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ABSTRACT. In this paper, we find the relationship between Mil-

— nor’s K-group and Galois cohomology. As like the result of Merkuriev
and Suslin, we can show that for a purely transcendental extension
field F(T) over a certain field F, there is an canonical isomorphism
KMF(T)/n = HY(F(T), u29).

1. INTRODUCTION

Let K be an arbitrary field. Then, the ¢-th Milnor K-group is defined
by . ’
KMK =2, -
KYK = K*,
g times

>

1{3&(:}(*@---@1(*/.1(, (q=2),

where J, is the subgroup of K* ® --- ® K> which is generated by
elements z; @ - - - ® z, such that z; + z; = 1 for some ¢ and j (¢ # j).
On the other hand, one can relate Milnor K-groups to Galois coho-
mology groups via the following homomorphism which is induced by
the cup-product pairing : '
F*x o x F* ——— HY(F, ) X -+ - x H'(F, up)
canonical
— Hq(Fw /J‘fq)
cup-product
we shall denote the homomorphism induced by the above multilinear
map by hf .
In [3], Merkuriev and Suslin have proved the following interesting,
remarkable and useful theorem :

Date: April 10, 1996,

The author would express his heartly thanks for hospitality of Max-Planck-
Institut fiir Mathematik in Bonn. A part of this work has been performed during
the author’s stay in Max-Planck-Institut in 1996.

1



2 YOSHIHIRO KOYA

Theorem 1.1 ({3, Theorem 11.5}). Let K be an arbitrary field. And
let n be a positive integer which is invertible on K. Then, the following
homomorphism is an isomorphism :

lﬁ(,n: KgK/n KK ~ H*(K, u®%). (1.1)
Here p,, is the multiplicative group of n-th root of unity.

Added to this, in [2], Kato has considered the similar problem about
complete discrete valuation fields. And his results leads us to an af-
firmative answer in the case that a complete discrete valuation field
considered is an n-dimensional local field. (In fact, he has shown more
general and profound facts, which contain, of course, the above men-
tioned facts.) i '

Thus, it seems to be natural to ask whether or not the homomor-
phism

hy o KMF [n — HY(F, p29)
is bijective for a given field F. This problem itself is interesting and
exciting to solve. However, this relation between Milnor K-groups and
Galois cohomology groups is very useful and indispensable to study a
given specified field. For example, the many results in higher dimen-
sional class field theory have been proved by using this property of

Galois symbols essentially.
In this paper, we shall prove the following theorem :

Theorem 1.2 (Theorem 3.6). Let F be a field, T be an indeterminate,
and n be a non-negative nteger which is invertible on F. Assume that,
for any finite extension field E of F' and arbitrary non-negative integers
q, the homomorphism
hn: KYE/nK)E — HY(E, u®7)
s bijective. :
Then, the homomorphism

Weryn: Ko F(T) [nK ) F(T) = HY(F(T), u&%)

1$ also bijective.

The above theorem gives us a large amount of fields such that the
homomorphisms h'}pln are always bijective. For example, we can show :

Proposition 1.3 (Proposition 4.2). Let F' be a field which is a one of
the listed below :

(1) an algebraically closed field,

(2) a real closed field,

(3) a finite field,
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(4) an n-dimensional local field,
(5) an algebraic number field.

And, moreover, let T be an indeterminate and n be a natural number
which 1s invertible on F. ‘
Then, for each non-negative integer q, the following homomorphism

is bijective :
h"i"(T).n: K;”F(T)/n — HY(F(T), u9).
Furthermore, as a bi-product, we can also show :

Corollary 1.4 (Corollary 4.4). Let F be a one of fields listed above,
Ti,- -+, T be indeterminates, and n be a natural number which is in-
vertible on F.

Then, the homomorphism -

h:;'(Tl,'" Tm)n* KéwF(Tl’ ce :Tm)/n - Ha(F(Tl) o Ty 1523)
is biyjective for any non-negative integers m.

