THE ASCIDIANS OF SOUTH AUSTRALIA I. SPENCER GULF, ST. VINCENT GULF AND ENCOUNTER BAY

by Patricla Kott ${ }^{\text {F }}$

Abstract

Summary A large and representative collection of Ascidiacea from St. Vincent Gulf and adjacent locations is discussed. Fifty-nine species are represented, of which Pyufa seoresbiensis and Ctenicella antipoda are new to science. Ascidia aclara Kotr, previously known from other Australian locations, and Aplidium colelloides Herdman, previously known only from South Africa, are recorded from the area for the first time.

The fauna of St. Vincent Gulf is typically of the Flindersian marine biogeographic region, bat includes several endemic species. Morphological characteristics accounting for the success of certain species and groups of specics sharing a habitat are indicated.

Introduction

This large collection of ascidians, mainly from St. Vincent Gulf, South Australia, was made by Mr. S. A. Shepherd of the Department of Fisheries and Fauna Conservation, South Australia. It is a valuable and representative collection and demonstrates the value of SCUBA collections of this benthic group from otherwise inaccessible localities. Colour notes made by the collector provide most useful data for comparison with the preserved specimens in which cotouts are generally lost or change completely. The large number of individuals of most species that are available in the collection has demonstrated a wide variability in certain characters and some synonymy has been established.

Information on the environmental conditions operating in various locations, also supplied by the collector has been related to the morphology of the species present to contribute to an assessment of selective mechanisms affecting the ascidians. Full station lists of species are also given to facilitate consideration of the faunal associations and their cological relationships.

The specimens are deposited in the South Australian Museum.

The following species have previously been recorded from South Australia (Kott 1952, 1957a, 1962, 1963) but were not in the present collection.

> Polyclinum перtunium
> Polyclinum marsupiale Aplidium flavolineatum
> Aplidium oustraliensis
> Liswoclinum ostrearium
> Dideninum furritum
> Didemnum angusti
> Didemnum pseudodiplosoma
> Trididemnum nataletise.
> Trididemnum cevebriforme
> Leptoclinides imperfectus
> Sympleghta viride
> Siyela lohata
> Asterocurpa cerea
> Pyura stolonifera

Zoogeography

The fauna is typically that of the Flindersian matine region, together with Distaplia viridis which is also recorded from Port Phillip Bay, Ascidia aclara which has been taken from similar sheltered locations on the Victorian, New South Wales, and Queensland enasts, and Aplidium colelloider, previously recorded from South Africa. The new species, Pyure scoresbiensis and Ctenicella antipoda, may be endertic.

The records of A. colelloides from off South Africa and South Australia suggest a circumpolar distribution, as demonstrated for many ascidian species (Kott 1971a). A wide dispersal of latyae, however, does not provide a satisfactory explanation for this patyern of dis-

[^0]Trans. R. Soc. S. Aust. 96, Part 1, 29 Febmary 1972,
tribution since, for successful sexual reproduction. minimal population densities of adults are required. The existence of so many circumpolar species in the extant fauna may be the result of a slow rate of evolution and the persistence of relict forms in certain areas.

Habit of the Ascidian Fauna

In the present collection, ascidians have been taken frum a wide variety of locations, especially in St, Vineent Gulf. The terminology qualifying the conditions encountered is partly that described by Shepherd \& Womersley (1970) and Womersley \& Elmonds (1958), is follows:
(1) "Rough Coast Subformation" (R.C.S.) refers to cousts exposed to the southern ocean swell (wave periods $10-12$ secs.).

Water movement resulting from this swell is strong and pulsatile on the surface but decays with depth so that surge is moderate at 15 m and slight at 25 m depth.
(2) "Shehered Coast Subformation" (S.C.S.) (see Womersley \& Edmonds 1958) refers to sheltered coasts where there is no swell and the coast is subject to waves of short period (up to 5 seconds) which decay rapidly with depth. Much of the coast-line in both Spencer Gulf and St. Vincent Gulf is of this type.
(3) "Offshore Benthic" locations are those away from the shore where water movement results from tidal current rather than wave action. In St. Vincent Gulf tidal currents are generally about $1 \mathrm{~m} / \mathrm{sec}$., except over Tapley Shoal where they are $1-2 \mathrm{~m} / \mathrm{sec}$.

Fig. 1. Map showing locations in and adjacent to Spencer Gulf and St. Vincent Gulf.

These different Jocations provide environmental conditions favouring an ascidian fauna of very varied habit. For each species its shape, or size, or mode of fixation, or growth characteristics appear to operate as selective mechanisms contributing to its success in the environmental conditions operating:
(1) In Rough Coast Subformations, at depths less than 15 m where surge is moderate to strong f Wright 1., West 1.7. the dominant arcidian fauna is adapted to the conditions by virtue of their colonial form, their viviparous larvae, their usually well-developed cloacal systerns. and cither
(a) an encrusting habit providing a large surface area for fixation (Atapozoa lantasimna, Cystodytes dellechiajei, Didenmun condidum, Leptochnides ru/us, Lissoclinium se., Oculinaria ansmolis. Borrylloides niprom) ; or
(b) smail stalks or sessile babit and cylindrical body form enabling them to occupy sheltered crevices (e.g. on Ecklonia holdrasts, under ledges, etc.). The stalks of these species are thick, and the eolonies do not move freely with the currents (Podoctavella cylindrica. Psetudadistomatereum Riterelfu herdnania, Synoicium papilliferum).
(2) In Rough Coast Subformations, at 15 m und greater depths (Wright I.. West I.), the strong surge at the surface is reduced to moderite to slight water movement. Species with pliable stalks form a dominant component of the ascidian fauna and are best able to exploit the changing direction of the water movements by moving with the water so that their branchial openings are presented to the oncoming current which thus reinforces the ciliary feeding mechanism. Only some of these species have vivipurous lurvae (Borylloides magnicoecus. B. Veachl, Polyearpa pedunculata, P. clavata, Pyuru cutvirulis),
(3) In Rough Coast Subformations, it all depths, are large species fixed by a relatively small part of their surface. At shallow depths, they appear to be more offen on vertical rock fuces or in caves, where firm fixation can be nchieved, while at greater depths they are on the bottorn (Polycior giganteum, Scyela pedata, Cnemidocarpa etherldgii, Herdhtuntia momus).
(4) It Offshore Benthic locations with moderate currents and sandy bottoms and some sediment, there are aguin, stalked species that are raised above the substrate and sometimes, by
virtue of a pliable stalk. move with the current so that the branchial aperture is presented to the onvoming flow (Aplidum colelloides, Polrcarda clavala, Pyura vooresbiensis. P, spinifera. P. ausiralis).
(5) In Offshore Benthic locutions with sluggish to slow currents, there are:
(a) Large species lying on or partly embedded in, or fixed to, rocky fontoms or to solid objects in sandy, often mobile, bostoms. These iddividuals and colonies aire oriented to take maximum advantage of the prevailing current flow by differential growth of the colony or of the est, espacially in the region of the siphons (Sycazon rerebriformis, Ascidia spp., Phallusia siepressuesrula, Ctenicella antipoda, Herdmanis momus). Sycozo cerehriformis, which is abundant on the bottom, especially in upper St. Vincent Gulf, has its "「ans oriented to receive maximum current" (S. Shepherd, pers comm.). Its stalk is thick, short, and not pliable, and the species adapts to the direction of prevailing current flow by growth of the colony. In large sessite anil partly embedded species, the orientation of the siphons in relation to the eurrent is ettected by their tifferential growth re.g. Phallusia depressiuscital. Ascidia aclara. which is recorded only from sandy substrates in which it is probably partly embedded, is expecially interesting in the presence of cylindrical tubes round the apertures creating a constant micro-environment.
(b) Species with a leathery test sometimes produced into roots, in a sometimes mobile sandy bottom or attached to the fibrous roots of the sea-grass Posidonia austrvis, These species often form aggregates of individuals. (Polycarpa pedunculata, Pyura irregularis, P. viltata, Halocynthia hispida, Microcosmus: spp.).
(6) In Sheltered Coast Subformations with shight wave action at the surface and bo sediment. collections have been made from 3 to 25 m . The species present represent all the groups previously distinguished:
(a) Stalked speciss common in Offshore Benthic locations and in Rough Coast Subformations where there is moderate to slight surge.
(b) Leathery aggregated specimens common at Offshore Benthic locations where the curfents are slight to shugeish.
(c) Aplousobranch species which, in more exposed conditions, are present in shehered niches or crevices or have an encrusting habit iPodoclavella cylindricu, Destaplte viridis. Lepooclitides rufus, Polvsymeraton orbiculum. Lichinoclinum verrilli, Ritterello herdHisuia, Svhoientem papilliferumi).
(d) The large stolidobranch and phlebohranch species which exploit cican (vertical) rocky substrates or protected totations at Rough Coast Subformations and which arte also present in Offishore Benthic locations where the eurrent is slight. These large individuals are more ofren found at shallower depthis and in less protected niches in these Shellered Coast Subformations than in Rough Coasc Subformations (Ascidia spp., Rfocidawnta inurciciont, Corella eumvota, Hordmuinte momus).

The presence of some of the larger phlebobrameh and stolitobrasch individuals at shatlower depths in certain areas where surge is genater, but where clean stony substrate is available for seltiement, suggests that it is the sirengit of the current flow in relation to the type of fixation which can be achieved that is the critical factor in site selection for these species rather than depth or light conditions. On the other hathd, aplousobranch and stolidebranch encrusting species, and others whose shitpe enables them to exploit narrow erevices. caves and ledges, appenr to be affected more by light and their depth range is more limited. These species accur at shallow depths both in turbulent tocations and in Sheltered Coast Subformations, and are not often taken in Offshore Benthic locations. They all have viviparous Ifrvae and light sensitive organs which inAuence their settlement, and ellicient athesive apparatus which is noeded where surge and turbulence is great, They are also common in areas of gentle water movement. together with the large phlebolitutch species not usually found at shallow depths in more turbulent areas.

Seventy-six species are now recorded from St. Vinoent Gulf and Spencer Gulf. 'This indicates a great diversity of aseidian species and suggests that conditions maly be especially favourable for them. Reconds are mure numerous, however, from Gulf regions than from the "open" coast. probably because more collecting has been done in these locations. It is not possible, therefore, with the information available, m compare the faunal diversity on
the open coast with that in Spencer Gulf and St. Vincent Gulf.

Suborder APLOUSOBRANCHIA Family CLAVELINIDAE
 Subfamily RLAVELININAE

Clavelina baudinensis Kotr. 1957a 87. Millar r_{T} 1466: 363.
New-Records: Carickalnga Head, Rapid Head Previous Records; W Aust. (Rottnest Island) - Kott 1957a. Vic (Batnatring Beach, I avertor Bay, Williamstown) -Kott 1957a; Millar 1966. Recorded from the intertidal to 6 m .
Description: Two or more llat-topped tobes of variable size, joined by a common bise that is equal in height to that of the lohes. Height of the colony to 4 cm , maximum diameter of it lobe 0.6 cm . The test is firm, gelatinous and transparent. Zouids are blue. Thorax rounded. 1.5 mm long; abdomen 2.5 mm long. with a well-developed posterior abdominal stolan. Zooids are parallel to the height of the colony. The bratrchial aperture, from the antefo-ventral corner of the thorax, is directed to the side. The atrial aperture from the antero-torsal corner of the thorax is directed vertically. There are 17 longiudinal muscles on each side of the body radiating from the aperteres. 6 ventral to the branchial siphon, 7 extending atong it, and 4 extending aiong the atrial siphon. Dark pigment spots are present, anterior to, posterior to. and on either side of the base of the atrial siphon. There are about 16 rows of about 30 stigmata in the branchial sac. Nine obscure indentations are present around the margin of the branchial siphon, although the borcler of the atrial siphon is smooth and entire. The transverse vessels of the bramchial suc expand into triangular languets as they cross the dorsal line. The oesophagus is long, the stomach twothirds of the disfance down the abdomen is rectangular with 4 folds. Each zooid projects slightly abowe the flat top of each colony. Gonads are present in the gut loop.
Remarks; Clavelina grafurensis Tokioks. from the Arafura Sea. has similar colonies with zooids opening on the upper surface of the lobes, but is distinguished by the presence of distinct transverse muscles. Oxycoryntia fascicularis Tokiokn. 1952, also has similar zooids but chere is a smooth stomach and zooids open all around a stalked head, thus distinguishing it from the prevent species. Two different types of laryac have been described from specimens
previously ascribed to this species, and it has been suggested (Kott 1969) that some colonies may in fact have been colonies of species belonging to the genus Pycnoclavella, distinguished from Clavelina by the fertilisation of eggs at the base of the oviduct. Those colonies with large numbers of eggs at the same stage of development in the peri-branchial cavity and apparently fertilised there, belong to the genus flavelimi as described. No other distinguishing character has been identified and as neither developing eggs nor larvae were present in these colonies, this point has not been clarified.

In St. Vincent Gulf the species is taken from sheltered locations where surge and wave action is slight. The recold from Rottnest 1. (Kott 1957a) is from the intertidal area where it could sometimes be subjected to surge and wave action rypical of the Rough Coast Subformation. In such localities it would be found in sheliered cavey and crevices as it forms large soft colonies and is unlikely to occur in areas where it is exposed to sand or wave action. The red colour of the preserved specimen from Rapid Head is probably the result of conramination from a sponge on which the specimen was growing, as all other colonies are bluish in preservative.
Podoclavella cylindrica (Quoy \& Gaimard). Koti, 1957n: 91. Millar. 1960: 64: 1963. 716; 1966: 364.
Polyclinum cylindricia Quoy \& Gaimard, 1834: 618.

Clavelino cylithdrica. Michaelsen, 1930: 475 and synonymy.
Nem Records: West Beach. Hallett Cove, Port Noarlunga, Aldinga, West I. (Oedipus Poinc). Wright [. Previeus Records: W, Aust, 1 Albany to Rottnest I.)-Michaetsen 1930; Kott 1957a: Millar 1963. Vic. (Westernporl, Port Phillip Bay. Bass Strait) Quoy \& Gaimard 1834: Millar 1960. 1963. 1966: MacDomald 1858.

