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It is now approaching half a century since Oswald Teichmiiller
developed the first ideas of what is now called Teichmiiller

theory.

Teichmiiller's work has been continued primarily through the
efforts of Lars Ahlfors, Lipman Bers and their students. In
this article we wish to review another new approach to this
subject, one based on the ideas of Riemannian geometry and glo-
bal non-linear analysis. Thus we shall not attempt to review
all the achievements of this well known school but instead
attempt to explain and outline the fundamentals of the
subject to someone familiar with basic ideas in geometry and
analysis, but not familiar with Teichmiillers theory. The presenct

notes are based on lectures given at the Max-Planck-Imnstitut fir

Mathematik, Bonn, April 1984, and is based on the joint research
of the author and A.E. Fischer.
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§1. THE BAS1C PROBLEM

Let M be an oriented compact c¢” surface without boun-
dary. Such surfaces are classified by their genus, and we shall
henceforth always assume that M has a fixed genus greater than

one.

Surfaces of a fixed genus are all diffeomorphic. Therefore
if one has a complex structure they all have a complex

structure.

DEFINITION 1.1. A complex structure ¢ for M 1is a coordi-
nate atlas for M, {(wi,Ui)}, UUi = M , such that when defined

the transition mappings miczmz1 are holomorphic.

Given one such complex structure and a c” diffeomorphism
f: M<® we can produce a new complex structure
f*c = {{p, o f, f'T(Ui))} .

Let (M,c) denote M with the given complex structure
c . Then £ : (M,f*c¢c) —> (M,c) is a holomorphic map. We want
to identify these two complex structures. So let C be the set
of all such structures and let D be the set of all C daif-

feomorphisms. Then 0 acts on C by c~-~> £*c . Denote by

R{M} the guotient space (/D . This is known as the Riemann

space of moduli. Let Do be those diffeomorphisms which are

homotopic to the identity and denote by T{M) the quotient

space C/DO-. This is the Teichmiiller moduli space. Our main
goal is to outline a proof that T(M) is a smooth finite di-
mensional manifold diffeomorphic to Euclidean space of dimen—
sion 6 (genus M) -6 .

§2. THE SPACE OF ALMOST COMPLEX STRUCTURES

As we shall later see the space of almost complex struc—
tures A on M 1is in one to one correspondence with the spéce

of complex structures € . An almost complex structure J 1is

a C” 1:1 tensor; i.e. for each x€M there is a linear map

Jy ¢ T, M @ such that Ji = ~j.dx , the identity map on the



tangent space to M at x . Moreover we require that x —> Jy
o 1

. 3 .

is C , and that for each vector Xx€'TXM (xx, XXx) forms an

oriented basis for TXM . The first theorem in this direction is

THEOREM 2.1. The space A is a "manifold" and its tangent

space at J€A , TbA can be identified with those 14:1 ten-
sSOors H{Hx : TxM'? is linear and Xx —> HX is ¢~ } such that

for all x€M .

REMARK 2.2. The relation HJ = - JH implies that each such H

is trace free. To see this note that

- tr(H) = tr(JJH) = -~ tr(JHJ) = tr(H) .

The group DV and therefore DO acts on A as follows. If
f ep

-1

* -_—
(f J)x = d fX . Jf(x)

- af .
X

Clearly (f*3)% = -id if J° = -id .

The bijective correspondence between € and A is P-equivari-
ant so that if c~-~»>J then f*c~~> £f*J . Therefore this
correspondence induces a bijective correspondence betwean Qjﬁg
and A/Do. Thus we now restrict our attention to the study of

the space A/D0 .

§3. THE SPACE OF RIEMANNIAN METRICS M

Let 32 be the space of c” symmetric {0,2) tensors on

M; i.e 11632 iff for each x €M

h : TMxTM-—> R
X X X
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is symmetric bilinear and x —> hx is C . The space of
c”-Riemannian metrics is the subset MC:S2 consisting of those
symmetric tensors which for each x €M is positive definite;

that is for vxeiTxM, g €M means gx(vx,vx)> o .

Metrics g can be multiplied by positive functions, so
that if A : M —> R' is a C~ strictly positive function then
Ag€e€M if g€M . Thus the space P acts on M and we can
form the quotient space M/P . Since the action on M 1is proper
and free M/P is also a manifold, but what is its natural

tangent space?
Mc:32 is open so that the tangent space to M at geM ,

TgM 532 . Moreover given a fixed g€M every hEES2 can be

decomposed as
h = h' +pg

T
where p€P and h is trace free with respect to g . Trace
free means the following. We can use the metric g +to "convert"
h toa 1:1 tensor H by the rule

hx(ux,vx) = gX(qux,vX) .

Since g 1is positive definite such an H clearly exists. We

then define the trace of h w.r.t. g by

(trgh)X = trace HX .

Thus x F—> (trgh)x is a €° function on M, D acts on M

via the rule g —> f*g , where
(f*g)(X)(ux,vx) = g(f(x)) (Af (x)u ,af(x)v,) .

THEOREM 3.1. M/P 1is a mainfold and its tangent space at [g] can

be identified with those 0.2 tensors on M which are trace free.

§4. THE CORRESPONDENCE BETWEEN M/P AND A .

There is a natural map from M to A , namely for g
and x €M let Iy be the map on T.M which is "counterclock-



wise rotation" by 90° . However this formulation does not give
the explicit dependence of J on g . J can be defined expli-

citly as follows.