These results are immediate consequence from Theorem 3.6 and the
methods which are used in its proof. This fact tells us how our main
theorem, Theorem 3.6, is powerful and useful.

Notations and Convention . For an arbitrary field F', we denote its sep-
arable closure in its fixed algebraic closure by F*¢P.

For an arbitrary scheme X, we denote the set of its closed points by
JX’O.

Let X be a scheme. A sheaf F on X stands for a sheaf with re-
spect to étale topology of X. Moreover, unless contrary is explicitly
stated, cohomology groups H?(X, F) means étale cohomology groups.
Especially, for a field F', we denote H9(Spec(F), F) by HYF,F). As
is well-known, it coincides with Galois cohomology groups.

2. EXACT SEQUENCE

In this section, we shall prove the next proposition, which will be
used in the later sections.

Proposition 2.1. Let F' be an arbitrary field and T be an indeterm:-
nate. And let € be a prime number which is invertible on F(T). Then,
for any positive integers v and g, the following sequence is ezact and
split :

0 — HU(F, u§") = HU(F(T), u§") ~ € H ' (F(v), u§ ™) =0,
v (2.1)

where v € Spec(F[T))°, and F(v) is the residuc field at v.
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First, in order to prove Proposition 2.1, we shall show the following
lemma.

Lemma 2.2. Under the conditions end notations in Proposition 2.1,
the follounng sequence is split and ezact for any positive integers q.

0 — H(F, ) = HY(F(T), ue) =D H(F(v),Z/¢Z) -0,
5 (2.2)

Proof of Lemma £.2. For simplicity we denote Spec(F[T]) by X and
F(T) by K. Added to this, let g: Spec(K) — X and i,: Spec(F(v)) —
X be the canonical morphisms of schemes. By easy argument on the
result explained in [4, Chap. II, §3, Example 3.9], we see that the
following sequence of sheaves on X is exact and split :

0 =G x = 9:Gm k —>€Biu,z —0. (2.3) -

v

From the above sequence, taking étale cohomology groups, we obtain
the following short exact sequences :

0 —HY(X,Gp,x) = H(X, 0.Gm x) =D H(X, . Z) —0.

As in [4, Chap. III, §2, Example 2.22], however, we know that there
exist isomorphisms as follows :

HY(X, 3.Gpm i) = HY(K, Gy)
HY(X,i,,Z) = H""\(F(v),Q/ ).
Then we observe that the following sequence is exact and split :

0 — HY(X, pe) = HY(F(T), ue) » @D H'(F(v), Z/¢Z) —0,

Therefore, we only have to prove H9(X, i) = H(F, 1), But this is
easily obtained from the next lemma. This completes the proof of the
lemma. O

Lemma 2.3. For an arbitrary field F, let X = Spec(F[T]). Then,
HYX, pe) = HO(F, pe).
Proof. Consider the following Hochschild-Serre spectral sequence :
HP(F, HY(X, pe)) == HM(X, ),

where X = Spec(F*P[T}). By [4, Chap. VI, §7, Theorem 7.2], we
already know c¢dg(X) < dim X = 1. Therefore, we observe that the
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above spectral sequence degenerates and obtain the following long exact
sequence of cohomologies :

oo = HP(F, pg) = HP(X, pg) = HPHF, HY(X ) — -+ .
On the other hand, we know that the following sequence is exact :
(K, 00)¢ BT, 05)% = HY(X, ) =2 Pic(X) =-- -

From the definition of X, we obtain Pic(.X) = 0. Moreover, since
['(X,0%) = F*, we see H'(X, ps) = 0. This complete the proof of
the lemma. — g

Proof of Proposition 2.1. We shall prove the proposition by induction
onr.

In the case » = 1, we have already proved in Lemma 2.2.

Assume 7 > 1. In the case that the field F' contains a primitive £-th
root of unity ¢, we know p$™ ~ ,u?(r_l). Hence, by the assumptions of
induction, the proposition is valid in this case.

