sets defined by a selection
with different efficiencies in quark and gluon jets (like, for instace, Mcentral and Mforward). We just need two
mixtures of jets that differ wrt. their composition of quarks and gluons.

8In the scope of this analysis, the two mixtures always refer to different mixtures of quark and gluon jets.
However, the concept can easily be adopted to other processes that fulfill the basic assumptions of the method
outlined in this section.
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quark and gluon jets.
To gain an understanding of the additional property of OJSS, consider the classification

power between quarks and gluons provided by the two distributions P kq/g(OJSS). Accord-
ing to the Neyman-Pearson lemma, the optimal classifier statistics for discriminating two
categories is given by their (log-)likelihood ratio Lq/g(OJSS) := log

(
P kq (OJSS)/P kg (OJSS)

)
(the logarithm just represents a monotonic transformation and will be ignored in the fol-
lowing). A corresponding likelihood ratio can be constructed for the two different mixtures
LM1/M2

(OJSS) := log
(
P kM1

(OJSS)/P kM2
(OJSS)

)
that gives the optimal classifier statistic be-

tween M1 and M2 (those objects can actually be measured!). Equation 7.4 (the ratio of P kM1

and P kM2
) can now be expressed in terms of Lq/g and LM1/M2

, which yields the following
expression as easily verified

LkM1/M2
(OJSS) =

P kM1
(OJSS)

P kM2
(OJSS)

=
f
Mk

1
q Lkq/g(OJSS) + f

Mk
1

g

f
Mk

2
q Lkq/g(OJSS) + f

Mk
2

g

, (7.5)

whereby, once again, the likelihood ratios are determined for each pT-bin for which the
quark/gluon fractions and the underlying distributions are supposed to be extracted. The
derivative of Equation 7.5 with respect to Lkq/g is given by

∣∣∣∂Lk
q/g
LkM1/M2

∣∣∣ =
f
Mk

1
g f

Mk
2

q − fM
k
1

g f
Mk

2
g(

f
Mk

2
q Lkq/g + f

Mk
2

g

)2 , (7.6)

which implies that the LkM1/M2
is a monotonic function of Lkq/g provided that the fractions

are different fM
k
1

g 6= f
Mk

2
g . Here it can already been seen that it is very important for the two

samples of jets being different mixtures (with different fractions) of quark and gluon jets. The
monotony plays a crucial role which once again highlights the importance of the two samples
M1 and M2 to differ regarding their fraction of quark- and gluon-like jets. The conceptual
graph of (LkM1/M2

, Lkq/g) is shown in Figure 7.1, which nicely illustrates the monotonous course.
Figure 7.1 also shows the limits of Equation 7.6 that only depend on the fractions in the
different mixtures, which opens a window to break the degeneracy present in Equation 7.4

lim
Lk
q/g
→max

LkM1/M2

(
Lkq/g

)
=
f
Mk

1
q

f
Mk

2
q

, (7.7)

lim
Lk
q/g
→min

LkM1/M2

(
Lkq/g

)
=
f
Mk

1
g

f
Mk

2
g

. (7.8)

This is an interesting first result. Provided that the likelihood ratio of the two mixtures is known
(or at least approximated sufficiently well), the entire substructure feature space was mapped to
a single number that can be used to determine an optimal (according to the Neyman-Pearson
lemma) boundary in phase space to identify regions enriched in quark- and gluon-initialized jets.
So far, however, this criterion only exists hypothetically because there is now procedure yet that
describes a method to identify the enriched regions besides the fact that they are given by some
selection cut on Lkq/g or equivalently(!) LkM1/M2

. The connection to the targeted operational
definition of quark and gluon jets lies in the insight of Lkq/g being an optimal classifier that can
be used to determine regions in phase space that are (almost) pure in either quarks or gluons
given by the extreme points of Lkq/g. Provided that the jet substructure observable OJSS results
in regions in phase space Ukq (OJSS), Ukg (OJSS) ⊂ supp(P k(OJSS)) with Ukq ∩ Ukg = ∅ that are
pure in quarks and gluons, which implies supp(P kq/g(U

k
g/g)) = ∅ and supp(P kq/g(U

k
g/q)) 6= ∅. In

those pure regions of phase space, the likelihood must vanish Lkq/g(U
k
g ) = 0 and Lkq/g(U

k
q ) = 0,

which is the equivalent of the statement that the jet substructure observable OJSS is sufficiently
powerful to result in probability distributions P kq/g(OJSS) that are mutually irreducible.

Because the concept of mutually irreducibility is absolutely crucial, the following theorem
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(a)

JSS observable quantiles

Increasing pT

(b)

Plot 7.1: “The monotonic relationship between the mixed-sample log-likelihood ratio
[LkM1/M2

] and the quark-gluon log-likelihood ratio [Lkq/g] [...] for illustrative fraction
values [(left) and the mixed-sample log-likelihood ratio as a function of the observable
quantiles (right)]. The relationship between the maximum and minimum values of the
mixed-sample and quark/gluon log- likelihoods [...] is visually evident in that the red curve
horizontally asymptotes to the two black dashed curves. [...]” (adapted and modified
from Ref. 42, Fig. 1, p. 6).

provides a righteous definition of this statement in mathematical terms before continuing the
path to the operational definition of quark and gluon jets.

Theorem (Mutual irreducibility). Two probability density functions P kq (OJSS) and P kg (OJSS)
defined on the support OJSS are mutual irreducible iff ∃!λ ∈ [0, 1) with

P kg (OJSS) = λP kq (OJSS) + (1− λ)P k,′(OJSS), (7.9)

with P k,′(OJSS) being some probability function.

As it will be discussed later, there is a certain class of observables in QCD that result in
mutual irreducible distributions according to Theorem 7.2.

To summarize: the regions in phase space enriched by quark/gluon jets are given by
the extreme points of the likelihood ratio Lkq/g of the underlying quark/gluon probability
distributions. According to Equation 7.4, the likelihood ratio of the quark/gluon distributions
and the corresponding likelihood ratio of probability distributions (i.e., the measured differential
cross section) of the two mixtures LkM1/M2

are monotonically related to each other, which
especially implies that their extreme points are related as well. At this stage of the derivation,
it is beneficial to introduce a new quantity – the so-called reducibility factor of two distributions

κAB = inf
O

PA(O)

PB(O)
, (7.10)

which corresponds to the infimum (in practice, the continuous probability distributions are
approximated by binned histograms, in which case the infimum turns into a minimum) of the
likelihood ratio of two probability distributions PA and PB . The value of the observable OJSS

that satisfies the infimum(minimum) operation is referred to as the anchor (bin)

O |̂ := arg inf
O

(min
O

)
PA(O)

PB(O)
, (7.11)

which plays a crucial role in the extraction of the underlying quark/gluon distributions as well
as the fractions as will be discussed later. The anchor bins can be considered as the region
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(bin) in phase space that is assumed to be (almost) pure in either quarks or gluons.
The requirement of mutual irreducibility can now be expressed in terms of the reducibility

factors according to Equation 7.10.

Theorem (Mutual irreducibility). Two probability density functions P kq (OJSS) and P kg (OJSS)
defined on the support OJSS are mutual irreducible iff the reducibility factors κqg and κgq
simultaneously vanish

κqg = inf
OJSS

P kq (OJSS)

P kg (OJSS)
= 0, (7.12)

κgq = inf
OJSS

P kg (OJSS)

P kq (OJSS)
= 0. (7.13)

The equivalence of Theorem 7.2 and 7.2 is directly apparent by substituting P kg (OJSS) =

λP kq (OJSS) + (1 − λ)P k,′(OJSS) into the definition of the reducibility factor and requiring
mutual irreducibility, i.e., ∃!λ ∈ [0, 1).

The motivation for introducing the reducibility factors κ is that the reducibility factors of
the two mixtures (which can directly be measured at distribution level!) are directly related
to the quark/gluon fractions in Equation 7.4. This means, that the degeneracy of the system
of linear equations is resolved by the additional requirement of the jet substructure variable
OJSS resulting in distributions that are mutual irreducible. This can be seen by applying the
infimum function to both sides of Equation 7.5 leading to

κkMiMj
= inf
OJSS

LkM1/M2
(OJSS) = inf

OJSS

f
Mk
i

q Lkq/g(OJSS) + f
Mk
i

g

f
Mk
j

q Lkq/g(OJSS) + f
Mk
j

g

, (7.14)

with κkMiMj
being the reducibility factors of the kth transverse momentum bin. Assumed that

the first mixture M1 is quark-enriched and M2 is gluon-enriched, Equation 7.14 can be entirely
expressed in terms of reducibility factors at the level of distributions by

κkM1M2
=
f
Mk

1
q κkqg + f

Mk
1

g

f
Mk

2
q κkqg + f

Mk
2

g

, κkM2M1
=
f
Mk

2
q + f

Mk
2

g κkgq

f
Mk

1
q + f

Mk
1

g κkgq

, (7.15)

whereby the infimum operation was applied to the nominator and denominator using the
monotony of LkM1/M2

with respect to Lkq/g.
Now, putting things together. If, and only if, the underlying quark gluon distributions are

mutual irreducible, i.e., κkqg = 0 and κkgq = 0 (see Theorem 7.2), the fraction of quark fM
k
i

q and

gluon fM
k
i

g jets in the different samples are directly given by the measured reducibility factors
of the two mixtures κkMiMj

according to

κkM1M2
=
f
Mk

1
g

f
Mk

2
g

, κkM2M1
=
f
Mk

2
q

f
Mk

1
q

, (7.16)

which can finally be solved for the unknown fractions given the measured values of the
reducibility factors of the two different mixtures and taking into account that only two categories
(quarks and gluons) are assumed, which implies the additional constrain f

Mk
i

g + f
Mk
i

q = 1.
Solving the Equations 7.22 for the quark fractions gives

f
Mk

1
q =

1− κkM1M2

1− κkM1M2
κkM2M1

, f
Mk

2
q = f

Mk
1

q κkM2M1
, (7.17)

which is the desired result. Applying those quark/gluon fractions to Equation 7.4 also allows
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to extract the underlying distributions of quarks and gluons in terms of the reducibility factors

P kq (OJSS) =
P kM1

(OJSS)− κkM1M2
P kM2

(OJSS)

1− κkM1M2

, (7.18)

P kg (OJSS) =
P kM2

(OJSS)− κkM2M1
P kM1

(OJSS)

1− κkM2M1

, (7.19)

which finally solves the problem according to Equation 7.3.
At this point – before closing this section by quoting the final, operational definition of

quark- and gluon-initialized jets –, it is appropriate to pause for a moment and reflect briefly
on what has just been said. Apparently – almost miraculously –, the initially underconstrained
problem 7.4 becomes solvable according to Equations 7.17 and 7.19 in a solely data-driven
manner. This may be very surprising at first; but, closely following the individual steps of
the derivation above illustrates that the additional information needed in order to obtain a
solvable system of equation comes from the further constrain on the quark/gluon discriminant
to yield probability distributions that are mutually irreducible. Without this requirement,
the quark/gluon fractions (and consequently the underlying distributions as well) can not be
extracted because the quark/gluon reducibility factors (which are experimentally inaccessible)
do not vanish as can be seen in Equation 7.15. Those reducibility factors can be interpreted in
the context of perturbative QCD, which is the content of the subsequent section. However,
before the attention will be directed at the interpretation of the reducibility factors in terms of
some concrete jet substructure observables (relevant for this analysis), this section closes by
condensing all the insights just acquired into the final operational definition of quark and gluon
jets, which provides the foundation of the measurement of quark/gluon fractions presented in
this thesis.

Definition 2 (Operational Definition of Quarks/Gluon Jets [42]). Given two samples
M1 and M2 of QCD jets at a fixed pT [bin k ∈ N] obtained by a suitable jet-finding procedure, taking
M1 to be “quark-enriched” compared to M2 [(which is “gluon-enriched”)], and a jet substructure feature
space O, the quark and gluon jet distributions are defined to be:

P kq (OJSS) =
P kM1

(OJSS)− κkM1M2
P kM2

(OJSS)

1− κkM1M2

, (7.20)

P kg (OJSS) =
P kM2

(OJSS)− κkM2M1
P kM1

(OJSS)

1− κkM2M1

; (7.21)

accordingly, the fractions of quarks(gluons) in the two mixtures are given by

κkM1M2
=
f
Mk

1
g

f
Mk

2
g

, κkM2M1
=
f
Mk

2
q

f
Mk

1
q

, (7.22)

where κkM1M2
, κkM2M1

, P kMi(OJSS) are directly obtainable from M1 and M2.

As immediately apparent, the operational definition only makes a statement of quarks and
gluons at the level of the measured hadronic cross section, i.e., it does not attempt to define
quarks and gluons at the level of individual jets in the event, but rather it terms of well-defined
probability distributions. That is in harmony with the conceptional Definition 2, which defines
quark and gluon jets by enriched regions of phase space. Furthermore, as stated in Ref. [42],
the interpretation of quark- and gluon-initialized jets also is in accordance with QFT, which
only allows to derive theoretical predictions by probability distributions like cross sections
rather than making predictions for single events. By abandoning the aspiration to assign/force
a label to each jet in an event, one obtains a well-defined interpretation of quarks and gluons at
distribution level; however, there are situations where a jet-on-jet label is indispensable like, for
instance, the already mentioned case where the jet sample is used to train a neural network in
a supervised fashion. In those circumstances, the operational Definition 2 can also be used to
assign a per-jet label provided that the underlying distributions of quark- and gluon-initialize
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jets are already known. For this, the JSS observable OJSS) (for which the underlying quark
and gluon distributions have been extracted) must be reconstructed for each jet J

ωJg =
fM

k

g P kg (OJSS)

fMk

q P kq (OJSS) + fMk

g P kg (OJSS)
∈ [0, 1]. (7.23)

Using Equation 7.23 result in an additional event weight (which must be taken into account when
populating the histograms) that indicates the probability of the current jet being initialized
by a gluon (or quark ωJq = 1− ωJg ). Consequently, using the operation definition to assign a
per-jet label does not correspond in a binary decision, but rather accounts for the fact that in
some circumstances such a choice is neither possible nor reasonable and therefore assigns a
“soft label“ in terms of a weight.

7.3 Mutual Irreducibility in Light of QCD
The previous section emphasized the significance of the quark/gluon discriminants to result
in mutual irreducible distributions. In case of the observable fulfilling this property, the
extracted underlying probability distributions of the underlying classes as well as the fractions,
respectively, are guaranteed (in the limit of the quality at which the underlying assumptions are
fulfilled) to correspond to quarks and gluons (see Equation 7.15). In this section, the concept
of mutual irreducibility is further investigated and explained through concrete examples of
some jet substructure observables in QCD. The goal is to construct categories of observables
that are mutual irreducible and hence suited for the purpose of this analysis.

As a reminder, the definition of mutual irreducibility is given in Theorem 7.2. To put the
definition into words, mutual irreducibility implies that the underlying probability distributions
of quarks and gluons P kq/g(OJSS) over a jet substructure variable OJSS are not a mixtures of
each other given another (arbitrary) probability distribution.

As it was shown in the previous section, a necessary (and sufficient condition) for an
observable to result in mutual irreducible distributions is that the associated reducibility factors
κkqg = κkqg = 0 vanish. This rather abstract condition can be translated into statements about
jet substructure observables in QCD by recalling that vanishing reducibility factors imply that
the current feature space (in which the jet is represented) results in phase space regions that
are (sufficiently) pure either in quark or gluon jets. Hence, mutual irreducibility is a property
of jet-related observables that encodes information on whether the quark-gluon discriminator is
suitably powerful to result in sufficiently enriched regions in phase space for the extraction of
the underling quark/gluon distributions and fractions to succeed or not. This is a qualitative
statement; however, mutual irreducibility can be checked for jet substructure observable
explicitly provided that analytic calculations exists. In the limit of Leading-Logarithmic (LL)
calculations, mutual irreducibility is guaranteed for all jet observables that count the number of
emissions inside of a jet 9. The reason for all substructure observables that count the number of
emissions inside of a jet being mutual irreducible at LL is due to the identical emission profile
which is why the probability density only differs by the color factors (CF = 4/3 and CA = 3)
between quark- and gluon initialized jets [29]. This property results in counting-observables
being (more or less) approximately Poission distributed (because the mean and the variance
of the distribution scales with the number of the emissions inside the jet) for which mutual
irreducibility follows immediately.

The classes of mutual and non-mutual irreducible substructure observables (at LL) can be
generalized further by studying their properties at LL (the following content is based on the
discussion in Section 3 (“Leading-Logarithmic Analysis”) of the paper “Casimir Meets Poisson:
Improved Quark/Gluon Discrimination with Counting Observables” by Christopher Frye et al.

9That is one of the main reasons for measuring the inclusive multi-differential cross section of dijet events,
among other variables, with respect to the Soft Drop multiplicity nSD for different configurations of the Soft
Drop algorithm because it results in mutual irreducible distributions of the underlying quark/gluon distributions.
This will be proven explicitly in Chapter 11.1.4 by means of a LL calculation of this observable. The conclusion,
i.e., counting-based observables being mutual irreducible at LL, is anticipated unproven at this point.
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λκβ =
∑
j∈J

zκi θ
β
i (7.27)

Fig. 7.4: “Visualization of the space of observables λκβ , which includes several well-known
jet observables used in quark/gluon discrimination[.]” (adapted and modified from Ref.
24, Fig. 1, p. 3).

[26]).
As heuristically motivated – a rigorous derivation and prove is provided later in Chapter

11.1.4 –, counting-based observables are approximately Poisson distributed Pq/g(ncount) =

µ(CF/A)ncounte−µ(CF/A)/ncount!, with the mean of the distribution µ(CF/A) depending on the
color factor. Applying the definition of the reducibility factors according to Equation 7.10
yields

κqg = inf
ncount

Pq(ncount)

Pg(ncount)
= inf
ncount

[
µ(CF)

µ(CA)

]ncount

eµ(CA)−µ(CF) = 0, (7.24)

κgq = inf
ncount

Pg(ncount)

Pq(ncount)
= inf
ncount

[
µ(CA)

µ(CF)

]ncount

eµ(CF)−µ(CA) = eµ(CF)−µ(CA) ≈ 0, (7.25)

whereby the first expression vanishes because CF/CA < 1 and ncount ∈ N. The second
reducibility factor does not vanish exactly, but it is exponentially suppressed by the area, Π, of
the emission plane µ(CF)− µ(CA) ∝ (CF − CA)Π.

The next class of substructure observables are those defined by the sum over the jet’s
constituent four-momenta (or derived quantities) according to

f({pj}j∈J) =
∑
j∈J

f(pj), (7.26)

with j being one arbitrary constituent in the reconstructed jet J . There is a large variety of
quark/gluon discriminants that are of the form of Equation 7.26, like, for instance, the family
of generalized angularities λκβ =

∑
j∈J z

κ
i θ

β
i [169, 171], whereby κ and β control the momentum

and angle weighting. Depending of the configuration of (κ, β), Equation 7.26 corresponds to
different observables (see Figure 7.4): (0, 0) ∼= constituent multiplicity (see counting-based ob-
servables), (2, 0) ∼= “transverse momentum”, (1, 1) ∼= jet width or broadening, (1, 2) ∼= mass
etc. Going back to Equation 7.26, at LL, emissions are uniformly distributed in the plane
spanned by (log 1/θ, log 1/z) (the bulk commonly observed in the Lund jet plane is due to
hadronization effects), with a constant density. In the strongly-ordered limit and assuming f
to be linear in energy (κ = 1 in Equation 7.26), the lowest analytic prediction at LL is given
by the dominant emission in the jet∑

j∈J
f(pj)

LL−−→ max
j∈J

f(pj), (7.28)

in which case the probability for the observable satisfying f(pj) < fmax being equal to the
probability of not having an emission(=Sudakov form factor, see Chapter 2.4) with f(pj) > fmax,
i.e.,

Σi(fmax) :=

∫
[0,fmax]

df p(f) = e−
2αSCi
π A(fmax), (7.29)
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with A(fmax) =
∫
f(t,θ)>fmax

dθ
θ

dz
z denoting the excluded (no emissions) area in the Lund plane

and 2αSCi/π being the constant density in phase space due to the aforementioned uniformly
distributed emissions. Calculating the cumulative distributions according to Equation 7.29 for
quarks and gluons, one find the following “famous” relation

Σg = [Σq]
CA
CF = [Σq]

9
4 , (7.30)

which is generally known as Casimir scaling. This simple calculations reveals a property of
Sudakov-distributed observables (observable with a Sudakov form factor at LL accuracy), i.e.,
their discrimination power with respect to quarks and gluons as measured by the ROC curve
(see Equation 7.30) is generally limited by Casimir scaling, which states that the efficiency
of gluon identification is limited by εCA/F

q . Based on Equation 7.30, the upper limit on the
discrimination power of an observable “suffering” from Casimir scaling can be computed based
on the AUC according to AUCCasimir = 1−

∫
[0,1]

dΣq Σ
9
4
q ≈ 0.70, which is an upper limit as

higher-order corrections reduce classification performance.
With the quark-gluon distributions related by Casimir scaling, the reducibility factors for

Sudakov-distributed observables can be simple calculated

κqg = inf
f

Pq(f)

Pg(f)
=
CA

CF
inf
f

Σq(f)
1−CA

CF =
CA

CF
, (7.31)

κgq = inf
f

Pg(f)

Pq(f)
=
CA

CF
inf
f

Σq(f)
CA
CF
−1

= 0, (7.32)

whereby the factor CA/CF is due to the normalization of the probability distributions as the
cumulative distribution and the probability density are related by Pq/g(f) = ∂fΣq/g(f).

As obvious from Equation 7.31, the irreducibility factors do not nearly vanish simultaneously
– not even exponentially as it was the case for the counting-based observables that are not
dominated by the leading emission. Therefore, all observables in accordance with Equation
7.26 do not result in mutual irreducible probability distributions and therefore can not be used
to extract the underlying fractions of quarks and gluons based on the operational Definition 2.
The problem of non-mutual irreducible substructure variables can be “solved” or “bypassed”
by making use of the fact that the extracted fractions (based on mutual irreducible variables
of course) are universal, i.e., once the quark/gluon fractions are known, they can be used to
resolve the degeneracy in Equation 7.4 and the underlying distributions with respect to a
non-mutual irreducible observable can be calculated according to Equation 7.19. An alternative
approach (which will be further explained in one of the upcoming sections) is very similar,
but relies on the simultaneous measurement (the joint distribution) of a variable that is
mutual irreducible and another one that is non-mutual irreducible. In this case, obtaining the
underlying quark/gluon distributions of the non-mutual irreducible observable is simply given
by a reweighting procedure, which is explained in great detail in Appendix 7.4.

7.4 Extract Topics for Non-Mutual Irreducible Observables

Since mutual irreducibility for Pq/g(x) with PMa(x) = f
(a)
q Pq(x) + f

(a)
g Pg(x) is guaranteed

(x could be, for instance, the constituent multiplicity nconst, the SD multiplicity nSD or the
NN-score zNN), the jet topics PT1(x), PT2(x) (to adopt the language of the previous section)
and the corresponding fractions can be extracted. To get the quark/gluon distributions for
an observable y that does not lead to mutual irreducibility (like, e.g., the jet mass or the
transverse momentum of the jet), the idea is to measure the joint distributions (for instance a
multi -differential cross section)

PMa
(y, x), (7.33)

whereby Ma with a ∈ {1, 2} denotes different statistical mixtures, to extract the topics PT1(y),
PT2(y) in a simultaneous measurement of x and y, which is associated with the underlying
quark/gluon probability distributions over the respective jet substructure observable.
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The first step is to express the probability distribution P (y) as a marginal distribution over
a “latent” variable x

P (y) =

∫
dxP (y, x), (7.34)

with P (y, x) being the joint distribution marginalized over the two different statistical mixtures
P (y, x) =

∑
Ma

PMa(y, x) necessary for topic extraction. Factorizing the joint distribution
according to Equation 7.34 yields

P (y) =

∫
dxP (y|x)P (x), (7.35)

with P (x) =
∑
Ma

PMa
(x) and PMa

(x) = f
(a)
q Pq(x) +f

(a)
g Pg(x) whereby the fractions f (a)

q/g and
topics Pq/g(x) are known because x is by definition mutually irreducible. The latter point is
crucial because the quark/gluon fractions – once derived based on an observable that is mutual
irreducible – are independent regardless of the respective observable – they are universal. The
distribution P (x) of the observable x, leading to mutual irreducibility, can be reexpressed in
terms of the topics and the quark/gluon fractions

P (x) =
∑
a

PMa
(x) (7.36)

=
∑
a

{
f (a)
q Pq(x) + f (a)

g Pg(x)
}

(7.37)

= f (1)
q Pq(x) + f (1)

g Pg(x) + f (2)
q Pq(x) + f (2)

g Pg(x) (7.38)

= Pq(x)
(
f (1)
q + f (2)

q

)
+ Pg(x)

(
f (1)
g + f (2)

g

)
(7.39)

= 2Pq(x)fq + 2Pg(x)fg, (7.40)

whereby the total fractions fq := (f
(1)
q +f

(2)
q )/2 and fg := (f

(1)
g +f

(2)
g )/2 have been introduced.

The very same can be done for P (y) according to

P (y) = 2Pq(y)fq + 2Pg(y)fg. (7.41)

Using those results, Equation 7.41 can be written as

Pq(y)fq + Pg(y)fg =

∫
dxP (y|x) {fqPq(x) + fgPg(x)} , (7.42)

whereby the additional factor of ‘2’ cancels. This equation can be factorized into two linear
independent terms

Pq(y)fq + Pg(y)fg =

∫
dxP (y|x) {Pq(x)fq + Pg(x)} , (7.43)

Pq(y)fq + Pg(y)fg =

∫
dxP (y|x)Pq(x)fq +

∫
dxP (y|x)Pg(x), (7.44)

which yields

fq

{
Pq(y)−

∫
dxP (y|x)Pq(x)

}
+ fg

{
Pg(y)−

∫
dxP (y|x)Pg(x)

}
= 0, (7.45)

whereby the clutched expressions have to vanish independently due to fq/g 6= 0 and fq 6= fg
(two different mixtures). This finally gives the two expressions for the quark/gluon distributions
for the non-mutual irreducible observable y

Pq(y) =

∫
dxP (y|x)Pq(x), (7.46)

Pg(y) =

∫
dxP (y|x)Pg(x). (7.47)

The derivation of the quark/gluon distributions of the observable y can be summarized by the
following statement.
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Corollary 0.1. Given that the topics Pg(x) and Pq(x) for the observable x that, by definition,
leads to mutual irreducible distributions, the two probability functions Pg(y) and Pq(y) for ‘any’
observable y are mutual irreducible too if

Pq/g(y) =

∫
dxP (y|x)Pq/g(x). (7.48)

Proof. The proof is done by contradiction. Assumed the two distributions Pg(y) and Pq(y)
with Pq/g(y) =

∫
dxP (y|x)Pg/g(x) are not mutual irreducible, i.e., ∃λ ∈ [0, 1] such that

Pg(y) = λPq(y) + (1− λ)P ′(y), (7.49)

with P ′(y) being some (arbitrary) probability function satisfying this condition. Using the
definition of Pg(y) and Pq(y) in terms of the joint distribution, it follows that

0 = Pg(y)− λPq(y)− (1− λ)P ′(y), (7.50)

=

∫
dxP (y|x)Pg(x)− λ

∫
dxP (y|x)Pq(x)− (1− λ)P ′(y), (7.51)

=

∫
dxP (y|x) {Pg(x)− Pq(x)λ} − (1− λ)P ′(y), (7.52)

=

∫
dxP (y|x) {Pg(x)− Pq(x)λ} − (1− λ)

∫
dxP (y|x)P ′(x), (7.53)

=

∫
dxP (y|x) {Pg(x)− Pq(x)λ− (1− λ)P ′(x)}︸ ︷︷ ︸

6=0

6= 0 (7.54)

The term in the brackets is guaranteed to not vanish because Pg(x) and Pq(x) are mutual
irreducible; hence, the mutual irreducibility of Pg(y) and Pq(x) follows immediately.

Extracting the “jet topics” (for non-mutual irreducible observables) based on a joint mea-
surement offers the advantage of easily propagating uncertainties from the unmixed cross
section (topics) onto the underlying quark/gluon distributions of the non-mutual irreducible
observable. However, one is not limited to a simultaneous, i.e., multi-dimensional measurement
in order to obtain “jet topics” for non-mutual irreducible observables. In fact, once the degen-
eracy in Equation 7.3 has been broken by extracting the quark/gluon fractions, quark/gluon
distributions can be measured for all observables provided that the phase space selection is
identical. The latter point is utterly important since even slight changes in the event selection
may result in considerable differences in the phase space and hence different fractions of quark-
and gluon-like jets. Therefore, if the event/jet selection changes, the quark/gluon fractions
must remeasured based on a mutual irreducible observable.

Given the “universal” quark/gluon fractions fM
k
α

i have been measured in some phase space
volume, the underlying quark and gluon distributions of any JSS observable (mutual as well as
non-mutual irreducible) are given by

P kg (OJSS) =
f
Mk

2
q P kM1

(OJSS)− fM
k
1

q P kM2
(OJSS)

f
Mk

1
q f

Mk
2

g − fM
k
1

q f
Mk

2
g

, (7.55)

P kq (OJSS) =
f
Mk

2
g P kM1

(OJSS)− fM
k
1

g P kM2
(OJSS)

f
Mk

1
g f

Mk
2

q − fM
k
1

g f
Mk

2
q

, (7.56)

provided the substructure variable was measured based on the same mixtures of jets.
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7.5. EXTRACT “JET TOPICS” – A STEP-BY-STEP INSTRUCTION

7.5 Extract “Jet Topics” – A Step-by-Step Instruction

This chapter introduced a data-driven method that is used to extract the underlying quark/gluon
(probability) distributions as well as the (universal) quark/gluon fractions of two disjoint mix-
tures of jets. The motivation and theoretical background of the procedure was explained
in great detail in Section 7.2 and a connection with probabilistic topic modeling from data
science was established in Section A. So far, the emphasis was to provide a sound mathematical
basis in terms of clear definitions and rigorous statements like, for instance, the importance of
mutual irreducibility and its interpretation within the framework of QCD (see Section 7.3).
This, however, may not be the ideal language for gaining intuition of how to apply this method
in a real-world measurement. Those who encounter the presented method for the very first
time might miss a clear presentation of the individual steps necessary to obtain quark/gluon
fractions and topics from the measurement of a hadronic jet cross section.

This section completes the chapter “Data-Driven Feature Extraction using Topic Modeling”
by providing a clean modus operandi based on a step-by-step instruction on how to extract
underlying quark/gluon features and fractions in a jet substructure measurement at hadron
colliders.

M1

M2

Two mixtures of jets with different quark/gluon frac-
tions The first step of the measurement is to define two mixtures
of jets (see, e.g., Equation 7.3) that results in two disjoint sam-
ples of jets with different fractions of quark- and gluon-initialized
jets. There are several ways to define different jet mixtures.

One option is to use two different processes that are known to
result in quark- and gluon-enriched phase spaces. For instance,
an obvious choice would be to select Z + jets (e.g., by triggering
on the decay products of the Z) to obtain a sample enriched by quarks and multijet events to
get a second mixture dominated by gluons. This works fine. However, using two processes is
a significant complication from an experimentalist’s point of view. Furthermore, mixing jets
from different processes introduces the aforementioned problem of sample dependence.

An alternative approach of obtaining two mixtures of jets (which is used for the measure-
ment presented in this thesis) is to use the very same process, but to introduce an additional
selection criterion that provides some sensitivity to quark and gluon jets. In this analysis,
this is done by measuring the relative dijet production rate for central(=“gluon-enriched”) and
forward(=“quark-enriched”) jets, which will be further elaborated later.

Measurement of the (multi-)differential cross section
Once the two jet samples of quark/gluon mixtures have been
defined, the (multi-)differential cross section with respect to
some (mutual irreducible) quark/gluon discriminant is measured
based on the two mixtures of jets defined the aforementioned
first step. After the cross section has been reconstructed (in
data and simulation), it is unfolded to particle level to correct
the measured spectra in data for the finite detector efficiency
as well as acceptance and resolution effects from the detector
(see Section 5). In this measurement, the dijet cross section is
simultaneously unfolded in central and forward region. This

procedure is repeated for several systematic variations to propagate uncertainties through
the detector that are translated into an uncertainty on the final “jet topics” as well as the
extracted quark/gluon fractions. After unfolding, the (multi-)differential cross section is at
hadron level (corrected for detector effects) and ready for the calculation of the reducibility
factors. Comment: This step basically is an entire analysis on its own!
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Extraction of the reducibility factors κMiMj from the
likelihood of the two mixtures Once the (multi-)differential
cross section measurement has been unfolded to particle level,
the reducibility factors κMiMj (needed to extract the underly-
ing quark/gluon distributions according to Equation 7.19 as
well as the corresponding fractions in the mixtures based on
Equation 7.17) must be calculated in accordance with Equation
7.10. This must be done for each bin k in transverse momentum
individually, i.e., for each pT bin, the ratio of the corresponding
single-differential cross section (1/σ) dσkMα

/dOJSS with respect
to the substructure observable for the two mixtures M1 and M2

is calculated and the anchor bins/regions (see Equation 7.11) thereof. The extraction of the
anchors is much more involved than described here – further information on the concrete
determination of the anchor regions will follow shortly.

Extraction of the underlying quark/gluon distributions
(“jet topics”) After the reducibility factors κkMiMj

have been ex-
tracted for each bin in transverse momentum of the measurement
based on the ratio of the (relative) jet rates in the two mixtures,
the underlying quark/gluon distributions (the jet topics) (see
Equation 7.19) can be calculated by maximally subtracting the
cross sections measured in the two mixtures from each other.
Provided that the substructure observable is mutual irreducible,
the obtained probability distributions are guaranteed (to the de-
gree to which the underlying assumption of mutual irreducibility
is fulfilled) to correspond to quark- and gluon-like jet features

according to the operational Definition 2.

Extraction of the underlying quark/gluon fractions This
step is performed simultaneously to the extraction of the jet
topics, but it is listed separately to mimic the order in which
the results are presented in this thesis. Like the quark/gluon
probability distributions, the fraction of quark- and gluon-like
jets is directly calculated from the reducibility factors κkMiMj

in
each bin of transverse momentum according to Equation 7.17.
The result are quark/gluon fractions fM

k
α

q/g for each transverse
momentum bin and mixture Mα. In the end, the total fraction
of quark- and gluon-initialized jets is stated by combining the
fractions in central fM

k
1

q/g and forward fM
k
2

q/g region according to

f
Mk
α

q/g = (f
Mk

1

q/g + f
Mk

1

q/g )/2 to get the total fraction in the dijet samples in each pT bin.

106



Part III

Analyses and Results

The third and last part of this thesis finally turns the focus of attention to the actual
analysis, i.e., the measurement of the triple-differential multijet cross section as a
function of several jet substructure observables (sensitive to characteristic features
of hadronic showers initialized by quark and gluon jets, respectively), as well as the
subsequent extraction of the underlying quark/gluon probability distributions and the
corresponding fractions in the respective regions of phase space volume. However,
before the results of the cross section measurement or the quark/gluon fractions are
presented, some technical (but absolutely essential) aspects of the analysis must be
discussed like, for instance, the selection of events or the definition of the systematic
uncertainties etc.

This part is structured as follows: the “first” Chapter 8 introduces all samples
in real pp-collision data, which have been recorded within the course of Run 2,
and Monte Carlo simulation of the corresponding campaigns that are used in the
analysis.

Thereafter, in Chapter 9, the selection of analysis-relevant collision events by
means of the trigger as well as the phase space is discussed; furthermore, the recon-
struction of the (physical) objects (vertices, tracks, jets) is explained.

The next Chapter 10 is rather technical in nature too; it introduces all the sources
of statistical and systematic uncertainties and provides a precise prescription for
their calculation.

Chapter 11 presents the results for the measurement of the triple-differential
multijet cross section with respect to the counting-based JSS observables. This
chapter includes a discussion of the detector-level spectra, the unfolding as well
as the unfolded cross section including all sources of systematic and statistical
uncertainties.

Chapter 12 is structurally identical to the previous one but for the triple-
differential cross section as a function of the NN-based observables instead.

Chapter 13 uses the unfolded cross sections to extract the underlying quark/gluon
probability distributions as well as the quark/gluon fractions based on the method
that has been explained in the previous chapter.

The last Chapter 14 finishes this thesis by discussing the acquired insights and
providing in outlook into possible further studies.
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8. Data and Monte Carlo Samples

The triple-differential multijet cross section is measured in pp-collision over a phase space
volume that is defined by the inclusive dijet selection criteria at particle and detector level. The
actual event and object selection cuts (minimum-pT threshold, acceptance cuts etc.) are subject
of the upcomming Chapter 9. This chapter introduces all data sets (including real pp-collision
data as well as data obtained from Monte Carlo simulation) from which the differential multijet
cross section is reconstructed.

The first section (8.1) introduces the proton-proton collision data that was recorded with
the ATLAS detector at the LHC (see Chapter 3.1) during the second Run of data-taking,
which corresponds to the years from 2015 to 2018 (inclusive). The next section (8.2) introduces
data obtained from simulation only. It introduces all state-of-the-art (general purpose) Monte
Carlo generators that have been used to simulate multijet events according to the relevant
conditions at the LHC such as, e.g., pile-up, beam energy etc. Those samples are available at
particle and detector level, whereby the latter one includes a full Geant4 simulation of the
ATLAS detector. The various Monte Carlo generators differ with respect to the underlying
PDFs, the order of the calculation of the hard subprocess (matrix element, see Chapter 2.3),
the parton shower model (see Chapter 2.4) as well as the hadronization models (see Chapter
2.5). The effect of the different models on the reconstructed multijet spectrum is studied and
used to derive systematic uncertainties on the final triple-differential multijet cross section
measurement. Furthermore, the response matrix is constructed from the nominal Monte Carlo
sample, which is used to fully correct the measured spectra for acceptance and detector effects
(see unfolding in Chapter 5).

8.1 LHC Run 2 (2015–2018) pp-Collision Data

Going from Run 1 (2009–2013) to Run 2 (2015–2018), the LHC as well as the ATLAS experiment
have undergone numerous changes that affect several detector components; changes in the
LHC beam conditions; reconstruction and (re-)definition of physical objects; as well as changes
in the simulation of the experiment and the underlying physical models.

Concerning the detector system, the IBL (see Chapter 3.3.3) was installed between the
beam pipe and the current inner pixel layer and thenceforth is the detector module most close
to the beam line and interaction point. The new layer significantly improves the b-tagging
efficiency and helps to maintain the track reconstruction performance given the considerable
higher delivered luminosity by the LHC during Run 2; it also improves the reconstruction and
resolution of primary and secondary (see b-tagging) vertices. Further changes include the repair
of plenty of gas leaks in the TRT (see Chapter 3.3.3) that have been observed in the course of
Run 1, as well as new muon detector chambers at certain locations of the detector [172].

The most important change regarding the beam conditions of the LHC was the significant
increase in the beam energy going from 8 TeV to 13 TeV centre-of-mass energy as well as the
increase in the delivered record luminosity. The increase in the centre-of-mass energy and
the luminosity has several effects on the event topology such as a change in the fraction of
quark and gluons as well as an impact on the pile-up contributions to the event. Besides
the centre-of-mass energy, the temporal spacing of the proton bunches was reduced from
50 ns to 25 ns, accompanied by a considerable increase in pile-up and an need for very fast
read out of the detector information. Important for the reconstruction of jets, the topo-
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cluster reconstruction algorithm was adjusted to match the new pile-up conditions in terms of
increased noise contribution. Furthermore, the reconstruction of tracks was updated regarding
performance and to account for the additional information provided by the IBL. Also, the
calibration scheme of the jet energy scale/resolution was updated to match the new data-taking
conditions of the ATLAS experiment and to account for Run 1 data to improve the in situ
part of the calibration steps (see Chapter 4.4.3).

8.2 Monte Carlo Samples

The ATLAS Physics Modeling Group (PMG) provides a set of dedicated samples that have
been generated using different general-purpose Monte Carlo event generators available. Those
Monte Carlo generators make use of different underlying models for the distinct steps in the
event simulation chain introduced in Chapter 2.2.2 like, for instance, using a matrix element
calculation at higher (or lower) order; varying parton shower models and/or different ordering
variables and matrix element matching schemes; different hadronization approaches and PDF
sets etc.

This section introduces the list of Monte Carlo generated samples that have been used for
the measurement of the inclusive triple-differential multijet production rate at a centre-of-mass
energy of 13 TeV, which is described in this thesis. In doing so, special attention is paid to the
distinguishing features of the different generators, their configuration, as well as the assigned
domain of application of the individual samples with respect to this measurement, particularly
focusing on the definition of systematic uncertainties.

8.2.1 “Multijet Samples for 13TeV ATLAS Analyses” [4]

Hadronic jets in the final state are among to the most interesting objects at the ATLAS
experiment as they provide an excellent test of our understanding of the strong interaction at
short distances by means of (perturbative) quantum chromodynamics. At the LHC, multijet
events, i.e., events with exclusively hadronic jets being present in the final state1, are among
the most dominant production channels; therefore, they are both a “blessing” and a “curse”
at the same time – a “blessing”, for those analyses aiming for detailed measurements of jet
properties because plenty of those objects are available; a “curse”, for all analysis (e.g., many
searches) dealing with multijet events as a predominant background process.

In order to perform a measurement of a jet-related observable – regardless of whether it is
about a global event shape like, e.g., the thrust axis, or a substructure variable such as the
number of charged constituents inside the jet –, one needs a set of Monte Carlo samples for
the purpose of comparing data with predictions from theory and to derive uncertainties on the
measurement based on our best models currently available. The choice of the Monte Carlo
samples and the way they are generated should reflect the range of competing models used
to describe the same process or phenomenon where there is no a priori justification for one
approach being superior to any other.

An important example is the choice of the parton shower algorithm to simulate QCD

Fig. 8.1: Generator labels and their color scheme used through the entire analysis.

1More precisely, a multijet event is characterized by multiple hadronic jets being present in the final state
with the absence of prompt isolated electrons or muons. This definition ensures that multijet samples are
statistically dominated by processes involving the strong force.
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8.2. MONTE CARLO SAMPLES

radiative corrections to the cross section of the hard subprocess. There is some ambiguity in the
choice of the ordering/evolution of the parton shower emission history due to the concurrence
of several ordering variables in the collinear limit of the approximation. In the collinear limit
(θ → 0), all choices are equivalent and yield the very same result; however, since the parton
shower algorithm is used for emission beyond this limit as well, different choices of the evolution
scale will give (sometimes substantially!) different results.

Another example is the choice of the hadronization model to simulate the transition from
partonic to hadronic final states. Most of the approaches to hadronization (relevant for this
analysis) have been discussed in Chapter 2.5, but there are more available. Most of those
models show a similar performance2, some have been optimized for specific applications like
hadronic tau decays etc. As for the parton shower model, the concrete choice of the respective
model is specific to the concrete application. The answer, to which generator to, use may even
depend on the region in phase space or the processes the analysis focuses on.

In general, there is no “Swiss army knife”, i.e., one event generator that meets all requirements
at once. For this reason, the measurement presented in this thesis makes use of several different
event generators each one with a very specific application in the analysis, which will be further
elaborated below.

A summary of all Monte Carlo event generators along with their different configurations in
terms of the underlying calculation of the matrix element, the parton shower and hadronization
model as well as the underlying PDF is shown in Table 8.1. Furthermore, Figure 8.1 shows the
generator labels and their color scheme that is used through the entire analysis.

MC Generator Matrix Element Parton Shower Hadronization PDF(s)
Pythia 8.230
(Nominal) 2→ 2 @ LO Dipole-based

pT-ordered
Lund string NNPDF 2.3

Powheg v2
+Pythia 8.230 2→ 2 @ NLO Dipole-based

pT-ordered
Lund string NNPDF30NLO

Sherpa 2.2.5

2→ 2 @ LO CSS Cluster (AHADIC) CT14NNL

2→ 2 @ LO CSS Pythia’s (v6.4)
Lund String CT14NNL

Herwig 7.1.3

2→ 2 @ NLO
2→ 3 @ LO Angular-ordered Cluster MMHT2014NLO

2→ 2 @ NLO
2→ 3 @ LO Dipole Cluster MMHT2014NLO

Table 8.1: List of simulated multijet samples based different general-purpose Monte Carlo
event generators for the simulation of proton-proton collisions used for the measurements
presented in this thesis.

Pythia8

“Pythia is a program for the generation of high-energy physics collision events, i.e.[,] for the
description of collisions at high energies between electrons, protons, photons and heavy nuclei.”
– literal quote from the official Pythia website [173].

Following the ATLAS recommendations (the collaboration provides a list of recommen-
dations that analyses are supposed to follow in order to ensure comparability as well as
“minimum” level of quality and performance standards), the baseline Monte Carlo generator
is Pythia version 8.230 [174, 175, 176] that is used to produce the nominal samples for this

2This is barely surprising because most models get tuned to data at some point and therefore agree in
certain regions of phase space.
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analysis (the corresponding cross section is henceforth referred to as the “nominal/baseline”
cross section/spectrum). Also, the baseline generator is used to construct the response matrix
of the measurement (see Chapter 5.1.1), which unfolds the measured spectra in real data to
particle level.

As described in Chapter 2.2.2, the event generation is done in several consecutive steps.
In Pythia, the calculation of the matrix element for dijet processes is done at leading order
in perturbation theory. The generated events are then further interfaced to Pythia’s parton
shower algorithm, which uses the kt of the emissions as an ordering variable. The modeling of
fragmentation and hadronization step is based on the (Lund) string model that was compre-
hensively explained in Chapter 2.5.

As described in Ref. [4], renormalization µR and factorization scales µF of the shower are
set to the geometric mean of the squared transverse masses of the two outgoing particles
µ2

R = µ2
F = (p2

T − m2
3)(p2

T − m2
4), whereby the indices ‘3’ and ‘4’ denote the two outgoing

particles from the calculation of the matrix element.
The NNPDF23LO PDF set [177] is used during the calculation of the matrix element,

the parton shower simulation (space-like showers), and in the simulation of the Multi-Parton
Interactions (MPI). Furthermore, to improve the agreement between data and simulation,
ATLAS’ “A14” [178] set of tuned parameters for the Pythia event generator was used that
tunes the generator’s parton shower for initial and final state radiation and multiple parton
interaction parameters to a number of observables based ATLAS Run 1 data (see previous
section).

Powheg/MadGraph5_aMC@NLO+Pythia8

The nominal samples outlined above are generated in a standalone Pythia simulation, i.e., all
event generation steps (except for the simulation of the detector of course) explained in Chapter
2.2.2 are done within Pythia solely. This results in a calculation of the matrix element at LO
as Pythia’s matrix element generator only supports calculations at that order in perturbation
theory. In order to estimate the effect of higher-order terms in the perturbative expansion (see
Chapter 1.2.2), the calculation of the matrix element can be “outsourced” to a dedicated event
generator that allows for higher-order calculations of the matrix element.

In case of the “multijet simulation for 13 TeV ATLAS analyses” [4], there are two MC gener-
ators that implement NLO calculations of the hard (sub)process: MadGraph5_aMC@NLO
(version 2.3.3.1) [179] and Powheg V2 [180, 181]. In both cases, the hard scattering matrix
element of the multijet events are calculated at NLO accuracy and interfaced to Pythia8 (via
the “Les Houches” interface [182]) to simulate the remaining components of the event topology.

In this analysis, only the combination of Powheg and Pythia8 (thenceforth referred to
as Powheg+Pythia8 throughout the rest of this thesis) is used to estimate the uncertainty
associated to the obmission of higher-order contributions/corrections to the matrix element.
In the calculation of the matrix element, the transverse momentum of the underlying (LO)
Born-level configuration is used as the renormalization and factorization scale. The PDF set,
which is used to sample the momenta of the initial partons participating in the hard interaction,
is the NNPDF30NLO.

The configuration of the subsequent Pythia8 generator basically corresponds to the setup
of the nominal Monte Carlo generator (see previous section), i.e., the NNPDF23LO PDF is
used for the shower simulation (ISR) as well as MPI and the “A14” tune is applied. This is
very important in order to insure that the uncertainty derived based on the comparison of the
nominal Pythia samples with the one obtained from Powheg+Pythia8 really captures the
effect on the final cross section due to the different levels of accuracy of the matrix element
calculation.

Sherpa

“Sherpa [183] [(not to be confused with eponymous Tibetan ethnic groups native to the moun-
tainous regions of Nepal)] is a Monte Carlo event generator for the Simulation of High-Energy
Reactions of PArticles [(Sherpa)] in lepton-lepton, lepton-photon, photon-photon, lepton-hadron
and hadron-hadron collisions.” – literal quote from the official Sherpa website [184].
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8.2. MONTE CARLO SAMPLES

It, Sherpa, is – like Pythia – a fully standalone Monte Carlo event generator that allows
to simulate the entire event chain in high-energy particle collisions up to the complete hadronic
final states (the detector simulation, of course, is experiment-specific and therefore not part of
the simulation procedure).

The Sherpa samples used in this analysis are generated using Sherpa version 2.2.5 [183].
Like it was the case for the nominal Pythia8 samples, the calculation of the matrix element is
done at LO for 2→ 2 processes (like, e.g.,multijet production). The subsequent showering is
done by Sherpa’s implementation of the CSS (Catani-Seymour dipole factorization) parton
shower [185], with a kt-based ordering of the emissions. Sherpa uses two different PDF sets:
the CT14NNLO [186] PDF set is used for the calculation of the matrix element, while the
CT10 set [187] is used for modeling the underlying multi-parton interactions.

The Sherpa-based samples are generally used to estimate the effect of different hadroniza-
tion models (see Chapter 2.5) on the final hadronic cross section. For this reason, two Sherpa
samples have been generated that differ with respect to their hadronization model. As summa-
rized in Table 8.1, there is one Sherpa sample based on the (Lund) string hadronization model
and another one that generates color-singlet states according to the cluster-based approach to
hadronization (see Chapter 2.5). More precisely, the concrete implementation of the cluster-
based fragmentation is done by Sherpa’s native “AHADIC” model [188]; the string-based
hadronization follows Pythia’s (version 6.4 [189]) implementation of the Lund string model.
In the latter case, the output generated by Sherpa’s parton shower simulation is directly
interfaced to Pythia6. Furthermore, for all Sherpa samples used in this measurement, the
decay to stable final state particles (see Chapter 2.5.1) was simulated based on the decay tables
implemented by Pythia.

Herwig(@NLO)

“Herwig [(short and sweet)] is a multi-purpose particle physics event generator.” – literal quote
from the official Herwig website [190].

Besides the Powheg+Pythia8 and the MadGraph5_aMC@NLO+Pythia8 samples,
respectively, there are two samples of dijet production generated using Herwig 7.1.3 [191, 192,
193] that include a calculation of the underlying hard event at NLO. The renormalisation and
factorization scales are set to the transverse momentum of the leading jet in the event. For the
calculation of the matrix element, the MMHT2014NLO [194] PDF set is used. The hard cross
section is calculated using Matchbox [195], which is necessary for the subsequent Matching and
Merging step (based MC@NLO-like subtraction algorithm [196]) to match the higher-order
calculation to the parton shower.

There are two NLO samples based on Herwig that differ regarding their parton shower
model. The first sample makes use of Herwig’s default showering algorithm that orders the
emissions based on the radiation angle (angular-ordered). The other sample uses an alternative
parton shower model based on a dipole model similar to the one used by Sherpa. Both
showering algorithms use the same PDF set as for the calculation of the matrix element and
are tuned to improve the modeling of quark- and gluon-initialized jets [196].

As can be seen from Table 8.1, both Herwig samples use a cluster-based model for the
final hadronization step.

8.2.2 Event (Re-)Weighting

It is important to ensure that the reconstructed spectrum of the transverse momentum is
smooth. This is usually not the case because the events are independently generated in different
exclusive ranges of transverse momentum with different integrated luminosities to generate
sufficient statistics even in the tails of the distribution associated with low production rates.
Those ranges are commonly referred to as “pT-” or “JZ-slices”, which is a sub-sample of the
final multijet dataset. To recover the original (continuous) pT spectrum, the events must be
reweighted by a additional weight, which has to be calculated on an event-on-event basis,
depending on the transverse momentum of the leading-pT jet, the Data Set IDentification
(number) DSID (which is a six-digit number) as well as the run number corresponding to the
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respective Monte Carlo campaign (e.g., MC16a, MC16d, MC16e etc.). Great caution needs to
be exercised when computing the event weights because discontinuities in the final pT spectra
might bias the entire measurement. The respective event weights must be calculated such that

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

  [GeV]
T

Transverse momentum  p

1

10

210

310

410

510

610

710

810

   
[e

ve
nt

s/
4.

50
 G

eV
]

T
N

um
be

r 
of

 e
ve

nt
s 

  d
N

/d
p

Pythia 8.230=13 TeV, s
 R=0.4, PFlowtAnti-k

MC16a+d+e

  slice applied
T

Detector level, Cleaned, weight for  JZ/p

Pythia 8.230=13 TeV, s
 R=0.4, PFlowtAnti-k

MC16a+d+e

  slice applied
T

Detector level, Cleaned, weight for  JZ/p

 s
lic

e
T

   
   

   
   

   
   

   
 M

ul
tij

et
 J

Z
/p

3

4

5

6

7

8

9

10

11

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Total

(a) No pT reweighting applied

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

  [GeV]
T

Transverse momentum  p

1

10

210

310

410

510

610

710

810

910

1010

1110

1210

1310

1410

1510

1610

   
[e

ve
nt

s/
4.

50
 G

eV
]

T
N

um
be

r 
of

 e
ve

nt
s 

  d
N

/d
p

Pythia 8.230=13 TeV, s
 R=0.4, PFlowtAnti-k

MC16a+d+e

  slice applied
T

Detector level, Cleaned, weight for  JZ/p

Pythia 8.230=13 TeV, s
 R=0.4, PFlowtAnti-k

MC16a+d+e

  slice applied
T

Detector level, Cleaned, weight for  JZ/p

 s
lic

e
T

   
   

   
   

   
   

   
 M

ul
tij

et
 J

Z
/p

3

4

5

6

7

8

9

10

11

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Total

(b) Correct pT reweighting applied

Plot 8.1: Transverse momentum distribution for Pythia8 for each JZ slice and the total
spectrum (solid black line) before (left) and after (right) applying the correction factor
for the respective pT/JZ-multijet slice.

the reweighted spectra corresponds to the integrated luminosity of Run 2. To calculate the
event weight wJZ

i associated with a certain pT/JZ-slice and to recover the correct multijet cross
section, the MC weight wMC

i (which is supplied by the respective Monte Carlo event generator
and accounts for, e.g., matching, merging, showering etc., i.e., MC-specific components) must
be multiplied by the event filter efficiency ε, the (total) cross section and the Luminosity
L; finally, the resulting value is normalized by the total number of events or the sum of
weights depending on the respective weighting scheme (which may differ between Monte Carlo
generators) according to

wJZ :=
εσL∑Nevents

i=1 wi
∈ R, (8.1)

whereby the denominator is given by the sum of all MC weights (wi = wMC
i ) in case of the

so-called JZW slicing scheme or the total number of events (wi = 1 for all i ∈ N<Nevents) for
JZ-based reweighting approach.

The total event weight (not including any weight-based systematic variations) is then given
by

wevent
i = wJZ

i · wMC
i , (8.2)

i.e., applying wevent
i takes into account the reweighting due to the Monte Carlo generator as well

as the reweighting of the pT-slices to obtain a smooth transverse momentum spectrum. The
final result of the reweighting procedure is shown in Figure 8.1. Corresponding distributions
exist for all generators listed in Table 8.1 and all (substructure) observables studied in the
context of this analysis.

An additional comment regarding the total event weight according to Equation 8.2. Applying
the total event weight wevent

i results in the so-called “nominal” distribution(s)3; however, the
event weight might include several other factors according to wevent

i → wevent
i ·∏k w

var
k,i that

3Within the context of this report, the term “nominal” is used in a slightly different context, explicitly
referring to distributions that habe been obtained based on the nominal Monte Carlo sample/generator. The
nominal generator/sample (Pythia 8.230) always refers to the sample that was used to construct the response
matrix to unfold the measured spectrum in data to particle/hadron level.
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8.2. MONTE CARLO SAMPLES

result in “variations” with respect to the nominal spectra. Usually, those weight-based variations
are applied with the intention to change some specific conditions of the Monte Carlo sample
like, for instance, the pile-up conditions, the underlying PDF, tunes of the parton shower,
without the need to re-run the entire Monte Carlo simulation for all events – which is virtually
impossible given the amount of time and resources needed to generate those samples. The
weight-based variations will play an important role later in the context of the systematic
uncertainties of the triple-differential multijet cross section measurement.
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9. Event Selection and Event
Reconstruction

This chapter finally turns the focus of attention of this report to the actual analysis by introduc-
ing the higher-level physical objects that are reconstructed on an event-on-event basis, which
are then used in the measurements of the multi-differential multijet cross section(s). Since
the relative production rate of multijet events is measured with respect to a jet substructure
observable that is sensitive to the quark- or gluon-like nature of the hadronic shower, the
discussion is mostly centered around the reconstruction of jets as well as charged particles’
trajectories. The tracks “associated”1/matched to calorimeter-based jets are of major impor-
tance within the context of this measurement as they maintain strong correlations between
particle and detector level, allowing to unfold the jet substructure measurement in the first
place. Furthermore, the phase space volume is defined on particle and detector level over which
the cross section is measured.

This chapter proceeds as follows: in the first section (9.1), the central object of this mea-
surement is introduced, i.e., the definition of the (normalized) triple-differential multijet cross
section. Following, the next section (9.2) is dedicated to the object and event selection at
detector and particle/hadron level. The reconstruction of jets as well as the matching of
tracks and charged particles, respectively, is described along with the definition of quark- and
gluon-initialized jets according to the PDGID code of the maximum-pT constituent inside of
the jet. For real collision events, the good-run certified data and the trigger selection strategy
is introduced. Finally, the last section of this chapter (9.4) is supposed to provide a comparison
between data and simulation (at particle and detector level) by means of a selected list of
observables (jet substructure variables as well as global event shapes) and their distributions
given the phase space volume and objects defined in the previous sections to estimate the
data-to-MC agreement and to ensure that the reweighting scheme described in Chapter 8 works
properly.

9.1 Definition of the Normalized Triple-Differential Multi-
jet Cross Section

The analysis presented in this thesis includes several “independent”2 measurements of the triple-
differential multijet cross section in bins of a jet substructure variable OJSS(∈ {ncount, zNN})
(counting-based observables as well as the score (=probability of the respective jet being gluon
initialized) assigned by a NN) that is supposed to be sensitive to fundamental properties of QCD
and hence allows to discriminate quark- from gluon-initiated jets – at least to a certain degree
that results in mutual irreducible probability distributions (see Chapter 7). The motivation for
measuring two classes (counting- and NN-based) of jet substructure variables instead of just
one is driven by two mutually exclusive requirements: firstly, the variable under consideration
should be “simple” in terms of interpretability, yet provide a decent sensitivity to the quark- or

1The term “associated” must be used carefully in order to avoid confusion with ATLAS’ “track-associated”
jet definition, which differs from the definition used in this analysis.

2Independently measured but, of course, correlated.
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gluon-like nature of the hadronic shower to be mutually irreducible; secondly, the observable
is supposed to be “as powerful as possible” in terms of quark-gluon discrimination, whereby
decipherability/interpretability of the algorithm archiving this task is of minor importance.

For the first class of observables (counting-based), the cross section will be measured with
respect to the track ntrk and Soft Drop (SD) multiplicity nSD. The second measurement
(NN-based), which focuses on the discrimination power between quark- and gluon-initialized
jets at the price of interpretability, is done based on the prediction of a neural network that
was trained similarly to a conventional quark-gluon tagger. The latter approach may seem a
bit strange at first as this utilization deviates from the usual application of neural networks
within the context of high-energy particle physics; however, embedded within the bigger scope
of this analysis, it will become apparent that the direct measurement of a neural network score
is indeed justified and well motivated.

Besides the jet substructure variable, the relative cross section is measured as a function
of the transverse momentum pT, as well as the relative pseudorapidity ηrel of the jets. The
adjective, “relative”, in the context of the rapidity means that not the actual pseujdorapidity
value of the reconstructed jets determine the distribution they populate, but the relative
orientation between the leading and the subleading jet in the detector instead. Therefore, the
relative pseudorapidity is measured only in two exclusive bins: one of which corresponds to jets
being more central in the detector, and a second region in forward direction. It is important to
keep in mind that the prepositions “central” and “forward” do not corresponds to fixed regions
or segments in the detector3! Whether a jet is labeled as being central or forward entirely
depends on their relative orientation with respect to each other. In more concrete terms, given
two jets J1 and J2 that both fall in the (fiducial) phase space volume, the first jet is “central”
if |ηJ1 | < |ηJ2 | which results in the second jet being labeled “forward”; vice versa, in case of
|ηJ2 | < |ηJ1 |, jet number two is the more central one in this event.

Given the aforementioned observables (the JSS observable OJSS, the transverse momen-
tum pT and the (relative) rapidity ηrel), the triple-differential cross section for relative dijet
production that was measured in this study is defined as

1

σ

d3σ

dpT dηrel dOJSS
=

1

σtot

1

εL

Nmultijet −Nbkg

∆pT ∆ηrel ∆OJSS
, (9.1)

whereby the numerator denotes the number of measured multijet events, Nmultijet, in a given
phase space bin (i.e., measured in finite bins of ∆pT, ∆ηrel and ∆OJSS) posterior to all selection
cuts and after the subtraction of contributions from all relevant background processes Nbkg; L
being the integrated luminosity; ε representing the product of trigger efficiency, efficiency of
the selection cuts etc.; σ is the total cross section given by the total number of multijet events
integrated over the entire fiducial phase space volume.

Equation 9.1 further simplifies because the triple-differential multijet cross section is
normalized by the total number of multijet event. This results in the cancellation of many
systematic uncertainties to the degree of their correlation between the nominator and the
denominator in the relative event rate according to Equation 9.1. For instance, the differential
cross section as well as the total cross section are proportional to the luminosity and therefore
fully correlated. Hence, the systematic uncertainty δL due to imprecise knowledge of the
exact integrated luminosity drops out completely in this measurement. An alternative to the
normalized cross section presented here would be the measurement of an absolute (event) rate
that also provides information on the normalization, i.e., the absolute event yield expected in
each phase space bin. Generally, absolute measurements contain more information and have an
increased sensitivity to QCD effects – especially regarding measurements of the strong coupling
–; however, they rely on the measured process to be well modeled in Monte Carlo. This is often
not the case for the simulation of multijet events as they show substantial deviations in terms
of the expected number of events – which will be shown later. For this reason, most resonance
searches in which the contributions from multijet events are non-negligible (like, for instance,

3In terms of the absolute (pseudo-)rapidity, all jets that enter this measurement are central as only jets
(tracks) with η < 2.1(2.5) are used.
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9.1. DEFINITION OF THE NORMALIZED TRIPLE-DIFFERENTIAL MULTIJET CROSS
SECTION

in many SUSY searches due to large missing energy because of the mismeasurement of jets
and due to the appearance of neutrinos in heavy-flavor jets) rely on data-driven methods to
estimate the number of events in a given signal region. Normalizing the cross section by the
total event count basically gets rid of the “area” information and reduces the measurement(s)
to the shape of the distributions, which are usually much better described in simulation.