For every metric g on M there is a uniquely defined
antisymmetric two form ug(x) : TxMx TxM —> R , called the

volume element of g . Define Jx by relation

g(x)(unx.vx) = -ug(X)(uX,vx)

for ux,vx(ETxM . One can easily check that the map g > J,
call it ¢, is smooth. Moreover if A €P 1is a positive func-
tion then ¢(Ag) = ¢{(g)

Thus ¢ induces a map (which we also call ¢ ) on the
qguotient space M/P . The following result is not difficult

to prove.

THEOREM 4.1. The map ¢ : M/P —> A is a diffeomrophism.

§5. THE POINCARE METRIC ASSOCIATED TO AN ALMOST
COMPLEX STRUCTURE

In the early part of this century Poincaré observed that
if the genus of M is greater than one, then for every metric
g there exists a unigque positive function A such that the
Gauss (or scalar) curvature of M with respect to Ag is

constant -1

Recall that the Gauss curvature can bz thought of as &
function R : M —> F , where F 1is the space of c® functions

on M . Thus, paraphrasing Poincarés result we know that given

g there exists a unique )\ so th~t R{Ag) = -1 .
Let M_1 be all those metrics of constant curvature -1
THEOREM 5.1. M_ is a manifold. Since M_, = Rﬂliw?) and

1 -1
-1 is a regular value for R , the tangent space to M_1 at

q, TgM_ consists of all those he€S such that DR{(g)h = ¢

1 2
D acts on M_, , i.e. ge€H . implies f£*g&M_

1 i



Consider a metric g and its orbit ?g under the action
of P on M . Poincarés result implies that we can attach to
each such orbit a unigue metric which motivates the following

THEOREM 5.2. The manifolds M_, and M/P , and hence also
M*1 and A are diffeomorphic. Moreover the correspondence
© : A—> between A and M_, is D-equivariant and hence
establishes a bijection between M_,/D, and A/D, .

For each J€A we shall denote by g(J) the Poincaré
metric associated to J .

§6. THE NATURAL L,-METRIC ON THE SPACES M ,

2
M AND A .

-1

In this section we introduce a Riemannian structure on
M and A {and hence by restriction to ﬁm? } which have the
property that the diffeomorphism group P acts as a group of
isometries.

¥Ye begin with the metric on A . Let H;KiETJA . Then
HJ = -JH and similarly for K . This implies that H and
K are symmetric w.r.t. g{J} . In fact the relation HJ = -JH
can be uniquely characterized by the two relatiocns tr{¥H} = 0
and H is symmetric w.r.t. g{(J} . Our Riemannian structuyre
<<, > 1 TJA_xTJA —3» R is defined by

1
1 <<H,K>»_ = « } tr {HK)d
(m K>> 251 (HK) A g (o)
where g(J) 1is the Poincaré metric associated to J . An sasy
application of the change of variables formula implies that
P acts as a group of isometries ~n A w.r.t. <<,>> .

We define the Riemannian structure on M , also denoted
by <<,>> by

{2) <<h,k> == [tr (HK)du

1
2 M ’ alJg)



where h,k6.32 zTgM and H (and similarly X } is defincd
again by the relation

g(x) (Hu ,v. ) = h (u,v.) .

REMARK. Let © : A —> M“1 be the diffeomorphism given by
theorem 5.2. Then it is not hard to see that © is not an
isometry. We shall return to this point later when we discuss
the Weil-Peterssen metric on A/DO .

§7. THE L2—Splitting of TJA

We have already observed that ¥ acts on A. What is the
tangent space to this action? Let ft,—6<‘t< £ , be a cne para~

meter family of diffeomorphisms, £, = id , and éﬁ; = B
: 0 dt!t=0

a vector field on M . A tangent vector to A at J is given

dt t

ject in geometry, it is the Lie derivative of the 1 : 1 tensor

by the derivative -EL{ f.J} . But this is a well known cb-
t=0

J with respect to the vector field B8 and is denoted by L,J .

bl

In local coordinates this tensor is represented by the matrix

[

N & .k .k
(LBJ)% = d gk . I 38 7 Qﬁz
I ax ax 3x

where here and throughout we adopt the Einstein convention of

suming over repeated indices.

Thus tangent vectors to the orbits of ¥ on A are given

by Lie derivatives LBJ .

Teichmiller space A/DO is the quotient space arising
from the collapse of all the orbits of DG . Therefore the
tangent space to Teichmiiller space would "infinitesimally" be
complimentary to LBJ . How can we define a natural complemunty
Well we can take a complement with respect to the L2~mettic

we have introduced in §6. We then have the followins resuit.



THEOREM 7.1. Every HGITJA is trace free and can be decomposed
uniquely and orthogonally as

(1) TT

where H'' is a trace free divergence free (with respect to
the Poincaré metric g{(J) ). What does this mean? With respect
to a given metric g one can take the divergence of a symme-
tric 1:1 tensor, a 0~2 tensor as well as that of a vector
field. The divergence of a symmetric 1:1 tensor T with

respect to g is the 1-form bidxl where

. . 0g.
= i = -———1 —~——-—»a ] — l kr J — Jk
{(2) bi (dlvg (3) T>i . (t g ) > g t -

where ti is the local expression for the tensor T , gjk
the local representation of the metric g , and Vg = det g,
and gkr the inverse matrix to Iix ° )

The trace free divergence free symmetric 1:1 tensors
are infinitesimally the tangent space to the guotient space
A/DO . If A/DO is a connected manifold, as indeed it is, it
T,

8

would follow that the dimension of the space of H is

conscant.