In the case that F" does not contain (;, consider the following spectral

sequence :
H*(E/F, H'(E, "™ ")) = H™*(F, u§"),

where E = F((;). Since [E: F] is relatively prime to £, we have that,
for each integer s > 0, H*(E/F, H‘(E,u}e(r*l))) = 0. Therefore, we
obtain

HP(F,uf") = H*(E, ") S0,
Similarly, we can show
H(F(T), 1§") = H*(B(T), g "~ ")5E/.

Hence, we only have to prove

Gal(E/F)
P H*(Flv), uf") = (@ H’(E('w),u?("”)) -

But, it is easily obtained by the following spectral sequence in the same
manner :
H* (B/F, H(X, @ tuuiif ™) = HHX, @D haui”).
1w v

where X = Spec(E[T]) and X = Spec(F[T]). From the above argu-
ment, the sequence in the case that the field considered contains ¢
is exact and split. Hence, taking the fixed part of Gal(E/F), we can
obtain our desired exact and split sequence. ]
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3. GALOIS SYMBOLS

First, we shall prove the following proposition. It seems to be well-
known for experts.

Theorem 3.1. Let F be a field and £ be a prime number which is
wnvertible on F'. Assume that the field F contains a primitive £-th root
of unity. Furthermore, assume that, for any non-negative integers q,
the homomorphism
Wy KM F[EKYF — HY(F, 13"
18 bijective.
Then, for any non-negative integers q and n, the homomorphism
hpm: KY'FJOKYF — HY(F, p3?)
s also bijective.

The above theorem is an easy consequence of the following two cri-
teria.

Proposition 3.2. Let F be an arbitrary field, and £ be a prime number
which is invertible on F. Assume that, for any non-negative integer q,
the homomorphism
h‘,’,',: K,;"F/ZK;"F — HI(F, u®%)
is surjective.
Then, for any non-negative integers q¢ and n, the homomorphism
h n - KfF/E"Ké"F — HI(F, u9)
s also surjective.
Proposition 3.3. Let F' be an arbitrary field, and £ be a prime number
which is invertible on F'. Assume that the field F' contains a primitive
£-root of unity. Moreover, assume that, for any non-negative integers
q, the homomorphism
Wy KM FJEKMF — HY(F, ugf)
s bijective
Then, for any non-negative integers q and n, the homomorphism
W gt K F[/OKYF — HI(F, u5)
18 also injective
Lemma 3.4. Let F be a field, T be an indeterminate, and € be a prime

number which is itnvertible on F. Assume that, for each finite extension
field E of F, the homomorphism

hyp: KME /€= HYE, ug")
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is bijective.
Then, the homomorphism
Worye: Ko F(T) /€= H(F(T), ")
is also bijective.

Proof. The lemma is an easy consequence from the following commu-
tative diagram : -

0 — KNMNF/t —— KMF(T))t — @®,KMF@)/t —— 0

0 — HUF,u$) — HO(F(T),p§") — D, B (F@),ud"™) — 0.
Here the upper horizontal sequence is exact and split by [5, Theo-
rem 2.3], and the lower horizontal sequence is also exact and split by

Proposition 2.1. Furthermore, note that the right and left vertical ar-
rows are bijective by the assumptions of the lemma. O

The next proposition is a one of applications of the bijectivity of
Galois symbols, which will be also used in order to prove our main
theorem.” -

Proposition 3.5. Let F be a field, T be an indeterminate, and ¢ be
a pFime number which is invertible on F. Assume that, for all finite
extenstons E of F and arbitrary non-negative integers q and n, the
homomorphisms

Wyt KN E[C = HY(E, ugl)

are bijective.
Then, the following sequence is ezact and split :

0 — HY(F, 18%) — HI(F(T), u H@H"' v), 1Yy 50

for each non-negative integers q and n.