Taking all of the above-mentioned into account, the normalized (inclusive) triple-differential
(dijet) multijet cross section measured in this thesis can be written as

1

σ

d3σ

dpT dηrel dOJSS
=

1

Ntot

Nmultijet

∆pT ∆ηrel ∆OJSS
(1− r) , (9.2)

with the ratio r being defined as r := Nbkg/Nmultijet � 1. The event-yield ratio r corresponds
to corrections due to processes that contribute to the measurement, but are not born from
interactions of interest because final state leptons/electromagnetic showers are falsely recon-
structed as hadronic jets (fakes). This correction is very small – even for the most dominant
background process, i.e., Drell-Yan – and therefore does not affect the measurement given
the degree of precision. Nonetheless, for the sake of completeness, a plausibility test of this
statement based on a superficial analysis using a simplified model of the ATLAS detector will
be provided later in this report.

Before closing this section for good, the attention is pointed once again to the calculation
of the jet-related observables that define the phase space over which the triple-differential
multijet cross section is measured. It is utterly important to keep in mind that the transverse
momentum in Equation 9.2 is calculated based on the PFlow-based jet; otherwise, the jet
energy could not be calibrated as no calibration scheme for track-based jets exist. The same
is true for the relative pseudorapidity. The jet substructure variable, on the other hand, is

PFlow ObjectsPFlow Objects

Fig. 9.1: Visual representation of the input to the different observables with respect
to the triple-differential multijet cross section is measured. The transverse momentum
as well as the relative pseudorapidity are calculated based on jets that have been
reconstructed using PFlow objects as an input. The jet substructure variable, on the
other hand, is calculated based on tracks that have been matched to the aforementioned
calorimeter-based jets. (The event display in the figure shows an actual event that was
recorded on August 1st, 2010 (event 118768330) with the CMS detector [25]).

calculated based on the set of tracks that has been matched to the calorimeter-based jets.
This is necessary because the resolution of the calorimeter cells is far too low to measure a
jet substructure observable as many particles might get absorbed in the very same cell of the
calorimeter. However, for the unfolding to work, the correlation between particle and detector
level must be sufficiently strong. The aforementioned inputs to the reconstruction of the
cross section are summarized in Figure 9.1. Using tracks allows to unfold the JSS observable,
however, it results in the measurement not being IRC-save (at the level of the jet substructure
variable), i.e., the unfolded spectra presented in this study can unfortunately not be directly
compared with analytic calculations in perturbative QCD (of course, it can still be compared
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with Monte Carlo). Marginalizing the information of the JSS observable according to

1

σ

d2σ

dpT dηrel
=

1

σ

∫
dOJSS

d3σ

dpT dηrel dOJSS
, (9.3)

results in an IRC-safe double-differential multijet cross section. The cross section according to
Equation 9.3 is IRC-safe because the transverse momentum as well as the relative pseudorapidity
are calculated from a jet object that accounts for charged and neutral particles.

9.2 Object and Event Selection
This section lays the foundation of the entire analysis by introducing the basic event and
objects selection valid for all measurements studied in this report. The starting point are the
physical objects (according to Chapter 4) at detector level (9.2.1) that are reconstructed in
data and simulation alike. It is followed by the reconstruction of the corresponding objects
at particle level (9.2.2) that provide the truth-level information needed in order to construct
the response matrix as well as to get the prior distributions in MC. Once the objects are
introduced, the event selection, i.e., the phase space volume – over which the production rate
is measured –, is defined for particle and detector level.

9.2.1 Detector-Level Objects
The only objects that directly enter the measurement of the triple-differential multijet cross
sections presented in the thesis at hand are hadronic jets reconstructed from calorimeter cells,
Inner Detector (|η| < 2.5) tracks with pT > 500 MeV matched to the aforementioned PFLow
jets, as well as – indirectly – primary vertices, which are not explicitly used in the analysis
but for the purpose of the event selection solely (see track quality criteria listed below). The
following paragraphs provide some background on the jets as well as the tracks used in this
measurement at detector level.

Jets

The basic object used in this analysis are jets (as a phenomenological approach to QCD as
described in Chapter 1), which are build/reconstructed from tracks that have been matched to
PFlow jets at the electromagnetic energy scale using ATLAS’ PFlow algorithm (see Chapter
4.4, § “PFlow objects” for a quick reminder of those objects) using the anti-kt sequential recon-
struction algorithm with a radius parameter of R = 0.4 (see Chapter 4.4.2). All reconstructed
jets used in the measurement(s) are required to have a minimum transverse momentum of
at least (pmin

T =)250 GeV. The reconstructed jets are further processed by applying the full
jet energy calibration (see Chapter 4.4.3) to account for the non-compensating nature of the
ATLAS calorimeter, dead/passive material in the detector etc. This calibration includes an
area as well as a residual correction of the jets, mostly to mitigate contribution originating
from pile-up; a correction of the jet energy response as a function of the transverse momentum
and the pseudorapidity; followed by the global sequential calibration (which is specific to
small-R jets and flattens the jet energy response for selected observables related to shower
development inside the jets), flavor differences due to different partons that initialized the jets
and punch-through effects; and, finally, an in situ calibration step, which is purely data-driven
and accounts for potential biases due to the fact that all previous calibration correction factors
are derived from Monte Carlo exclusively. After the full JES calibration has been applied, the
average energy of the corrected jets is at the truth scale (see Chapter 4.4.3 for a reminder of
the individual components of ATLAS’ jet calibration scheme).

Tracks

Regarding the selection of tracks, all reconstructed inner detector tracks are required to pass
the tight primary selection criteria, which are described in great detail in the following ATLAS
note Ref. [197]. The tight Working Point (WP) for track selection consists of the following
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9.2. OBJECT AND EVENT SELECTION

individual track quality criteria that cut on the transverse momentum pT, the pseudorapidity η,
as well as the number of hits registered in one (or several) subsystem(s) of the inner detector:

• pT > 500(400) MeV,

• |η| < 2.5,

• number of Pixel and SCT clusters on track (“silicon hits”) ≥ 7,

• number of shared modules ≤ 1,

• number of silicon holes ≤ 2,

• number of pixel holes ≤ 1,

Tight WP (in addition to the Loose selection requirements)

• number of silicon hits ≥ 9 (if |η| < 1.65),

• number of silicon hits ≥ 11 (if |η| ≥ 1.65),

• at least one hit in one of the two innermost pixel layers,

• no pixel holes.

Additionally to the items listed above, the event is required to contain at least one primary
vertex with at least two valid(=tight) tracks pointing to it. In the original performance study
according to Ref. [197], a lower cut on the track’s momentum of 400 MeV was used. This
baseline recommendation was derived using 2015 data at

√
s = 13 TeV. In order to account

for the increased number of particles in the event due to increased pile-up interactions (which
are likely to leave traces thought low-momentum tracks in the Inner Detector), the lower
pT-cut was increased to 500 MeV to alleviate the amount of combinatorics and to remove tracks
not associated to the underlying hard scattering event. In the enumeration above, a “shared
module” refers to a pixel module that has shared hits, whereby a shared hit is a hit associated
with more than one reconstructed track.

Important to note, the tight selection was used mainly due to the last two items that require
at least one hit in one of the two innermost pixel layers (IBL or subsequent pixel layers) as well
as no pixel holes. The former criterion significantly improves the reconstruction of primary
vertices and is therefore crucial for the reduction of pile-up. The latter cut excludes all tracks
from the analysis whose intersections of the reconstructed trajectory with a sensitive detector
element that not result in a registered hit. Basically, this removes all tracks with “missing hits”,
whereby certain regions and areas of sensors (such as, e.g., (known) inactive modules or edges
on the silicon sensors) are released from this requirement.

The reason to prefer the tight over the (alternative) loose selection is the non-negligible
contribution from fake tracks in case of the looser working point. Since this measurement of
jet substructure observables is solely based on tracks associated to the PFlow jets, the number
of fake tracks has to be as small as possible even at the cost of a reduced track reconstruction
efficiency. Even more, the measured observables presented in this thesis have been chosen
based on their (at least in principle) ability to distinguish between quark- and gluon-initialized
jets to a certain degree that makes them mutual irreducible. Because the track multiplicity
(number of tracks associated/matched to a jet) is among the most powerful discriminants for
gluons and (light) quarks, most observables sensitive to quark- and gluon-related differences in
the jet shapes are strongly correlated to the number of constituents inside the jet. Therefore, a
large contribution from fake tracks would result in a bias of the entire measurement and/or in
larger systematic uncertainties.
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“Track-to-Jet Association”

The basic principle of matching tracks to jets build from calorimeter clusters by means of some
matching scheme (∆R or ghost-association) has been explained in detail in Chapter 4.4.4. In
this analysis, the tracks are matched to the reconstructed, calorimeter-based jet using a simple
∆R-based criterion by linking all valid tracks {jtrk} in the event to the calorimeter-based jet J
with ∆R(jtrk, J) < 0.4. This is sufficient as the calorimeter-based jets are reconstructed using
the anti-kt algorithm, which results in circular jet shapes (see Figure 4.2).

One aspect which is important to remember is that after the track-to-jet association has
been performed, only the collection of tracks that have been matched to the PFlow jets in the
event Jtrk = {jtrk ∈ R(1,3) |∆R(J, jtrk) < 0.4} is used to compute the jet substructure variables
OJSS

(
{jitrk}ntrk

i=1

)
with respect to which the differential multijet cross section is measured. This

is the reason for the measurement of the JSS variable being sensitive to charged particles
only. Since “track-based” jets (not to be confused with ATLAS’ track-based jets that are
build by directly using tracks as an input to the reconstruction algorithm) do not combine
information from different subsystems of the detecto, there is no risk of double counting
energies and therefore no need for a subtraction scheme. Furthermore, it should be noted
that the PFLow jets (not the track-based/matched ones!) are used as a basis for the multijet
event selection of the event, as well as the input for the application of the prescale factor
depending on the pT of the jet for the designated higher-level single jet trigger, which are
defined based on the transverse momentum of jets reconstructed from PFlow objects. The
calculation of the transverse momentum (for the differential cross section according to Equation
9.2) is based on the PFlow jet too and therefore contains contributions from both, charged
and neutral components. This is important because the variation of the jet’s momentum
within the uncertainty of the jet energy scale must be applied to calorimeter-based jets as no
corresponding calibration scheme for track-based jets exists.

Morover, it ensures that the extracted final quark/gluon fractions are IRC-safe irregardless
of the measurement of the JSS observable being IRC-unsafe. This point is very important
in order to use the extracted fractions in, for instance, a JSS-based measurement of the
strong coupling constant αS as will be explained later in the “conclusions and future research
suggestions” at the end of this report.

9.2.2 Particle-Level Objects

In order to construct the response matrix needed to unfold the measurement at detector level
to particle level, truth information provided by the nominal sample (Pythia 8.230) must be
used that relates an object folded with the ATLAS detector to the corresponding particle level
one. Simply speaking, the very same reconstruction algorithm is executed twice: one time for
the truth-level object and once again for the detector level jet that has been matched to the
respective objects at particle level. The result is a correlation between the two, which is the
basic information provided by the response matrix (see Chapter 5.1.1).

This brief Section serves the same purpose as the previous one but for particle level objects
instead.

Jets

Jets at particle level are reconstructed based on stable, final state particles (τ > 10 mm) with
neutrinos and muons being excluded, using the very same jet clustering algorithm(=anti-kt) as
for the detector-level objects in Section 9.2.1. Neutrinos are excluded as they only interact
weakly and hence do not leave a measurable track or energy deposition in the detector volume;
muons, on the other hand, are minimum ionizing particles with a dedicated spectrometer
in the outermost layer of the measurement device (see Chapter 4.2). The result of the jet
reconstruction is a truth/particle-level jet, associated with a set of truth-particles with known
PDGID based on the Monte Carlo particle numbering scheme according to Ref. [198].
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9.2. OBJECT AND EVENT SELECTION

Jet-by-Jet Label

The PDGID is the basic information commonly used to assign a “flavor” (e.g., light quark or
gluon) to the jet. This is done by directly assigning the PDGID of the highest-pT constituent
to the jet as a whole, which is conceptually problematic as has been explained in Chapter
7. For this analysis, only two categories of jet labels are defined based on whether the jet
was initialized by a light quark (u(p), d(own), c(harm), s(trange), b(ottom/eauty)) or a g(luon).
More precisely, a jet J is referred to as a “gluon jet” if the PDGID of the highest-pT constituent
j ∈ J is ‘21’ (PDGID of the gluon); otherwise, it is labeled as a (light) quark jet according to

fJ

(
{ji}|J|i=1

)
=

g(luon) if IDPDG

(
max
j∈J
{pT,j}

)
= 21,

q(uark) else
. (9.4)

The resulting fraction of gluon jets (according to the aforementioned jet label) in several pT

bins for central and forward jets is shown in Figure 9.1 for all generators for the Monte Carlo
campaigns 16a, 16d and 16e, which corresponds to Run 2 data-taking conditions in simulation.
Furthermore, the numerical values of the fraction of gluon-initialized jets is shown in Table 9.1
for the baseline Monte Carlo event generator, i.e., Pythia 8.230. As explained previously in
Chapter 7.1.1, this definition of the jet flavor is (strictly speaking) “ill”-defined and certainly not
collinear save as splitting the highest-pT constituent into two collinear particles (for example via
g → qq̄) may result in a different flavor being assigned to the jet. Nonetheless, this definition
is the one conventionally used to assign a flavor jet-on-jet based for each jet in an event. This
results in a labeled data set that was used, e.g., to train the neural network(s) presented in
this report in a supervised fashion.

As expected from the multijet cross section, the fraction of quark-initialized jets continuously

(a) pT (b) η

Plot 9.1: Fraction of gluons for several pT bins subdivided into central and forward
jets for all samples used in this analysis. The description “pythia-labeled jet flavor” on
the canvas means that the PDGID of the leading pT constituent in the jet was used to
determine the flavor of the jet.

increases towards higher transverse momenta, which directly follows from the evolution of
the proton’s PDF and the increasing correlation of the parton flavor between initial and final
state for increasing pT. Furthermore, the central category of jets is generally “gluon enriched”
compared to the forward region. This is a direct consequence of the underlying gluon PDF too
and the observation that central jets are usually accompanied by higher transverse momentum
and therefore larger momentum fractions according to the (LO) relation x ∼ pT/

√
s.
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Transverse momentum pT [GeV]

[250, 350) [350, 500) [500, 750) [750, 1100) [1100, 4500)

Rapidity category ηrel Fraction of gluons fg (as predicted by Pythia 8.230)

Central 0.643 0.606 0.556 0.489 0.386

Forward 0.532 0.481 0.419 0.359 0.282

Combined 0.588 0.544 0.488 0.424 0.334

Table 9.1: Numerical values of the fraction of gluon-initialized jets as predicted by the
baselien Monte Carlo event generator in several transverse momentum bins.

Charged Constituents

At truth level, there are generally no tracks as they are obtained from hits in the pixel sensor;
instead, the equivalent to tracks at particle level are the stable, final state charged particles
(the charge of the particle is part of the truth-level information available for each particle in the
event record) related to the corresponding truth jet. Like the tracks, all charged constituents
in the jet are required to have a transverse momentum above 500 MeV.

Jet-to-Jet Matching

For the purpose of constructing the response matrix that encodes the correlations between
objects at truth level and those folded with detector effects (detector level), jets reconstructed
at particle and detector level must be uniquely matched to each other. This analysis utilizes a
very simple method for matching jets my means of the ∆R2 = ∆η2 −∆φ2 metric that defines
a distance between the center of the jets in η–φ-space. Two jets JDL

i and JPL
j at detector and

particle level, respectively, are matched if they are most close together in terms of ∆R. This
is the most simple jet matching scheme, yet it is highly efficient as the respective selection
(which will be introduced in an upcoming section) results in events with mostly back-to-back
jets, which significantly reduces the ambiguity in the jet-to-jet assignment.

9.2.3 Good-Run Certified Data

At ATLAS, there is a strict hierarchy concerning the organization and categorization of data.
In this ladder, the smallest building block is a single pp-collision event, which is saved at a rate
of approximately 1 kHz. An ensemble of roughly 105 event (corresponding to something like
one minute of data taking) are collected into a group referred to as one luminosity block. This
luminosity block forms the smallest unit for which the luminosity is known, i.e., the luminosity
is assumed to remain constant for all events in this group. The reason for this assumption is
that the measurements of the inelastic proton cross section at the LUCID detector (see Chapter
3.3.7 for a quick review of the measurement of the luminosity at the LHC) are averaged over a
period of time that corresponds exactly to one luminosity block. Luminosity blocks are labeled
by a quality stamp that indicates whether the given block of data is valid to use in physics
analyses by tagging it according to a manichaeism-like good-bad dichotomy as “bad” or “good”.
This information is stored in the so-called Good Runs List (GRL), which is applied to the event
selection prior to all other cuts. A collection of luminosity blocks is further combined to what
is called a full run. It consists of roughly 1000 luminosity blocks and therefore corresponds to
several hours of data taking. Interesting to know: a single run is defined such that it is in the
region of roughly one LHC fill. All runs are uniquely identified by an integer value; this will
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9.2. OBJECT AND EVENT SELECTION

become important in the next section as it is used to assign the correct lowest unprescaled
higher-level single jet trigger to the jets in the event. On the next meta level, approximately
five to ten runs are combined to build a sub-period. This intermediate step was introduced to
provide a block of data for which the condition of data-taking in terms of the experimental
setup remain more or less constant in time. This point will be discussed once again in the
context on the “year-to-year” uncertainty that checks the closure of the distributions between
different periods of data-taking – this aspect is not irrelevant for this analysis because tracks
are used to reconstruct the JSS observable that are sensitive to the alignment of the detector.
The penultimate object is what is know as a full period. A period is build from ten to five
consecutive sub-periods with similar conditions. This rule is flexible; if the machine was shut
down, e.g., for technical maintenance, a new period starts since the conditions of operation
may have changed4. Last but not least, periods are combined to a LHC Run. One LHC Run
of data-taking is equivalent to the period of time between individual long shut downs of the
LHC for the purpose of detector upgrades and updates, e.g., Run 1, 2 (this measurement), and
3 (which is still ongoing during the time of writing this thesis).

9.2.4 Trigger Selection

As described in Chapter 3.1, throughout Run 2 conditions, the LHC operated with a bunch
crossing rate of approximately 40 MHz, which corresponds to a separation in time between two
proton bunches of 25 ns. Given the current technical limitations, it is not possible (and certainly
will not be in the foreseeable future) to read out the detector, process all the information
and store the data to non-volatile memory at a frequency of 40 MHz; hence, the rate must be
significantly reduced to a manageable size which is currently in the order of roughly O(1 kHz).
To put things into conceivable perspective: this means that only 0.025h out of all occurring
pp collision events are kept for further analysis.

Aside from the rate reduction, the trigger entries are designed to increase sensitivity to
phenomena considered interesting for physics analyses. Just “throwing a dice” for each event in
order to decide whether to keep it or not would basically result in “zero” sensitivity to interesting
physical phenomena. Usually, this involves searches for new, heavy particles; hence, the triggers
are supposed preferentially select events within regions in phase space populated by those rare,
low cross section occurrences. In case of jets, the energy and the pT spectrum is steeply falling,
which means the probability for obtaining an event with low-energetic jets is very high. This
results in the low-threshold single jet triggers constantly firing. In order to reduce the rate of
jets within a low-energy region (and simultaneously increasing the bandwidth of events with
high-energetic jets), most single jet triggers are prescaled. Consequently, each single jet trigger
(below a certain pT threshold) comes with a so-called Pre-Scale factor NPS ∈ N that randomly
saves one every NPS (meaning “1-in-a-NPS”) events passing the respective trigger threshold
while discarding the rest for good. This number is not fixed in time, but it depends on the run
condition at the time of data taking and the available bandwidth. Of course, disposing events
reduces statistical precision and significance, which in turn reduces sensitivity; therefore, full
sensitivity is limited to the high-pT regime at which the triggers are unprescaled.

Each event that makes it to permanent storage passed a chain of triggers that provide a
rough assignment/classification of collision events to different, not mutually exclusive categories
of physical objects and interactions. Therefore, the very first step of each analysis is the
selection of relevant higher-level (jet) triggers to sort/filter out the class of interesting events
that meet the requirement of the event selection and for that reason are considered in the
analysis.

Single-Jet Triggers and Trigger Fractions

The analysis presented in this thesis is all about jets; thus, the relevant events must have been
passed at least one higher-level single jet trigger. The corresponding entry in the trigger menu

4This is particular important for track-based measurements due to the already mentioned sensitivity to the
alignment of the detector that may have slightly changed over time.
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is commonly denoted as “HLT_jX”, whereby “X” symbolizes the (approximate) transverse
momentum threshold from which on the respective trigger operates close to full efficiency.
This number only gives an approximate value for the lower trigger threshold because most
triggers are not fully efficient at this momentum. Hence, the determination of a list of mutually
exclusive bins in transverse momentum pT in which the selected triggers are fully efficient
will be one part of this section. This is important in order to obtain the correct cross section;
otherwise, the number of measured events might underestimate the one expected from the
event rate for the respective process.

This section provides a detailed step-by-step guidance through the entire trigger selection
and reweighting/scaling process.

To get a first impression, it is instructive to take a look at the relevant single jet triggers
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Plot 9.2: Percentage proportion of several higher-level single jet triggers as a function of
the leading jet transverse momentum pT (left) and the track multiplicity ntrk (right).

that come into question for this measurement as well as their fraction with respect to all
triggers for a given pT of the leading-pT jet in the event (the trigger selection in this analysis
is always based on the leading jet’s pT

5). The fraction fHLT_jX of one particular trigger is
simply defined as

fHLT_jX =
NHLT_jX

Nnjet≥1
, (9.5)

whereby Nnjet≥1 denotes the total number of events that passed at least one single jet trigger.
By definition, the following normalization condition holds:

∑
X f

HLT_jX = 1 (at least one
trigger must be passed). The fraction of single jet triggers versus the transverse momentum of
the leading-pT jet is shown in Figure 9.2a. Figure 9.2b represents exactly the same information,
but with a different representation in terms of the track multiplicity ntrk, i.e., the reconstructed
number of charged “constituents” inside of the (leading) jet. This alternative presentation is
justified since the main focus of the analysis is on jet substructure, hence, it must be ensured
that the reweighted events results in meaningful distributions also in terms of internal structure
of the jets. As can be seen, with increasing track multiplicity, the faction of high-pT threshold
triggers increases. This is expected because the number of particles increases as a function of
the transverse momentum of the jet.

5Sometimes, the trigger threshold is defined by means of the scalar sum HT = p
(1)
T + p

(2)
T of the transverse

momenta of the first two leading jets in the event.
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Trigger Efficiency

To gain a better feeling for the different higher-level single jet triggers, Figure 9.3a shows the
prescale factors for the respective trigger that comes into question. As mentioned earlier, the
prescale factors are not fixed, but vary in time in order to adjust to current run conditions of
the experiment. The range of variation of one prescale factor is indicated by the shaded area
in Figure 9.3. As can be seen from Figure 9.3a, the variation of one prescale factor is mostly
constrained to the same order of magnitude, but may deviate significantly from time-to-time
as indicated by the anchors and wicks of the candles. The three triggers HLT_j380, HLT_j400
and HLT_j420 are the lowest unprescaled triggers for the data taking years 2015, 2016; 2017,
and 2018, respectively, which is why the corresponding entries in Figure 9.3a are exactly at
unity, i.e., all events are triggered.

If no prescale factor is applied, the reconstructed distribution of the leading jet transverse
momentum looks like the one in Figure 9.3b (mind the logarithmic scale); recovering the
original, smoothly falling spectrum by applying the correct prescale factors is the objective
of the reweighting procedure according to the trigger prescale factors. The first task is to
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Plot 9.3: Prescale factors NPS (left) and unweighted transverse momentum pT distribu-
tion of the leading jet (right) for different higher-level single jet triggers. The last three
trigger paths in Figure 9.3a are unprescaled.

define a list of higher-level single jet triggers and to ensure that they are fully efficient within
their assigned exclusive region in pT; otherwise the number of events in this pT regime will
be systematically underestimated. For this, the trigger efficiency of a given trigger must be
measured or already known.

There are several ways to determine the trigger efficiency. One way is to simulate the full
trigger chain using Monte Carlo generated events. This method works well, but here, the
trigger efficiency is measured directly in data using a reference trigger.

Doing an efficiency measurement in data always requires some kind of a reference – to
measure the efficiency curve of a given trigger, the reference trigger can, for instance, be a
lower threshold one. let P (Tk|pT) denote the probability for a trigger Tk to fire given a jet
with transverse momentum pT. Now, given some reference trigger Tk−1, the trigger efficiency
P (Tk|pT) is given by

P (Tk|pT) =
P (Tk ∩ Tk−1|pT)

P (Tk−1|pT)
, (9.6)
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whereby P (Tk ∩ Tk−1|pT) is the probability for a jet with pT to pass both triggers. Naively
implementing this relation, however, comes with the issue of limited statistics because the
prescale factor of the reference trigger is higher by definition. To avoid this problem, Equation
9.6 can be rewritten using Bayes’ Theorem

P (pT|Tk) ∝ P (Tk|pT)P (pT), (9.7)

with the normalization P (Tk) being ignored because the position of the pT threshold (which is
the relevant information) does not depend on it. In Equation 9.7, P (pT) is the undistorted pT

spectrum that can be estimated(!) from a trigger with a higher prescale factor. The efficiency
curve of trigger Tk is then given by the ratio of the distributions for P (pT) and P (pT|Tk). In
Equation 9.7, the normalization of the distributions was left undetermined; however, it can
simply be computed by demanding the probability distributions to be properly normalized.
The resulting efficiency curves based on the aforementioned prescription for a preselection (for
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reasons of clarity) of single jet triggers is shown in Figure 9.4. All curves show the expected
characteristics: (almost) no efficiency for jets with a transverse momentum below the designed
threshold, followed by a steep turn-on curve and finally saturation where the trigger is fully
efficient – values above one are a consequence of limited statistics and normalization and can
safely be ignored. The first curve in Figure 9.4b, corresponding to HLT_j45, was included to
show the effect of a trigger not being fully efficient.

Once the trigger efficiencies of the triggers in question have been measured, all that is left to
do is to read off directly from Figure 9.4a the trigger thresholds for which the selected triggers
are fully efficient. The inferred exclusive pT bins as well as the corresponding higher-level
single jet trigger are summarized in Table 9.2. Above a transverse momentum of 500 GeV, all
single jet triggers are unpresclaed. However, the lowest unprescaled trigger is not the same for
all years of data-taking, which must be taken into account during reweighting. Furthermore,
the trigger efficiency shows a weak dependence on the pseudorapidity of the jet too, which
is why two categories of higher-level jet triggers exist – one for |η| < 2.1 (central region) and
another one for |η| ≥ 2.1 (forward region), with the latter one showing a small shift of the
threshold towards lower pT due to increasing material budget in the forward region of the
detector. Since all jets are limited to the inner part of the detector (tracker region); hence,
forward triggers are excluded or rather without consequences in this analysis.

Figure 9.5 shows the result of the trigger selection for the transverse momentum (9.5a) and
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Exclusive pT range [GeV] prescaled HL single jet trigger
[100, 150)† HLT_j060
[150, 210)† HLT_j110
[210, 300) HLT_j175
[300, 500) HLT_j260
[500,∞) unprescaled

Table 9.2: Exclusive pT ranges associated with a higher-level single jet trigger. Jets with
a transverse momentum below 250 GeV are not considered since they are exclude by the
definition of the phase space selection. † Those trigger ranges are excluded due to the
lower momentum cut.

the track multiplicity (9.5b). In case of the transverse momentum, the exclusive trigger ranges
can be clearly seen. The three curves for pT > 500 GeV correspond to the different data-taking
campaigns 2015/16, 2017 and 2018 that differ with respect to their lowest unprescaled trigger.
For the track multiplicity in Figure 9.5b, the distributions overlap of course, but an increasing
average number of tracks 〈ntrk〉 per jet for higher threshold triggers (corresponding to larger
pT) can be observed as expected. With the jet trigger being selected, all that is left to do is to
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Plot 9.5: The transverse momentum pT (left) and the track multiplicity ntrk (right)
distribution for all exclusive trigger ranges with no prescale factors being applied.

apply the correct trigger prescale factor depending on the pT of the jet. The final reweighted
transverse momentum and track multiplicity distribution after selection is shown in Figure 9.6
for the transverse momentum (9.5a) and track multiplicity (9.5b).

9.2.5 Event Selection

All measurements presented in this thesis are based on multijet events recorded with the
ATLAS detector. More precisely, the actual analysis makes use only of the first two leading-pT

jets in an event, each one populating a distribution. The measurements are inclusive in the
sense that all events with at least two jets (meaning 2jet+N) that pass the basic event selection
are used to determine the differential cross section.

Prior to the basic event selection that defines the (fiducial/total) phase space volume, the
event must satisfy some standard cleaning criteria to ensure good data quality. As already
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Plot 9.6: The transverse momentum pT (left) and the track multiplicity ntrk (right)
distribution before and after the prescale factors being applied.

mentioned in Section 9.2.3, the event has to be an element of a valid luminosity block, i.e.,
it must pass the GRL. This cleaning step, of course, is only applied to data since there is no
corresponding variable/flag for Monte Carlo. In case of Monte Carlo, basic event cleaning is
done by explicitly removing simulated events labeled as “bad” from the xAOD6 are discarded
for good. For both, data and Monte Carlo, the event is required to have at least one primary
vertex reconstructed nPV ≥ 1 with at least two valid, tight tracks consistent with it ntrk ≥ 2.

Jet Working Points

Besides the basic event cleaning cuts mentioned in the previous paragraph, the jet candidates
must fulfill the ATLAS quality selection criteria. In case of small-R anti-kt jets, there are
two jet selection working points available: a loose selection that provides an efficiency of
approximately 99.5 % for pT > 20 GeV and 99.99 % for pT > 100 GeV respectively (which is
the standard cleaning for most ATLAS analyses); and a tight working point aiming for analyses
sensitive to non-collision backgrounds with a jet selection efficiency of 95.0 % for a transverse
momentum of pT > 20 GeV and 99.5 % for pT > 100 GeV. Both selection working points are
supposed to identify fake jets (for instance, an electron that was misidentified as a jet) and
hence increase purity of the jet sample. Since the fake rate of jets significantly depends on the
calorimeter noise, the characteristic signal shape is among the most powerful discriminators to
identify fake jets. To this end, the actual measured shape in the calorimeter is compared to the
expected shape from simulation; the quadratic difference. Additionally, the energy fractions in
the different calorimeters fEM and fHEC has some discrimination power between fake and real
jets and hence is used in the selection7.

The loose working point is designed to keep as much jets as possible, i.e., operating at a
high efficiency while maintaining a high fake jet rejection. A jet that fails at least one of the
cuts listed below is referred to as a “BadLoose” jet:

1. fHEC > 0.5 and |fHEC
Q | > 0.5 and 〈Q〉 > 0.8,

2. |Eneg| > 60 GeV,

6The Analysis Object Data (xAOD) is a summary of the reconstructed event, which can be read by the
open source analysis framework ROOT [199] as well as ATLAS’ software framework (Athena [200]). As such, it
is part of CERN’s Event Data Model (EDM).

7An excellent in-dept study regarding the selection of jets at the ATLAS experiment can be found in the
following reference Ref. [201].
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3. fEM > 0.05 and fLAr
Q > 0.8 and 〈Q〉 > 0.8 and |η| < 2.8,

4. fmax > 0.99 and |η| < 2.0,

5. fEM < 0.05 and fcf < 0.05 and |η| < 2.0,

6. fEF < 0.05 and |η| ≥ 2.0.

In the enumeration above, |Eneg| is the absolute value of “negative energy deposition” in the
calorimeter. This may happen due sporadic noise in the calorimeter, which may result in
large reconstructed energies; fmax denotes the maximum energy fraction in one event in any
of the calorimeter layers; fLAr

Q is the fraction of energy in the LAr calorimeter for jet with
poor signal shape quality. The first two items are supposed to reject jets due to sporadic
high noise occurring in the hadronic calorimeter of the detector. The third criterion rejects
jet reconstructed due coherent noise or pathological cells in the electromagnetic part of the
calorimeter. Finally, the remaining cuts aim to reduce contributions from cosmic muons, beam-
induced effects and malfunction hardware. The effect of the loose jet selection described above
is demonstrated by means of the pT spectrum in Figure 9.7. The plateau/tail in Figure9.7a is
due to the already mentioned detector noise; applying a loose jet selection as in Figure 9.7b,
noise-induced calorimeter jets are efficiently rejected resulting in a smoothly, monotonically
falling spectrum.

The loose selection can be extended by one additional criterion to obtain a tight selection

(a) “BadLoose” jets (b) Loose jet selection applied.

Plot 9.7: Transverse momentum for “BadLoose” jets (left) and jets that pass the loose
selection (right) for the prescaled and unprescaled distributions.

working point for jets. A jet that fails the tight selection is referred to as being “BadTight”.
The additional criterion for the tight selection includes a ratio between the fraction of charged
constituents of the jet, fch, and the fraction of largest energy deposit fmax. A jet passes
the tight selection, if it is not a “BadLoose” jet and additionally satisfies fch/fmax ≥ 0.1 for
|η| < 2.5, whereby the pseudorapidity cut ensures that the jet is within the region of the inner
detector.

Both cross section measurements presented in this thesis have been done for the loose as
well as for the tight jet selection. The tight selection, however, was found to result in larger
uncertainties. Therefore, if not explicitly mentioned otherwise, the loose selection is applied to
all jets.

Summary and Phase Space Volume

The event selection can be roughly divided into two parts for particle and detector level alike:
firstly, an event cleaning is applied that removes events that do not pass certain data quality
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flags; secondly, cuts applied on the level of individual jets that define requirements on the jets
used in the analysis.

All event cleaning cuts have already been introduced in the previous Section; therefore,
they should only be briefly mentioned here for clarity in bullet point form once more. All
events used for the analysis must pass the GRL (see Section 9.2.3) with at least (inclusive
measurement) two jets being reconstructed in the event. If the event meets the basic data
quality criteria, the next step is to ensure that there is a primary vertex being present in the
event with at least two tracks being compatible with it8. The latter requirement, of course,
accounts for the fact that charged particles in multijet events are studied; hence, at least two
tracks passing the loose/tight track selection (see Section 9.2.1) should be present in the event.
Last but not least, the two leading-pT jet must not be tagged as being “BadLoose”.

If the event passes the basic event selection criteria, the attention focuses on the jet
candidates itself. The two leading-pT jets used in the analysis must be within the acceptance
region of the inner detector, taking into account the jet radius R = 0.4 to ensure that all
clustered charged particles are covered by the tracker as well. This results in a pseudorapidity
cut of |η| < 2.1(= 2.5 − R(= 0.4)) for all calorimeter-based jets used in the measurement.
Especially at low pT, there is a non-negligible contribution coming from pile-up events. Those
pile-up jets are usually soft compared to the hard scatter which is accounted for by requiring
the two leading jets to fulfill plead

T /psublead
T < 1.5 (see Ref. [202] for a motivation of this selection

cut). Besides the suppression of pile-up, this cut acts a kind of a isolation criterion that results
in highly isolated jets on average that “simplifies the interpretation of the final state in terms of
a 2→ 2 scattering process” [202]. Finally, with the goal in mind to perform a measurement that
is sensitive to quark-gluon difference, the measurement is conducted for central and forward
jets simultaneously because the two categories are in each case gluon and quark enriched,
respectively, as motivated in Section 9.2.2.

The entire event and object selection for all measurements presented in this report is

Particle Level Detector Level
Pile-up Removed by truth information “Removed” by selecting primary vertex

Jet Algorithm Anti-kt algorithm with R = 0.4

Jet Requirements |η| < 2.1 and pT > 250 GeV

Jet Constituents Only stable particles with τ > 10 mm
excluding neutrinos and muons ATLAS’ PFlow objects

Input Charged truth level constituents
with pT > 500 MeV

Tracks with pT > 500 MeV, ∆R
-associated to the reconstructed jet

Event Selection
No “bad” xAOD flags GRL is passed; no “BadLoose” jets

At least one charged constituent At least one track

At least two jets satisfying plead
T /psublead

T < 1.5

Jet Selection Two leading-pT jets subdivided into central and forward categories

Table 9.3: Summary of the event selection as well the input objects used for the
measurement of the triple-differential multijet cross sections presented in this report.

summarized clearly in a condensed form in Table 9.3. The “input” group in Table 9.3 refers
to the input that is used to compute the jet substructure variables in bins of which the
triple-differential multijet cross section is measured – while the PFlow jets are only made use of
for the purpose of event selection, to construct “track-associated” jets, as well as the transverse
momentum pT and the (relative) pseudorapidity.

In essence, the selection outlined in Table 9.3 does correspond to the fiducial/total phase
space volume over which the relative rate of multijet events is measured.

It is very important to ensure that the differential cross section is determined over the exactly

8This, however, does not guarantee that both PFlow contain at least one track associated with it.
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same sample of jets for all substructure observables measured in this analysis. Modifications
or additions to the selections in Table 9.3 between different measurements will result in a
different composition of quark- and gluon-initialized jets of the two mixtures (central/forward
jet sample), which inevitably changes the quark/gluon fraction(s). In this case, the individual
measurements are not comparable with each other anymore.

9.3 Validation and Data-to-Monte-Carlo Comparison
With the completion of the previous section and the definition of the measurement’s phase
space volume at particle and detector level, all technical foundations of the analysis have
been introduced. This paragraph now aims to compare data and simulation (at detector level
of course) by means of a selected list of observables and their distributions in aspiration to
estimate the data-to-Monte-Carlo agreement.

The first observables to consider are the scalar and angular components of the four-
momentum of the reconstructed jet in its common representation in terms of pT, E and
η, φ. The former ones are given by the energy E and the transverse momentum pT of the
jet, both of which are shown in Figure 9.8 for the full Run 2 data set as well as all Monte
Carlo samples listed in Table 8.1. The energy of the jet is simply given by the scalar sum of
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Plot 9.8: The reconstructed (detector-level) distribution of the jet energy E (left) and
the transverse momentum pT (right) for the full Run 2 data set and all simulated samples
(for all MC campaigns) considered in this analysis.

the individual energies of each constituent inside the jet; hence, it does not depend on the
angular distribution of the solitary particles and is therefore insensitive with respect to the
mismodeling hereof. Accordingly, the energy distribution shown in Figure 9.8a in data and
Monte Carlo shows an excellent agreement across a vast range of energies. In case of the
transverse momentum pT (9.8b). Contrary to the energy of the jet, the transverse momentum
is indeed sensitive to the distribution of the particles constituting the jet. This manifests itself
in a somewhat larger discrepancy between data and MC for this observable that, furthermore,
shows a strong variation between the different generators. The next set of validation plots
are the aforementioned angular distributions of the jets in Figure 9.9. Generally, all Monte
Carlo samples are in good agreement with data. The pseudorapidity distributions of the jets in
Figure 9.9a is constrained to |η| < 2.1 rather than the full tracker acceptance |η| < 2.5 of the
Inner Detector to allow for track-to-jet association/matching. This pseudorapidity cut takes
into account the radius of the jet |η| < 2.5−R(= 0.4) that guarantees for all charged particles
– being associated to it – to lie within the acceptance region of the Inner Detector and hence to
possibly (limited by the reconstruction efficiency) be reconstructed as a track which can be
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(b) Azimuthal angle φ

Plot 9.9: Distribution of the reconstructed jet pseudorapidity η (left) and azimuthal
angle φ (right) at detector level.

assigned to the jet by means of a ∆R- or ghost-matching scheme.
Dwelling on the pseudorapidity a bit longer, Figure 9.10b takes a closer look at central

and forward jets. As a quick reminder, a jet Ji with i ∈ {1(= central), 2(= forward)} (dijet
selection) is called “central“ if |ηi| < |ηj | for i 6= j; otherwise, it is referred to as the forward jet.
The distinction between central and forward jets plays an important role in this measurement;
hence, it is important to verify that both “regions” are equally well modeled by simulation.
The uncertainty in central and forward region will be different through because the material
budget faced by all jets increases for jets that are more forward in absolute rapidity. As can
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(a) Pseudorapidity distributions for “central” and
“forward” jets
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Plot 9.10: The reconstructed pseudorapidity divided into its distributions for central
and forward jets (left) and the residual between the pseudorapidity of the more central
and more forward jets, respectively, ηcentral− ηforward on an event-on-event basis (right).

be seen in Figure 9.10a, there is an excellent agreement between data and Monte Carlo for
central and forward jets. In case of forward jets close to the limits of the tracker acceptance, a
small disagreement can be observed probably due to the above-mentioned increasing material
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budget in the forward region of the detector. Figure 9.10b shows the residual between the
pseudorapidity of the central and forward jet, δη := ηcentral − ηforward, in an event. This figure
of merit is interesting as it is more sensitive to modeling effects than the per-jet pseudorapidity
distributions because it accounts for both jets in the event. Accordingly, some characteristic and
systematic deviations from data can be observed. Both Pythia-based (with Powheg as matrix
element generator) describe the data very well. An interesting feature is the opposite curve
progression of the LO Sherpa and Herwig samples (the NLO calculations generally agree
very well with data). Since both Sherpa sample(s) utilize different hadronization models – but
mostly agree in the description of δη –, the origin of the observed behavior is probably due to
the underlying parton shower models, i.e, the difference between a CSS and an angular-ordered
shower. However, the effect may also be due the different PDF sets used for the two generator
families that affect the emissions in central and forward regions due to differences between the
probability of sampling a parton of a particular flavor, which affects the rapidity distribution.

The next two Figures 9.11a and 9.11b show the distribution of the transverse momentum
ratio between the subleading psublead

T and the leading pleading
T jet as well as the jet multiplicity

njet in the event. The pT-ratio is also part of the event selection with each multijet event in
this measurement satisfying plead

T /psublead
T < 1.5 or psublead

T /plead
T > 0.66̄ accordingly; i.e. the pT

of the subleading jet must be at least 66 % of the leading jet in the event. This selection cut is
mostly motivated by the suppression of events where the hard leading-pT jet is accompanied by
a second, very soft jet that most likely is not associated to the hard scatter, but originates from
pile-up or noise. This helps in particular with the reduction of fake jets where a high-pT jets
in the event is faked by a high-pT lepton with some pile-up-induced low-pT jets being present.
Furthermore, the cut also affects the event topology, resulting in more back-to-back jets and
hence acts as an implicit isolation criterion, resulting in back-to-back jets as the pT ratio is
correlated with the jet thrust axis. Generally, the observable is well-described by simulation
within the acceptance region – for jets beyond plead

T /psublead
T < 1.5, the discrepancy increases

due to the limited modeling of soft QCD effects.
Figure 9.11b shows the number of jets reconstructed in the event, whereby the last
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(b) Number of reconstructed jets in the event njet

with the last bin being inclusive

Plot 9.11: Ratio of the leading and subleading jet’s pT passing the selection cuts (left)
and the jet multiplicity njet (right).

multiplicity bin is inclusive, i.e., including contributions from all events with at least six jets
(njet ≥ 6) being present. The jet multiplicity is very sensitive to all kind modeling effects
reaching from the matrix element calculation, parton shower and hadronization; therefore, it
is a suited variable to check data-to-Monte-Carlo agreement. As expected, the disagreement
between the actual measurement and simulation increases towards higher jet multiplicities
due to the presence of “softer” jets, which are hard to model in simulation. The production of

135



additional (2 jet+N) jets particularly differs between LO and NLO matrix element calculations
that are combined with a parton shower generator. The former one is a 2→ 2 event generator
that completely relies on parton shower emissions to give rise to higher jet multiplicities in
the event. This is problematic to the effect that the parton shower approach/approximation
(as mention in Chapter 2.4) is based on the factorization of the cross section in the soft and
collinear limit. For non-collinear splittings, the parton shower model is an approximation
whose quality depends on the amount to which the initial assumption of a collinear splitting is
violated. This is especially true for the choices of ordering variables that are only equivalent
exactly in the collinear limit; beyond it, different ordering variables may result in (partially!)
substantially different results. In case of an NLO matrix element generator, however, the
situation is different as the real emission that enters the calculation at α3

S populates a different
region in phase space than the parton shower (which is one motivation for the combination of
matrix element calculations and parton shower simulation in the first place). Furthermore,
the NLO matrix element is showered like the LO one; but, because the NLO sample already
starts with three particles being present in the final state, the probability of having larger jet
multiplicities is enhanced for higher-order calculations in general.

All validation plots considered so far – except for the jet multiplicities – are based on the
(leading and subleading) PFlow jets. As explained previously, all substructure observables,
however, are calculated from the set of tracks matched to those topo-cluster jets. This section
is therefore concluded by inspecting the distribution of reconstructed track momenta ptrk

T as
well as their pseudorapidity ηtrk in Figure 9.12. There is no need to examine the corresponding
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(b) Reconstructed track pseudorapidity ηtrk

Plot 9.12: Reconstructed transverse momentum ptrk
T (left) and pseudorapidity ptrk

T (right)
for all inner detector tracks with ptrk

T > 500 MeV.

figure for the azimuthal angle φtrk as it is uniformly distributed by construction. Furthermore,
the “mass” of the track is constrained to be close to the mass of the pion mπ. All distributions
in Figure 9.12 are in good agreement with each other. The pseudorapidity is particularly
well described as the angular resolution of the Inner Detector is excellent. Contrary to the
pseudorapidity of the reconstructed jets (see Figure 9.9a), the pseudorapidity of the tracks
extends over the entire acceptance range of the Inner Detector (see Chapter 3.3.4), i.e., |η| < 2.5.
With the R = 0.4 jet being constrained to |η| < 2.1(= 2.5−R), the track-to-jet matching does
not loose efficiency for larger pseudorapidities.

9.4 Baseline Distributions
All distributions presented in the previous section served the purpose of validating the overall
agreement between data and simulation. In the course of this measurement, plenty more figures
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of merit have been studied (for reasons of clarity and comprehensibility not included in the
report at hand) in order to ensure that the data is well modeled all in all. This is important as
many uncertainties of the measurement are defined based on generator-to-generator variations
in the target distributions; moreover, the detector-level distributions are unfolded to particle
based on the response matrix derived from simulation.

This section connects to the previous one by introducing the corresponding distributions of
the transverse momentum pT as well as relative pseudorapidity ηrel along with their respective
binning used in the actual analysis for both groups of measurements, firstly, the triple-differential
multijet cross section with respect to a counting-based observable (track multiplicity ntrk and
Soft Drop multiplicity nSD) as well as, secondly, the NN-score zE/PFN predicted by the EFN and
the PFN (neural networks) respectively (the concrete implementation of both neural networks
will be explained in great detail later in this thesis). The binning for the just mentioned jet
substructure variables ntrk/SD and zE/PFN are introduced in their dedicated chapters.

The selected binning for the transverse momentum and the relative pseudorapidity are
shown in Table 9.4. In total, the spectrum of the transverse momentum is measured in five

Observable Binning Unit
pT [250, 350) [350, 500) [500, 700) [700, 1100) [1100, 4500) GeV

ηrel central(= 0) forward(= 1) none

Table 9.4: Binning of the transverse momentum pT as well as the relative pseudorapidity
ηrel that is used for the entire analysis thought all cross section measurements. The
assigned numbers for the relative pseudorapidity are basically arbitrary, but chosen
according to the definition ηrel,i = Θ(|ηi| − |ηj |), whereby i, j ∈ {1, 2}.

exclusive (i.e., restricted to a fixed range) pT bins of non-equidistant widths. The definition of
the width of the individual bins is basically determined by the prescaled higher-level single jet
triggers in the range of low pT, as well as the compensation for decreasing statistical significance
of high-pT jets as well as the reduction of migrations due to JES/JER-related variations.

The relative pseudorapidity ηrel of the two leading jets in the event is simply divided into
two disjoint categories, i.e., central and forward.

Both inclusive distributions are shown in Figure 9.13 for data and all Monte Carlo samples
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Plot 9.13: Baseline distributions of the transverse momentum pT (left) as well as the
relative pseudorapidity ηrel (right) with the appropriate binning quoted in Table 9.4 as
used in all measurements through this analysis.
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listed in Table 8.1. The legend entries show – besides the name/label (see Figure 8.1) of the
respective Monte Carlo generator – the normalization factor for each sample with respect to
the number of events measured in data according to the normalization factor. Something
immediately catching one’s eye are the strong variations between the different Monte Carlo
event generators (even within one family), which is expected in case of multijet processes as
the precision of the normalization is limited mainly do to long-range effects that are mostly
described by empirical models. This discrepancy of the normalization with reference to data,
however, is irrelevant in the context of this analysis because all rate measurements presented in
this report are relative with respect to the total number of events in the fiducial/total volume;
hence, only the “shape information“ of the distributions enters.

Figure 9.13a shows the distribution of the transverse momentum for the binning stated
in Table 9.4 for central and forward jets inclusively, i.e., the relative pseudorapidity has been
marginalized over P (pT) =

∫
dηrel P (pT, ηrel). Both pT spectra in central and forward region

are very similar as the pT is not very sensitive to quark/gluon-related features. Each bin was
normalized by the corresponding bin width to account for non-equidistant bin sizes. One
obtains a smoothly falling pT spectrum whose description by simulation basically follows the
characteristics already observed in the corresponding validation plot in Figure 9.8b. The
selected binning of the transverse momentum is motivated by the unfolding and has been
optimized by iteratively repeating the entire measurement several times.

The inclusive distribution of the relative pseudorapidity ηrel for all transverse momentum
pT bins is shown in Figure 9.13b. The distribution contains only two bins with the same cross
section each. This is the desired property that directly follows from the definition of this
observable. The number of events in each bin is identical due to the dijet selection criteria
that requires at least two jets of which the leading two ones always fall in opposite rapidity
categories. Trivially, the “shape” of this distribution is exactly described in Monte Carlo.
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10. Uncertainties

This chapter provides a conceptual introduction to all the statistical and systematic uncertainties
that are relevant for the measurements presented in this report.

The precision of the final measurement of the triple-differential multijet cross section with
respect to various jet substructure observables is limited by several sources of statistical and,
dominantly, systematic uncertainties. The latter one includes, for instance, the uncertainty
associated to the modeling of the different production steps of the event generation like the
calculation of the matrix element of the underlying subprocess (dijet production), the parton
shower simulation and its various models and ordering variables, as well as the formation
of color-singlet hadrons by means of the hadronization model; the uncertainty due to the
calibration of the jet-energy scale; the underlying PDF for the sampling of the initial momenta
of the partons inside of the proton; different “definitions” of tracks (e.g., variation of low
momentum cuts etc.); variation of the cross sections due to limited knowledge of the exact
pile-up condition; disabled modules in the tile calorimeter as well as the bias due to the
simulation-based unfolding etc.

Regarding the organization of this chapter, each component of the total uncertainty gets its
dedicated section. The fist section (10.1) outlines the calculation of the statistical uncertainties
in data and Monte Carlo. The remaining sections describe several sources of systematic
uncertainties. The second section (10.2) describes the calculation and composition of the
modeling-related uncertainty that consists of an uncertainty related to the underlying precision
of the calculation of the matrix element (10.2.1), the parton shower simulation (10.2.2) , as
well as the underlying hadronization model (10.2.3). This is followed by the tracking-related
uncertainties 10.3. Following that (10.4), the uncertainty due to the choice of the underlying
PDF is described. Subsequently (10.5), the uncertainty due to the calibration of the energy
scale of the jet is introduced. This is followed by a quick description of the uncertainty due to
the limited knowledge of the exact pile-up conditions (10.6) as well as disabled modules in the
tile calorimeter (10.7). After that (10.8), the uncertainty associated with the modeling-bias by
means of a data-driven non-closure test is explained. Also, possible biases due to variations in
the conditions of the measuring apparatus are estimated by a closure test between different
runs of data taking (10.9). The calculation of the uncertainty associated to the extracted
probability distributions of quarks and gluons as well as their fractions (10.10) is outlined.

10.1 Statistical Uncertainties

The statistical uncertainties (in data and MC) in each phase space bin are determined based on
the execution of a fixed number of pseudo-experiments. In each toy-experiment, the measured
number of events in each bin randomly fluctuates according to a probability density function
suitable for this task. One obvious (and common) choice for the PDF would be a Gaussian,
which is a frequent choice for the nuisance parameter θ of many systematic uncertainties
according to

ρ(θ) =
1√
2πσ

exp

(
(θ − θ̄)2

2σ2

)
, (10.1)

whereby θ̄ denotes the mean value of θ. However, a Gaussian prior (according to Equation 10.1)
is not suitable for a class of observables that is positively defined like, e.g., the cross section,
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efficiencies etc., as it may gives rise to negative, ill-defined values. One ad hoc approach to solve
this issue of negative values is to truncate the Gaussian at zero. This approach, however, is
not well motivated as truncating the lower tail of the Gaussian distribution effectively changes
the prior of the respective parameter of interest.

Another option is to use a prior that excludes negative values in the first place. A common
choices is a log-normal distribution. The log-normal distribution is given by

ρ(θ) =
1√

2πln(κ)
exp

(
− lnθ/θ̄2

2ln(κ)2

)
1

θ
, (10.2)

which is a probability distribution of a random variable whose logarithm is normally distributed.
In Equation 10.2, κ denotes the width of the log-normal distribution. For large mean values,
the log-normal distribution approaches an ordinary Gaussian.

The mean value of the log-normal distribution in Equation 10.2 is just given by the measured
cross section in the respective phase space bin. Accordingly, the variance is defined by the sum
of the squares of the trigger prescale weights.

After the parameters of the log-normal distribution are determined, the statistical uncer-
tainty is derived based on a sequence of ‘200’ pseudo-experiment. In each run, the measured
number of events in each phase space bin is varied/smeared according to the above-mentioned
log-normal prior, which results in a total number of ntoy = 200 (toy) measurements that are
subsequently unfolded to particle level. In accordance with Equation 10.2, phase space bins
with a small event count will result in larger variances, which consequently results in larger
statistical uncertainties. After the pseudo-experiments have been performed, the statistical
uncertainty in each phase space bin is then given by one-half of the difference between the 84th
and 16th quantiles of the toy sample, which corresponds to the 68 % Inter-Quantile Range
(IQR) of the generated output distributions (basically the 1σ-equivalent in case of a Gaussian
distribution).

In case of real collision data, the unfolding procedure, which transforms the measurement
to particle level, introduces correlations between different regions of phase space. Therefore,
there is a non-trivial (i.e., non-diagonal) covariance matrix for the data given by

Σstat
ij =

ntoy∑
k=1

(xi,k − 〈xi〉)(xj,k − 〈xj〉), (10.3)

whereby the index runs over all toy measurements and xi denotes the measured number of
events in the ith phase space bin.

10.2 Modeling-Related Uncertainties
The unfolding of a measurement relies on the specification of a so-called nominal Monte Carlo
simulation that is used to derive and construct the response matrix, which is then applied to
data in order to obtain the corresponding cross section at particle level corrected for detector
and acceptance effects, characteristic to the detector that was used to record the data. As
there is no model that provides a perfect simulation/description of nature, the uncertainty
associated with the choice of different Monte Carlo samples must be estimated. For many of
today’s measurements, this model-related uncertainty is among the most dominant sources of
errors. There is no obvious, fundamentally motivated best choice that distinguishes different
Monte Carlo event generators; in fact, the performance of different generators is known to vary
substantially between different regions in phase space and processes. Hence, the definition of a
nominal Monte Carlo sample for a measurement often relies on empirically acquired insights
given the agreement with respect to data.

The specification of the various models used in the individual steps of the production
chain of the event generation must be accounted for by an uncertainty. This modeling-related
uncertainty is subdivided into three individual components that reflect the three main steps of
the event topology simulated by Monte Carlo event generators: firstly, limited precision of the
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10.2. MODELING-RELATED UNCERTAINTIES

calculation of the underlying subprocess (multijet production) by means of the Matrix Element
(ME); secondly, the variation in the underlying model of the Parton Shower (PS) simulation;
and, thirdly, the utilization of different models for the formation of color-singlet hadrons by
means of Hadronization (Had). All three uncertainties (as well as their concrete calculation by
means of variations of the triple-differential multijet cross section) will be explained below.

However, before taking a closer look at the individual modeling uncertainties, their basic
calculation – which is shared by the ME-, PS- and Had-related uncertainty – will be explained
in the following.

First and foremost, there is no universally applicable definition of the modeling-related
uncertainty. All definitions, however, are somehow based on the variation of the reconstructed
spectra using different models for the generation of the events from which the respective
distributions are finally derived from. Furthermore, the definition of the modeling-related
uncertainty should yield zero, provided that the variation in the underlying model results in no
variation of the cross section at all. To introduce the definition of the modeling uncertainty that
is used throughout this report, consider the following equation that was already introduced (in
a slightly modified version) in Chapter 5 in the context of the unfolding procedure

NPL
i =

∑
j

Nmultijet,j
DL

([
R−1

])PL,i

DL,j
· εfake,j

εeff,i
, (10.4)

whereby Nmultijet,j
DL denotes the number of multijet events at detector level. Besides the number

of events at detector level, the total event yield at particle level NPL
i depends on the response

matrix R, the efficiency factor εeff
1 that accounts for losses due to jets that migrate out of

the active phase space volume – which would result in an underestimation of the expected
number of events –, as well as the fake factors εfake that correct the event yield for jets falsely
migrating into the measurement’s volume resulting in an overestimation of the cross section. All
three components, response matrix R, efficiency εeff and fake εfake factor, are model dependent,
i.e., using a different (Monte Carlo generator) model will result in different distributions for
those elements. It is not clear a priory and not unambiguously well defined how the final
model-related uncertainty is obtained from the model-dependent variations of R, εeff and
εfake; there are several options at this point. Many different choices for the modeling-related
uncertainty of the cross section measurement have been investigated in the course of this study,
all of which yield similar results.

The final uncertainty of the matrix element, the parton shower and the hadronization model
is defined by means of an envelope of the variations in the cross section for the response matrix
and both efficiencies

σmodel = max {σresp, σεeff , σεfake} , (10.5)

whereby σresp and σεeff/fake denotes the bin-by-bin variation of the cross section with respect to
the response matrix and the efficiency and fake factors, respectively. The variations associated
with the response matrix as well as the efficiency and fake factors in Equation 10.5, respectively,
are obtained by using the appropriate quantity from the alternative model while keeping the
remaining ones fixed at the value measured in case of the nominal Monte Carlo generator. In
this case, variations in the cross section related to the response matrix, the efficiency and fake

1The response matrix as well as the efficiency and face factors are always derived from the very same Monte
Carlo event generator.
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factors are given by

(Nnom
alt )

PL
i,resp =

∑
j

NPL
nom,j

(
[Ralt]

−1
)PL,i

DL,j
·
εnom
fake,j

εnom
eff,i

, (10.6)

(Nnom
alt )

PL
i,εeff

=
∑
j

NPL
nom,j

(
[Rnom]

−1
)PL,i

DL,j
·
εnom
fake,j

εalt
eff,i

, (10.7)

(Nnom
alt )

PL
i,εfake

=
∑
j

NPL
nom,j

(
[Rnom]

−1
)PL,i

DL,j
·
εalt
fake,j

εnom
eff,i

, (10.8)

(10.9)

whereby NPL
nom/alt,i denotes the number of events in the ith bin of the nominal/alternative

sample.
The variations are enveloped because the three elements σresp and σεeff/fake are correlated

in a non-trivial way; hence, they can not be just added in quadrature, which assumes no
correlation at all. Because the degree of correlation is unknown (at least in this analysis), using
the maximum variation represents a common choice.

The next sections now introduce the motivation as well as the precise calculation rule for
the ME-, PS- as well as Had-related uncertainty, based on the Monte Carlo event generators
listed in Table 8.1.

10.2.1 Matrix Element
As explained in Chapter 2.3, the first part of the event generation is the calculation of the
hard subprocess, which is calculated by means of perturbation theory because the momentum
transfer between the colliding particles/partons is large. The calculation of the matrix element
is a fixed-order calculation, i.e., the perturbative expansion of the scattering amplitude is
terminated at some fixed order in the coupling αS. The order of perturbation, which is
taken into account to compute the hard subprocess, defines the precision as well as the order
of the whole event. In this analysis, most event generators (including the baseline model)
use a leading-order calculation of the matrix element because higher-order calculations are
computationally expensive and time consuming, which usually results in low statistics in phase
space regions with small cross sections. Furthermore, the matching and merging with the
subsequent parton shower model is much more involved and introduces non-trivial event weights
that further complicate the analysis. To estimate the uncertainty due to the termination of
the perturbative series at some fixed order, the LO cross section must be compared to the one
obtained using a higher-order calculation of the matrix element (at least NLO). It is important
to ensure that both samples only differ with respect to the degree of precision of the underlying
hard subprocess to ensure that the variation of the cross section is indeed due to the matrix
element calculation solely.

For all measurements of the triple-differential multijet cross section presented in this report,
the ME-related uncertainty is calculated based on the prescription described in Section 10.2,
using the multijet samples generated from Pythia 8.230 (LO) and Powhegv2+Pythia
8.230 (NLO).