Can one conclude this last fact from what we have already

done?

§8. CONFORMAL COORDINATES AND THE INTERPRETATION OF TRACE
FREE-DIVERGENCE FREE SYMMETRIC TENSORS IN TWO DIMENSIONS

THEOREM 8.1. {Existence of Conformal coordinates).

Let g€M be any ¢® metric on M . Then about each
point x €M there exists a coordinate system {9,U} so that

in this system the matrix representation of g is

915 = POy



where p : M —> R’ is a strictly positive €~ function and
dij is Kronecker's & . The pair {¢,U} is called a conformal
coordinate system about x .

This theorem permits us to prove the bijective relation-
ship between complex structures ( and almost complex structu-
res A . First note that by (8.1) we can cover M by crien-
tation preserving condinate atlas {wi,ﬂi} R UUi = M 8o that
each @ is a conformal coordinate system.

The transition maps mi<>m;1 will thgn necesgazily be
local conformal maps of open subsets of R to R which

preserve orientation and are thus holomorphic.

Therefore a conformal coordinate atlas gives a complex

structure. So assume we are given a J€A . By theorem 4.1

J  determines a conformal class of metrics Pg for some g .
A conformal coordinate system for g will also be a confor-
mal coordinate system for any element in the orbit space Pq .
Therefore each J induces in this way a complex structure

¢ , and thus we have a map J ~~> ¢ .

Conversely, suppose we have a complex structure {mi,wi}
for M . Define Jx : TXM'? by

-~ ~1
JX = d{?io Jadipi

where J, is the linear map on Rz

o whose matrix with respect
to the standaxrd orthogonal basis is (?';?) . Clearly

Ji = —~idx .The fact that the transition maps wia;wza are
ot

holomorphic implies that I is independent of this choice
of P - The correspondence c~w>J 1ig readily seen to be the

inverse of J be~~>C .

Conformal coordinates are very pleasant since the metric
tensor is so simple in such coordinates, and other tensors de-<.
termined by the metric tensor, like the divergence of a symme-
tric "1:1 tensor assume a particularly simple form.

First observe that in conformal coordinates,

K]
]
b
iy

‘:33_::3

o

formula {(2) of §7 reduces to



. 1 9 j
(1) (awgm?)i " 533 (p ti)
in the case T 1is trace free,

Recall the isomorphism between 1:1 tensors and 0-2
tensors induced by a metric g . Let Sij be the local repre-
sentation in conformal coordinate for the 0-2 tensor S
corresponding to the 1:1 tensor 7T . From the ﬁormpla
g{x){T u_,v_ )} = S{x)(ux,vx) ; we see that s, . =};t3 and

X x''x ij
h . T o= . ,
thus dlvg(J} 0 implies

2 _(s..) =0

(2) 1 .
P oyl 43

But {sij} is also trace free. Write 8 in the matrix form

11 %12
S = = (u ‘v) or in the classical form
S21 S22 v o u

§ = udx:2 ~udy2 + 2 vdxdy

where we represent the coordinates (xl,le by (x,¥y)

So what does (2) imply about u and v ? With this new
notation (2) can be written as:

1 {3u v
P <3x * 3y) =0
and
a (ﬁg - @z) -0
p \9y X
bu . _ BV 4 du_ 3y

But these are the Cauchy Riemann equations for the pair
(u, -v) and consequently u ~ iv , i = ¥-1 is holomorphic.
Since a conformal coordinate system is also a holomorphic

*
In conformal coordinates trace free actually means that the
corresponding matrix has zero trace.



coordinate system the holomorphicity of u-iv is well defined.
Let us write & as

§ = Re{{uwiv}idx-ridy)z} = Re{giz)daz}

S 1is therefore the real part of a complex valued 0:2 tensor
whose coefficient in complex coordinates is holomorphic. Such
an object is called a holomorphic gquadratic differential.

This correspondence between trace free~divergence free
0 : 2 tensors {and thus trace free-divergence free 1:1 +tensors)
and holomorphic quadratic differentials is bijective.

The next result is an immediate consequence of the cele-
brated theorem of Riemann—Roch.

THEOREM 8.2. The dimension of the space of holomorphic guadra-

tic differentials on a complex one-manifold of genus greater
than 1 has {real) dimension &{genus M}~6 .

We may therefore conclude that the dimension of the space
of HTTrg

always has the same fixed dimension 6{genus M)}~6 , & fac

. the candidate for the tangent space to Ai@@

i
which prepares us to discuss the manifold structure on Afﬁg .

§9. A/D, IS A c® MANIFOLD

let 8 : A —> ﬂ”@ be the diffeomorphism introduced in

§6. The next theorem describes the image of the subspace of

'Y of TJA under the derivative map DO .

THEOREM 9.1. The derivative map [ O, : T A > T@{3§H*1

maps the subspace of trace free-divergence free symmetric ten-

sors to the space of symmetric tensors h which are represen-
table in local conformal coordinates as

h Re{ﬁ{z)&zz}

i



where §{{z) 1is holomorphic.

This space h is precisely the space of symmetric 0 :2
tensors which are trace free and divergence free w.r.t.
o(dy .