Fig. 2

Deseription: Zooids separate, joined by common basal test into which posterior abdominal stolons extend. Occisionally zooids branch off around a central common axis (Wright I.). In immature colonies from Aldinga reef "Jrop of " there is a central vascular stolon extending up into each lobe and very numerous enlarged terminal ampullac surrounding the central vessel along its length. The abdomen may be equal to or less than the length of the thorax. When the thorax is contracted along the dorsal line, the oesophagus originates from half way along the length of the thorax.

There is a dorsal pigment spot at the base of the atrial siphon, and some pigment on either side of the dorsal line at the base of the branchial siphon. The atrial aperture is terminal with a funnel-shaped siphon. The brainchial aperture extends laterally from the anteroventral corner of the thorax. About 20) muscles cross the lhorax obliquely from the ventral to the postero-dorsal comer of the thorax and continue along both sides of the abdomen. When the dorsal line of the zooids is strongly contracted, the muscles on the ihorax lie almost at right angles to the rows of stig mata. The oesphagus is long and there is at prestomach swelling halfway along its length. The stomach is large and squarc, Clumps of 18 or more embryos are present in brood pouches formed at the postere-dorsth torner of the thurax. Gonads are present in the gut loop. Larvae: About 1.2 mm long. Anteriorly there is a lat fromal plate bearing three adhesive papillse with accessory cup. arranged in a triangle. The larval thorax is characteristically deep.
Remarks: This species is especially common. The relatively short atblomen, the prestomach, the form of the colonics, and the presence of pigment spots on the anterior part of the thorax are characteristic.

The colonies flourish only in protucted caves or erevices and generally from vertical faces in greas where there is no silt or sediment. It the Rough Coust, Subformation, the species is found at depths of $10-22 \mathrm{~m}$, and in the Sheltered Coast Subformation at $3-10 \mathrm{nt}$ deep,

Podoclavella moluccensis Stuter, 1904: 5, Hastings. 1931: 82 and synonymy KotL. 1963: 90.
New Record: Tipara Reef (Spencer Gulf). Previous Records: W. Aust, (Cape Boileat. Garden Island. Rottpest 1.) - Sluiter 1895: Kott 1963. S. Aust. (Port Lincoln)-Kott 1963. Qld. (Great Barticr Reef)-Hastings 1931.

FIG. 3
Description: The colonies form extersive mats consisting of a basal membrane supporting a dense array of upright lobes, each consisting of a single zooid enclosed in a soft transpirent test. Occasionally the basal half of adjacent lobes is fused. The zooids are pale to sark bluc and there is no special accumulation into specific pigment spots around the apertures. The zooids are elosely adtherent to the test and extend the full length of the free lobe for

Fig. 2. Podociavella cylindrico, (Hallett Cove, 8 m). Colony.
Fig. 3. Podoclavella moluccensis. (Tipara Reef). Thorax showing muscles.
Figs. 4, 5. Atapozoa fantasiana. (Wright 1.). Fig, 4.-Contracted zooid. Fig. 5.-Zooid with brood pouch and embryo.
Figs. 6, 7. Distaplia viridis. (Reef of Hallett Cove, 8 m). Fig, 6.-Zooid with mature 9 gonads and brood pouch. Fig. 7,-Zooid with mature σ gotads.
Figs. 8. 9. Polycitor giganteum. (Port Noarlunga). Fig. 8.-Immature larva. Fig. 9.-Mature Jarva. Figs. 10-12. Endistoma renieri. (Wright J., 10 m). Fig. 10.-Zooid, Fig. 11.-Immature larva. Fig. 12.-Mature Jarva.
their whole length. The atrial aperture is terminal and the branchial aperture from the antero-ventral part of the thorax is inclioned at a slight angle to it but is not recurved, There are about 30 transverse muscles extending from the ventral to the dorsal border of the thorax and anaslomosing with one another both ventrally and dorsally. About 6 of the most anterion transverse muscles extend from the short siphons to cross the dorsal line. The most posterior transverse muscles terminate around the region of the ocsophagus. No musctes were detected on the abdomen. There ate 17 rows of ahout 50 stigmata. There is a small prestomach enlargemem half way down the ocsophagus. The stomach is smooth walled, large and rounded half way down the abdomen.
Rentarks: The specimens are easily confused whit Podaclavella cylindrica, from which P. moluccersis is distinguished by the extensive basal membrane. the absence of a recurved branchial siphon, the very large number of transverse muscies which do not extend along the abdomen, by the close adherence of the body wall to the lest. and by the absence of distinet pigment spots around the apertures.

Shepherd (pers. comm.) states that this species at Tipara Reef is seasonal, appearing in early winter and dying off during carly summer.

Subfamily holozoinae.

Atapozoa fantasiana (Kott)
Eudisuma fantasiano Kntt, 1957a: 76; 1967: 187
New Record: Wright I. Previous Records: S. Aust. (Reevesby I.) - Kott 1957a.

$$
\text { FIGS. 4, } 5
$$

bescription: Flat itregular investing colonies about 0.5 cm thick. Test soft, jelly like, semitransparent. Both apertures of zooids open separitely to the exterior. The postero-dorsal aspect of the peribranchal cavity is expanded into a brood pouch with two embryos at different stages of development. Black pigment is scattered throughout the test, but the colony is a light purplish colour. Zooids up to 3 mm in length. Zooids have 16 to 20 fine longitudinal muscle bands forming a wide open meshwork with the transverse bands on the thorax, There are 3 rows of up to 25 elongate stigmata: the ocsophagus is long, the stamach smooth and oval, and there is a rounded posterior stomach. The apettures are small and the 6 labes of the margins Indistinct.
Larvec: Large. as previously described, with
characteristically slongate areas of adhesive cells.
Remarke Even in the absence of the completely distinctive larve and brood pouches, the species is characterised by the closely set spertures and short atrial siphon, by the open meshwork of muscles on the thorax, by the comparatively short zooid, and by the very large numher of stigmata in each row.
Distaplia viridis Kott, 1957a: 96. Millar, 1966: 365.

New Records: Halleth Cove, Port Noarlunga Reef, Carickalinga Head. Previous Recordr. S. Aust. (Victor Harbour, Reevesby I.) Kott 1957a. Vic. (Port Phillip Bay) Millar 1966.

FIGS. 6, 7
Descriphion: Living colonies from Hallett Cove had a transparent matrix with orange zooiss. while these specimens are grecnish in preservative due to the greenish colour of the enclosed zooids. Preserved colonies from Port Noarlunga are also greenish but the living colonies were blue-black with white markings. Test is semi-transparent and very soft. Zooids closely phaced more or less in double rows. Colonies. are irregular and investing, about 4 mm thick. The surface is always smooth. There are no sand inclusions. Common eloseal apertures are candomly distributed over the surface of the colony and zooids are arranged on either side of very shallow and narrow common cloacal canals. A brood pouch is developed from the postero-dorsal comer of the thorax and contains only a single embryo. The atrial lip is sometimes tridentate at the tip with a lorger median lobe. This, however, may be obscured is the atrial lip is widely extended. In younger colonics the zooids may be in circular systems. of 5 to 14 zooids. There are 4 rows of stig. mata with para-stigmatic vessels. The stomach has glandular folds internally but externally is smooth. There are about 10 testis lobes in a rosette in the loop of the gut, and a siagle egg protrudes from the right side of the abdomen. A conspicuous gastric reservoit is also present in the loop of the gut.

The single embryo present in the hrood pouch is as previously described. The tail of the larval form is especially shott and extends only half way along the ventral surface. The larval test has a foamy appearance.
Remarks: The species conforms with specimens previously taken from Victor Harbour and Reevesby I., South Australia and the pre-
served colonies have the same grectish tinge in formalin resulting from the colour of the zooids. Colours present in the living specimens, however, appear to vary. The single embryo in the brood pouch is apparently characterissic of the species which is common in St. Vincent Gulf and Spencer Gulf glihough it has not heen recorded from other localities.

Sycozoa cerebriformis (Quoy \& Gaimard). Brewing 1953; 58 and synonymy. Kott, 1957a! 99. Millar+ 1966: 365 , Aptidie vereloriburme Quoy \& Gaimard. 1834; 6.25.

New Rerords: Off Trouhridge 1., Orontes Bank (off Port Vincent), upper St, Vincent Gull, Haltett Cove, Carickalinga Head. West 1 (Toad Head), Wright I. Previous Records: Norh west Aust.-Hartmeyer 1919, S. Aust. (Victor Harbsur, Port Lincoln)-Kott 1957a, Caulery 1908. Vie. EBalnarring Beach. Westernport, Point Lonsdale) - Quoy \& Gaimard 1834: Caullery 1908: Michactsen 1924; Kott 1957a; Millar 1966. N,S,W. (Gunnamatta Bay, Jervis Bay, Port Jackson, Port Stephens) - Herdman 1899; Koll 1957a. South Africa-Hartmeyer 1912; Michaelsen 1923a
Description: Colonics from fan-shaped to curved lamellac. Zooids arranged in double rows down both sides of these lamellac, branchial apertures opening to the exterior Cloacal apertures, however, us is ustal in this genus, open into common cloacal canals extending verticalty down both sides of the colony. These cloacal canals open separately around the edge of the narrow flat top of the colony,
Remarks; In Sycozara wigilinuides Lesson, from the Antarctic (sce Millar 1960; Kott 1969), it has been foumt that the common ctoacal cavities open into a ring canal round the anterior end of the colony and this ring canal is part of a common cloacal cavity opening by a terminal aperture. Brewin (1953) characterised the genus Sycozoa by the condition of the cloacal canals opening separately around the anterior border of the colony. Both Millar (1960) and Kott (1969), working with specimens of Sycozon sigillinoides from the Antarctic, did not accept this interpretation of the closeal openings and suggested that Brewin's colonies were distended to expose the openings in the cloacal cavity. Brewin's observations for both Sycozon cerefriformis and for S. fenticaulis are accurate. The situation in S.
sigilinoides, however, indicates that separate openings of the canals is not a character shared by all species of the genus Sycozoa.

Colonies have been observed with their wide fins, from the short, stardy stalk, oriented thward the oncoming current (S. A. Shepherd pers. comm.). The stalk is not flexible as in S. lenaicaulis, and the orientation of the coleny is unlikely to adapt to changes in direction of current flow. The species is most cummon attiched to shell or rock surfaces at locations where there are slow to sluggish cursents, and where the light intensity is not great due to depth and sediments. Larvae have an otolith but no ocellus (Caullery 1908). They have relatively short tails, their tree swimming existence is short and they are probably not strong swimmers-

The species thercfore is well adapted to an existence in locations with show to sluggish currents where it is most commonly found. The low light intensity at these stations, due to depth or sediment, is coincidental and not likely to directly affeet settlement of these lightinsensitive larvac.

The species is taken from the Rough Coast Subformation at Wext I, and elsewhere in conditions of moderate surge, either at depth or in crevices. or under boulders where it is protected. Again, the low light intensity is only concidental with the occasional occurtence of this species in these situations where light sensitive aplousobranch larvae that are attracted into shade are more common.

Sycozoa tenuicaulis (Herdmar). Brewin, 1953: 57. Kot, 1957:i: 99. Millar, 1963: 707. Colella whatuadis Herdman. 189984.
New Record: Off Broadway, Previons Rreords: W. Aust-Miltar 1963. Vic. (Port Phillip Bay. Lakes Entrance! - Koll 1957at. Millar 1963. Tis. (D'Entrecasteux Chamel, Furneaux Group)-Millir 1963: Kott 1957a. N.S.W. (Botany Bay, Jervis Bay, Broken Bay, Port Stephens, Port Jackson)Herdman 1899; Millar 1963; Kott 1957a.
Descripion: A single colony only is available and is the uswal hattened inverted cone, fixed by a long stalk with busal hair-like rootlets. Zooids are present in closely set double rows along the length of the head. The tongitudinal bommon cloacal canals extend the length of the head between eich double now of zooids and open by a wide opening around the outside margin of the flat top of the head as previously described by Brewin (1953).

Remarkr: The observations by Brewin on the separate cloacal openings around the top of the head are confirmed it the present colony. The species is distinguisbed from the superficially similar Antarctic species, S. vigillinoides Lesson, by these separate openings of the common cloacal canals, which in 5 , sigillinoides open into a terminal chamber with a single common cloacal opening on the centre of the upper ftee surface of the head (Millar 1960: Kott 1969). The species are also distinguished by the flattened head and by the tuft of hairlike roots in S. tenuicuulis (see Millar 1963).

Records of S. tenuicaulis are confined to Australia, and at present the species is known only from fairly protected bays. It is possible therefore that its isolation has resulted in speciation separating it from the more widely distributed circum-polas S. sigilinoides. The latter is also known from South Auseralian localities (Kott 1969).

Brewin (2953) states that all records of this species are from deep water. Although this is not strictly accurate, there are indeed no records available from the inter-tidal region. Specimens have been taken from a deplh of 4 m (Millar 1963) to 50 m (Kott 1967).

Shepherd (pers. comm.) has observed that it is fairly common at sub-littoral locations in deeper water, with tidal currents up to 0.5 $\mathrm{m} / \mathrm{sec}$. (one knot). The larva of this species does not have a light sensitive ocellus (Brewint 1953) and would he at a disadvantage in seeking suitably protected locations for settlement in waters where there is appreciable wave uction or surge but, like S. sigilincides (see Kott 1969), is well adapted for an existence on the sea floor.

Family POLYCTRORIDAE

Polycitor giganteum (Herdman).
Polyclinum giganteum Herdman, 1889: 79. Poloclinum globovam Herdman. 1899: 80. Polycitor gelatimosa Kot, 1957a: 83. Non Polycitar sigantenm Sluiter, 1919: 10 (Diazoha giganteum Sluiter).
New Records: Tapley Shoal. Hallett Cove, Port Noarlunga, Aldinga, West I, (Toad Head), Wright I Previous Recordy: W Aust. (Rottmest I.). S. Aust, (Port Noarlunga). Vic. (Balnarring Beach, Lakes Entrance, North Brighton)-Kott 1957a. N.S.W. (Jervis Bay. Port Iackson)-Herdman 1899; Kott 1957a.

