TURFGR SS TRENDS

Volume 8. Issue 11 • November 1999

WEED CONTROL

Weeds Shedding Light on an Old Foe

Karl Danneberger, Ph.D., Department of Horticulture and Crop Science, The Ohio State University

eeds are opportunistic plant species that possess the ability to colonize open or thinned areas of turf quickly. Human activities and disturbances are the major means for introducing weeds. It should be no secret then, that the great majority of the 2,000 plant species considered weeds are not native to the United States.

Weeds are often grouped into broad groups according to life cycle (winter or summer annual, biennial or perennial), and morphological characteristics (monocot, dicot). Recognizing other ways of grouping weeds can help turfgrass managers devise effective management control programs.

Classification based on Carbon Fixation

Classification of weeds can also be based on their photosynthetic pathway. All plants carry on photosynthesis, the process whereby a plant captures radiant energy (light) from the sun and converts it into a usable form.

Photosynthesis is comprised of two main steps. The first is the light-dependent reaction where radiant energy is converted into biologically useful energy called ATP (adenosine triphosphate). The second, or dark (light independent), step is the storage of this energy into the chemical bonds of sugars and carbohydrates. Central to the light-independent reaction is the fixation of carbon dioxide (CO₂) known as the Calvin cycle. The cycle is a series of reactions where CO₂ is fixed. The initial step is the attachment of CO₂ to a 5-carbon compound, ribulose bisphosphate (RuBP) that quickly divides into two 3-carbon compounds. The term C3 cycle comes from the catalyzation of the 3-carbon compounds. Coolseason turfgrasses are often referred to as C3 plants.

Some plants however fix CO, differently. In many tropical plants, CO, is initially fixed to phosphoenolpyruvate (PEP) prior to entering the Calvin cycle. This additional reaction step is known as the C4 Dicarboxlic Acid Pathway. Most C4 plants are warm-season grasses. Generally speaking, C4 plants capture CO, more efficiently under increasing light and temperature conditions. Conversely, C3 plants capture CO2 more efficiently under more moderate light and temperature conditions.

In 1969, Black proposed that plant-weed competition could be based on photosynthetic efficiency. Based on the efficiency of capturing CO₂, the competitive outcome between a C3 and a C4 plant is predictable. Under increasing temperature and light intensity, the more efficient capture of CO₂ (C4) would provide a competitive advantage over

IN THIS ISSUE

Weeds, Shedding Light on a Old Foe.

Carbon Fixation

Common Monocot Weeds

Common Dicot Weeds

Not All Microbes Are Created Equal, **Identifying Beneficial** 4 Ones . . .

DNA Fingerprinting

Protein Fingerprinting

Fast Enzyme Analysis

Documenting Irrigation Systems Accurately With Global Positioning...7

Base Map Development

Irrigation Audits

Accurate Record Drawing

Central Control Systems

Imported Pest **Defoliates Redgum** Eucalyptus in West . . 11

Visit us at www.landscapegroup.com

TURFGRASS TRENDS

Executive Editor Sue Gibson 440/891-2729; 440/891-2675 (fax) sgibson@advanstar.com

Managing Editor Bruce F. Shank, BioCOM 805/274-0321

Associate Editor Frank H. Andorka Jr. 440/891-2708

Senior Science Editor Dr. Karl Danneberger

Consulting Editor Chris Sann

Group Editor Vern Henry

Production Manager Karen Lenzen 218/723-9129; 218/723-9576 (fax) klenzen@advanstar.com

Circulation Manager Frank Christopherson 218/723-9271

Group Publisher John D. Payne 440/891-2786; 440/891-2675 (fax) jpayne@advanstar.com

Corporate & Editorial Office 7500 Old Oak Blvd. Cleveland, OH 44130-3369

New Subscriptions 888/527-7008

Abstracts: 800/466-8443 Reprint: 440/891-2744 Permission: 440/891-2742 Single copy or back issues: Subscription/Customer Service 888/527-7008; (fax) 218/723-9437 Web site address: www.landscapegroup.com

Chairman and Chief Executive Officer Robert L. Krakoff

Vice Chairman James M. Alic

VP-Finance, CFO & Secretary David J. Montgomery

Executive Vice President, Business Development Skip Farber

Executive Vice Presidents William J. Cooke Alexander S. DeBarr

Vice President & General Counsel Eric I. Lisman

Treasurer and Controller *Adele D. Hartwick*

WEED CONTROL

the less efficient C3 plants. The competitive outcome between C3 and C4 plants will not always result in a C4 advantage. In turf, this generalization will hold true under many high light and temperature situations.

For example, Kentucky bluegrass has a distinct disadvantage against C4 weeds like crabgrass, goosegrass and foxtail during the summertime. Under high temperatures and light intensities, Kentucky bluegrass does not capture CO_2 efficiently. The end result is less energy is produced reducing carbohydrate formation in the plant. The C4 weeds, on the other hand, are capturing

 $\rm CO_2$ at an increasing rate under increasing temperatures and light conditions. Thus, during the summer, the C4 weeds are accumulating energy (carbohydrates) while the Kentucky bluegrass is losing energy. The opposite situation occurs in shaded environments. Kentucky bluegrass will capture $\rm CO_2$ more efficiently under cooler temperatures and lower light levels than C4 weeds. Crabgrass and goosegrass are not found in high populations in shaded environments.

Control measures can be adjusted to account in the different carbon fixing mechanisms of plants. Pre-emergent herbi-

COMMON MONOCOT WEEDS OF TURF

Table 1. Description and characterization of common monocot weeds found in turf.