Let us denote this subspace of 32 by Sgwigi . hs a con~

sequence of (9.1) we know that SgT{g}ﬂ:T M_

g -1 7

We will now construct a local diffeomorphism fron
S;T(g) to M*} . The image of this diffeomorphism will be our
coordinate chart for Teichmiiller space A/@Q {see figure
below)

The diffeomorphism is given by Poincarés result discussed
in §5. The curvature R{g} of g is -1 . Consider the fami-
ly of 0 :2 tensors gé-hTTu, hTTiing{g} . For
enough these will also be Riemannian metrics, the curvaturs

B T7
i

of g-rhTT will not be ~1 . However by Poincarés theorem we
may find a unique positive function A = Ah™) , so that the
0:2 tensor k{gi*hTT} has curvature -1 . The map

Q : h'F s l{gd-h??}

is ¢© smooth and a simple computation shows that
pR(g)h™T = n'7T

. Thus a neighborhood of SgT(g} is m



onto a submanifold § of M_, . We call T a slice for the
action of DU . This slice is our candidate for a local repre-
sentation of Teichmiiller space.

First let us again note that 0 acts on AL4 , because if
Rig) = -1 , R{(f*g) = £*R(g) = R(g) o £ 5-41 . A well known
lemma due to Ebin-Palais asserts that this action (on M as
well as on M"1) is proper.

A
THEOREM 9.2. {Ebin-Palais). Suppose f;gn ~> g , and
9, -> ¢ . Then there exists a subseguence of {fn} which

converges,

Why is this important? By the implicit function theorem
we know that every orbit of 0 in a neighborhood of g in-
tersects 3 . However each point of % may not correspond

to a unique orbit, i.e. two points could (and in some cases

do) correspond to the same orbit. This is the main distinction
between the 7 and DO action. A classic result by Bochner

on surfaces implies that the 0 -action on M {(but not the

0 -1
D-action) is free, that is has no fixed points.

THEOREM 9.3. (Bochner) Suppose g€M_, and f*g = g . This
says that f is an isometry of (M,g) . If fE?DO then £

must be the identity.

We can combine theorems 9.2 and 9.3 to conclude

there is a neighborhood U

THEOREM 9.4. For every g¢€ M_,
of g so that every point on a slice Tcu corresponds to
a unigue orbit of 90 . '

To prove 9.4 we assume the negation and use 9.2 to obtain
an immediate contradiction to 9.3.

From 9.4 and some additional calculus we can summarize
our results by

THEOREM 9.5. The quotient space M_,/D, is a C* smooth:
manifold. The tangent space to this manifold at [g}&iMwifﬁﬂ
consists of all symmetric 0:2 tensors which are trace free



and divergent free,.

Using the complex structure induced by @"}{g} this space
can be interpreted as all symmetric 0:2 tensors which are the
real parts of holomorphic quadratic differentials on M with
this complex structure.

Using the D-equivariant diffeomophism @ : A —> Mw,3 and
the fact that DO takes trace free-divergence free 1:1 ten-
sors to trace free-divergence free 0:2 tensors isomorphically

we obtain our first main result

THEOREM 9.6. The space A/D0 carries the structure of a C
smooth manifold of dimension 6 (genus M) -6 . The tangent space
to A/v0 at [J] can be identified with those 1:1 tensors
which are divergent free and trace free w.r.t. ©0[J] . Pinally
the induced map © : A/D

0 > M”1/00 is a diffeomorphism.

§10. TEICHMULLER SPACE IS A CELL

In this section we outline the proof that Teichmiiller

6p~6

space is diffeomorphic to R r P = genus M

To prove this it suffices to show that M_,/D, is diffeo-

morphic to Rﬁpwﬁ .

Let g0€EM_1 and {g0} denote its class in Mw?lﬂﬂ .
This fixed 'gg will act as our base point. Let gEZM_? be
any other metric and let St M—> M be viewed as a map
from (M,g) to IM,gO) . Using the metrics g and g, one
defines Dirichlet's energy functional

(1) B (s) = % flas]%du(g)

where !ds}z = tracegds*ds depends on both metrics g and

9o and again dpl{g) is the volume element induced by g .

We may assume that {M,gai is isometrically embedded ,
in some Euclidean Rk , which is possible by the Nash-Moser
embedding theorem. Thus we can think of s : (M,g} —> (M,q,)



k

as a map into R with Dirichlet's integral having the egui-

valent form

= 1 i i
(2) Ejls) = 3 [ a(x) <Vgs (x),vgs (x) >du(qg)

LR e o

i=1

For fixed g , the critical points of E are then said
to be harmonic maps.

We then have the following result.

THEOREM 10.1. Given metrics g and 94 there exists a unique
harmonic map s(g) : (M,g) —> (M,go) which is homotopic to the
identity. Moreover s(g) depends differentiably on g in any
" topology ¥»>2 and s{g} 1is a ol diffeomorphism. Consider
the function

g —> Eg(S(g)} .

This function on M__1 is P-invariant agd thus can be viewed
as a function on Teichmiiller space. To see this one must show
that Ef*g(s(f*(g))) = Eg(s(g)) . Let c¢l(g) be the complex
structure assgociated to g given by theorem 10.1. Fox

fEZﬂD e £ (M, f¥c(g)) —> (M,c(g)) 1is a holomorphic map and
consequently since the composition of harmonic maps and holo-
morphic maps is still harmonic we may conclude, by uniqueness,
that

s(f*qg) = sl{g) o £ .

Since Dirichlet's functional is invariant under complex holo-
morphic changes of coordinates it follows immediately that

Ef*(g) (S(g) o f) = Eg(s(g)) .

Consequently for {g]EZM~1/DO define the ¢ smooth func-
tion E : M_,/0g —> R Dby

E(lgl) = E (s(a)) .