To obtain the associated uncertainty, the nominal spectra of the triple-differential multijet
cross section (derived using the baseline generator Pythia 8.230 at LO) is unfolded using the
response matrix derived from the Powhegv2+Pythia 8.230 sample at NLO. The unfolded
spectrum is subtracted from the nominal prior at truth level; the relative uncertainty for each
bin is obtained by normalizing with respect to the truth-level prior in each bin according to

σmodel
ME,i =

(
NPythia8

Ph+Py8
)PL

i
−NPL

Pythia8,i

NPL
Pythia8,i

, (10.10)

whereby NPL
Pythia8,i denotes the number of events in the ith bin of the baseline (Pythia

8.230) sample and
(
NPythia8

Ph+Py8
)PL

i
being the number of events in the same bin, but for the
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10.2. MODELING-RELATED UNCERTAINTIES

nominal sample at detector level that has been unfolded using the response matrix from
Powhegv2+Pythia 8.230 according to

(
NPythia8

Ph+Py8
)PL

i
=
∑
j

NPL
Pythia8,j

(
[RPh+Py8]

−1
)PL,i

DL,j
·
εPh+Py8
fake,j

εPh+Py8
eff,i

. (10.11)

10.2.2 Parton Shower
The next modeling uncertainty is related to the parton shower simulation. All parton shower
models are based on the factorization of the multi final-state cross section into a cross section of
smaller final-state multiplicity multiplied by a factor that accounts for the emission of collinear
radiation dσn+1 ∝

∑
i dσnPi(z, φ). With this picture in mind, it is obvious that the internal

structure (i.e., the distribution of radiation) inside of a jet is basically almost completely
determined by the parton simulation step. This implies that most substructure observables are
highly sensitive to the variation of the underlying model that is used to simulate the emission
of additional radiation inside of the jet. Hence, the PS-related uncertainty is expected to be
among the most dominant ones (along with the uncertainty related to the calibration of the
jet-energy scale and tracking) and therefore one of the limiting factors of the precision of this
measurement. Furthermore, due to the underlying premises of the parton shower philosophy
explained in Chapter 2.4, the uncertainty related to the PS is expected to be “noticeable”
pT-dependent. With increasing transverse momenta of the jets, the uncertainty is expected
to decrease as in the limit of collinear radiation (with higher-pT of the jets, the emissions
will be on average more collinear according to ∆R ∝ mjet/pT), most parton shower models
coincide; in particular, all definitions of the ordering variable for the emissions are equivalent
in the collinear limit. Differences between the various models arise because the parton shower
approach is also used beyond the collinear approximation, which is particularly the case for
low-pT jets that feature wide and soft radiation.

To obtain the uncertainty related to the parton-shower model, the triple-differential multijet
cross section derived from two samples that differ with respect to their PS model must be
compared. As many Monte Carlo samples listed in Table 8.1 use different approaches in the
parton-shower simulation step, there are may ways to define the corresponding variation of the
cross section. As already mentioned in the introduction of this chapter, several combinations
have been evaluated, all of which yield comparable results. The definition, which was finally
decided on, is based on the two (NLO) Herwig samples that use an angular-ordered parton
shower (Herwig’s default) and a parton shower approach based on a dipole model that models
the emission of radiation similar to an elementary electric dipole antenna.

The PS-related uncertainty is defined by the difference between the particle-level spectra
obtained by unfolding one of the Herwig-based distributions using the response matrix based
on the other generator and the truth-level spectra obtained from either of the Herwig samples
(meaning: unfolding one of the Herwig-based detector-level spectra with a response matrix
derived from one of the two Herwig samples). Normalized to the truth-level prior further
cancels many effects to the degree of their correlation (PDF, matrix element, hadronization etc.)
such that the resulting relative uncertainty can be considered as a very good representative of
the PS-related variation of the corss section. The final (relative) uncertainty due to the choice
of the parton shower model is defined as an envelope of the differrent parton shower models
according to

σmodel
PS,i =

(
NH7+Dipole

H7+Angle

)PL

i
−NPL

H7+Angle,i

NPL
H7+Angle,i

, (10.12)

whereby
(
NH7+Angle

H7+Dipole

)PL

i
denotes the number of events of the unfolded Herwig spectrum

(with angular ordered emissions) using the response matrix derived from the Herwig samples
based on a dipole model. If the response matrices of both Herwig samples coincide, the
PS-related systematic uncertainty vanishes by construction as it is expected for a proper
uncertainty metric.
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10.2.3 Hadronization
The last component of the simulation chain (except for the subsequent decay of the excited
states) is the already mentioned hadronization step that simulates the non-perturbative process
of the formation of color-less hadrons, which further decay to the “stable” particles measured
by the detector. The variation of the cross section due to different hadronization models is
expected to be less pronounced than it was the case for the PS-related one since most of the
jet’s internal structure is formed by the parton shower – that also has the highest sensitivity
to quark-gluon-related features of the jet as the average number of radiation in a jet is roughly
proportional to the color factor of quarks and gluons. Generally, the uncertainty imposed by
hadronization step is expected to lay somewhere between the one connected to the matrix
element and the parton shower.

The instructions for the determination of the hadronization-related uncertainty follows
closely the one used for the parton shower uncertainty in the previous paragraph. For the
calculation of the hadronization uncertainty, two Monte Carlos are needed that differ with
respect to their hadronization model. Mainly for this purpose, the two Sherpa (version 2.2.5)
samples listed in Table 8.1 have been introduced. Both generators agree in all event generation
steps except for the hadronization model that is used. As explained in Chapter 2.5, there are
two main classes of hadronization models available: the (Lund) string model as well as the
cluster-based model. Each one of the two approaches to hadronization is used by one of the
two Sherpa-based samples.

To obtain the final systematic uncertainty related to the variation of the triple-differential
multijet cross section, the nominal Lund-based Sherpa detector-level spectrum is unfolded with
the response matrices separately obtained form the Sherpa model that uses a cluster-based
approach to hadronization; the uncertainty is then given by the difference between the two
unfolded particle-level spectra according to

σmodel
Had,i =

(
NSherpa+Cluster

Sherpa+Lund

)PL

i
−NPL

Sherpa+Lund,i

NPL
Sherpa+Lund,i

, (10.13)

whereby
(
NSherpa+Cluster

Sherpa+Lund

)PL

i
denotes the number of events of the unfolded baseline spectrum

using the response matrix derived from either of the two Sherpa samples, differing by their
hadronization model.

10.3 Tracking Uncertainties
The measurement of the jet substructure observable is based on jets that have been matched to
the reconstructed jet; consequently, tracking-related sources of systematic uncertainties must
be taken into account. In this analysis, the tracking-related uncertainties are divided into three
categories, i.e., the (global) reconstruction efficiency, the fake rate, the momentum scale of
tracks as well as efficiencies within jets (dense environment).

The uncertainty associated with the reconstruction efficiency of tracks is composed of an
uncertainty related to the inner detector material due to limited knowlege of the detector
(referred to as inclusive efficiency uncertainty), which has been intensively studied in photon
conversions as well as hadronic interactions (see Figure 10.1). The total uncertainty is 0.5 %
for |η| < 0.1, growing up to a rwlative uncertainty of 2.7 % for tracks with 2.3 < |η| < 2.5. The
inclusive efficiency uncertainty is propagated through the measurement by randomly removing
tracks in the simulation with a probability that depends on the pT and η of the track.

The second efficiency-related component of the tracking uncertainty accounts for clusters
of pixels being compatible with multiple track candidates due to merged clusters in dense
environments. This is particularly true for the region close to the center (∆R ≈ 0.1) of
reconstructed jets. The uncertainty related to the merging of clusters (and the resulting
reduction in the reconstruction efficiency of tracks) has been determined based on the dE/dx
method as described in Ref. [44]. Following the ATLAS recommendations, in this analysis, the
tracking-related efficiency in dense environments is accounted for by varying the transverse
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10.4. PDF UNCERTAINTIES

Plot 10.1: “Comparison of the radial distribution of hadronic interaction candidates
between data and simulation (original and updated simulations) for [...] 20 mm < r <
75 mm [...]” (the figure as well as its caption have been adopted from Ref. 43, Fig. 10,
p. 20)

momentum of the tracks within 0.4 % provided that they are within ∆R = 0.1 with respect to
the center of the reconstructed jet.

The next component of the tracking-related uncertainty is due to fakes that result from

(a) (b)

Plot 10.2: “The measured fraction of lost tracks [...] in the jet core [...] as a function of
jet pT for data [...] and simulation [...].” (Ref. 44, Fig. 17, p. 23) (left) and “[i]llustration
of [...] merged pixel cluster due to very collimated charged particles.” (Ref. 44, Fig. 2b,
p. 5) (right).

ramdom combinations of hits due to (charged) particles that overlap in space mostly due to
underlying activity (pile up) in the event. Another potential source of fakes (inside jets) is due
to the already mentioned high density of tracks close to the core of jets that results in reduced
resolution of individual charged particles as shown in Figure 10.2.

Concerning the parameters of the reconstructed track, the charge-over-pT (q/pT) is the
leading source of systematic uncertainty due to detector misalignment weak modes [203]. The
potential bias is corrected once per data-taking period; the total correction of charge-over-pT

ratio is something about 0.0001/GeV (except for φ ≈ 0 and |η| ≈ 2.5 where the correction may
reach 0.001/GeV).

10.4 PDF Uncertainties
There is a large variety of PDF set available that differ regarding the data included in the
global fit, as well as the shape/model of the parameterization used for the distributions of
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quarks and the gluon. Of course, the choice of the PDF set introduces an additional uncertainty
to the cross section measurement that must be taken into account as the underlying PDF of
the proton determines the parton content and therefore directly affects the fraction of quarks
and gluons in the final state.

The baseline generator is given by Pythia 8.230 that uses a PDF based on the NNPDF
methodology [204] which “[...] determines the structure of the proton using contemporary
methods of artificial intelligence.” [205]. Therefore, the PDF uncertainty of the triple-differential
multijet cross section measurements presented in this thesis is studied mainly with respect to
variations of the latest PDF set provided by the NNPDF collaboration. However, other PDF
sets like the NLO-QCD CTEQ6.6 [206], or the MSTW2008 [207] have been investigated as
well.

The estimation of the uncertainty associated to the PDF requires a careful treatment as
each collaboration provides a prescription for their calculation. Broadly speaking, there is
the so-called Hessian approach (which is, to name some examples, used for the CTEQ- and
MSTW-based PDF sets) and the average over an ensemble of PDF replicas as it is used by the
NNPDF-based PDFs.

The Hessian formalism studies the uncertainties through a quadratic expansion of the χ2

function around its global minimum. The method receives its name from the Hessian matrix,
i.e., the matrix of second-order derivatives of the χ2 function at its minimum. The Eigenvectors
of the Hessian matrix are then used to construct an Eigenbasis {S±` }d`=1 of a d-dimensional
space, whereby each Eigenvector S±` corresponds to a PDF that can be considered as a variation
in the neighborhood of the nominal one.

In case of the NNPDF-based PDF, the calculation of errors follow a different procedure
as the shapes of the density functions is parameterized by a neural network. The NNPDF
fitting methodology uses a Monte Carlo representation of the original data. To estimate the
uncertainty, a fixed number of replicas is generated based on the experimental data taking
correlations into account. Each one of the generated data replicas Nrepl is then used to create
a new fit based on a merit that characterizes the agreement between theory and data for the
eight parton PDFs. The result is a new PDF replica F [θi] for each replica of data Di. In order
to obtain the uncertainty based on the generated list of replicas, the “central value” or the
nominal PDF 〈F [θi]〉 must be calculated based on the average over all replicas

〈F [θ]〉 =
1

Nrepl

Nrepl∑
i=1

F [θi]. (10.14)

Once the central value based on all replicas have determined, the uncertainty is given by the
quadratic sum of the residuals between each PDF replica and the central PDF according to
Equation 10.14 (

σNNPDF
PDF

)2
=

1

Nrepl − 1

Nrepl∑
i=1

[F [θi]− 〈F [θ]〉]2 , (10.15)

which basically corresponds to the variance of the replicas with respect to the mean PDF(s).
Equation 10.15 provide a prescription of how to compute the uncertainty associated to the

PDF in case of the NNPDF-based approach. Both schemes are based on variations of the central
or the nominal PDF that propagate into variations of the reconstructed (multi-differential)
cross section. Those variations are created during the reconstruction of the cross section by
applying an additional event weight w(i)

PDF for each variation. Each weight results in a complete
new set of spectra that is then used to calculate the PDF-related uncertainty according to
Equation 10.15, respectively.

10.5 Jet Energy Scale and Resolution (JES/JER)

The jet energy scale and jet energy resolution correction was described in detail in Chapter
4.4.3. The systematic uncertainty related to the energy scale and energy resolution of small-R
jets follows the “consolidated recommendations” settled in the end of the year 2018 by the
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ATLAS ‘Jet Energy Calibration and Resolution’ subgroup. The final (fractional) uncertainty
on the jet energy scale as a function of transverse momentum pT and pseudorapidity η is shown
in Figure 10.3.

As a quick reminder, the calibration of the jet energy scale basically fulfills two purposes:

(a) (b)

Plot 10.3: Fractional jet energy scale systematic uncertainty components for anti-kt
R = 0.4 jets as a function of jet pT at η = 0 (left) and as a function of η at pT = 60 GeV,
reconstructed from particle-flow objects (right). The total uncertainty, determined as
the quadrature sum of all components, is shown as a filled region topped by a solid
black line. Flavor-dependent components shown here assume a dijet flavor composition
(adapted from Ref. [45]).

firstly, the energy scale of the reconstructed detector-level jets does not correspond to the
energy scale of the underlying particle-level jets that are given by the energy of all stable final
state particles (except for neutrinos and muons) originating from the hard interaction (including
activities in the jet due to the underlying event) in Monte Carlo. The calibration of the jet
energy aims to correct the average energy of the reconstructed jets at detector level to match
the average energy of jets at truth level. The diverging jet energies at detector and particle
level are mostly due to the non-compensation nature of the ATLAS hadronic calorimeter,
causing differences between the calorimeter response of electromagnetic and hadronic showers;
energy losses due to inactive regions and material in the detector; energy deposits below noise
thresholds; energy losses due to longitudinal particle leakage if showers are not fully contained
by the calorimeters etc. Less dominant for small-R jets is the correction of the contribution
from pile-up to the jet energy. Secondly, after the first step, the average energy scale of the
reconstructed jets corresponds to truth level in simulation; however, there is still a potential risk
of biasing the jets to Monte Carlo because most calibration steps are derived from simulation.
To account for this effect, the second part of the energy calibration aims to bring the energy
scale of jets in data and simulation into agreement.

Of course, the calibration of the energy scale is associated with an uncertainty that is
referred to as jet-energy scale uncertainty. This Uncertainty basically consists of three primary
sources: disagreement between data and simulation, the evaluation of the noise term from
random cones in zero bias data (this one only becomes significant for jets below 100 GeV
and is therefore irrelevant for this analysis) and corrections based on in situ dijet pT-balance
asymmetry measurement.

To obtain the final JES/JER-related uncertainty, the triple-differential multijet cross section
is reconstructed for each one of the nuisance parameters that constitute the uncertainty. There
are several configurations of the JES uncertainty that use different total number of nuisance
parameters, depending on the degree of precision required by the analysis or the physical
effects it is sensitive to. In this analysis, the configuration of the full set of nuisance parameters
is used, which aims at the most precise jet-based measurements. In total, there are more
than one hundred nuisance parameters. For each one of those parameters, the jet is smeared
depending on their transverse momentum as well as their position in the detector in terms
of the pseudorapidity. As shown in Figure 10.3, the JES uncertainty (and accordingly the
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amount to which the jet is smeared) strongly depends on the pT of the jets (10.3a), while
the uncertainty is mostly flat as a function of the pseudorapidity with the already-mentioned
exception of the gaps in the transition regions of the detector (10.3b). It is important to note
that the smearing according to the JES uncertainty is applied to the four-momentum of the
reconstructed jet; hence, the substructure of the jet does remain unaffected, which implies that
the value of the jet substructure observable before and after the smearing remains unchained
too. However, smearing the four-momentum may cause the jet to migrate between different
regions of phase space, which may introduce off-diagonal elements in the response matrix or
contribute to the efficiency and fake factors if the jet leaves or enters the active phase space
volume over which the cross section is measured.

After the smearing according to the uncertainty of each nuisance parameter of the JES
uncertainty has been applied, there is a variation of the triple-differential multijet cross section
for each one of the respective parameter. All nominal spectra are unfolded using the varied
response matrix and the relative difference between the truth-level (prior) distribution and
the unfolded variation with respect to the nominal spectra is taken as an uncertainty for the
respective nuisance parameter.

10.6 Pile-Up Uncertainties

Monte Carlo campaign production usually starts prior to the corresponding data-taking period
due to the significant amount of time and computational power required to generate those
samples with sufficiently high statistics. However, the exact conditions concerning the average
number of interactions per bunch crossing (thenceforth referred to as µ) is usually unknown
till the data has been recorded. Therefore, the simulation must be corrected afterwards to
accurately model the pile-up conditions present in data as many objects (jets in particular) are
sensitive to additional interactions despite pile-up mitigation techniques being applied. This is
usually done by reweighting all distributions with a scale factor to mimic the effect of different
pile-up conditions. The scale factor, which is used in the pile-up reweighting procedure, is
varied from 1.03 to 1.06, following the official ATLAS recommendation. The uncertainty due
to pile-up is then simply given by the bin-by-bin subtraction of the two histograms of the up
and down variation according to

σPile−up
i =

NPythia8
Up,i −NPythia8

Down,i

NPythia8
i

. (10.16)

The uncertainty due to pile-up is almost completely negligible throughout the analysis as no
jets below a transverse momentum of 100 GeV are considered.

10.7 Deactivated Tile Modules

During data-taking, it may happen that certain modules of the hadronic tile calorimeter need
to get deactivated/decommissioned due to technical problems like, for instance, overheating
or leaking. Some of those (permanently) deactivated modules are already included in the
respective Monte Carlo simulation; however, other segments of the tile calorimeter may get
switched off only during specific runs in data. The tile modules that are deactivated in Run
2 (2015–2018) data and simulation are summarized in Table B.1, which can be found in the
appendix of this document.

Based on the ATLAS recommendations, the transverse momentum of the jet is not corrected
for jets which may have deposited energy in one of the deactivated tile modules. Instead,
the impact of the deactivated tile modules on the measured event shape distributions is
evaluated by repeating the measurement and vetoing events with jets directed/pointing at
one of the deactivated modules in either data, Pythia (version 8.230), or both. The resulting
“varied” distributions are then compared to the nominal data and Monte Carlo (not taking all
deactivated tile modules into account) distributions, whereby the data is unfolded based on
the response matrix that includes the effect of vetoed tile modules. The uncertainty associated
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with the difference concerning deactivated tile modules as well as their impact is defined as the
difference between the nominal sample and the distributions including the effect of deactivated
modules in simulation and data. This uncertainty turned out to be very small in all regions of
phase space.

10.8 Unfolding Bias

As described in Chapter 5, the response matrix – which encodes the correlation between particle-
and detector-level information – is derived based on simulation in Monte Carlo. In the scope
of this work, the baseline generator is Pythia, which is the official ATLAS recommendation
for analyses involving multijet events. Since no Monte Carlo generator is expected to mimic
nature perfectly well (especially in the context of QCD-related physics), biases present in the
simulation may propagate to the final measurement during unfolding. This results in a different
shape of the spectrum after unfolding than what would have been expected for an unbiased
result. In order to account for the possible bias in the unfolded cross section measurement,
an uncertainty associated with the shape of the unfolded spectrum is determined by using a
data-driven closure test, which is introduced in the following paragraph before providing a
mathematically rigorous description of the procedure afterwards.

The data-driven closure test is based on the comparison between the shape of the recon-
structed spectra for Monte Carlo and data at detector level. Since the measured distribution
of the respective observable of interest in data is based on real pp-collision events, the basic
assumption of the data-driven closure test is that all shape differences between data and
simulation observed at detector level are due to an improper modeling of the process at particle
level (or because of an inappropriate modeling in the Geant4 simulation of the detector as
a whole). The data-driven closure test therefore starts at detector level by reweighting the
reconstructed (i.e., detector level) Monte Carlo using a smooth function such that the agreement
between data and simulation improves. Following this, the reweighted truth spectrum is folded
with a response matrix to obtain the corresponding distribution at detector level (which should
be much closer to the distribution that has been measured in data). For the comparison with
the reweighted truth-level (prior) Monte Carlo, the obtained reweighted spectra is now unfolded
using the very same (nominal) response matrix as used for the actual data (including the
potential bias that is supposed to be estimated). The systematic uncertainty associated with
the unfolding and the bias in the shape of the truth-level distribution is given by the difference
between unfolded reweighted Monte Carlo and the reweighted truth-level Monte Carlo.

Rephrasing the above-stated prescription in mathematical terms, let di = d(xi) denote the
measured cross section of the spectrum in data in the ith phase space bin of the support x of
the distribution. Similarly, ri = r(xi) represents the folded/simulated detector level spectrum
for events that pass both, truth and reconstructed, selections. Accordingly, ti = t(xi) is the
spectrum at particle/truth level for events that pass both selections. The correlation between
truth and reconstructed events is given by the response matrix Rij that contains the number
of events in the simulation that fall in the reconstructed bin i and the truth bin j (this is
the reason for the requirement of the jets passing both, truth- and detector-level, selections).
Properly normalized, the response matrix R̃ij = Rij/

∑
k Rkj corresponds to the conditional

probability for a truth-level jet in bin j to be reconstructed in bin i, i.e., ri = R̃ijtj . With the
input spectra being defined, the next step is to apply the reweighting scheme such that the
agreement between d(xi) and r(xi) improves. The reweighting can only be meaningful applied
to events in simulation that pass both, the truth and reconstructed event selection, because
this is the only configuration for which a direct comparison to data is possible. The first step
is therefore to apply a bin-by-bin correction εi to data, whereby the efficiency εi is defined as
the fraction of events that pass both truth- and detector-level selection N true∧reco with respect
to the number of events that pass the reconstructed selection N reco such that

εi =
N true∧reco
i

N reco
i

, (10.17)
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gives the correction factor of the ith bin. This factor is applied to data bin-by-bin, which
therefore results in a corrected data histogram d̃(xi) := εid(xi), ensuring that data and
simulation agreeing in terms of the efficiency and fake factors. This guarantees that the
uncertainty associated with the data-driven closure test is due to the unfolding step. With
the reconstructed data spectrum being corrected for the efficiency factors in simulation, the
next step is to compute a truth-level prior distribution t̃(xi) such that the folded spectrum
r̃(xi) = R̃ij d̃(xi) closely matches the reweighted data d̃(xi). The task now is to determine
weights such that the aforementioned property is fulfilled. Assumed that the response matrix R̃
is “mostly” diagonal, the reweighted truth spectrum t̃(xi) can be obtained by simply comparing
the reweighted data distribution and the reconstructed spectrum in simulation for each bin,
taking the ratio between the two as a weight

wi ≈
d̃(xi)

r(xi)
. (10.18)

The same weights according to Equation 10.18 are now used to obtain the corrected truth-level
distribution t̃(xi) = wit(xi). The uncertainty in the ith bin associated with the data-driven
non-closure is then given by the difference between the reweighted truth spectrum t̃ and the
reconstructed spectrum r̃(xi) (given by folding t̃ with R̃ij) unfolded with the nominal response
matrix

σDDNC
i =

fnom
(
R̃ij t̃(xi); d̃(xi), r(xi)

)
− t̃(xi)

t̃(xi)
, (10.19)

whereby the function fnom denotes some unfolding method based on the nominal response
matrix (see Chapter 5).

10.9 Year-to-Year Stability
The cross section measurements presented in this report are based on pp-collision data that has
been recorded with the ATLAS detector at the LHC over a period of around three-and-a-half
years. Over this time, the conditions of the accelerator as well as measuring apparatus subject
to natural fluctuations regarding their operation due to external factors of influence, radiation
damage etc. Moreover, the machine was switched off for maintenance work several times over
the last few years. The latter point is of particular importance for this analysis because the jet
substructure measurements are based on tracks that have been matched to PFlow jets. Since
the reconstruction of tracks depends on the alignment of the detector within the magnetic field,
possible misalignments of the device could result in biased shapes between the different shutoffs.
Those changes of the experimental setup are generally hard to model in simulation; therefore,
potential differences are accounted for by directly comparing the unfolded differential cross
section measurement for each year dσ15+16, dσ17 and dσ18 with the full Run 2 result dσRun2.
The uncertainty associated with the year-to-year stability of the measurement is then given by
the maximum (envelope) difference between the individual years and the full measurement.

10.10 Errors on “Jet Topics”
The underlying quark and gluon distributions (see Equation 7.21) are extracted from the
measured multi-differential multijet cross section over the two jet mixtures P kMα

(OJSS) (in
central and forward region) and the reducibility factors κkM1Mα

, which are also calculated
based on the different mixtures, with the reducibility factors being given by the infimum
of the likelihood ratio of the two mixtures according to Equation 7.10. Furthermore, the
extracted quark/gluon fractions within the respective mixture of jets also directly derive from
the measured reducibility factors of the two jet samples. The determination of the uncertainty
for the underlying distributions of quark and gluon jets as well as their fractions is based on
a variational approach. The procedure starts from the (unfolded) measured distributions in
forward and central region (P kM1/2

in Equation 7.19). The unfolded multijet cross section is
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varied in each bin of the jet substructure observable for each component of the systematic
(ME, PS, Had, JES/JER, PDF etc.) and statistical (Data and MC) uncertainty, giving rise to
a set of new distributions in central and forward region from which the reducibility factors get
recalculated according to Equation 7.10. This is done by assuming the systematic uncertainties
to follow a Gaussian distribution with the center value of the distribution being given by the
nominal cross section σnom and the variance σ` corresponding to the `th respective systematic
uncertainty. For each component of the uncertainty, a total number of 1000 toy-experiments
is performed (each one resulting in a new, varied differential cross section for the central
and forward region), each one resulting in (2×)1000 reducibility factors for one systematic
uncertainty. Based on those reducibility factors, the underlying quark and gluon distributions
are extracted following the procedure described in Chapter 7. For each variation, the distance
with respect to the nominal quark/gluon distributions (obtained using the nominal multijet
cross section) are calculated (for each bin) and the 75 % and the 25 % percentiles of the
total variation are taken as the uncertainty associated with the respective source of error.
Furthermore, the uncertainty-related variation of the reducibility factor {κσ

±
` ,k,m
ij }m∈[1,Ntoy],

with N ∈ N being the number of variations and ` ∈ {ME, PS, Had, JES/JER, PDF} with σ±
being the corresponding upper and lower error, are used to determine the uncertainty of the
extracted gluon fraction in each bin of transverse momentum k. For each reducibility factor
κ
σ±` ,k,m
ij , the associated fraction of gluon-like jets is determined and the difference with respect

to the nominal fraction is calculated. The 75 % and 25 % percentiles are once again used as an
uncertainty on the fraction of gluons.
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11. Measurement of the Triple-Differential
Multijet Cross Section 1

σ
d3σ

dpT dηrel dnSD/trk

The previous chapters introduced the proton-proton collision data that was recorded with
the ATLAS experiment at the LHC with a centre-of-mass energy of 13 TeV over a period
of three years lasting from 2015 to 2018 (inclusive), which resulted in roughly 139 fb−1 of
data. Additionally to the real pp-collision data, several jet samples derived from simulation
using various state-of-the-art Monte Carlo event generators for multijet production have been
presented. Those simulations account for the conditions at the LHC during data-taking in
the relevant period of time in terms of beam energy, pile-up etc.; furthermore, a full Geant4
simulation of the entire ATLAS detector was applied to all MC events to allow for comparison
between real data and simulation at detector level and to construct the response matrix, which
is needed for the unfolding of the multijet spectra to particle level. Afterwards, the actual
event selection was introduced starting with the filtering of collision events by the trigger
with signatures considered relevant for this analysis. In the context of this measurement, the
signature of interest basically corresponds to the presence of at least two jets being present
in the event. The appropriate triggers that select hadronic signatures are the higher-level
single-jet triggers, which are mostly prescaled such that scale factors must be applied in order
to recover the correct spectra. Once the reweighting schemes in data and simulation have
been established, the data-to-MC agreement was examined for a selected list of observables
like, for instance, the invariant mass, the energy and the pseudorapidity of the reconstructed
detector-level jets, as well as some global event observables like the jet multiplicity. Moreover,
the transverse momentum pT and the (relative) rapidity ηrel distribution along with their
respective binning (used through this analysis) have been introduced.

This chapter finally turns the attention to the actual measurement of the first class (out of
two) of the triple-differential multijet cross section according to

1

σ

d3σ

dpT dηrel dncount
=

1

Ntot

Nmultijet

∆pT ∆ηrel ∆ncount
, (11.1)

with respect to a counting-based jet substructure observable ncount that is given by the track
multiplicity ntrk (counting all tight tracks with pT > 500 MeV) and the SD multiplicity nSD

for different configurations of the Soft Drop algorithm.
The first section (11.1) of this chapter formally introduces the SD multiplicity nSD along

with the parameters it depends on. Thereupon, in the next section (11.2), the different settings
of the SD multiplicity in terms of its parameters, which have been measured in the context
of this analysis, are introduced along with a motivation of the respective configuration of
the SD algorithm with regard to the extraction of the underlying quark/gluon distributions
and fractions. To complete the list of counting-based substructure observables, the track
multiplicity ntrk and its relation/correlation with nSD is shown (11.3). Afterwards (11.4), the
measured spectra in data and simulation are presented for all counting-based observables
introduced above. Following the usual analysis workflow, the subsequent section (11.5) takes a
look at the response matrix as well as the efficiency and fake factors for the different regions
in phase space for all observables as a preparation for the following unfolding step. Finally,
this chapter is concluded (11.6) by the final unfolded triple-differential multijet cross section
for the different counting-based observables including all sources of systematic and statistical
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uncertainties introduced in Chapter 10.

11.1 Soft Drop Multiplicity nSD

The observable in question counts the number of splittings/branchings inside of a jet by
iteratively traversing through the history of angular-ordered emissions. The angular-ordered
history of the emissions inside of the jet is obtained by reclustering the jet’s constituents using
the C/A clustering algorithm (see Chapter 4.4). Following the definition used in ATLAS’
recently published “[m]easurement of the Lund jet plane using charged particles [...]” [208],
an emission is defined to be the softer sub-jet of the proto-jet pair obtained by reversely
declustering the clustering history of jet. Additionally, each emission is required to satisfy
the Soft Drop (SD) condition, which is why the observable is henceforth referred to as SD
multiplicity nSD, i.e., the number of valid SD splittings inside of a jet.

The SD multiplicity depends on a number of parameters that allow to control its sensitivity
to soft and wide-angled radiation and thereby changing the sensitivity to quark and gluon
jets, as well as perturbative and non-perturbative effects. Most of those parameters directly
inherit from the underlying SD algorithm; hence, gaining a basic intuition for the “Soft Drop
declustering” is among the first objectives of this chapter. This includes a quick, superficial
review of the “Mass Drop Tagger” (MDT), which is a predecessor and a special case of the SD
declustering scheme introduced in this section. This will be followed by a generalization of the
SD algorithm to obtain a prescription suited to count the number of valid SD emissions inside
of a jet by taking its entire clustering history into account. This algorithm is referred to as
“Iterated Soft Drop” (ISD). With the ISD being introduced, all necessary technical prerequisites
are established such that the subsequent section mainly focus on gaining an intuition of the
substructure observable in the context of quark-gluon discrimination. This includes a simple
analysis of the observable at leading-logarithm accuracy (which has been adopted from the
original publication that proposed the SD multiplicity in Ref. [26]) to accommodate for the
statement made in Chapter 7.3 regarding the mutual irreducibility of Poisson-like distributed
(counting) random variables. This is important to conceptually demonstrate that the extraction
of the underlying quark and gluon distributions as well as the quark/gluon fractions based on
the SD multiplicity is indeed justified.

After the observable has been introduced, all subsequent sections are dedicated to its
measurement with the ATLAS detector.

11.1.1 “Mass- and Soft-Drop”
Over the last few years, probing the substructure of jets has gained significant importance
regarding its potential to, e.g., discriminate quark- and gluon-initialized jets or other particles.
Techniques that try to identify and classify jets originating from different fundamental processes
or particles (with the aim of discriminating them from background) are usually referred to as
(jet) taggers. Common examples are the already mentioned quark-gluon discriminators, top,
W/Z or even Higgs taggers etc. Besides that, a better understanding of the internal structure
of jets, i.e., the characteristic features associated to specific underlying processes, becoming
increasingly important in order to efficiently mitigate contributions from, for example, pile-up
contamination and other underlying activity in the event. Methods that use jet substructure
information to remove soft activity inside the active area of the jet (which is not associated to
the hard scatter of the event) are referred to as (jet) groomers.

Besides the growing relevance concerning the phenomenological aspects of jet substructure
with regard to experimental applications, analytic calculations based on perturbative QCD
of variables (that capture certain features of jets), likewise, has made significant progress in
the same period of time. Those first-principle studies have made a major contribution to the
theoretical understanding of the key characteristics of many substructure methods as well as
their implications regarding jet tagging and jet grooming in equal measure.

As part of this effort, special attention has been paid to the jet mass and its characteristic
features regarding the most commonly used taggers and groomers, i.e., pruning [209, 210], trim-
ming [211] and the aforementioned Mass Drop Tagger (MDT) [212]. All previously mentioned
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methods share a common philosophy, that is, they try to identify sub-jets within the original
jet that is interpreted as a proxy for radiation emitted during the formation of the jet (see
introduction to parton showers in Chapter 2.4). If the momentum fraction of the sub-jet with
respect to the jet’s (global) momentum is below some lower threshold value, it is most-likely
due underlying soft activity in the event or hadronization effects and consequently removed
from the jet. This, of course, must be done with great care as it may significantly affects the
shape of the mass distribution (as well as other substructure observables); the objective of
the grooming procedure therefore is to keep the contributions from signal to the distribution
mostly unaltered while reducing those due to background processes.

While being conceptually similar, all three groomers/taggers mentioned above differ consid-
erably regarding the degree to which soft radiation is removed from the original jets. It is a
matter of common knowledge that pruning as well as trimming act (quite) “aggressively” on
signal and background alike.

All three methods have been subject of intensive studies regarding their analytic behavior
with respect to logarithmic resummation. As a result, those investigations lead to the develop-
ment of a modified version of the MDT (mMDT), which contrast the other methods by the
property of only involving single logarithms (no Sudakov double logarithms) and being free of
the complex class of non-global logarithms [213], which introduce highly non-trivial correlations
between jets and the event as a whole. This property makes the mMDT ideally suited for the
analytic calculation of jet-related properties as it significantly increases the sensitivity of the
final distributions to perturbative(=“calculable”) effects.

The concrete implementation of the mMDT algorithm is not subject of this section because
the methodically very similar Soft Drop declustering scheme is explained in detail hereinafter.
As it will be pointed out later, the mMDT can be recovered from the SD procedure given an
appropriate configuration of its parameters.

The Soft Drop declustering method can be considered as a generalization of the aforemen-

0

20

40

60

80

100

120

140

160

180

200

220
3−10×

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 R)∆Emission angle  ln(R/

1

2

3

4

5

6

M
om

en
tu

m
 fr

ac
tio

n 
 ln

(1
/z

)

=13 TeV, Pythia 8.230s

 R=0.4 PFlow jets,tAnti-k

|<2.1η>250GeV, |
T

p

reclustered t k

 R
)

∆
 / 

dl
n(

1/
z)

 d
ln

(R
/

σ2
) 

d
σ

(1
/

(a) kt

0

20

40

60

80

100

120

140

160

3−10×

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 R)∆Emission angle  ln(R/

1

2

3

4

5

6

M
om

en
tu

m
 fr

ac
tio

n 
 ln

(1
/z

)

=13 TeV, Pythia 8.230s

 R=0.4 PFlow jets,tAnti-k

|<2.1η>250GeV, |
T

p

 reclusteredtAnti-k 

 R
)

∆
 / 

dl
n(

1/
z)

 d
ln

(R
/

σ2
) 

d
σ

(1
/

(b) Anti-kt

0

20

40

60

80

100

120

3−10×

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 R)∆Emission angle  ln(R/

1

2

3

4

5

6

M
om

en
tu

m
 fr

ac
tio

n 
 ln

(1
/z

)

=13 TeV, Pythia 8.230s

 R=0.4 PFlow jets,tAnti-k

|<2.1η>250GeV, |
T

p

reclustered C/A 

 R
)

∆
 / 

dl
n(

1/
z)

 d
ln

(R
/

σ2
) 

d
σ

(1
/

(c) C/A

Plot 11.1: The Lund (emission) jet plane for all jets with pT > 250 GeV for different
recombination schemes according to the kt (left) the anti-kt (middle) and the Cambridge-
Aachen C/A (right) jet clustering algorithm. (Keep in mind that the basic input to all
figures is a anti-kt jet.)

tioned mMDT that removes wide-angle soft radiation from a jet to mitigate contamination
due to initial state radiation, underlying event activity and multiple hadron scatterings that
give rise to pile-up. To cut a long story short, Soft Drop declustering removes soft emissions
inside of a jet of radius R (radius parameter of the sequential recombination algorithm) based
on the following condition

[0, 0.5] 3 z :=
min (pTj1 , pTj2)

pTj1 + pTj2

> zcut

(
∆R12

R

)β
, (11.2)

whereby zcut defines a lower threshold on the momentum fraction of the softer splitting daugh-
ter – which is assumed to correspond to the emission –, ∆R12 the emission angle between the
two daughters and β ∈ R corresponding to a free parameter that allows to control the degree
of grooming as a function of the radiation angle.
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In further detail, the input to the declustering algorithm is a jet that has been reconstructed
using some clustering algorithm (see Chapter 4.4.2). If the jet was reconstructed with any other
clustering scheme besides the Cambridge-Aachen one (in this analysis, all jets are reconstructed
using the anti-kt algorithm), the constituents of the jet must be reclustered using the C/A
algorithm to obtain a pairwise clustering tree with an angular-ordered structure1. Due to the
already stated benefits, jets are typically reconstructed using the anti-kt clustering algorithm
(see Chapter 4.4.2), which collects inputs according to decreasing pT of the emission. This
results in very regular jet shapes, but the clustering history does not represent the intuitive idea
of radiation being emitted during the showering step with decreasing collimation angles due to
color coherence and Heisenberg’s uncertainty principle. The actual SD declustering is therefore
very often preceded by an reclustering step that results in an angular ordered history of the
emissions. This situation is illustrated in Figure 11.1 for all sequential clustering algorithms
introduced in Chapter 4.4.2. A jet (its constituents) that was reconstructed using the anti-kt
algorithm is reclustered using the Cambridge-Aachen algorithm. It is very important to keep

(a) anti-kt

Jet

(b) C/A

Fig. 11.1: Two clustering histories according to different clustering algorithms of the
very same jet: anti-kt (left) and C/A (right).

in mind that the reclustering step does not change the overall jet (global jet-related properties
are not affected by the reclustering), but results in a reinterpretation of the clustering history
that resembles the expectations regarding the order in which radiation is emitted during shower
formation. Accordingly, all jet substructure observables that do not explicitly depend on the
emission history of the jet are invariant with respect to the reclustering step. This can be seen
by directly comparing the two clustering diagrams in Figure 11.1a and Figure 11.1b that show
the clustering history of the very same jet according to the anti-kt (left) and the C/A (right)
algorithm, respectively. Both diagrams start from the exact same configuration of inputs
(compare left- and right-most configuration in Figure 11.1), but the cluster sequence differs
with respect to both schemes.

After an angular-ordered emission history of the jet is available, the SD declustering algo-
rithm traverses backwards throughout the clustering tree and checks the pair(s) of proto-jets
for the SD condition according to Equation 11.2. The individual steps of the SD algorithm
read as follows:

Definition 3 (Soft Drop Declustering [214]).

1. Break the jet J into two sub-jets by undoing the last stage of C/A clustering. Label the
resulting two sub-jets as j1 and j2.

2. If the sub-jets passes the soft drop condition [(see Equation 11.2)], then deem j to be the
final soft-drop jet.

3. Otherwise, redefine j to be equal to sub-jet with larger pT and iterate the procedure

1This is, as a matter of fact, the recommended procedure because jets that have been clustered using the
anti-kt algorithm are guaranteed to contain all their constituents within the defined jet radius R, i.e., ∆Rj ≤ R.
In case of the C/A (or the kt) algorithm, however, the jet shape is highly irregular as can been seen in Figure
11.2a (4.2a), which may give rise to constituents with ∆Ri > R, causing undesired behavior in the SD condition
in accordance with Equation 11.2.
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4. If j is a singleton and can no longer be declustered, then one can either remove j from
consideration (“tagging mode”) or leave j as the final soft-drop jet (“grooming mode”).

It is important to note that the SD algorithm is terminated if the sub-jets pass the SD
condition (step 2) and does not iteratively traverses throughout the entire clustering tree –
this is the main difference with respect to the iterative version that is used to reconstruct the
SD multiplicity nSD, which is introduced in the next section. The result of the SD declustering
is shown in Figure 11.2 pictographically. The SD algorithm can be categorized into a tagging

(a) C/A clustered

Jet

(b) SD groomed

Fig. 11.2: A C/A reclustered/reconstructed jet (left) and its groomed counterpart using
Soft Drop declustering (right).

(β < 0) and a grooming (β > 0) mode of operation depending on the chosen value for β, which
controls the sensitivity to the angular components of the emissions. To better understand
the effect of different configurations in (zcut, β)-space of the SD algorithm, it is beneficial
to transform Equation 11.2 to a different representation that allows to easily visualized the
(valid) emission plane. The (primary) Lund Jet Plane (LJP) [215] is perfectly suited to study
the emission phase space within jets by showing the correlation between the emission angles
lnR/∆R12 and the momentum fraction ln 1/z. Rearranging Equation 11.2 in terms of ln 1/z
and lnR/∆R12, the SD condition can be interpreted as plane equation that defines a (selection)
area/boundary of valid emissions in the LJP according to

ln
1

z
< β ln

R

∆R12
+ ln

1

zcut
. (11.3)

In Equation 11.3, β corresponds to the slope of the decision boundary with zcut being the
(lower) axis intercept. This decision boundary is shown in Figure 11.3 for β > 0 (11.3a)
and for β < 0 (11.3b) along with the perturbative boundary above which the emission
plane is mostly dominated by hadronization. The perturbative limit is (roughly) defined by
the energy scale/parameter ΛQCD ∼ 200 MeV, i.e., if the kt of the emission is close to the
hadronization scale kt ∼ ΛQCD. With kt = pT∆R

!
= ΛQCD, the two limits are then given by

ln 1/∆R ∼ ln ΛQCD/pT and ln 1/z ∼ ln pT∆R/ΛQCD.
The next section extends the SD algorithm by iterating through the entire clustering

history of the reconstructed jet. This will also introduce the final instructions for calculating
the Soft Drop multiplicity nSD, which is measured in this analysis.

11.1.2 “Iterated Soft Drop”
The Soft Drop declustering algorithm introduced in Section 11.1.1 terminates as soon as a
hard branching in the clustering history of the jet was found. The Soft Drop multiplicity nSD

is measured based on a modified version of standard SD algorithm in which the Soft Drop
condition (Equation 11.2) is Iteratively (ISD) applied to all branchings/nodes in the clustering
history of the jet down to a lower angular threshold cut θcut on the emission angle2. The
lower angular cut is an additional parameter with respect to the “standard” version of the SD

2Keep in mind that the jet has been reclustered using C/A; hence, all emission are ordered in decreasing
emission angles, i.e., if the emission angle of one emission is below θcut, this accounts for all following emissions
as well.
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(a) β > 0 (b) β < 0
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(c) kcutt

Fig. 11.3: Decision boundary in (ln 1/∆R, ln 1/z)-space as defined by the SD condition
according to Equation 11.2 and 11.3 for β > 0 (left), β < 0 (middle) as well as a lower
kt cut (right) including the perturbative limit (adapted and modified from Ref. 26, Fig.
8, p. 16).

algorithm and is freely to choose. It can be used to reduce the sensitivity of the ISD-based
counting observable nSD to hadronization effects by taking the perturbative boundary in the
emission plane in Figure 11.3 into account. As shown before, requiring the emissions’ kt to be
above the hadronization scale ΛQCD, implies an angular cut of ln 1/θcut ∼ ln ΛQCD/pT, which
can directly visualized in the emission plane.

With this additional parameter, the iterated version of the Soft Drop declustering algorithm
reads as follows:

Definition 4 (Iterated SD Declustering/ SD multiplicity nSD [26]).

1. “Set the counter [nSD] equal to 0. Traverse the C/A clustering tree, beginning at the
trunk [(hard splitting)] and sequentially examining each branching.

2. Upon arriving at a branching into sub-jets [j1] and [j2], check whether the branching
angle satisfies

∆R12 > θcut. (11.4)

If not, the algorithm terminates [because all subsequent emissions are below θcut due to
the angular ordering of the jet clustering.]

3. If ∆R12 > θcut, then check whether the [S]oft [D]rop condition [(see Equation 11.2)] is
satisfied [...] If not, return to Step 2[.] on the harder of sub-jets [j1] and [j2].

4. If the soft drop condition is satisfied, define

zn := z, θn := ∆R12. (11.5)

Then increment [nSD → nSD + 1] and return to Step 2[.] on the harder of sub-jets [j1]
and [j2].”

Figure 11.4a shows an example for a possible clustering diagram of a C/A reclustered jet
and the iterated Soft Drop declustering applied to it. In each splitting node in Figure 11.4b,
the SD multiplicity nSD (counter) is incremented by one until the emission angle falls below
the angular cut θcut, in which case the algorithm terminates. In case of θcut = 0, the algorithm
iterates through the entire clustering tree of the jet checking all emissions against the SD
condition according to Equation 11.2.
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(a) C/A clustered

Jet

(b) ISD

Fig. 11.4: A C/A jet (left) and the ISD algorithm applied (right).

11.1.3 Soft Drop Multiplicity nSD

In summary, the SD multiplicity nSD is based on the iterative version of the Soft Drop algorithm
(see Section 11.1.1 and 11.1.2). For each branching node in the clustering history of the C/A
(reclustered) jet, the SD condition according to Equation 11.2 is evaluated for the two current
proto-jets. Given the Heaviside function Θ, the SD multiplicity nSD can compactly be written
as

nSD(zcut, β, θcut) =

Nnodes∑
i=1

Θ

{
zi − zcut

(
∆Ri
R

)β}
Θ {∆Ri − θcut} , (11.6)

with Nnodes being the number of branching nodes in the clustering history of the declustered
jet and zi and ∆Ri denoting the momentum fraction as well as the emission angle of the ith
splitting in the jet.

To reduce the effect on hadronization effects (and to increase sensitivity to the perturbative
regime in phase space), a modified version of Equation 11.6 is introduced that includes an
explicit cut on the kt of the emissions according to pemission

T ∆Ri > kcut
t , whereby pemission

T :=
min (pT,j1 , pT,j1) returns the transverse momentum of the softer proto-jet that is assumed to
correspond to the emission, with respect to the jet’s trunk.

The transverse momentum of the emission kt is given by kt ∼ pemission
Tj1 ∆R(j1, j2) =

zpTjm∆R(j1, j2), whereby pTjm denotes the transverse momentum of the “mother” of j1 and
j2, i.e., jm → j1 j2. The kt-cut can be interpreted in terms of the (ln 1/z, ln 1/∆R) emission
plane in Figure 11.3. Requiring kt > kcut

t and transforming into an appropriate representation,
the lower kt-cut can be interpreted as a decision boundary according to

ln
1

z
< (−1) ln

1

∆R
+ ln

pemission
T

kcut
t

, (11.7)

which – in contrast to Equation 11.3 – is variable with respect to the lower cut on the momentum
fraction of the proto jet. For high-pT jets, the trunk (usually) is of high momentum too, which
implies a larger phase space. For low(er)-pT jet emissions, the right-hand side of Equation 11.7
decreases and puts a tighter constrain on the region of possible emissions. In general, the effect
of a kt-cut corresponds to setting β = −1 as well as choosing a variable lower momentum cut
zcut(pT) = kcut

t /pT as can directly be extracted by comparing ters and coefficients in Equation
11.7 with Equation 11.3.

11.1.4 LL Calculation3

The previous section introduced the SD multiplicity nSD, i.e, the counting-based substructure
observable that is used to gain sensitivity to quark- and gluon-like jets already at the level
of the differential multijet cross section measurement. As was already anticipated (but not
proven) in Chapter 7 in the context of “topic” extraction, the probability distribution over
the SD multiplicity of a jet follows a Poisson distribution (at LL), which results in the
underlying quark/gluon P kq/g(nSD) distributions being mutually irreducible and therefore in
general extractable using the unmixing method introduced in Chapter 7.2. This section

3The following section is not necessary for the general understanding of the analysis presented in this thesis
and may be safely skipped by the reader.
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will make up for the missed proof of the Poisson-like nature of the SD multiplicity (many
counting-based observables in general) by providing a step-by-step derivation of the normalized
cross section (1/σ) dσLL/dnSD at leading-logarithm accuracy. The major part of the following
statements have been adopted (either verbatim or in spirit) from the original publication
“Casimir Meets Poisson: Improved Quark/Gluon Discrimination with Counting Observables” by
Christopher Frye et al. that can be found in Ref. [26].

For a calculation at LL accuracy, “flavor-changing” splittings like the ones shown in Figure

(a) LL+NLL (b) LL+NLL (c) NLL (d) NLL

Fig. 11.5: Different parton splittings that contribute only at LL (11.5a, 11.5b) and NLL
(11.5a–11.5d) accuracy

11.5c and 11.5d are not present, but only soft and collinear emissions of gluons as shown in
Figure 11.5a and 11.5b contribute. Because the emissions are very soft (z � 1), they can be
visualized as a sequence of emissions along the jet’s trunk (see Figure 11.6b) such that energy
losses of the (main) radiator are negligible and the process can be visualized as a consecutive
sequence of colored emissions.

To obtain the distribution over nSD, the probability pinSD
(θcut) for some flavor i to observe

(a) Emission tree (b) Two emissions

Fig. 11.6: Probability of a valid and invalid SD emission (left) as well as an illustrative
representation of gluon emissions at LL (right).

nSD SD emissions for a lower angular cut θcut in the ISD algorithm (see Section 11.1.2) must be
computed – the dependency of the other SD parameters, β and zcut, will be implicitly included
through the SD condition that enters the integral. Of course, the probability distribution must
satisfy the normalization condition

∑∞
nSD=1 p

i
nSD

(θcut) = 1, whereby a sum instead of an integral
was used because the support of pinSD

is discrete (counting observable) supp(pinSD
) ⊂ N ∪ {0}.

The probability distribution pinSD
(θcut) can be obtained by a set of evolution equations

that describe the dependence of pinSD
with respect to changes in the lower angular cut, i.e.,

the change of the observed number of SD emissions nSD for θcut − δθcut. To get the evolution
equations, consider a shift in the angular cut θcut → θcut− δθcut. If there is a valid SD emission
in the interval [θcut − δθcut, θcut], the SD multiplicity will increment by one nSD → nSD + 1;
otherwise, it remains unchanged nSD → nSD.

The statement above can be expressed mathematically by a “decision” tree according to
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Figure 11.6a that give the probability of having a valid emission, i.e., passing the SD condition
according to Equation 11.2, within the interval [θcut − δθcut, θcut]

pinSD
(θcut − δθcut) = pinSD−1(θcut)

δθcut

θcut
pipass (11.8)

+ pinSD−1(θcut)

[
1− δθcut

θcut
pipass

]
.

For an emission to be valid, it must satisfy the SD condition (henceforth refereed to as (valid)
SD emission); hence, the probability pipass must vanish if there was an emission not passing
the SD condition. This is archived by the theta function

ΘSD(z, θ) := Θ
(
z − zcut (θ/R)

β
)
, (11.9)

which vanishes if its argument is below zero(=SD condition fails). With the Heaviside step
function and the splitting kernels Pi→i for no changing flavors (at LL accuracy), the probability
according to Equation 11.8 can be written as

pinSD
(θcut − δθcut) = pinSD−1(θcut)

δθcut

θcut

∫ 1/2

0

dz
αS(zθcutpT)

π
Pi→i(z)Θ(z, θcut) (11.10)

+ pinSD
(θcut)

[
1− δθcut

θcut

∫ 1/2

0

dz
αS(zθcutpT)

π
Pi→i(z)Θ(z, θcut)

]
,

whereby the strong coupling αS runs with the 1-loop β-function at LL accuracy. Rearranging
Equation 11.10 results in the following linear first-order differential equation

dpinSD

dθcut
=
pinSD

(θcut)− pinSD−1(θcut)

θcut

∫ 1/2

0

dz
αS(zθcutpT)

π
Pi→i(z)Θ(z, θcut), (11.11)

which describes the change of the probability distribution pinSD
for variations in θcut. Further-

more, there is a boundary condition pi0(R) = δnSD,0 to Equation 11.11 that constraints all
emissions to be within the jet’s radius R as shown in Figure 11.6b. The probability, of having
no (valid) emissions at all between R and θcut is simply given by

pi0(θcut) = e−Ii→i(θcut,R), (11.12)

with Ii→i being defined as

Ii→i(θ1, θ2) =

∫ θ2

θ1

dθ

θ

∫ 1/2

0

dz
αS(zθcutpT)

π
Pi→iΘSD(z, θ), (11.13)

whereby Equation 11.12 basically corresponds to the Sudakov form factor that was introduced
in Chapter 2.4.1. Now, the probability of observing at least one SD emission pinSD>0 can be
written as a recursive relation in terms of the probability of already measured nSD−1 emissions

pinSD>0(θcut) =

∫ R

θcut

dθ

θ
e−Ii→i(θcut,θ)

{∫ 1/2

0

dz
αS(zθcutpT)

π
Pi→i(z)ΘSD(z, θ)

}
pinSD−1(θ).

(11.14)
Equation 11.14 can be used iteratively to obtain higher SD multiplicities. To illustrate the
iterative character, consider the first step of the recursion with only one SD emission nSD = 1

pinSD=1(θcut) =

∫ R

θcut

dθ

θ
e−Ii→i(θcut,θ)

×
{∫ 1/2

0

dz
αS(zθcutpT)

π
Pi→i(z)ΘSD(z, θ)

}
e−Ii→i(θ,R) (11.15)

= e−Ii→i(θcut,R)Ii→i(θcut, R). (11.16)
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The same can be done recursively for all values of nSD according to pinSD
(θcut) = e−Ii→i(θcut,R)

∏nSD

n=1 p
i
n,

which results in the following expression

pinSD
(θcut) =

1

nSD!
[Ii→i(θcut, R)]

nSD e−Ii→i(θcut,R), (11.17)

which finally shows that the SD multiplicity is described by a Poisson distribution with a mean
value of Ii→i(θcut, R) at LL accuracy.

11.2 Preparations for Measuring nSD

The previous sections introduced the SD multiplicity as a “simple” example for a counting-based
jet substructure observable that does not suffer from Casimir scaling and can be used as a
quark/gluon discriminator. The observable depends on a number of parameters (zcut, β, θcut)
that allow to increase (or decrease) sensitivity to momentum and/or angular components of
the radiation. This section, therefore, introduces the two configurations of the SD multiplicity
that have been measured at the ATLAS experiment within the context of this analysis.

Before presenting the configurations of the SD multiplicity measured in this analysis, it
is important to gain an intuition of how the different parameters of the ISD algorithm affect
the distribution of the SD multiplicity as well as the discrimination power between quark-
and gluon-initialized showers. This was (partly) already done in Section 11.1.1 (see Figure
11.3); however, the following considerations focus on the actual distributions derived from the
nominal Monte Carlo sample at particle level for various settings of the ISD algorithm.

A small selection of distributions for different configurations of the SD multiplicity is shown
in Figure 11.2, subdivided into distributions obtained for β ≥ 0 (11.2a), β < 0 (11.2b) and
a non-vanishing kt-cut (11.2c), with the latter one basically corresponding to β < 0 with a
pT-dependent momentum fraction zcut = zcut(pcut) (see Equation 11.7). The distributions in
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Plot 11.2: Distribution of the SD multiplicity nSD for different configurations of the
I(SD) algorithm: positive (left) and negative (middle) values of β for zcut = 0.1 and
kcut
t = 0, as well as for a set of kt (right) cuts with β = zcut = 0.

Figure 11.2 are inclusive in transverse momentum pT, pseudorapidity as well as (light-)quarks
and gluons (the individual quark/gluon distributions will be studied later).

Starting with β ≥ 0 in Figure 11.2a, the distribution corresponding to the default configura-
tion (zcut = β = 0), of course, comes with the largest number of emissions on average because
all emissions are counted. Increasing the momentum fraction to zcut = 0.1 while keeping the
observable insensitive to the emission angle (β = 0) of the radiation results in an aggressive
grooming of the jet that gets rid of all soft emissions with a momentum fraction below 10 %
with respect to the harder branch of the splitting. Gradually increasing sensitivity to the
angular components of the radiation up to β → 2 loosens the SD condition such that collinear
emissions are more likely to pass even if the momentum fraction is below the aforementioned
10 %. For β →∞, the SD multiplicity corresponds to the default configuration independent of
the chosen value for zcut.
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For β < 0 in Figure 11.2b, the situation is different. There are two distributions for each β
value: one for zcut = 0.005 (solid line) and one for zcut = 0.01 (dashed line). For negative β,
very collinear emissions are removed from the jet, which results in the distributions shifting
towards smaller multiplicity values for β being more negative; increasing zcut, additionally
tightens the SD condition and results in less (valid) SD emissions on average.

Last but not least, the distributions for a kcut
t -cut in Figure 11.2c look similar to the ones

for β < 0 as expected from Equation 11.7. The variable momentum cut, however, loosens the
SD condition, resulting in broader distributions compared to the corresponding spectra in case
of β < 0 as the variable lower momentum cut allows for more freedom.

Now, turning to the configurations of the SD multiplicity relevant for this analysis. In total,
two different configurations of the SD multiplicity are measured :

• nSD(zcut = 0.1, β = 1.0, θcut = 0.002),

• nSD(zcut = 0.0, β = 0.0, kt ≥ 4.0 GeV) ,

whereby kcut
t = 0 GeV is implicitly assumed if not explicitly mentioned otherwise4.

As described in the previous section, the different configurations of the ISD algorithm
can be interpreted as a “cut” or decision boundary in emission phase space. According to
Equation 11.3, β controls the “slope” of the lower decision boundary and thus regulates the
sensitivity to the emission angle. The lower cut on the momentum fraction, on the other hand,
determines the sensitivity to soft radiation. In the context of this analysis, the SD multiplicity
was measured for a lower cut on the momentum fraction of zcut = 0.1 and β = 1. In case
of β = 0 (without any further cuts), the SD condition basically replicates the mMDT and
does not depend on the emission angle at all. This is (as already mentioned) a very aggressive
form of grooming that does not count emissions whose momentum fraction is below 10 % with
respect to the jet’s trunk independent of its emission angle. This condition is loosened for β > 0
provided that the constituents of the jet are constrained to be contained within the jet radius
∆R ≤ R, which is the case for this measurement because all jets used are reconstructed using
the anti-kt algorithm. In this case, the term (∆R/R)β < 1 relaxes the zcut > zcut(∆R/R)β ;
for very collinear radiation ∆R→ 0(= θcut), the SD condition becomes z > 0 and therefore
counts all emissions. In the limit of β →∞, the SD multiplicity counts all emissions inside of
the jet. The different emission planes corresponding to the different configurations of the SD
algorithm are visualized in a Lund diagram in Figure 11.4.

The second configuration of the SD multiplicity includes a lower cut on the kt ∼ pT∆R

0

20

40

60

80

100

120

3−10×

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 R)∆Momentum fraction  ln(R/

1

2

3

4

5

6

E
m

is
si

on
 a

ng
le

  l
n(

1/
z)

=13 TeV, Pythia 8.230s

 R=0.4 PFlow jets,tAnti-k

|<2.1η>250GeV, |
T

p

=0.1)
cut

=0.0, zβ(SD n

 R
) 

   
   

   
  

∆
 / 

dl
n(

1/
z)

 d
ln

(R
/

σ2
) 

d
σ

(1
/

(a) zcut = 0, β = 0

0

50

100

150

200

250

300

3−10×

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 R)∆Momentum fraction  ln(R/

1

2

3

4

5

6

E
m

is
si

on
 a

ng
le

  l
n(

1/
z)

=13 TeV, Pythia 8.230s

 R=0.4 PFlow jets,tAnti-k

|<2.1η>250GeV, |
T

p

=0.002)cutθ=0.1, 
cut

=0.0, zβ(SD n

 R
) 

   
   

   
  

∆
 / 

dl
n(

1/
z)

 d
ln

(R
/

σ2
) 

d
σ

(1
/

(b) zcut = 0.1, β = 0

0

20

40

60

80

100

120

140

160

180

3−10×

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 R)∆Momentum fraction  ln(R/

1

2

3

4

5

6

E
m

is
si

on
 a

ng
le

  l
n(

1/
z)

=13 TeV, Pythia 8.230s

 R=0.4 PFlow jets,tAnti-k

|<2.1η>250GeV, |
T

p

=0.002)cutθ=0.1, 
cut

=1.0, zβ(SD n

 R
) 

   
   

   
  

∆
 / 

dl
n(

1/
z)

 d
ln

(R
/

σ2
) 

d
σ

(1
/

(c) zcut = 0.1, β = 1

of the emissions in the C/A reclustered jet. As shown by Equation 11.7, the effect of cutting
on the radiation’s kt is mathematically equivalent to setting β = −1 and to let the lower cut
on the momentum fraction change dynamically as a function of pT via zcut(pT) = pT/k

cut
t

for a kt cut of kcut
t = 1 GeV. This is exemplary shown in Figure 11.4b and Figure 11.4c that

shows the valid emission plane for two values of the softer jet’s momentum. As can be seen, for
harder emissions, the phase space of the emissions in the Lund diagram increases. Increasing

4The selection of configurations of the SD multiplicity is mostly driven with reference to possible applications
in Monte Carlo tuning as well as the reduction of the sensitivity to systematic uncertainties.
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(c) zcut = pT/5 GeV, β = −1

Plot 11.4: Lund jet plane for the different configurations of the SD algorithm used in
the measurements of the substructure observables.

kcut
t , generally decreases the sensitivity of the measurement to hadronization effects. A large

variety of different values for kcut
t has been studied starting from the non-perturbative energy

scale ΛQCD ∼ 200 MeV up to 5 GeV. While increasing the kt-cut results in better data-to-MC
agreement, the non-continuous nature of nSD results in significant “loss” in shape information,
meaning, only a small number of bins does have a probability mass different from zero. With
the loss of shape information, however, the sensitivity to quark-gluon-related features is reduced
as well. Therefore the lower kt-cut was chosen to be kcut

t = 1 GeV, which implies that – on
average – the SD multiplicity for jets with pT ' 200 GeV is non-zero.

11.3 Track Multiplicity n500
trk

Besides the number of valid SD splittings introduced in the previous section, an additional
counting observable is measured that is given by the total number of tracks inside5 of the
reconstructed jet, henceforth referred to as track multiplicity ntrk. All tracks that contribute
to this substructure observable have to fulfill the basic track quality criteria at ATLAS (see
Chapter 9.2.5); furthermore, to suppress contributions from pile-up and multiple scattering,
the track’s transverse momentum must be above 500 MeV; otherwise, the track is discarded. In
the following, the notations n500

trk and ntrk are used interchangeably without risk of ambiguity
since no other track multiplicity with different momentum thresholds was studied within the
course of this measurement.