FIGS. 8, 9

Description: Large fan-shaped or tounded lobes of varying size; sometimes smaller lobes occur together fixed to a common base. The test is firm, gelatinous without sand inclusions. and is semi-transparent and almost glassy in appearance. Zooids can be seen radiating from the basal constriction of the colony to open on the rounded upper surface. Living zooils are cream to bright orange but are pinkish in preservative. The diametcr of the colony is gradually reduced coward the base where it is fixed to the substrate. In the colony from Tapley Shoal. two lobes branch from a common base and the test of the upper part of egich labe is coalesced. There are 15 longitudinal muscles per side continuing as 3 bands along each side of the abdomen. The stomach hats 4 folds and there are $10-12$ rows of 22 to 40 stigmita.

There are 3 to 9 developing embryos in the atrial cavity and in the distal portion of the oviduct. Larvae are large, about I. 2 mm, ant large ampullae develop around the base of the 3 median papiflae as previously described for P. siganteum.

Remarks. A re-examination of the type specimens of P. gelatinosa from Rottnest I. has shown that the colonies are slightly smaller than most colonies of P, giganteum. The zooids and the test are, however, identical with those of P. gigameum. Further investigation of larvae from typical colonies of P, giganteam has also shown that in the less mature larvae the anterior ampullae are not developed and these larvae appear identical with those described for P. gelatinosa (Kott 1957a). As there is so much variation in the shape and size of colonies of P. Rigarreum, from spherical individual lobes to numetous pyriform lobes from a common base, this cannot be regarded as a valid character on which to separate the two species. The gelatinous test, litge zooids and larvae are characteristic.

Fudistoma pyriforme (Herdman), Hastings, 1931: 84. Kott, 1957a: 75, Toxioka, 1950: 120; 1967: 110. Vasseur, 1969: 918.

Psammaplidiur pyriforme Herdman, (886: 419.

Net Record; Off West Beach. Previous Records: S. Aust. (Port Noarlunga)-Kot 1957a. Qld. (Great Barrier Reef, Flinders Passage) -Herdman 1886. Paciftc (Palai Is, Gilbert 1,)-Tokioka 1950, 1967. Indian Ocean (Madagascar)-Vasseur 1969.

Descripion; Rounded lohes, narrowing towads the base where the test expands into a basal plate from which several heads may rise, Sand is absent from the outer 5 mm of test on the upper half of the colony bot is present internally and is also present through the test in the basal half of the lobes. Maximum diameter of head is 4 cm . The test is firm and gelatimous. The colony is grey in preservative, zooids are present, opening over the upper surface of the head. They are arranged in circutar systerus, with the atrial apertures opening separately in a circle in the centre of the outer circle formed by the branchial openings. Each atrial aperture is protected by a lobe of test that covers the opening from its dorsal surlace and it appears that the excurrent stream from each zooid would be directed towards the eentre to reinforce the excurtent stream from zooids in the same cireular system. The incurfent ciliary stream is probably drawn from an area imnediately adjacent to the hranchial aperture. This arrangement of apertures reprexents a stage before the development of true cloacal systems.

Zonids are 5 to 7 mm long, of which the thoral is only 1 mm . They cross one another in the test. Both siphons are well developed, anteriarly directed, and are surrounded with circular museles to form a distinct sphincter. The atrial sphincter is especially well deveTrpect, There are about 20 jongitudinal museles on the thorax although these may be reduced (a) 12 in contricted specimens. The fransverse musculature is fairly strong.

There are 3 rows of about 9 to 12 stignatat. The stomach is smooth ind rounded and in contracted specimens the intestine behind the stomach forms an "S" hend as previously deswribed for this species. The rectum looms the ascending limit of the gut loog.
Remarke: Specimens of Eudistoma are notorionsty difficult to chanacterise and the variable condition of the intestine in the present specimens suggests that this feature. previously regarded is a diagnostic feature is dependent on the degrec of tometaction of the abdomen. Specimens identified as E. pyriforme from Heron I, and North West I. (Capricom Group) have been examined. Zooids ate artanged in similat systems to those described ahove, although these may be ofscured by sand in the surlace test; the proximal part of the intestine forms either an " S " bend or a loop, and pigment is prexent in apberical cells in lfie surface lest. Despite the variation in the external
appearances of these colonies they all appear to belong to E. pyriorme, characterised mainly by the condition of the tharacic musculature. the long pesophagus, the atrial sphincters and the arrangement of woids in the colony. These characters are to some extent, shared by other species and it is possible that more than a single species is represented by the records ascribed. to this species.
Eudistoma renieri (Hartmeyer). Michaelsen, 1923a: 10. Kott, 1957a- 74. Millar, 1962: 160. Polyefor renien Hartmeyer, 1912: 309.
New Recont: Outsule Wught 1. Previors Records: W. Nust. (Point Peron) Kot1 1957a. Sonith Africa-Hartmeyer 1912; Michaelsen 1923a; Millar 1962.

FIGS. 10-12

Descripion: Fleshy investing colony, 0.6 cm thick Test semi-transparent with reddish to black pigment cells in streaks on the xurface. The surface of the test is smooth, without forcign bodies or sand sand is depressed over the zooids. Zooids are arranged in circles of about 4 mm diameter the branchial openings. around the periphery of the eirele and the atrial openings toward the cenire, protected by lobes of text. The atrial openings are in a pigmentfrec area. The zooids do not cross one another in the text. The abdomen is about twice the tength of the thorax. The atrial aperture is on it cylindrical siphon which is about three times the length of the brinchial siphon. The body wall is fairly muscular with at least 12 longitudinal muscle bamis of 4 to 5 strands crossing numerous transverse bands. The longitudinal bunds appear to seprarate out into separate strands. When not so strongly contracted, the circurlar muscles around the atrial siphon are strong and conspicuows wilthough they are spread along the siphon rather than forming a large sphincter muscle. There are about 20 long rectangular stigmata in each row. The rounded smooth stomach is halfway down the atalomen. There is a long duodenal area and a short round posterior stomach. The part of the intestine distal to the stomach is sometimes kinked in contracted specimens. The gonads are in the gut loop. There is an expansion from the dorsal aspeet of the posterior end of the thorax accommodatigg a loosp of the oviduct with one to two embryos, and although the brood pouch is not separated from the thorax by a narrow stalk as in the true brond pouch of the Holozoinae, it is structurally homologuus.

The laryae are about 1 mm long, typically polycitorid, with the 3 median papillae developing on shoth stalks from deppressions in the centre of rounded swellings around the unterior end of the larva. The margins of these depressions become attenuated in the mid-line to form median ampullae at the base of the papilJury stalk. The area of adhesive cells in these papillae is lengthened longitudinally to difierent extents for each papilla. This lengthening is reminiscent of the condition in Alapozoa larvae.
Remarks: Distinctions between Eudistoma spp. are not alogether salisfuctory and many characters such as the body musculature, length of gut. and looping of the intestine, all vary with the degree of contraction of the body. The present species is identified by the gelatinous nature of the rest, by the large number of stigmata, by the long oesophagus and the position of the stomach mid-way down the abdomen. The extended adhesive area of the larval papilaie was not recognised previously (Kott 1957a). A re-examination of Rolts specimens from Point Peron, Western Australia has demonstrated that the papillae are identical with those in the present collection. This character therefore appears to be distinctive for the species.

The znoids of the Australian specimens resemble Hartmeyer's (1912) South African specimens, although the colony of the South Austratian specimens is thinner. Millas's (1962) specimens appear to differ in many chatacters, however; rotably in the reduced size of the thorax, in the position of the stomach at the posterior end of the abdomen, in the rumber of muscle bands and rows of stigmata in the length of the atrial siphon, and in the cylindrical form of the colony.
Cystodytes dellechiajei (Della Valle). Kott, 1954: 154 and synonymy. Tokioka, 1930: 120. Millar, 2953: 284; 1960: 82 ; 1962; 143; 1963: 713: 1966: 365.
Distoma dettechianfiae, Dellit Valle. 1877: 40 ? Aplidium lobatum, Delle Chiaje, 1841: 30 (riot Suvigny 1816).
Cystodytes dellachiuine Kott 1957a: 68. Cystadyles Detle Chiajei Pérés, 1948: 171.
New Record: West 1. (near Penguin Rnck). Previons Records; W. Aust (Dampier Archipelago to Alhany)-Michaelsen 1930: Kott 1954, 1957a; Millar 1963. Vic. (Port Phillip Bay, Barwon Heads)-Millar 1966.
Tas. (Maria T.)-Koll 1954: Pacific (Patao 1s.)-Tokinka 1950. New Zealand (North
L. Chatham Is)-Michaelsen 1924:

Brewin 1948, 1951, 1952a, 1956: Millar 1960. California (Coronado I., Puerto Escomidol-Van Name 1945. Indian Ocean (Ceylon)-Herdman 1906. Meditieranean -Della valle 1877; von Drasche 1883: Lahille 1890; Harant 1925, 1929 . Africa (Mozambique, Cold Cous, Cameroons. Sene-gal)-Michaelsen 1915: Pérès 1948; Millar 1953. 1962. The species is also known from the Allantic Occan, along the cast coast of the American continent from Patagonia (Millar 1960) to the Caribbean and from the Azores (Michaslselt 1923a), the Camary I (Hartmeyer 1912) and Virgin Is. IVan Name 1945). It has been taken intertidally and to a maximum denth of 736 m (oft Braci, Herdman 1886).

Description: 1rregular investing colonies, Living colonies purple with colourless "splotches". but in formalin the colonies are brown with white blothes where zooids are presem in the test surrounded by the calcareous spicules thal are typical of this specres. The species is especially constant and the present colonjes and zooids conform exactly with previously described specimens. Larvace are present in brood pouches attached to the parent zooid or Eree in the test. The larvac have the usual large papillae surrounded by ectodermal ampultite which have coalesced distally to form a circle around the papilla as described previonsly for the species (Kntt 1954. 1957a).

Family POLYCLINIDAE

Subfamily euherdmanusat

Ritterella herdmania Kolt, 1957a; 102 (nom. nov.): 1963: 78 and synonymy.
Now Renord: Port Noarlunga. Previous Records: W. Aust. (Green Pools)-Koul 1957a. N.S.W. (Newpon, Port Jackson. Wattamolla)-Herdman 1899; Kott 1957 a. 1963.

FIGS. 13-17
Description: Sandy finger-like lobes joined basafty. The lohes are long and slender, spoonshaped terminally, with 1 to 5 zooids in each lobe. The hranchial apertures open into the concavity of each lohe and the atrial apertures open round the convexity of the anterior tip of the lobc. Both apertures are 6-lobed and on very short kiphons. The branchial aperture is terminal and the atrial aperture rises from opposite the first row of stigmata. There are circular siphonal muscles, very delicate longitudinal muscies and some weak transverse
muscles on the thorax. There are five rows of \& to 16 stigmata in the branchial sac; sometimes, in the larger zooids, parastignatic vesvels we present in some of the rows of stigmats and appear to bisect them horizontally to forte extra rows. Triangular langucts are present in the mud-dorsal tine expanded from both the transverse vessels and the para-stigmatic vessels. Smaller rounded papillae are also present in the middle of each transverse vessef on either side of the branchial sac. These papillae have not previously been described for this genus. The fatce that they do not arise on the parastigmatic vessels suggests that they may be present as relicts of papiliae supporting longitudinal vessels in the branchial sac and homologous with the papillae present in the Antaretic genas Ty/obranchion.

The condition of the stomach varies according to its degree of contraction and when extended there are apparently four to six stomach folds. but these are not always diszinct. Four folds sometimes appear to be present only in the anterior part of the stomach. There is also a small posterior stomach is previously described. The posterior abdonter may he very long and thread-like and testis follicles are arranged in it in a single row. The extended thomx and abdamen wgether measure $4-5 \mathrm{~mm}$. The posterior abdomen is considerably longer

Latvie are present in the thoracic cavity of some of the zooids. They have 3 anterior papillae in the median line alternating with paired anterior ampullae. Dorsally and venIrally paired rows of ampullary vesicles extend posteriorly. There is an otolith and ocellus.
Remarks: The variations in the number of rows of stigmata resulting from their bisection by parastigmatic vessels and the increase in the size of the zooid-beating lobes, both of which wecur with inercasing maturity, suggests that confusion could arise regarding the identity of specimens assigned to this and to related spesies. Part of the cype colony of Riterella asymetctica Millar, 1966. from Port Phillip Bay, has been examinexl. The external appearance of the colony resembles R, herdmernia and the 10 row of stigmata could have resulted from the bisection of 5 primary rows by paraShigmatic vessels, as the triangular dorsal langucts are of two alternating sizes. There are no papillae on the transverse vessels in Millar's species, however, and the stomach folds are also distinctive.

Five primary rows of stigmata appear to be chatacteristic of most Riterella spp. although the rumber can be increased probably by subdivision with parastigmatic vessels which subsequently are not distinguished from primary transverse vessels. Ritterella herdmaniaia, R pedurnctlata Tokioka and R vessrea Millat. 1960 (from North [., New Zealand) have parastigmatic vessels and sometimes jnereased numbers of rows of stigmatis, R. proliferus (Okit) $(>R$. dispar Kott, 1957a) from Japan and from the central east coast of Australiat dsoe Tokioka 1953a; Kott 1957a, 1963) and R. wigillincider Brewir, 1958it. from Stewart I., have only the 5 primary rows of stigmata and no parastignatic yessels. R. aspmemerica Millar has incrensed numbers of rows of stigmita and apparently no parastigmatic vessels.

