

Unmanned Combat Air Vehicles

Outline

- Mission
- Current UCAVs
- Component / Configuration
- Human Systems Integration
- X-45A Analysis
- Overall Assessment

- UCAV Unmanned Combat Air Vehicle
- Military puposes
 - Suppression of Enemy Air Defense (SEAD)
 - Bombing runs
 - Surveillance
- Mission
 - Range = 1000 nm w/ 2 hrs loiter
 - Average payload = 4500 lb

Current UAV / UCAV's

" Take the Pilot Out Of Harms Way"

Navy / Marines Pioneer

- Flew over 300 Missions over Persian Gulf
- Used for Surveillance and Bombing Missions
- The single most valuable intelligence collector *
- STOL Aircraft

* LtGen Boomer, USMC

Air Force Predator

- Long Endurance
- Medium Altitude

- Surveillance and Reconnaissance Missions
- Operational In Bosnia Since 1995
- Also been used to drop Missiles
- 450 lb Payload Capacity

Boeing X-45

- Stealth and low observability features
- Still Experimental

- Truck Based support Systems
- Highly Automated, One Operator can control up to four Air Vehicles

UCAV Milestones

- X-45A
 - First Flight, May 22, 2002
 - Release of unguided bomb, March 20, 2004
 - Precision-guided release, expected soon
- X-47A Pegasus
 - First Flight,February 23, 2003

Component Integration

Source: Wise, Kevin, "First Flight of the X-45A Unmanned Combat Air Vehicle (UCAV)", AIAA 2003-5320

Controls

Source: Wise, Kevin, "First Flight of the X-45A Unmanned Combat Air Vehicle (UCAV)", AIAA 2003-5320

- Removal of human factor constraints
- Cost effective
- Multi-disciplinary, multi-mission design challenges
- High maneuverability and agility
 - 2 design features
 - 1) Fuselage placement
 - 2) Planform

- What information does the operator need during flight?
- What is the best way to display this info?
- Are communication links fast enough?
- What controls should the operator have and what should be done autonomously?
- What feedback is necessary from the aircraft?

Operators must be included in the design process

- Take the Pilot out of Harms Way
- Highly Automated
- Built to allow aircraft system and components to be interchangeable and easily replaced
- Designed for easy Maintenance

AIAA paper 98-1032

- Displays are non-conventional
- Limited Field of View
- Potentially Ambiguous Information
- Relatively High Operational Costs
- Requires High Levels of Operator Skills

Specifications

Vortex Lattice Methods

	VLMpc	Tornado©
C _{Lα}	0.053 /deg	0.048 /deg
C _{mα}	0.00408 /deg	0.00252 /deg

Force Measurements

Exp. Lift Coefficient

CFD Lift Coefficient

Exp. Drag Coefficient

50

60

70

- 1:46.2 scale •
- Boeing 1301 UCAV config •
- $C_{L\alpha} = 0.049 / deg$ •
- Re = 142,000• (full scale => Re~30 million)

1.4

1.2

Source: Cummings, R., et al, "Numerical Prediction and Wind Tunnel Experiment for a Pitching UCAV", AIAA 2003-0417

X-45

First Flight, X-45A

	Takeoff Performance		
••	T/O Speed	152 KEAS	
	T/O Distance	4500 ft	
UCAN SOL	Climb Rate	1000 ft/min	
all as a second and a second start of	Landing Performance		
NASA Dryden Flight Research Center Photo Collection http://www.dtc.nasa.gov/gallery/photo/index.html NASA Photo: EC02-0106-07 Date: May 22.2002 Photo by: Carla Thomas Ummanned Combat Air Vehicle, or UCAV, technology demonstration aircraft taking off during its first flight at Edwards Air Force Base, California.	Approach Speed	175 KEAS	
	T/D Sink Rate	2.7 ft/s	
	Landing Distance	3500 ft	

Overall Assessment

- Pros
 - Eliminate pilot casualties
 - More maneuverable
 - Reduce pilot fatigue
 - Flexibility
 - Possibility for future cost reduction

- Cons
 - Limited control abilities
 - Limited pilot reasoning
 - Delayed response time
 - Adaptability to mission modification