The multiplicity of tracks associated to a jet can be considered as the number of charged
constituents/particles (or at least proportional to it as there are other effect that may give
rise to charge particles like, e.g., photon conversion). Referring to previous explanations, it
is therefore evident that the number of tracks in a jet is expected to be sensitive to quark-
gluon-related features. Indeed, it is a well-known fact that the track multiplicity is among
the most powerful (non-multivariate) quark-gluon discriminants available. However, it comes
with the disadvantage of not being collinear safe (without lower momentum threshold, it is
neither infrared nor collinear safe) because the collinear splitting of a particle increments the
multiplicity and is therefore sensitive to collinear splittings. In case of this measurement, the
property of ntrk of not being IRC-safe is of minor significance since the usage of tracks results
in (IR)C-unsafe substructure distributions anyway.

With the track multiplicity being introduced, the set of counting-based jet substructure
observables is complete. The remaining part of this section is therefore dedicated to study
the relation between the different multiplicities as well as some basic distributions with the
intention to provide additional information and intuition.

Firstly, the correlation between the average multiplicity value with the pseudorapidity
η as well as the azimuthal angle φ of the jets is investigated. Starting with the latter one,

5As explained in Chapter 4.4.2, the jets are not directly reconstructed from charged particles’ trajectories,
but from tracks in the detector that have been matched (assigned) to the jet.
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Plot 11.5: Average counting-based jet substructure observable ncount as a function of
the jet’s pseudorapidity η (left) and azimuthal angle φ (right).

the corresponding Figure 11.5b shows the desired features, i.e., a mostly flat distribution,
which indicates that the average multiplicity 〈ncount〉 and the azimuthal angle φ are apparently
uncorrelated. This is in line with the fraction of quark- and gluon- initialized jets not being
correlated with φ at all. The average multiplicity 〈ncount〉 varies significantly between the
different observables, which is expected since different configurations of the SD algorithm
correspond to different levels of grooming.

Figure 11.5a shows the average multiplicity 〈ncount〉 as a function of the jet’s pseudorapidity
η, revealing a (more or less) clear correlation between the two observables. This should not come
as a surprise because the decision of measuring the triple-differential multijet cross section in
different (pseudo)rapidity bins is based on exactly this insight. The correlation is a consequence
of quark-gluon-related features in the hadron’s underlying PDF that results in the central region
of the detector being gluon enriched. Since all counting-based observables measured in this
analysis are sensitive to quark-gluon-related features, this property translates to the average
multiplicity, resulting in a correlation with η. Due to the significantly varying quark/gluon
fraction as a function of the jet’s pT, one expects a noticeable dependence/correlation between
the average number of emissions and the pseudorapidity. Consistently, the central region η ≈ 0
shows a larger average for all counting-based observables due to the larger color charge of the
gluon, with results in more emissions (on average) if initialized by a gluon.

It should be noted once again that all distributions in Figure 11.5 are inclusive in transverse
momentum pT, i.e., they are dominated by low -momentum jets due to the strong pT-dependence
of the multijet cross section.

To get an impression of the discrimination power of the different counting-based substructure
observables, Figure 11.6a shows the Receiver Operating Characteristic (ROC) curve for the
different observables that are used in the cross section measurement. As expected, the
track multiplicity provides the best separation between quark and gluons. The quark-gluon
discrimination power is very similar for all configurations of the SD algorithm, being relatively
close to ntrk because it is not limited by Casimir scaling. The kinks visible in the ROC curve
that are based on the SD multiplicity are due to discrete nature of the observable, which also
applies to the track multiplicity; however, because the number of bins is larger in case of ntrk,
the resulting ROC curve is smoother.
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Plot 11.6: ROC curves for several counting-based observables (left) as well as the
discrimination performance for the example of ntrk as a function of pT (right).

11.4 Detector-Level Distributions

With the different counting-based jet substructure observables being introduced, this section
presents the actual measurement of the triple-differential multijet cross section with respect
to the track ntrk as well as SD multiplicity nSD using pp-collision events recorded with the
ATLAS detector as well as events generated in Monte Carlo with the full detector simulation
applied. Moreover, all particle/truth-level distributions are reconstructed along with the
response matrix, subsequently used to unfold the measurement to particle level and to derive
uncertainties.

Prior to carrying out the actual, i.e., final measurement, plenty of parameters need to be
optimized in order to obtain optimal performance regarding the unfolding, uncertainties etc.
First and foremost, the binning of the different counting-based observables must be optimized
with the objective to obtain response matrices as diagonal as possible while maintaining as
much information (concerning the shape of the probability distributions) as possible because
the shape difference between quark- and gluon-initialized jets determines the discrimination
power between the two categories. This is a challenging optimization problem – especially
in case of a jet substructure measurement! Generally, there is no ideal solution, but only a
trade-off between diagonality of the response matrix and the information contained in the shape
of the distribution6. Optimizing the binning for the different observables, therefore, requires to
iterate over the entire chain of the measurement (reconstruction, unfolding to particle level
and evaluation of the systematic and statistical uncertainties) several times until an adequate
configuration has been found. This procedure (including all trials and tribulations) can not
be fully outlined at this point, which is why some results must be anticipated here without
providing further background.

In order to provide a concise presentation of all counting-based observables measured in
this analysis, each substructure observable is dealt with in a dedicated section of their own.

11.4.1 Track Multiplicity n500
trk

The first substructure observable to consider is the number of tracks associated to the jet that
can be interpreted as a proxy for the number of charged constituents. The final binning for

6This can easily be understood by considering both extreme cases where the binning is infinitely small
(i.e., continuous) and only one single bin. In the former case, there are significant migrations (between bins)
as difference between particle and detector level are always present due to distortions caused by the detector.
Consequently, the uncertainty on the measured distributions will be very large too. In case of a coarse binning,
however, the effect of migrations can be considerably reduced at the expense of loosing information, but gaining
high precision in turn.
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the track multiplicity that was used in this analysis is summarized in Table 11.1. As one can
see, the binning of the track multiplicity (all counting-based observables) is comparatively
coarse; this is mostly driven by the tracking-related variations that induce migrations between
multiplicity bins7. The binning shown in Table 11.1 does not change as a function of the

Observable Binning Unit

n500
trk

[0, 5) [5, 10) [10, 15) [15, 20) [20, 25) [25, 30) [30, 35)
[35, 40) [40, 45) [45, 50) [50, 80]

none

Table 11.1: Binning of the track multiplicity ntrk used thought all cross section measure-
ments in this analysis.

jet’s transverse momentum, i.e., the very same binning is used for all pT bins (as well as both
pseudorapidity bins) listed in Table 9.4. There are, however, several argument that speak
in favor of varying the binning of the JSS observables for different pT regimes instead, most
importantly, to account for the significant change in the shape of the distributions in different
regions in phase space (increasing average multiplicity and broadening of the distributions
with increasing transverse momentum of the jet for counting-based observables). For instance,
some bins with high probability mass in the low-pT regime might be spaciously populated for
high-pT jets (because the mean of the distribution increases with pT), which result in larger
systematic uncertainties in this bin due to migrations and increased statistical uncertainties.
Using a variable binning for the JSS observables, however, represents a considerable additional
effort concerning the implementation of the analysis since the aforementioned optimization
problem must be performed in each pT bin individually8. To avoid this problem, the evolution
of the differential cross section (1/σ) dσ/dOJSS with transverse momentum pT is accounted
for in another way, i.e., by subsequently merging adjacent bins. This important point will
be covered in great detail in an upcoming chapter that uses the final measurements of the
triple-differential multijet cross section to extract the underlying quark/gluon distributions
using the “jet topics” method introduced in Chapter 7.

The resulting spectra on detector level for central and forward jets are shown in Figure
11.7. A separate presentation of the distributions for central and forward jets was chosen for
reasons of clarity; one should keep in mind, however, that the cross section is measured in both
pseudorapidity bins simultaneously, i.e., there are migrations between the two pseudorapidity
categories too. This will become immediately apparent as soon as the response matrix is shown
in the upcoming section. Figure 11.7 shows the number of events in each phase space bin
[pT, η, ntrk] measured for the full Run 2 data set as well as for all Monte Carlo samples for the
corresponding simulation campaigns at detector level. The distributions of all Monte Carlo
samples are normalized/scaled by a factor to match the total number of events measured in
data. As mentioned before, this is only done for comparing the shape of the distributions at
detector level. The corresponding factor by which the Monte Carlo spectrum was scaled is
shown in the figure’s legend in parenthesis attached to the label of the respective MC generator
(see Figure 8.1), similar two what was done in the previous section.

In the representation of the measured spectra shown in Figure 11.7, the non-equidistant
binning of the observable expected from Table 11.1 is not explicitly recognizable. In this
representation, each phase space bin, in which the number of multijet events is measured,
is assigned to a unique integer value (henceforth referred to as global bin index or global

7Keep in mind that especially the tracking-related variations associated with inefficiency in the reconstruction
of tracks in the Inner Detector randomly remove tracks according to some probability that depends on the
transverse momentum as well as the pseudorapidity. This may give rise to considerable migration that must be
accounted for by means of an increased bin width.

8Honesty demands that the need for a variable binning of the JSS observable was not anticipated from the
very beginning when designing the analysis, but was an insight gained after a significant fraction of the analysis
code (which, in general, is very modular) has already been written. Implementing this new feature would have
given rise to considerable additional expenses regarding evaluation and debugging and has therefore discarded
for good, but should certainly be considered in subsequent studies following this one.
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Plot 11.7: Full measurement of the number of multijet events in different regions in
phase space with respect to the track multiplicity for central (left) and forward (right)
jets. The divided presentation of the multijet spectra for central and forward jets
only serves the purpose of better visualization; indeed, the number of multijet events
is simultaneously measured in both pseudorapidity regions and therefore accounts for
migrations between the two.

measurement bin) by a bijective map according to

IiOJSS
,ipT ,iη

:= I(ipT , iη, iOJSS
) = iOJSS

+Nbins
OJSS

· (ipT + iη ·Nbins
pT ), (11.18)

whereby ipT , iη, iOJSS
∈ [0, Nbins

pT,η,OJSS
] denotes the current bin number in terms of pseudorapid-

ity, transverse momentum pT and the substructure observable OJSS, with Nbins
OJSS

and Nbins
pT

being the total number of bins of the latter two. The pseudorapidity only comes with two bins
(central(=0) and forward(=1)). The function according to Equation 11.18 allows to transform
the 3-dimensional cross section (which would require a 4-dimensional space to be visualized)
onto a 1-dimensional space, significantly simplifying visualization as well as further processing
of the entire measurement. With this transformation applied, each repeating pattern in Figure
11.7a and Figure 11.7b corresponds to a different bin in transverse momentum for central (left)
and forward jets (right), respectively, for which the track multiplicity was measured9.

Of course, the distributions in Figure 11.7 can also be transformed into a representation in
which the non-equidistant binning of the substructure observable is explicitly visible like in
Figure 11.8.

Figure 11.8 shows the measured spectra of the track multiplicity for two different pT bins
for the full Run 2 data and all Monte Carlo samples listed in Table 8.1 in a linear (left axis) as

9A concrete example might be beneficial to better understand the transformation according to Equation
11.18. Assumed a truth-level jet with a transverse momentum of pT = 360 GeV (bin ipT = 1 as this bin
number corresponds to pT ∈ [350 GeV, 500 GeV] according to Table 9.4) was reconstructed in the central
region (bin number iη = 0 as there are two pseudorapidity bins) with a total number of ntrk = 21 tracks (bin
iOtrk

= 4 because the 4th bin corresponds to ntrk ∈ [20, 25] referring to Table 11.1). According to Equation
11.18, this jet will contribute to bin IPL

4,1,0 = 15(= 4 + 11 · (1 + 0 · 5)) in the global representation. Now,
consider the very same jet but at detector level. Due to distortion in the reconstruction of the jet’s energy
in the calorimeter system of the detector, the energy of the truth-level jet is measured to be only 340 GeV
at detector level. Because the position measurement is very precise, the jet is still correctly identified as
being central. In this (not unreasonable) example, the jet will be assigned to a different global bin index at
detector level, i.e., IDL

4,0,0 = 4(= 4 + 11 · (0 + 0 · 5)) because the jet now falls in ipT = 0, which corresponds
to pT ∈ [250 GeV, 350 GeV]. In the response matrix, the correlation between IDL and IPL is shown; for the
example at hand, the jet will contribute to the off -diagonal elements since the jet migrated between two pT
bins.
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Plot 11.8: Single-differential distributions of the total number of multijet events measured
in each track multiplicity bin for different pT (in GeV) regimes.

well as a logarithmic (right, faint axis) scale to illustrate the number of events in the highest
multiplicity bins in the tails of the distributions with low production rates. The lower plot once
again shows the ratio between all simulation-based spectra with respect to the distributions
measured in data. As one can see, the shape of the distributions significantly changes between
different pT regimes, with the average number of tracks moving towards higher multiplicities
for increasing transverse momenta.

The production rate of multijet events is exponentially falling with increasing transverse
momentum, which is expected from theoretical calculations of the multijet cross section. Look-
ing at the individual track multiplicity distributions for each pT bin, two main features can be
observed that are shared by all counting based observables considered in this analysis: firstly,
the average/mean of the (track) multiplicity distributions increases towards higher transverse
momenta; secondly, the distributions broaden in company with the rising mean value of the
number of emissions.

Concerning the data to simulation resemblance, a considerable variation regarding the
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Plot 11.9: Ratio between the spectra for central and forward jets at particle level (right)
and detector level (right). In case of the particle level distributions, the ratio was taken
with respect to the nominal sample (Pythia) as no data exists at truth level.
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degree of agreement for the different Monte Carlo generators can be observed. Overall, the
MC-based predictions of the relative number of events is in good agreement with the spectrum
observed in data, with deviations below 10 % close to the bulk of the distributions up to 50 %
(and more) in regions dominated by hadronization effects, soft QCD or limited statistics. For
the low-pT regime, the high-multiplicity bins are almost completely left unpopulated because
the average number of tracks is much lower (see the statements above concerning the problem
of non-pT-dependent binning of the JSS observables). In the high-pT regime, however, the tail
of the underlying ntrk distribution evolves towards larger multiplicities, which are most likely
to contain a significant fraction of gluon-initialized jets as the average number of particles
is larger compared to quarks. Since all state-of-the-art Monte Carlo generators (including
Pythia of course) have been extensively tuned to quark-enriched samples from LEP data,
the overall data-to-MC-agreement is expected to be better for regions in phase space (such as
those given by smaller track multiplicities) that are dominated by quark-initialized jets. The
actual situation is, needless to say, more involved because the different Monte Carlo generators
have been tuned to data to varying degrees. Nonetheless, the given statement captures one
aspect the explanation.

The multi-differential cross section is measured in two regions that are defined by the
relative pseudorapidity between the two leading-pT jets in the event. The motivation behind
this analysis strategy is to obtain a measurement of the relative multijet production rate
over a sample that is quark- and gluon-enriched, respectively. Comparing the corresponding
spectra for central jets in Figure 11.7a and forward jets in Figure 11.7b by eye, it proves
to be pretty difficult to identify striking differences between the two spectra. It is therefore
beneficial to consider the ratio between the distributions corresponding to the central and
forward region. The result is shown in Figure 11.9 for particle (11.9a) and detector (11.9b)
level, respectively. The ratio(s) in Figure 11.9 reveal an interesting structure between central
and forward jets – which will play a crucial role for the extraction of the jet topics according to
the method described in Chapter 7. For each pT bin, the ratio is (approximately) monotonically
increasing with the (track) multiplicity. This is a clear indication of the two samples (defined
by the central and forward region) giving rise to different mixtures/compositions of jets, i.e.,
different fractions of quarks and gluons. Because the central region is gluon-enriched due to the
structure of the underlying PDF, the bulk of the distribution is at higher multiplicity values
compared to the forward regions that is “dominated” by quark-initialized jets. The limits of
those ratios (rcentral

forward → min /max) – simply speaking – determine the “anchor” bins/regions
that are used to extract the underlying quark/gluon distributions and fractions as explained in
Chapter 710. Regarding the features of the ratio with respect to different transverse momenta,
a pronounced difference between particle and detector level can be observed. In case of the
truth-level distributions, the pT-dependence is much weaker compared to the corresponding
figure at detector level. This does not come as a surprise because multiplicities are expected to
be sensitive to detector effects due to, e.g., varying material budget or different responses of
the calorimeter for quark- or gluon-initialized showers. Those effects are corrected for by the
unfolding procedure, described in the upcoming section.

Figure 11.10 shows the spectrum of the track multiplicity as well as the ratio between the
measured distributions in central and forward region inclusive in transverse momentum and
pseudorapidity. The corresponding distributions can simply be calculated by marginalizing
the transverse momentum as well as the pseudorapidity categories, which corresponds to the
summation of the individual multiplicity spectra in each pT and pseudorapidity bin according
to

dN

dntrk
=

Nbins
pT∑
j=0

Nbins
ηrel∑
k=0

[
N

∆pT∆ηrel∆ntrk

]
jk

. (11.19)

Because the cross section of multijet events is exponentially falling with transverse momentum
of the jets, the resulting track multiplicity distribution in Figure 11.10a is mostly determined
by the “low”-pT regime as can be verified in direct comparison with Figure 11.8a. Nonetheless,

10The anchor bins are determined based on the ratio of the unfolded spectra in central and forward region.
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Plot 11.10: Reconstructed track multiplicity distributions ntrk in data and simulation
inclusive in transverse momentum and pseudorapidity (left) and the ratio between the
spectra measured in central and forward region (right).

a significant contribution to the tail of the distribution (see faint curve) due to high-pT jets
can be observed in the logarithmic representation, which is mainly populated by jets in the
high-pT domain. The rightmost Figure 11.10b shows the ratio of the multijet spectra measured
in central and forward region at detector level inclusive in transverse momentum – in contrast
to Figure 11.9 that shows the cross section ratio for individual pT bins. In this representation,
the non-equidistant binning is, once again, explicitly visible. With reference to explanations
already provided in context of Figure 11.9, the curve progression in Figure 11.10b can be well
understood by recalling that the central and forward region have different compositions of
quark and gluon jets due to the underlying PDF of the proton. Because quark jets are (on
average) harder and composed of a smaller number of particles, the left-most limit is dominated
by quark-like jets, with the rightmost part of the distribution being gluon-enriched accordingly.
This also provides a possible explanation for the progression of the data-to-MC agreement of
the ratio with respect to ntrk.

As explained in Chapter 10, the systematic uncertainties of the cross section measurement
are determined by fully propagating corresponding variations of the respective nominal spectra
through the unfolding procedure. Therefore, each systematic uncertainty comes with a set of
variations of the triple-differential multijet cross section at detector and/or particle level. Figure
11.11 shows two examples of those variations that correspond to variations due to tracking-
(11.11a) and PDF-related (11.11b) uncertainties. The total tracking-related uncertainty consists
of several components that manifest as different variations of the nominal cross section that
are shown in Figure 11.11a for central (solid lines) and forward (dashed lines) jets. First
and foremost, the variation of the cross section is systematically larger in case of jets more
forward in the detector. This is expected as forward jets see (on average) an increased material
budget. The different components of the tracking-related variations have been described in
Chapter 7; broadly speaking, they are divided into four categories: one of which accounts for
global/inclusive track reconstruction efficiency; for fake jets mostly due to combinatorics and
pile-up; efficiency in dense environments inside jets; as well as an uncertainty on the Q/pT

term. As expected, the latter one is completely negligible – at least in this analysis. In case of
the other components, the degree of variation varies significantly between different multiplicity
bins up to 10 % with respect to the nominal cross section. It is important to keep in mind
that the variations shown in Figure 11.11a do not correspond to the final tracking-related
uncertainty as they are on detector level. In order to obtain the corresponding uncertainty, the
tracking-related variations must be propagated throughout the unfolding procedure described
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Plot 11.11: Variations of the nominal spectra at detector level due to tracking- (left)
and PDF-related (right) uncertainties.

in the upcoming section.
Figure 11.11b shows the variations of the nominal cross section due to variations of the

baseline PDF set.

11.4.2 SD Multiplicity

The next observable that has been measured is the number of (valid) Soft Drop emissions inside
of the jet. As explained previously, two configurations of the ISD algorithm have been studied:
firstly, one that uses the default configuration of the algorithm (β = zcut = 0), but applies a
lower cut on the transverse momentum of the emission of kcut = 400 MeV, which means that
only emissions/splittings with kt > 400 MeV are taken into account (this basically corresponds
to only counting perturbative splittings); secondly, no kt-cut being applied (explicitly) but
with β = 1.0, zcut = 0.1 and a lower cut on the emission angle of θcut = 0.002.

Before turning the attention to the reconstructed distributions, Table 11.2 shows the
binning of both configurations of the SD multiplicity. As in case of the track multiplicity, the

Observable Binning Unit

nSD(kt > 400 MeV) [0, 2) [2, 3) [3, 4) [4, 5) [5, 6) [6, 7) [7, 8)
[8, 9) [9, 10) [10, 12) [12, 15) [15, 20)

none

nSD(zcut = 0.1, β = 1, θcut = 0.002) [0, 3) [3, 4) [4, 5) [5, 7) [6, 7)
[7, 8) [8, 9) [9, 12) [12, 20)

none

Table 11.2: Binning of the two different configurations of the SD multiplicity nSD used
thought all cross section measurements in this analysis.

binning was optimized to minimize migrations between bins while keeping as much information
regarding the shape of the distributions as possible.

Following the structure of Section 11.4.1 for the track multiplicity, Figure 11.12 shows
the full measurement of the SD multiplicity nSD(zcut = 0, β = 0, kt > 400 MeV) (henceforth
notated as nSD(kt > 400 MeV)) for central (11.12a) and forward (11.12b) jets. In this context,
the attention is – again – explicitly drawn to the fact that the cross section was measured and
unfolded simultaneously in central and forward region. As a quick reminder, the effect of a
lower cut on the emissions’ momentum is shown in Figure 11.4b and Figure 11.4c, respectively,
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for the Lund jet plane.
In the previous configuration, the SD emission inside of the C/A reclustered jet was only
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(a) Central jets
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Plot 11.12: Full measurement of the number of multijet events in different regions in
phase space for central (left) and forward (right) jets with respect to the transverse
momentum pT and the SD multiplicity nSD(kt > 400 MeV).

considered valid (and therefore counted) if the kt of the emission was above 400 MeV. The
second configuration of the SD multiplicity uses a lower cut on the momentum fraction of the
emissions of zcut = 10 % with respect to the pT of the jet’s trunk that is loosened by taking
the angular components of the emissions inside of the jet into account by setting β = 1.0 in
Equation 11.2. Furthermore, very collinear radiation is removed by using a lower cut on the
emission angle of θcut = 0.002. The corresponding emission plane is shown in Figure 11.3c.
The motivation for measuring this configuration in addition to the one that was shown in
the previous paragraph is given by the circumstance of nSD(β = 1.0, zcut = 0.1) being one of
ATLAS’ default settings of the SD algorithm, which will play an important role in a potential
measurement of αS based on the results derived in this analysis, which will be further developed
in the proposal of “future research suggestions” in the end of this report. Furthermore, a second
configuration of the SD multiplicity was measured to investigate the effect of different binnings
(see Table 11.2) on the extracted quark/gluon distributions and fractions. The corresponding
spectra for central and forward jets for nSD(β = 1.0, zcut = 0.1) are shown in Figure 11.13.

In Figure 11.12 and Figure 11.13, like for all corresponding figures, the total number of
events measured in each phase space bin was normalized by the total bin width ∆wijkbin =
∆iOJSS∆jpT∆kη, whereby ∆nΠ = Πn+1 − Πn with Π ∈ [OJSS, pT, η] denotes the nth bin’s
width. This way, the “correct” or expected shape of the distributions is recovered, taking the
different bin widths into account.

As for the track multiplicity, two examples of the single-differential multijet cross section
(inclusive in central and forward region) are shown in Figure 11.15 and Figure 11.15 for the two
configurations of the SD algorithm for two bins (low and high pT) in transverse momentum.
The aforementioned correlation between the average number of emissions and the width of the
SD multiplicity distribution with the transverse momentum of the jet can nicely be observed
going from Figure 11.14a to Figure 11.14b, which corresponds to an increase in pT. Regarding
the data-to-MC agreement, most simulated samples agree well for most regions of phase space
with a discrepancy below 10 %. Besides that, Figure 11.14 and Figure 11.15 illustrate the
previously stated argument of using different binning for the SD multiplicity (instead of a fixed
one) to account for the evolution of the underlying probability distribution with transverse
momentum of the jets. Because the same binning was used for all pT bins in this measurement,
the binning of the SD multiplicity represents a compromise between the diagonality of the
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(a) Central jets

0 5 10 15 20 25 30 35 40 45

Global measurement bin

3−10

2−10

1−10

1
10

210

310

410

510

610

710

810

910

1010

1110

1210

  [
ev

en
ts

]
S

D
dn

T
N

um
be

r 
of

 e
ve

nt
s 

 d
N

/d
p

-1=13 TeV, 139 fbs

|<2.1η R=0.4, |
t

Anti-k
PFlow jets
Data Run 2
Forward

=0.002)cutθ>0.0 GeV, 
t

=0.1, k
cut

=1.0, zβ(SDnDetector level, 

Data

 0.82)×(Pythia 8.230  0.95)×(Powheg+Pythia 8.230 

 1.18)×(Sherpa (AHADIC)  1.18)×(Sherpa (Lund) 

 1.04)×(Herwig 7.1.3 (Ang.)  0.93)×(Herwig 7.1.3 (Dipole) 

0 5 10 15 20 25 30 35 40 45

Global measurement bin

0.6
0.8

1
1.2
1.4

  D
at

a
R

at
io

 to

(b) Forward jets

Plot 11.13: Full measurement of the number of multijet events in different regions in
phase space for central (left) and forward (right) jets with respect to the transverse
momentum pT and the SD multiplicity nSD(zcut = 0.1, β = 1, θcut = 0.002).
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(a) pT ∈ [250, 350)
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(b) pT ∈ [1100, 4500)

Plot 11.14: Single-differential distributions of the total number of multijet events
measured in each SD multiplicity bin of nSD(kt > 400 MeV) for different pT (in GeV)
bins.

response matrix over the entire pT range and the information encoded in the shape of the
distribution. The sub-optimal binning of the multiplicities (this statement also holds true
for the measurement of the NN-score presented in the upcoming chapter) poses a potential
problem for the extraction of the underlying quark/gluon distributions in the context of the
determination of the anchor regions/bins. This complication is accounted for by subsequently
merging adjacent bins – this point will be discussed in great detail in the corresponding sections
of this report.

Like in case of ntrk, the superficial comparison of the measured spectra in central and
forward region does not reveal a striking difference between the two (jet) samples. The
ratio between the two distributions, shows that the SD multiplicity is indeed sensitive to the
differences regarding the fraction of quark and gluon jets of the two mixtures over which
the cross section is measured. This is shown in Figure 11.16 for the measured spectra of
nSD(kt > 400 MeV) (11.16a) and nSD(zcut = 0.1, β = 1, θcut = 0.002) (11.16b). The agreement
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(b) pT ∈ [1100, 4500)

Plot 11.15: Single-differential distributions of the total number of multijet events
measured in each SD multiplicity bin of nSD(zcut = 0.1, β = 1, θcut = 0.002) for different
pT (in GeV) bins.
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(a) nSD(kt > 400 MeV)
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(b) nSD(zcut = 0.1, β = 1, θcut = 0.002)

Plot 11.16: Ratio between the spectra for central and forward jets of nSD(kt > 400 MeV)
(left) and nSD(zcut = 0.1, β = 1, θcut = 0.002) (right) at detector level.

between data and simulation is excellent as most effects in central and forward region are
highly correlated among each other and therefore cancel to the degree of their correlation;
they only vary concerning their composition of quark and gluon jets. The spikes that can be
observed in the ratio plots in Figure 11.16 are mostly due to very low statistics in the respective
upper and lower limits of phase space. The curve progression of the ratio as a function of the
(global) measurement bin closely resembles those of the track multiplicity in Figure 11.9, but
with a better agreement between particle and detector level. The better agreement between
truth and reco level is mostly due to the coarser binning of the distribution’s support, but also
because the SD multiplicity is generally less sensitive to soft-physics effects (at least for the
configurations used in this analysis).

Figure 11.17 shows a summary of the measurement of the two configurations nSD at detector
level in terms of the inclusive (over all pT bins and pseudorapidity categories) single-differential
spectrum.

As it was the case for the track multiplicity, the density of the multijet cross section quickly

175



0 2 4 6 8 10 12 14 16 18 20

SD
SD multiplicity  n

100

200

300

400

500

610×
  [

ev
en

ts
]

S
D

N
um

be
r 

of
 e

ve
nt

s 
 d

N
/d

n

-1=13 TeV, 139 fbs

|<2.1η R=0.4, |
t

Anti-k
PFlow jets
Data Run 2

=0.0)cutθ>0.4 GeV, 
t

=0.0, k
cut

=0.0, zβ(SDnDetector level, 

Data

 0.82)×(Pythia 8.230  0.95)×(Powheg+Pythia 8.230 

 1.18)×(Sherpa (AHADIC)  1.18)×(Sherpa (Lund) 

 1.04)×(Herwig 7.1.3 (Ang.)  0.93)×(Herwig 7.1.3 (Dipole) 

0 2 4 6 8 10 12 14 16 18 20

210

310

410

510

610

710

810

910

1010

1110

1210

0 2 4 6 8 10 12 14 16 18 20

SD
SD multiplicity  n

0.6
0.8

1
1.2
1.4

  D
at

a
R

at
io

 to

(a) nSD(kt > 400 MeV)

0 2 4 6 8 10 12 14 16 18 20

SD
SD multiplicity  n

100

200

300

400

500

600

700

610×

  [
ev

en
ts

]
S

D
N

um
be

r 
of

 e
ve

nt
s 

 d
N

/d
n

-1=13 TeV, 139 fbs

|<2.1η R=0.4, |
t

Anti-k
PFlow jets
Data Run 2

=0.002)cutθ>0.0 GeV, 
t

=0.1, k
cut

=1.0, zβ(SDnDetector level, 

Data

 0.82)×(Pythia 8.230  0.95)×(Powheg+Pythia 8.230 

 1.18)×(Sherpa (AHADIC)  1.18)×(Sherpa (Lund) 

 1.04)×(Herwig 7.1.3 (Ang.)  0.93)×(Herwig 7.1.3 (Dipole) 

0 2 4 6 8 10 12 14 16 18 20

310

410

510

610

710

810

910

1010

1110

1210

0 2 4 6 8 10 12 14 16 18 20

SD
SD multiplicity  n

0.6
0.8

1
1.2
1.4

  D
at

a
R

at
io

 to

(b) nSD(zcut = 0.1, β = 1, θcut = 0.002)

Plot 11.17: Reconstructed SD multiplicity distributions nSD in data inclusive in
transverse momentum and relative pseudorapidity for nSD(kt > 400 MeV) (left) and
nSD(zcut = 0.1, β = 1, θcut = 0.002) (right).

falls with the transverse momentum of the jets, which is why the bulk of the distribution in
Figure 11.17 is mostly due to low-pT jets. However, the logarithmic representation of the
spectrum clearly shows contributions from higher-pT jets that are more likely to populate tails
of the distribution corresponding larger multiplicities (pay attention to the fainted curve and
corresponding scale). The average number of SD emissions 〈nSD〉, of course, strongly depends
on the transverse momentum, which will be studied once the measurement got unfolded to
particle level. The inclusive ratio in Figure 11.18 nicely shows the different fraction of quark and
gluon jets in central and forward regions for the various SD multiplicity bins. The highest nSD

bin exhibits significant deviations between the different samples due to statistical limitations.
Last but not least, like it was done in case of the track multiplicity, the variations of the cross
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Plot 11.18: Ratio between reconstructed spectra in central and forward region in data
inclusive in transverse momentum and relative pseudorapidity for nSD(kt > 400 MeV)
(left) and nSD(zcut = 0.1, β = 1, θcut = 0.002) (right) at detector level.

section related to the tracking uncertainties are shown in Figure 11.19 for nSD(kt > 400 MeV)
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11.5. UNFOLDING OF THE CROSS SECTION MEASUREMENT

(left) and nSD(zcut = 0.1, β = 1, θcut = 0.002) (right). As expected, the tracking-related
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Plot 11.19: Variations of the nominal spectra at detector level due to tracking-related
uncertainties for nSD(kt > 400 MeV) (left) and nSD(zcut = 0.1, β = 1, θcut = 0.002)
(right).

variations are overall smaller compared to the corresponding graphs of the track multiplicity in
Figure 11.11a. The variations associated with the PDF are basically the same and therefore
not shown. Generally, most statements provided in case of the track multiplicity in Section
11.3 still apply to the SD multiplicity and are therefore left without any further comment.
The only aspect to note at this point is how the coaser binning of the multiplicity reduces the
sensitivity to tracking-related uncertainties.

11.5 Unfolding of the Cross Section Measurement
The previous section presented the measured triple-differential multijet spectra in real pp-
collision data and Monte Carlo simulation for the track multiplicity as well as several configu-
rations of the SD multiplicity introduced in Section 11.1.3. Furthermore, the ratio between
the spectra simultaneously measured in the central and forward pseudorapidity region was
examined, which confirmed that all counting-based observables studied in this analysis are
sensitive to the different composition of quarks and gluons in the two orthogonal samples of
jets given by the central and forward category. This fact will be come important once the
underlying quark and gluon distributions as well as their corresponding fractions are extracted.

The measured distributions in Section 11.4 are – for the most part – at detector level,
i.e., the obtained spectra are “distorted” due to limited acceptance and finite resolution of
the ATLAS detector. As described in Chapter 5, the procedure of detector unfolding aims
to “deconvolut” the effect of the measuring apparatus by transforming the measurement to
particle/hadron level by means of the response matrix that captures the correlations between
particle- and detector-level objects. Moreover, the data must be corrected for acceptance and
efficiency losses due to migrations of jets that enter or leave the phase space volume over which
the triple-differential multijet cross section is measured. After unfolding, the cross section is at
particle level and can directly be compared to predictions of a Monte Carlo generator or explicit
theory calculations, whereby the latter case requires an IRC-safe observable/measurement.

The purpose of this section is to provide all relevant information regarding the unfolding
of the triple-differential multijet cross section with respect to the various counting-based
observables introduced in the previous section (technical aspects in this section also apply to
the NN-based observables). In this context, the main emphasis is on the diagonality of the
response/unfolding matrix as well as the efficiency and fake factors in the different regions of
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phase space. Generally, this section intends to provide convincing arguments to the reader
that the unfolding of all substructure observables is well under control.

Regarding the structure of this section, the arrangement of results basically resembles the
order of Section 11.4, i.e., each counting-based observable that has been measured gets its
own brief section showing the response matrix and the efficiency/fake factors along with some
general comments and comparisons between the different variables.

11.5.1 Background Processes11

As briefly mentioned (but not explicitly demonstrated) in the final paragraph of Chapter 9.1,
contributions from other sources besides multijet production to the measured cross section are
completely negligible for all regions in phase space considered in this analysis. The reason for
this measurement being (almost) entirely insensitive to background processes is that all real
jets (i.e., phenomenological signatures of quarks and gluons in the experiment) are considered
a signal by definition. Hence, the only possible source of backgrounds to this measurement
is due to other particles being misidentified and falsely reconstructed as hadronic jets (with
the exception of hadronic jets from tau decays). This may happen as there is a “continuous“
transition between electromagnetic and hadronic showers. Especially electromagnetic showers
initialized by a very high-pT electron or photon may penetrate into the hadronic calorimeter,
which may result in fake (hadronic) jets. Furthermore, taus are likely to decay into hadrons
(Γτ→hadrons/Γtot ≈ 65 %), and since tau-lepton identification usually operates at smaller
efficiencies, hadronic remnants of a tau decay might get “wrongly” reconstructed as hadronic
jets originating from the hard interaction.

This section is supposed to support the statement of the (dominant) background contribution,
i.e., Drell-Yan in this case, being completely negligible by directly comparing the event yield of
the multijet and Drell-Yan production for several regions in phase space for all counting-based
observables. This comparison is done by means of a very simplified and superficial analysis
based on events generated at LO using MadGraph5_aMC@NLO (matrix element) and
Pythia8 (subsequent parton showering, hadronization and decay to final state particles) with
a simplified simulation of the ATLAS detector based on Delphes, which allows to “perform[...]
a fast multipurpose detector response simulation“ [216, 217, 218].

In Equation 5.7, the number of observed multijet events is unfolded and corrected for
acceptance effects to obtain the cross section at particle level. The underlying assumption,
however, is that contributions from other processes to the measured event yield are negligible
in all regions of phase space. In general, the expected contribution from other processes must
be subtracted from the observed event count prior to the unfolding step as shown in Equation
11.20 below

NPL
i =

∑
j

(
Nmultijet,j

DL −Nbkg,j
DL

) ([
R−1

])PL,i

DL,j
· εfake,j

εeff,i
(11.20)

=
∑
j

Nmultijet,j
DL (1− rj)

([
R−1

])PL,i

DL,j
· εfake,j

εeff,i
, (11.21)

whereby the ratio r being defined as rj := Nbkg,j
DL /Nmultijet,j

DL . The number of events due
to background processes is usually estimated by means of Monte Carlo simulations and/or
extrapolations from well-defined and well-understood control regions.

In case of the multijet cross section measurement, there is almost no irreducible (i.e.,
processes that result in an identical constellation of particles in the final state at hadron
level, but emerge from non-signal related interactions) background because all (real) jets are
considered as a signal. There are, however, background contributions from reducible processes
where the objects of interest, i.e., jets, are faked by other particles like, for instance, leptons.

11There is no background. All jets are signal by definition. Background my only arise from mistakenly
reconstruct other objects (like leptons) as being a hadronic jet. To the extent that this statement is sufficient,
the reader may safely skip this section without having to fear any disadvantages. This section is only supposed
to support the statement of contributions from Drell-Yan being completely negligible in each phase space bin of
the measurement.

178



11.5. UNFOLDING OF THE CROSS SECTION MEASUREMENT

In principle, each process whose final state particles might be falsely identified as hadronic jets
may contribute to the observed event yield to a varying degree given the region of phase space.
Hence, the question of whether events of non-related processes “pollute” the measurement is
out of the question; the question to be answered is, whether this contribution is significant
(rj ∼ O(1)) and therefore need to be properly accounted for.

At the LHC, the most dominant background contribution to the multijet rate is due to
Drell-Yan production. It is therefore sufficient to estimate the event yield of this process
compared to the number of multijet events in order to check whether the contribution from
background is significant. Of course, there are other processes that contribute – e.g., processes
involving photons in the final state –; however, many of those processes are at higher-order and
therefore negligible compared to Drell-Yan, or less likely to fake jets as, e.g., the identification
of photons is very efficient.

Hard Subprocess In order to estimate the contribution of the dominant source of back-
ground, a total number of 10 · 106 (10 · 106) generator level events have generated for multijet
(Drell-Yan) using MadGraph5_aMC@NLO. Using MadGraph5’s application programming
interface, multijet events are produced via the command:

# MadGraph command multijet production
generate p p > j j

The above statement results in di-“jet” events (2→ 2 process), i.e., two partons in the final
state that are either gluons and/or (light) quarks (top quarks are excluded). For the simulation
of Drell-Yan events,the following command was used:

# MadGraph command Drell-Yan production
define ell+ = e+ mu+ ta+
define ell- = e- mu- ta-
generate p p > ell+ ell-

The first two lines define the set of possible final state particles. In this setting, the mediator
couples to electrons, muons as well as taus.

For both processes shown above, the very same PDF (NN23LO1) was used to sample
the initial momenta for the incoming partons. Additionally, several (loose) generator-level
cuts (like, e.g., a minimum pT for the final state particles, constraining the pseudorapidity in
anticipation of ATLAS’ tacker acceptance etc.) have been applied to enhance the statistics in
regions in phase space considered relevant for this analysis.

As part of the evaluation process, several kinematic distributions for various figures of merit
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Plot 11.20: Fraction of sub-processes for multijet (left) and Drell-Yan (right) as a
function of the scalar pT sum HT of both final state particles at generator level.
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have been studies and compared12. As a small selection, consider Figure 11.20a that shows
the fraction of different sub-processes for multijet (11.20b) and Drell-Yan (11.20b) production
as a function of the scalar sum of the transverse momentum of the two particles in the final
state HT = p

(1)
T + p

(2)
T . In case of multijet events, the dominant (sub-)processes contributing
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Plot 11.21: Fraction of sub-processes for multijet (left) and Drell-Yan (right) as a
function of the pseudorapidity η of both final state particles.

to the cross section are gg → gg and qg → qg for the chosen range of HT. This is expected
from the theoretical calculation of the corresponding channels/diagrams. Furthermore, the
fraction of gluons in the final state decreases as a function of HT, which is expected from the
multijet cross section – this feature of the multijet cross section (i.e., decreasing number of
gluon-initialized jets in the final state) will play an important role later once the underlying
quark/gluon fractions are extracted – because with increasing pT of the jet, the momentum
fraction x ∝ pT/

√
s increase with an increased probability of finding/sampling a quark accord-

ing to the proton’s PDF.
The corresponding figure for Drell-Yan-based events shows that the probability of generating

an electrons, muons or taus is basically the same, which is expected from lepton universality
given the range of energies.

Figure 11.21 also shows the fraction of different sub-processes but as a function of the
particles’ pseudorapidity (within the tracker acceptance of the ATLAS detector). In case of
multijet production, a clear correlation between the “degree of contribution” and the respective
process can be observed. After the previous chapters and section, this should not come as a
surprise anymore since the observed characteristics is the exact same reason for measuring the
triple-differential multijet cross section in central an forward region, i.e., the central region is
enriched by gluons, while the forward region is quark enriched.

Parton Shower and Hadronization So far, the final state particles are at generator
level at LO. To increase the particle (and jet) multiplicity in the final state and to improve
the accuracy of the estimation of the cross section, a parton shower simulation (see Chapter
2.4) is applied to all generated events, using MadGraph’s interface to Pythia 8.230. In
case of time-like showers, the same PDF as for the matrix element calculation has been used.
The configuration of the parton shower algorithm corresponds to Pythia’s default tune and
parton shower model, which is based on a sequence of kt-ordered emissions. Besides the parton
shower model, Pythia’s Lund-string-based hadronization model (see Chapter 2.5) was used to
simulate the fundamentally non-perturbative process of the formation of color-singlet states
as well as the subsequent decay to stable final state hadrons (according to Pythia’s decay
tables).

12The generated events are saved in the Les Houches Event (LHE) format [182] that was analyzed using a
tool provided by Ref. [219].
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11.5. UNFOLDING OF THE CROSS SECTION MEASUREMENT

After the hadronization step, the outgoing particles of the calculation of the matrix ele-
ment (hard subprocess) have been showered (parton shower) and are decayed (hadronization)
to stable particles that can be measured in a detector. Figure 11.22 shows the fraction of
the (stable) final state, charged particles for multijet (11.22a) and Drell-Yan (11.22b) events
associated to jets that have been reconstructed at particle level using the anti-kt clustering
algorithm with R = 0.4. As expected, in case of multijet events, the final state is dominated
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Plot 11.22: Fraction of (charged) particles in reconstructed jets at hadron level for
multijet (left) and Drell-Yan (right) as a function of the scalar pT sum HT.

by charged mesons (mostly pions followed by kaons) and protons. However, also charged
leptons are involved in hadronic showers. In case of Drell-Yan, the contribution of charged
leptons is – of course – considerably higher. Taus are not directly reconstructed in Figure
11.22b due to their short lifetime, however, they contribute due to hadronic and leptonic decays.

Detector Simulation and Object Reconstruction So far, the generated events are at
particle (or hadron) level – prior to the parton-shower step they are at generator level. At this
stage, the background contribution to the multijet cross section due to Drell-Yan production
would be very small because the latter one does not contain any jets – aside from jets originating
from time-like (initial state) parton shower simulation (which are usually very soft in pT) and
hadronic tau decays. As mentioned previously, Drell-Yan production becomes a potential
source of background as soon as the final state leptons might be incorrectly reconstructed and
identified as jets of hadronic origin. The main reason for this to happen is the distortion of the
particles’ four-momenta once they traversing the measuring apparatus due to finite resolution,
dead material etc. To estimate the effect of a reducible background source, a simulation of the
detector is therefore unavoidable.

All samples listed in Table 8.1 have a full Geant4 simulation of ATLAS detector applied,
which is indispensable in case of the actual cross section measurement and the degree of
precision that is aimed for. A full Geant4 simulation, however, is very(!) time consuming
and excessive for the modest demands required by this simple background-related study13.
Fortunately, there is an alternative available, Delphes, that allows to perform simulations of the
ATLAS detector at a level of precision completely sufficient for the modest demands required
by this superficial study. “Delphes[.]”, to directly quote the authors, “has been developed[.]
for a fast simulation of a general-purpose collider experiment.” [220]. The fast simulation
provided by Delphes includes the most crucial experimental features supposed to be accounted
for in a detector simulation, such as the geometry of both central and forward detectors; the
effect of magnetic fields on tracks; the reconstruction of photons, leptons, jets, b-jets, τ -jets(!)
and missing transverse energy; a lepton isolation; a trigger emulation [220]; to name the most

13Keep in mind that the estimated number of background-induced events does not enter the unfolding
procedure – otherwise, a full Geant4-based simulation of the background would be unavoidable. The objective
of this section is to illustrate that there is no need account for background contributions in the first place.
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important ones. Despite being great for simple and quick analyses, the precision and accuracy
of detector simulations using Delphes has some limitations. Stating the Delphes authors
literally again: “[the] [d]etector geometry is idealized, being uniform, symmetric around the beam
axis, and having no cracks [(particularly said for ATLAS’ famous and beloved pseudorapidity
crack ...)] nor dead material. Secondary interactions, multiple scatterings, photon conversion
and bremsstrahlung are also neglected[.]” [220].

Delphes’ detector layout follows a generic multipurpose design like the one used by, e.g.,
ATLAS and CMS. It consists of several detector layers, starting with a tracking system most
close to the beam line, surrounded by an electromagnetic and a hadron calorimeters (each
with a central region and two endcaps) and two forward calorimeters. The last detector
component is a muon spectrometer. To animate the detector, different detector cards can
be loaded that “allow[.] [to study] a large spectrum of running conditions by modifying basic
detector parameters, including calorimeter and tracking coverage and resolution, thresholds or
jet algorithm parameters[.]” [220]. Of course, for this background related analysis, Delphes has
been configured to mimic the ATLAS detector by using the available ATLAS detector card(s).

Once the simplified detector has been configured, the events generated in the previous step
are passed through the simplified, Delphes-based ATLAS detector. The kinematics variables,
i.e., the four-vector components of the final-state particles generated in the previous step are
then smeared according to the tunable resolution of the different detector components. Because
the measurement of the jet substructure observable is based on track, the reconstruction of
charged particles’ trajectories is of particular interest. In Delphes, each stable, charged particle
with a transverse momentum above the threshold defined by the detector card (500 MeV at
ATLAS) that is within the detector volume of the tracker results in a track, whereby some track
reconstruction efficiency is applied that depends on the pT. The four-vector components are
undistorted. The simulation of the calorimeter response is simply given by the energy deposition
of the particles within the active detector volume parameterized through a Gaussian smearing
of the accumulated cell energy with a given variance defined by the detector configuration.
The characteristic properties of the calorimeter like the varying resolution and granularity in
different segments of the detector are specified in the corresponding detector card too.

Once the events are passed through the detector simulation, the analysis proceeds as
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Plot 11.23: Triple-differential cross section with respect to the track multiplicity (left)
as well as nSD(kt > 400 MeV) (right) for multijet and Drell-Yan production.

previously described in Chapter 9. The (multijet) event selection is applied and higher-level
physical objects are reconstructed. Jets are build from calorimeter cells (which are available as
a standard container in the output of the Delphes-based simulation of the ATLAS detector)
using the anti-kt clustering algorithm with a radius parameter of R = 0.4. If the jets fulfill the
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11.5. UNFOLDING OF THE CROSS SECTION MEASUREMENT

criteria defined by the event selection (at least two jets with pT > 250 GeV, plead
T /psublead

T < 1.5
ect. see Table 9.3), tracks are matched to the calorimeter-based jets according to a ∆R-criterion;
the “associated” tracks are then used to calculate the jet substructure observables of interest as
it was done before. The same spectra of the triple-differential cross section are reconstructed
for all multiplicities introduced in this chapter for both multijet and Drell-Yan production.

MadGraph5 then provides an estimation of the cross section σgen
tot (including its statistical

uncertainty). The luminosity (see Chapter 3.1) is not directly specified as it is a accelerator-
dependent quantity. However, given the number of generated events (specified by the user) as
well as the cross section approximation at LO provided by MadGraph5, the luminosity is
simply given by Lgen = Ngen/σgen

tot . Hence, weighting each event by a factor of 1/Lgen
multijet/DY

results in the correct cross section and therefore the right ratio between the production rate
of multijet and Drell-Yan events. Finally, an additional factor of LLHC

Run2(= 139 fb1) is applied
to the event weight to account for the conditions during Run 2 of data-taking. This does not
affect the result as the relative distance between the spectra of signal and background remains
unchanged. However, it allows to compare the event yield in case of multijet events with the
detector-level results of the previous section. The full event weight then reads

wX =
LLHC

Run2

Lgen
X

= LLHC
Run2

σgen
tot,X

Ngen
X

, (11.22)

whereby σgen
tot ≈ 4.1 · 104 pb for multijet and σgen

tot ≈ 1.7 · 10−2 pb. Because the calculation of the
matrix element is at LO for both processes (multijet and Drell-Yan) and the parton shower
simulation corresponds to Pythia’s “Simple Shower”, there are no non-trivial event weights
at generator or hadron level due to complicated matrix-element-to-parton-shower matching
etc. In this simple analysis, the application of the event weight according to Equation 11.22
therefore simply reduces to a scaling of the histograms, whereby the scale factor is different in
case of multijet and Drell-Yan production.

Finally, after all those preparations, the triple-differential cross section for the track and SD
multiplicities is reconstructed at detector level for the multijet- and Drell-Yan-based samples.
The resulting spectra are shown in Figure 11.23. The individual spectra in Figure 11.23 show
the full cross section measurement, i.e., in each transverse momentum, pseudorapidity and
multiplicity bin (the two main structures correspond to the spectra in central and forward
region, respectively). The ratio in each figure gives the ratio of the event yield in Drell-Yan
with respect to the number of events measured in the multijet sample.

Inspecting the distributions shown in Figure 11.23 and comparing the respective spectra
for signal and (reducible) background reveals a significant difference not only in the observed
event yield of the two processes, but also regarding the shape of the multiplicity distributions.
For reasons of clarity, Figure 11.24 shows the distributions of the track multiplicity (11.24a)
as well as the SD multiplicity for all emissions with kt > 400 MeV (11.24b) marginalized
over transverse momentum and pseudorapidity to obtain a single-differential distribution (als
statements also hold for the other configuration of the SD multiplicity). Figure 11.24 provides
a nice illustration of the distinctive features between signal and background. Starting with the
shape of the distributions, the first characteristics that catches the eye is the shift towards
smaller multiplicities (smaller number of tracks and emissions) in case of the background-related
spectra due to Drell-Yan. This is hardly surprising, recalling that many jets reconstructed in
case of the reducible background are actually leptons, being falsely identified and reconstructed
as hadronic jets. Due to the characteristics of the electromagnetic shower, a smaller number
of constituents is therefore expected; also, in case of hadronically decaying taus, the particle
multiplicities is generally smaller. This implies that lower multiplicity bins in this measurement
are generally more sensitive to contributions from background. A closer inspection of the ratio
between signal and background, however, shows that this concern is unfounded as even in
the phase space regions at risk (small multiplicities), the contribution to the cross section is
below 1 ppm. Taking a look at the ratio for all phase space bins in Figure 11.23 shows that
for some regions in phase space the contribution may reach 0.1 ‰, which is still completely
negligible given the degree of precision of this measurement, which is (at its best) in the order
of ∼ O(1 %).
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Plot 11.24: Single-differential cross section with respect to the track multiplicity (left)
and the SD multiplicity (right) for multijet events and for Drell-Yan.

11.5.2 Track Multiplicity n500
trk

Turning the attention to the unfolding. Like it was the case for the previous section that
introduced the measured spectra for all counting-based observables, the first jet substructure
variable to consider for the unfolding-related results is the track multiplicity. The unfolding to
particle level of the track multiplicity spectra will be dealt with in a little more detail compared
to the SD multiplicity to introduce all relevant figures of merit as well as to provide some
background information concerning the individual unfolding steps. Most of the insights gained
in this first section, however, can be directly translated to the corresponding results for the SD
multiplicity. Therefore, in case of nSD, most results are presented without further comment,
referring to this section.

As can be seen in Equation 11.20, the unfolding step involves three main incidents: firstly,
the measured spectra of the multi-differential cross section at detector level that is supposed to
be transformed particle level (see Section 11.4); secondly, the response/unfolding matrix that
describes the correlation of the observable of interest at detector and particle level; thirdly, the
efficiency and fake factors that account for efficiency losses due to migrations in and out of the
phase space volume, respectively, over which the event rate is measured (see Figure 5.1).

The spectra for all jet substructure observables that are measured in this analysis have
been introduced in Section 11.4 in detail.

The full response matrix of the nominal(=Pythia8) Monte Carlo as well as the efficiency
and fake factors are shown in Figure 11.25. Those figures require some more explanation.

Figure 11.25a shows the full (properly normalized) response matrix of the measurement
that is used to unfold the detector-level spectra to particle level. As already described in
previous chapters, the response matrix is constructed by correlating the reconstructed value of
the jet substructure observable at detector level to its counterpart at particle level, provided
that both jets pass the event selection (otherwise, they contribute to the aforementioned
efficiency or fake factors). The matrix obtained therefrom describes the fraction of jets within
a certain phase space bin at particle level with respect to some phase space bin at detector
level and therefore is a measure of the degree of migrations between different bins. Properly
normalized (as done in Figure 11.25a), the response matrix can be interpreted as the probability
of a substructure observable OPL

i,JSS at truth level in the ith (global) bin being reconstructed
as ODL

j,JSS in bin number j at detector level (migrations taking place if i 6= j). Ideally, the
amount of migrations between regions in phase space should be as small as possible because
uncertainties are proportional to the fraction of the off-diagonal elements in the response
matrix; furthermore, model-related biases are reduced. The latter point is due to the fact that
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Plot 11.25: Full response matrix (left) and efficiency and fake factors (right).

the response matrix is derived from simulation using the nominal Monte Carlo sample (Pythia
in this case) because truth-level information must be available in order to build the response
matrix in the first place. The model-dependent (using a different Monte Carlo event generator
would result in a different response matrix) unfolding matrix, however, is used to unfold the
measured spectra in data to particle level, which may result in bias in the unfolded cross
section towards the nominal MC. This problem is addressed by the data-driven non-closure
uncertainty (see Chapter 10.8). It is therefore desirable to obtain a response matrix as diagonal
as possible.

The diagonality, i.e., the fraction of elements on the diagonal, can be adjusted mainly by
the objects used to calculate the jet substructure observables as well as the binning, i.e., the
granularity of the phase space discretization used for the measurement. The first aspect is the
main reason for using tracks associated to the reconstructed PFlow jets for the calculation of
the substructure observable instead of, for instance, calorimeter cells of PFlow objects directly.
The resolution is much worse is case of calorimeter cells because many particles may easily
contribute to the very same cell due to the comparatively coarse granularity of the hadronic
calorimeter of the ATLAS detector. This results in a significant deterioration of the resolution
of the reconstructed observable and therefore gives rise to considerable migrations between
neighboring bins. Using tracks instead of, e.g., calorimeter cells, however, significantly improves
the resolution of the measurement due to the excellent position resolution in the tracking
system of the ATLAS detector and the possibility to resolve individual particles. Hence, using
tracks for the reconstruction of the JSS observable maintains sufficiently strong correlations
between particle and detector level, which is a basic requirement for the unfolding step to work
in the first place. Another lever to control the degree of migrations is by means of the binning.
This can easily be understood by recalling that migrations (mainly) occur due to distortions
caused by the measuring apparatus, i.e., mismeasurement of the jet’s transverse momentum due
to lower activation thresholds in the calorimeter cells, dead material, contributions from pile-up,
variations in the number of tracks etc. Of course, the sensitivity to those effects strongly
depends on the granularity (the number of bins) at which the cross section is measured over the
phase space volume. Hence, increasing the “coarseness” of the binning reduces the probability
of jets migrating into different regions of phase space. However, reducing the number of
bins results in a smaller sampling of the underlying target distribution; consequently, the
information regarding the shape of the distribution is reduced as well. This aspect (regarding
the interplay between phase space granularity and information concerning the distribution’s
shape) makes the optimization of the binning a very delicate matter because if the number
of bins is chosen too small (low granularity), the discrimination power of the JSS observable
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between quarks and gluons might be significantly reduced – otherwise, if the number of bins
is chosen too large (i.e., high granularity), there will be a considerable amount of migrations
between phase space regions, resulting in (possibly) very large systematic uncertainties and
biases.

The matrix in Figure 11.25a shows the response for the full measurement, i.e., in all
phase space bins for which the event rate has been determined. Its structure is similar to
the one-dimensional spectra shown, for instance, in Figure 11.714. As can be seen, there are
migrations between several pT regions. However, a significant fraction of jets is still contained
on the diagonal of the matrix, indicating that the transverse momentum of most jets is correctly
reconstructed given the (non-equidistant) width of the respective pT bin (not visible in this
representation). On closer inspection, an asymmetry in case of the off-diagonal elements can
be observed (better seen in the single-differential response matrix in Figure 11.26). This
asymmetry suggests that the probability of underestimating the transverse momentum of a jet
at detector level is larger compared to overestimating it. This immediately makes sense given
the fact that the multijet cross section is steeply falling with respect to the jet’s pT, which
results in more jets migrating into lower pT bins on average.

To make the non-equidistant binning explicit, it is reasonable to consider some examples
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Plot 11.26: Individual response matrices for different pT (in GeV) regimes in central
region15.

of the response matrix for certain pseudorapidity and pT, similarly to the detector level
distributions of the cross section in the previous section. The result is shown in Figure 11.26. In
this representation, the non-equidistant binning of the multiplicity (see Table 11.2) is explicitly
visible. In total, Figure 11.25a is made up of

(
Nbins
pT ·Nbins

η

)2 distributions like the ones shown

14Regarding the structure of the full response matrix, the matrix can be grouped into three categories,
corresponding to the three observables with respect to the triple-differential cross section is measured. On
the outer level, the matrix can be divided into four blocks ( ), each one featuring a similar structure with
varying density. Those four groups correspond to the two pseudorapidity regions (central and forward). The
“diagonal” structures ([0, Nbins

pTOJSS
]2 and [Nbins

pTOJSS
, 2Nbins

pTOJSS
]2 with Nbins

pTOJSS
:= Nbins

pT
· Nbins
OJSS

) describe
central (forward) jets at particle level being correctly reconstructed as central (forward) jets at detector level.
As expect, the degree of migrations between the different pseudorapidity categories is very small because
there are only two bins; furthermore, the angular components of the jets’ four momentum are measured with
high precision compared to the scalar entries. Therefore, the field [0, Nbins

pTOJSS
]× [Nbins

pTOJSS
, 2Nbins

pTOJSS
], which

corresponds to forward jets at particle level being (falsely) reconstructed as central at detector level is of low
density. The next organizational level ( ) corresponds to the individual transverse momentum bins and shows
the migrations between those. Finally, the “innermost” structure ( ) shows each individual multiplicity bin by
means of the global bin index.

15The labels of the subfigures are an abbreviation for (pPL
T , pDL

T ) ∈ [pmin
T , pmax

T )× [pmin
T , pmax

T ) because they
refer to the diagonal elements of the full response matrix in Figure 11.25a
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11.5. UNFOLDING OF THE CROSS SECTION MEASUREMENT

in Figure 11.26 16. Furthermore, this representation allows to study the evolution of the
response matrix as a function of the transverse momentum.

As can be seen, the response matrix exhibits the desired features, that is – first of all –, a
significant fraction of elements being positioned on the diagonal17; furthermore, the binning
of the track multiplicity is comparatively fine. As the transverse momentum increases, the
number of constituents (and thus the tracks) inside of the jets increases too, as can be seen by,
for instance, comparing Figure in 11.8a with Figure 11.8b. This effect is also reflected in Figure
11.26b that shows the response matrix for jets with pT ∈ [1100 GeV, 4500 GeV). In this pT

regime, all track multiplicity bins are now populated. The matrix is still sufficiently diagonal,
however, compared to the lower-pT one in Figure 11.26a, the resolution slightly deteriorates,
which can be seen by the modest increase of off-diagonal elements. This is expected as the
resolution of track reconstruction decreases with increasing momentum of the charged particle’s
trajectory. Nonetheless, the response matrix (now going back to the full measurement in Figure
11.25a) is of good quality given the fact that the measurement is three-dimensional, i.e., the
jets are able to migrate in three “directions”.

As can be seen in Equation 11.20, the response matrix is only one ingredient that enters
the unfolding. The measured number of events must also be corrected for acceptance and
efficiency effects to account for jets that mistakenly migrate into or outta the (fiducial) phase
space volume. The former ones are described by the fake factor, the latter ones are given by
the (selection) efficiency factor. Both numbers are determined in simulation using the nominal
sample in each phase space bin of the measurement. The result for the track multiplicity is
shown in Figure 11.25b.

Starting with a description of the curve progression, both, the fake and efficiency factors,
are shown versus the global measurement bin similar to Figure 11.7b, including the central and
forward region. The repeating structures once, again, correspond to the different multiplicities
for the various transverse momentum bins for central (I ∈ [0, 55(= Nbins

pT ·Nbins
ntrk

)) and forward
(I ∈ [55, 110]) jets. All values are bounded from above by one as expected for an efficiency.
Furthermore, the efficiency increases with pT, whereby a considerable efficiency drop in the
very first pT bin can be observed. This behavior is anticipated: as already mentioned, due to
the steeply falling spectra, jets are more likely to migrate into regions of smaller transverse
momentum. For jets in the very fist pT bin, however, there is no lower-pT bin to migrate into.
As a consequence, all jets whose truth transverse momentum is within the pT range defined by
the very first momentum bin, but with a reconstructed pT below the lower momentum cut,
do not enter the measurement of the cross section at all. This would, of course, result in a
systematic underestimation of the cross section, which must be accounted for by a (lower)
efficiency in the corresponding bin. With increasing pT, the jets are less-and-less likely to fall
below the lower momentum threshold, which is why the efficiency increases with the transverse
momentum of the jets. As described in Chapter 10, the efficiency and fake factors also play an
important role in the calculation of the model-related systematic uncertainties. This is done
by comparing the efficiency and fake factors between different Monte Carlo generators (the
histograms in Figure 11.25a as well as Figure 11.25b are produced for all generators listed in
Table 8.1) as they needed to calculate the systematic uncertainties explained in Chapter 10.