The type species of the genus Eutherdmanio. E. claviormix (Kitter) (sce Van Name 1945), together with E. nolido Millar, 1953 from the Afriean Gold Coast, E. vifreat Millar, 1961 from Brazil, and E. digigarn Millar, 1963 from northwestern Australia are easily distinguished by a long oesophagus, a large numbar of rows of stigmata and the absence of parastigmatic vessels and, where their larvale are known, by the modified adhesive organs as described for this genus and for Placenticla spp. (Kot 1969). Euherdmunia ausiralis Kott, 1957a, however. from South Anstralia, Vieturia and New Souih Wales, has a short oesophagus, 12 to 13 rows of stigmata, parastigmatic vessets, and a papila in the middle of the transverse vessels on euch side of the body. It is distinguished from R. herdmania by the single zooid in each lohe of the colony, the ahsence of stomach folds. the number of rows of stigmata and the iestis follieles which are bunched in the posterior abdomen.

Larvate are known for R. fmoliferus and R. herdmania, and are typically polyclinid with ampultiry vesicles.

In the present species and in E. australis the papillat on the transyerse vessels are reminiscent of Tylobranchion and related genera, and probably represent a primitive character.
Pseudodistoma cercom Michaelsen, 1924: 364. Kott, 1963: 77 and synonymy. Morniot, 1969: 437
New Record: Nora Creina Bay. Previous Records: NS.W (near Eder)-Kous 1963. New Tealand (Stewart I. (Paterson Inlet), Foveaux Strnit Otago coast, tillle Papanui. Great Barrier 1.)-Michaclsen 1924; Brewin

1950e 1958a. Atantic Ocean (Dakar) Munnion 1969. The species is known intertididly and down to 87 m .

FlGS. 18, 19
Desreiption: Soft. geladinous, semi-teanaparenr. rounded or eylitidrical beads of slightly greater diameter than the more leathery stalk of up to 5 cm lengh. In some specimens the stalk is expanded into a thick mat from which numerous heads arise. The zooids are numerous and open all around the head by separate f-lobed branchial and atrial openings. The centracled thoray and abdomen together measure only 2 cm . Fine fongiludinat musele bunds on the thorax number 20 to 30 and thece extend along both sides of the abdomen. There are 15 to 20 rows of sligmata in each of the 3 rows, The 4 stomach folds are obseure and may be attefacts resulting from the colbapse of the stomach. A duodenal swelling and is rounded postefior stomach are also present. There is a long ovary, with numerous eggs more than halfway down the abdomen, but no testis follicles were present in the colonies from these stations. There is a single developing embrya in a brood pouch from the posserodorsal conner of the thomax.
Remarks: The general form of the colonies. arrangement of body musculature, the branchial sac, gut and the situation of the ovary some distance down the posterior abdomen, all agree with the previousty deseribed specimens. All other species of the gunus have a similar situation for the ovary some distance along the posterior abdomen: P. afrectimem Millar. 1954. 1962, P. fragilis Tokioka, 1958; P cyrnasense Péres. 1952: P. untinboje Tokioka, 1949; P. opaca Brewin, 1950c; P. brieni Pérès, 1949. The stalked colonies of P. africanum are ako reminiseent of the present species it the presence of a single developing embryo in a thoracic brood pouch and ace distinguished only by a smaller number of longitudinat thoracic muscles. As there has been considerable variation demonstated in this character. the distinction is rather doubtful, and the species or its relatives appear to have a wide circumpolar distribution in the southem temperate region us Monniot (1969) has already indicated,

Suffamily rolyolininat
Aplidium pliciferums (Redkorzev) Kott, 1963: 106
Amarourion sliciferzm Redikotzev, 1927: 390. Tokioki, [953a; 183; 1962: 2; 1967; 32, Aplidum phartax. Millar, 1966:359.

> New Records: Troubridge Shoal, Halletl Cove. Previons Records: W. Aust. (Point Peron. Rottnest 1.) -Kott 1963. Vic (Port Phillip Bay)-Millar 1966. Japan (coastal water of Honshu, Shikoku and Kyushu and the Inland Sea)--Redikorzev 1927; Tokioka 1953a, Hawaiian Is. (Auau Chunnel)-. Tokioka 1967.

FIG. 20

Description: Rounded, soft, sessile colonies. I cm in diameter. In life the colonies are bright yellow. The surface of the colony has deep Jurrows marking it off into extensive roundea areas with up to 3 common cloacal opetings from which double row systems rudiate- Test transparent, zooids orange in the living specimen. Thorax and ahdomen are of equal length and together measure 2.5 mm . The posterior abdomen is long, up to 8 mm . There are (it well-defined branchial lobes, a strong circular branchiat sphincter and 8 fine longitudinal muscle bands which extend down each side of the thorax. The upper border of the atriat opening is extended into a small pointed lip somelimes tridentate There are 8-10 rows of ahout 15 stigmata. The oesophugus is long and the stomach, about half way dows the abdomen, has 19 to 25 well defined folds. There is a duodenal swelling and a small posterior shomach. Two developing embryos are preseni in at brood pouch formed by the expansion of the distal end of the oviduct at the postcrodorsal cotner of the thorax. The ovary is present about halfway down the posterior abdomen and a singte series of pyriform testis lobes attached to a single duct are present behind the ovary. Larvac have the usual three median suckers with three ampullae between the suckers and many small ampullary vesieles in two rows from each lateral line as described previously for specimens from Western Altstralia (see Kott 1963).
Renarks: The species is closely related to Aphdiom phortax (Michaelsen) from New Zealand, which has a similar number of fine longitudinal muscle bands, and stomach folds, and also has a brood pouch. Consequently, there has been some confusion between these speciesUnfortunately. Michaelsen (1924) did rot describe larvac from his species. Aplidium pliciferum (sce Kott 1963) from Western Australia has smaller zooids (therax and abdomen together aboul 1 mm long. posterior abdomen 2 mm) and are denvely distributed in the test. largely obscuting the systems. In Aplidition phorvak (see Kott 1963) from eastern Australia

Figs. 13-17. Ritferella herdmania, (Port Noarlunga). Fig. 13.-Young zooid, contracted thorax, Fig. 14.-Extended thorax of young zooid, Fig. 15.-7ooid with contracted thorax showing parastigmatic vessels. Fig. 16.-Thorax of more mature zooid showing parastigmatic vessels successively subdividing rows of stigmata. Fig. 17. - Portion of colony.
Figs. 18, 19. Psetudadistoma cereum (Nora Creina). Fig. 18.-Outline of colony. Fig. 19.-Zooid with brood pounch,
Fig. 20. Aplidium pliciferurt, (Hallett Cove, 8 m). Tooid.
Figs. 21, 22, Aplidium colelloides. (Tapley Shoal, off Troubridge Light, 17 m). Fig. 21.—Colony. Fig. 22.-Zooid

Fig. 23. Synoicium papilliferum. (West 1., sheltered coast, 3 m). Zooid (showing muscles on thorax only).
and the Pacitic. the larger zooids (thorak and abdomen together 3.5 mm long, and posterior ahdomen 1.5 mm long) are arranged in citcular systems. sometimes extending into more clongate and doubje riow systems radiating from the common cloacal openings. in all Kott's (1963) specimens the test is gelatinous and semi-transparent with red-purple spherical pigment cells, and the larvae provide the main distinguishing character between the two species. A. phortax has larvae with a limited number of ampullary vesicles and a complete absence of median ampullae, while the larvae of A. plici/erum relain median papillae and have many small ampullary vesicles from the lateral lines either side of the three median suckers. Millar (1966) described specimens from Port Pbillip Bay as A. phortax. He points out that A, phortar (see in Kott 1963), is not apparently the sams species as his colonies although he can only distinguish them by the different larval form. He apparently overlooked the similarity in the size and form of the larvae of his specimen and of A. piciferum (Redikorgev): Tokioka 1953a: Kott 1963; and based his identification on the ratio of length to depth of the larvae of Michaelsen's species and his own specimens from Port Phillip Bay. However. Kott (1963) has already indicated that larvac of A. phoriax (Brewin 1946) from New Zealind, do have the same rounded form ise the larvac of specimens of A. phortax (Kott 1963) from eastern Australia. It is apparent. therefore, that specimens from Port Phillip Bay were erroneously identified by Millar.

The adulı zooids ean definitely be distin. guished by the longer posterior abdomen, the smaller size, and the greater crowding of zooids of A. plicijentm.

The specimen from Hallett Cove was taken with a specimen of Distaplia viridis in which the zooids wre the same orange colour. The specimen from Troubridge Shoal was taken from a spiny crab.

Aplldum ruhricollum Kott, 1963: 103.
Now Record: Upper St. Vincent Gulf. Previous Records: W. Aust (Rottnest 1.). S, Aust, (Reevesby 1.). Vic, (Balnarring Beach - Kott 1963.

Description: The single colony is flattered, about 0.7 cm thick and 3.5 cm in maximum diameter, The boniers of the colony are
rounded. Sand is present basally and some is onclosed in the common test but the surface is smooth and without sand. The common cloacal apertures with frilled and protuberane lips are present on the surface of the colony about 0.3 cm from one another. Spherieal pigment cells are present in the test and zooids show as clear points between the pigmented test. In this preserved specimen the pigment cells are pale pink. Zooids are small. ip to 2 mm long. There are 10 longitudinal thoracic muscles. A short pointed atrial languet arises from the dorsal surface just anterior to the atrial opening which is generally on a short protuberamt siphon surrounded by a tircular sphincter muscle. There are 11 rows of 6-8 stigmata, and 4 stomach folds.

Remarks: The species is distinguished by the form of the atrial aperture and lip. by the narrow branchial suc with relatively few stigmata in each row and by the body musculature and stomach folds. In the present specimen the test is not so thickly invested with sand as previously described for this species.

Aplidium colelloides (Herdman), Millar. 1962; 125.

Amaromiam ootolhides Herdman. 1885: 223, Nen Record: Off Troubridge I. Previon: Records: South Africa (Cape of Gond Hopel - Herdman IR86; Millar 1962.

FIGS. 21. 22
Description: Rounded gelatinous heads on a long hard stalk. The head is up to 4 cm in length and 2 cm in diameter. The stalk, up to 20 cm in length, is hardened by dense sand inclusion in the surface test which fades out in the test of the head region. The stalk is branched basally into short root-like procestes. Tooids are minute, opening around the surface of the head. Long thread-like posterior abdomina criss-cross in the centre of the head and sometimes extend down into the stalk. Some common closical apertures are evident around the head and some longitudinal cloacal canals were identified, slthough the form of the systems is obscure and diffecult to distingrish. The thorax and abdomen are of equal length and rogether measure only about 1.5 mm . The fong, thread-like post-abdomen is at least four times the combined length of the thorax and abdomen. There are about 6 delicate longitudinal muselss on the thorax. The
branchial labes are distinct and rounded. The atrial aperture is sometimes produced on a fairly long cylindrical sphon but in another colory is sessile, the upper border of the atriat apertura produced into a pointed languct. There are 18 rows of about 10 short oval stigmata. The oesophagus is long, the stomach is presene halfway down the abdomen and has 15 very distince folds. The gonads are not developed in these specintens and it is not known to what extent they fill the long posterior abdomen in mature zooids.
Remurks: This is the only species of Aplidium known with a fong stilk. The size and form of the colony, the size of zooids and their arrangements. in the present colony are identical with the South African specimens previously described, The delicate longitudinal thoracic muscles and the stomach folds are similar. The present specimens differ from those described from South Africa only in the larger number of rows of stigmata. This does not represent a sufficient difference on which to establish a new species and in view of the great similarity in most characters the specimens probably represent ane species with a wide circumpolar distribution in the southern colltemperate region.

Synoicium papilliferum (Michaelsen). Koth, 1963: 87 Millar, 196t: 360.
Mascoiluyer papilliferom Michaelsen, 1930: 530.

New Records: Port Noartunga reet, West 1. (near Penguin Rock), Previons Records: W. Aust. (Bunbury to Nornalup)-Michas sen 1930; Kott 1963. Vic. (Nepean Penin-sula)-Millar 1966. The species is known intertidally and to 18 m .

FIG. 23
Desctiption: In life the colony is dark red or bright brick red. Flat-topped to rounded colonies, nartowing basally to a common stalk or encrusting. Zooids lie paraller in the test and open on the upper surfice. The colony is firm, gelatinous. There are circular systems around protuberant common cloacal apertures. The branchial aperture has 6 small pointed lobes and there is a small circular sphincter mosele at the base of the branchial siphon. The atrial sperture is epposite the first to sccond row of stigmata. It is surrounded by a well developed circular sphincter muscle, and is extended intoa short cylindrical siphon. The anterior bondet of the atrial aperture is produced into a long moscular lip, broken into ? -4 minute pointed

Tobes lerminally, There are 10 very fine Iongitodinat muscle bands on the tharax which is very delicate and transpatent. There are 10-12 rows of about 10 stigmata in each row. The hody wall below the atrial aperture is produced into the small rounded papillae characteristic of Synoicium spp. The wall of the stomach is raised into faint mulberry-like swedlings. The posterior abdomen is short and there is no constriction between it and the abdomen.
Renarks: Both colony and rooids conform with previous descriptions in all characters except the reduced number of rows of stignkata. The species has been recorded from south-westerh Ausuralia along the south coast of Australia to the Nepean Peninsula in Victoria (Millar 1966).

Family DIDEMNIDAE

? Trididemmm spiculatum Kou, 1962: 281.
New Record: West I. (near Penguin Rock). Previous Records: W. Aust. (Rotnest T.. Point Peron) S. Aust (Outer Harbour) Tas. (Wreck Bay). Qld. (Heron I. I-Kott 1962.

Duscripion: Living colonies pale pink, enctusting Small, almost spherical spicules with up to 12 points in uptical tramsverse section, eventy distributed throughout the test, and oceasionally large spicules with Sewer rays. There ate small thorncic common cloneal cavilies. Zooids are small with thrce rows of stig. mata. The atrial aperture is wide exposing a large part of the branchial sac. Gonads are not mature in the present specimens.
Rermiths: Cotonies generally oonform with specimens previously assigned to this species, athough the proportion of amaller burr-like spicules to larger stellate spicules with about 8 rays in optical section. is greater in the present specimen. Colonies with mature zooids are desirable for positive identification.
Leptoclinides rufus (Sluiter). Tokioka, 1952: 92. Kott, 1962: 286 and synonymy. Eldredge, 1967: 221.
Poly.ryncraton rafus Sluiter, 1909: 72; 1913: 77.