Proof. First, assume F' contains a primitive ¢-th root of unity ¢,. Then,

by Lemma 3.4 and Theorem 3.1, we know that the homomorphism
Weryen KYF(T)/" — HY(F(T), up)

is bijective, for each non-negative integers ¢ and n. Noting the following
commutative diagram :
0 — I\MF/!,’" — KMF(T )/eo — B, ! (M Fy/e — 0

|- E t

0 —— HO(F, 5y —— HIU(F(T),up!) — @, H"'(F(v), pgn’ ) — 0,
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where the upper horizontal sequence is exact by (5, Theorem 2.3] and
all vertical arrows are bijective. Then, the exactness and splitness of
the lower horizontal sequence are easily proved by elementary diagram
chasing. '

Next, let £ = F((;). And, consider, for example, the next spectral
sequence :

H*(E/F, H{(E, 1&%)) = H**(F, %),
Since [E: F] is relatively prime to £*, we observe
HE/F HYE, y2)) =0 (s>0).
Therefore, we obtain
H"(F, #gq) — Hq(E, #ze;q)GaI(E/F)‘

Thus, we can reduce the exactness and splitness in general case to
the case that the field F' contains a primitive ¢-th root of unity. This
completes the proof of the proposition. |

The following theorem is the main result in this paper. The proof of

the theorem below is similar to the one of Lemma 3.4. Therefore, we
omit it.
Theorem 3.6. Let F be a field, T be an indeterminate, and n be a
non-negative integer which is invertible on F. Assume that, for any
finite extension field E of F' and arbitrary non-negative integers q, the
homomorphism

LY K‘;”E/nK;”E — HY(E, u®%)
18 byjective.
Then, the homomorphism
Woerya: Kq' F(T) /Ky F(T) - HY(F(T), ")

s also bijective.

4. MISCELLANEOUS APPLICATIONS

In this section, we shall present some applications of the results
proved in the previous section.

First of all, we shall find a field which satisfies the assumptions of
Theorem 3.6. The following lemma is well-known for experts.

Lemma 4.1. Let F' be a field which s a one of the listed below :

(1) an algebraically closed field,
(2) a real closed field,
(3) a finite field,
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(4) an n-dimensional local field,
(5) an algebraic number field.
And, let n be a natural number which is invertible on F.
Then, for any finite extension field E of F, the homomorphism

hgn: KYE/n — HYE, u29)
is bijective.
The above lemma assures us of the existence of fields which satisfy

the-assumptions in theorem 3.6. Thus, we obtain the following propo-
sitiom. -
Proposition 4.2. Let F be a field which is a one of the listed in
Lemma 4.1. And, moreover, let T be an indeterminate and n be a
natural number which 1s invertible on F. i

Then, for each non-negative integer q, the following homomorphism
15 bijective :

-h?,(T)’n: KfF(T)/n — HIY(F(T), u%9.

The next is not a direct application of the result in the previous
section. Since it is, however, amr easy exercise about the results and the
methods employed in the previous section, we put it together with the
other applications.

Proposition 4.3. Let F be a field and T be an indeterminate. And
let n be a natural number which is invertible on F. Assume that the
homomorphism :
hyn: K3'F [n — H(F, u2°)
1s byjective.
Then, the homomorphism
horynt K3 F(T) /n— HYF(T), p3%)
is also bijective.

Proof. Consider the following commutative diagram :
0 — K{F/n — KMFT)/n — @ K} Fv)/n — 0

0 — HYF,u®) — H3F(T),u®) — P, H*(Fv), u®?) — 0,
where the upper horizontal sequence is exact by [5, Theorem 2.3] and
the lower horizontal sequence is also exact by the proof of Proposi-

tion 3.5. From the assumption of the proposition, the left vertical
arrow is an isomorphism. Furthermore, by [3, Theorem 11.5], note also
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that the right vertical arrow is always an isomorphism. Therefore, we
can obtain the proposition by using five lemma. O

Corollary 4.4. Besides the conditions and notations in the previous
proposition, let Ty, - - , T, be indeterminates.
Then, the homomorphism

h??(Tl.---,Tm).n: KMF(T,- - Tm)/n—= HY(F(T1, -+, T), u%°)

is bijective for any non-negative integers n and m.
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