We wish now to outline the main theorem of this section:

THEOREM 10.2. Teichmiiller space M_,/D, is c” diffeomor-

phic to Rﬁpm6 .

To prove this result it suffices to show that ¥ has the
following properties

(i} The inverse image of bounded sets in R under
E is compact in M_4/04

(ii) [go} is the only critical point of E

(iii) [gg} is a non—degenerate minimum.

Once (i) through (iii) are established the result follows im~
mediately from the application of the well known gradient de-
formations of Morse theory.

In the interest of space we omit a sketch of a proof of
(i).

To show (ii}, again letI s = s(g) : (M,g}) —> (M,gO) be
the unique harmonic maps. Let Ng(z}dz2 be the guadratic 4dif~
ferential defined by

k i i
2 o= -a-—s-—.-..- [ 2 _a..—»s-._.— 2
Ng(z)dz 121 v = dz

where s® is the ith component function of

s : {M,g) —> (M,go)cé»Rk and =z = X+ iy are local conformal
coordinates on (M,g) . We next prove

THEOREM 10.3. Ng{z}dzz is a holomorphic quadratic differen-
tial on (M,c{g)) .

PROOF. Let § denote the second fundamental form of.,

(M.go) f:Rk . Thus for each p€M , Q(p) : TprTpM — TPM‘L .
Let A denote the Laplacian of maps from (M,g) to (M,go)
and AS denote the Laplace-Beltrami operator on functions.

Then if s is harmonic we have

(3) 0 =As = Ags + J Q(s)(ds(e,),ds(e.))



81(p},e2{p) an orthonormal basis for TpM {w.r.t. the metric
gl. Ng will be holomorphic if

i(k i%i?ﬁi) .
BE izqaz 8z °

But this is equal to

and by (3) we see that this in turn equals

Y $ g Bsi
-2 1 25ﬁ15)(ds(e.);ds(e.)) . 95
i=1 =1 J J 3z
= jz(i 8 S ej FEe -] ej 3% + i8is 5 ej ,ds ej ay

Since Q{p) takes wvalues in Tle it follows that both the
real and imaginary parts of this expression vanish.

We have already seen that
2
£ = Re(Ng(z)dz )

is a trace free divergence free symmetric two tensor on {M,qg).
Let pEZT£g3M~?/9G . We know that we may think of ¢ as a
trace free divergence free symmetric two tensor. A simple cal-
culation gives the following result:

THEOREM 10.4.

DE(Iglip = - <<Erp>>g
where <<,>> is the Riemannien structure induced on Mm?
introduced in §6. Thus [g] is a critical point of ¥ iff
£=0 =Reii\ig{z}c’£22) , of iff Mg{z}dzgaﬁ )



THECREM 10.5,. Ng(z)dzz = 0 implies that [g] = {gO] .

PROOF . Ng(z)dz’2 = {iSXJE - !sy]2 + 2in<sx,syz>}dzz

Thus Ng(z}d22 implies that s is weakly conformal. Since s
is a diffeomorphism it is conformal. Thus

s : {M,c{g})}) —> {M,c(gg)) is heolomorphic, and hence

[g] = lgy]

It remains to show ({(iii) . It is clear that since

Ng (Z)dz2 =0 (s{g,) = id) that [g,] is a critical point.
o
Let p,UE‘P[ M ./?P, be trace free, and divergence

free symmetric two tensors. Then a straightforward computation
yields

THEOREM 10.6. The second derivative or Hessian of E at

[gy] is given by the formula

20y _
D E([gy]) (p,v) = 2<<p,u>> 9 .

Thus the Hessian of E at IQOJ is essentially the

natural inner product on T M*1/ﬁ0 and hence a positive

[g,]
0
definite guadratic form. This finishes the proof of our main
result 10.2.

§11. THE COMPLEX STRUCTURE ON TEICHMULLER SPACE

Teichmiiller space A/ﬁO is cven dimensional and it is
a natural guestion to ask whether or not it has a natural
complex structure.

To start with it would be simpler to first ask whether
or not it has an almost complex structure and then second



whether or not this almost complex structure is integrable,

that is, comes from a complex structure.

We can attempt to simplify matters even further. Since
Teichmiiller space is a quotient one can ask if the space A of
almost complex structures A has a natural almost complex
structure.

THEOREM 11.1. The space A of almost complex structures has

itself a natural almost complex structure & , where

CbJ : TJA £
is defined by
¢, (H) = JH .
. 2 . 2 _ . .
Since J7 = -id , QJ =~I , I :TJAnéD the identity map.

An easy computation shows that ¢ 1is PD-invariant.

Iet N be a finite dimensional manifold with an almost
complex structure J . Let X(N) denote the vector fields on
N . The obstruction to the integrability of J is given by
the Nijenhius tensor N{J} , where

N{J) : %(M) x X(N) —> %(N)
is bilinear and defined by
(1) N(3) (B,v) = 2{[3B,Jy] - J[B,Jy] - J[JIB,v] -~ [B,v]}

where [ , ] denotes the Lie bracket of vector fields. For-
mula (1) can be rewritten as

(2) N(I) (B,y) = 2{(LJBJ - JLgJ)Y} .
The following is the theorem of Newlander-Nirenberg.

THEOREM 11.2. Let N be a finite dimensional manifold with
an almost complex structure J . Then J is integrable if and




only if N(J) =0 .

In the case that the dimension of N is two it follows
that N(J) =0 and thus almost complex structures all arise
from complex structures as we already knew. However in this
case (dimN =2) formula (2) has an interesting interpreta-
tion.