New Records: Off Port Gawser, Hallett Cove, Port Noarlunga, Rapid Head, West I., Wright 1 Previous Records; S Aust. (Port Noarlunga). Vic. (Shoreham). Tas, (Maria I.). N.S.W, (Port Jackson)-Kolt 1962. Qld. (Heron I.)-Hastings 1931. New Zealand f?Great Barrier 1., L. whiteri)-Brewin 1950b: (?Stcwart I I, L. nokdezelondipe)-

Browin 1958a, (?Chatham Rise, L; auron-ticus)-Brewin 1956: (North I.)-Michaelsen 1924; Brewin 1958b; Millar 1960. IndoPacific (Arafura Sea, Indonesia, HawailTokioka 1952; Stuiter 1909; Eldredgo 1967. The spactes is known intertidally and to 36 mi (Sluiter 1909).
Description: Encrusting colonies I.iving specimens: white matril with grey or dark animists, or orange to light fawn <Port Noarlunga): or dark reddish brown (off Hallett Cove), mottled white to uniform light grey colour (Wright I.). In preservative all colonies are white to orange-white or streaked and blotched with grey. The coloniss are investing. sometimes extensive Cloacal cavities radiate from randomly distributed apertures. Zooids are sometimes present in the roof of the common cloacal cavity. Spicules are present in the surface test but basally the test is jelly-like and transparent. There are 9 tongitudinal muscles on the thorax. The posteriorly directed atrial siphon has a wide circular sphincter muscte. There are 4 rows of 10 to 12 stigmata. There is a superficial layar of bladder cells and small oval to spherical pigment cells are present amongst the surface layer of spicules. A hateral organ is present opposite the middle of the fourth row of stigmata. Cloncal apertures are present. especially around the borders of the colony. Canals at thoracic level radiate from the cloacal apertures between elumps of zooids afthough sometimes thay extend deeper to abdominal level. The cloacal canals around the border of the colony are often completely sub-abdominat. The spicules are of the usual stellate form, $0.07-0,04 \mathrm{~mm}$ in diameter. Larvae arc presemt in some colonies from Hatlen Cove. They are of usual form, fairly deep with 4 paired ampullae. In one colony from Hallett Coye (dark reddish brown in life) no common cloacal cavities were presem and zooids were not mature, nor were zooid openings to the exterior detected. Tho arrangement of spicules is characteristic of this species and it is probable that the colony is one in which sexual reproduction is completed and new $v_{v g}$ tative buts are developing
Remarks: The species is distinguished by the complete absence of spicules from the basal layer of the test, sometimes giving the colony a very fleshy appearance. The characteristic common cloacal system and the distinct museulature on the thorax, together with the postetiorly directed atrial siphon and the spherical to oval pigment cells are distinctive.

Leptoclinides kingi Michaelsen.
Pelvannemmon dubits. Van Natre, 1 1918; 155, Hartodyer, 1919: 136.
Leploclinider duhius f. kingi Michaelsen. 1930: 507, Kots 19621 289
Nsw Record: Upper St. Vincent Gulf. Previous Records: W. Aust. (Eremantle, Albany) -Michaslser 1930. Qld. (Sarina)-Kout 1962. Philippines (fole Light) - Van Name 1918. The species is known intertidully and to 18 m.

FIGS. 24, 25
Descriphon: The colony is massive with the surface taised inio mounds and single cloweal apertures at the apex of each mound. Each mound is lormed by thickened basal test often with embedded parasites. Zooids are present if the surface test above the very extensive poskerior abdominal spaces around the centre of each tobe or mound. The zooids are large with 4 rows of about 12 stigmata, There are 9 very fine longitudinal muscles on the thurax. The spicules are very small, 0.01 to $0,02 \mathrm{~mm}$. and are tanged in a shallow layer at the level of the branchial siphons. They are orily very sparse elsewhere in the test. There is a surface layer of bladder cells.
Remarks: The elevation of the surface of this colony into mounds or lobes with terminal common cloacal apertures characterises this species, which was previously regaried as a form of Leptorlinides dubius (Sluiter) Leptoclinides dubiuw is distinguished from the present species by its larger spicules and by the arrangement of common cloacal system with operings around the margins of each enlony, as in L, rufus In L. kingi large cloacal systems with terminal openings devetop from the ewnire of the colony. As both forms have been recorded more or less ovee the same geogranhic range it is unlikely that they represent geographic subspecies of the ons specics, and in view of the different development of the common coacal systems it is probable that they represent differant species. The long gut loop which is bent anteriorly to form a double toop is a character shared with Leptoclinides dubius, Posieriorly dirceted attial siphons of the zooids open into the common cloacal cavities and canals. The openings sometimes appear 5 lobed due to the arrangement of spicules around the aperture. The genus Askorides Kott, 1962, tharefore cannot be distinguished from Leptoclinides and A. imperlectus and A, ceelengerams are distinguished from other species of Leptoclinides only by the extent to
which zooids open directily into the common cloucal chamber rathet than into cloacal canals. Their relations are set 000 in the following key:

1. Single systems develop around central common cloacal cavities with lerminal openings

2

1. Nunderous systems develop around periphery of colony
2 Spicules accumulated in surface layer of test; spicules $0.01-0.02$; larvae with 4 pairad ampullae: most zooids open into cloacal canals
t. kingi
2. Spicules throughout; spicules $0.04-0.08$; larvue with reduced ampullae; mosi zooids open direct into common cloacal cnvily
L. coelenteratus
and L. imperfectus
3. Spicules 0.01-0.02; double gut loop
L. dubius
4. Spicules 0.02-0.04: simple gut toop

> L. rufus
S.eptoclinides reficulatus (Slwiter). Kott. 1962 : 285 and synonymy.
Didemanen refiendam Shniter, 1909: 60.
New Record: Tipata Reel. Previous Remords: Qld. (Noosa to Mackay, Heron I., Low Is.) -Hastings 1931: Koll 1962, New Zealand (North 1.)-Michatelsen 1924. Japan-Oka 1927; Tokioka 1953a, 1953b. Indonesia-Stuiter 1909. ?Philippines-Van Name 1918. Indian Ocean (Ceylon)-Herdman 1900.

FIG. 26

Descriplion: Young colonies were taken investing Microcosmus squamiger and Pyura irre马uluris. Frequent enmmon cloacal openings are scattered over the surface. There is a superficial layer of bladder cells with orange and black pigment in stellate cells forming streaks on the surface. Spicules are present benenth this superficial layer and are rechuced in densily toward the base of the colony. The spicules are sicllate with foou 7 conical rays in optical transverse section and from 0,03 to 0.05 mm in optical section.

The primary cloacal canals are deep, but in these specimens do not extend posterior to the zooids. The zooids are small with the usual 4 raws of stigmata and a large posteriotly directed atrial siphon. There are 4 testis lobes and 41 coils of the vas deferens.
Remarks! This is the most southerly record for this conspicuous and widespread specics, distinguished by its unique stellate pigment cells which form the charncteristic "tiger-like" markings on the sarfiace.

Didemurum lambitum (Sluter). Kot, 1962; 317 and synonymy, 1971: 19.
Didemnoides lantbitum Sfoter, 1900, 18 ,
New Record: Aldinga "drop oft". Previous Records: N.S.W.-Kolt 1954, 1962 New Zealand (Chatham I. North I.. South I.) Sluiter (1900; Michaclsen 1924; Koll 1971; and unpublished records from Otago (coll. R. Crump) and Stewart I. (coll. E. Borham). Descriprion: Two clavate lobes arise from a common base. Maximum diameter 1.5 cm and maximum height 3.0 cm . There are traces of orange pigment in the surbice tess, but no superficial layef of bladder cells. There is a layer of spicules in the surface test which ceases abruptly at ocsophageat tevel. Thin layers of spicules line the common eloncal canal. Spicules are absent at the abdominal level of the zooids, and in the central test core. They are 0.01 to 0.05 mm and stellate. Ternuinal clogecal aperture opens into the characteristic commen cloacal cavity surrounding the central core of test. Zooids are smsll and erowded in the surface layer of test. The atrial aperture is wide and open. There are 81 coils of the vas deferens around a single lestis lobe.

Didemnum patulum (Herdman),
Leptoclioum pmtadan Herdman, 1899: 92.
Nem Record: Aldinga Pravious Records: Vic, (Port Phillip Bay)-unpublished record. N.S.W. (Port Jackson) Herdman 1899.

FIG. 27
Dercreption: Tough, investing colonies. In preservative the specimens are white with grey streaks and bfotches formed by patches of stetlate pigment cells in the surface test, especially in the region of the common cloacal canals The surface of the colony is marked off intu Wightly raised rounder areas where solid pillars of lest traverse the comman cioncal cavity. Zooids are embedded in the periphery of these pillars of test and open to the surlice around the raised area. The cloacal cavity is thorucic. The surface layer of test is especially thick and the zooids have especially long and muscular branchial siphons which estend through this surface layer of test. Spicules often form a plag inside the branchial siphon-possibly caused when the superficial layer of test is pulled down into the aperture as it is rearacted into the surface of the test. The branchial siphon is almost the same length as the rest of the thorax. The atrial opening is wide, exposing a part of the dorsal surface of the branchial sac. The anterior border of the attial opening
is produced into a natrow pointed languer. sometimes bidentate at the tip. There aro conspicuous circular muscles in the branchial siphon, in addition to the usual tongitudinal museles that extend down the length of the thorat and into the test to form a short retractor muscle. The abdomen, of the usual form for this genus is especially small. Oesophaget! buds are present but the gonads are not mature.
Remarks: The grey veins in the surface identify this specimen with Herdman's species. The long branchial siphon and atrial lip are also distinctive. The species is especially common in Port Phillip Bay, but is not common in St. Vincent Gulf. The species also strongly resembles D, tabutastom Sluiter from the East Indies and Aru 1. (see Stuiter 1913; Kott 1962)

Didemnum moseleyi (Herdman). Van Name, 1918: 151. Tokioka, 1955a: 212; 1955b; 44: 1959: 226; 1961: 106. Kott, 1957b; 136: 1962: 328 and synonymy Eldredge. 1967: 213.
Lppraclimum maseleyi Herdman, 1886: 272. Levporlintum incanum Herdmars. 1899: 90. Herdman \& Riddell. 1913: 888.
New Records: Goose 1. Carickalingat Head. West 1. Previous Records: W. Aust, (Rotenest 1., Point Peron. Trigs 1.). S. Aust. (Reevesby I.). Vic. (Balnarting Beach) Kott 1962. Tas. (Spring Bay, Maria I.). N.S.W, (Port Jackson, Port Stephens, Coffs Haibour)-Herdman 1899; Kott 1962. Indian Ocean (Southern Arabia)-Kote 1957\%. Indonesio (Arafura Sea)-Sluiter 1919. 1913: Tokioka 19553. Pacific Ocean (Patau 1s.. New Caledonia, Philippines. Havailan Is, Marsball Is.)-Herdman 1886: Van Name 1918; Tokioka 1955b. 1961; Eldredge 1967.

FIG, 28
Description: Investing sheets. There is a very thin layer of surface test which is often ratsed into spicule-filled conical papillte between the branchial apermures. The cloacal cavity is thoracic and the thoraces of tooids are enclosed in an independent test sheath. The atrial opening is wide, in all cases exposang the branchial sac to the cloacal canal. Spicules are 0.02 to 0.04 mm in diameter with no more than 10 pointed rays in optical transverse section and are densely distributed throughout. Zooids are colourless. They are minute, the branchial sac especially sman with four rows of onty 6 stigmata. The vas deferens coils of times around a single undivided testis follicie, in the
specimens from West I. and Carickalinga Hend there is a small taterat organ opposite the last two tows of sligmata.
Remutks: Eldredge (1967), discussing the difficulties in distinguishing between the present species and D. candifum, has suggested that in D. candidum the surfice test is always smooth. the atrial aperture is a small slit and lateral organs are always absent. He has not been able to confirm the presence of larger numbers of vas deferens coits for D. candidum (Kott 1962) nor is the condition of any of these chafacters constant int specimens previously ascribed to the species. Only the regulady stellate spicules and dark pigmented zooids of the present specimens appear to distinguish them from D. movelevi which has a variely of different types of spicules.

Didemnum candidum Savigny, 1816; 194. Michaetsen. 1924: 358 and synonymy. Van Name. 1945: 83, Hastings, 1931: 94. Brewin, 1946t 98; 1950a: 55: 1950b; 345; 1951: 104: 1952b: 188; 1956: 122; 1457: 577; 1960-119. Tokioka, 1954a: 246; 1955a: 45. Kott, 1954: 162; 1962: 327. Eldredge. 1967: 213.

The above syoonymy refers only to IndoPacific records. For full list of synonyms see Eldredge $1967: 213$.
New Records: West I., Wright 1. Previous Records: South-western Australia, Tasmania, north-eastern Australia, the Enylish Channel. Irish Sea, West Africa, South Africa and East Africa, Red Sea, Mediterramean Sea New Zealand, west and mid-Pacific Ocenn (Marshatl is and Hewailian Is), the Caribbcan and West Indies and the east coast of the U.S.A. Records are lacking from the north Pacific and west coast of the American continent; but elsewhere the species occurs widely in temperate and tropical regions.

FIGS, 29, 30
Description: Colonies atce Mat and investing, small and rounded or more extensive sheets. The test has dense spicales throughout, In preservative the zooids are brown and show through the white spicules. The common clacal cavity is thoracic but extensive and limited only by thin layers of surface and slightly thicker basal test in which the abdomina of the zooids are embedked. Thoraces cross the common cloacal cavity in an independent sheath of test. Spicules are dense throughout. They are 0.02 to 0.03 mm in diameter

and demonstrate the same range in form pre-almost cylindrical marginal rims stiffened by viously described for this species with up to 15 the dense spicules enclosed in the test. Zooids or more rays in optical transverse section. Con-are very small. There are 4 rows of about 8 spicuous common cloacal apertures present onstigmata. No gonads were distinguished in the the surface are surrounded by protuberant, present colonies.