16The two distributions in Figure 11.26 show examples of the response matrices on the diagonal with
respect to the transverse momentum as well as the relative pseudorapidity. For instance, Figure 11.26a
shows the response matrix (single-differential with respect to ntrk) for particle- and detector-level jets being
correctly identified as central (i.e. no migrations between the pseudorapidity categories) as well as with a
reconstructed transverse momentum with pT ∈ [250 GeV, 350 GeV) (no migration between pT bins). Of course,
a corresponding response matrix exist for, e.g., both jets (at particle- and detector-level) being identified as
central, but with migrations between pT bins, for instance, [250 GeV, 350 GeV)× [350 GeV, 500 GeV), i.e., the
jet’s pT being underestimated at detector level, giving rise to migrations between adjacent bins.

17One may argue whether the fraction on the diagonal is significant or not. However, one should keep in
mind that the measurement is three-dimensional, i.e., the jets may migrate in three “directions”.
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11.5.3 SD Multiplicity nSD

Following the structure of Section 11.3, the next observable in line is the SD multiplicity with
the two configuration of the (I)SD algorithm measured in this analysis. Due to the great
similarity regarding the (rather) technical aspects of the unfolding between the SD multiplicity
and the track multiplicity (along with the insights gained therefrom), most outcome are shown
without providing elaborate explanations, but with reference to the corresponding figure in
case of ntrk. Nonetheless, the SD and track multiplicity differ in several aspects and therefore
require suited explanations if appropriate.

Once again, the first quantities to examine are the principal elements that enter the
unfolding step, i.e., the response matrix as well as the efficiency and fake factors. The full
response matrices are shown in Figure 11.27 for both configurations of the SD multiplicity.
Similarly, the corresponding efficiency and fake factors are shown in Figure 11.28 for each
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Plot 11.27: Full response matrix for nSD(kt ≥ 400 MeV) (left) and nSD(zcut = 0.1, β =
1, θcut = 0.002) (right).

phase space bin of the measurement.
Starting with the response matrices in Figure 11.27, the first thing to recognize is the

great resemblance with the corresponding Figure 11.25a for the track multiplicity in the global
measurement bin representation. All statements previously provided regarding the full response
matrix in case of the track multiplicity remain valid and can be converted to both configuration
of the SD multiplicity nSD one to one18. Compared to Figure 11.25a, the response matrices for
the SD multiplicities look slightly less sparse; this is a consequence of the different binning used
in case of nSD. The difference between SD and track multiplicity are visible after transforming
the global bin representation to the one in which the non-equidistant binning is explicit.

To continue a good and old tradition, Figure 11.29 shows the example of two response
matrix with non-equidistant binning for the first configuration of the SD multiplicity with a
lower kt-cut being applied. Regarding the efficiency and fake factors in Figure 11.28, the same
features as in the corresponding Figure 11.25b for the track multiplicity can be observed.

The following Figure 11.30 shows the same information but for the second configuration
of the SD multiplicity nSD(zcut = 0.1, β = 1, θcut = 0.002). The binning can be verified by
comparing the axes’ range with, e.g., the one in Figure 11.14 that show the reconstructed SD
multiplicity at detector level for the very same pT bins. Closer inspecting the distributions
in Figure 11.29 and Figure 11.30 show the already familiar evolution of nSD with increasing

18In fact, the response matrices only differ at the innermost structure on the level of the individual jet
substructure observable bin because the double-differential multijet cross section is identical for all JSS
observables studied in this thesis.

188



11.5. UNFOLDING OF THE CROSS SECTION MEASUREMENT
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Plot 11.28: Full efficiency and fake factors for nSD(kt ≥ 400 MeV) (left) and nSD(zcut =
0.1, β = 1, θcut = 0.002) (right).
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(b) pT ∈ [1100, 4500)

Plot 11.29: Individual response matrices for different pT regimes in central region for
nSD(kt ≥ 400 MeV).

transverse momentum: the (average) number of emissions increases like the number of tracks
(charged constituents) increase too. In case of low-pT jets – like the situation shown in Figure
11.29a/11.30a –, the highest multiplicity bins are sparsely populated. Generally, the response
matrices show the desired feature, i.e., most probability “mass” being on the diagonal. However,
migrations can be observed, predominantly towards lower multiplicities as expected. The
fraction of entries beyond/off the diagonal increases for higher-momentum jets as can nicely be
seen by directly comparing, e.g., Figure 11.29a and Figure 11.29b. This is a consequence of
the already mentioned decreasing resolution of the tracks with increasing pT.
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Plot 11.30: Individual response matrices for different pT regimes in central region for
nSD(zcut = 0.1, β = 1, θcut = 0.002).

11.6 Particle-Level Distributions

In Section 11.4, the triple-differential multijet cross section with respect to the transverse
momentum, the relative pseudorapidity and one of the counting-based observables has been
measured at detector level for real pp-collision data recorded with the ATLAS detector between
2015 and 2018 (inclusive) and simulation for several Monte Carlo generators. The measured
multijet spectra have been interpreted and several plausibility checks have been performed;
furthermore, the data-to-MC agreement was qualitatively evaluated. Special attention was
payed to the ratio between the double-differential multijet cross section dN/dpTdncount in
central and forward region because both differ with respect to their composition/fraction
of gluon- and quark-initialized jets, respectively. This information is used to extract the
underlying quark and gluon distributions as well as their fractions according to the operational
definition of quark and gluon jets (see Definition 2) using the “jet topics” approach.

In the subsequent Section 11.5, the technical aspects of the unfolding have been discussed.
The unfolding step intends to correct the measured spectra for detector and acceptance effects
to obtain the corresponding distributions at particle level, which allows a direct comparison
with predictions from theory (i.e., the output of some Monte Carlo event generator or analytic
calculations if the observable/measurement is IRC-safe) without the need for detector folding.
The unfolding involves the inversion of the response matrix to transform the particle-level
distribution to hadron level, as well as the correction for acceptance effects to account for
efficiency losses and fakes due to migration in and out the active phase space volume over which
the measurement is performed. In this context, the full response matrix was presented for all
counting-based observables along with the efficiency and fake factors in each phase space bin.
Besides the rather technical aspects of the unfolding, it was motivated that the contribution
from the most dominant “reducible” source of background (Drell-Yan) is completely negligible
for all regions in phase space considered in this analysis.

Once the detector-level spectra have been unfolded, the measured inclusive triple-differential
multijet cross section can be compared to the truth-level prediction from Monte Carlo. Addi-
tionally, with the response matrices as well as efficiency and fake factors being available for
all generators in Table 8.1 and all systematic variations (e.g., pile-up reweighting, JES/JER,
modeling etc.), the statistical and systematic uncertainties can be calculated as described in
detail in Chapter 10.

This section presents the unfolded triple-differential multijet cross section for all counting-
based observables including all statistical uncertainties as well as all sources of systematic
uncertainties considered in this measurement.
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11.6. PARTICLE-LEVEL DISTRIBUTIONS

11.6.1 Track Multiplicity n500
trk

19

The first jet substructure observable to consider is the track multiplicity. The triple-differential
multijet cross section with respect to ntrk at particle level is obtained by simultaneously
unfolding the corresponding multijet spectra at detector level in Figure 11.7 and using the
response matrix in Figure 11.25a as well as applying the correct efficiency and fake factors
shown in Figure 11.25b. The result of the unfolded cross section for the full measurement is
shown in Figure 11.39. However, before studying the relative event rate in all phase space bins
(which basically summarized the result of the entire measurement), it is instructive to take a
look at the single-differential distributions in some selected regions in transverse momentum
beforehand, with the intention to gain some intuition for the uncertainties. This way, the
cross section and its uncertainty can be studied with respect to the track multiplicity in a
representation with the non-equidistant binning being explicitly visible. The result of the
unfolded triple-differential cross section along with its uncertainties is shown for central jets in
Figure 11.31 and forward jets in Figure 11.32 in two increasing-pT bins in transverse momentum
– pT ∈ [250 GeV, 350 GeV) (11.31a/11.32a) and pT ∈ [1100 GeV, 4500 GeV) (11.31b/11.32b).
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Plot 11.31: Individual unfolded single-differential multijet cross sections in bins of the
track multiplicity ntrk for different pT (in GeV) regimes in central region.

Figure 11.31 and Figure 11.32 show the unfolded multijet cross section as a function of the
track multiplicity including all sources of statistical and systematic uncertainties as well as the
ratio between all Monte Carlo samples and the unfolded spectra obtained from data. As it was
the case for the detector-level spectra, the average number of tracks inside of a jet increases
with transverse momentum and the width of the distribution broadens. Furthermore, the
central distributions are shifted towards larger multiplicities compared to the forward ones,
reflecting the different composition of quark- and gluon-initialized jets in both categories.

Concerning the systematic and statistical uncertainties, the measurement is dominated by
the modeling-related uncertainties, the uncertainty due to the calibration of the jet energy
scale (comprehensively described in Chapter 4.4.3) as well as the uncertainty related to
the tracking. As explained in Chapter 10, the modeling-associated component of the total
systematic uncertainty includes a component related to the precision of the underlying matrix
element (ME), the parton shower (PS) and the hadronization (Had) model. Each variation of

19The corresponding numerical values of the relative triple-differential multijet cross section with respect to
this observable are provided in Table B.2 in the Appendix of this report.
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Plot 11.32: Individual unfolded single-differential multijet cross sections in bins of the
track multiplicity ntrk for different pT (in GeV) regimes in forward region.

the model in either of the different simulation steps translates into a variation of the triple-
differential multijet cross section with respect to the one obtained using the nominal sample.
This variation is associated with an uncertainty, reflecting – with a touch of over-simplification
– the limited understanding of the underlying mechanism at work. The statistical uncertainty is
only relevant in the higher multiplicity bins, but it reduces considerably for higher-momnetum
jets. Furthermore, the statistical uncertainty in the highest multiplicity bin is larger in case
of forward jets (compare Figure 11.31a and Figure 11.32a) because the spectrum is quark
enriched, resulting in smaller number of particles on average.

Following the “evolution” of the uncertainty related to the parton shower for the two
bins of transverse momentum in Figure 11.31 and Figure 11.32, one immediately notices
its reduction with increasing transverse momenta of the jets. This behavior is expected,
recalling the underlying premises and (fundamental) assumptions that enter the parton shower
approximation. The basic idea common to all parton shower models was explained in Chapter
2.4. In a nutshell: the parton shower simulation is based on the observation of the multi-final
state cross section being factorable into a cross section of smaller final state multiplicity times
a factor that accounts for the emission of collinear radiation. In the limit of collinear radiation,
most practical approaches to parton shower coincide; in particular, all definitions of the ordering
variable for the emissions become equivalent in the collinear limit. Differences between the
various models arise because the parton shower approach is also used beyond the collinear
approximation defined by the matching and merging scheme. Consequently, the PS-related
uncertainty reduces if the radiation angle becomes smaller (more collimated), which is the case
for higher-pT jets.

Because the modeling-related uncertainty is among the dominant sources of systematic
uncertainties that limits the precision of this measurement, Figure 11.33a shows the uncertainty
associated with the limited precision of the matrix element, the simulation of the parton shower
as well as the hadronization step as a function of the global measurement bin for the entire
measurement. Most of the other uncertainties show a somewhat “weaker” dependence on the
transverse momentum. For instance, the hadronization-related uncertainty is in the order of
just a few percent for almost all regions in phase space. The uncertainty associated with the
limited precision of the matrix element calculation is almost negligible as can be seen in Figure
11.33a. Only the PDF-related uncertainty (besides the PS and the JES) show a noticeable
dependence on the jet’s pT as can be seen in Figure 11.33b. Figure 11.33b nicely illustrates the
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Plot 11.33: Model (matrix element, parton shower and hadronization) uncertainty (left)
and PDF uncertainty (right).

uncertainty associated with the choice of the PDF in each phase space bin of the measurement.
For most regions of phase space, the uncertainty is in the order of 1 % except for the very last
bins that corresponds to very high-pT jets. The eye-catching progression of the PDF-related
uncertainty in Figure 11.33b for the individual single-differential distributions with respect to
ntrk is explained by the different contributions of quarks and gluons: higher multiplicity are
generally gluon-enriched, which results in larger systematic variations compared to smaller
number of tracks associated with quarks. This result is expected but still interesting as it
opens a potential window for the reduction of the gluon-related uncertainties of the PDF. This
aspect will be further developed in the proposal of “future research suggestions” in the end of
this report.

The following figures focus on individual uncertainties shown in Figure 11.31 for better
visualization. The fist one shows once again the individual components of the model-related
uncertainty.

In Figure 11.31 and Figure 11.32, several systematic uncertainties of lower contribution to
the total uncertainty of the measurement have been summarized to one group whose individual
components are shown in Figure 11.35. The uncertainty includes the data-driven non closure
(not to be confused with the uncertainty due to the unfolding) (see Chapter 10.9) that quantifies
the stability of the measurement in terms of different sub campaigns; the uncertainty due to
various pile-up conditions (see Chapter 10.6); as well as variations of the cross section due to
disabled tile modules (see Chapter 10.7).

Another important component of the total uncertainty is the uncertainty related to tracks.
Uncertainties in the tracking must be taken into account because the measurement of the jet
substructure observable is based on tracks that have been matched to PFlow jets. For a quick
reminder of the tracking-related uncertainties, see Chapter 10.3. The total tracking-related
uncertainty as well as its individual components (which have already been shown in Section
11.4 and Figure 11.11). The final results for the tracking uncertainties are summarized in
Figure 11.36 for two bins of transverse momentum.

As previously mentioned, the precision of the measurement is – for the most part –
determined by the modeling, JES and tracking-related uncertainties. The JES uncertainty
itself consists of several nuisance parameters as has been explained in great detail in Chapter
4.4.3. Those components of the JES uncertainty account for different physical effects like, e.g.,
the uncertainty related to the detector response for different jet flavors.

The total uncertainty (including all sources of systematic and statistical uncertainties) of
the triple-differential cross section measurement with respect to the track multiplicity is shown
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Plot 11.34: Model-related uncertainty for two individual single-differential multijet cross
sections in bins of the track multiplicity ntrk for different pT regimes (in GeV).
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Plot 11.35: Other systematic uncertainties with lower contribution to the total uncer-
tainty for two individual single-differential multijet cross sections in bins of the track
multiplicity ntrk for different pT regimes (in GeV).

in Figure 11.37.
In light of the extraction of the underlying quark/gluon distributions and fractions using

the procedure described in Chapter 7, Figure 11.38 shows the ratio of the unfolded spectra in
central and forward region including all sources of systematic and statistical uncertainties for
two bins in transverse momentum.

The uncertainties of the cross section ratio in Figure 11.38 are calculated assuming
the systematic uncertainties of the central and forward category being fully correlated; the
statistical uncertainties are assumed to be uncorrelated. The ratios show the expected behavior
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Plot 11.36: Tracking-related uncertainty for two individual single-differential multijet
cross sections in bins of the track multiplicity ntrk for different pT regimes (in GeV).
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Plot 11.37: All sources of systematic and statistical uncertainties of the triple-differential
multijet cross section measurement as a function of the track multiplicity.

already seen in the corresponding histograms obtained from the detector-level distributions,
i.e., they (mostly) monotonically increase for higher track multiplicities, indicating that the
corresponding phase space region is getting purer in gluon-like jets.

The two single-differential distributions in Figure 11.31 only show a section of the full
triple-differential cross section that is shown in Figure 11.39 as a function of the global (phase
space) measurement bin. Figure 11.39 shows the unfolded triple-differential multijet cross
section with respect to the track multiplicity for all phase space bins, including the ratio
between all simulated spectra at truth level and data, as well as the relative uncertainty in each
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Plot 11.38: Individual ratios of the single-differential multijet cross section in central and
forward region with respect to the track multiplicity for different transverse momentum
(in GeV) regimes.

bin broken down to its individual components and the total uncertainty on the measurement.
The lowest sub-figure in Figure 11.39 shows all sources of systematic and statistical

uncertainties (including the total uncertainty on the cross section measurement) for all phase
space bins; this representation provides a nice overview of the degree of precision archived in
this measurement (already shown in Figure 11.37). In summary, it can be concluded that the
degree of uncertainty of the measurement is between 10 % and 20 %, which is expected for the
measurement of a jet substructure observable.

The last plot to consider in the context of the unfolded result for the track multiplicity is
the average number of tracks in the jet in central and forward region, including all sources of
uncertainties as a function of the jet’s transverse momentum pT. The result is shown in Figure
11.40. The average number of tracks is calculated from the single-differential cross section in
central and forward region for each pT bin according to

〈ntrk〉central/forward =
∑
k

k
1

σ

dσ

dntrk

∣∣∣
central/forward

, (11.23)

whereby the cross section in Equation 11.23 is given by, e.g., the distributions shown in Figure
11.23. As expected, the average track multiplicity increases for increasing transverse momentum
of the jets. Furthermore, the average number of tracks is larger in case of central jets because
the central region is enriched by gluon-initialized jets. The difference between the mean value
in central and forward region increases for the first part with growing pT, but starts to decrease
from pT > 1 TeV onward, which is explained by the fact that the two mixtures approach each
other for pT > 1 TeV in terms of quark/gluon jets. This curve progression is (for the most part)
determined by the fraction of quark- and gluon-initialized jets in central and forward region as
well as the resolution of the reconstructed jet substructure observable. The exact fraction of
quark and gluon jets is unknown at this point. However, the simulation-based fraction of gluon
jets in Figure 9.1 (which should not be too far of reality) already suggests that the fraction of
quark and gluon jets approach each other with increasing pT of the jets. This implies that the
two samples of jets in central and forward region provide less information about one specific
jet flavor.
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Plot 11.39: Full unfolded measurement of the triple-differential multijet cross section as
a function of the track multiplicity at particle level including all sources of systematic
and statistical uncertainties.

Plot 11.40: Average number of tracks as a function of the jet’s transverse momentum
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11.6.2 SD MultiplicitynSD
20

The next jet substructure variable in the family of counting-based observables is the SD
multiplicity nSD in its two different configurations introduced in the previous sections. The
corresponding detector-level distributions and the unfolding-relevant information was already
provided in Section 11.4.2 and Section 11.5.3, respectively.

Compared to the previous section that showed the unfolded results for the track multiplicity,
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Plot 11.41: Individual single-differential multijet cross sections in bins of the SD mul-
tiplicity nSD(kt ≥ 400MeV) (left) and nSD(zcut = 0.1, β = 1, θcut = 0.002) (right) in
central region for jets with 250 GeV ≤ pT < 350 GeV.

the discussion of the outcomes in case of the SD multiplicity will be highly condensed because
there is a significant overlap regarding the interpretation of the acquired insights for all counting-
based observables. Therefore, most results will be stated without the need for any further
detailed explanations, referring to the corresponding results in case of the track multiplicity in
Section 11.6.1.

Mimicking the structure of the previous section, the first two pairs of distributions show
the unfolded cross section as a function of the SD multiplicity nSD(kt > 400 MeV) (left)
and nSD(zcut = 0.1, β = 1, θcut = 0.002) (right) for jets with a transverse momentum of
250 GeV ≤ pT < 350 GeV for central jets in Figure 11.44a and forward jets in Figure 11.42.
The following pair of figures in Figure 11.43 and Figure 11.44 show the corresponding information
for jets with a transverse momnetum of 1100 GeV ≤ pT < 4500 GeV.

Figure 11.43 shows the same information but for jets falling in the interval 1100 GeV ≤
pT < 4500 GeV.

Like it was the case for the track multiplicity, the spectra corresponding to central and
forward jets are very similar with a smaller number of emissions on average and slightly
increased uncertainty due to the larger material budget (mostly driven by increased tracking-
related uncertainties) in case of the latter one. The uncertainty is mostly dominated by the
parton-shower, JES and track-related uncertainty.

Figure 11.45 is supposed to highlight the calculation of the modeling-related uncertainty.
As explained in Chapter 10.3, the modeling-related component of the uncertainty is composed
of variations due to differences in the response matrix as well as the efficiency and fake

20The corresponding numerical values of the relative triple-differential multijet cross section with respect to
this observable are provided in Table B.3 and Table B.4 in the Appendix of this report.
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Plot 11.42: Individual single-differential multijet cross sections in bins of the SD mul-
tiplicity nSD(kt ≥ 400MeV) (left) and nSD(zcut = 0.1, β = 1, θcut = 0.002) (right) in
forward region for jets with 250 GeV ≤ pT < 350 GeV.
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Plot 11.43: Individual single-differential multijet cross sections in bins of the SD mul-
tiplicity nSD(kt ≥ 400MeV) (left) and nSD(zcut = 0.1, β = 1, θcut = 0.002) (right) in
central region for jets with 1100 GeV ≤ pT < 4500 GeV.

factors of two competing models concerning the description of the same physical process. In
case of the PS-related uncertainty (which is shown in Figure 11.45 for nSD(kt ≥ 400MeV)
and two pT bins), both Herwig samples are compared. Figure 11.45 shows the variation
of the PS-related uncertainty due to the response matrix as well as the efficiency and fake
factors. As can be seen, the dominant contribution to the final PS-related uncertainty is due
to variations in the response matrix between the two parton shower models, which is expected.
Furthermore, the contribution due to the response matrix increases for larger multiplicities
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Plot 11.44: Individual single-differential multijet cross sections in bins of the SD mul-
tiplicity nSD(kt ≥ 400MeV) (left) and nSD(zcut = 0.1, β = 1, θcut = 0.002) (right) in
forward region for jets with 1100 GeV ≤ pT < 4500 GeV.
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Plot 11.45: Different contributions to the PS-related uncertainty (efficiency and fake
factors, response matrix) in bins of the SD multiplicity nSD(kt ≥ 400MeV) for central
jets with 250 GeV ≤ pT < 350 GeV (left) and 1100 GeV ≤ pT < 4500 GeV (right).

(this statement holds true for all counting-based observables in this analysis) because jets with
large multiplicities usually contain a significant amount of soft(er) contributions, which are
more sensitive to modeling-related effects. The final model-related uncertainty is given by an
envelope of contributions from the response matrix and the efficiency and fake factors (see
Chapter 10.2).

All sources of systematic and statistical uncertainties (including the total uncertainty) of
the triple-differential cross section with respect to nSD in each phase space bin are shown in

200



11.6. PARTICLE-LEVEL DISTRIBUTIONS

Figure 11.46 for nSD(kt ≥ 400MeV) (the results for nSD(zcut = 0.1, β = 1, θcut = 0.002) are
very similar). The uncertainty is very close to the corresponding one of the track multiplicity
shown in Figure 11.37, which is expected as both observables are highly correlated.

Due to its importance in the context of the extraction of the underlying quark/gluon
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Plot 11.46: All sources of systematic and statistical uncertainties of the triple-differential
multijet cross section measurement as a function of the SD multiplicity nSD(kt ≥
400MeV).

distributions and fractions in the chapter after next, the ratio between the unfolded triple-
differential multijet cross section in central and forward region is shown by means of two
examples in Figure 11.47 and Figure 11.48 for two bins in transverse momentum and both
configurations of the SD multiplicity. In general, the cross section ratios show a similar
distribution like the ones for the track multiplicity, i.e., an approximately monotonically
increasing curve progression with the number of “valid” SD emissions.

Last but not least, the average number of emissions is derived once again from the triple-
differential cross section; the result is shown in Figure 11.49 for the average number of SD
emission in the jet for both configurations of the SD multiplicity.
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(b) nSD(zcut = 0.1, β = 1, θcut = 0.002)

Plot 11.47: Ratio between the unfolded single-differential distribution in central and
forward region for nSD(kt ≥ 400MeV) (left) and nSD(zcut = 0.1, β = 1, θcut = 0.002)
(right) for jets with 250 GeV ≤ pT < 350 GeV.
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(b) nSD(zcut = 0.1, β = 1, θcut = 0.002)

Plot 11.48: Ratio between the unfolded single-differential distribution in central and
forward region for nSD(kt ≥ 400MeV) (left) and nSD(zcut = 0.1, β = 1, θcut = 0.002)
(right) for jets with 1100 GeV ≤ pT < 4500 GeV.
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11.6. PARTICLE-LEVEL DISTRIBUTIONS
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Plot 11.49: Average number of emissions as a function of the jet’s transverse momentum
for nSD(kt ≥ 400MeV) (left) and nSD(zcut = 0.1, β = 1, θcut = 0.002) (right).
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12. Measurement of the Triple-Differential
Multijet Cross Section 1

σ
d3σ

dpT dηrel dzNN

The previous chapter presented the measurement of the triple-differential multijet cross section
as a function of the transverse momentum pT, the relative orientation between the two leading-
pT jets in the event ηrel, as well as a counting-based jet substructure observable ncount, which
provides sufficient sensitivity to quark- and gluon-initialized showers to result in mutual
irreducible (underlying) probability distributions. In the context of this measurement, two
groups of counting-based observables have been studied. The first observable is given by the
number of tracks (with pT > 500 MeV) that have been matched to the jet, which is a proxy
of the multiplicity of charged constituents in the jet. The second class of counting-based
observables is given by the number of (valid) Soft Drop emissions in the jet that is obtained
by iteratively declustering the angular-ordered history of the jets and counting all emissions
that pass the criterion of the respective configuration of the ISD algorithm. All measurements
of the differential cross section have been unfolded to particle level and systematic as well as
statistical uncertainties have been derived.

The motivation for measuring the relative rate of multijet events as a function of a
counting-based jet substructure observable is given by the fact they are “simple” in terms
of interpretability, yet provide a decent sensitivity to the quark- or gluon-like nature of the
hadronic shower that is not limited by Casimir scaling (see Chapter 7.3). The latter point is
important for the observables to result in probability distributions that are mutual irreducible,
which is a necessary condition for the extraction of the underlying quark/gluon fractions by
means of the “jet topic” approach explained in Chapter 7.

The triple-differential multijet cross section was not only measured as a function of a
counting-based substructure variable, but also with respect to a “score” predicted by a neural
network based on the “Deep Sets” architecture (see Chapter 6.3). The motivation for using
the “Deep Sets” paradigm is given by the fact that it allows to implement functions over
sets that are inherently invariant under the permutation of the elements (proper sets) and
therefore naturally account for symmetries generally associated with jets. In contrast to the
counting-based observables, the inference process in case of a neural network is much less
transparent; however, the resulting score usually is significantly more powerful in terms of
quark-gluon discrimination. The latter point will allow to extract more quark- and gluon-related
information from the two mixtures of jets (central and forward samples), which should help
withdrawing the underlying probability distributions and quark/gluon fractions. Furthermore,
the NN-related results are expected to be less sensitive to tracking-related uncertainties.

This chapter presents the results for the above-mentioned measurement of the multijet
triple-differential cross section as a function of the NN-score as predicted by two neural networks
that are based on the “Deep Set” architecture. The organization of this chapter mostly mimic
the structure of the previous one in case of the counting-based jet substructure observables.
In the first section of this chapter (12.1), the actual NN-based models are introduced. The
performance in terms of training stability as well as classification between quarks and gluons
highly depends on the format of the data that is provided to the model. The second section
(12.3) therefore introduces the preprocessing strategy of the data. The next section (12.2)
briefly introduces the network architecture of both baseline models. Once the configuration
of both models has been described, the next section (12.4) presents some results related to
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the training of the neural networks. The objective of this section is to provide some intuition
for the NN-based models and to convince the reader that the training process as well as the
inference of the NN-score is well under control and stable. After the networks have been
trained, the triple-differential multijet cross section is measured as a function of the score
predicted by both models (12.5). Like it was done in case of the counting-based observables,
the subsequent section (12.6) deals with some rather technical aspects of the unfolding step.
In the final section of this chapter (12.7), the unfolded results of the cross section including all
sources of statistical and systematic uncertainties are presented.

12.1 Neural-Network-Based Observables utilizing Energy
Flow Networks

The application of machine-learning methods in high-energy particle physics goes back several
decades. In fact, both disciplines have greatly influenced each other over the course of time.
Especially the utilization of (mostly “deep”) neural networks (see Chapter 6) as binary or
multiclass classifiers for, e.g., flavor tagging purposes have become a standard method in many
analyses for a long time already. But, there are plenty of other use cases like, for instance,
signal-background discrimination, unbinned unfolding, anomaly tagging based on variational
auto encoders, generative adversarial networks used in simulation, graph neural networks for
track reconstruction ... – the list could be continued forever with no end in sight.

One key to success when working with machine-learning-based models is to chose the
appropriate representation of the data along with the correct model or architecture, i.e., a
network architecture particularly suited to analyze this representation of the data. In this
context, “representation” simply refers to the set of transformations that are applied to the raw
data to obtain a different format suited for the intended task. In the scope of jet-related physics,
the raw data is usually given by a cloud of “points”(=particles) distributed over an η–φ-grid,
each one being associated with a scalar quantity that is commonly identified with the energy
or the transverse momentum of the respective constituent. Formally, a jet J ∈ R(3,1) can be
expressed as a set of particles {j}j∈J , with N = |J | ∈ N(:= nconst) denoting the cardinality
of the set, henceforth referred to as constituent multiplicity. This is a highly non-trivial type
of data as the number of constituents inside a jet, N , is subject to statistical fluctuations on
a jet-to-jet basis (variable-length input); furthermore, there is no universal, physically well
motivated ordering scheme regarding the hierarchy of the particles inside of a jet (unordered).
The latter point may come as a surprise as in many of today’s applications, the constituents
inside the jets are ordered based on the kt or the transverse momentum pT (decreasing order)
or the angular separation with respect to the center of the jet. Given a particle jet, both
orderings (as others) are arbitrary1 due to quantum mechanical indestiunushibility since all
arrangements result in the very same (global) observable and thus being equally valid.

Regarding the different representations of the data appropriate for jets, they can – loosely
speaking – be subdivided into three categories: Firstly, the particle content of the jet is mapped
to a single number (commonly referred to as a jet substructure variable) by means of a function
τ with τ : ℘

(
R(3,1)

)
→ R, whereby ℘

(
R(3,1)

)
denotes the set of all subsets (the power set) of

the four-dimensional Minkowsky space R(3,1). As can be shown, given the available degrees of
freedom, a set of those variables {τi}Mi=1 of constant length M ∈ N span a basis and can be used
as an input to train a neural network. This method is widely used in many heavy-flavor tagging
applications as for those topologies the substructure variables τi already exhibit considerable
discrimination power (an example would be the jet mass window in case of top tagging, Energy
Correlation Functions [221], N -subjettiness (ratios) [222, 223]). Secondly, the representation of
the jet in terms of an “image-like” description has gained increasing popularity over the recent
years. This representation of the activity inside of the jet essentially emerge simultaneously with
the first appearance of convolutional neural networks, which is an architecture particularly well
suited for image-based data with translational invariance. Portraying the jet as an image seems

1Being arbitrary does not imply that a particular ordering scheme may not be appropriate in one application
or another (see, e.g., SD multiplicity).
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12.1. NEURAL-NETWORK-BASED OBSERVABLES UTILIZING ENERGY FLOW NETWORKS

natural due to the close correspondence with the distributed spray of energy in the calorimeter
system of the detector, which is usually associated with a jet. Furthermore, the dimensionality
of the data is fixed by the discretization or pixelation of the image (such as the calorimeter
granularity). The image concept, however, is not restricted to the intuitive representation of
the activity directly measured in the calorimeter of the detector, but can be used for other
observables as well. A visually appealing example of an alternative application is the Lund Jet
Plane [224], which was used for several tagging applications already. Image-based taggers have
proven to work well in the context of jet tagging; however, they are limited by the granularity of
the pixel grid. One major disadvantage of using image-based inputs in the scope of high-energy
particle physics is due to the circumstance that on an event-on-event or jet-on-jet basis, only a
small fraction of the relevant detector components/pixels are active, i.e., with an actual pixel
activation above zero. This generally results in the “pixelized” representation of the data being
very sparse, with only a tiny proportion of the cells/voxels exhibit a non-vanishing energy
deposition. It has been known for a long time already that neural networks trained on sparse
data show a comparatively “poor” performance. One reason is that the effective size of the
data set reduces significantly if a large fraction of the data’s support is sparse. If – additionally
– the cell’s activity spans several orders of magnitude (like it is the case for the energy and
the transverse momentum), the network might not be able to correctly learn correlations
between the different pixels (especially in the tails of the distributions or only properly learns
correlations between the first highest-pT constituents). In general, this drawback of discretized
data provides a motivating argument for the last category of data representations. Thirdly, the
entire sequence of numbers associated with each constituent inside of the jet is used as input
(like it was the case for τ). In the context of machine learning, this representation requires a
dedicated architecture that is able to process variable-length data. As mentioned in Chapter
6.1, RNNs have been invented exactly for this use case. However, it was shown in several
studies (especially to be mentioned in this context is the excellent work by Vinyals et al. [225])
that the output of the function f learned by the RNN significantly depends on the (partially)
arbitrarily imposed ordering of the elements, i.e., f(x1, ..., xM ) 6= f(xπ(1), ..., xπ(M)), whereby
π denotes a permutation. Hence, invariance with respect to the permutation of the elements
is not respected – which is the main motivation for neural networks based on the Deep Set
architecture.

In Chapter 6.3, the Deep Set neural networks have been conceptually introduced as an
machine learning architecture that allows to learn permutation invariant functions f that
are defined over variable-length (i.e., proper) sets. The main idea behind Deep Sets is
the insight that a permutation invariant function f : X → Y defined over a set X can be
constructed using two continuous functions ρ : R` → Y and φ : X → R` by the following
relation f(X) = ρ

(∑
x∈X φ(x)

)
, whereby in practical applications the functions ρ and φ

are approximated by neural networks and X ⊂ 2X being a subset of the function’s domain.
Adopting the notation from Patrick T. Komiske, Eric M. Metodiev, and Jesse Thaler in Ref.
[27], the Deep Sets Theorem can be summarized as follows:

Theorem (27, Thm. “Deep Sets Theorem”, p. 6/7). Let X ⊂ Rd be compact, X ⊂ 2X be the space of
sets with bounded cardinality of elements in X, and Y ⊂ R be a bounded interval. Consider a continuous
function f : X → Y that is invariant under permutations of its inputs f(x1, ..., xM ) = f(xπ(1), ..., xπ(M))
for all xi ∈ X and π ∈ SM . Then there exists a sufficiently large integer ` and continuous functions
Φ : X→ R`, F : R` → Y such that the following holds to an arbitrarily good approximation

f({x1, ..., xM}) = F

(
M∑
i=1

Φ(xi)

)
[, ]

whereby the validity of the theorem above relies on the proof provided in Ref. [3], appendix A,
p. 12.

Translating the Theorem 12.1 to jet-physics is straightforward as the natural representation
of jets in terms of sets of particles already corresponds to the functional input required by f .
(Once again guided by the notation from Ref. [27]) given a jet with M constituents each one
associated with some feature vector pi ∈ Rd (like, for instance, the four-momentum, the charge,
some ID from particle identification etc.); according to the Deep Sets Theorem 12.1 as well as
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the UA Theorem 6.1, each continuous observable given by

zPFN({p1, ..., pM}) = F

(
M∑
i=1

Φ(pi)

)
∈ [0, 1], (12.1)

can be approximated arbitrarily well. Within the context of this thesis, the observable zPFN

(according to Equation 12.1) is henceforth (following the nomenclature of the original publication
in Ref. [226] by Patrick T. Komiske, Eric M. Metodiev, Jesse Thaler) referred to as Particle
Flow Network (PFN) score.

In Equation 12.1, the function Φ : Rd → R` denotes a map that is applied per-particle
(i.e., for each constituent {pi}Mi=1 individually) that maps each constituent of the jet onto
an `-dimensional latent space. The linear sum of the individual latent space embedding in
Equation 12.1 results in a latent space representation of the entire jet. Finally, the continuous
function F : R` → Y (= R) maps the total representation to the observable.

Interestingly, the family of observables approximated by the decomposition in Equation
12.1 can be restricted to IRC-safe ones (see Chapter 1.3.2) by the following simple modification

zEFN({p1, ..., pM}) = F

(
M∑
i=1

ziΦ(p̂i)

)
∈ [0, 1], (12.2)

whereby zi corresponds to some energy-related (constituent’s energy or pT) factor and p̂i gives
the angular components (η, φ) of the ith particle in the jet. The factorized version in Equation
12.2 is henceforth referred (again following the notation in Ref. [226]) to as Energy Flow
Network (EFN) score. The IRC-safety of Expression 12.2 is directly apparent from the fact the
relation is linear in energy and continuous in space. Formally, in order for the observable zEFN

to be IRC-safe, the following two conditions must hold

F

(
M∑
i=1

ziΦ(p̂i)

)
= lim

ε→0
λ→0

F

Φ(ε, p̂0)︸ ︷︷ ︸
IR-safe

+

C-safe︷ ︸︸ ︷
λz1Φ(p̂1) +(1− λ)z1Φ(p̂1) +

M∑
i=2

ziΦ(p̂i)

 ,

both of which are trivially fulfilled given the decomposition according to Equation 12.2.
To shed some light and to gain some intuition on the energy and particle flow network, it

is instructive to take a look at some special cases of the two functions F and Φ in the case
of some well-known observables. For instance, given F (xµ) =

√
xµxµ and Φ = pµ, results in

the jet mass m2 = pµpµ. Similarly, if F (x) = x and Φ = 1, the observable represented by the
decomposition is the constituent multiplicity M =

∑M
i=1 1 and hence returns the limit in the

sum in Equation 12.1 and 12.2 (for more examples in this regard, the reader is refereed to
Table 1 in the original publication in Ref. [27]).

12.2 Data Preprocessing and Training Data
2,3

This section introduces the separate preprocessing transformations that are applied to the
input data used to train the machine-learning models presented in this report. The objective
of the individual preprocessing steps is to exploit as much symmetry information encoded in
the input data as possible and to prepare the data accordingly in order to avoid the model
focusing on learning those symmetries, which do not contain additional information that can
be used in the classification task. This procedure makes the learning task of the neural network
much more efficient since it does not have to learn redundant symmetries encoded in the data,
but may focus on the main features of the data. Furthermore, taking symmetries into account
results in faster convergence and allows for a smaller data set to be used. It is also beneficial

3Essential parts of the succeeding text passages have been adopted (almost) literally from my Master’s thesis
“Towards a Data-Driven Simulation of QCD Radiation with Generative Models utilizing Machine Learning
Methods”, 2019, Universität Heidelberg, Christof Sauer [49].
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in terms of interpreting the prediction of a model and its inputs. Hence, it is worth to dwell on
this subject for a moment as it establishes a basis for the entire NN-based measurement of the
differential cross section.

The input to the aforementioned EFN and PFN are the constituents (or some object derived
from it) associated to a single jet; in this analysis, this jet corresponds to either the leading or
subleading jet in the event. The reconstructed jet (i.e., the global phenomenological object) is
associated with a collection of constituent particles Pj and a four-vector PJ =

∑
j∈J Pj given

by

PJ = EJ

(
1,

cosφJ
cosh ηJ

,
sinφJ

cosh ηJ
,

sinh ηJ
cosh ηJ

)
(12.3)

=
∑
j∈J

Ej

(
1,

cosφj
cosh ηj

,
sinφj

cosh ηj
,

sinh ηj
cosh ηj

)
, (12.4)

whereby the summation is taken over all constituent particles {j}j∈J of the jet J that have
been clustered by the respective reconstruction algorithm. The “nature” of the constituents
depend on the object that have been used to cluster the jet, e.g., topo clusters, tracks only,
PFlow objects (like in this analysis), TCCs, UFOs etc. (see Chapter 4.4.1). In this analysis,
the constituents are given by tracks associated/matched (see Chapter 9.2.1) to PFlow jets,
i.e., only the charged components in Equation 12.3 are considered. The constituents of the jet
could, in principle, directly (meaning: un-preprocessed) be used to train the neural network;
however, they are preprocessed by a consecutive sequence of transformations beforehand due
to the reasons mentioned above.

In the next paragraphs, the following preprocessing steps are discussed: Lorentz transforma-
tion (boost) of the leading/subleading-pT jet to the point of origin, performing a PCA, a parity
transformation and a scaling of the scalar components of the constituents’ four-momentum.

Step 1: Lorentz Boost and Rotation
The reconstructed jet according to Equation 12.3 (as well as its individual constituents in
Equation 12.4) is associated with some position in the detector, i.e., in the discretized η–φ
grid. To prepare the training set for the neural network, it is advisable to “standardize” the
data to a certain extent. Therefore, the four-vector of the reconstructed jet PJ according
to Equation 12.3 is transformed via a Lorentz transformation Λ = (Λαβ) (strictly speaking,
a Lorentz boost) followed by a simple rotation R in Euclidean space such that the spatial
position of its barycenter(= (ηJ , φJ)) is located at (0, 0) in the η–φ grid. To this end, the
four-momentum of the jet’s constituent particles must be transformed accordingly. With this
in mind, the transformation is given by

P ′J = RΛPJ (12.5)

=


cosh ηb 0 0 − sinh ηb

0 cosφrot − sinφrot 0
0 sinφrot cosφrot 0

− sinh ηb 0 0 cosh ηb

 ·

EJ
pJx
pJy
pJz

 (12.6)

(12.3)
=

∑
j∈J

(RΛPj) =
∑
j∈J

P ′j , (12.7)

whereby γb = tanh ηb and γbβb = sinh ηb have been used. It remains to determine the boost
parameter ηb and the rotation angle φrot to fully define the transformation above. From the
matrix multiplication in Equation 12.7, one gets the following condition on the transformed
energy E′J and the z component p′Jz of the jet after the transformation

pJz cosh ηb − EJ sinh ηb = p′Jz
!
= 0. (12.8)

Equation 12.8 defines the boost parameter tanh ηb = βb = pJz/EJ = tanh ηJ . Similarly, the
defining condition for the rotation angle is given by

pJx cosφrot + pJy sinφrot = 0; (12.9)

209



hence, the vector in the transverse plane must be rotated by the following amount φrot =
− arctan (pJy/pJx).

The transformation according to Equation 12.7 (defined by ηb, φrot) is applied to all
constituents that make up the jet. Hence – by construction – the reconstructed object, i.e.,
the jet will be centered in the η–φ plane.

Step 2: PCA-Based Rotation

After the fist preprocessing step, the result is a region {(x, y)R2 |x2 + y2 < R2} in the η–φ
grid close to the detector’s center that contains the transformed constituents of the jet. The
second preprocessing step serves the purpose of taking advantage of the underlying rotational
symmetry of the jet by conducting a Principal Component Analysis (PCA) that finds the
principal components of the data – the jet in this case – on an jet-on-jet basis.

The PCA is a technique that is frequently used in data science; its objective is to find the
axis of maximum variance in a distribution of data points by solving an eigenvalue problem.
Often, a PCA is used to reduce the dimensionality of the data by projecting it on the principal
axis; here, however, the PCA defines a “special axis” that is used to rotate each jet on an
jet-on-jet basis such that the Principal Component (PC) (axis) of this particular particle cloud
points at (arbitrarily chosen) 12 o’clock. The PCA then provides the angle αPC

rot by which the
particle cloud must be rotated counterclockwise.

The eigenvalue problem that must be solved in context of the PCA is a very simple one.
As it has been described above, after the first preprocessing step the jet is given by a set of
constituents distributed around the point of origin (0, 0) within a radius R, which corresponds
to the radius parameter that was used to reconstruct the anti-kt jet. Each particle with index
i ∈ N inside of the jet has an associated position (ηi, φi) as well as an associated energy and
momentum value Ei and pT. The mean position/barycenter in the jet is given by the weighed
sum

µη(φ) =

N∑
i=1

pTiηi(φi)/

N∑
i=1

pTii, (12.10)

which (after the first transformation step) will be close to zero. The next step is to compute
the entries of the correlation matrix Σij , which is simply given by Σij = E[pTipTj] − µiµj
with i, j ∈ {η, φ}. To get the fist principal axis, one needs to compute the eigenvalues λPC

and corresponding Eigenvectors xPC of the covariance matrix det|Σ− λPC12×2| = 0; so, the
characteristic polynomial is given by

det
∣∣∣∣[Σηη − λPC Σηφ

Σφη Σφφ − λPC

]∣∣∣∣ =
(
λPC)2 − 2λPCΣηφ + ΣηηΣφφ − Σ2

ηφ = 0, (12.11)

whereby the symmetry of the covariance matrix Σηφ = Σφη was used. The Polynomial 12.11
can easy be solved for the eigenvalues λPC

1,2 = Σηφ±
√

2Σ2
ηφ − ΣηηΣφφ. On that basis, the kernel

of Σ is computed; the elements of the kernel xPC ∈ ker(Σ) are then satisfying the following
conditions

(Σηηx
PC
1 − λPC) + Σηφx

PC
2 = 0, (12.12)

(Σφφx
PC
2 − λPC) + Σφηx

PC
1 = 0. (12.13)

Based the solution of the system of linear Equations 12.12 and 12.13, the rotation angle for
the jet is given by

αPC
rot =

π

2
− arctan

(
xPC

2

xPC
1

)
. (12.14)

The determined PC axis xPC = (xPC
1 xPC

2 )T is only defined up to a sign as can easily be seen
by substituting xPC

1,2 → −xPC
1,2 in Equation 12.13, which is why one is free to let it point at 12

o’clock. For this choice, the larger amount of energy will always be contained on the northern
hemisphere of the particle cloud after the transformation has been applied.
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Step 3: Party Transformation
After the PCA-based rotation of the jet’s constituents has been applied, there is one trivial
symmetry left: spatial inversion or parity transformation (this can already be seen in the
previous paragraph since the basis given by the PCA is only defined up to a sign). To avoid this
underlying symmetry of the data to be learned by the neural network, the jet is transformed
such that the largest fraction of energy is always placed on the eastern hemisphere of the
rotated η–φ grid. The energy fraction on the western E/ and the eastern E. half of the jet
(with Ejet = E/ + E.) is given by

E/(.) =
∑

−R≤η<0
(0≤η≤R)

∑
0≤φ≤R

Eηφ, (12.15)

with Eηφ denoting the energy of the constituent at position (η, φ). Based on Equation 12.15,
the “parity operation” is then defined as

P =

{
+1 if E. ≥ E/ (do nothing)
−1 otherwise (flip/mirror)

, (12.16)

with the parity transformation rules ηi → Pηi and φi → Pφi.

Step 4: Normalization
All previous steps transform the angular components of the constituents, leaving the energy
and the transverse momentum unchanged. The scalar components, however, cover a large
range of possible values that span several orders of magnitude. In order to improve training
stability and convergence, the range of numbers should be ∼ O(1). This is accomplished
by a simple scaling of the scalar components with respect to the total pT

4 of the jet. The
transformed scalar entries of the constituents’ four-momentum is then given by

pTj →
pTj∑
j∈J Ej

, (12.17)
Ej →

Ej∑
j∈J Ej

, (12.18)

whereby j runs over all constituents in the jet J . The transformations according to Equation
12.17 and Equation 12.18 are both linear and hence structure-preserving, i.e., the distribution
over possible values pTj , Ej remain unchanged – just the support of the distributions are
mapped to different values. Therefore, the range of values still span several orders of magnitude
after this transformation. This can (but does not necessarily have to) be a problem because
the neural network has to generalize over a vast range of values. There are various approaches
to deal with this issue.

One ways to deal with this problem is to map the scalar components to its logarithm
according to pTj → log pTj and Ej → logEj . This has been done; however, no improvement
regarding the performance (neither in convergence nor in classification power) was observed.

Another possibility is to train several neural networks fi with i ∈ N≤Nmodels on exclusive
domains(=regions of phase space) χi. This results in a family of models {fi}Nmodels

i=1 each one
of which is applied to arguments falling into the corresponding domain x ∈ χi exclusively5.
This method results in a considerable additional logistical effort as all models must be trained
and evaluated separately; but, one is (usually) rewarded with an increased performance.

In the context of this measurement, one could, in principle, train a neural network for each
pT bin presented in Table 9.4. This, however, may cause problems if the trained model is
applied to detector level objects with migrations between neighboring bins being present. In
this case, the neural network might be applied to jets with a very different topology compared

4Of course, the total energy of the jet would be an equivalent alternative; but, it case of hadron colliders,
the transverse momentum represents a more sensible choice.

5It should be mentioned that the entire analysis has been repeated using detector-level jets to train the
neural networks – the proof of the pudding is the eating. The result basically remains unchanged.
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to the data the model was trained on, which may result in significant deterioration as machine
learning models usually are not capable of extrapolating into “unseen” domains. Due to this
limitation, two models have been trained for two exclusive regions of phase space: one neural
network, f[250,1000], trained (and evaluated) on jets with pT ∈ [250 GeV, 1000 GeV], and a
second model, f(1000,4500], for jets falling into the phase space region pT ∈ [1000 GeV, 4500 GeV].
This separation indeed results in an improvement in discrimination power regarding quark- and
gluon-initialized jets is in the order of O(1 %) for the higher-pT bin (in case of the lower-pT, no
improvement was observed)6. Considering the comparatively small performance gain given the
substantial extra effort and expense, this approach was discarded if favor of just one neural
network trained on the entire domain [250 GeV, 4500 GeV].

Full Preprocessing Chain
This paragraph concludes the preprocessing part by applying all aforementioned transformation
steps consecutively to the data and paraphrase the final result. In order to visualize the prepro-
cessed jets and its constituents, the jets are represented in form of an “image” of fine granularity,
with the axis of abscissa and the axis of ordinates correspond to the pseudorapidity and the
azimuthal angle of the (transformed) jets, respectively. The z-axis does not simply count the
number of particles given an η–φ bin, but instead shows the occurrences of constituents within
a certain [η+ δη, φ+ δφ]2 interval weighted by the transverse momentum pT of each individual
particle. In more concrete terms, given a jet J and its associated particles/constituents {j}j∈J ,
the image is populated by {(ηj , φj , pTj/pTJ)}j∈J, whereby pTj/pTJ corresponds to the pT

of constituent j normalized by the total transverse momentum of the jet pTJ . With this
normalization applied, the final images shown in Figure 12.1 can be regarded as the average
“appearance” of a jet given a large collection of jets and its constituents. This helps in visualizing
the effect of the individual preprocessing steps, which are barely visible on a jet-on-jet basis.
The final result of the preprocessing is shown in Figure 12.1 for the three main transformations

(a) Lorentz boost (b) PCA rotation (c) Parity flip

Plot 12.1: The three main preprocessing transformations applied to data in the order of
their application: a Lorentz boost (left), PCA rotation (right), parity “flip” (right).

applied to the data, i.e., a Lorentz boost that transforms the jets into a fixed region in the
detector (12.1a); followed by a rotation of the PC axis such that it points at 12 o’clock (12.1b);
and, a party flip that exploits the “reflection” or parity symmetry of the jet (12.1c). The effects
of the single transformations are clearly visible in the average representation.

The Lorentz boost transforms all jets to the point of origin of the detector as shown in
Figure 12.1a. Without this step, all particles would be – more or less – “uniformly” (at least in
φ as can be seen in Figure 9.9b even though not in η as obvious from Figure 9.9a) distributed
over the acceptance range of [−2.5, 2.5] × [0, 2π) defined by the (fiducial) phase space (see

6Besides the above-mentioned additional logistical effort, using a family of neural networks that have
been trained on exclusive ranges in transverse momentum is conceptually questionable because this basically
corresponds to using different jet substructure observables.
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12.2. DATA PREPROCESSING AND TRAINING DATA

Chapter 9.3). Omitting this transformation, the neural network would be unable to identity the
same jet (regarding the relative orientation and momentum of its constituents) at two different
locations in the detector as being identical7. The standardized jets are now rotated based on
the axis of maximum variance of the particle cloud. The result of this PCA transformation is
shown in Figure 12.1b. As clearly visible, the largest variance is along the axis of abscissa due
to the convention of letting the PCA pointing at 12 o’clock. The asymmetry between upper
and lower have of the image is a result of the aforementioned ambiguity regarding the sign of
the PC axis. In this convention, the sign is chosen such that it points to the hemisphere of
largest energy. Last but not least, Figure 12.1c shows the parity transformation that breaks the
symmetry with respect to “east” and “west” such that the largest amount of energy is always
contained on the eastern side of the jet.

Jet Image Ratios8

The “images” according to Figure 12.1 show the structure of a large collection of jets for the
respective preprocessing transformation or combination of those; hence, they can be considered
as a representation of the average appearance of a jet given the respective transformation
under consideration. As explained previously, after all preprocessing transformations have
been applied to the jets, all trivial symmetries are exploited, which results in a representation
that is perfectly suited to study the internal structure of jets. A particular interesting question
is how the preprocessed and image-based representation allows to factorize different physical
processes (e.g., matrix element (hard process), parton shower, hadronization etc.) such that
they can be studied individually (similarly to the factorization of different processes in the
Lund jet plane).

To further investigate this point, the fully preprocessed average jet image (as shown in
Figure 12.1) is generated for each Monte Calo generator listed in Table 8.1 individually. The
resulting two-dimensional distributions are hard to interpret; however, ratios between certain
generators reveal interesting structures as shown in Figure 12.2.

Each Figure in 12.2 shows the ratios of a pair of two generators that differ with respect of
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Plot 12.2: Ratios between fully preprocessed (Lorentz boost, PCA rotation, parity flip)
jet images for different Monte Carlo event generators to factorize different physical
effects. The three figures show the ratio between Pythia8 and Powheg+Pythia8
(left); both NLO Herwig7 samples with different parton shower models (middle); and
both Sherpa samples that differ with respect to their hadronization model (right).

(at least) one aspect concerning the modeling of the event. For instance, Figure 12.2a shows the

7Of course, the neural network may implement such a “standardization” by itself; however, this requires
significantly more training data as well as more training iterations for the model to archive this task. The
anticipation of symmetries encoded in the data, relieves the neural network from the burden of learning those
redundant information and hence results in a considerable improvement of training performance.

8The following section is not necessary for the general understanding of the analysis presented in this thesis
and may be safely skipped by the reader
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ratio of the fully preprocessed jet image for Pythia8 and Powheg+Pythia8. Both samples
use the very same parton shower model (Pythia’s kt-ordered shower), but differ with respect
to the calculation of the underlying matrix element (LO versus NLO calculation). The ratio,
therefore, allows to study the effect of different orders of the matrix element calculation on
the internal structure of jets. As already stated, the resulting distribution(s) in Figure 12.2a
for the comparison of the two Pythia8 samples with different orders of the matrix element
calculation are mostly flat.

Going to Figure 12.2b that show the ratio between the two NLO Herwig(7) generators
that differ with regard to their parton shower model (angular-ordered versus dipole shower), a
clear impact on the internal structure of the jets can be observed. This is expected because
the internal structure of the jets is mostly formed in the parton shower step. The resulting
distribution(s) are quite symmetric, which is expected due to the isotropic nature of the parton
shower simulation. The noticeable shift towards positive values is a consequence of the parity
transformation (3rd step in Section 12.2). However, both approaches to parton showers vary
significantly concerning the amount of emissions/radiation generated close to the core of the
jet. Generally, the dipole model seems to produce more radiation or harder emissions compared
to the one based on an angular-ordered parton shower. Compared to the other modeling
effects (matrix element and hadronization), the effect of different parton shower models is
mostly pronounced, which is why it gives rise to one of the dominant sources of systematic
uncertainties of the measurements presented in this report.

Last but not least, the third plot in Figure 12.2c shows the effect of different hadronization
models on the internal arrangement of constituents and distribution of energy inside of the
jet. The ratio is based on the two Sherpa samples used in this analysis (see Table 9.4).
Compared to the parton shower or the matrix element, the Sherpa-based distribution sensitive
to hadronization effects exhibit a richer structure that can be explained by the different number
of soft and hard particles produced by the Lund- and the cluster-based hadronization model,
respectively.

12.2.1 Training Data and Model Inference

The preprocessing steps introduced above are applied to the constituents of the jets for each
jet individually. The question that remains to be answered is whether the model is supposed
to be trained on data consisting of jets at particle or detector level. There are indeed many
arguments which speak in favor of training the neural network on particle-level information as
will be motivated in the following.

An important point to consider is the fact that the models are trained in a supervised fashion,
which means that the labels indicating the associated class (signal(=gluon) or background=(light
quarks)) must be available on a jet-on-jet bases, i.e., for each jet individually (which is
conceptually problematic as explained in Chapter 7.1.1). Strictly speaking, this information is
only available at truth level. Of course, a corresponding label can be assigned to the jets at
detector level as well by matching it to a corresponding particle-level jet by means of some jet
matching criterion (see Chapter 9.2.2). However, those truth-matching schemes are never fully
efficient, with the corollary being that not all jets are matched correctly. This may introduce a
dependency on the truth-matching scheme, which is meant to be avoided. Another argument
giving support for preferring particle-level objects over detector-level ones is the circumstance
that the latter ones include the full simulation of the ATLAS detector – an information that
is supposed to be “marginalized” during the unfolding step. This simulation can never fully
reflect the actual measurement apparatus in all gory details and hence may introduce a bias
towards simulation-specific features present in detector-level jets that are absent in case of real
collision data on which the model is evaluated.

Due to the arguments provided above, all models presented in this thesis have been trained
on particle-level objects exclusively. The total training, validation and testing set consists
of the very same jets introduced in Chapter 9.2.2, reconstructed from events generated with
Pythia 8.230. The training data consists of leading and subleading as well as light quark and
gluon jets in equal parts to avoid a bias of the model. In total, all models are trained on two
million jets in total over the full range of transverse momentum. The implementation of the
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neural networks as well as their training is done using Keras [227], Tensorflow [228] as well
as the EnergyFlow package [229] for the EFN and PFN.

In order to use the trained neural network as an observable in the very same framework
utilized to measure the track ntrk and the Soft Drop nSD multiplicity described in Chapter 11,
the PFN and the EFN must be ported to a format compatible with C++ for the purpose of
doing inference. Doing a fully python-based analysis would be infeasible given the enormous
amount of events in simulation and data as well as including all systematic variations and the
reclustering of the jets involved. Loading the pre-trained models in C++ and – in particular –
harmonize it with the ATLAS software environment was a non-trivial task. The conversion was
accomplished by using the Open Neural Network eXchange (ONNX) framework, which is “[t]he
open standard for machine learning interoperability” [230]. In this workflow, the pre-trained
model is converted to a file format that can be loaded into a computational graph in C++ ready
for inference9.

An important point to mention is that even though the neural networks are trained on
truth-level information, they are also applied to detector-level objects as part of doing inference
to obtain the classification score of the trained model for, e.g., a reconstructed jet in real
collision data. This is a crucial step and it was by no means clear a priory whether this
application of the truth-level-trained model to detector-level objects will succeed! Towards
all apprehensions, the models turned out to perform well for both particle and detector level
which manifests itself in a clear correlation between the two and in the response matrix being
sufficiently diagonal for the purpose of unfolding.

12.3 Network Architecture and Baseline Model
With the preprocessing of the data being concluded, this section quickly introduces the baseline
model for the PFN and the EFN, respectively. According to Equation 12.2 and 12.1, Energy
Flow networks (or rather Deep Set networks) consist of two dense feed-forward neural networks
to approximate the functions F and Φ (or ρ, φ following the notation of the original publication).
The permutation-invariant parameterization of the observable is imposed by the linear sum of
the per-particle mappings. Regarding the optimization of the model parameter, the main focus
is on the architecture of F and Φ as well as on the dimensionality ` ∈ N of the latent space.

Concerning the two neural networks F and Φ, the main hyperparameter to optimize are
the number of layers (i.e., the “dept” of the model) as well as the number of nodes for each
layer. Both, EFN and PFN, turned out to be very robust with respect to different model
configurations. For this reason, the Energy Flow networks used in this study are based on the
baseline model presented in Ref. [27] (see Section 3.2).

The neural networks that are supposed to provide an approximation of Φ consists of three
individual layers with the first two comprising 100 nodes and the number of nodes in the
last layer corresponding to the dimension of the latent space `. With this architecture, the
approximated function is of the form Φ : Rd → R` with (d = 3) in case of the PFN and
Φ : Rd−1 × R1 → R` with (d = 3) in case of the EFN, whereby d ∈ N denotes the number of
features that are identical in case of the PFN and EFN. The dimensionality of the latent space
` is left unspecified at this point as the impact of this parameter will be further investigated
for a vast set of dimensions later.

The architecture of the neural network intended to be an approximator of the function F
closely follows the design of Φ (“mimicking paradigm”). The model consists of three layers with
100 nodes each. The output layer of F includes two nodes that provide a “softmaxed” signal,
which gives the probability for the received input being compatible with a signal (x FS−−→ 1) or
a background (x FB−−→ 0) event, whereby FS and FB denotes the output of the first and the

9The actual transition from python to C++ is somewhat more complicated and the interested reader is
referred to the provided references to the respective repositories given at the relevant parts of this report.
One “problem” was the python implementation of the EFN and the PFN in the EnergyFlow package [229]
that utilizes a custom-designed masking layer without one-to-one correspondence in ONNX. To circumvent
this problem, the source code in [229] had to be modified accordingly. This, however, does not affect the
functionality of both models.
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(a) Approximator of Φ (b) Approximator of F

Fig. 12.1: The deep neural networks corresponding to the per -particle mapping Φ
(left) and the function F (right) with an 8-dimensional latent space for an EFN- and
PFN-based architecture (adapted and modified from Ref. 27, Fig. 4, p. 14). The latent
space dimension of ‘8’ does not correspond to the parameter used for the measurement,
but has been chosen for reasons of clarity to reduce the number of connections.

second node, respectively, as shown in Figure 12.1.
All dense layers described above use the ReLU activation function as well as He-uniform

for initializing the weights of the models (see Chapter 6.4). Other activation functions and
model primers have been studied with little to no impact in the final result.

Important to note: the model architecture illustrated in Figure 12.1 has two outputs:
one of which corresponds to the probability of the received input being classified as “signal”
zS(= FS) ∈ [0, 1] (gluon-like jets) and a second one for the jet originating form “background”
zB(= FB) ∈ [0, 1] (jets initialized by a light quark) with the following normalization condition
being enforced by the final softmax activation zS + zB = 1 (unitary). For the entire further
course of the report at hand, the Neural Network score zNN always – if not explicitly stated
otherwise! – refers to the signal score, i.e., the probability for the current jet being initialized by
a gluon, i.e., FS.