Recall that on A the tangent space to the orbit of D
through J consists of 1:1 tensors of the form LBJ for
some vector field £ on M .

Then N(J) =0 implies that the almost complex structure
¢ "infinitesimally®™ leaves orbits invariant, that is

QJ(L J) = J+L,J = L_,J .

B B JB

Formula (2) can be paraphrased in another very useful
way. We can view the triple {n,A,A/BO) as a principal ﬁo
fibre bundle, 17 the quotient map 7 : A —> A/DO . That
this triple carries the structure of a C° bundle is a result
originally due to Eells and Earle. However the bundle is also
a C ILH principal bundle. At a point J€A we can define
the vertical subspace V(J) of TJA by

V{J) = Ker D ¢(J)

where the derivative Dw(J) : TJA — TH(J)A/QO .

Clearly V{J) coincides with the tangent space of the
orbits of U , and hence in the case N{J) =0 formula (2)
implies that the induced almost complex structure ¢ on

preserves vertical subspaces.

From this and the fact that ¢ is D-invariant it follows
that the almost complex structure ¢ on A induces an al-

most complex structure 8 on A/UG . Moreover N{%}) =0 im-
plies N(8) =0 .
Thus to check that ¢ is integrable it suffices to show

that N(¢) =0 and this is an easy compulation which establi-
shes



THEQREM 11.3. Teichmiiller space is a complex manifold.

§12. THE WEIL-PETERSSEN METRIC

In §6 we introduced the Lz—Riemannian structure <<,>>
on A given by

1
< > = = .
<H,K>>; = 5 i tr(HK)dug(J)

Since the group P acts on A as a group of isometries
w.r.t. the structure <<,>> , this structure thén induces a
Riemannian structure <,> on the quotient space A/DO . This
is called the Weil~Peterssen Riemannian Structure or Weil-

Peterssen metric on A/l?O .

In the next section we will show how to determine the
curvature of this metric. However, we shall concern ourselves
here with the outline of the proof that the metric is Kdhler,
a result originally due to Ahlfors.

Consider again the principal bundle (ﬁ,A,A/ﬁo),. The
map 7 as a map of Riemannian manifolds is a Riemannian sub-
mersion. Let T = A/DO . Define the Kidhler two form

o

by

A
51 FrarYar T <ern¥rar Yo

where ${J} : TiJiTéP is the almost complex structure on T
introduced in the last section.

The metric <,> 4is K&hler if Q7T =TT —> R is
closed, that is if 4ag = 0 .

Our main tool to show this will again be the exploitation
of the principal bundle structure (ﬂ,A,A/ﬂo) . The K&hler
form @ is related to a Kédhler form QA on the principal
bundle A defined by



i = 1 ,
(1) Q2 W ) = << 2, Wo>> = 5 1{1 tr(JZJWJ)dug(J)

when ZJ,EG,ETbA and ¢J : TJA < is the almost complex

structure W —> JW .

Vector fiels Z on A which are everywhere perpendicu-
lar to the orbits of ¥ are called horizontal fields (those

which are tangent are the vertical fields). Thus ¢ is
horizontal if for all J€A , ZI{(J) is a trace free divergence
free symmetric (w.r.t. g(J)) 1:1 tensor on the surface M .

If X is a vector field on the guotient A/D0 then
there is a unique horizontal vector field ¥ on' A such
that Dn(X) = Xe7 . X is called the horizontal lift of
X . The following straight forward calculation shows how we
can determine whethexr or not Q is Kdhler by working on the
bundle A , rather then on the guotient A-/DQ .

THEOREM 12.1. Let X,¥,2 be wvector fields on A/DO and
X,¥,% be their unique horizontal 1lifts. Then

e

de(Xx,Y,2) = dgA(’fi,Y,’i) )

Thus if dQA vanishes on horizontal fields it follows

that § is K#hler.

The neit result shows that dﬂA evaluated on horizontal
fields is indeed simple.

THEOREM 12,2, The differential of the map J —> ug(J)

vanishes on horizontal fields.

PROOF. The derivative of g r~> Mg is the map

h ~eoep %(trgh)ug where trgh is the trace of h w.r.t. g.
On the other hand the derivative of the map J —> g(J)
takes trace free divergence free 1:1 tensor H to trace
free divergence free two tensors h . The result then



follows from the chain rule.

Now let us consider formula (1) for QA . QA is biliniar
in Z and W and the non-linearity of QA (in the variable

J ) comes only from the term J —> “g(J) .
The formula for dQA is given by

Ld ne e

(2) 3 -dﬂA(X,Y,Z) = X(QA(Y,Z)) + Y(QA(Z.X})

~

+ Z(SZA(X,Y)) - QA([X,Y],Z)

where [ , 1 dJdenotes the Lie bracket of vector fields. If

X,¥,7 are horizontal the first three terms are easily calcu-
lated. For example

X2, (¥,%) = 2, 0¥(®,% + o, (F,0ZX)

Collecting terms if follows immediately that dﬂA vanishes on
horizontal fields and we have proved

THEOREM 12.3. Teichmiiller space is .a complex Kdhler manifold
with respect to the KRihler form induced by the Weil-Peterssen

metric,

§13. ON THE CURVATURE OF THE WEIL-PETERSSEN METRIC

Some time ago Ahlfors showed that the holomorphic sectio-
nal curvature and the Ricci curvature of the Weil-Peterssen
metric is negative. However the question of obtaining an exact
formula for this curvature remained open for some time. In
this section we show how the methods of the previous sections



enables one to compute this curvature. We define a natural

symmetric connection V on A by

(1) VX = DX (Y) - —;_- J{XY + ¥X}
where D denotes derivative and where X and Y arxre vector
fields on A . One can easily show that VYXEZTJA if

X, Y TJA . To see this one differentiates the relation

XJ = —-JX in the direction Y obtaining the relation
JDX(Y) + ¥YX = -XY - DX(Y)J .
Then
J . VYX=JDX(Y) +-21-(XY+YX) = —%(XY-&YX) - DX{Y)J = —VYX +J

The computation of the curvature will involve a study of
the properties of the bundle A , the map J > g(J) and
the connection V .