Remarks; The present cotonial systems are typical of the species although no gonads appeared to be mature. It was not possihle to confirm Eldredge's observations concerning the slit-like atrial opening as in the extended zooids of the present colonies, these were wide open, exposing a great part of the dorsal aspect of the branchial sac. The vitriety of spicules. therefore, remain the principal distinguishing character for this species. Carliste (1954) has characterised specimens of D. candldum Savigny From the North Sca, the English Channel, notth-West Africia, the Mediterrancan and the Red Sea (type locality) by the absence of the third athesive papilla in the larvac, and Eafargue 11968) confirms the condition for specimens from the French const. The specimons agree in all other respects with those described from New Zealand, Australia, Melaysia, Japan and the Adantic coast of America. Carlisle concludes, therefore, that: "D. candidum is a tropical and temperate species extending from the West Indies to the East Indies, New Zealand and Japan".

However, later workers have not observed the universal absence of a third adbesive papilla in latyae from these localities, while there are the usual three Larval papillae in Australian. Now Zealand and Japanese specimens. It is pussible, therefore. that two separate species are inyolved.

Polysyncraton orbiculum Kotr, 1962: 300.
New Record: Rapid Head. Previous
Records: W. Aust. (Rotenest 1.), S. Ausc.
(Por Noarlunga) -Kott 1962.
Description: The preserved colony is light pinkish brown, owing to the darkly pigmented rooids seen through the single layer of spicules present in the thin surface test. The dark coloured zooids are atso seen through the branchial openings clearly marked on the surface text. There aro the usuit vesicular cells arranged in a complete circle around the branchial openings and interrupting the otherwise even distribution of the spicules in the surface test. There is an extensive thoracic
cloacal cavity, crossed hy the thoraces of the zooids, ench with a discrete ventral sheath of test. There is a lateral organ about halfway down the thoracic test sheath. The gooids are small. with 4 rows of stigmata. There is a tong retractor muscle. These specimens conform with those described previously (Kott 1962) in all respects; however, the gonads are not miture in the present cooids.
Remarks: The condition of the cloacal cavity. the dark pigmented zooids, the rather large stellate spicules ;nd the unique. harge toansparent vesicles in regular circles in the surface. together, characterise the species.
Echimpclinum verrilli Van Name, 1902: 372. Kots. 1962: 312 and synonyme.
Diplosnma (lissoclinuma) verrilli. Fidredge. 1967: 242.
New Records: Hallet Cove. The species has been observed investing the underside of rocks al a depth of $S-20 \mathrm{~m}$ at many locations in St. Vincent Gull where conditions are quiet. The colonics are so fragile, however, that they usually break up when removed (S. Shepherd, pers. comm.) Previous Records: Tas. (West Coast)-Kon 1954. America (West Indies, Florida)Van Name 1902, 1945; Hartmeyer. 190911: Plough \& Jones 1937. Africa (Accra) -Millar 1953. Japan ISagami Bay)-Tokioka 1958.

FIGS. 31-35
Description: Living colony soft, white, jellylike. In prescrvative the present colony is delicate and soft. It appears to be investing but is, unfortunately, damaged and its exact form could not be determined. Spicules are mostly 6 -rayed, but there are also spicules with 4 and with 3 rays. They form a dense spiny, fough capsule around the abdomina of the zooids but are sparse in the rempinder of the colony. Zooids are arranged more or less in the double rows previously deseribed (Van Name 1945) although common cloacal openings were not detected The cloacil canals spread otit heneath the zonids which are retained in the

Fig. 24, 25. Leptactinides kingi. (Upper St. Vincenl Gulf, 10-12 mi), Fig. 24.-SpicuTer. Fig. 25. Gut bop.
Fig. 26- Leproctinides reticulatus, (West $I_{i,}$ under boulder). Smienles.
Fig. 27. Didemnum partum. (Aldinga "drop-off", $3-8 \mathrm{~m}$). Thorax, diagrammatic, showang max-
Fig. 28 Didemnum morelfyi. (Carickalinga Head, $5-6 \mathrm{~m}$), Spoeules
Figs, 29, 30. Difommmm condidum. (Wright T, rough coast, 10 mi), Fig. 29-Diagram of solony Fig 30-Spicules.
Figs 31-35. Eohinacllnum verilli. (Hatlei Cove, 8 m) Fig. 31 . Spicules. Eigs. 32, 33, 34.-Larvae of increasing maturily. Fig. 35.-Mature unterior ampulthe of latvae.
surface test Zooids are small wati large lateral organs on each side of the thorax.

Larvae fire large with a short tial which. when extended. is only half the total length of the larva. There is a large ocellus and an otolith. At least one precocious bud is present Whaugh the exace number is obscured by the layer of apherical to oval granulate bodies that extend around the posterior half of the body of the larva.

Antedorly there are the wsual three adhesive papillae in the median line and 14 ampullae from the loteral lines on either side of the suckers. Initially these lateral ampullae are very small and sessite. Subsequently they increase in size and hecome "tear-drop" in shape supporied by very narrow stalks from the lateral line.

Remarks 11 is unformate that the present colony is so damaged that its shape cannot be discerned. Although previously deseribed specimens bave been clavate (Kott 1954; Van Name 1945) the present damaged colony is investug and living colonies have boen observed investing the under-sufface of rocks. It is possible therctore that two distinet species may be involved, characterised by a difference in the consistency of the test and in the shape of the colony:

The soft nature of the colony and its tendency to break up has probably been the canse of the lack of records of this form, which is reported as common in St. Vincent Gulf.

Eldreige (1967) has suggested that the genus is synonymous with Diplosoma (Lism(limuth), due to the similarity of the cloacal systems and the fact that tetrabedral spicules are not uniquo in the family Didemnidac. Eldredge's contention cannot he maintained. The common cloacal cavity in the two genera is extensive and extends posterior to the zuoids which romain connected to the basal test by strands of test. However the cloital systemt in Echinoclinum differs from that in Diployoma (Lissoclint(um) in the absence of the secondary cloacal spaces around the thoraces of the zooids which remain connected to and in the surface test in continuous rows. In Diploroma (Licso(finuen) the secondary clogeal spaces separate cither the thoraces, or the whole zooids, from one another. Further, the spicules in Echinoclirtum are very much larger ($0,05-0,1 \mathrm{~mm}$) than those generally found in other genera of the famlly and, in addition to theit unusuat form and size, their distribution in the colany
differs entirely from other genera of the Didemnidac. The capsules formed around the zoords by the spicules are reminiscent of the capsules formed in Custodytes spp, and in no other genus of the Didemndide do the spicules remain in such an intimate relationship with the cooid.

The genus is further distinguished by a unique liarval form with is multiplicity of narrow-staked epidermal ampultae and precocious buds. The larvae of P, aspicatarm and D. (Lissoclinum) spp. show a similar marked increase in the number of lateral ampullae. The ampultae in Echinoclinum are unique, however, in their distinct "tear-drop" shape, their narrow stalks and their discrete origin from the lateral line without subsequent subdivision. Precocious budding generstly occurs in the farvae of Diplosome spp, and in D. (Llissoclinum) spp. However. it also occurs in Didemsum (D, psendodiplaromu-Kott 1962. and D. termatram-Kot [966) and in Polys) neraton (P aspiculatum-Korr 1962) so cannot be considered characteristic of any single genus.

The grahular bodics present in the larval test are indeed simitar to those found in D. 1 Lissoclinum) traglle-Eldredge 1967 and D (Lissaclinimi ostrearium-Kon 1962. They do not take up haematoxylin stains (Eldredge 19671 and thus do not appear to be calcarcous spieules not their prechusars, ac. Kott (1962) hat suggested. However, despite the relationship with D. (Livsodinum) indiented by these enelosed granules, the genus is distinct from wher genera in the Didemnidae and emitiely justities its taxonomic position as a monotypic genus in that family.

Didemnum sp.

Remord: West I (near Penguin Rock). Dencriptiont: Living colony "yellow, crustose". In preservative the investing colony is a light fawn colour. There are cormmon cloazal aperturcs with large spicule-filled lips scattered over the surfuce of the colony. Zooids are suspended between the basal and surface layers of test by connecting columns of test in which the abdomina are embedded in clumps, although the zooids are separated from one another in their own discrete sheath of test, open to the common cloacal cavity on the torsum. Stellate spicules are thick throughout the test. The branchial siphons are tairly fong with distinct cireular muscles. There are large ovat lateral organs on either side of the thorax. There are four rows of stigmata.

Remarks: The gonads are not developed and a definitive identification of the genus is therefore not possible. The eandition of the colony with a well developed posteriot abdominal cloacal canal is reminiscent of certain species of D/demhum.

Suborder PHLEBOBRANCHIA Family CORELLIDAE Subfantly rilonosomativai

Khodnsoma burcicum (Savigny). Koth, 1952: 317 and synonymy. Tokioka, 1952: I11; 19533: 230,
Fhullisime tivcioa Saxigny. 1816: 102, Rhoutosoma papillosum. Van Name, 1918: 113 and synonymy. Hartmeyer. 1919: 95.
New Record: Hallett Cove. Previous Records: N.W. Aust. (Cape Jatubert) - Hartmeyer 1919. S. Aust. (Port Nourlunga). Qid.-Kott 1952. Indonesia-Sluiter 1904: (Atatura Sea)-Tokioka 1952. Indian Ocean (Ceylon)-Herdman 1906. Pacific Ocean (Philippines. California) - Van Name 1918. 1945; (Chile)-Traustedt 1882, 1885; (China)-Stimpson 1855; (Japan)-Oka 1927; Hartmeyer 1906; 'Tokioka 1953a. Red Sea-Ehrenberg 1828. Mediterranean -Lncaze-Denthiers 1865. The species is also recordeal from the Caribbean region (Van Name 1945)

Remarks: Nothing further can be added to the description of this eosmopolitan but rare species. it is never taken in large numbers, nor is it taken very often. The species is. however, not inconspicuous. It is probable that, with its highly developed closing mechanism, it may exhibit a bigh degree of vivipary. In which case it is probable that relatively few latvae are incubated, and that the frec-swimming time of larvae is short. The dispersal of larvae could be. rherefore, limited, and the survival of the apparently small populations of the species enhatnced by larval settlement close to the parent zooids. The species has been taken from a wide variety of depths. Unfortunately, little is known of the current conditions at locations from which the species has been taken, but it is possible that it favours less turbulent conditions where there is mistimal current flow so that the larvge would be even less exposed to dispersal.

Only it single specimen is present in this collection.

Subfamily corellinaf
Corella cumyota Traustedt, 1882; 277. Koll. 1969: 84 and synonymy; 1971; 20.
New Records: Hallett Cove, King Beach. Previous Records: W. Aust (Trige J.) Kont 1952 Vic. (Balnarring Beach, Frankston) - Kott 1952: Millar 1966. Tas (DEntrecasteaux Channel). New Zealand (North and South 1s.)-Sluiter 1898 : Michitelsen 1922; Brewin 1946. 1948, 1950 a. 1957. 1960. South Afric:-Sluiter 1898 ; Michuelsen 1915; Millar 1955, 1962. The species also has a wide circumpolar distrihution in the Antaretic (Kott 1969).

FIG. 36
Lescription; The living specimens werc noted is transparent and no colour was recorded. There are both separate individusis and individuals aggregated together more or less in a line. Zoords are generalty fixed to one another or to the substrate by atmost the whole of the fight side. The aest is thick, gelatinous and semi-transparent. On the right side of the body where it is fixed to the sulstrate the body wall is especially' thin and there are no muscles except those which radiate a shorr distance from the branchial siphon. On the upper or left side of the body there are mostly transverse muscles branching and ramilying and some short and more regular transverse muscles in a single row extending around the ventral border. The branchial siphon is terminal and on a short cylindrical siphon. The atrial aperture is sessile and from the posterior third of the dorsal border. The branchish sac, gut and gonads are of the usual form characteristic of the genus.
Remarks: These specimens do not differ in any way from other specimens of this utiquitous specios which has been recorded in very large numbers from open sea locations in circumpolar waters of the Antaretic and the subAntartic (Kot 1969, 1971) The norithern extent of the recorded range is at Trigg 1 (Kott 1962) on the western coast of Australia, tut the specics has not been taken on the eastern coast of the Australian mainland: the most casterly record on the Austratian cuast is at Frankston in Victoria (Millar 1966).

Family ASCIDIDAE

Phallusia depressiuscula (Heller). Kott, 1972 : 8 and synonymy.
Ascidtio depressiuscula Heller, 1878: 5. Herdman, 1906: 305. Ascilia julinea, Vassem, 1967: 129.

New Records: Tapley Shoal of Porl Gawter. off Girange, off West Beach, Hallett Cove, off Port Stanvac, Wright I Previous Records: W, Auss. (N.W. Aust. Shark Bay, Fremantle)-Hartmeyer 1919; Michaelsen \& Hartmeyer 1928; Millar 1963. N.S.W. (Port Jackson)-Herdman 1899. Qld. (Great Barrier Reef)-Hastings 1931: Kott 1952, 1966. Bass Strait (Enst Moncoeur 1.) -Herdman 1882. Pacific (Philippines, Palao Is., New Caledonia) - Van Name 1918: Tokioks 1950: Vasseur 1967. JndoMalaya (Ceylon, Indonesia, Arafura Sea) Heller 187\%; Herdman 1906; Sluiter 1919; Tokioka 1952. The species is known intertidally and to 52 m .

Description: Living specimens from of Haflell Cove ate noted as large, white or transparent. and common on sandy bottom. Many living specimens, however. are hluish, with black and yellow notkings. The preserved specimens may be whitish, or blackish grey and may have black spots in the surface test. The test is thick and tirm, smooth on the surface with rounded ritges and swellings. The individuals reach a large size. The present specimens: exhibit the range of variation described by Kott (1966) for the species.

Remurks: The relationship of Phellusia julinea Sluifer to the present species remains in doubt. Tho specimens in the present collection have the atrial aperture from the anterior thind of the body while specimens of P juliner have been distinguished by the position of the atrial aperture from the posterior third of the body.