12.4 Training and Model Optimization10

With the baseline architecture being settled, some remaining hyperparameters and their impact
on the training as well as the performance of the final model must be studied. Those optimization
studies should be conducted with great care to ensure that the models obtained during the
hyperparameter scan are comparable with each other. To this end, all random number seeds
have been fixed globally such that each model for a specific point in hyperparameter space
can be reproduced deterministically. It also ensures that all models start from a similar initial
position (they are usually not identical since some hyperparameters (like, for instance, the
latent space dimension) change the number of trainable parameters and therefore the initial
prior over the model too). Those optimization studies are quite comprehensive and usually
consume a considerable amount of time; however, the insights gained (physics-wise) are rather
moderate. Nonetheless, a small selection of results will be presented in this section for the

10The following section is not necessary for the general understanding of the analysis presented in this thesis
and may be safely skipped by the reader – but I do not recommend it.
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sake of completeness and to convince the reader that all models used in the measurements are
trained properly and well understood.

Figures of Merit

In order to estimate and compare the performance of certain configurations of the neural
network(s) in hyperparameter space (the space spanned by all adjustable/tunable parameters of
the model), Figures of Merit (FoM) must be defined that either quantify the performance of the
model concerning the discrimination power between signal and background, or, the conversion
and training progress of the model(s) in general. An obvious choice for monitoring the training
progress of the neural network is the total loss that quantifies the difference between the
expected class and the corresponding prediction of the model at its current training state. For
this analysis, the loss is given by the categorical cross-entropy (see Chapter 6.4.1) to properly
account for the two outputs of the model shown in Figure 12.1. The loss should reduce with
increasing number of training iterations for the model to converge to a (local) minimum. To
estimate the classification performance, one could use, for instance, the overall classification
accuracy, which is among the simplest evaluation metrics. A disadvantage of the accuracy
is its significant dependence on the respective threshold value used to compute the metric;
furthermore, it yields wrong results in case of data sets with highly imbalanced classes. Since
the classification task of the model is binary (gluons and light quarks), the Area Under the
Curve (AUC) represents a more appropriate choice because this metric is invariant with respect
to different threshold values.

There are various ways of representing the foregoing metrics graphically. To keep as much
information as possible, the loss and the AUC are evaluated batch-by-batch to estimate the
variance of those metrics within the scope of a full training epoch. This variance may be large
due statistical inter-batch variations (which is expected); therefore, the median Q2 (second
quartile) of the distribution is indicated separately along with the InterQuartile Range (IQR)
that gives the difference between the 75 % and the 25 % percentiles of the data distribution as
well as the related whiskers at Q2 ± 1.5 · IQR11.

Using the training loss and the AUC (or the accuracy) as a figure of merit might seem
redundant at first sight; however, it should be noted that both measures are fundamentally
different and therefore not related with each other. The loss is a metric (in its proper sense, i.e.,
it fulfills the corresponding axioms) that measures a distance between the truth value and the
ones predicted the model in its current state. Lower losses signal that the model improves with
respect to the training data, but it does not necessarily imply higher AUCs (nor accuracy).

Preprocessing Chain

The first aspect to verify is if the tedious preprocessing strategy introduced in Section 12.2
actually comes along with an increasingly positive impact on the performance of the model
with respect to the training stability as well as the discrimination between signal(=gluons)
and background(=(light) quarks). Staring with the effect of the different preprocessing steps is
appropriate since the insights gained at this point are (mostly) independent of the configuration
regarding other hyperparameters such as the dimension of the latent space or the number of
constituents in the jet to account for.

The data processing outlined in Section 12.2 can be divided into three main groups:
standardization, PCA rotation and mirroring. The effect of the aforementioned data transfor-
mations is shown in Figure 12.3 for the training loss (12.3a) as well as the AUC (12.3b).

Staring with the evolution of the training loss for different preprocessing in Figure 12.3a,
a comparatively weak, but a noticeable dependence can be observed. The first distribution
corresponds the jets being transformed to the point of origin of the detector. This is the
minimum necessary standardization that must be applied to the data in order to ensure
stability of the model during training phase. Training the neural networks on completely

11If this sounds somewhat unfamiliar, think of the IQR as something similar as the (1σ) width of, e.g., a
Gaussian but as a model-independent quantity.
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Plot 12.3: Effect of combining different preprocessing steps introduces in Section 12.2
according to the evolution of the training loss (left) and the AUC (right). Each
distribution of points for a preprocessing method shows the full range of values taken by
the respective metric for all training iterations.

unpreprocessed jets instead, results in a significant performance loss with the model struggling
to converge to a local minimum of the loss function. The subsequent distribution extends the
centered jets by a rotation of the PC axis, which accounts for rotation invariance of the jets.
Because symmetries in the data deteriorate training performance (the model has to infer those
symmetry transformations during training without improving classification power), exploiting
this symmetry (already at data processing) generally improves performance considerably. The
same goes for including a parity transformation, which corresponds to the “mirror” symmetry
of the jet image. Keep in mind that the improvements visible in Figure 12.3 are really solely
due to the different preprocessing steps because all seeds of all random number generators have
been fixed, i.e., all models start from the very same configuration. This means, in particular,
that all models are identical (at the beginning of the training!); furthermore, all models receive
the training points in exactly the same order. As can be seen from Figure 12.3a, the training
loss takes a large range of different values during training. This variance with respect to the
cost function is, of course, expected since the training data is divided into several batches, each
one being composed of 500 individual data points(=jets) and its constituents. The composition
of jets in one single batch of data is completely random; hence, there is a considerable statistical
variation between consecutive training iterations for which the performance of the neural
network may vary significantly – there might be low- and high-pT jets present in the current
batch. The noticeable point in the periphery (meaning: beyond the whiskers at Q2 ± 1.5 · IQR)
of Figure 12.5a originate form the very first training iterations at which the model is basically
untrained and the distributions over weights is random; at this stage, the model is basically
randomly guessing classes for the input it receives. However, the accumulation of points in
the denser region close to the median within the IQR indicates that the model converges with
increasing number of training steps.

Figure 12.3b shows the effect of the different preprocessing combinations for the AUC, which
estimates the classification performance of the binary classifier independent of a pre-defined
threshold values that separates the two categories. In terms of classification performance,
the impact of the different transformations is much more pronounced than for the training
loss in Figure 12.5a. This result provides a strong motivation for using the full preprocessing
chain outlined in Section 12.2. The significant improvement of the different transformations
can be understood by recalling distinctive feature of gluon and (light) quark jets. In this
picture, the Lorentz boost does not provide any support for discriminating between gluons and
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quarks – it just prepares a standardized form of the data that can easily be analyzed by the
machine-learning model. The rotation of the PC axis and the consecutive parity flip, on the
other hand, provide a usefull representation in terms of the distribution of energy within the
jet.

Given the significant improvement of classification performance, all jets used during training

(a) Lorentz boost (b) PCA rotation (c) Parity flip

Plot 12.4: Simultaneous representation of all filter boundaries F`Φ for each component
of Φ with ` = 256. The illustrations above correspond to the three preprocessing steps
introduced in Section 12.2: Lorentz boost (left), PCA rotation (middle) and parity
transformation (right).

and inference are fully preprocessed by all steps introduced in Section 12.2, which includes a
Lorentz boost, a PCA rotation as well as a parity transformation – in this particular order.

The effect of the different preprocessing strategies can also be studied by visualizing the
latent space constructed by the neural network through investigating the learned function Φ. In
case of EFNs, the map Φ : R2 → R` is a function that solely depends on the angular components
η, φ of the particle’s four-momentum and hence can be directly visualized in an η–φ-plane. To
visualize the structure of Φ, the function is evaluated on a dense, pixelized (η, φ) ∈ [−R,R]2

grid, whereby R(= 0.4) denotes the radius of the jet used in the reconstruction algorithm.
This results in a set of ` filters F`Φ := {(η, φ) ∈ [−R,R]2 | Φ`(η, φ) ∈ R}, with ` being the
number of latent space dimensions, all of which together provide a visual representation of
the latent space learned by the neural network approximating Φ. Each one of the ` filters F`Φ
defines a “surface” (or an active “area”) that can be used to determine a “boundary” constructed
from the contour of the full activity for each individual filter. Following the convention in
Ref. [27], those boundaries B`Φ (one for each component of Φ as shown in Figure 12.1) are
given by all points of F`Φ that fall in the range from 45 % to 55 % of the maximum value
taken by Φ, i.e., B`Φ := {x ∈ F`Φ | 0.45 · sup(F`Φ) ≤ x ≤ 0.55 · sup(F`Φ)}. Those boundaries
can simultaneously be visualized to picture the entire latent space at once as shown in Figure
12.4 for the three preprocessing steps by overlapping all boundaries for all filters (for a more
detailed introduction, the interested reader is referred to the original publication [27] that
introduced this visualization method).

All three figures in Figure 12.4 show an interesting structure that can be explained by
the respective preprocessing method. The first Figure 12.4a corresponds to the jets being
only transformed by a Lorentz boost such that they are centered in the detector. Accordingly,
the resulting filter boundaries are very symmetric with respect to the origin of the image.
Furthermore, the density of filters significantly increase towards the center of jet, which is in
agreement with the corresponding Figure 12.1 where most activity is in the core of the jet;
hence, the neural network identifies most of the relevant structure being present in this region
of the jet. The adjoining Figure 12.4b includes the already mentioned rotation of the PC
axis. This rotation “breaks” the symmetry along the horizontal because the PC axis points
at north (compare the counterpart Figure 12.1b). The effect of this preprocessing step is
clearly recognizable by the arrangement of filters through a strong asymmetry between the
lower (∆φ ∈ [−R, 0)) and the upper (∆φ ∈ [0, R]) part of the image. The same is true for
the full preprocessing chain that includes the parity transformation in Figure 12.4c. This
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step additionally introduces an asymmetry between the left (∆η ∈ [−R, 0)) and the right part
(∆η ∈ [0, R]) of the image, which, again, is clearly recognized by the neural network.

Latent Space Dimension

In the previous Section 12.3 – which introduced the baseline model for the EFN as well as PFN
–, the dimensionality of the latent space ` was purposely left unspecified. The size of the latent
space, however, is among the most important model parameters as its purpose is to embed the
constituents of the jets into a latent description of the jet given by the linear sum in Equation
12.2 and Equation 12.1. The dimension of the latent space can be thought of as a “bottleneck”
for the information extracted from the particles. Accordingly, larger latent spaces allow the
model to learn more features of the input data and hence usually result in better discrimination
between signal and background – at the cost of significantly increased training parameters
and (most likely) increased model dependency. The first step (regarding the optimization of
hyperparameters) is therefore to study the effect of various latent space dimensions and to
settle on a value that will be used for the entire further course of this analysis.

Figure 12.5 shows the impact of different latent space dimensions in increasing powers of
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Plot 12.5: Effect of different latent space dimensions ` according to the evolution of the
training loss (left) and the AUC (right).

two ` ∈ {2n}8n=1 for the training loss (12.5a) and the AUC (12.5b). For each dimension of the
latent space, all values of the respective metric taken during training are shown (marginalized
over all training iterations). Studying the evolution of the median with increasing latent space
dimensions, a clear tendency towards smaller values of the loss can be observed. This basically
indicates that the model improves in its classification task with increasing number of latent
space dimensions.

Figure 12.5b shows the same information, but with the cross entropy loss being replaced
by the AUC. The first feature to notice by comparing Figure 12.5b with Figure 12.5a is the
considerably smaller variance of values as well as the clear improvement of classification power
for larger latent space dimensions. In case of just two latent space dimensions, the variance is
large compared to the other configurations, which indicates that the model requires considerable
more training iterations to converge to a comparatively small AUC. With increasing `, the
model is able extract more features from data, which improves the discrimination between
gluons and light quarks. A further small improvement of the AUC can be achieved by going
beyond a latent space dimension of 28; however, the number of trainable model parameters
grows significantly and therewith the time required to train the model and – most importantly –
to do inference. In general, the trained model shows an overall good discrimination performance
for gluons and light quarks with an AUC of approximately 74 % for a latent space size of 28,
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whereby the AUC presented here is inclusive in pT, i.e., the classification performance is not
shown for jets within exclusive pT regions.

Based on the results presented in this paragraph, the dimension of the latent space for the

(a) ` = 32 (b) ` = 64 (c) ` = 128

Plot 12.6: Simultaneous representation of all filter boundaries F`Φ for a latent space
dimension of ` = 32 (left), ` = 64 (middle) and ` = 128 (right).

EFN as well as the PFN was chosen to be 28, which is a good compromise between classification
performance as well as computational time. Given this latent space configuration, the EFN
consists of a total of 82, 358 trainable weights. This number is slightly larger in case of the
PFN with 82, 458 weights due to the different arrangements of the input in the first layer of
the model.

Like it was done in the previous paragraph for the different preprocessing steps, it is
instructive to visualize the latent space for some dimensions `. As a reminder: for a latent
space with dimension `, a set of filter boundaries F`Φ can be constructed and simultaneously
visualized. The result is shown in Figure 12.6 for three selected examples ` ∈ {32, 64, 128}.

As can be seen in Figure 12.6, the neural network gains flexibility for increasing latent
space dimensions and is able to extract more features from the internal structure of the jet.
The corresponding arrangement of filters for a latent space dimension of ` = 256 used in this
measurement has already been shown in Figure 12.4c. The number of “boundaries” in Figure
12.6 corresponds to the dimension of the respective latent space.

Number of Constituents
The next item on the list of parameters to optimize is the number of constituents ntrk

12 (tracks
in this case) inside the jet that are supposed to be used when computing the neural network
score. In principle, all particles clustered to a jet should be used; however, because the neural
network is trained on data derived from Monte Carlo, this number should be chosen carefully
to avoid a bias of the model towards the respective generator that was used to produce the
training data, which will result in an increased data-driven non-closure uncertainty (see Chapter
10.8). This is due to the fact of significant deviations between different families of Monte Carlo
generators regarding the modeling of “soft” constituents inside of the jets. Reducing the impact
of those particles associated with low pT is the objective of the upper cut on the number of
constituents nup

trk,cut.
For this cut to be meaningful, an ordering scheme must be applied to the constituents of

the jets. The most obvious choice is to sort all particles {j}j∈J associated/matched to a jet
J in decreasing order of transverse momentum pT,i > pT,i+1 for all i ∈ N≤|J| such that the
first constituent always corresponds to the hardest one. As explained in Chapter 6.3, “Deep
Sets” are permutation invariant functions over sets; hence, the just arbitrary imposed ordering
scheme does not affect the neural network score at all (cutting on the number of constituents,
of course, does). With this ordering in place, an upper cut of nup

trk,cut ≤ |J | can be applied to

12An alternative notation that is used throughout this report is nch, which denotes the number of charged
constituents.

221



0

0.2

0.4

0.6

0.8

1

1.2

3−10×

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 [GeV]
T
thpLower threshold on constituents'  

0

5

10

15

20

25

30

tr
k

Tth
p>

N
um

be
r 

of
 (

ch
ar

ge
d)

 c
on

st
itu

en
ts

 in
 je

t  
 n

=13 TeV, Pythia 8.320s

 R=0.4 PFlow jetstAnti-k

|<2.1η >250GeV, |
T

p

=13 TeV, Pythia 8.320s

 R=0.4 PFlow jetstAnti-k

|<2.1η >250GeV, |
T

p

N
or

m
al

iz
ed

 e
nt

rie
s

〉
trk

g
n〈Gluons 

Avrg. number of tracks

〉
trk

q
n〈Quarks 

(a) Lower pT

5−10

4−10

3−10

0 10 20 30 40 50 60 70 80 90

th constituent in jetiPosition of 

1

10

210

310

  [
G

eV
]

T
T

ra
ns

ve
rs

e 
m

om
en

tu
m

  p

=13 TeV, Pythia 8.320s

 R=0.4 PFlow jetstAnti-k

|<2.1η>250 GeV, |
T

p

=13 TeV, Pythia 8.320s

 R=0.4 PFlow jetstAnti-k

|<2.1η>250 GeV, |
T

p

N
or

m
al

iz
ed

 e
nt

rie
sth particlei for 

T,i
Avrg. p

(b) Constituent’s pT

Plot 12.7: Constituent/track multiplicity as a function of a lower pT cut (left) and
constituent pT as a function of its position in the jet after sorting (right).

all jets, with all constituents i > nup
trk,cut being discarded, whereby i denotes the position of

the ith constituent inside of the jet (sorted according to the pT). Of course, if the number of
particles in the jet is below nup

trk,cut, the jet remains unchanged.
The result of the aforementioned ordering of the jet’s constituents is shown in Figure 12.7b

that shows the distribution of the transverse momentum for each constituent as a function of
its position in the jet after sorting.

A very important point to consider is that the jet is fully preprocessed before any cut on
the number of constituents is applied. This detail will prove important in just a moment; so,
keep it in mind.

The effect of several upper cuts on the number of particles is shown in Figure 12.8 for the
loss (12.8a) and the AUC (12.8b) in Figure 12.8.

As one can see from the loss in Figure 12.8a, the training performance in terms of the
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Plot 12.8: Effect of cutting on the number of constituents inside the jet according to the
evolution of the training loss (left) and the AUC (right).

loss is only weekly affected by this cut. Nonetheless, there is a clear tendency towards lower
losses for more constituents being kept inside the jet, implying that the model improves in its
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classification task. This, of course, is expected as more information for the classification task
is available. More interesting insights arise when taking a look at the AUC in Figure 12.8b.
As expected, the classification performance clearly improves for keeping more constituents
inside of the jets as the particle multiplicity is among the strongest discriminators for quark-
and gluon-initialized jets. Astoundingly, even for just one (i.e., the hardest) constituent being
used during evaluation of the model, the classification power is surprisingly high (as indicated
by an AUC of roughly 71 % over all jets). This is not due to a mistake but a consequence
of the preprocessing of the jet (see Section 12.2). As emphasized previously, the jet is fully
preprocessed prior to the cut on the number of constituents! This has interesting consequences:
if the jet is transformed to the point of origin of the detector, the internal distribution of the
constituents, i.e., their relative orientation remains unchanged. Since gluon jets (on average)
contain more emissions than quark-initialized ones, the total energy of the jet is distributed
over a larger number of particles, which results in broader jets due to energy-momentum
conservation. This implies that the average radial distance 〈∆R〉 of the hardest constituent
∆R with respect to (0, 0) in the η–φ grid is larger for gluons than for quarks 〈∆R〉g > 〈∆R〉q.
This indicates that in case of just one constituent being included, the neural network learns
an observable that is strongly correlated to the “jet width”

∑
j∈J pT,j∆R(j, J)/pT,J , which is

another discrimination variable commonly used in quark-gluon discrimination. Additionally,
the constituents of a gluon jet are on average on a lower energy scale that the quark one’s due
to the already mentioned larger number of constituents. The discrimination power based on the
energy or the pT, however, is much weaker compared to the width or the constituent multiplicity
of the jet and does unfortunately not lead to mutual irreducible probability distributions (see
Chapter 7.3).

To strike the right balance between a potential bias of the trained model towards the
baseline generator (which is used to train the neural network) and the discrimination power
that is strongly correlated to the number of particles, the main focus was on the diagonality of
the response matrix as well as the data-driven (non) closure. Those studies include numerous
iterations of the entire analysis for different upper constituent cuts including the complete re-
training of the models, reconstruction of the triple-differential multijet cross section, unfolding
etc. Presenting and discussion all this information would go far beyond the scope of this report;
therefore, the conclusion is just quoted at this occasion. After all studies involving the aforesaid
steps, an upper limit of nup

trk,cut = 50 on the number of (charged) constituents inside the jet
turned out to be very appropriate. But, it should not be left unmentioned that reducing this
number down to 30 particles almost does not affect the final result at all (as anticipated from
Figure 12.8b).

Alternatively to directly applying a cut on the number of constituents inside the jet, it
could be considered to introduce a lower threshold criterion on the transverse momentum pT

of the constituents above the already used 500 MeV below which all particles are discarded. Of
course, this lower threshold pth

T is (anti)correlated with the constituent multiplicity as can be
seen in the corresponding Figure 12.7a (increasing the cut on the constituents’ momenta lowers
the number of tracks in the jet). This figure also shows the average number of constituents for
quark and gluon jets; as expected from QCD, gluon-like jets tend to contain larger number of
particles than quark jets. Since the discrimination power of the classifier strongly depends on
the discrepancy between the gluon- and quark-associated curve, the lower cut on the particles’
pT (as well as on the upper limit on the constituent multiplicity) should be chosen in view of
keeping the distance between the two curves as large as possible.

EFN versus PFN

In Section 12.1, the EFN and PFN have been introduced, both follow the philosophy of the
“Deep Sets” paradigm for the purpose of learning a function that is invariant with respect to
permutations of the elements in the set over which the function is defined. Both networks are
quite similar regarding their architecture. The PFN basically is an implementation of the model
proposed in the pioneering publication in Ref. [3]; the EFN introduces a small modification
by factorizing the positional and energy components as shown in Equation 12.2. Due to the
close resemblance of energy- and particle-flow networks, the neural network score zEFN and
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zPFN of the two models is expected to be highly correlated with each other. Investigating this
correlation (among other things) is subject of this paragraph.

The direct correlation between zEFN and zPFN is shown in Figure 12.9a, which shows the
neural network score for the very same jets in case of an EFN- and a PFN-based model inclusive
in transverse momentum. The close connection between EFNs and PFNs is immediately evident:
both scores are strongly correlated, whereby the degree of correlation depends on the transverse
momentum of the jets. According to the strong correlation, both models are almost identical
with respect to their discrimination power regarding gluon and (light) quarks. An argument in
the favor of an EFN rather than the PFN is the already mentioned feature of the former one
resulting in IRC-safe observables – in principle. This statement is true, however, it does not
hold in case of this measurement since it (this measurement) is fundamentally not IRC-safe
due to the use of “track-based/matched” jets. But, it certainly is an argument for future
measurements if this analysis is extended to one that account for all constituents in the jet13.

Marginalizing the joint distribution in Figure 12.9a along zEFN and zPFN results in the
corresponding inclusive distributions of the two network scores. The outcome of this projection
is shown in Figure 12.10a. The two distributions nicely illustrate the features of the neural
network score, i.e., two distinct regions of an enhanced cross section each one of which
corresponds to one category the model is supposed to discriminate. In accordance with the
definition of the class labels in Chapter 9.2 and Equation 9.4, a neural network score closer to
‘1’ indicates gluon-like jets while smaller values close to ‘0’ are likely due to quark-initialized
jets accordingly. The detailed interpretation of those distributions is subject to another section
of this chapter; at this point, it should only be mentioned that all distributions look as expected
and exhibit the desired properties.

Figure 12.10b shows the neural network score for EFN and PFN in different bins of
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Plot 12.9: Correlation between the predicted network score of the PFN and the EFN
each one evaluated for the very same jets (left) and the distributions for the EFN and
PFN score inclusive in pT for different seeds (right).

transverse momentum represented by an evolution graph with arbitrary normalization. The
indicated circles correspond to the mean value of the distributions. As can clearly be seen, the
distributions show a strong dependence on the pT of the jets, which itself is highly correlated
to the quark and gluon fraction of the samples. This important point (which is one motivation
for using a neural network in the first place) will be dealt with in more detail in the upcoming
sections; hence, it should only be noted (for the sake of brevity) that the distributions follow the

13IRC-safety in the context of the NN-score means that one could – in principle – compare analytic calculation
of zNN with a measurement of the probability distribution/differential cross section P (zNN).
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expectations from the theoretical calculations regarding the quark- and gluon-related component
of the inclusive dijet cross section and its “evolution” with the transverse momentum of the
jets. Overall, dijet samples are gluon enriched ; however, the fraction of quark-initialized jets
increases – which would result in a larger DDNC uncertainty (see Chapter 10.8) – towards
higher transverse momentum as can be seen in Figure 12.10b through a shift of the distribution
in direction of lower values of the neural network score (i.e., “quark-like” jets).

In summary, it can be said that the score given by the PFN and the EFN are highly
correlated and therefore have a similar performance regarding the discrimination between
quark and gluon jets. The PFN shows a slightly better discrimination power between the two
categories because the architecture defined by Equation 12.2 is more general and therefore
more flexible, with regard to the discrimination task.

The ROC curves in Figure 12.11 show the classification performance of both binary
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Plot 12.10: The distributions for the EFN and PFN score inclusive in pT (left) and
for the individual pT bins used in this measurement (right). Each underlying model in
the distribution above used a different seed for the random number generators for the
initialization of the weights, which results in a distribution over models.

classifiers in case of the baseline generator (for all MC campaigns) inclusive in transverse
momentum pT as well as the discrimination power of the models for the individual pT bins of
the measurement. As can be seen and already expected from the distribution of the NN-score in
Figure 12.10a, the PFN exhibits a higher discrimination power with respect to quark and gluon
jets compared to the EFN. This follows from the already mentioned differences between the
two architectures, which allows the PFN to extract more correlations between the individual
constituents of the jet.

Turning the attention to a somewhat more technical aspect, Figure 12.12 shows the average
of the NN-score as predicted by the PFN as well as the EFN as a function of the jet’s
pseudorapidity (12.12a) and the azimuthal angle (12.12b). Starting with the pseudorapidity in
Figure 12.12a, a clear correlation with the (average) NN-score for both, PFN and EFN, can be
observed. This is easily explained by the correlation between the quark/gluon fraction and the
pseudorapidity of the jets in the detector (one motivation for changing the normalization scheme
for the scalar components). As mentioned several times already, this property immediately
follows from the underlying PDF of light quarks and the gluon, resulting in more gluon-
initialized jets in the central region of the detector on average. This characteristic feature of
the proton’s PDF is one of the main motivations of measuring the triple-differential multijet
cross section in two disjoint categories of rapidity, with the objective to obtain two mixtures of
quark- and gluon-initialized jets. Turning back to Figure 12.12a, central jets (η ≈ 0) tend to
receive (on average) higher NN-scores by the neural networks, indicating that the fraction of
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(left) and for the individual pT bins of the measurement (right).
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Plot 12.12: The average NN-score for the PFN as well as the EFN as a function of the
pseudorapidity (left) and the azimuthal angle (right).

gluon-initialized jets is larger compared to more forward jets.
On the contrary, no correlation between the fraction of quark and gluon jets and the

azimuthal angle φ is expected. This is confirmed by Figure 12.12b, which shows once again the
average NN-score of the PFN and EFN versus the azimuthal angle of the reconstructed jets.

Configuration Summary

After all model-specific parameters have been defined, the training parameters such as the
optimizer and learning rate (see Chapter 6.4) must be determined. Generally, it can be said that
the models used in this analysis are quite robust with respect to the choice of training-related
hyperparameters. Therefore, based on a few superficial studies, the Adam optimizer [231] at
its default configuration with a learning “rate”/weight of αl = 0.0005 was chosen.

Furthermore, both models are trained for 200 epochs with a batch size of 500 data
points(=jets), which results in 300000 iterations given that the full training data set consists
of two Million jets. For the sake of clarity, all data from the previous sections regarding the
configuration of the model or the training setup are summarized in detail in Table 12.1.
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EFN PFN

Model

Latent space 256
N parameters 82, 358 82, 458
N features 3
LayerNodes F (1100, 2100, 3100), Φ(1100, 2100)

Input

Type Lead. and sublead. jet in fid. phase space at PL
Features

{(
pT,j/EJ ,

(
η′j , φ

′
j

))}
j∈J

{(
pT,j/EJ , η

′
j , φ
′
j

)}
j∈J

ntrk ∈ [1, 50]

Preprocessing Lorentz boost, PCA rotation, parity flip

Training

Optimizer Adam(αl = 0.5 · 10−4, β1 = 0.9, β2 = 0.999)
N training 2 Million events

N epochs, Batch Size 200, 500

Table 12.1: Summary table of the most important hyperparameters regarding the
configuration of the baseline models (EFN and PFN), their input as well as the training
of those.

Final Distribution and Discrimination Performance

This paragraph concludes this somewhat technical section by presenting the final distribution
of the PFN’s score (the corresponding score predicted by the EFN is very similar) for quark-
and gluon-labeled jets, respectively, as well as the resulting classification performance. The
histograms in Figure 12.13 show the distribution of the neural network score zPFN associated
with quark- and gluon-initialized jets inclusive in transverse momentum for all Monte Calo
samples used in this measurement (see Table 8.1 for the total list of the generators used in this
analysis along with their distinguishing features). At this point, it is important to highlight,
once again, that the jet flavor definition (jet-by-jet label) introduced in Chapter 9.2.2 was
first introduced and optimized for Pythia-related studies within ATLAS. Nonetheless, for all
alternative generators in Figure 12.13, the very same definition was used in order to construct
the corresponding distributions of the score for quark and gluon jet. One should therefore
always keep in mind that the efficiency of this flavor definition was not studied in great detail
for generators besides Pythia. Accordingly, caution should be exercised in interpreting the
results – even though if on average one should expect to get the correct assignment14. After
an initial rough inspection of the data, it can be stated that the general tendency of the
distributions of the network score agrees between all Monte Carlo samples, which confirms the
statement that the label definition on average results in the correct jet flavor being assigned.
As mentioned previously, higher scores correspond to higher probability of the current jet to
originate from a gluon. This feature is clearly visible in Figure 12.13 for all samples. Accord-
ingly, the lower the score, the higher the probability of the jet being gluon initialized. As one
can see, there is an excellent separation between the different categories with an non-negligible
overlap between quark and gluon jets. The latter effect is unavoidable to a certain degree
as quark- and gluon-initialized jets are not perfectly separable. It cannot be ruled out that

14This assumption is justified as the jet label definition is based on the hardest constituent in the jet, which
is usually well modeled in Monte Carlo.
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Plot 12.13: Quark and gluon (Pythia-based label) distributions of the PFN score zPFN

for all Monte Carlo samples used in this measurement (left) as well as the corresponding
ROC curves derived therefrom (right).

further optimization of the model will result in an improved classification performance – one
the contrary: it is quite likely. But, given the fact that (at LO) the difference between light
quarks and gluons is basically determined by the color factors CA/F (which further reduces
discrimination power at higher orders as explained in Chapter 11.1), indistinguishable phase
space configurations are expected.

Based on the distributions in Figure 12.13a as well as a predefined threshold cut separating
the two categories, the ROC curves for each Monte Carlo generator can be computed to get the
gluon efficiency εMC

g and the corresponding quark rejection εrej,MC
q := 1−εMC

q for different thresh-
olds zth ∈ [0, 1]. In this case, the gluon efficiency is given by εMC

g (zth) =
∫ 1

zth
dzPFN P

MC
q (zPFN),

with the quark rejection εrej,MC
q (zth) = 1−

∫ zth
0

dzPFN P
MC
q (zPFN) being defined accordingly,

whereby PPFN,MC
f (zNN) denote the normalized probability distribution of the PFN’s score for

jet flavor f (gluon (g) or light quark (q)) for one of the used Monte Carlo generator. The result
is shown in Figure 12.13b.

Analyzing the ROC curves corresponding to the different Monte Carlo event generators in
Figure 12.13b individually, one notes that Pythia as well as Powheg+Pythia show the best
classification performance. This is expected because the classifier model was trained on data
generated from this Monte Carlo. Furthermore, the difference between the two Pythia-based
samples is almost unnoticeable small, which is expected as the main discriminating features
between quark- and gluon-initialized jets are generated during parton shower simulation. Ac-
cordingly, the remaining Monte Carlo generators perform worse compared to the baseline
sample, but are in a similar range of numbers.

The last point to be discussed in the context of this section is the response of the neural
networks for the individual jet flavors. This point is important because the basic assumption for
the extraction of the underling quark/gluon distributions and fractions using “topic” modeling
(as described in Chapter 7) is that the measured spectra are a mixture of contributions of
quarks and gluons, i.e., only two categories. Since the final result of this analysis are the
fractions of (light) quark and gluon jets in the different regions of transverse momentum, it is
important to verify that the neural network (roughly) shows the same performance for all of
the different quark flavors. Assumed the neural network would tend to systematically assign
much higher scores for jets originating from beauty quarks, the finally measured “gluon fraction”
would not correspond to (pure) gluons but to a mixture of gluons and beauty quarks. This
does certainly not mean that there must not be any overlap between the different flavors at
all – this is impossible because the phase spaces populated by (light) quarks and gluons are
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Plot 12.14: Inclusive single-differential cross section of the NN-score as predicted by the
PFN (very similar results are obtained for the EFN) for all light quark flavors and the
gluon non-normalized (left) and normalized to unity (right) for the validation set.

fundamentally not-separable on a jet-by-jet basis –; however, it does mean that the probability
distributions with respect to the NN-score (or the response of the model) should be “similar”
for all (light) quark flavors and different to the one corresponding to the gluon.

Figure 12.14 shows the NN-score as predicted by the PFN and EFN for the different
quark-flavors (up, down, charm, strange and bottom/beauty) as well as the gluon. First of all,
Figure 12.14a shows the total cross section (inclusive in pT) with respect to the NN-score for
all jet-flavors. The integral of the gluon-related distribution is dominant because it is a single
category and multijet events are naturally enriched by gluon-initialized jets. Concerning the
shape of the distributions, there is a significant separation between the quark- and gluon-like
jets. As expected, jets originating from gluons tend to receive higher scores, while jets initialized
by light quarks are more likely to get labeled by a lower NN-score. However, the representation
in Figure 12.14a makes it very hard to compare the shapes of the individual quark flavors as
their fraction to the total event yield differs by several orders of magnitude. To allow for a
systematic comparison of the shape of the individual spectra for the different flavors, each
distribution is normalized by its integral; the result is shown in Figure 12.14b. As can be seen,
a clear difference between the different quark-related flavors can be observed. Especially, the
distribution of the NN-score associated with the bottom quark differs with respect to the other,
lighter quark types 15. The response of the neural network is similar for the other quark flavors;
only the charm quark shows some discrepancy, which is much less pronounced that the one
related to the bottom quark though.

First of all, the result in Figure 12.14b is not worrisome. The majority of bottom-quark-
initialized jets are still correctly classified as being quark-like jets. Furthermore, the overall
fraction of bottom quarks in the jet samples is negligible compared to the other flavors; hence,
the bias to the final quark/gluon fractions is very small and certainly covered by the overall
precision of the measurement. And, lastly, the correlation of the jet substructure variable
between the bottom quark and the gluon is much weaker for the counting-based observables
introduced in Chapter 11; hence, a bias to the fractions obtained using the cross section with
respect to the NN-score should be visible by comparing to the corresponding result derived
using the counting-based observables.

Figure 12.15 shows the distribution of the NN-score of the various quark flavors (12.15a–

15It is not fully clear why the probability of misidentification is larger in case of b-quarks than for the other
light quark flavors. Actually, one might “naïvely” expect the opposite behavior as jets initialized by b-quarks
are (on average) more compressed (smaller width). This “problem” could be addressed by including b-tagging
information into the classification decision.

229



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 (u quark)
NN

Neural network score  z

0

1

2

3

4

5

6

7N
N

/d
z

σ
)d

σ
N

or
m

al
iz

ed
 c

ro
ss

 s
ec

tio
n 

 (
1/

=13 TeV, Pythia 8.320s
 R=0.4 PFlow jetstAnti-k

MC16a+d+e|<2.1, η|

(up quarks)

 [G
eV

]
T

T
ra

ns
ve

rs
e 

m
om

en
tu

m
  p

210×3

210×4

210×5

210×6

210×7

3
10

3
10×2

3
10×3

3
10×4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Up quark

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 (d quark)
NN

Neural network score  z

0

1

2

3

4

5

6

7

N
N

/d
z

σ
)d

σ
N

or
m

al
iz

ed
 c

ro
ss

 s
ec

tio
n 

 (
1/

=13 TeV, Pythia 8.320s
 R=0.4 PFlow jetstAnti-k

MC16a+d+e|<2.1, η|

(down quarks)

 [G
eV

]
T

T
ra

ns
ve

rs
e 

m
om

en
tu

m
  p

210×3

210×4

210×5

210×6

210×7

3
10

3
10×2

3
10×3

3
10×4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Down quark

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 (c quark)
NN

Neural network score  z

0

1

2

3

4

5

6

N
N

/d
z

σ
)d

σ
N

or
m

al
iz

ed
 c

ro
ss

 s
ec

tio
n 

 (
1/

=13 TeV, Pythia 8.320s
 R=0.4 PFlow jetstAnti-k

MC16a+d+e|<2.1, η|

(charm quarks)

 [G
eV

]
T

T
ra

ns
ve

rs
e 

m
om

en
tu

m
  p

210×3

210×4

210×5

210×6

210×7

3
10

3
10×2

3
10×3

3
10×4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Charm quark

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 (s quark)
NN

Neural network score  z

0

1

2

3

4

5

6

N
N

/d
z

σ
)d

σ
N

or
m

al
iz

ed
 c

ro
ss

 s
ec

tio
n 

 (
1/

=13 TeV, Pythia 8.320s
 R=0.4 PFlow jetstAnti-k

MC16a+d+e|<2.1, η|

(strange quarks)

 [G
eV

]
T

T
ra

ns
ve

rs
e 

m
om

en
tu

m
  p

210×3

210×4

210×5

210×6

210×7

3
10

3
10×2

3
10×3

3
10×4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) Strange quark

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 (b quark)
NN

Neural network score  z

0

1

2

3

4

5
N

N
/d

z
σ

)d
σ

N
or

m
al

iz
ed

 c
ro

ss
 s

ec
tio

n 
 (

1/
=13 TeV, Pythia 8.320s

 R=0.4 PFlow jetstAnti-k
MC16a+d+e|<2.1, η|

(bottom/beauty quarks)

 [G
eV

]
T

T
ra

ns
ve

rs
e 

m
om

en
tu

m
  p

210×3

210×4

210×5

210×6

210×7

3
10

3
10×2

3
10×3

3
10×4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) Bottom quark

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 (g gluon)
NN

Neural network score  z

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5N
N

/d
z

σ
)d

σ
N

or
m

al
iz

ed
 c

ro
ss

 s
ec

tio
n 

 (
1/

=13 TeV, Pythia 8.320s
 R=0.4 PFlow jetstAnti-k

MC16a+d+e|<2.1, η|

(gluons)

 [G
eV

]
T

T
ra

ns
ve

rs
e 

m
om

en
tu

m
  p

210×3

210×4

210×5

210×6

210×7

3
10

3
10×2

3
10×3

3
10×4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) Gluon

Plot 12.15: Inclusive (in ηrel) normalizes single-differential cross section with respect
to the PFN-score for all relevant jet flavors parameterized as a function of transverse
momentum of the jets.

12.15e) and the gluon (12.15f) for different bins of transverse momentum of the jets.
The last aspect studied in this section is the correlation of the score predicted by the neural

network with the track multiplicity as well as the width of the jet, which will prove beneficial
for the interpretation of the results at some point later. The correlation with respect to the
PFN-score is shown in Figure 12.16 for the number of tracks assigned/matched to the jet
(12.16a) as well as the width of the jet (12.16b). Of course, the NN-score is correlated to many
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Plot 12.16: Correlation between the NN-score as predicted by the PFN and the number
of tracks (left) and the “width” of the jets (right).

more features; however, the track multiplicity as well as the jet width are highly correlated
to the score (and weakly correlated with respect to each other, which reduces the amount
of redundant information) and are, furthermore, among the most simplest ones. As one can
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12.5. DETECTOR-LEVEL DISTRIBUTIONS

see, the NN-score is highly correlated with both jet substructure observables, which is – of
course – expected since track multiplicity and jet width are both correlated to features related
to quarks and gluons. In case of ntrk, jets with higher multiplicities are usually labeled with
higher neural network scores, indicating that the jets are more likely to originate from gluons.
For the jet width, narrower jets are more likely to receive lower NN-scores, which is expected
because quark-initialized jets are smaller on average compared to gluons.

12.5 Detector-Level Distributions
With the two baseline models of the PFN and EFN being established, the newly defined
observables are released into the rough wilderness and applied to real pp-collision data events
recorded with the ATLAS detector, as well as events generated in Monte Carlo with the full
detector simulation applied. At this point, it is worthwhile to highlight once again that both
models have been trained on truth-level information solely (the reason for training the neural
networks on particle instead of detector-level information was discussed in Section 12.2.1 in
great detail). Up to this point, it was uncertain whether this choice would result in large
discrepancies between the neural network score predicted by the models for the two different
representations of the event, which would manifest itself in significant migrations resulting in a
response matrix with a large fraction of non-diagonal elements. This concern, however, has
turned out to be unfounded since inference works well at truth and reconstruction level as will
be shown in this section.

The present section shows a selection of results of the triple-differential multijet cross
section measurement with respect to the previously introduced NN-score at detector level. This
includes the comparison of the shape of the respective JSS variable measured in data and
simulation, as well as a closer look at the response matrix obtained for the nominal Monte
Carlo event generator that is used to simultaneously unfold the multijet spectra to particle level,
which will be the topic of the subsequent section. This comparison is done for all transverse
momentum bins used in this analysis. Generally, all following results serve as a plausibility
check to confirm that the reconstruction procedure works as expected. This is of particular
importance as, for instance, slight differences in the preprocessing of the four-momenta of the
jet’s constituents between training and inference may result in considerable variations of the
associated score. It is therefore absolutely necessary(!) to ensure that the training, testing and
evaluation of the models are perfectly synchronized.

The following section shows the results for the detector-level distributions for the PFN –
the corresponding results for the EFN are very similar.

12.5.1 PFN
As explained in Section 12.1, the PFN architecture according to Equation 12.1 implements
a permutation invariant function over variable length sets, whereby the set is given by a
collection of (charged) particles that constitute the reconstructed higher-level object, i.e., the
jet. The first step is to measure the PFN’s score assigned to each jet that passes the event
selection according to Table 9.3 at detector level for both, data and simulation. The NN-score
is measured over the full support [0, 1] in several bins of transverse momentum as well as for
jets more central and more forward in pseudorapidity (see Table 9.4). The distribution of the
continuous NN-score is measured in a total number of 19 bins of non-equidistant width that is
shown in Table 12.2. As it was the case for the track as well as SD multiplicity, the binning of
the JSS observable is optimized in order to limit migrations between bins – resulting in more
diagonal response matrices – while preserving as much shape information as possible for the
extraction of “jet topics” as well as the quark-gluon fractions.

The measured number of inclusive multijet events in each individual phase space bin
is shown in Figure 12.17 for central (12.17a) and forward jets (12.17b) for the full Run 2
data set and all Monte Carlo samples for the corresponding simulation campaigns. In this
representation, the non-equidistant binning of the observables is, once again, not recognizable.
Instead, as it was the case for the track and the SD multiplicity, the measured number of
events is associated to a global measurement bin that uniquely (bijectively) maps the cross

231



Observable Binning Unit

zPFN/EFN

[0.00, 0.04) [0.04, 0.08) [0.08, 0.10) [0.10, 0.15) [0.15, 0.20) [0.20, 0.25)
[0.25, 0.30) [0.30, 0.35) [0.35, 0.40) [0.50, 0.60) [0.60, 0.65)

[0.65, 0.70) [0.70, 0.75) [0.75, 0.80) [0.80, 0.85) [0.85, 0.90) [0.90, 0.93)
[0.93, 0.96) [0.93, 1.00]

none

Table 12.2: Binning of the NN-score zPFN predicted by the PFN thought all cross section
measurements.

section to an unique integer value (see Chapter 11.4.1 and Equation 11.18 in particular for
further explanation). Each bin value in Figure 12.17a and 12.17b is normalized by the total
“width”, i.e., ∆pT ·∆y ·∆zPFN to correct for the “distortion” of the distribution due to the
non-constant bin size.

Both recorded spectra in Figure 12.17 show the characteristic falling rate towards increasing
transverse momenta. Upon closer inspection of the distribution of the NN-score, a strong
dependence on the transverse momentum on the jets can be observed. This correlation is
expected and intended as it reflects the changing flavor (light quarks and gluons) composition
of multijet events in different regions in phase space. The different fractions of quark and gluon
initialized jets also manifests itself in a clear difference between the spectra related to central
and forward jets.

Overall, the simulation shows a good agreement with respect to the spectrum observed in
data with deviations up to 50 % (and more) for certain regions in phase space. Furthermore,
the degree of agreement varies significantly for the different Monte Carlo event generators
because the neural network is sensitive to different physical effects like, for instance, parton
shower or hadronization models.

Taking a closer look at the individual generators and their differences with respect to each
other, the first property to notice is the close agreement of the two Pythia-based generators
that differ regarding the calculation of the matrix element. In the lower-pT regime, there
is basically no difference concerning the predicted shape of the distributions. Only towards
increasing transverse momenta a discrepancy can be observed.

Leaving aside the shape difference between the two samples, for both generators (the LO-
as well as the NLO-based ones), the mismodeling with respect to data increases towards larger
values of the NN-score (zPFN → 1), which is associated with jets being classified as being more
“gluon-like”. This disagreement increases with pT. The data-to-simulation agreement for phase
space regions associated with quark-like jet (zPFN → 0) does not change significantly over the
whole range of transverse momentum, despite a noticeable mismodeling in the limit of low
values of the score. Comparing the two (NLO) Herwig samples, the effect of different parton
shower models can be studied. As expected, changing the parton shower model results in quite
different shapes of the substructure variable as the angular-ordered and the dipole shower
differ concerning the generated amount of emissions as well as the regions in phase space they
populate. Therefore, the parton shower is expected to be one of the dominant uncertainties of
the triple-differential multijet cross section measurement – as it was already the case for the
counting-based observables.

Last but not least, the two spectra obtained from the Sherpa samples show the impact of
different hadronization models on the predicted shape of the distributions. As one can see,
the difference between the hadronization models is comparatively small. Compared to data,
however, the degree of agreement changes significantly. For lower transverse momentum, both
hadronization models tend to produce too many quark-like jets. As the score assigned by the
neural network is highly correlated with number of jet constituents well as the jet width, this
observation might be explained by a mismodeling (underestimation) of the number of hadrons
in the final state, which results in a smaller number of constituents that are harder on average.
For higher-pT jets, the mismodeling shifts towards larger values of the NN-score, i.e., jets that
are more likely to be initialized by gluons.

Figure 12.17 provides a valuable overview of the entire measurement, but the representation
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Plot 12.17: Full measurement of the number of multijet events in different regions in
phase space with respect to the PFN-score for central (left) and forward (right) jets. The
divided presentation of the multijet spectra for central and forward jets only serves the
purpose of better visualization; indeed, the number of multijet events is simultaneously
measured in both pseudorapidity regions and therefore accounts for migrations between
the two.

based on the global bin indexing is fairly unsuited to gain insights concerning the distribution of
the substructure variable zPFN. For this purpose, Figure 12.18 shows the NN-score integrated
over all transverse momentum bins for central (12.18a) and forward (12.18b) i.e., the informa-
tion of the transverse momentum is marginalized. In this representation, the non-equidistant
binning (summarized in Table 12.2) is explicitly visible.

Both distributions show the expected features. Figure 12.18a corresponds to the pT-
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Plot 12.18: Distribution of the NN-score zPFN for central (left) and forward (right) jets
inclusive in transverse momentum.

inclusive NN-score for central jets that clearly shows an enrichment of gluon-like jets as the
bulk of the distribution is shifted towards higher values of zPFN. In line with that, Figure
12.18b demonstrates that the category of forward jets is enhanced by jets being identified as

233



most likely initialized by quarks. On closer inspection, it is obvious that still a non-negligible
fraction of quarks and gluons is present in both pseudorapidity categories. This is expected
because quark and gluon jets can not perfectly be isolated into disjoint categories at detector
level (not to mention the fact that the pseudorapidity is a comparatively weak discrimination
variable with respect to features associated with hadronic showers). Undoubtedly, however,
central and forward jets result in two orthogonal data sets with different mixtures of quark
and gluon jets needed for the extraction of the underlying probability distributions of quark
and gluon jets according to the method outlined in Chapter 7.

In case of the counting-based observables introduced in Chapter 11, the mean as well
as the width of the probability distributions over the respective substructure observable(s)
increased with the transverse momentum of the jets. This is expected as many counting-based
observables can be approximated by a Poisson distribution at LL accuracy as was explicitly
shown in Chapter 11.1.4 for the example of the SD multiplicity. In case of the NN-score,
however, the evolution of the distribution with the transverse momentum of the jets is quite
different. Generally, the change in the shape of the cross section should – to some extend –
reflect the changing composition of quark- and gluon-initialized jets in the different regions
of phase space, i.e., the different transverse momentum bins listed in Table 9.4. In order
to gain an impression of the pT-dependency of the multijet spectra, Figure 12.19 shows the
single-differential spectra with respect to the NN-score as predicted by the PFN inclusive in
central and forward jets for all transverse momentum bins of the measurement (see Table
9.4). As can be seen in Figure 12.19, compared to the counting-based observables, the
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Plot 12.19: Inclusive (in central and forward region) single-differential multijet distribu-
tions with respect to the NN-score as predicted by the PFN in all transverse momentum
bins.

features of the distribution with respect to the NN-score varies considerably between different

15The labels in Figure 12.19 above are barely visible given the size and the number of figures, however,
they are identical to the ones shown in Figure 12.18. Furthermore, this family of figures should only serve the
purpose of providing an impression of the momentum-dependent evolution of the distributions.
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12.6. UNFOLDING OF THE CROSS SECTION MEASUREMENT

pT regimes. This is expected from Figure 9.1 that shows the fraction of quark and gluon jets
as a function of the transverse momentum. Because of the NN-score being quite powerful
regarding the discrimination between quark- and gluon-initialized showers, the zNN distribution
is very sensitive to changes with respect to variations in the quark-gluon composition of the
different multijet samples. In the low-pT regime in Figure 12.19, a clear shift towards higher
NN-scores can be observed, indicating a higher fraction of jets originating from gluons in
this region of phase space. However, as the transverse momentum of the jets increases, the
“probability mass” of the NN-score shifts towards smaller values, which is associated with a
higher probability of the respective showers being initialized by quarks. For jets in the very
high-pT regime, the mixture is basically dominated by quarks; extracting the “exact” ’ fraction
of quarks and gluons in the respective phase space region using “jet topics” will be subject of
the subsequent chapter.

With the extraction of the underlying quark and gluon distributions as well as the cor-
responding fractions in mind, the ratio between the measured cross section in central and
forward region is of particular importance for the determination of the anchor bins. This cross
section ratio between central and forward jets inclusive in transverse momentum is shown in
Figure 12.20 for particle-level (12.20a) and detector-level (12.20b) inputs as it was done in case
of the counting-based observables in Chapter 11 already.

Figure 12.20 shows a curve progression already familiar from the corresponding distributions
of the counting-based observables: the ratio between central and forward cross section increase
towards higher values of the NN-score16, indicating an increased jet production rate in phase
space regions associated with the gluon.
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Plot 12.20: Ratio between the spectra for central and forward jets at particle level (left)
and detector level (right). In case of the particle level distributions, the ratio was taken
with respect to the nominal sample (Pythia) as no data exists at truth level.

12.6 Unfolding of the Cross Section Measurement
After the triple-differential multijet cross section has been reconstructed with respect to the
NN-score as predicted by the particle (and energy) flow network at detector level for simulation

16This similarity was one motivation for the definition of zNN → 1 corresponding to gluon-like jets. Of
course, the choice is completely arbitrary and does not affect the final result. Equivalently, the neural networks
(EFN and PFN alike) could have just as well been trained such that zNN → 1(0) indicates the current jet to be
initialized by a quark(gluon).
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and real pp-collision data, the measurement must be unfolded to correct the spectra for detector
and acceptance effects. With this goal in mind, this section basically follows the structure
already used for the track multiplicity and the two configurations of the SD multiplicity in
Chapter 11.5.

First and foremost (and for the sake of completeness), the first part of this section aims
to very briefly show, once again, that the contributions from background sources (Drell-Yan)
are negligible also in case of the NN-score given the degree of precision of the measurement
and therefore do not need to be subtracted prior to the unfolding step. After that, the most
important ingredients – according to Equation 5.9 – to the detector unfolding procedure, i.e.,
the actual response matrix that transform detector to particle level as well as the efficiency
and fake factors that account for losses and fakes in the phase space volume, are presented as
it was done in case of the track and SD multiplicity in the previous chapter.

Due to the very close correspondence of the PFN and the EFN, the technical aspects of the
unfolding are analyzed only for the PFN, but the statements hold true for the EFN as well.

12.6.1 Background Processes

Like it was done in case of the counting-based observables in Chapter 11.5.1, this section
is supposed to show that the contribution to the multijet cross section with respect to the
NN-score due to the most dominant reducible background process, Drell-Yan, is completely
negligible in all regions of phase space. The details of this superficial background-related study
is not supposed to be repeated at this occasion (for a detailed explanation of all individual
steps see Chapter 11.5.1).

In essence, a total number of 9.5 · 106 (18.3 · 106) events for dijet (Drell-Yan) production has
been generated at LO using MadGraph5_aMC@NLO, whereby the former one corresponds
to the signal process while the latter gives rise to background due to the chance of misidentifying
leptons as hadronic jets or those originating from hadronic tau decays. The matched tracks
are used to reconstruct jets as described in Chapter 9.2.1. generator-level events are further
processed via Pythia’s interface for LHE files for subsequent parton showering (kt-ordered)
and following hadronization (Lund-string model); furthermore, Pythia’s decay table is used
to simulate the decay to final state particles. The set of final state particles is then processes
by a simplified simulation of the whole ATLAS detector based on Delphes’ fast detector
simulation. The last step, i.e., the simulation of an imperfect measuring apparatus is essential
for the estimation of the irreducible background, which arises due to the possibility of falsely
identifying electromagnetic as hadonic showers (of course, there are also hadronic showers due
to the hadronic decay modes of the tau).

After the detector simulation step, calorimeter-clusters and inner-detector tracks are used
to reconstruct jets in the same vein as described in Chapter 9.2. Based on the set of tracks
matched to the calorimeter-based jet (according to the matching scheme introduced in Chapter
9.2.1), the inputs to the neural networks are prepared in line with the procedure explained in
Section 12.2. To obtain the NN-score (as predicted by the PFN as well as the EFN) for the
simulated set of multijet and Drell-Yan events, the exact same models like in Section 12.5 are
used to obtain the corresponding detector-level spectra.

The result of the reconstructed triple-differential cross section at detector level for multijet
events and Drell-Yan production is shown in Figure 12.21. Both distributions in Figure 12.21
have been correctly reweighted according to the weighting scheme described in Chapter 11.5.1
to account for the relative production rate between multijet and Drell-Yan events. As can be
concluded by inspecting the ratio that shows the relative contribution of the most dominant
background process to the signal, the contamination of background events is below 1‰ for all
regions in phase space considered and therefore completely negligible given the overall degree
of precision of the measurement.

To better analyze the different features of the NN-score for PFN and EFN, respectively,
for multijet and Drell-Yan events, Figure 12.22 shows the single-differential distributions for
both processes, which is obtained by marginalizing the transverse momentum as well as the
pseudorapidity in the joint distributions in Figure 12.21. The reader is, once again, reminded of
the fact that the distributions in Figure 12.22 are dominated by the low-pT region due to the high
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Plot 12.21: Triple-differential cross section with respect to the NN-score as predicted by
the PFN (left) and the EFN (right) for multijet and Drell-Yan production.
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Plot 12.22: Single-differential cross section with respect to the PFN (left) and the EFN
(right) for multijet events and for the background due to Drell-Yan.

production rate of jets with lower transverse momenta. The multijet-related distributions look
exactly as expected from the corresponding spectra in Section 12.5. Interestingly, both neural
networks (PFN and EFN alike) tend to classify fake jets due to misidentified electromagnetic
showers as gluon jets – while there is also a significant fraction of Drell-Yan-induced fake jets
classified as being quark-like. This is interesting since the corresponding background-related
study of the counting-based substructure observables showed that fake jets usually feature a
small number of constituents/emissions (compare, for instance, with Figure 11.23), which is
expected given the fact that they are induced by electromagnetic showers. Since the NN-score
is highly correlated with the number of tracks inside of the jet (see Figure 12.16), one naively
might expect an increased fraction of quark-like jets in case of Drell-Yan events. However, the
NN-score is correlated to many “latent” variables besides the number of constituents like, e.g.
the width of the shower to name just one out of many.
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12.6.2 PFN
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Plot 12.23: Full response matrix for the PFN (left) and the efficiency and fake factors
(right).

As mentioned before, the first distributions that are considered in this section are the
response matrix as well as the efficiency and fake factors for the PFN. The full response
matrix (i.e., for all phase space bins of the measurement) is shown in Figure 12.23a. The
two-dimensional distributions exhibits a structure that is already familiar from the correspond-
ing figures of the track and SD multiplicity in Chapter 11.5, i.e., most jets at particle and
detector level being reconstructed in the same phase space bin (no migrations). As explained
previously, the asymmetry in case of the (first) off-diagonal elements is explained by the
increased probability of the jet’s transverse momentum being underestimated due to the steeply
falling multijet cross section with the pT of the jet.

Figure 12.24b shows the response matrices in the central pseudorapidity category (cor-
responding to the first “quadrant” in Figure 12.23a) for the PFN with the non-equidistant
binning being explicitly visible. After the response matrix has been applied to the detector-level
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Plot 12.24: Individual response matrices for different pT regimes in central region for
the PFN-score.

spectra, the triple-differential cross section must still be corrected for efficiency losses and fake
jets; this is accounted for by the efficiency and fake factors shown in Figure 12.23b. Since the
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12.7. PARTICLE-LEVEL DISTRIBUTIONS

efficiency and fake factors have already been described in great detail in Chapter 11.5 and
the results basically corresponds to the ones obtained using the counting-based observables,
there is no need to repeat the explanation at this point. Suffice it to say that the significant
efficiency drop in the very first pT bin for both pseudorapidity categories is a consequence of
the steeply falling pT spectrum and the fact of no lower momentum bin being present for the
jets to migrate into.

12.7 Particle-Level Distributions
After the technical aspects of the unfolding step have been discussed, this section presents the
unfolded results of the triple-differential multijet cross section with respect to the NN-score
as predicted by the PFN including all relevant sources of systematic as well as statistical
uncertainties. Furthermore, some derived quantities like the average score are considered,
similarly to what was done in case of the track and SD multiplicity in Chapter 11.6. The
unfolded result of the cross section measurement given in this section also serves as the basic
input to the “jet topic” algorithm that is used in the upcoming chapter to extract the underlying
quark/gluon fractions as well as the underlying probability distributions of the respective jet
features.

12.7.1 PFN 17,18
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Plot 12.25: Individual single-differential multijet cross sections in bins of the PFN-score
zPFN for central (left) and forward (right) jets with 250 GeV ≤ pT < 350 GeV.

Before the full result of the unfolded triple-differential multijet cross section is presented,
the distribution of the NN-score predicted by the PFN is analyzed in two bins of transverse
momentum in central and forward jets with the non-equidistant binning of the score being
explicitly visible to gain an intuition for the individual sources of systematic and statistical
uncertainties for this observable. The unfolded single-differential cross sections for jets with a
transverse momentum 250 GeV ≤ pT < 350 GeV are shown in Figure 12.25 for central (12.25a)
and forward (12.25b) jets. The two examples nicely illustrate the change of the shape of the

17The corresponding numerical values of the relative triple-differential multijet cross section with respect to
this observable are provided in Table B.5 in the Appendix of this report.

18The results fro the EFN are very similar.
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differential cross section as a function of the jet’s transverse momentum: with increasing pT,
the “probability mass” of the distribution shifts towards smaller scores, indicating an increased
fraction of quark-initialized jets as expected from the underlying PDF of the proton. This
result is consistent with the expectations from the simulated multijet cross section and its
composition of quarks and gluons in Chapter 9.1 as well as the insights gained from the
detector-level distributions in the penultimate section. Regarding the systematic and statistical
uncertainties, the measurement is – as expected – dominated by the modeling uncertainties as
well as the uncertainty imposed by the jet energy scale calibration like it was the case for the
counting-based observables. As explained in Chapter 10, the modeling uncertainty consists of
three components, i.e., matrix element (ME), parton shower (PS) and hadronization (Had).
The variation of the reconstructed spectra due to higher-order corrections of the perturbative
calculation of the underlying hard (sub-)process is completely negligible because the internal
structure of jets is mostly formed by the emission of additional radiation during the subsequent
parton shower step. Also, the efficiency of the dijet-selection criteria does not vary significantly
between the LO and NLO samples. This would change if at least three jets would be required
to be present in the final state; in this case, the higher-order correction should indeed play
an important role. As expected from the previous statements, the parton-shower-related
uncertainty is among to most dominant ones for almost all regions in phase space over which
the triple-differential cross section is measured. Furthermore, the degree of uncertainty due to
the different parton shower models varies significantly between different regions in transverse
momentum. The observation of the PS-related uncertainty being dominant is completely
expected because the parton shower basically determines the internal structure of jets; hence,
most substructure observables are highly sensitive to the variation of the underlying model that
is used to simulate the emission of additional radiation in the jet. The strong dependency of the
uncertainty immediately follows from the underlying premises of the parton shower philosophy
explained in Chapter 2.4. With increasing transverse momentum of the jets, the average kt of
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Plot 12.26: Individual single-differential multijet cross sections in bins of the PFN-score
zPFN for central (left) and forward (right) jets with 1100 GeV ≤ pT < 4500 GeV.

the emissions increases (harder radiation); furthermore, the collimation angle of the radiation
decreases too, i.e., the emissions are more collinear with respect to the jet’s trunk. This implies
that higher-pT jets are closer to meet the underlying assumption of the parton shower approach
of the generated emissions being collinear. Additionally, in case of collinear radiation (as it is
the case for high-pT jets), the different ordering schemes according to the evolution variable
approach each other such that the difference between the various parton shower models reduces
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12.7. PARTICLE-LEVEL DISTRIBUTIONS

for high-pT jets. The hadronization-related uncertainty fades compared to the parton shower
one – at least in the low-pT regime. Generally, the hadronization-related uncertainty is less
dependent of the jet’s transverse momentum. Because the PS-related uncertainty decreases
with increasing transverse momentum pT, the uncertainty due to different hadronization models
becomes a non-negligible contribution to the total uncertainty of the cross section for higher-pT

jets. Regarding other sources of uncertainties, the statistical uncertainty is completely negligible
for almost all phase space regions. Only in regions associated with a very small (zNN → 0) or
very large (zNN → 1) NN-scores for low- and high-pT jets shows some lack of statistics in both,
data and simulation.

Contrary to the counting-based observables, the tracking-related uncertainties are rather
small. In case of the track/SD multiplicty, the tracking-related variations resulted in one of
the dominant components of the total uncertainty, which is expected as the counting-based
observables are obviously very sensitive to variations in the number of tracks. The neural
network on the other hand are much more stable in this regard. This can already be seen in
Figure 12.8b that shows the AUC as a function of the upper limit of the number of charged
constituents/tracks used as an input to the model.

The corresponding single-differential multijet cross sections in central and forward region
for jets with 1100 GeV < pT < 4500 GeV are shown in Figure 12.26a–12.26b. Directly
comparing the cross sections measured in the same pT bin in central (12.25a/12.26a) and
forward (12.25b/12.26b) region shows an increase in the fraction of quark-initialized jets. This
simply reflects the fact of the forward region being statistically enriched by quark-initialized
jets. Keep in mind that the “non-mutual information” (of quarks and gluons) encoded in
the central and forward cross section are the basic information from which the underlying
distributions as well as the quark/gluon fractions are derived.