The next result follows immediately from the definition

of the Levi Civita connection.

THEOREM 13.1. If V denotes the Levi-Civita connection of
<<,>> then the horizontal components of VYX and ﬁyx~ agree

if X and ¥ are horizontal.
We know that the Levi Civita connecticn V is charac—

terized uniquely by the relations

(2) X<<V,W>> = <<VXV,W >> + << V,T"XW >>
and
VoW = V¥V = [V,W]

where [, ] denotes the Lie bracket of vector fields. A trivial
calculation shows that V satisfies these relations if X,V ,
and W are horizontal.

There is another way one can view this connection. If X



and Y are vector fields on A , then for each J€A , X(J)
and Y(J) are trace free 1:1 tensors on M which are sym-
metric with respect to g(J) . Then DY(X){J) will be trace
free buf not symmetric. Define the projection map 7 by

T(2Z) = (2 + 2%)

LTRSS

where * denotes the adjoint of the 1:1 tensor Z with
respect to g{J) .
Then one easily checks that

(3) VXY = DY(X) - Dm(X)[Y] = wDY(X) .

The curvature tensor R(X,Y¥)Z of V is defined by

(4) {v,v, - v,V

xVy vVx ~ V[X,Y]}Z = R(X,Y)Z .

Now

«]

<

I
I

= D, {DZ (¥) —-—%—{JZY +3Yz}} -4 3 {X[DZ (¥) ——;—(JZY +JYZ) ] +

+

[DZ(Y) - %(JZY +JYZ) 1X}

= p%7(X,¥) + DZIDY(X) - %xzy ~—%JDZ(X)Y —-%JZDY(X) -
- dxvz - apvixyz -1 avpz(x) -+ ax0z(Y) -2 X2V -

2 X¥2 =3 2 2 7
_1 21 1 1

4 X¥Z -1 DZ(Y)X -+ 2YX - VX

VYVXZ is obtained by interchanging X and Y in the last
computation. By (4) and the previous computation we see that

R(X,¥)Z = - 2ZYX + ZXY .

Therefore

2. ;
+ nyx}dngm

(5) <<R{X,¥)Y,X>> = 1 | trace {*YZX
, J 2 M



Thus for fixed JE:TJA let X(J), Y(J) Eﬁbﬁ.. Furthermore for
each %€M let us denote the matrices of X(J)x and Y(J)x

c d a b
by (d —c) and (b _a) . Then

2 + YXYX} = *2{ad-—bc}2'<0

trace {—YZX
for linearly independent X and Y , and this holds whether
or not X or Y is horizontal.

Let K denote the curvature of Teichmiiller space
T = A/D0 with respect to its Weil-Peterssen metric. If X
and Y now denote vector fields on T 1let X and ¥ denote

the vunique horizontal lifts with respect to the‘Lz—metric.
Then
(6) K(X,Y) = <<V (VYY) = Vg(VgY) -V Y,X >>
XY ¥ X [% ?]H
14

where the supercripts H and V will denote horizontal and

vertical component respectively.

Since (ViY) = (ViY)H we see that

(7) K(X,Y)

il

— H —.H -
<< V—}E(V*fY) - V?(V')‘{Y) -V Y, X>>

i}

<< VS(*V':Y'Y - V'i;V')EY - V{—X\’—Y-

|

<<VX(V§Y) ,X>>4‘<<?§(V§Y) X >>+ <<V

In simplifying formula (7) for the curvature the next
two results are important. The first determines the divergence
of D?i for horizontal ¥,X at a point J with respect to
the Poincare metric g{J) . This will measure the deviation
of ??i from being horizontal.

THEOREM 13.1. If X and Y are horizontal, then




(8) divg(J)[Y,X] = dX

{9) dlvg(g)(DiY + DYX) = *dpy

il

{10) divg(J)(VxY + V§X) - *dp

where p,A :t M —> R are the functions,

%tr (XY + YX)

%tn?(YX - XY) ,

and if w = Edx + ndy in conformal coordinates,

{ac + bd) {x)

n
]

1(x)

A{x)

i

{~ad + bc) (x)

]

#w = -ndx +Edy .
The following formula replaces the standard formula for
the Levi-Civita connection,

THEOREM 13.2, Let V and Z represent horizontal vector
fields on A , and. W= L

BJ , a vertical field on A .

+ <<V ,W>>

2<<VVZ,W>>J = V<<Z,W>>

J J

- W({V,Z>>J + <<[V,2]1,W>>_ - <<[V,HW],Z>>

J J

- <<[2,W],V>>_ + = [tr (zV) (div

)Bﬁw
M

g{J g{J) :

These results allow us to simplify the formula (7) for
the curvature, namely

(11) K{X,Y) = <<R(X, DT, T>> + <<<v§”§)", {v-gﬁ‘)"»
L iy 2
- N e R

We proceed further with the following fundamental

LEMMA 13.3. Suppose HEZTJA is vertical, H = LQJ with
divH = xdx , for some smooth function A : M —> R . Then
~divgf = g , where



Ao - o = AX

where A denotes the Laplace Beltrami operator on M with
respect to the metric g(J) .