Ascidia sydneyensis Stimpson (?part), 1885: 387. Kotr, 1972 and synonymy.

New Records: Tapley Shoal. Hallett Cove, Porl Noarlunga, Wright 1, Previous Records: W, Aust (Cape Jaubert to Albany) - Hartmeyer 1919; Michatsen \& Fartmeyer 1928; Milar 19tis. S. Aust. (Victor Harbor, Port Noarlunga) . Vic. (Balmarring Beach, Point Leo, Port Phillip Bay)-Kott 1952; Millat 1960: 1963: 1966. Tas (Spring Bay). N.S.W. (Port Jackson)-Stimpson 1855; Herdman 1882, 1899, Qid. (Caloundra to Townsville)-Schmeltz 1879; Koit 1962. 1966. Indonesia (Arafura Sca)-Sluiter 1886, 1004: Tokioka 1952. Pacific OceanTranstedt 1885: (Talao Is.. New Caledonia) -Tokioka 1950 Vasseur 1967. Japan-

Hartmeyer 1906: Tokioka 1953a, 1954 b . Indian Ocean (Seychelles) - Michaelsen 1918, (Zanzibar)-Traustedt \& Weltner 1894; (East A(rica)-Millar 1956. South Africa-Heller 1878; Hartmeyer 1911. 1913; Stuiter 1898: Millar 1955. 1962. The species is also recorded from the Caribbean region (Van Name 1945). It is taken intertidally and to 30 m ,

FIGS. 37. 38
Descripion; The living specimens are transparent and theshy. The largest specimens in the present collection are 20 cm lorg and 12 em wide. The test is thin, but firm and tough, and in larger specimens slightly teathery. There is sometimes. especiatly on the latger apecimens, a very sparse encrustation of weed and worm tubes. Both the branchial and arial apertures are on short cylindrical siphons and are usually about half the body length distant from one another. Specimens may be fixed to the substrate by the posterior, ventral, or left side of the body. The branchial siphon is turned away from the atrial siphon to varying extents. There is a row of short transverse muscle bands around the dorsal and ventral borders of the right side of the body. The gut is always filled with mud, which appears to accumulate during the life of the individual until in larger specimens the gut is so swollen with mud that the branchial sac is occluded and confined to a small area to the right and dorsal to the mud-filled gut. This mud hegins to collect, in smaller specimens, in the descending limb of the primary gut loop, heyond the stomach, and it extends from there into the rectum and continues to accumalate in these sections of the intestioc.

Remarks: The physiological significance of the mud-filled gut which appears to be characteristic of this species is not known. It has been noted in specimens from all parts of the pacific. Abbott (pers. cormm. 1955) noted that it uppears to be associated with the termination of the typholosole at the top of the gut swelling. inslead of extending further down the intestine. The stomach appeare in he free from the mud accumulation, but distal to the stomach the gut. becomes to distended and the whote body inside the test becomes so compressed by it that it is difficult to imagine normal feeding and respiratory functions proceeding. Some of the mud must be lost through the amo and

Fig. 36. Curella eumyota. (Hallett Cove, 25 m). Individual removed from test.
Figs. 37, 38. Asridia sydneyensis. Fig. 37.-Individual from Tapley Shoal, 13 m . Fig. 38.-Individual from Wright J., 10 m .
Figs. 39. 40. Ascidia gemmata. (Upper St. Vincent Gulf. 10-12 m). Fig. 39.-Individual removed from test. Fig. 40.-Diagrammatic section through branchial papillae.
Figs. 41-43. Ascidia thompsoni. Fig. 41.-Dorsal lamina. Fig. 42. - Individual removed from test (Carickalinga Head, $5-6 \mathrm{~m}$), Fig. 43. Individual in test (off West Beach, 8 m).
Figs. 44. 45, Ascidia aclara. (Off Seacliff, 16 m). Fig. 44.-Whole individual. Fig. 45.-Individual removed from test.
atrial opening and until obseryations are made on living specimens. it musp be astimed that the property of the distal part of the gut to distend itsell in this way is characteristic of the species and results in the aectmulations of gut contents at it greater rate than they are femoved from the body.
Ascidia gemmata Sluiter, 1895: 177. Kon, 1965: 296 and synonymy. Tokioka, 1967. 140.

New Records: Upper St. Vincent Gulf, oft Port Gawler. off Glenclg. Previous Recorals: W. Aust. (Cape Jaubert to Albany)-Hartmeyer 1919: Michaelsen \& Harmever 1928: Koit 1952. Vic. (Port Phillip Bay) - Kolt 1952; Milar 1966. N.S.W. (Port Jackson. Arrawarra)-Herdman 1899: Kott 1952. Q1d. (Hervey Bay)-Kot 1966. IndoPacific (Indonesia)-Sluiter 1904; Tokiokn 1952; (Palao Is., New Caledonia, Marianas Is., Caroline Is. Wiake Is.)-Tokioka 1950, 1961. 1967.

FIGS. 39. 40

Descrimion: Externally the test is fairly thin and flaccid and is slightly irregular. The branchial aperture is terminal on a shor cyliadrical siphoo. The atrial aperture is on a similar but geneally shorter siphon from the anterodorsal aspece of the body. Both siphons ace regularly grooved externally along their length. Individuals are attached by almost the whole of the Jeft side. [nternally the atrial siphon arises from half way down the body and is especially long. The branchial siphon is also long internally. There are circular and longotudinal muscles tround both the siphons and these extend only it short distanee posterior to the siphons on the left side of the body where there is no muscalature. On the right side of the body the longitudinal muscles from the siphons mingle with the irregular meshwork of muscles which occupy the whole body wall on the right stde. There is only a very natrow prebranchial area terminated anteriorly by very numetous hranchial tentacles and covered with minute papillae. The dorsal tubercle is in fairly latge circular cushion with a U-shaped slit turned to the right and with the positering horn turned in. The peritubercular ated is shallow and is completely filled by the dorsal tubercle. The dorsal lamina is a broad, single membranc, strongly ribbed on both sides. The ribs of the dorsal lamina extend into pointed languets on the free margin, There is a long neural gland amost one-thitd of the body distant from the
dersal iubercle. The branchial sac is simply folded between each longitudinal vessel and hits 4 to 8 stigmata in each mesh. There ate large spatulate papiltae at the junctions of the longitudioal and transverse vessel and these are expanded into rounded expansions on either side of their base. The gut forms a deep double loop enclosing the gonads in the primary loop. The pole of the gut loop in the large specimens available in this collection does not extend anterior to the buse of the atrial siphon ind is level with the anus. There is. however, some variation according to the size of the specimens and in smaller specimens (Michaelsen \& Hatmeyer 1928, Millar 1966) the gut loop extends anteriar to the strial siphon and occupies a relatively larget portion of the left side.

Remarks: This species has been recorded often fron locations around Australia extending noth in Indonesti, and into the Pacific (Tukroks 1967). The species is distinguished by the atbsence of intermediate papillac in the branchial sac. by the heavily ribbed broad dorsal lamina, and by the origin of the atrial siptron from the middle of the body. Although in the present specimens the atrial siphon is long and directed anteriorly, in specimens previously describal there is a great variation both in the lenglt of the atrial siphon and in its orientation (Michaelsen \& Hartmeyer 1928). Specimens have been deveribed with sessite external apertures arid it is probable that the pecsemt specimens with short grooved eylinders represent more mature individuals. Externally the spocies resemble: both A. sydneyevsis and A. thomupsond and it is probable that in all these species the text is firmer and relatively thicker and the external siphous less evident in the younger specimens, while in older specimens the test beicomes ruggher externally and less tansparent, and the external siphons develop as shont grooved cylmders. The body musculature. concentrated on the right and on the siphons, is so arranged that the left side, fixed to the substrate, does not contract over the volunimous gut. In these species the gyt ocenpies a relatively smaller proportion of the body wall as the individual increases in size. In A. gemmata growth appears to therease the proportion of the body antcrior to the gut, and although the point of origin of the atrial siphon renains about one halt to two thirds of the distance down the body. the gut does not appeat to increasc io sive at the same rate as the rest of the body. The oricntation of
the eeetum and the curvature of the gat loop is therefore reduced as growth procecds. It is also possible that this differential growth eateses The varistions that have been observed in the length and orientation of the atrial siphon, attholgh this may also we affected by the orientation of the body on the substrite,
Ascidia malacca ansmallenzis Hartmeyer. 1428, resembles the present species in the presence of a broad ribbed dorsal lamina with the Iree margily produced into pointed projections corresponding to the ribs. However. The species is distinguished by the specially long external siphons. by the dorsal ganglion which is only ore-ninth to ohe-thirteenth of the body length from the alorsal tubercle, and by the small stumpy conc-like branchial papillae as opposed to the spatulate papillac of A. amenthan Harmeyer's subspecies was reconded From a seasonally brackish environment in Freshwater Bay, a considerable distance up the Swan River estwary from Fremantle Harbour and he regarded it as an isolated endemic specles.

Ascidia thompsoni Kott. 1952: 312.
Novi Records: Off West Beach. Hullen Cove, Garickalinga Head, Previous Records; Tas.
〈Great Taylor Bay)-Kott 1952
FIGS. 41-43
Descripiou: In smaller specimens the test is firm and almost glassy and transpareat. Anteriorly, expanded terminal ampullate of the test vessels are cicarly visible through the test. Individuals from 2 to 7 cm long are available in the present collection. Both apertures are sessile. the branchial aperture terminal and the attial aperture two-thirds of the distance down the dorsal surface Most individuals are firmly fixed by the whole of the left side. hawever the specimen fromi Carickalinga Head is fixed posteriarly. The body musculature is present only on the right side, consisting of a mesh of rransverse and longitudinal vessels. Internally the atrial apertuce is on a siphon of variable length eising apposite, anterior or posterior to the external opening. The atrial siphon shows the same variations in length and orientation as have been deseribed previously for A. geminatu (Michaelsen \& Hartmeyer 1928; Millar (966). Both wiphons are well equipped with circular and longitudinal muscles. There are about 40 branchial tentacles, a papillaced prehranchial area at shaflow peritubercular area completely filked by the dorsal tubercle which generally has it simple

U-shaped opehing. In an expecially large and opaqte specimen from West Beach (at 8 m) thete is a second openting to the right of the lapger U-chaped opening. The dorsal ganglion is about half the boty distant from the dutsal tubercle. The dorsal lamina is a wide membrane, double for about one-sixth of its length. The right section of the double membrane is plain, the leff section is ribbed on the left. For the remainder of its length the dorsal lamina is a single mombrane ribbed on the left side. although these tibs do not extend to the outer margin of the membrane. There are minute and irregular papilla-like expansions from the frec bonder of the memberane in its posterior exteni. Intermedfate bramchial papillae are generally present, especially in the posterior part of the branchist vac. The intermediate hranchial papillae are half the size of the primary papillae, and both are pointed. The gut is voluminous and forms a deep ctoubto loop which varies slightly in relation to the atrial siphon as the individual grows, is in A. genthata.
Remorks: The druble dorsal lamina with slightly irregular membranous border posteriorly and the form of the intermediate and primar'y branchial papillat distinguish this species from the very similar A. gemmata with which its geographic cange averlaps. The origin and the variable orientation of the atrial siphon are shared by the two species, and in both, owing to differential growth of the body, the gut loop is confined to the posterior half of the left side in larger specimens. It is of considerable interest that the present species has been recorded only from fairly sheltered coistal environments (subject however to some wave detionl in the present collections. while A, senmase was taken only from Offshore Benthic locations subject to currents in misdale and upper St. Vincent Gult.

Ascidia aclata Koul. 1952: 309. Millar, 1963; 721 ,
New Record: Off Scacliff. Previous Records: Vic. (Lakes Entrance, Port Phillip Bay)-Kot 1952; Millar 1963. Qla, (Moreton Bay)-unpublished recards.

$$
\text { FIGS. } 44,45
$$

Description: There tre two specimens in the present colfection, maximum length 17 cm and 10 cm high. The body is siightly dorso-ventrally flattened. The test is rigid ahd encrusted with sand and shell partictes and is produced trito two rigid cylindrical tubes from anound
the branchial and atrial apertures at the anterior end of the dorsal surface and from about oncthird of the distance along the dorsal surface respectively, The aperiures are completely sessile and lie at the base of these tuhes. The hody musculature, within this rigid test, is rediced to strong hands across the dorsal surfiace posterior to the atrial aperture and between the atrial and branchial apertures. Internally the specimens are exactly as previousty described with the branchial sue forming a fold across the dorsal tubercle. The gut forms the usual simple open loop, opening adjocent to the atrial uperture.
Remarks: This unustal species uppears to be highly specialised for an existence on a sandy bottom, with the rigid mbes extending vertically from the apertures forming a permanently open channel through the layer of sand in which the species is probably buried. It is probable that the immediate environment outside the apertures is modified by these permanently open chambers to facilitate a less interrupted feeding process and confer distinct advantages In lacations where steady flowing currents and absence of sedimentation pertain. The species is also of considerable interest in that its records are confined to the semi-enclosed waters indicated above. It is possible that there is a swider, more contimuous distribution on the continental shelf or, alternatively. that it represents a telict population of a spectes which once had such a continuous distribution on the open coast.