According to the statements in Chapter 7, the anchor regions are determined based on the
(likelihood-)ratio between the distributions in central and forward regions, respectively. This
ratio is shown in Figure 12.27 for the two bins in transverse momentum in Figure 12.27.

The ratios show the desired behavior, i.e., they (mostly) monotonically increase – at least
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Plot 12.27: Individual ratios of the single-differential multijet cross section in central
and forward region with respect to the NN-score according to the PFN for different
transverse momentum regimes (in GeV).

in the regions relevant for the determination of the anchor bins/regions – for higher NN-scores,
indicating that the corresponding phase space region is getting purer in gluon-like jets. The
uncertainties of the cross section ratio are calculated assuming the systematic uncertainties of
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the central and forward category being fully correlated, resulting in a high degree of cancellation
and therefore overall small uncertainties associated with the ratio – the statistical uncertainties
are, of course, taken to be uncorrelated.

Figure 12.28 shows the contribution of the modeling-related uncertainty to the total
uncertainty of the multijet cross section. As explained previously, the uncertainty related to
variations due to the underlying parton shower model is a dominant source of uncertainty of
this measurement for almost all regions in phase space. Furthermore, a considerable reduction
of the PS-related uncertainty for higher-momentum jets can be observed as can be seen by
directly comparing Figure 12.28a and Figure 12.28b.

The next uncertainty to consider is the uncertainty related to tracks. In case of the SD and
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Plot 12.28: Modeling-related uncertainty for two individual single-differential multijet
cross sections in bins of the PFN-score zPFN for different pT (in GeV) regimes in central
region.

track multiplicity, the tracking-related uncertainty was – along with the uncertainty due to the
parton shower model as well as the calibration of the jet energy scale – among the dominant
sources of systeamtic uncertainties, which is expected given the fact that both jet substructure
observables basically “count” tracks. The NN-score, on the other hand, turns out to be more
robust concerning tracking-related variations as explained previously.

After the unfolded single-differential cross section has been analyzed for a few examples, it
is about time to turn the focus of attention to the full, i.e., all phase space bins, measurement
of the triple-differential multijet cross section with respect to the PFN-score zPFN. Figure 12.30
shows the unfolded triple-differential multijet cross section between each phase space bin in
terms of the global bin representation as well as the systematic and statistical uncertainties in
all bins of the measurement. The full picture of the measurement basically confirms all insights
gained from the single-differential distributions in Figure 12.25 and Figure 12.26. The total
uncertainty of the measurement is obtained by assuming all individual uncertainties (listed
in Figure 12.30) to be uncorrelated and taking the square root of the sum of the squares of
all uncertainties. The resulting total uncertainty is basically determined by the choice of the
parton shower model as well as the JES/JER uncertainty.

For better visualization, Figure 12.31 shows a summary of the uncertainty (statistical
and systematic) of the triple-differential multijet cross section with respect to the NN-score
predicted by the PFN.

In conclusion, the degree of uncertainty of the jet substructure measurement is in the order
of roughly 10 % over the entire phase space. This degree of precision is expected in case of the
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Plot 12.29: Tracking-related scale uncertainty for two individual single-differential
multijet cross sections in bins of the PFN-score zPFN for different pT (in GeV) regimes
in central region.
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Plot 12.30: Full measurement of the unfolded triple-differential multijet cross section as
a function of the global measurement bin (pT, ηrel, zPFN) at particle level including all
sources of systematic and statistical uncertainties.
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Plot 12.31: All sources of systematic and statistical uncertainties of the triple-differential
multijet cross section measurement as a function of the PFN-score.

measurement of a jet substructure observable and consistent with the results obtained in case
of the counting-based observables.

The unfolded cross section can be used to derive some further quantities like, e.g., the
average score as a function of the transverse momentum – like it was done in case of the
counting-based observables in Chapter 11. In case of the counting-based observables, the
average/mean of the probability distribution (which is given by the respective cross section with
respect to ntrk or a configuration nSD) reflects the growing number of constituents and emissions
inside of a jet with increasing transverse momentum. In case of the NN-score (PFN as well as
EFN), the interpretation is somewhat different; however, before elucidating the “evolution” of
the average NN-score as a function of pT, the reader is supposed to take a look at Figure 12.32,
which shows the just-mentioned relation between the average score 〈zNN〉 (the statements are
valid for the PFN as well as the EFN alike) and the transverse momentum pT. The first feature

Plot 12.32: Average of the NN-score as predicted by the PFN as a function of the jet’s
transverse momentum (in GeV) including all sources of uncertainties.
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12.7. PARTICLE-LEVEL DISTRIBUTIONS

that immediately catches the eye is the close correspondence of the average NN-score in Figure
12.32 with the curve progression of the quark/gluon fractions in Figure 9.1 according to the
jet-flavor definition based on the PDGID of the hardest constituent inside of the jet. This
close correlation can be understood recalling that the neural network has been trained (in a
supervised fashion) to implement a transformation of the input data such that quarks and
gluons are maximally separated in the transformed representation. This representation might
be quite complicated, however – by construction –, neural network scores with zNN → 0 and
zNN → 1 will result in highly quark- and gluon-enriched regions of phase space, respectively.
Furthermore, following the basic assumption from Chapter 7 (assuming that the measured
distributions in multijet events are a weighted combination of the underlying distributions
belonging to quark and gluon jets according to PMα

(zNN) = fMα
q Pq(zNN) + fMα

g Pg(zNN),
whereby Mα with α ∈ {central, forward} denoting the two mixtures of jets), the average
NN-score over jet mixture α is given by

〈zNN〉Mα
=

∫
[0,1]

dzNN zNNPMα
(zNN) (12.19)

=

∫
[0,1]

dzNN

{
fMα
q Pq(zNN) + fMα

g Pg(zNN)
}

(12.20)

= fMα
q

∫
[0,1]

dzNN Pq(zNN) + fMα
g

∫
[0,1]

dzNN Pg(zNN) (12.21)

= fMα
q 〈zNN〉q + fMα

g 〈zNN〉g, (12.22)

with PMα
(zNN) being the probability distribution in central or forward region. Ideally (i.e., a

perfect classifier), the mean score of quarks and gluons is given by 〈zNN〉q ≈ 0 and 〈zNN〉g ≈ 1.
In this case, Equation 12.22 reduces to 〈zNN〉Mα

≈ fMα
g , i.e., the average NN-score in Figure

12.32 closely corresponds to the gluon fraction in the respective region in phase space – if the
network would have been trained such that zNN → 1 would correspond to quark-like jets, the
average score would correspond to the quark fraction 〈zNN〉Mα ≈ fMα

q . Of course, this is only
an approximation (because the learned representation does not result in a perfect separation
of quarks and gluons), and the average score is at most highly correlated with the fraction of
gluon jets. To obtain the actual fraction of quark/gluon jets, the underlying jet features must
be extracted using the “jet topic” algorithm explained in Chapter 7, which will be the subject
of the next chapter.
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13. Disentangle Quark and Gluon Jets

A long journey is about to approach its end ... But, this is certainly not the time to get
maudlin. Shortly before the finishing line, it is appropriate to pause for a brief moment of time,
turn around and cast a brief look at most important stations of the expedition that is behind
us. This provides some little time to catch one’s breath in order to prepare for the last stage
of the trip, that is, the extraction of the underlying quark/gluon distributions/themes for all
jet substructure observables (counting- and NN-based) as well as the fraction of quarks/gluons
in the different transverse momentum bins of the measurement. But, first a quick review of
what have been done so far.

Chapter 11 and Chapter 12 of this report form a complete self-contained analysis on its own.
The triple-differential cross section in multijet events was measured with respect to several
jet substructure variables that are supposed to provide “sufficient” sensitivity to the quark-
and gluon-like characteristics of the hadronic shower that gave rise to the jet (quark-gluon
discrimination variable). The class of jet substructure observables that are investigated in
this thesis can be broadly subdivided into two categories: firstly, a set of counting-based jet
shapes like the track and SD multiplicity (with the latter one counting the number of valid
SD emissions in a C/A reclustered jet); and, secondly, a score assigned on a jet-by-jet basis
predicted by neural networks based on the “Deep Sets” architecture that allows to implement
permutation invariant functions over sets. The choice of those two classes of observables is by
no means arbitrary – on the contrary: the underlying motivation was to obtain one class of
observables featuring a simple interpretation yet decent discrimination power that is not limited
by Casimir scaling, while the second class of multivariate observables focuses on the aspect
of classification performance with the waiver of transparency on the model’s decision-making
process.

For each jet substructure observable, the total number of multijet events is measured in
several bins of transverse momentum pT, two bins of (relative) pseudorapidity ηrel as well
as one of the aforementioned jet shapes OJSS. The measurement is normalized by the total
number of events to cancel systematic uncertainties to the degree of their correlation, and
the relative event rate is simultaneously unfolded to hadron level to correct for detector and
acceptance effects.

Several sources of systematic uncertainties are taken into account such as, e.g., modeling-
related uncertainties accounting for higher-order corrections in the calculation of the hard
interaction, the utilization of different parton shower and hadronization models; the uncertainty
on the jet energy scale due to the calibration of the jet energy and its resolution; the variation
of the simulation’s prediction due to a different choices of the proton’s PDF set; the simulation
of different pile-up conditions, uncertainties due to tracking-related variations etc. In a nutshell,
it was shown that the precision of the measurement for almost all regions in phase space is
determined by the parton-shower-related uncertainty as well as the limited knowledge of the jet
energy scale and – in case of the counting-based observables – the tracking-related uncertainties.
The total degree of uncertainty of the cross section measurement is roughly between 10− 20 %
in the low- and intermediate- to high-pT regime.

As mentioned before, the results presented to this point represents a fully self-contained
analysis with plenty of applications already – especially in the context of the tuning of Monte
Carlo event generators. Especially the sensitivity of the cross section measurement to gluon-
like jets is charming in this context since, as previously stated, most of the state-of-the-art
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generators have been extensively tuned to quark-enriched samples from LEP data but not on
gluons – at least not to the same extend. It should be noted (to not create false expectations),
however, that the distributions measured do not solve the issue because the samples (over
which the cross section was measured) are sill mixtures of both, quark and gluon jets. But, the
distributions can still be used to improve the data-to-MC agreement within certain regions of
phase enriched by gluon-like jets.

With the triple-differential multijet cross section being measured for all jet substructure
observables, the next (and final) step is to extract the underlying probability distributions of
quark and gluon jets as well as their corresponding fractions in the given mixture of hadronic
jets. This problem is ill-defined ... unless ... the jet substructure observables fulfill a certain
mathematical property known as mutual irreducibility (see Chapter 7.3 for a quick repetition
of this property in the context of QCD), i.e., it is not possible to write the underlying quark
and gluon distributions as a non-trivial mixture of each other including some (arbitrary) other
distribution. All observables in this analysis are chosen in light of this criterion. This will be
done for all observables. In general, the motivation of the various cross section measurement
presented in this report was to obtain “independent” measurements of the quark/gluon fractions
in order to verify whether they are consistent with each other or not1.

In this chapter, the “jet topics” (the underlying quark/gluon “themes”/distributions) for
each jet substructure observable (ntrk, nSD and its two configurations; zPFN and zEFN) are
extracted using the method(s) introduced in Chapter 7. Some examples of the probability
distributions corresponding to quark- and gluon-like jets are presented; this corresponds to the
interpretation of quark- and gluon-like jets on distribution level according to the operational
definition of quark and gluon jets, whereby the exact composition is unknown up to this point.
Along with the distributions, the fraction of quark and gluon jets and their corresponding
uncertainties are calculated and quoted for each jet substructure variable individually.

13.1 Preparatory Work
The first part of this chapter provides some introductory work that is indispensable for the
further course of the discussion. As explained previously, the purpose of this chapter is to
extract the underlying probability distributions (in line with the operational definition of quark
and gluon jets) as well as the quark/gluon fractions in each bin of transverse momentum.
While the underlying quark and gluon distributions are – turning a blind eye to the issue of
sample-dependence of jets – are universal, the extracted fractions of quarks and gluons are, of
course, associated to a specific, well defined mixture of jets. This implies that the quark/gluon
fractions finally stated in this thesis are specific to the event selection an the resulting phase
space volume (see Table 9.3) over which the triple-differential multijet cross section is measured.
This means, in particular, that the extracted fractions are not transferable to other event
selections. This means, the analysis presented in this thesis must be repeated entirely if one
needs the quark/gluon fractions for a different selection of multijet events2.

13.1.1 Extraction of the Anchor Region
An important aspect is the determination of the anchor bins (or regions), respectively, that
are used to extract the underlying quark and gluon probability distributions as well as their
fractions, given a certain bin in transverse momentum. In principle, the reducibility factors are
determined based on the ratio of the unfolded single-differential multijet cross sections in central
and forward region according to the prescription described in Chapter 7. However, the “naive”
application of Equation 7.10 to obtain the reducibility factors results in a problem concerning
the extracted histograms and their interpretation in terms of probability distributions associated
with quark- and gluon-like jets. Furthermore, given the comparatively coarse binned histograms

1This is important in order to estimate the effect of different binnings on the extracted fractions of quarks
and gluons.

2They are transferable if and only if the additional selection cut is ecaxtly equally efficient in quark and
gluon jets (like, for instance, a cut on the azimuthal angle).
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(which does not take the evolution of the spectra with increasing transverse momentum into
account) that approximate the single-differential cross section, the calculation of the reducibility
factors themselves involves substantial complications.

To illustrate the first problem regarding the interpretation of the extracted histograms in
terms of proper probability distributions, consider, for instance, the unfolded multijet cross
section for some pT bin k in the rapidity category α(∈ {central, forward}) with respect to
one of the jets substructure observables OJSS measured in this report that is approximated
by a finitely binned histogram P kMα

(OJSS), whereby Mα corresponds to the (jet) “mixture”
in the rapidity category α. Given the reducibility factors κkM1M2

and κkM2M1
according to

Equation 7.10, the underlying “jet topics”/probability distributions associated with quarks
and gluons are obtained using Equation 7.19 by (maximally) subtracting both histograms
(central and forward) bin-by-bin, taking into account the correct factors and normalization.
This subtraction, however, may result in negative (probability) “mass” in certain bins of the
extracted quark-gluon distributions of the respective jet substructure observable, which is – of
course – in conflict with the obtained histogram corresponding to a probability distribution
because the resulting distribution is not positive definite after all. Instead, in order for
the histograms (which are considered to be an approximator of the underlying quark/gluon
distributions) to be positive definit, they must have a positive probability mass (or vanish) in
each bin of the substructure observable; otherwise, the interpretation of the distribution as
probabilities is not valid anymore.

To illustrate the problem in mathematical terms, consider the measured distribution
P kMα

(OJSS) in central (α = 0) and forward (α = 1) region, whereby P kMα,i
denotes the

probability “mass” in the ith bin of the discretized support (the bin) of the JSS observable
OJSS. According to Equation 7.10, the reducibility factor κkMαMβ

is given by

κkMαMβ
= min
OJSS

P kMα
(OJSS)

P kMβ
(OJSS)

, (13.1)

whereby α 6= β. Furthermore, the associated anchor bin O |̂JSSαβ of the JSS observable is given
by

O |̂k,αβ := arg min
OJSS

P kMα
(OJSS)

P kMβ
(OJSS)

, (13.2)

with the anchor bin O |̂kαβ not necessarily corresponding to the limits of the support (largest
and smallest value of OJSS). The latter aspect is responsible for the extracted distributions
may not being positive definite. To see this, consider, once again, the definition of the extracted
(probability) distributions associated with the quark and the gluon according to Equation 7.19.
By construction, the probability distributions must vanish for the respective anchor bin, i.e.,
P kMα

(O |̂k,βα) = 0 and P kMβ
(O |̂k,αβ) = 0, as can easily bee seen by substituting the definition of

the reducibility factor according to Equation 13.1 into Equation 7.19 for the jet topics. This
property is desired because the underlying assumption of the method is that the observable
results in (almost) pure samples of either quarks or gluons given the corresponding anchor
bin. However, if the determined anchor bin does not coincide with the limits of the support
of the JSS observable, the probability “mass” of the extracted jet distributions P kq/g,i in some
bin i below (or above) the anchor bin can easily get negative due to the subtraction step in
Equation 7.19 if P kMα

(OJSS) < κkMαMβ
P kMβ

(OJSS). This problem can be avoided if the anchor
bin is guaranteed to always correspond to the limits of the support3

3This is, of course, very reasonable because the statement of the anchor bin also is a statement about all
bins above or below it (provided that the JSS observable has been constructed accordingly), depending on

whether it corresponds to the upper or the lower limit of the phase space. For example, if O
|̂

JSSq corresponds to
the anchor bin associated with the quark, the probability of measuring a contribution from the gluon vanishes,

i.e., Pg(O
|̂

JSSq) = 0. Obviously, if the anchor bin is pure in quarks, all bins below O
|̂

JSSq must be pure as

well, i.e., Pg(i < O
|̂

JSSq) = 0, provided that the fraction of gluons decreases with decreasing values of the jet
substructure observable.
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To address this problem, the algorithm for the determination and calculation of the
reducibility factors is modified to ensure that the extracted distributions are indeed positive
definit. This can be archived by merging bins and repeating the calculation of the reducibility
factors till all bins of the extracted distributions are positive such that the resulting histograms
can be consistently interpreted as probability distributions.

The (modified) procedure goes as follows: in a first step, the reducibility factors κMαMβ
are

calculated for the unfolded single-differential multijet cross section with respect to the JSS
variable OJSS in the kth transverse momentum bin. Once the reducibility factors are known, the
underlying quark/gluon distributions are extracted and checked for negative probability masses
in each bin. If the distributions turn out to be positive definite, the algorithm terminates
and the extracted distributions are considered to be the final probability distributions of
the underlying quark/gluon features; otherwise, bins are successively merged (starting from
the phase space boundaries) and the reducibility factors are recalculated for the rebinned
distributions.

Besides the aforementioned rebinning of the histogram, the calculation of the reducibility
was modified in order to account for bins with low statistical significance as well. The problem
of bins with low statistical significance was partially already encountered in the pioneering
publication in Ref. [29] that introduced the method. In order to obtain meaningful results,
they excluded all bins below a certain number of events from the calculation of the reducibility
factors to avoid the anchor bin being chosen due to statistical noise. The reason is that bins
that are selected as being anchor bins according to Equation 7.11 might not correspond to
bins that are considered statistically significant but rather noise; furthermore – compared to
the aforementioned phenomenological study that did not include systematic uncertainties –,
the binning of the substructure observables is much coarser to allow for the measurement to
be unfolded. This removes a significant amount of quark-gluon-related information, which
therefore complicates the extraction of related features.

In the end, the scheme for the determination of the anchor region was modified to account
for the statistical uncertainties of the measurement in each bin according to

O |̂k,αβ = arg min
OJSS

(
rkαβ(OJSS) + σk,stat

αβ (OJSS)
)
, (13.3)

whereby rkαβ := P kMα
(OJSS)/P kMβ

(OJSS) and σk,stat
αβ denotes the statistical uncertainty on the

cross section ratio between central and forward jets in the kth transverse momentum bin in
the respective bin of the JSS observable. The corresponding reducibility factor is then given
by κkMαMβ

= rkαβ(OJSS = O |̂k,αβ) of the rebinned histogram. According to this modification,
bins with very large statistical uncertainties(=low statistical significance) are less likely to be
selected as an anchor bin. After each consecutive merging step, Equation 13.3 is once again
evaluated until a final configuration has been found.

The above-mentioned prescription is best illustrated with the aid of an example. Consider,
for instance, the single-differential multijet cross section in central and forward region with
respect to the SD multiplicity for emissions with kt > 400 MeV for jets with a transverse
momentum of 250 GeV < pT ≤ 350 GeV in Figure 13.1a. The uncertainty of the cross section
corresponds to the total uncertainty including all systematic and statistical sources. In the
low-momentum regime, the average number of emissions is smaller compared to jets with large
transverse momentum; hence, bins corresponding to larger multiplicities come with larger
statistical uncertainties. The rebinned distributions according to the procedure described
above are shown in Figure 13.1b. As explained above, the updated binning is determined
based on the ratio of the single-differential multijet cross sections in central and forward region,
which is shown in Figure 13.2, according to the modified algorithm to extract the anchor
bins/regions. As one can see, the binning of the phase space differs between Figure 13.1a and
Figure 13.1b, which is a consequence of the aforementioned rebinning scheme in the context
of the determination of the reducibility factors. The arranged new binning of the histograms
according to the example that is shown in Figure 13.1 is quite intuitive given distribution of
the SD multiplicity, i.e., higher tails of the distribution are sparsely populated (low statistical
significance) and are therefore not suited for the calculation of the reducibility factors. Adjacent
bins are therefore successively merged till a stable (i.e., a positive definite) and valid (i.e.,

250



13.1. PREPARATORY WORK

0 2 4 6 8 10 12 14 16 18 20

SD
Soft Drop multiplicity  n

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012S
D

/d
n

σ
) 

d
σ

C
ro

ss
 s

ec
tio

n 
 (

1/
-1=13 TeV, 139 fbs

|<2.1η R=0.4 PFlow, |
t

Anti-k

 / 1 GeV < 350
T

250 < p

Data Run 2

>0.4 GeV)
t

=0.0, k
cut

=0.0, zβ(
SD

=4),  n
it

Unfolded (n

Central

Forward

 Syst⊕Stat 

0 2 4 6 8 10 12 14 16 18 20

SDn

0.4−
0.2−

0
0.2
0.4

 fo
rw

ar
d

R
el

. e
rr

or

MC)⊕Stat (Data Unfolding PDF Tracking JES/JER Model
Other Total

0 2 4 6 8 10 12 14 16 18 20

SDn

0.4−
0.2−

0
0.2
0.4

  c
en

tr
al

R
el

. e
rr

or

MC)⊕Stat (Data Unfolding PDF Tracking JES/JER Model
Other Total

(a) Single-differential cross section in central and
forward region with the original binning.
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(b) Rebinned single-differential cross section in
central and forward region with updated binning.

Plot 13.1: Illustration of the described rebinning procedure of the measured single-
differential cross sections in central and forward region (left) for the extraction of the
rebinned distributions (right) .
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(a) Ratio between central and forward region with
the original binning.
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(b) Ratio between central and forward region with
updated binning.

Plot 13.2: Ratio of the single-differential multijet cross sections in central and forward
region (left) and for the rebinned distributions (right).

physical and meaningful) configuration is found.
The updated binning of the jet substructure observable follows naturally its evolution with

transverse momentum. For example, in case of the counting-based observables (like in Figure
13.1), one expects the anchor region (i.e., the phase space region that is supposed to be pure in
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either quark or gluon jets) to increase with transverse momentum of the jets as the number of
tracks/emissions increases with pT too. Therefore, the selection of the anchor bins/region must
somehow account for this behavior to be not limited by statistics. This is particularly true for
the counting-based observables for which the highest-multiplicity bin is sparsely populated
except for very high-pT jets (or the lowest multiplicity bins in case of very high momentum
jets).

13.1.2 Errors on Quark/Gluon Distributions and Fractions

The last part of this section is dedicated to the propagation of the uncertainties on the unfolded
triple-differential multijet cross section onto the extracted underlying quark/gluon probability
distributions as well as the corresponding fractions. The general procedure was already ex-
plained in Chapter 10.10.

As a quick reminder, the determination of the uncertainties rely on a variational approach
that is based on a repetition of the aforementioned extraction algorithm for each component of
the total uncertainty on the cross section measurement by mimicking the sampling process to
obtain a number of pseudo experiment from which the difference with respect to the nominal
distribution can be calculated. In more concrete terms, a total number of (Ntoy =)1000
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(b) Extracted distributions

Plot 13.3: Combined model uncertainty (Me, PS, Had)

variations of the unfolded multijet cross section in central and forward region are generated for
each individual component of the total uncertainty (which are assumed to be uncorrelated).
This process results in 2Ntoy spectra (central and forward) for each component of the uncer-
tainty σ±` , with ` ∈ {JES, PS, Had, ...} whereby ± denotes the upper and lower variation,
respectively. For each variation of the central and forward spectrum as well as each uncertainty,
the reducibility factor κσ

±
` ,k is recalculated (whereby k denotes the respective transverse

momentum bin), resulting in a new set of reducibility factors {κσ
±
` ,k,m
ij }m∈[1,Ntoy] associated to

each component of the uncertainty and associated variations of the underlying distributions
{P (OJSS)

σ±` ,k,m

g(q) }m∈[1,Ntoy]. Figure 13.3 show some examples of the variation of the reducibility
factor for the respective component of the uncertainty (left) as well as the corresponding
uncertainty on the extracted quark/gluon distributions (right). For instance, Figure 13.3
shows the model-related variation of the reducibility factors in each transverse momentum
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bin of the measurement (13.3a) as well as the model-related uncertainty on the extracted
distributions (13.3b) specific for all jets with 250 GeV < pT < 350 GeV to stay consistent with
the previous examples. In Figure 13.3a, the “candles” show the mean (circle), the median/50%
quartile (horizontal bar) as well as the lower (Q1/25%) and higher (Q3/75%) quartile of the
distribution of reducibility factors in each transverse momentum bin. As yet another example
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(d) Extracted distributions

Plot 13.3: Examples for the variation of the reducibility factors (central over forward
and vice versa) in each transverse momentum bin (left) as well as the corresponding
uncertainties on the extracted quark/gluon distributions for jets with 250 GeV < pT <
350 GeV (right) for variations related to the modeling (top) as well as the PDF uncertainty
(bottom).

for a smaller uncertainty, Figure 13.3c-13.3d shows the PDF-related uncertainty. As it was
shown in the previous chapters for the triple-differential multijet cross section as a function
of the counting- and NN-based JSS observables, this uncertainty is small; consequently, the
uncertainty on the underlying distributions due to this component turns out to be small as
well.

To get the uncertainty on the extracted underlying quark/gluon distributions associated
with σ±` , the lower and upper quartile is calculated bin-by-bin based on the variations with
respect to the nominal value.

At the end of this section it should be noted, that (according to the algorithm described
in Chapter 7) for each variation of the distribution and the concomitant variation of the
reducibility factor as well as the corresponding variation in the underlying quark/gluon distri-
butions, a varied fraction of gluon-like jets in the respective transverse momentum bin (see
Equation 7.4) is obtained – keep in mind, that the underlying distributions are assumed to be
universal, i.e., the measured spectra in central and forward regions are given by the weighted
sum of the underlying probability distributions, whereby the weights are given by the fraction
of quarks and gluons in the sample (see Equation 7.4). This implies that there is a set of

new gluon(quark) fractions {fσ
±
` ,k,m

g(q) }m∈[1,Ntoy] for each component of the uncertainty. The
uncertainty on the gluon fraction associated to the variation σ` is then simply given by the
upper and lower quartile of the sample.
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13.2 Extraction of Quark/Gluon-Related Features
With the triple-differential multijet cross sections for all jet substructure observables being
unfolded and all preparatory work being completed, this section finally presents the results for
the extracted quark/gluon probability distributions as well as the derived quark/gluon fractions
in all transverse momentum bins. The main focus of this section is the fraction of gluon-like
jets according to the operational definition introduced in Chapter 7.2 for the counting-based
(13.2.1) as well as the NN-based (13.2.3) jet shapes; additionally, the extracted underlying
quark/gluon (probability) distributions are shown for some selected examples.

The jet themes are extracted following the procedure explained in Chapter 7 including the
modifications in the determination of the anchor regions and the reducibility factors derived
therefrom (see previous section). The “propagation” of the uncertainties of the unfolded multijet
cross section onto the extracted distributions as well as the quark/gluon fractions was explained
in Chapter 10 as well as in the previous section.

13.2.1 Track Multiplicity ntrk

This section presents results for the track multiplicity ntrk. Figure 13.4 shows the measured
single-differential multijet cross section with respect to the track multiplicity in central and
forward region in two bins of transverse momentum including all sources of statistical and
systematic uncertainties, which corresponds to results already shown in Chapter 11.6.1, but in
a different representation.

The ratio between both spectra in central and forward region, which are used to calculate
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Plot 13.4: Rebinned distributions in central and forward region with respect to the track
multiplicity ntrk for different transverse momentum (in GeV) bins including uncertainties.

the reducibility factors, are shown in Figure 13.5 for the very same pT bins.
Once the reducibility factors have been inferred from Figure 13.5, both spectra in central

and forward region are subtracted from each other according to Equation 7.21 to obtain the
underlying quark and gluon probability distributions according to the operational definition
of quark- and gluon-like jets (see Definition 2). The extracted quark/gluon distributions
along with all sources of statistical and systematic uncertainties are shown in Figure 13.6
for the already familiar transverse momentum bins 250 GeV < pT ≤ 350 GeV (13.6a) and
1100 GeV < pT ≤ 4500 GeV (13.6b). Additionally, the quark/gluon distributions as predicted
by Pythia 8.230 (at LO) have been included for the purpose of comparing the result of the
operational definition of jets with the prediction of the maximum-pT approach to the jet flavor.
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Plot 13.5: Ratio between central and forward jets with respect to the track multiplicity
ntrk for different transverse momentum (in GeV) bins including uncertainties.
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Plot 13.6: Extracted underlying quark/gluon(-like) distributions with respect to the track
multiplicity ntrk for different transverse momentum (in GeV) bins including uncertainties.

Regarding the uncertainties in Figure 13.6a and 13.6b, keep in mind that the cross section of
quark- and gluon-like jets in the anchor regions vanishes by construction (compare to Equation
12.19e). I.e., according to the premises of the operational definition of quark and gluon jets,
the first multiplicity bin in Figure 13.6 is assumed to be pure in quark-like jets; consequently,
the relative – not the absolute! – uncertainty in this bin is infinite by construction.

Each distribution in Figure 13.6 show the desired features, i.e., an (on average) smaller
number of tracks associated to jets originating from quarks and a larger number of emissions for
gluon-like jets. Furthermore, the number of tracks in the jet increases for increasing transverse
momentum as can be seen by comparing Figure 13.6a and Figure 13.6b.
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Plot 13.7: Extracted gluon fractions (left) and average number of tracks for quark- and
gluon-like jets (right) as a function of transverse momentum including uncertainties.

Besides the underlying probability distributions of quark and gluons, their fractions within
each bin of transverse momentum are extracted using the approach outlined in Chapter 7.2.
The result of the extracted fractions of gluon-initialized jets using the triple-differential multijet
cross section with respect to the track multiplicity is shown in Figure 13.7a. Besides the
fraction of gluon-like jets in each pT bin of the measurement, the average number of tracks for
quark- and gluon-like jets was determined using the extracted distributions shown in Figure
13.6. The average number of tracks including all sources of uncertainties is shown in Figure
13.7.

Figure 13.7a, on the other hand, shows the fraction of gluon-like jets in both categories of
pseudorapidity as well as in each bin of transverse momentum. Figure 13.8a shows the fraction
of gluon jets inclusive in pseudorapidity, i.e., for the combined sample of central and forward
jets. Similarly, Figure 13.8b shows the fraction of gluons in central and forward region inclusive
in transverse momentum, i.e., over all pT bins. Figure 13.8b nicely supports the statement of
multijet events generally being generally enriched in gluon-initialized jets.

To give some impression of the actual numerical values of the fraction of gluon-initialized jets
(according to the operational definition of quarks and gluons), Table 13.1 shows the extracted
fraction based on the cross section as a function of the track multiplicity for the central and
forward jet sample in each bin in transverse momentum of the measurement including its
uncertainties. Furthermore, a combined result for central and forward jets is presented.
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Plot 13.8: Extracted gluon fractions inclusive in (relative) pseudorapidity (left) and
inclusive in transverse momentum (right) including uncertainties.

Transverse Momentum pT [GeV]

[250, 350) [350, 500) [500, 700) [700, 1100) [1100, 4500) [250, 4500)

Rapidity category ηrel Fraction of gluon(quark)-like jets fg(1− fg)
+σup

stat⊕σ
up
syst

−σdn
stat⊕σdn

syst
obtained from n>500 MeV

trk

Central 0.647 +0.012⊕ 0.063
−0.012⊕ 0.068 0.623 +0.006⊕ 0.038

−0.006⊕ 0.039 0.557 +0.009⊕ 0.048
−0.009⊕ 0.047 0.528 +0.004⊕ 0.038

−0.004⊕ 0.036 0.375 +0.012⊕ 0.034
−0.013⊕ 0.034 0.640 +0.009⊕ 0.058

−0.009⊕ 0.062

Forward 0.554 +0.014⊕ 0.070
−0.015⊕ 0.079 0.513 +0.007⊕ 0.041

−0.008⊕ 0.043 0.424 +0.012⊕ 0.049
−0.012⊕ 0.051 0.402 +0.004⊕ 0.033

−0.004⊕ 0.032 0.290 +0.013⊕ 0.030
−0.014⊕ 0.030 0.543 +0.011⊕ 0.064

−0.012⊕ 0.071

Combined 0.601 +0.019⊕ 0.066
−0.019⊕ 0.073 0.568 +0.010⊕ 0.040

−0.010⊕ 0.041 0.491 +0.015⊕ 0.049
−0.016⊕ 0.049 0.465 +0.006⊕ 0.035

−0.006⊕ 0.034 0.333 +0.018⊕ 0.032
−0.020⊕ 0.032 0.591 +0.014⊕ 0.061

−0.015⊕ 0.066

Table 13.1: Numerical values of the extracted gluon fractions including its uncertainties
for the unfolded measurement of the tripe-differential multijet cross section as a function
of the track multiplicity ntrk.

13.2.2 SD Multiplicities nSD

This section basically follows the previous one, but shows the corresponding results for
the extracted underlying quark/gluon distributions and gluon fractions for one out of two
configurations of the SD multiplicity introduced in Chapter 11.1.3 (both configurations of the
SD multiplicity give very similar results).

The first two figures in Figure 13.9 show the measured single-differential multijet cross
section as a function of the SD multiplicity nSD(kt ≥ 400 MeV) in central and forward region
including all sources of statistical and systematic uncertainties.

The corresponding ratio between the two pseudorapidity categories is shown in Figure
13.10.

With the relative multijet event rate in central and forward region being measured and
the reducibility factors being calculated based on it, the underlying probability distributions
associated with quark-like and gluon-like jets can be extracted; the results are shown in Figure
13.11 for nSD(kt ≥ 400 MeV) and for nSD(zcut = 0.1, β = 1, θcut = 0.002) in Figure 13.12.

The extracted quark and gluon distributions exhibit the expected features. While the
spectra in central and forward region only differ marginally due to the similar fractions of quark-
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Plot 13.9: Rebinned distributions in central and forward region with respect to the
SD multiplicity nSD(kt ≥ 400 MeV) for different transverse momentum (in GeV) bins
including uncertainties.
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Plot 13.10: Ratio between the single-differential multijet cross section as a function of
nSD(kt ≥ 400 MeV) in central and forward region for different transverse momentum (in
GeV) bins including uncertainties.

and gluon-initialized jets in both rapidity categories, the extracted underlying distributions
(“jet topics”) differ noticeably for quark- and gluon-like jets. Furthermore, the mean of the
quark and gluon distributions increase with transverse momentum, reflecting the growing
number of emissions like it was already observed in the case of ntrk.

The extracted fraction of gluon-like jets in each pseudorapidity and transverse momentum
bin is shown in Figure 13.13 for nSD(kt > 400 MeV) (13.13a) and nSD(zcut = 0.1, β = 1, θcut =
0.002) (13.13b).
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(b) pT ∈ [1100, 4500)

Plot 13.11: Extracted underlying quark/gluon distributions with respect to the SD
multiplicity with nSD(kt ≥ 400 MeV) for different transverse momentum (in GeV) bins
including uncertainties.
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(b) pT ∈ [1100, 4500)

Plot 13.12: Extracted underlying quark/gluon distributions with respect to the SD
multiplicity with nSD(zcut = 0.1, β = 1, θcut = 0.002) for different transverse momentum
(in GeV) bins including uncertainties.

As one can see, simulation and model-independent/data-driven measurement are in good
agreement given the uncertainties, indicating that the procedure of calculating the reducibility
factors by means of rebinning the distributions provides reasonable results indeed. The
experimental uncertainty of the extracted gluon fraction strongly depends on the uncertainty
associated to the anchor bin/region, which may vary between different bins of transverse
momentum. As expected from the underlying PDFs of the quarks and the gluon, the fraction
of gluon-initialized jets in the central rapidity category is larger compared to forward jets.
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Plot 13.13: Extracted gluon fractions for nSD(kt ≥ 400 MeV) (left) and for nSD(zcut =
0.1, β = 1, θcut = 0.002) (right) including uncertainties.

Last but not least, Figure 13.15 shows the fraction of gluon-like jets in both pseudorapidity
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Plot 13.14: Extracted gluon fractions inclusive in pseudorapidity for nSD(kt ≥ 400 MeV)
(left) and for nSD(zcut = 0.1, β = 1, θcut = 0.002) (right) including uncertainties.

categories inclusive in pT for all configurations of the SD multiplicity including all sources of
uncertainties.

The extracted underlying probability distributions of quark and gluon jets can also be
used to derive a ROC curve for each transverse momentum bin in a solely data-driven manner
to quantify the, e.g., efficiency in gluon-like jets versus the rejection of quark-like jets – or
vice versa. This is tempting because it allows to define working points (including systematic
uncertainties) for the selection of gluons and quarks, respectively. Two examples for ROC
curves are shown in Figure 13.16 for two bins in transverse momentum for the track multiplicity
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Plot 13.15: Extracted gluon fractions inclusive in transverse momentum for nSD(kt ≥
400 MeV) (left) and for nSD(zcut = 0.1, β = 1, θcut = 0.002) (right) including uncertain-
ties.

(13.16a) and the SD multiplicity nSD(kt ≥ 400 MeV) (13.16b) to provide a comparison for both
observables.

To also provide a numerical example of the extracted gluon fractions based on the unfolded
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Plot 13.16: Data-based ROC curve for jets with 250 GeV < pT ≤ 350 GeV (solid) and
1100 GeV < pT ≤ 4500 GeV (dashed) for the track multiplicity (left) and SD multiplicity
nSD(kt ≥ 400 MeV) (right).

multijet cross section with respect to the SD multiplicity, Table 13.2 shows the fraction of jets
originating from gluons that was calculated based on the measured triple-differential multijet
cross section as a function of the default configuration of the SD multiplicity (see corresponding
results in Chapter 11.6.2).

For most transverse momentum bins, the extracted fractions of gluon-initialized jets are
consistent within their uncertainties.
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Transverse Momentum pT [GeV]

[250, 350) [350, 500) [500, 700) [700, 1100) [1100, 4500) [250, 4500)

Rapidity category ηrel Fraction of gluon(quark)-like jets fg(1− fg)
+σup

stat⊕σ
up
syst

−σdn
stat⊕σdn

syst
obtained from nSD(kt > 400 MeV)

Central 0.649 +0.007⊕ 0.061
−0.007⊕ 0.062 0.605 +0.005⊕ 0.045

−0.005⊕ 0.043 0.539 +0.012⊕ 0.040
−0.013⊕ 0.039 0.498 +0.003⊕ 0.035

−0.003⊕ 0.034 0.383 +0.014⊕ 0.071
−0.014⊕ 0.064 0.638 +0.006⊕ 0.057

−0.006⊕ 0.058

Forward 0.567 +0.008⊕ 0.066
−0.009⊕ 0.073 0.496 +0.006⊕ 0.044

−0.006⊕ 0.044 0.409 +0.016⊕ 0.040
−0.016⊕ 0.041 0.374 +0.003⊕ 0.030

−0.003⊕ 0.029 0.306 +0.014⊕ 0.059
−0.015⊕ 0.055 0.549 +0.007⊕ 0.061

−0.007⊕ 0.066

Combined 0.608 +0.011⊕ 0.063
−0.012⊕ 0.067 0.551 +0.008⊕ 0.044

−0.008⊕ 0.043 0.474 +0.021⊕ 0.040
−0.022⊕ 0.040 0.436 +0.005⊕ 0.032

−0.005⊕ 0.031 0.345 +0.020⊕ 0.065
−0.021⊕ 0.060 0.593 +0.009⊕ 0.059

−0.009⊕ 0.062

Table 13.2: Numerical values of the extracted gluon fractions including its uncertainties
for the unfolded measurement of the relative tripe-differential multijet cross section as a
function of the SD multiplicity with kt > 400 MeV.

Transverse Momentum pT [GeV]

[250, 350) [350, 500) [500, 700) [700, 1100) [1100, 4500) [250, 4500)

Rapidity category ηrel Fraction of gluon(quark)-like jets fg(1− fg)
+σup

stat⊕σ
up
syst

−σdn
stat⊕σdn

syst
obtained from nSD(zcut = 0.1, β = 1, θcut = 0.002)

Central 0.608 +0.008⊕ 0.057
−0.008⊕ 0.060 0.595 +0.003⊕ 0.040

−0.003⊕ 0.040 0.521 +0.004⊕ 0.044
−0.004⊕ 0.045 0.502 +0.005⊕ 0.035

−0.005⊕ 0.035 0.389 +0.021⊕ 0.076
−0.023⊕ 0.115 0.603 +0.006⊕ 0.053

−0.007⊕ 0.055

Forward 0.529 +0.009⊕ 0.061
−0.009⊕ 0.069 0.495 +0.004⊕ 0.042

−0.004⊕ 0.044 0.393 +0.005⊕ 0.046
−0.005⊕ 0.049 0.382 +0.006⊕ 0.034

−0.006⊕ 0.034 0.308 +0.023⊕ 0.081
−0.027⊕ 0.126 0.519 +0.007⊕ 0.056

−0.007⊕ 0.063

Combined 0.569 +0.012⊕ 0.059
−0.013⊕ 0.064 0.545 +0.005⊕ 0.041

−0.005⊕ 0.042 0.457 +0.006⊕ 0.045
−0.006⊕ 0.047 0.442 +0.008⊕ 0.034

−0.008⊕ 0.034 0.349 +0.032⊕ 0.078
−0.037⊕ 0.121 0.561 +0.010⊕ 0.055

−0.010⊕ 0.059

Table 13.3: Numerical values of the extracted gluon fractions including its uncertainties
for the unfolded measurement of the relative tripe-differential multijet cross section as a
function of the SD multiplicity nSD(zcut = 0.1, β = 1, θcut = 0.002) .

13.2.3 NN-Score zNN

This brief section shows the quark/gluon fractions that are derived based on the unfolded
cross sections with respect to the NN-score predicted by the two energy flow networks. Due to
the great similarity of both networks (keep in mind that the score predicted by the PFN and
the EFN is highly correlated as it was shown in Chapter 12.4), most results presented in this
section are obtained using the PFN, but are fully transferable to the corresponding EFN ones
if not explicitly mentioned otherwise.

Like in case of the counting-based observables, Figure 13.17 shows the rebinned distributions
for the single-differential multijet cross section in central and forward region including all
sources of uncertainties for two transverse momentum bins.

The ratios between the spectra of the two pseudorapidity categories for the corresponding
transverse momentum bins are shown in Figure 13.18, which are used to calculate the reducibil-
ity factors.

The next Figure 13.19 shows the extracted underlying quark/gluon probability distribu-
tions with respect to the PFN-score in two transverse momentum bins. The corresponding
distributions with respect to the score predicted by the EFN look very similar and are therefore
omitted at this point.

The corresponding fractions of gluon-initialized jets are shown in Figure 13.20 for central
and forward jets (13.20a) as well as inclusive in the pseudorapidity category (13.20b). The
total fraction of gluon-like jets (combined sample of central and forward jets) in each pT bin is
summarized in Figure 13.21a for the PFN; furthermore, Figure 13.21b shows the ROC curves
for jets with 250 GeV < pT ≤ 350 GeV (solid) and 1100 GeV < pT ≤ 4500 GeV (dashed).

Finally, Table 13.4 summarizes the fraction of gluon-initialized jets4 in central and forward
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13.2. EXTRACTION OF QUARK/GLUON-RELATED FEATURES
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Plot 13.17: (Rebinned) distributions in central and forward region with respect to
the NN-score predicted by the PFN for different transverse momentum (in GeV) bins
including uncertainties.
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(b) pT ∈ [1100, 4500)

Plot 13.18: Ratio between central and forward jets with respect to the NN-score as
predicted by the PFN for different transverse momentum (in GeV) bins including
uncertainties.

region, the fraction for the combined samples of central and forward jets as well as the total
fraction of gluons in both rapidity categories over all transverse momentum bins.

4Keep in mind that corresponding numbers for the fractions of (light) quark-like jets can easily be obtained
by using the relation fkq = 1 − fkg , whereby the upper index denotes the kth transverse momentum bin.
Consequently, the uncertainties remain unchanged in case of quark-initialized jets.
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(b) pT ∈ [1100, 4500)

Plot 13.19: Extracted (rebinned) underlying quark/gluon distributions with respect to
the NN-score as predicted by the PFN for different transverse momentum (in GeV) bins
including uncertainties.
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Plot 13.20: Extracted gluon fractions according to the PFN for central and forward jets
(left) and for the combined sample of central and forward jets (right) as a function of
transverse momentum including uncertainties.
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Plot 13.21: Extracted gluon fractions inclusive in transverse momentum according to
the PFN (left) as well two ROC curves (right).

Transverse Momentum pT [GeV]

[250, 350) [350, 500) [500, 700) [700, 1100) [1100, 4500) [250, 4500)

Rapidity category ηrel Fraction of gluon(quark)-like jets fg(1− fg)
+σup

stat⊕σ
up
syst

−σdn
stat⊕σdn

syst
obtained from zPFN

Central 0.614 +0.005⊕ 0.026
−0.005⊕ 0.026 0.582 +0.003⊕ 0.017

−0.003⊕ 0.017 0.536 +0.001⊕ 0.014
−0.001⊕ 0.013 0.467 +0.002⊕ 0.019

−0.002⊕ 0.018 0.346 +0.007⊕ 0.026
−0.007⊕ 0.025 0.605 +0.004⊕ 0.024

−0.004⊕ 0.024

Forward 0.538 +0.005⊕ 0.028
−0.005⊕ 0.029 0.478 +0.003⊕ 0.018

−0.003⊕ 0.018 0.416 +0.001⊕ 0.013
−0.001⊕ 0.013 0.350 +0.002⊕ 0.015

−0.002⊕ 0.015 0.268 +0.006⊕ 0.022
−0.007⊕ 0.021 0.523 +0.004⊕ 0.026

−0.004⊕ 0.026

Combined 0.576 +0.007⊕ 0.027
−0.007⊕ 0.027 0.530 +0.004⊕ 0.018

−0.004⊕ 0.018 0.476 +0.001⊕ 0.013
−0.001⊕ 0.013 0.408 +0.002⊕ 0.017

−0.002⊕ 0.017 0.307 +0.009⊕ 0.024
−0.010⊕ 0.023 0.564 +0.005⊕ 0.025

−0.005⊕ 0.025

Table 13.4: Numerical values of the extracted gluon fractions including its uncertainties
for the unfolded measurement of the relative tripe-differential multijet cross section as a
function of the NN-score as predicted by the PFN.
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13.2.4 Topics for (Non-)Mutual Irreducible Observables
As explained in Chapter 7.4, in order for the demixing procedure to be applicable, the jet
substructure observable that is used to measure the rate of multijet events must be mutually
irreducible (see Chapter 7.3 for a quick reminder of this concept); otherwise, the extracted
fractions and probability distributions will not correspond to features related to quark- and
gluon-like jets. In fact, the unmixing procedure will fail in most circumstance like resulting in
non-physical results as, for instance, negative fractions etc. However, as mentioned previously,
the fractions of gluon-initialized jets over some phase space that have been extracted using a
suited jet substructure observable (like the track or SD multiplicity) are universal and therefore
can be – once they are known – used to extract the underlying quark/gluon probability
distributions for observables that are not mutual irreducible provided that the cross section
measurement has been performed over the exact same phase space volume. The latter point
is of major importance, because different selection cuts may come with different efficiencies
in quark and gluon jets and therefore change the fraction of those particles in the respective
sample of jets. Furthermore, the extracted fractions are both infrared and collinear safe and
therefore can be compared to theoretical calculations.

The universality of the extracted gluon/quark fractions as well as their property of being
IRC safe opens a vast range of possible applications some of which will be further outlined
in the proposal of “future research suggestions” in the end of this report. This final section
merely serves the purpose to demonstrate how the extracted quark/gluon fractions can be used
to obtain the underlying probability distributions related to quark- and gluon-like jets for a
jet (substructure) observable that is not mutually irreducible by means of one examples: the
(pT-)normalized jet mass ρ. Furthermore, the underlying quark/gluon themes are extracted for
the SD multiplicity with nSD(zcut = 0.1, θcut = 0.002) (with β = 0) based on the fractions that
have been measured from the triple-differential multijet cross section despite being mutibile
irreducible by itself and therefore suited to directly unmix the distributions.

Normalized Jet Mass
The normalized jet mass is given by the invariant mass of an SD groomed jet divide by the
transverse momentum of the non-groomed jet according to

ρtrk = log
(
(mSD

trk)2/(pT)2
)
, (13.4)

whereby the pT of the ungroomed jet is used because groomed transverse momentum is not
IRC safe5. The normalized jet mass possesses some interesting features like the factorization
of the distribution related to different physical processes. The lower tail of the distribution
is usually associated with hadronization effects that can not be calculated analytically using
perturbation theory (non-perturbative regime). In the middle section, on the other hand, the
cross section is mostly described by means of resummation. The binning of the normalized jet
mass is summarized in Table 13.5.

Two examples for the normalized jet mass are shown in Figure 13.22 for the familiar

Observable Binning Unit

ρtrk
[−15,−12) [−12,−8) [−8,−7) [−6.5,−6) [−6,−5.5) [−5.5,−5)
[−5,−4.5) [−4.5,−4) [−4,−3.5) −3.5,−3) [−3,−2) [−2,−1]

none

Table 13.5: Binning of the normalized jet mass.

transverse momentum bins 250 GeV < pT ≤ 350 GeV (13.22a) and 1100 GeV < pT ≤ 4500 GeV
(13.22b).

Like it was the case for all observables studied within the context of this thesis, the relative

5In this example, the invariant mass of the jet is calculated from tracks and therefore not IRC safe in the
first place.
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Plot 13.22: Distributions in central and forward region as a function of the normalized
jet mass for different transverse momentum (in GeV) bins including uncertainties.

event rate was measured for central and forward jets. Closer inspecting both distributions
in Figure 13.22 by eye reveals very little differences between the measured cross section for
central and forward jets, indicating low sensitivity to features related to quark- and gluon
initialized jets – only the resummation region shows some noticeable differences between both
rapidity categories due to the sensitivity to the color ratio CA/CF.

The small sensitivity concerning quark- and gluon-related features already suggests that
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Plot 13.23: Extracted underlying quark/gluon distributions with respect to the normal-
ized jet mass for different transverse momentum (in GeV) bins including uncertainties.

the (normalized) jet mass being not mutual irreducible; hence, the underlying probability
distributions of quarks and gluons can not be extracted using the procedure outlined in Chapter
7.2. However, because the fractions of gluon-like jets are known in each pT bin (after the
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analysis that was presented in this report), the degeneracy of the system of equations 7.4 is
broken and can be solved for the unknown distributions related to quarks and gluons by means
of Equation 7.56 given the known spectra in central and forward region.

The result for the extracted quark/gluon distributions in case of the normalized jet mass
are shown in Figure 13.23, whereby the quark/gluon fractions from Table 13.4 (PFN) have
been used to solve Equation 7.4 for the unknown distributions.

The extracted distributions in Figure 13.23 show some interesting features whereby special
attention is paid to the gluon-related spectra in the resummation region. As can be seen in
Figure 13.23a, the gluon-related distribution increases mostly linearly in the resummation
region; the slope of the linear growth is proportional to the strong coupling constant and
therefore opens a potential window to extract αS based on a jet substructure measurement,
which is the idea outlined in Ref. [46] by M. LeBlanc, B. Nachman, and C. Sauer.

SD Multiplicity nSD(zcut = 0.1, θcut = 0.002)

The last observable to consider is the SD multiplicty with nSD(zcut = 0.1, θcut = 0.002). The
mutual irreducibility of the SD multiplicity has been explicitly shown in Chapter 7.3 by means
of an analytic calculation of the cross section at LL. Therfore, the unmixing procedure could be
directly applied in order to obtain the underlying distributions of quark- and gluon-initialized
jets as well as the fraction of quark and gluons in each bin of transverse momentum. However,
because the fractions have already been consistently measured already, the underlying jet
features can be extracted the very same way as it was done in case of the normalized jet mass
as well as the momentum fraction.

The next configuration in line of all SD multiplicities corresponds to a lower cut on

Observable Binning Unit

zg
[0, 2) [2, 3) [3, 4) [4, 5) [5, 6) [6, 7) [7, 8) [8, 9) [9, 20) none

Table 13.6: Binning of the SD Multiplicity nSD(zcut = 0.1, θcut = 0.002).

the momentum fraction zcut = 0.1 while keeping the algorithm completely insensitive to the
emission angle6 (β = 0). The binning is shown in Table 13.6.

As previously state in Section 11.2, this corresponds to a very aggressive form of grooming
that gets rid of all emissions inside of the jet whose momentum fraction with respect to the
jet’s “trunk” is below 10 % irregardless of the radiation angle. This configuration of the (I)SD
algorithm puts a tight constraint on the region of possible emissions as can be seen in Equation
11.7; hence, a significant shift of the SD multiplicity distribution towards lower multiplicities
compared to the other configurations of the ISD algorithm is expected. Furthermore, as the
jet’s transverse momentum increases, so does (on average) the emissions’ kt. It is therefore
anticipated that the multiplicity distributions only change slightly in the high-pT regime
compared to softer jets that are accompanied by softer radiation on average. The resulting
spectra in central and forward region are shown in Figure 13.24 for two pT bins.

The extracted underlying probability distributions for quark- and gluon-like jets are shown
in Figure 13.25, whereby the fractions from Table 13.4 (PFN) have been used to solve Equation
7.56 for the unknown distributions. Regarding the data-to-MC agreement, the exclusion of soft
radiation (no matter if very collinear or wide-angled) results in excellent agreement between
data and simulation for most regions of phase space.

6The only sensitivity to the angular component is a lower cut of θ = 0.002 on the emission angle
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Plot 13.24: Distributions in central and forward region as a function of the SD multiplicity
nSD(zcut = 0.1, θcut = 0.002) for different transverse momentum (in GeV) bins including
uncertainties.
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Plot 13.25: Extracted underlying quark/gluon distributions with respect to the SD
Multiplicity nSD(zcut = 0.1, θcut = 0.002) for different transverse momentum (in GeV)
bins including uncertainties.
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14. Conclusion

With the fractions as well as the underlying probability distributions of gluon-initialized
jets being measured in all bins of transverse momentum and both categories of the relative
pseudorapidity, the analysis is concluded; thus, this document is also approaching its end.
Hopefully, it was an exciting and educational journey! Before shutting this report for good
and turning the focus of attention to more important facets of life, this very last chapter is
supposed to provide a brief discussion (14.1) of the insights gained within the course of this
analysis along with some critical reflection thereof. In doing so, the most important stations
are walked through once again, starting with a quick reminder of the individual steps and
their motivation but with a main focus on the physical insights along with their interpretation.
After that, the scope of this measurement is broadened by going beyond the boundaries and
constraints of this analysis with the objective to embed the results of this study into a larger
overall context and to provide some outlook for further research projects (14.2), which may
build on (or benefit from) the insight and results presented in this document.

14.1 Summary and Discussion

This analysis can roughly be divided into two consecutive steps that build on top of each other,
i.e., the measurement of the triple-differential multijet cross section as a function of several jet
substructure observables at a centre-of-mass energy of 13 TeV using an integrated luminosity
of 139 fb−1 of data collected with the ATLAS detector in proton-proton collisions at the LHC
during Run 2 (2015–2018) of data taking, and the extraction of the underlying quark/gluon
probability distributions as well as the fractions of quark- and gluon-initialized jets in several
regions of phase space. Accordingly, this discussion will focus on both parts individually.

The overall idea of this analysis was, very generally speaking, to study (light) quark- and
gluon-initialized jets at the LHC. This is a challenging task in general as at hadron-hadron
colliders (like the LHC), it is almost impossible to obtain pure samples in either quark- or
gluon-initialized hadronic showers, because one always deals with a mixture of jets due to
the underlying PDFs and the resulting statistical nature of the sampling process of quarks
and gluons that constitute the proton as an emergent object. This implies that the fractions
of quarks and gluons in a given sample of jets are generally unknown, which makes it very
challenging to study quark/gluon-related properties at hadron colliders in general. Furthermore,
the concept of quarks and gluons is theoretically ill defined (see Chapter 7.1.1) at the level of
individual jets beyond leading order approximation.

The analysis that has been presented in this thesis aims to break the aforementioned degen-
eracy of mixed samples from hadron-hadron collisions based on a multi-differential cross section
measurement over multijet events that provides some sensitivity to the quark- or gluon-like
nature of the hadronic shower at the level of the hadronic cross section. This is achived by
measuring the number of multijet events as a function of a jet substructure observable OJSS

that provides some discrimination power between quarks and gluons. Broadly speaking, the
JSS variables, which have been studied within the context of this thesis, can be divided into
two categories: the first set of JSS observables is constructed by iteratively declustering and
counting charged constituents of a jet that has been (re-)clustered using the C/A algorithm; the
second set is based the output predicted by DNNs derived from the “deep sets” paradigm (see
Chapter 6.3) to implement permutation invariant functions over sets and therefore naturally
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respecting symmetries associated with jets. Besides the discrimination variable, the (relative)
event rate is determined in several regions of transverse momentum (see Table 9.4) with the
objective to extract the fraction of quark- and gluon-like jets as a function of pT. The fraction
of gluon-initialized jets is known to decrease with increasing transverse momentum of the jets
as the momentum of the jets is highly correlated with the energy scale x ∝ pT/

√
s at which the

initial proton has been probed. Besides that, the unmixing procedure requires two orthogonal
samples of jets that are enriched by either quarks and gluons, respectively, to extract the
underlying features associated with the two classes of partons. Therefore, the cross section is
also measured in two disjoint categories of different “regions” that are defined by the relative
orientation of the two leading-pT jets with 250 GeV < pT < 4.5 TeV as well as |η| < 2.1 in the
event. Both orthogonal categories of relative pseudorapidity result in two mixtures, Mα with
α ∈ {central, forward}, of jets that differ concerning their composition of quarks and gluons.
This is the case because the momentum fraction x is not only correlated with the momentum
of the jet but also with the hyperbolic cosine of the pseudorapidity1. The difference in quarks
and gluons between both categories of relative pseudorapidity is not very pronounced, but it is
sufficient2 to be able to extract their underlying fractions. The final cross section measurement
is inclusive because all events with at least two jets that pass the event selection contribute to
the event yield.

The input that enters the measurement are jets that have been reconstructed from PFlow
objects (see Chapter 4.4) using the anti-kt algorithm with a radius parameter of R = 0.4.
Those PFlow-based jets are used to calculate the transverse momentum as well as the relative
pseudorapidity category (see Figure 9.1). The JSS observable, on the other hand, is calculated
from Inner Detector tracks with |η| < 2.5 that have been matched to the PFlow jets (see
Chapter 9.2.1), which is why the measurement is sensitive to charged particles only at the level
of the substructure observable. The JSS observable is reconstructed from tracks to maintain
a high degree of correlation between detector- and particle-level objects, which is essential
for the subsequent unfolding step to succeed as single-particle resolution is needed to obtain
sufficiently diagonal response matrices.

Once the number of multijet events in each phase space bin was measured, the obtained
spectra are normalized by the total number of events to cancel systematic uncertainties to the
degree of their correlation. For instance, the uncertainty related to the Luminosity drops out
completely in this measurement of the relative multijet event rate. Due to the normalization
step, the measurement is not sensitive to the total event yield but “only” to the shape of
the distributions. A non-normalized measurement of the cross section, however, would be
desirable as it comes with an increased sensitivity to quark/gluon-related effects. After that,
all spectra are unfolded to particle level (using the nominal response matrix) and are corrected
for efficiency and acceptance effects. The uncertainty of the unfolded result is determined
by taking several sources of systematic and statistical uncertainties into account and fully
propagating them through the full unfolding procedure onto the final cross section. Several
state-of-the-art Monte Carlo event generators (see Table 8.1) are used to derive systematic
and statistical uncertainties corresponding to different steps of the event generation chain
(see Chapter 2.2.2) like, for instance, the calculation of the underlying matrix element, the
simulation of parton showers, the underlying hadronization model, the uncertainty associated
to the calibration of the energy scale/resolution of the jets etc. (see Chapter 10).

After the unfolding step, the triple-differential multijet cross section is available at par-
ticle/hadron level with respect to the track multiplicity ntrk, two configurations of the SD
multiplicity nSD (kt > 400 MeV; zcut = 0.1, β = 1, θcut = 0.002), as well as the NN-score zPFN

(with the results in case of the EFN being basically identical) including all sources of statistical

1The momentum fraction x is approximately given by x ∝ pT/
√
s · coshη (which can easily be derived using

momentum conservation), i.e., the momentum fraction increases with the pseudorapidity of the jets according to
x ∝ coshη, implying more quark-initialized jets being present in the forward category, because the probability
of interacting with a quark increases for larger x’s due to the structure of the underlying PDF of the proton.

2The need for two mixtures of jets with different fractions of quarks and gluons can easily be seen by taking

a look at the denominator of Equation 7.19, which is singular for fM
k
1

g/q
≈ fM

k
2

g/q
because the reducibility factors

approach unity.
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14.1. SUMMARY AND DISCUSSION

and systematic uncertainties. Generally, the data-to-MC agreement varies considerably between
the different JSS observables and different phase space elements. As expected, the uncertainty
associated with the variation of the underlying parton shower model is among the most domi-
nant sources of systematic uncertainties along with the uncertainty related to the calibration
of the jet’s energy scale and resolution. Also, the tracking-related uncertainties contribute
significantly to the total uncertainty in certain regions of phase space: the tracking-related un-
certainties are particular pronounced in case of the counting-based observables (ntrk and nSD).
This is, of course, expected as the tracking-related uncertainties are derived from variations in
the number of tracks according to some probability that, in turn, depends on the transverse
momentum as well as the pseudorapidity of the jets. Since the counting-based observables are
highly correlated with the number of charged particles matched to the reconstructed jet (this
is what is counted by the track multiplicity), variations in the number of tracks translates into
large systematic uncertainties. Generally, the tracking-related uncertainties are systematically
larger in case of forward jets as jets in the forward category experience, on average, an increased
material budget compared to the central region (see Figure 9.10a). Broadly speaking, the total
degree of uncertainty varies between 5 % and 20 %, which is comparatively large but expected
in case of the measurement of a jet substructure observable.