		Photo-synthetic	
Common Name	Botanical Name	Apparatus	Origin
Quackgrass	Elytrigia repens L. Nevski	C3	Europe
Alexandergrass	Brachiaria plantaginea Hitchc.	C4	Central America
Smallflowered Alexandergrass	Brachiaria subquandripara Hitchc.	C4	Asia
Sandbur	Cenchrus longispinusp Fern.	C4	Central America
Yellow Nutsedge	Cyperus esculentus L.	C4	Europe/Native
Purple Nutsedge	Cyperus rotundus L.	C4	Asia
Smooth crabgrass	Digitaria ischaemum Schreb.	C4	Europe
Large crabgrass	Digitaria sanguinalis L.	C4	Europe
Blanket crabgrass	Digitaria serotina Mitch.	C4	Europe
Barnyardgrass	Echinochloa crusgalli L.	C4	Europe
Goosegrass	Eleusine indica L.	C4	Asia
Tall fescue	Festuca arundinacea Schreb.	C3	Europe
Bearded sprangletop	Leptochloa fascicularis Lam.	C4	Central America
Nimblewill	Muhlenbergia schreberi Gmel.	C4	Native
Carpetweed	Mullugo verticillata L.	C3 - C4	Central America
Witchgrass	Panicum capillare L.	C4	Native
Fall panicum	Panicum dichotomiflorum Michx.	C4	Native
Torpedograss	Panicum repens L.	C4	Europe
Dallisgrass	Paspalum dilatatum Pior	C4	Europe
Kikuyugrass	Pennisetum clandestinum Hochst.	C4	Europe
Annual bluegrass	Poa annua L.	C3	Europe
Giant foxtail	Setaria faberi Hevrm.	C4	Europe
Green foxtail	Setaria virdis (L.) Beauv.	C4	Europe
Smutgrass	Sporobolus indicus L.	C4	Central America

Photosynthetic apparatus refers to the carbon dioxide fixing pathway. Sources for some of the information in the table were obtained from: 1) Elmore, C.D. and R.N. Paul. 1983. Weed Science 31:686-692. 2) Muenscher, W.C. 1987. Weeds. Cornell University Press. Ithaca. 3) Murphy, T.R. Weeds of Southern Turfgrasses. Alabama Cooperative Extension Service, ANR 616.

COMMON DICOT WEEDS OF TURF

		Photo-Synthetic	
Common Name	Botanical Name	Apparatus	Origin
Common Yarrow	Achillea millefolium L.	C3	Native
Wild Onion	Allium canadense L.	C3	Native
Wild Garlic	Allium vineale L.	C3	Europe
Yellow Rocket	Barbarea vulgaris Br.	C3	Eurasia
Sheperdspurse	Capsella bursa-pastoris L.	C3	Europe
Mouse-ear Chickweed	Cerastium vulgatum L.	C3	Europe
Common Lambsquarters	Chenopodium album L.	C3	Eurasia
Prostrate Spurge	Euphorbia supina Raf.	C4	Native
Ground Ivy	Glechoma hederacea L.	C3	Eurasia
Hawkweed	Hieracium pilosella L.	C3	Europe
Pennywort	Hydrocotyle sibthorpioides Lam.	C3	Asia
Purple Deadnettle	Lamium pupureum L.	C3	Eurasia
Henbit	Lamium amplexicaule L.	C3	Eurasia
Mallow	Malva neglecta Wallr.	C3	Eurasia
Black Medic	Medicago lupulina L.	C3	Eurasia
Yellow Woodsorrel	Oxalis stricta L.	C3	Native
Cinquefoil	Potentilla spp. L.	C3	Native
Buckhorn Plantain	Plantago lanceolata L.	C3	Eurasia
Broadleaf Plantain	Plantago major L.	СЗ	Europe
Prostrate Knotweed	Polygonum aviculare L.	C3	Eurasia
Common Purslane	Portulaca oleracea L.	C4 - CAM*	Europe
Healall	Prunella vulgaris L.	C3	Native/Europe
Curly Dock	Rumex crispus L.	C3	Eurasia
Largeflower Pusley	Richardia grandiflora Steud.	C3	South America
Common Chickweed	Stellaria media L.	C3	Europe
Common Dandelion	Taraxacum officinale Weber	C3	Native/Eurasia
White Clover	Trifolium repens L.	C3	Europe
Puncturevine	Tribulus terresris L.	C4	Mediterranean
Speedwell	Veronica spp.	C3	Europe
Field Pansy	Viola arvensis Murr.	C3	Europe
* Crassulacean Acid Metabolic Pat	hway (CAM) which is often found in succulent	desert plants.	

cide applications targeted at C4 weeds might be reduced or eliminated in shaded conditions where the existing cool season turfgrass is well established. In hot, dry areas found along sidewalks and driveways, the rate of pre-emergent herbicide may need to be increased to account for the increased pressure of C4 weeds.

Conversely, the major weeds associated with shaded conditions are C3 weeds. If a warm season turfgrass is growing in shade, the major weed pressure will come from C3 carbon fixing weeds. Major weeds are summarized according to their carbon fixing pathway in the accompanying tables. In determining management programs for weeds, consider the carbon-fixing pathway. Increased weed control and more efficient use of herbicides will be the outcome.

References

Black, C.C., T.M. Chen, and R.H. Brown. 1969. Weed Science 17:338-343.

Gifford, R.M. 1974. Aust. Journal Plant Physiology 1:107-117.