The next result gives the basic flavor of the curvature
computation.

THEQREM 13.4. Let X and Y be vector fields on Teich-
miiller's space A/ﬂO and denote by X,¥ their horizontal
lifts. Represent X,Y in conformal coordinates by the matrices

(i _Z) and (g ,d) respectively and let

= ad - bec = % trace {J(XY - ¥X)} .

Then

= =V 2 2 -1,
IR M -{qx g gy * 1{1” M Adrg )

where | 1is the invertible elliptic operator on functions
p given by

a'-. =A - .
o p—p

PROQF. Write‘ [’Y‘ X1V = Lgd . So
JJ1Y,X] ”2 LgJ 512 = <<L8J Lgd>> . Let oy (B) = LgJd

o is now a map from ¢ vector field {M) on M to C

{1:1) tensors C_ (T1(M)) on M . Such a map oy has an
adjoint ag , namely for symmetric 1:1 tensors A, and in con-
formal coordinates gij = Paij .

*"m’! Crsiims
ay : C (T,(M) —> X (1)

* - .l 3 2-—1 4 1
aJ{A) (+p(a1vg{J)A)" P(dlvgiJ)A} } .

Then

{iLBJlF = Hagsle = <<oyB,0.8>> = <a§a38,8>r ; where <,>



denotes the g innerproduct of vector fields on M .

But as in 13.1 we can compute in conformal coordinates

* = (+d 8 (o LI
aJ(aJB) = (+p ay( ad + bc}, n% (-ad + bc)) .

he BB

Therefore

9

* o
<ajoB,B > = f [-1- pﬁ1 3y

9
2 {(-ad + bec) - sz 5;(—ad-+bc)]

integrating by parts we see that this es egqual to

1 3 9

(12) g;(—ad-khc) {-—divg(JB)} dug(J) .

Since JLBJ = LJSJ ; from lemma 13.3 we have
- div_(J =
i g( B) p

where Lp = Ap - p=AXA, X = (~ad+bc) . Thus (12) is equal
to

Ap d )
g{pug

The operator [ is clearly strictly negative and self-
adjoint. So Lp = (L + I)A and hence

-1 1

p =L "(L+T)r = A+L "2

and

2 -1 ‘
Jorxau_ = f a%ap_+ J(L”'x) rdu .
M 9 M 9 M 9
This concludes the proof of theorem 13.4.

Using these ideas to evaluate the second and third terms
in formula {1), we obtain our main results:



THEOREM 13.5. Let X and Y be vector fields on Teichmiiller's
space A/v0 and X,Y their vertical 1ifts to the bundle A ,
Then if

A = 2 trace {J(XY-¥X)}, y = 5 trace {X¥+¥X)

)
P)

the sectional curvature of A/D0 with respect to its Weil~
Peterssen metric is given by

1

K(X,v) = - [ a%ap_ + 3 [(17 ") A aug - Ty Ty yan, +

M g M M g

fir a2+ v%) 1 (e? + a%yan )
M g

N Y

THEOREM 13,6. The holomorphic sectional curvature of Teich-

miiller's space is strictly negative and bounded by
- 1/471{p-1) , p = genus(M) .

PROOF, Let Y = JX . Then ) = -(a2+b2) = ~(c2+a2) P
_ 2 -1
R(X,¥) = - [ 2% + [(L A) Adpg < 0
M

M

since the elliptic operator L is strictly negative. The sec-
timal curvature of the plane spanned by X and Y is given
by

K(X,Y)
[1% A ¥|f
<<%, X>> =<<%X,¥>>
where HKI\YiF = det _ o .
<< X, ¥ »> <Y, ¥>>
Since for Y = JX , <<X,¥>>=0 , Nx]{2 = HY“Q we have
that

Nxaxlf =[x ])*s {{&u;ané}zsé dug gi;xz ap_ .



But by the Gauss-Bonnet theorem

f ap_ = 2n(2p-2)
M 9

where p = genusM.
2 -1 4 . .
Thus - [ A% § ——— || X]| and the holomorphic sectional
M d7{p—-1)
-1

curvature is bounded by T (p-1) °

The next results also follow from the curvature formula.

THEOREM 13.6. The biholomorphic sectional curvature is

strictly negative

THEQREM 13.7. The Ricci curvature of A/DO with respect to
its Weil-Peterssen metric is strictly negative, and

-1 2 _
Ric(X) = Trip=iT Hxl , where p = genus(M) .

Finally to see that the sectional curvature ié negative we need
the following lemma. Using the uniformization theorem we can
represent M with a given conformal structure as U/T , U the
hyperbolic upperhalf plane, . T a subgroup of SL(2,R) . Then
from the fact that the Green's function for -1 on a fundamen-

tal domain is positive and HOlder's inequality we obtain

LEMMA 13.4.

r 3
17 o) | s |-17 102 -1 e?

Applying this lemma and Hblder's inequality to the formula in
theorem 13.5 we see that

- 1wy s - fi @%en?) e +a? bau
M

M i

This immediately implies the final result.

THEOREM 13.8. The sectional curvature of Teichmiiller space

is negative.
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