A possible approach to reduce the sensitivity of the measurement to modeling-related
effects (and consequently increase the sensitivity to other systematic effects) would be to
extend the multi-differential cross section by a “latent” variable like, e.g., the track multiplicity
(or some other JSS observable) that captures some features of the internal structure of jets.
After that, the measurement is reweighted (similar to the reweighing-scheme described, for the
DDNC uncertainty as explained in Chapter 10.8) such that the data-to-simulation agreement
improves in case of the latent observable. This way, the sensitivity of the measurement to the
non-model-related uncertainties (like, for instance, the PDF) would increase3.

It should be noted, that the measurement of the triple-differential multijet cross section
with respect to the various JSS observables forms a complete analysis on its own that requires
several iterations of the individual analysis steps. For instance, the binning of the observables
must be optimized to obtain response matrices that are sufficiently diagonal for the unfolding
to succeed; furthermore, the number of iterations used for the unfolding of the spectra at
detector level must be adjusted such that the (total) uncertainty is minimal – and plenty more.
Especially the binning of the jet substructure observables might be – justifiably – subject to
criticism since it is identical for all regions in transverse momentum and therefore does not
account for the evolution of the differential cross section with the pT of the jets. As explained
in Chapter 13.1.1, this is particularly problematic in the context of the extraction of the
underlying quark/gluon distributions and their associated fractions. Further studies should
therefore focus on an optimized binning of the JSS observable in each transverse momentum bin
for which the fractions of quark- and gluon-initialized jets are measured. This binning should
be chosen to reduce the statistical and systematic uncertainties in the upper and lower limits
of the phase space in light of the extraction of the underlying quark/gluon-related features.

Once the triple-differential multijet cross section has been measured for different JSS ob-
servables, the underlying probability distributions associated with quark- and gluon-initialized
jets as well as their fractions are extracted using the method(s) described in Chapter 7. To cut
a long story short, the unmixing procedure relies on the assumption of pure regions in phase
space of quark- and gluon-jets being present. This does not imply that the measured spectra
in central and forward region must yield pure regions in phase space in terms of quarks and
gluons – this is (almost) impossible –: it rather means that the respective JSS observable is, in
principle, sufficiently powerful in terms of quark-gluon discrimination to result in phase space
regions that are pure in quarks and gluons, respectively. Based on the unfolded multijet cross
sections in central and forward region, the irreducibility factors are calculated and used to
maximally subtract the spectra in both rapidity categories to obtain the underlying probability

3In practice, this would mean that the measurement step needs to be executed twice: one time to obtain
the spectra for multijet events with respect to the latent variable to calculate weights; and a second time for the
actual measurement that accounts for the latent variable by means of an additional event weight that increases
the agreement between data and simulation with respect to the latent variable.
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distributions of quark- and gluon-initialized jets. This picture of quarks and gluons is based on
an operational definition that does not seek to assign a flavor on a jet-on-jet basis (which is
ill-defined in most circumstances as explained in great detail in Chapter 7.1.2) but on the level
of higher-level features, i.e., the cross section at hadron level.

The fraction of gluon-initialized jets has been extracted for each jet substructure variable
individually in each transverse momentum bin as well as in both categories of relative pseu-
dorapidity. As expected from the underlying PDFs of the (light) quarks and the gluon, the
central region is generally enriched by gluon-initialized jets, which is a consequence of the more
forward (in terms of absolute (pseudo)rapidity) particles being correlated with the parton of
larger longitudinal momentum fraction that is more likely to be a quark due to the structure
of the underlying PDFs (see Figure 1.2). Furthermore, the fraction of quark-initialized showers
increases with the transverse momentum of jets, which is in accordance with expectation of
larger transverse momenta corresponding to higher energies at which the protons are probed;
as before, in case of larger momentum fractions, the underlying parton is more likely to be a
quark.

The uncertainty on the unfolded triple-differential multijet cross section was propagated onto
the extracted fraction and the probability distributions associated with quark- and gluon-like
features for each component of the total uncertainty from with the corresponding variations in
the reducibility factors (see Equation 7.10) are calculated and translated into an uncertainty on
the underlying probability distributions and fractions associated to quark- and gluon-related
features.

Generally, the uncertainties on the extracted distributions related to quarks and gluons are
large, sometimes being even larger than the multijet cross section in central and forward region.
This result reflects the strong dependence of the extracted distributions on the selected anchor
bin/region. During the calculation of the uncertainties, variations in the cross section may
(in some cases) result in different anchor bins/regions selected, which may cause significant
changes in the shape of the extracted distributions. Fixing the anchor bn/region results in
considerably smaller systematic variations, but the variations of the anchor bin/region must be
taken into account for the result to be conclusive. Furthermore, the uncertainty associated with
the quark-related distributions are systematically larger than for the corresponding spectra
related to the gluon. This can easily be understood by the fact of the forward region of jets
being enriched by quarks that (on average) see an increased material budget.

The extracted fractions of gluon-initialized jets for each JSS observable is compared with the
prediction from several state-of-the-art Monte Carlo event generators (see Table 8.1), whereby
the jet flavor in simulation is assigned using the PDGID of the highest-pT constituent associated
with the jet to compare the result with the operation definition of quark and gluon jets. Given
the degree of uncertainty, the predictions from simulation are mostly consistent within their
uncertainties with the extracted fractions from the Run 2 data set. Furthermore, the extracted
underlying distributions have been compared with predictions obtained from the baseline
generator (Pythia 8.320), whereby once again, the PDGID of the maximum-pT constituent
was used to define the “species” of the jet on a jet-on-jet basis. In general, measurement and
simulation are in good agreement given the degree of uncertainty. In case of the track multi-
plicity, however, some substantial deviations between data and simulations can be observed;
the discrepancy increases with the transverse momentum of the jets. This observation may be
explained by the high sensitivity of the track multiplicity to non-perturbative effects, which are
generally hard to model as no calculations from first principles are possible. This is confirmed
by the corresponding results that have been obtained in case of the two configurations of the
SD multiplicity, both of which show a significant better agreement between data and simulation
for almost all regions in phase space. Both configurations of the ISD algorithm are chosen with
the objective to reduce the sensitivity to non-perturbative effects (see corresponding emission
planes shown in Figure 11.4), which translates into an overall better data-to-MC agreement as
the resulting cross section is dominated by resummation.

It is important to highlight, once again, that a direct comparison of the extracted underlying
single-differential multijet cross sections associated with quarks and gluons with predictions
obtained from analytic calculations is not possible. In case of the track multiplicity, an analytic
calculation of the cross section is – for all that is currently known – a priori impossible as it
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14.1. SUMMARY AND DISCUSSION

is not collinear nor (provided that there is no lower-momentum cut) infrared safe; the track
multiplicity is not even Sudakov safe! In case of the SD multiplicity, perturbative calculations
are, in principle, possible (see an example of a calculation of the SD multiplicity at LL accuracy
in Chapter 11.1.4), however, only if both, charged and neutral components of the jets are
taken into account in the measurement. Analytic calculations of the contribution from charged
particles solely are not feasible so far. This problem can in principle be avoided by using objects
that account for charged and neutral particles (like, e.g., calorimeter cells) in the calculation
of the JSS observable. This solution, however, is ruled out at the present time, because the
unfolding of a jet substructure observable requires single particle resolution.

Contrary to the probability distributions, the extracted underlying fractions of quark- and
gluon-initialized jets are indeed IRC-safe, because the JSS-related information is marginalized
and the transverse momentum as well as the relative pseudorapidity are calculated from a jet
object that accounts for charged and neutral particles alike.

The numerical values for the extracted fractions of quark and gluon jets for all JSS observ-
ables considered in this analysis can be found in Chapter 13. At this point, attention is paid
only to the measured fraction of gluons in central and forward region inclusive in transverse
momentum obtained from the cross section as a function of the NN-score as predicted by
the PFN, because it results in the smallest total uncertainty (in case of the counting-based
observables, the total uncertainty is larger due to the increased sensitivity to the tracking
related uncertainty). The fraction of gluons in the sample of central jets has been measured
to be 60.5 ± 0.4(Stat) ⊕ 2.4(Syst) %, while the fraction in the forward category of jets was
measured to be 52.3 ± 0.4(Stat) ⊕ 2.6(Syst) %, whereby the numbers refer to the inclusive
sample, i.e., all jets with 250 GeV ≤ pT ≤ 4500 GeV. This results confirms the initial statement
of multijet events generally being enriched in gluons4. The fractions of gluons inclusive in
transverse momentum are mostly dominated by low-pT jets due to the steeply falling event
rate with the transverse momentum in case of multijet events. Furthermore, the measured
fractions nicely demonstrate the central region being enriched by gluons compared to the
forward category due to the underlying PDF of the proton. Also, the forward region comes
with slightly larger systematic uncertainties, which is expected and explained by the increased
material budget in case of more forward jets. In summary, the total uncertainty for the fraction
of gluon-like jets is about 4 % and 5 % for central and forward jets, respectively, which roughly
corresponds to the uncertainty of the bulk of the distributions.

At this point, it is worth pointing out that the extraction of the fraction of quarks and
gluons in multijet events according to the method outlined in Chapter 7 does not work anymore
for mixtures of jets with pT / 100 GeV and pT ' 2 TeV5, respectively, because the fraction of
quark/gluon-initialized jets in central fM

k
1

q/g and forward region fM
k
2

q/g for the kth momentum

bin approach each other fM
k
1

q/g ≈ f
Mk

2

q/g , resulting in the reducibility factors approaching unity
κkM1M2/M2M1

→ 1, with the result of Equation 7.56 being ill defined. This is the case for the
two mixtures of jets being defined in multijet events solely. In order to extend the method to
higher (and lower) regions of transverse momentum, the two generic mixtures of jets, M1 and
M2, must be re-defined. A possible solution (already proposed in the pioneering publication in
Ref. [29]) would be to define the two mixture of jets over two different processes that differ
with respect to the fraction of quarks and gluons in the final state. As it is known (and
has been shown in this analysis), multijet events are generally enriched in gluon-like jets;
hence, a sample of multijet events Mmultijet (no distinction between central and forward jets
being made!) can be used to define a mixture of jets that is correlated to features associated
with gluons – a mixture of jets that is enriched by quark-like jets MZ+jet, on the other hand,
could, for instance, be obtained from (inclusive) Z + jet events. The two mixtures Mmultijet

and MZ+jet naturally come with different fractions of quarks and gluons (see Expression 7.3),
however, they add another layer of complexity to the analysis because two different processes

4A sample of jets that is statistically enriched in quarks could be, for instance, obtained by using Z+jets
instead of multijet events.

5Those limits are not based on a systematic, methodical analysis but rather on insights acquired empirically
and heuristically.
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(different trigger, different physical objects etc.) must be analyzed individually. Furthermore,
two mixtures that are defined over two different physical processes may violate the assumption
of the jet being an universal object, i.e., no sample-dependence of the jets being studied, which
indirectly enters the underlying premises of the linear decomposition according to Equation
7.4. This statement just refers to the circumstance of no a priori justification of quark/gluon
jets born from multijet and Z + jet events being fundamentally identical; in fact, there are
good arguments indeed that suggest that this is not the case – not even in multijet events due
to, e.g., color connection. Using two mixtures defined by two processes, however, certainly
increases the problem of sample dependence, but would allow to extend the unmixing method
to a larger phase space.

The extracted fractions within the same group of jet substructure observables, i.e., counting-
and NN-based, agree very well with each other for all transverse momentum bins. Between the
different groups of observables, some deviations can be observed that are, however, consistent
given the degree of uncertainty. There are two main explanations for the observed discrepancy:
firstly, both observables differ considerably regarding their discrimination power of quark-
and gluon-initialized jets; secondly, the granularity of the discretized phase space volume in
terms of the binning is quite different between both groups of variables. Starting with the
latter argument, the measurement of counting-based jet substructure observables is generally
challenging. In order to be able to unfold the measurement to particle level in the first place,
the binning of the counting-based observables must be comparatively coarse in order to reduce
the amount of migrations between bins especially due to tracking-related inefficiencies. A
coarser binning, however, reduces the amount of information concerning the shape of the
distribution and consequently also decreases the discrimination power between quark- and
gluon-initialized jets. Additionally, large bins (especially at the tails of the distributions) may
cause problems concerning the purity (the underlying assumption of the unmixing method
used to extract the underlying quark/gluon distributions as well as their fractions) of the
anchor bins/regions in terms of quarks and gluons. This was one motivation to measure two
configurations of the SD multiplicity with respect to different binnings of the underlying phase
space.

The NN-based observables, on the other hand, are much more robust in terms of tracking-
and model-related variations and therefore allow for a finer binning, which preserves more
information regarding the shape of the spectra and provides more freedom concerning the
selection of anchor bins/regions. The “resilience” of the NN-score with respect to tracking-
related inefficiencies and the consequential variation in the number of tracks thereof is mostly
explained by the correlations learned by the model between the individual constituents (and
their components) that still allow for a high degree of sensitivity to quark- and gluon related
features even if the number of tracks varies. This statement is supported by Figure 12.8b that
shows the AUC as a function of the number of tracks provided as an input to the model. Indeed,
the robustness with respect to tracking-related variation (along with the increased sensitivity
to quark- and gluon-related features) was one motivation for using a NN-based jet substructure
observable in the first place. Furthermore, the discrimination power between quark- and
gluon-like jets is significantly large in case of the NN-based observables. Consequently, the
curve progression of the extracted gluon-fractions as a function of the transverse momentum
appears much smoother in case of the NN-based jet substructure observables and also results
in overall smaller systematic uncertainties.
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14.2. FUTURE RESEARCH SUGGESTIONS

14.2 Future Research Suggestions
This final section outlines some future research suggestions that may be build upon the results
presented in this thesis.

Extraction of αS from a JSS-based Measurement
The possible application of the statistical demixing procedure used in this analysis in the
context of a measurement of the strong coupling constant αS was already suggested and
indicated at several occasions in this thesis. The analysis strategy is fully outlined in Ref.
[46] by M. LeBlanc, B. Nachman, and C. Sauer; in the following, the principle idea of the
measurement is conceptually outlined. The abstract of the paper can be found in the Preface
of this document.

The principle idea is related to the discussion in Chapter 13.2.4 in the context of the

Plot 14.1: “An overview of the proposed extraction of αS . First (left), the topics are
extracted from an approximately mutually irreducible observable. Illustrated above is the
case of constituent multiplicity. Two samples with different quark/gluon compositions
are used to extract the topics. These topics are interpreted as quarks and gluons and the
fractions of the two topics are then used as the quark and gluon fractions. Next (right),
an observable with a precisely known cross section is used to fit for αS . We consider
the groomed jet mass and focus on the resummation regime at intermediate mass where
non-perturbative and fixed- order effects are small. The predictions as a function of αS
are then fit to the data, with the proper mixture of the quark and gluon components[.]”
(adapted and modified from Ref. 46, Fig. 6, p. 14).

extraction of the underlying quark/gluon distributions for non-mutual irreducible jet substruc-
ture observables. The individual steps are outlined in Figure 14.3. The first step is to measure
the underlying fractions of quark- and gluon-like jets over some phase space volume in terms
of a cross section measurement with respect to a jet substructure observable that is mutually
irreducible and therefore allows for the unmixing procedure to be applied. This first part is an
entire analysis in itself and basically corresponds to the studies conducted within the context
of this thesis6.

Once the fractions are known, the normalized jet mass is measured and the underlying
probability distributions associated with quarks and gluons are extracted according to Equation
7.56 using the fractions from the previous step similar to the results shown in Figure 13.23.
As explained previously, the normalized jet mass naturally factorizes into different physical
processes, whereby the linearly increasing part of the cross section is mostly determined by
resummation. The slope of the linear resummation regime is proportional to the strong coupling
constant, allowing for an extraction of αS in a cross section fit within this region provided
that the underlying quark/gluon distributions are known. In principle, this can be done using

6Keep in mind that the entire measurement must be repeated once a different selection of jets is used!
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Plot 14.2: LL and NLL theory predictions soft-drop mass (left) and extracted string
coupling αS as a function of the varied quark/gluon composition (right).
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Fig. 6, p. 14).

Monte Carlo, i.e., measure the fractions of quarks and gluons (according to the ill-defined
definition of the jet flavor in terms of the maximum-pT constituent inside of the jet) to break
the degeneracy of the system of linear equations 7.4 and to obtain the underlying spectra
related to quarks and gluons. This works fine, however, no meaningful uncertainties can
be associated to the extracted fractions of quark/gluons jets. In this analysis, however, the
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extracted the underlying fractions of quark- and gluon-like jets are well-defined and include
statistical as well as systematic uncertainties. As it was shown, the MC-based prediction of
the fractions is consistent with this measurement given the degree of precision.

The fit requires some analytic calculation of the cross section (which is a composition
of contributions from gluons and light quarks) within the resummation region. A simple
example of such a calculation is illustrated in Figure 14.2a that show the normalized jet mass
in the resummation region in simulation for quarks and gluons in comparison with analytic
calculations at LL as well as NLL accuracy.

If the underlying composition of quark/gluon jets is unknown, the fraction of quark and
gluon jets is unconstrained and consequently results in large uncertainties given the extracted
numerical value of αS as it is shown in Figure 14.2b, which shows the degeneracy of the
extracted strong coupling and the composition of quarks and gluons. If the fraction is known,
however, the fit can be further constrained.

Figure 14.3 summarizes the results for the different extractions of the strong coupling
constant. In case of the first two results, the fraction of quark- and gluon-initialized jets was not
constrained in the fits that differ concerning the degree of accuracy of the analytic calculation
that was used to perform the fit. (The uncertainty decreases for higher-order calculations
because non-linearities add additional constraints on the possible values of quark and gluon
fractions.) The last two results show the extracted values of αS with the fraction of quarks and
gluons being fixed by the values that have been determined based on the unmixing procedure
for the track multiplicity as well as the NN-score. Keep in mind that the results shown in
Figure 14.3 do not include any systematic uncertainties at all!

Reduction of Flavor-Related JES uncertainties
The measurement presented in this thesis may contribute to a reduction of the flavor-related
component of the uncertainty due to the calibration of the jet energy scale as well as the Global
Sequential Correction, which is supposed to reduce differences in the calorimeter response due
to quark- and gluon-initialized showers. As explained in Chapter 4.4.3, the flavor composition
uncertainty accounts for differences in the response for quark Rq and gluon Rg jets, with Rq
and Rg being the responses as determined in simulation using Pythia. The uncertainty of
the flavor composition is given by Equation 4.13, whereby σfg denotes the uncertainty of the
fraction of gluon-initialized jets in a sample, with the corresponding uncertainty on the fraction
of quark-initialized jets being negligible. This uncertainty is proportional to the residual in the
response and the uncertainty on the gluon fraction [45]. So far, all elements in Equation 4.13 are
based on information obtained from simulation, i.e., the response for quarks and gluons Rq/g
are obtained by performing a full simulation of the ATLAS detector, whereby the flavor of the
jet is determined on an event-by-event basis using the PDGID of the maximum-pT constituent
of the jet; the fractions of gluon-initialized jets (entering Equation 4.13) are obtained from
simulation as well similar to the results shown in Figure 9.1b.

Using the results/method presented in this study, however, allows to determine the flavor
composition uncertainty in a solely data-driven manner without any input from simulation.
For this, the combined response of quark- and gluon-initialized jets must be measured in data7

over two samples of jets one of which is statistically enriched in quarks and gluons, respectively,
Furthermore, the response is measured in several bins of transverse momentum for which the
fraction of quark- and gluon-like jets is known, for instance, after a measurement like the one
presented in this document has been performed. After that, the distributions are unmixed the

7This requires a change in the definition of the response that is usually defined by the ratio of the energy (or
the transverse momentum) of the jet reconstructed in the calorimeter of the detector with respect to the energy
(pT) of a truth-level jet. Alternatively, the ratio between tracks that have been matched to a calorimeter-based
jet could be used, because measurements in the Inner Detector and the calorimeter of the detector are assumed
to be uncorrelated. This, however, only accounts for charged components of the jet. Alternatively, the response
can still be determined in simulation, but using the fractions of gluon-initialized jets and its uncertainties
measured in data using the unmixing method presented in this analysis. Of course, the algorithm for the
extraction of the underlying quark- and gluon-related features can be applied to data and simulation alike;
hence, the operational definition of quark and gluon jets may be used to avoid common pitfalls regarding the
definition of those objects.
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same way like it has been done in case of jet observables that are non-mutual irreducible. This
results in two responses Rtopic

q/g corresponding to quark- and gluon-like jets. Keep in mind that
no statement was made about the an individual jet being of quark or gluon origin, instead,
features associated with quarks and gluons are extracted rather on the level of the distributions,
avoiding common pitfalls concerning the definition of quark and gluon jets. The uncertainty
σfg as well as the fraction of gluon-initialized jets are obtained from the unmixing method
presented in this analysis.

Reduction of Gluon-Related PDF Uncertainty

Another possible application is the reduction of the uncertainties of the gluon-related PDF.
This proposal is based on the observation of the PDF-related component of the uncertainty
being dominant in the highest transverse momentum bin. Contrary to most other systematic
uncertainties, the PDF uncertainty is increasing with the transverse momentum of the jets,
reflecting the increasing uncertainty in the region of larger momentum fractions according to
x ∝ pT/

√
s. Furthermore, the PDF-related uncertainty increases for increasing multiplicities,

which is connected to the gluon-related PDF being less well constrained compared to the PDFs
associated to the different quark flavors. This result opens a possible window to reduce the
gluon-related PDF uncertainties.

Figure 14.4 shows the extracted quark- and gluon-like probability distributions as a
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Plot 14.4: Extracted quark- and gluon-like distributions as a function of the SD mul-
tiplicity for jets with 250 GeV ≤ pT < 350 GeV (left) and 1100 GeV ≤ pT ≤ 4500 GeV
(right).

function of the SD multiplicity for kt > 400 MeV for two bins in transverse momentum
along with the statistical uncertainty, the uncertainty related to variations of the underlying
PDF of the proton as well as the total uncertainty (including all statistical and systematic
uncertainties). As can be seen by directly comparing the PDF-related uncertainties for jets
with 250 GeV ≤ pT < 350 GeV (14.4a) and jets with 1100 GeV ≤ pT ≤ 4500 GeV (14.4b),
the component of the total uncertainty associated with the PDF increases considerably;
in multiplicity bins with the PDF-related uncertainty being dominant, one possibly gains
sensitivity to the underlying PDF. This is particularly true for the PDF uncertainty obtained
for the gluon-related distribution in Figure 14.4b.

It should be noted, however, that in order to constrain the PDF-related uncertainty, the
measurement of the cross section has be IRC safe, which is not the case for this measurement
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14.2. FUTURE RESEARCH SUGGESTIONS

due to the utilization of tracks in the jet substructure observable.
The different transverse momentum regimes in Figure 14.4 correspond to different regions of

the momentum fraction at which the proton has been probed. A (very!) naïve calculation of the
momentum fraction shows that the distributions in Figure 14.4a corresponds to a momentum
fraction of roughly x ∼ 0.01, while the spectra in Figure 14.4b correlates with a proton being
probed at an energy scale of approximately x ∼ 0.1.





“Certainly we shall all rise again, certainly we shall see each other and shall tell each other
with joy and gladness all that has happened!”

– Fyodor Mikhailovich Dostoevsky (1821 – 1881), “The Brothers Karamazov” (1880)





A. Connection to “Topic Modeling”

The method to extract the underlying distributions for different jet types based on the
measurement of two (jet) mixtures that leads towards the operational definition of quark and
gluon jets (see Section 7.2) has some mathematical resemblances to “Probabilistic Topic Models
– ‘Surveying a suite of algorithms that offer a solution to managing large document archives”’
[28], i.e., “[...] a paradigm for discovering emergent themes in a corpus of documents[...]“ [29]
– quote for the pioneering publication “On the Topic of Jets” (p. 1) by Eric M. Metodiev &
Jesse Thaler who first adopted this method to jet physics.

Probabilistic topic models are statistical algorithms that aim to discover latent semantic
or thematic (like, for instance, categories of different topics) structures in large collections or
archives of text documents.

The most simplest probabilistic topic models are based on the so-called latent Dirichlet
allocation, which assumes that analyzed collection of text documents exhibit multiple topics.
Consider, for example, the (real-world) article shown in Figure A.1 with the title “Seeking
Life’s Bare Genetic) Necessities“ [232] that aims to address the question of “[...] [w]hat’s the
minimum number of genes needed for a simple organism to survive[.]”. In the current page of

Fig. A.1: “The intuitions behind latent Dirichlet allocation. We assume that some
number of ‘topics’, which are distributions over words, exist for the whole collection (far
left). each document is assumed to be generated as follows. first choose a distribution
over the topics (the histogram at right); then, for each word, choose a topic assignment
(the colored coins) and choose the word from the corresponding topic. The topics and
topic assignments in this figure are illustrative—they are not fit from real data. [...]”
(adapted and modified from Ref. 28, Fig. 1, p. 2(78)).

the article in Figure A.1, different words are highlighted (by hand!) that relate to different
topics such as prediction, number or computer that are content-related to generic data analysis ;
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genes, genomes etc. are summarized under the topic genetics ; organism, survive and life belong
to the class of biology. Conjunctions, connecting words, filler words are excluded as they mostly
do not contain information that can be used for topic classification. The intuition behind the
association of certain categories of words with a topic it belongs to is supposed to be mimicked
by latent Dirichlet approach.

Moving towards a probabilistic interpretation of the aforementioned idea, topics are defined
“[...] to be a distribution over a fixed vocabulary[.]” [48]. Generally, the analyzed data x is
assumed to be generated by a generative process that depends on a set of latent variables z,
in which case the data can be interpreted as a joint probability distribution P (x, z) of the
observed data and the hidden variables of the model. In this picture, the concerted instance of
data is then a conditional distribution P (x|z) given the latent random variables.

The latent Dirichlet allocation assumes something related to the (multivariate) Dirichlet
distribution (which are commonly used as priors in Bayesian statistics) which is an assumption
regarding the underlying generative process and therefore constraints the family of distributions
of the joint according to

P (β,θ, z,w) =

K∏
i=1

P (βi)

D∏
d=1

P (θd)

(
N∏
n=1

P (zd,n|θd)P (wd,n|β1:K , zd,n)

)
, (A.1)

whereby the β vector denotes the different topics with each entry being a distribution of a set
of vocabulary. The parameter(s) θ are the topic proportions of the document and the topic
assignments are given by z. The observed words associated to document d are wd with wd,n
being the nth word observed in document d. To obtain the related topic(s) of a word (or a family
of words), the posterior distribution must be computed P (β,θ, z|w) = P (β,θ, z,w)/P (w).
As it is often the case for Bayesian statistic models, this problem is computational intractable;
to “solve” it, one usually relies on efficient approximation methods to obtain the posterior
distribution. The concrete approximation used to obtain to posterior distribution is irrelevant
at this point. The interested reader is referred to the original publication in Ref. [28] (Section
2).

To summarize this short thematic excursion, the objective of topic modeling is to analyze
hidden structures in extensive text archives for thematic structures. To quote the key insights
as stated in Ref. [28]:

• “[t]opic models are algorithms for discovering the main themes that pervade a large and
otherwise unstructured collection of documents. Topic models can organize the collection
according to the discovered themes[;]”

• “[t]opic modeling algorithms can be applied to massive collections of documents. Recent
advances in this field allow us to analyze streaming collections, like you might find from a
Web API[;]”

• “[t]opic modeling algorithms can be adapted to many kinds of data. among other ap-
plications, they have been used to find patterns in genetic data, images, and social
networks[;]”

The last point in the enumeration above is of particular relevance as the following paragraph
will reveal a close resemblance between the examination of large bodies of text with respect
to hidden structure in terms of themes and the distributions of jet-related observables with
regard to quark and gluons. This may appear bizarre and non-intuitive at first; however, the
analogy will become immediately apparent by appreciating “[...] that the generative process for
producing counts of words in a document is mathematically identical to producing jet observable
distributions via [Equation 7.4]“ [29]. Referring to Section 7.2, the different mixtures of jets
M1 and M2 are constructed such that each one has an underlying, initially unknown fraction
of quark- and gluon-initialized jets; the only requirement is that there is one mixture enriched
by one category each. The distribution of a certain jet observable (for instance, the number of
tracks inside a jet or the width of a jet) can be thought of as being produced in a generative
process in which quarks and gluon jets are sampled according to their (unknown) fraction
in the respective mixture. In light of probabilistic topic modeling, a histogram bin of the
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Jet Topics

Quark jets

Gluon jets

Mixed Jet Sample 1

Mixed Jet Sample N

Jet Fractions Mixed Data Histogram

Fig. A.2: “The generation of mixed samples of quark and gluon jets, highlighting the
correspondence with topic models. [...]” (adapted and modified from Ref. 29, Fig. 3, p.
3).

jet observable can be associated with a word in a text document because like the words in a
text contain information about its topic, the value of the (JSS) observable assigned to a jet
holds some information about its flavor. Similarly, the jet observable (as a whole) takes the
function of the entire vocabulary of a text. The type of a jet (quark- or gluon-initialized) the
topic of a text corpus – for this reason, the extracted distributions of quark and gluon jets
according to Equation 7.19 are also referred to as “jet topics”. The collection of histograms of
the jet observable(s) can be regarded as the entire document formed by the total collection of
words. Finally, the collection of all histograms can be considered as the total (text) corpus in
the “text-document”-“particle-jet analogy”. The correspondence between probabilistic topic
modeling and jet-related observables just described is summarized in Table A.1. The analogy

Topic Model Jet Distributions
Word Histogram bin

Vocabulary Jet observable
Topic Type of jet (i.e., “jet topic”)

Document Histogram of jet observable(s)
Corpus Collection of histograms

Table A.1: Analogy between probabilistic topic modeling and the probability distributions
of jet observables. (Taken from Ref. 29, Table. 1, p. 4.)

between topic modeling and jet distributions regarding the generative process is conceptually
illustrated in Figure A.2 that shows the procedure of “writing“ (or sampling) a document
in terms of jets, which correspond to the corpus mentioned in Table A.1. In this cartoon,
the generative process starts from the two topic distributions of the underlying quarks and
gluons (see Equation 7.19) and their corresponding fractions in both mixtures (keep in mind:
this information is supposed to be extracted in the topic modeling approach). According
to the fractions of quarks and gluons in M1 and M2, jets are sampled from their respective
distributions for which the substructure observables are reconstructed. The set of reconstructed
JSS variables is then used to populate histograms for each mixture of the jet sample.
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B. Numerical Tables

Partition Module Start (Run) End (Run) Name
2015

0 9 276262 284484 LBA10
3 20 276262 284484 EBC21
1 37 283155 283155 LBC38

2016
1 4 306988 311481 LBC5
0 51 307856 311481 LBA52

2017
2 2 325713 340453 EBA03
1 62 325713 340453 LBC63

2018
0 28 351310 353395 LBA29
0 29 350361 353395 LBA30
0 31 353395 364292 LBA32

MC16a
0 51 284500 284501 LBA52
1 4 284500 284501 LBC5

MC16d
2 2 300000 300001 EBA3
1 62 300000 300001 LBC63

MC16e
0 31 310000 310001 LBA32

Table B.1: Summary of disabled tile modules during Run 2 data-taking and in Run 2
simulation.
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Transverse Momentum pT [GeV]

[250, 350)
(×100)

[350, 500)
(×10−1)

[500, 700)
(×10−2)

[700, 1100)
(×10−3)

[1100, 4500)
(×10−4)

Track multiplicity zPFN Triple-differential multijet cross section 1
σ

dσ3

dpTdηreldzPFN
(×10−6)

[0.0, 0.04) 24.30 +0.14⊕ 5.26
−0.14⊕ 5.26

25.21 +0.13⊕ 4.78
−0.13⊕ 4.79

34.27 +0.23⊕ 4.73
−0.23⊕ 4.74

39.33 +0.17⊕ 6.59
−0.17⊕ 6.60

31.47 +0.10⊕ 4.96
−0.10⊕ 4.96

37.14 +0.08⊕ 5.35
−0.08⊕ 5.35

26.05 +0.12⊕ 4.33
−0.12⊕ 4.33

30.82 +0.10⊕ 4.39
−0.10⊕ 4.39

2.84 +0.04⊕ 0.62
−0.04⊕ 0.62

3.15 +0.02⊕ 0.72
−0.02⊕ 0.72

[0.04, 0.08) 35.27 +0.14⊕ 6.70
−0.14⊕ 6.70

38.25 +0.13⊕ 6.73
−0.13⊕ 6.73

54.74 +0.24⊕ 6.48
−0.24⊕ 6.49

62.92 +0.16⊕ 8.83
−0.16⊕ 8.83

55.52 +0.11⊕ 7.02
−0.11⊕ 7.03

65.16 +0.11⊕ 8.23
−0.11⊕ 8.24

52.43 +0.15⊕ 7.32
−0.15⊕ 7.32

60.82 +0.14⊕ 7.40
−0.14⊕ 7.40

6.19 +0.04⊕ 1.09
−0.04⊕ 1.09

6.76 +0.05⊕ 1.08
−0.05⊕ 1.08

[0.08, 0.1) 52.57 +0.19⊕ 8.41
−0.19⊕ 8.41

58.71 +0.15⊕ 9.45
−0.15⊕ 9.46

90.05 +0.28⊕ 8.79
−0.28⊕ 8.79

104.99 +0.19⊕ 11.46
−0.19⊕ 11.47

101.43 +0.16⊕ 9.73
−0.16⊕ 9.73

119.96 +0.18⊕ 12.23
−0.18⊕ 12.23

106.57 +0.26⊕ 11.59
−0.26⊕ 11.59

124.57 +0.25⊕ 11.75
−0.25⊕ 11.75

13.40 +0.08⊕ 1.69
−0.08⊕ 1.69

14.47 +0.06⊕ 1.51
−0.06⊕ 1.51

[0.1, 0.15) 100.80 +0.24⊕ 13.61
−0.24⊕ 13.61

117.36 +0.18⊕ 17.20
−0.18⊕ 17.20

226.67 +0.47⊕ 17.75
−0.47⊕ 17.73

277.51 +0.36⊕ 22.57
−0.36⊕ 22.57

348.31 +0.28⊕ 24.70
−0.28⊕ 24.70

432.49 +0.21⊕ 31.75
−0.21⊕ 31.75

444.14 +0.45⊕ 35.06
−0.45⊕ 35.04

537.82 +0.48⊕ 35.75
−0.48⊕ 35.74

58.06 +0.14⊕ 4.73
−0.14⊕ 4.73

63.72 +0.20⊕ 4.27
−0.20⊕ 4.27

[0.15, 0.2) 249.36 +0.44⊕ 30.18
−0.44⊕ 30.18

303.21 +0.53⊕ 41.02
−0.53⊕ 41.02

730.80 +1.15⊕ 48.41
−1.15⊕ 48.42

928.34 +1.04⊕ 60.19
−1.04⊕ 60.19

1280.15 +0.51⊕ 75.35
−0.51⊕ 75.38

1623.02 +0.51⊕ 87.08
−0.51⊕ 87.07

1527.76 +1.24⊕ 93.92
−1.24⊕ 93.86

1852.45 +0.89⊕ 91.78
−0.89⊕ 91.73

160.02 +0.36⊕ 9.19
−0.36⊕ 9.19

176.15 +0.33⊕ 8.57
−0.33⊕ 8.56

[0.2, 0.25) 293.98 +0.67⊕ 34.68
−0.67⊕ 34.68

347.28 +0.34⊕ 44.97
−0.34⊕ 44.97

806.27 +1.12⊕ 50.17
−1.12⊕ 50.23

984.75 +0.88⊕ 59.09
−0.88⊕ 59.08

1222.64 +0.58⊕ 69.29
−0.58⊕ 69.31

1486.44 +0.54⊕ 69.46
−0.54⊕ 69.45

1233.32 +0.62⊕ 70.09
−0.62⊕ 70.07

1440.80 +0.86⊕ 64.11
−0.86⊕ 64.09

105.67 +0.20⊕ 5.58
−0.20⊕ 5.58

113.77 +0.26⊕ 5.06
−0.26⊕ 5.05

[0.25, 0.3) 251.80 +0.44⊕ 30.61
−0.44⊕ 30.61

281.90 +0.35⊕ 36.13
−0.35⊕ 36.13

637.00 +0.86⊕ 38.90
−0.86⊕ 38.89

738.81 +0.69⊕ 44.23
−0.69⊕ 44.23

903.49 +0.46⊕ 51.37
−0.46⊕ 51.38

1043.20 +0.43⊕ 46.87
−0.43⊕ 46.87

865.89 +0.57⊕ 48.39
−0.57⊕ 48.39

968.25 +0.60⊕ 42.36
−0.60⊕ 42.36

69.99 +0.13⊕ 3.78
−0.13⊕ 3.78

73.59 +0.11⊕ 3.34
−0.11⊕ 3.34

[0.3, 0.35) 230.84 +0.32⊕ 28.96
−0.32⊕ 28.96

247.75 +0.39⊕ 32.06
−0.39⊕ 32.06

561.68 +0.68⊕ 32.40
−0.68⊕ 32.36

621.13 +0.58⊕ 35.51
−0.58⊕ 35.51

766.20 +0.35⊕ 43.36
−0.35⊕ 43.36

846.20 +0.39⊕ 36.18
−0.39⊕ 36.19

708.60 +0.42⊕ 37.32
−0.42⊕ 37.32

762.73 +0.47⊕ 32.94
−0.47⊕ 32.94

54.97 +0.09⊕ 2.92
−0.09⊕ 2.92

56.52 +0.12⊕ 2.71
−0.12⊕ 2.71

[0.35, 0.4) 225.40 +0.39⊕ 29.13
−0.39⊕ 29.13

233.57 +0.29⊕ 30.92
−0.29⊕ 30.92

530.94 +0.43⊕ 26.93
−0.43⊕ 26.91

563.90 +0.60⊕ 28.66
−0.60⊕ 28.67

700.95 +0.37⊕ 37.70
−0.37⊕ 37.70

742.37 +0.31⊕ 29.88
−0.31⊕ 29.89

629.00 +0.45⊕ 30.37
−0.45⊕ 30.37

652.34 +0.37⊕ 27.98
−0.37⊕ 27.99

47.19 +0.10⊕ 2.43
−0.10⊕ 2.43

47.38 +0.10⊕ 2.44
−0.10⊕ 2.44

[0.4, 0.5) 232.42 +0.31⊕ 31.07
−0.31⊕ 31.07

228.79 +0.27⊕ 31.03
−0.27⊕ 31.03

525.34 +0.51⊕ 23.05
−0.51⊕ 23.05

527.85 +0.57⊕ 24.78
−0.57⊕ 24.79

671.84 +0.27⊕ 33.50
−0.27⊕ 33.50

669.60 +0.25⊕ 26.39
−0.25⊕ 26.39

585.38 +0.41⊕ 27.26
−0.41⊕ 27.27

573.69 +0.35⊕ 25.12
−0.35⊕ 25.13

42.19 +0.11⊕ 2.21
−0.11⊕ 2.21

40.70 +0.10⊕ 2.26
−0.10⊕ 2.26

[0.5, 0.6) 270.05 +0.23⊕ 37.01
−0.23⊕ 37.02

250.10 +0.28⊕ 34.28
−0.28⊕ 34.29

591.25 +0.53⊕ 24.28
−0.53⊕ 24.30

550.96 +0.51⊕ 26.89
−0.51⊕ 26.90

735.44 +0.23⊕ 35.61
−0.23⊕ 35.61

676.22 +0.26⊕ 27.63
−0.26⊕ 27.64

623.30 +0.43⊕ 30.21
−0.43⊕ 30.21

563.92 +0.35⊕ 25.96
−0.35⊕ 25.97

42.81 +0.10⊕ 2.51
−0.10⊕ 2.51

38.69 +0.10⊕ 2.33
−0.10⊕ 2.33

[0.6, 0.65) 323.21 +0.39⊕ 44.54
−0.39⊕ 44.55

289.72 +0.34⊕ 39.22
−0.34⊕ 39.23

708.46 +0.63⊕ 30.73
−0.63⊕ 30.76

627.39 +0.52⊕ 33.86
−0.52⊕ 33.88

871.62 +0.40⊕ 44.42
−0.40⊕ 44.42

752.96 +0.35⊕ 33.24
−0.35⊕ 33.25

722.92 +0.48⊕ 38.00
−0.48⊕ 38.00

613.65 +0.48⊕ 30.02
−0.48⊕ 30.03

47.44 +0.11⊕ 3.29
−0.11⊕ 3.29

40.56 +0.10⊕ 2.62
−0.10⊕ 2.62

[0.65, 0.7) 367.24 +0.44⊕ 49.59
−0.44⊕ 49.60

323.51 +0.47⊕ 42.70
−0.47⊕ 42.70

825.72 +0.87⊕ 40.06
−0.87⊕ 40.07

708.61 +0.75⊕ 41.61
−0.75⊕ 41.63

1019.43 +0.37⊕ 57.03
−0.37⊕ 57.03

842.90 +0.36⊕ 41.26
−0.36⊕ 41.26

829.11 +0.69⊕ 46.39
−0.69⊕ 46.38

669.70 +0.60⊕ 34.60
−0.60⊕ 34.61

51.27 +0.13⊕ 3.99
−0.13⊕ 3.99

41.97 +0.12⊕ 2.86
−0.12⊕ 2.86

[0.7, 0.75) 385.30 +0.62⊕ 50.54
−0.62⊕ 50.54

333.63 +0.56⊕ 44.28
−0.56⊕ 44.29

918.19 +1.20⊕ 49.02
−1.20⊕ 49.02

764.76 +1.12⊕ 47.72
−1.12⊕ 47.72

1152.39 +0.41⊕ 70.21
−0.41⊕ 70.20

914.04 +0.39⊕ 51.82
−0.39⊕ 51.82

911.79 +0.79⊕ 51.04
−0.79⊕ 51.03

702.74 +0.67⊕ 38.69
−0.67⊕ 38.69

51.84 +0.15⊕ 4.10
−0.15⊕ 4.10

40.52 +0.19⊕ 2.92
−0.19⊕ 2.92

[0.75, 0.8) 285.10 +0.56⊕ 37.43
−0.56⊕ 37.44

246.32 +0.53⊕ 34.75
−0.53⊕ 34.75

758.46 +0.84⊕ 44.03
−0.84⊕ 44.03

621.36 +0.94⊕ 41.56
−0.94⊕ 41.56

999.00 +0.65⊕ 65.37
−0.65⊕ 65.36

771.11 +0.48⊕ 54.94
−0.48⊕ 54.93

771.24 +0.62⊕ 41.98
−0.62⊕ 41.97

573.27 +0.74⊕ 34.24
−0.74⊕ 34.23

39.30 +0.15⊕ 2.99
−0.15⊕ 2.99

29.75 +0.19⊕ 2.30
−0.19⊕ 2.30

[0.8, 0.85) 113.37 +0.33⊕ 15.49
−0.33⊕ 15.50

97.87 +0.39⊕ 14.87
−0.39⊕ 14.87

326.50 +0.83⊕ 20.67
−0.83⊕ 20.67

267.58 +0.59⊕ 18.68
−0.59⊕ 18.69

435.93 +0.38⊕ 30.23
−0.38⊕ 30.23

334.76 +0.37⊕ 29.89
−0.37⊕ 29.89

323.48 +0.49⊕ 17.89
−0.49⊕ 17.88

236.93 +0.47⊕ 15.92
−0.47⊕ 15.93

14.62 +0.08⊕ 1.10
−0.08⊕ 1.10

11.02 +0.09⊕ 0.96
−0.09⊕ 0.96

[0.85, 0.9) 19.28 +0.14⊕ 2.89
−0.14⊕ 2.89

17.14 +0.14⊕ 2.80
−0.14⊕ 2.80

50.37 +0.26⊕ 3.81
−0.26⊕ 3.81

43.00 +0.30⊕ 3.08
−0.30⊕ 3.09

64.41 +0.13⊕ 4.83
−0.13⊕ 4.83

51.68 +0.11⊕ 5.32
−0.11⊕ 5.32

47.54 +0.18⊕ 3.02
−0.18⊕ 3.02

36.44 +0.21⊕ 3.12
−0.21⊕ 3.12

2.30 +0.03⊕ 0.19
−0.03⊕ 0.19

1.86 +0.03⊕ 0.19
−0.03⊕ 0.19

[0.9, 0.93) 5.28 +0.04⊕ 0.94
−0.04⊕ 0.94

4.82 +0.03⊕ 0.88
−0.03⊕ 0.88

10.21 +0.07⊕ 1.08
−0.07⊕ 1.08

9.45 +0.06⊕ 0.86
−0.06⊕ 0.86

12.07 +0.04⊕ 1.10
−0.04⊕ 1.10

10.84 +0.03⊕ 1.28
−0.03⊕ 1.28

9.49 +0.04⊕ 0.91
−0.04⊕ 0.91

8.41 +0.04⊕ 1.02
−0.04⊕ 1.02

0.59 +0.01⊕ 0.06
−0.01⊕ 0.06

0.54 +0.01⊕ 0.07
−0.01⊕ 0.07

[0.93, 0.96) 4.35 +0.05⊕ 0.95
−0.05⊕ 0.95

3.77 +0.03⊕ 0.79
−0.03⊕ 0.79

7.47 +0.07⊕ 1.12
−0.07⊕ 1.12

6.68 +0.05⊕ 0.97
−0.05⊕ 0.97

8.20 +0.03⊕ 1.00
−0.03⊕ 1.00

7.61 +0.03⊕ 1.11
−0.03⊕ 1.11

6.26 +0.04⊕ 1.02
−0.04⊕ 1.02

5.81 +0.04⊕ 0.98
−0.04⊕ 0.98

0.40 +0.01⊕ 0.06
−0.01⊕ 0.06

0.35 +0.01⊕ 0.06
−0.01⊕ 0.06

[0.96, 1.0) 4.04 +0.05⊕ 1.07
−0.05⊕ 1.07

3.47 +0.05⊕ 0.84
−0.05⊕ 0.84

6.28 +0.09⊕ 1.24
−0.09⊕ 1.24

5.84 +0.06⊕ 1.31
−0.06⊕ 1.31

6.21 +0.04⊕ 1.00
−0.04⊕ 1.00

5.89 +0.03⊕ 1.10
−0.03⊕ 1.10

4.53 +0.05⊕ 1.14
−0.05⊕ 1.14

4.29 +0.04⊕ 0.93
−0.04⊕ 0.93

0.27 +0.01⊕ 0.06
−0.01⊕ 0.06

0.24 +0.01⊕ 0.05
−0.01⊕ 0.05

Table B.5: Numerical values of the unfolded inclusive relative tripe-differential dijet cross
section as a function of the NN-score as predicted by the PFN including upper and lower
uncertainties. The two numbers that are provided for each score interval correspond to
the relative event rate in central (top) and forward (bottom) rapidity category. Note
the different scale factors that have been applied for the respective bins in transverse
momentum.
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Transverse Momentum pT [GeV]

[250, 350)
(×100)

[350, 500)
(×10−1)

[500, 700)
(×10−2)

[700, 1100)
(×10−3)

[1100, 4500)
(×10−4)

EFN zEFN Triple-differential multijet cross section 1
σ

dσ3

dpTdηreldzEFN
(×10−6)

[0.0, 0.04) 0.26 +0.02⊕ 0.10
−0.02⊕ 0.10

0.28 +0.01⊕ 0.15
−0.01⊕ 0.15

0.34 +0.02⊕ 0.09
−0.02⊕ 0.09

0.38 +0.01⊕ 0.20
−0.01⊕ 0.20

0.30 +0.01⊕ 0.07
−0.01⊕ 0.07

0.36 +0.01⊕ 0.08
−0.01⊕ 0.08

0.18 +0.01⊕ 0.03
−0.01⊕ 0.03

0.25 +0.01⊕ 0.11
−0.01⊕ 0.11

0.01 +0.00⊕ 0.00
−0.00⊕ 0.00

0.02 +0.00⊕ 0.01
−0.00⊕ 0.01

[0.04, 0.08) 0.81 +0.03⊕ 0.24
−0.03⊕ 0.24

0.89 +0.02⊕ 0.36
−0.02⊕ 0.36

1.10 +0.02⊕ 0.21
−0.02⊕ 0.21

1.34 +0.02⊕ 0.52
−0.02⊕ 0.52

0.91 +0.02⊕ 0.19
−0.02⊕ 0.19

1.16 +0.01⊕ 0.21
−0.01⊕ 0.21

0.64 +0.01⊕ 0.11
−0.01⊕ 0.11

0.74 +0.01⊕ 0.21
−0.01⊕ 0.21

0.04 +0.00⊕ 0.01
−0.00⊕ 0.01

0.05 +0.00⊕ 0.02
−0.00⊕ 0.02

[0.08, 0.1) 1.97 +0.03⊕ 0.45
−0.03⊕ 0.45

2.42 +0.03⊕ 0.69
−0.03⊕ 0.69

3.13 +0.06⊕ 0.43
−0.06⊕ 0.43

3.77 +0.04⊕ 0.86
−0.04⊕ 0.86

2.59 +0.03⊕ 0.44
−0.03⊕ 0.44

3.15 +0.03⊕ 0.43
−0.03⊕ 0.43

1.84 +0.03⊕ 0.25
−0.03⊕ 0.25

2.11 +0.02⊕ 0.36
−0.02⊕ 0.36

0.13 +0.00⊕ 0.02
−0.00⊕ 0.02

0.13 +0.00⊕ 0.02
−0.00⊕ 0.02

[0.1, 0.15) 19.71 +0.10⊕ 3.36
−0.10⊕ 3.36

24.23 +0.09⊕ 4.51
−0.09⊕ 4.51

54.30 +0.18⊕ 5.11
−0.18⊕ 5.11

70.25 +0.22⊕ 7.33
−0.22⊕ 7.33

89.92 +0.15⊕ 9.47
−0.15⊕ 9.44

116.79 +0.11⊕ 10.05
−0.11⊕ 10.04

109.08 +0.19⊕ 9.65
−0.19⊕ 9.66

135.56 +0.24⊕ 12.62
−0.24⊕ 12.62

13.31 +0.07⊕ 1.04
−0.07⊕ 1.04

14.59 +0.05⊕ 1.31
−0.05⊕ 1.31

[0.15, 0.2) 268.14 +0.54⊕ 35.66
−0.54⊕ 35.67

335.76 +0.45⊕ 46.38
−0.45⊕ 46.38

823.27 +0.94⊕ 54.42
−0.94⊕ 54.37

1062.43 +1.32⊕ 57.70
−1.32⊕ 57.65

1439.36 +0.66⊕ 87.45
−0.66⊕ 87.35

1847.82 +0.54⊕ 102.49
−0.54⊕ 102.45

1737.54 +1.22⊕ 92.81
−1.22⊕ 92.81

2131.46 +1.65⊕ 114.96
−1.65⊕ 114.87

196.60 +0.51⊕ 9.65
−0.51⊕ 9.65

216.47 +0.37⊕ 11.05
−0.37⊕ 11.05

[0.2, 0.25) 311.85 +0.51⊕ 38.30
−0.51⊕ 38.30

369.24 +0.45⊕ 46.97
−0.45⊕ 46.97

815.93 +0.78⊕ 44.67
−0.78⊕ 44.62

993.35 +0.79⊕ 47.74
−0.79⊕ 47.72

1191.16 +0.50⊕ 59.84
−0.50⊕ 59.97

1442.24 +0.54⊕ 67.56
−0.54⊕ 67.53

1195.98 +0.83⊕ 48.82
−0.83⊕ 48.82

1397.17 +1.06⊕ 60.16
−1.06⊕ 60.11

106.75 +0.22⊕ 4.87
−0.22⊕ 4.87

115.33 +0.18⊕ 5.56
−0.18⊕ 5.56

[0.25, 0.3) 257.12 +0.47⊕ 32.22
−0.47⊕ 32.22

290.24 +0.40⊕ 36.84
−0.40⊕ 36.84

634.47 +0.83⊕ 34.54
−0.83⊕ 34.52

739.53 +0.85⊕ 40.65
−0.85⊕ 40.63

891.58 +0.38⊕ 47.74
−0.38⊕ 47.78

1036.60 +0.50⊕ 48.50
−0.50⊕ 48.49

872.21 +0.57⊕ 35.84
−0.57⊕ 35.84

983.42 +0.75⊕ 46.97
−0.75⊕ 46.97

74.93 +0.14⊕ 3.70
−0.14⊕ 3.70

79.27 +0.18⊕ 4.49
−0.18⊕ 4.49

[0.3, 0.35) 224.98 +0.34⊕ 28.97
−0.34⊕ 28.97

243.69 +0.28⊕ 31.14
−0.28⊕ 31.14

545.89 +0.60⊕ 30.38
−0.60⊕ 30.38

610.15 +0.71⊕ 37.06
−0.71⊕ 37.02

758.44 +0.29⊕ 41.96
−0.29⊕ 41.96

848.72 +0.36⊕ 39.32
−0.36⊕ 39.32

735.51 +0.64⊕ 34.26
−0.64⊕ 34.26

799.90 +0.63⊕ 46.58
−0.63⊕ 46.59

61.49 +0.16⊕ 3.19
−0.16⊕ 3.19

63.62 +0.12⊕ 4.29
−0.12⊕ 4.29

[0.35, 0.4) 213.18 +0.37⊕ 27.62
−0.37⊕ 27.62

223.30 +0.27⊕ 28.66
−0.27⊕ 28.66

510.11 +0.71⊕ 27.25
−0.71⊕ 27.25

549.08 +0.48⊕ 33.10
−0.48⊕ 33.07

705.37 +0.37⊕ 38.49
−0.37⊕ 38.49

758.66 +0.27⊕ 33.95
−0.27⊕ 33.95

677.50 +0.46⊕ 33.62
−0.46⊕ 33.62

711.11 +0.53⊕ 45.63
−0.53⊕ 45.63

55.32 +0.19⊕ 2.95
−0.19⊕ 2.95

55.73 +0.13⊕ 4.88
−0.13⊕ 4.88

[0.4, 0.5) 218.58 +0.25⊕ 28.11
−0.25⊕ 28.11

218.27 +0.21⊕ 28.25
−0.21⊕ 28.25

517.39 +0.66⊕ 25.31
−0.66⊕ 25.31

527.16 +0.47⊕ 29.76
−0.47⊕ 29.76

706.70 +0.30⊕ 37.85
−0.30⊕ 37.85

715.74 +0.28⊕ 31.52
−0.28⊕ 31.52

663.47 +0.48⊕ 34.23
−0.48⊕ 34.23

659.62 +0.54⊕ 42.95
−0.54⊕ 42.95

51.96 +0.12⊕ 2.93
−0.12⊕ 2.93

49.99 +0.13⊕ 5.27
−0.13⊕ 5.27

[0.5, 0.6) 263.26 +0.30⊕ 33.61
−0.30⊕ 33.61

249.39 +0.29⊕ 32.92
−0.29⊕ 32.92

614.28 +0.57⊕ 28.70
−0.57⊕ 28.70

583.47 +0.53⊕ 32.28
−0.53⊕ 32.30

819.41 +0.33⊕ 43.88
−0.33⊕ 43.88

762.51 +0.26⊕ 34.62
−0.26⊕ 34.62

732.72 +0.52⊕ 39.77
−0.52⊕ 39.77

668.92 +0.53⊕ 44.04
−0.53⊕ 44.04

51.85 +0.14⊕ 3.20
−0.14⊕ 3.20

46.86 +0.14⊕ 5.29
−0.14⊕ 5.29

[0.6, 0.65) 322.44 +0.50⊕ 41.07
−0.50⊕ 41.07

293.90 +0.38⊕ 39.74
−0.38⊕ 39.75

739.07 +0.78⊕ 36.19
−0.78⊕ 36.20

667.73 +0.60⊕ 37.91
−0.60⊕ 37.92

957.64 +0.39⊕ 52.06
−0.39⊕ 52.06

838.33 +0.39⊕ 41.44
−0.39⊕ 41.44

815.55 +0.70⊕ 45.74
−0.70⊕ 45.74

695.75 +0.49⊕ 47.21
−0.49⊕ 47.21

51.92 +0.11⊕ 3.50
−0.11⊕ 3.50

44.35 +0.14⊕ 7.49
−0.14⊕ 7.49

[0.65, 0.7) 378.22 +0.51⊕ 48.26
−0.51⊕ 48.26

337.54 +0.43⊕ 46.05
−0.43⊕ 46.05

862.07 +0.97⊕ 46.19
−0.97⊕ 46.20

752.86 +0.63⊕ 51.22
−0.63⊕ 50.33

1091.86 +0.55⊕ 60.40
−0.55⊕ 60.40

916.28 +0.35⊕ 50.93
−0.35⊕ 50.93

890.69 +0.67⊕ 50.94
−0.67⊕ 50.94

724.61 +0.57⊕ 55.47
−0.57⊕ 55.47

52.06 +0.18⊕ 3.73
−0.18⊕ 3.73

42.59 +0.16⊕ 17.57
−0.16⊕ 17.57

[0.7, 0.75) 435.35 +0.54⊕ 56.09
−0.54⊕ 56.10

381.31 +0.46⊕ 51.47
−0.46⊕ 51.47

992.17 +1.24⊕ 57.48
−1.24⊕ 57.49

838.52 +0.97⊕ 57.66
−0.97⊕ 54.54

1220.57 +0.53⊕ 61.27
−0.53⊕ 61.27

982.21 +0.42⊕ 61.47
−0.42⊕ 61.47

941.09 +0.94⊕ 53.60
−0.94⊕ 53.59

732.18 +0.50⊕ 85.78
−0.50⊕ 85.78

49.30 +0.16⊕ 3.76
−0.16⊕ 3.76

38.55 +0.16⊕ 33.72
−0.16⊕ 33.72

[0.75, 0.8) 386.83 +0.71⊕ 50.26
−0.71⊕ 50.26

335.71 +0.62⊕ 45.35
−0.62⊕ 45.35

890.29 +1.42⊕ 55.77
−1.42⊕ 55.78

734.01 +1.11⊕ 37.12
−1.11⊕ 36.47

1064.57 +0.43⊕ 47.00
−0.43⊕ 46.99

826.78 +0.31⊕ 60.12
−0.31⊕ 60.12

768.91 +0.76⊕ 42.22
−0.76⊕ 42.22

571.59 +0.70⊕ 130.99
−0.70⊕ 130.99

35.04 +0.13⊕ 2.90
−0.13⊕ 2.90

26.18 +0.11⊕ 34.81
−0.11⊕ 34.81

[0.8, 0.85) 166.65 +0.34⊕ 22.79
−0.34⊕ 22.79

143.13 +0.39⊕ 19.35
−0.39⊕ 19.35

375.18 +0.88⊕ 44.34
−0.88⊕ 44.34

305.28 +0.71⊕ 20.07
−0.71⊕ 21.49

424.24 +0.32⊕ 21.78
−0.32⊕ 21.82

321.29 +0.25⊕ 45.17
−0.25⊕ 45.17

277.83 +0.49⊕ 19.48
−0.49⊕ 19.47

199.03 +0.47⊕ 78.79
−0.47⊕ 78.79

10.21 +0.09⊕ 0.95
−0.09⊕ 0.95

7.53 +0.06⊕ 11.74
−0.06⊕ 11.74

[0.85, 0.9) 5.57 +0.05⊕ 1.62
−0.05⊕ 1.62

4.73 +0.03⊕ 0.73
−0.03⊕ 0.73

10.66 +0.11⊕ 3.94
−0.11⊕ 3.94

8.55 +0.07⊕ 0.87
−0.07⊕ 0.86

10.18 +0.04⊕ 1.27
−0.04⊕ 1.27

7.45 +0.03⊕ 3.15
−0.03⊕ 3.15

5.57 +0.03⊕ 0.84
−0.03⊕ 0.84

3.91 +0.03⊕ 2.17
−0.03⊕ 2.17

0.15 +0.00⊕ 0.03
−0.00⊕ 0.03

0.13 +0.00⊕ 0.21
−0.00⊕ 0.21

[0.9, 0.93) 0.19 +0.01⊕ 0.17
−0.01⊕ 0.17

0.17 +0.01⊕ 0.05
−0.01⊕ 0.05

0.35 +0.01⊕ 0.27
−0.01⊕ 0.27

0.30 +0.01⊕ 0.08
−0.01⊕ 0.08

0.38 +0.01⊕ 0.16
−0.01⊕ 0.16

0.29 +0.01⊕ 0.25
−0.01⊕ 0.25

0.24 +0.01⊕ 0.07
−0.01⊕ 0.07

0.19 +0.01⊕ 0.14
−0.01⊕ 0.14

0.01 +0.00⊕ 0.01
−0.00⊕ 0.01

0.01 +0.00⊕ 0.01
−0.00⊕ 0.01

[0.93, 0.96) 0.04 +0.00⊕ 0.08
−0.00⊕ 0.08

0.03 +0.00⊕ 0.02
−0.00⊕ 0.02

0.08 +0.00⊕ 0.09
−0.00⊕ 0.09

0.07 +0.00⊕ 0.04
−0.00⊕ 0.04

0.08 +0.00⊕ 0.06
−0.00⊕ 0.06

0.06 +0.00⊕ 0.07
−0.00⊕ 0.07

0.05 +0.00⊕ 0.03
−0.00⊕ 0.03

0.04 +0.00⊕ 0.04
−0.00⊕ 0.04

0.00 +0.00⊕ 0.00
−0.00⊕ 0.00

0.00 +0.00⊕ 0.00
−0.00⊕ 0.00

[0.96, 1.0) 0.00 +0.00⊕ 0.01
−0.00⊕ 0.01

0.00 +0.00⊕ 0.00
−0.00⊕ 0.00

0.01 +0.00⊕ 0.01
−0.00⊕ 0.01

0.00 +0.00⊕ 0.00
−0.00⊕ 0.00

0.01 +0.00⊕ 0.01
−0.00⊕ 0.01

0.00 +0.00⊕ 0.01
−0.00⊕ 0.01

0.00 +0.00⊕ 0.00
−0.00⊕ 0.00

0.00 +0.00⊕ 0.00
−0.00⊕ 0.00

0.00 +0.00⊕ 0.00
−0.00⊕ 0.00

0.00 +0.00⊕ 0.00
−0.00⊕ 0.00

Table B.6: Numerical values of the unfolded inclusive relative tripe-differential dijet cross
section as a function of the NN-score as predicted by the EFN including upper and lower
uncertainties. The two numbers that are provided for each score interval correspond to
the relative event rate in central (top) and forward (bottom) rapidity category. Note
the different scale factors that have been applied for the respective bins in transverse
momentum.
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