Suforder STOLIDOBR ANCHIA Family STYELIDAE

Subfamily Polyzornss

Stolonites uustralis Michaelsen, 1927: 202, Michaelsen \& Harmeyer, 1928: 352. Kout. 1952: 253.
New Records: Tipata Recf. Pert Nourlunga. Prervipus Records: W. Aust. (Albany) Michaclsen 1927; Michuctsen \& Hartmeyer 1428 Tas, 1 Spring Bay) -Kout 1952

$$
\mathrm{FIG}, 46
$$

Dexcripulon: Rounded, sandy, stalked or sessile individuals connected to basal stolons, 0.6 to 0.7 cm maximum diameter. The colonies in the present collection are encrusting specimens of Pyurat irregularis and Polycurpa peduriculoci. The apertures are both sessile on the tupper surface. There ate two folds on either side of the branchial sac with 6 to 9 intornal tongitudiaal vessels. The gut loop is simple
and open with a gasiro-intestinal ligament. enclosing a rounded endouarp in the pole. The shore stomach has about 18 Folds. It is reduced in diameter at either end and has a thick pyloric caecum of moderate length. Gonads are not mature in the present specimens and their arrangement coulal not be determined. The ligaments anchoring the gut to the body wall extend in a row along the lateral aspect of the intestine. There are also large ligaments anchoring the scomach and the pole of the gut loop.
Remarks: This species appesiss to be confined to the sonthern coast of Austratia, but has been recorded only from locadions away from the open coast, It is inconspicuous however, and it. is possible that its occurrence in protectod Jocations on the open coast has been overlooked. In the absence of mature gonsads the species may be disinguished from Amphirarpa dipercha by the low rounded branchial folds. the presence of a curved pyloric caecum and the less developed musculature.
Stolonica carnosa Millar, 1963: 734.
Ne'w Record: Tipara Reef. Previous Record; W. Aust. (Cottestoe).

FIG. 47

Description: The colony is oval, 3 cm long. ? cm wide and $L \mathrm{~cm}$ thick and, as in the type specimen, has developed around an algal stem. The 4 -lobed apertures of zooids are close Together on slight swellings all around the outer surface which is encrusted with sand. There is no sond inside the colony, Each individual is dorso-ventrally buttened and most of its left side is directed toward the centre of the colony: There are 2 folds on each sids of the brunctual suc with internal longitudinal vessels accordine to the following formula: $\mathbf{E} O(5) 4(f) 1 \mathrm{DL}$, There are only 5 stigmati between the endoseyle and the ventral fold.

The gut forms a rounded loop and the rectum turns anteriorly and dorsally at a sharp angle. The stomach is pyriform, narrowest at the cardiac end, has 15 nacrow folds and a very long, curved pytoric catecum in the pole of the gut loop. There is a gatro-intestinal ligament and ligaments connecting the gut loop to the body wall as in Distomas diptycha (see Kott 1952). The anus is 2 -lpped. The gorads are in single rows on each side of the endostyle. The testes are Mask-shaped and the ovaries contain 3 eggs of varying sizes, and a testis and an ovary are generally loosely associtued so that thero are 6 io 7 Fermaphrodite gonads on each side of the body.

Remurks: Although in Millat's specimen the testes and ovaries appeared often to be separite, the condition and the artangement of the gonads in the present colony suggest that this is mole apparent than real. and may depend on the relative stages of development of the ovary

In Millar's specimen the stomach is folded internally but externally the todds were prohably obscured by the membrane covering theri. The course af the reetum in the present specmen also differs from Millar's specimen and is bont back against the gut loop. prohably by darso-ventral flattening of the individual. The extent of this dorso-ventral flatsening. therefore, is an individual, futher than ts specific character.

Oculinaria mastralis Gray, 1868; 564. Kott, 1952: 251 and synonymy. Millar, 1963: 734; 1964: 369.
New Records: West 1. (Scal Rock), Wright 1. Previous Recordix: W. Aust. (Fremantle to Albany) - Gray 1868; Michaelsen \& Harlmeyer 1928: Kott 1952; Millar 1963. Vic. IPort Phillip Bay)-Millat 1966.

Desoriprion: Colonies of the usual form with numerous zooids closely coalesced, identified only by the paired apectures on wart-like siphons from the anterior surface of each zooid which project slightly from the otherwise compact colony. The lest is very brittle and completely impregrated with sand. There are 4 branchial folds on each side of the body with 4 to 8 longitudinal vessels on each fold and about 4 between the folds. The gut loop is us previously described, with about 18 spiral folds in the stomach wall. No pyloric saeetm has heen detected. There is an elongate gastric gland reservoir extending between the stomach and the intestine. There are up to 9 fong gonads on the right side of the body, a larger number than has previously been recorded for this species. There is a single row of test is lobes beneath each shor ovary.
Remark: The species is well adapted by its compacted form, for the nccupation of turhulent locations and, in fact, it has been recorded only from the exposed open coast. Externally it resembles colonies of Polyandrocarpa spp. from which it is readily distinguished not only by the location of the gonads on one side of the body, but also by the spital course of the stomach folds. the presence of a gasero-intestinal reservoir and the form of the gut loop

Subfamily fotrryllinaze

Botryllaides leachl (Savigny). Michaelsen \& Hartmeyer, 1928: 341 atal synnnymy Millar, 1952: 24:1962. 177 Kutt. 1952 : 258, 1966: 297
Boryllus Lcachii Savigoy, 1810?: 7
New Records: Tipara Recf. Port Noarlunga, West 1, Wright 1. Previous Recordi: W. Aust. (Geratdton to Albany) - Michaelsen \& Hartmeyer 1928; Kott, 1952, N.S.W. (Port Jackson) - Herdman 1899 Qld. (Moreton Bay)-Kote 1952: (Sarima)-umpublished record, Northern Territory (Darwin)Kote 19t6. New Zealand (Hauraki Gulf)Michaelsen 1921; Brewin 1948: (Stewart 1.) -Michaelsen 1921; (French Pass)-Sluiter 1900: (Otago Harbour)-Brewin 1946; (Auckland 1.1-Bovien 1922. South Africa -Hartmeyer 1912; Millar 1962. The species is also known from the North Atlantic. the North Sea and the Mediterranean and Adriatic (nee Hartmeyer 1923, Arnbïck 1923, and Millar 1552).

De'scription: Living colonies from Oedipus Point, West I. have 4 colourless matrix and red zooids, while in those from Pori Noarlunga the matrix is transparent and the zoolds yellowbright orange, All the colonies have transJucent test and purple zooids in preservative Colonies form Hattencd. long bohes with a short shalk. There are circular to oval systems of closely packed zooids. The test is firm and tramparent. The system of zooids are arranged in rows along the length of the hend. These systems may appear to be confluent and form almost continuous rows, but in fatt separate cloacal openings remain in the centre of a limited number of zooids and diserete circular to oval systems are nambined. There are 9 to 12 rows of aboul 20 stigmata. The stamach is long, with 10 folds and a very short caecum.
Remarks: The form of the colonies is very similar to those of B. magnicoecam but the circular systems and firm test, with common cloacal ropenings along the sides of the lobes ate distinctive. The shape of the stomach and the form and length of the pyloric caecum is similar to the condition found in B, nigrum. However, the smaller number of rows of stigmata with more stigmata in each row also distinguishes this speceics from both B. mognicoecum and from B. nigrum. Records for this species extend from the North Atlantic to the Mediterrancan and Pucific Oceans, and from bll around Australia. It is not known from the

Indian Occan beyond the West Australian coast nor is it known from the South Athantic.

Botrylloides nigrum Herdman, 1886: 50. Van Name, 1945: 227 and synonymy, Kolt, 1952: 257
Surcolour, hisides jeckromianum Herdman. 1899: 102
wifcebourylloides pamuayut Herdman. 1899; 105.

New Records' Port Gawler, off West Beach. off Seacliff. Carickalinga Head, Rapid Head, West 1 (near Penguin Rock, Seal Rock). Whigh 1 Previous Records; W Aust., S. Aust. Vic-Kott 1952. N.S.W. (Port Jack-sont-Herdmurt 1899; Kott 1952. OldKott 1952. Indo-Malaya (Ceylon)-Herdman 1906: (Red Sca)-Michaelsen 1919. East Africa-Shuter 1898: Michaclsen 1918. Touth Africa-Hartmeyer 1912. The species is also reconded from the Caribbean region (Van Name 1945).
Descripuion: Colonies investing sheets sontctimes extended into irregular lobes. The zooids whe arranged in long double row systems well separated from one another with transparent test between. In preservative the zooids are prople-black with the pigment contained in cells in the body wall. The colour of the preserved specimens doss not reflect the variuthons in colour of the hiving specimens which are: "dark hlue and bright purple" zooids (West 1.): or "yellow and mustiard" (off West Beach), There are 16 rows of about 12 stigmata with 3 internal longitudinal vessels of each side of the heanchiat sac. The atrial opening exposes the anterior half of the dersal sufface of the bramchial sac. but the lip from the anterior border of this opening is not especially promounced. The stomach is the usual long organ characreristic of this species, with 10 tolds. It is wider at the cardiac end and reduced in width at the pyloric end where there is a very shont caecum.
Remarts; Although the variation in colour and the irregularity of the colonies make this species diflicull to identify itr the field, the shape of the stomach with its shurt caccum and the widely spaced double rows of zooids are distinctive. Its recorded distribution is wide in the Inolian Ocean and trom the West Indies. At this stage there is no known character available to indicate that all these records refer to more than the one species with an almost circumpolar distribution. in the southern temperate region, absen onty from the middle and Eastern Pacific Ocear.

Borylloales magnicoerum Hanmeyer. Koth, 1952: 258. Millar, 1966: 368.
bormblodes nigrum var magnicoecum Hairtmcyet, 1912: 271. Hotryiths magnicoecus. Michaelsen. 1923b: 50: 1923e: 6. Michaclsen \& Hutmeyer. 1928; 331 and synunymy. Hastinge j931: 79. Brewio, 1951: 109. Millar. 1955: 195; 1962: 175. Tokioka. 1967: 153.

Botryllas uaceps Michaelsen \& Hartomeyer. 1928; 335. Millar. 1963: 736. Polseyclas rafus Oka 1927: 603 Benrylus rufus. Tokioks, 1953b: 240
New Records: Off West Beach. West 1. Wright 1. Previous Records; W. Aust (Shark Bay)-Michatsen \& Hartmeyer 1928. S Aust, Tas,Kott 1952. Vic. (Port Phillip Bay)-Millar 1963. 1966. N.S.W (Poft Jackson) -Herdman 1891: Millar 1963. Qld. (Great Barrier Recf)Hastings 1931. New Zeatand (North 1.)Michaelsen 1921. Brewin 1951 JapanTokinka 1952; Oka 1927. China (Hong Kong)-Michactsen 1923a: Tokioka 1967 tadian Ocean (Paumbur) - Michaclsen 1923a. South Africa-Hartmeyer 1912; Millar 1955, 1962. South West Afric:Hartneyer 1913: Michaelsen 1915. NatalMichaeken 1918, 1921. Europe (Portugal) ?var-Michaclsen 1923b; (Mediterranean) :Var. Michaelsen 1923b.
Deserfpron: The living colonics from West I. are "bright vellow" although other specimens are "greyish with pale zooids". In preservative, towever, all the colonies are purple owing to the pigmentation of the zooids which shows through the very solt transparent test. The colonies in this collection always consist of soft, long, narrow, nhttened. stalked lobes with zooids arranged in closely set double rows running paratlel to the length of the lobes Zooids are absent from the stolks. In preserved specimens there is adways an accumalation of dark pigment at the top of the endostyle and on either side of the bise of the branchial aperture Common cloatal openings are always present around the free end of the lobe as in Syrozon spp.

There are 14 rows of stigmata in the present specimens with 3 to 4 stigmata between the Jongitudinal vessels. The stomach is short and rounded with 9 folds and a long caccum curving into the pole of the gul loop.
Remarks: Millar (1963) regards the form of the colony of the Australian specimens (long stalked lobes) as providing it character which distinguighes it from the South African forms Which are irregularly lobed and investing, as
are Brewinx specimens lrom New Zealand, The closely set double row branching systems are present in all the specimens represented in the synonymy above and all these specimens have the characteristic shor, rounded, stomach with a long curved caccum. disunguishing them From ather species of the genus. It is possible that the Austratian members of this species may represent a geographio subspecies characterised by the particular form of the colony with terminal closest apersures and close-set clouble rows of zooids parallel to the longitudinal axis of the head. Boryylpides leacht colnaies ave simifarly lobed but the eloacal apertures are present along the side of the head helwenn the double row of zooids.

Botryllus schlosseri (Pallas). Van Name, 1945: 220 and synonymy, Kott. 1952: 259 (part).
dicyonium whlassui Pallas. 1766: 155.
Noil Roirthus sehhosseri, Kott, 1952. from Hamclin Bay and Green Pools, W.A.
New Recard: Of Hallett Cove, Previous Rerords: W. Aust. (Shark Biry, Fremantle)Hartneyer \& Michaelsen 1928: Kott 1952 Vic, (IOrl Phillip Bay) -Millar 1966. Elsewhere the species has a wide distribution from the Facroe Is, and southern Narway. the Britisht Istes, the North Sea. the Meditertanean. Actriatic and Black Sea; from the eastern and western seaboards of the U.S.A. and from New Zealand (see Van Name 1945).

The lncal abundance of this species and its occurrence on wharf piles. ship hulls, buoys, etc. in shallow water has been pointed out by Van Name (1945). This wide cosmopoliran slistribution suggests that, like Czone intostinstis, the species favours sheltered locations and is transported largely by ships.
Descrinitort. The specamens are delicate and invest the seat grass Posidonu unstralis. The test is almost complerely transparent and the zooids are pale grey, Zooids form small cireular systems which are crowded close together in the test. The zooids are relatively shor. with only about 8 rows of stigmata. The atrial aperture is on a siphon produced to a varying extent and the upper margin of the aperture is produced into a lip. There is a conspicuous pyloric caecum with a large bulblike expansion on its frec end. The stomach has about 10 very fine folds. is longer than wide, and is only of slightly grester diameter than the rest of the gut. Developing embryos are present in the peribranchial cavity of some
of the zooids, but on the right side of the hods onty,
Remarks. The zooids in a colony of the prexent specimens are identical with those described for Bonryliur gracilis Hurtmeyer \& Michacten. 1928: Milar, 1966, from Shark Hay, Western Australia and from Port Phillip Bay, Millar (1966) regards this type of thin trancparent colony ts a species distinct from B. schlosseri. Juvenile colonies of B. schlosseri as described by Verrill (Verrill \& Smith 1873) are identical with the present colony and the zooids are identical with thosc previously described for this species especially in regard to the attial opening, stomach and pyloric caecum, and it is unlikely that B. gracilis is distinct from B. schlosseri.

Subfamily styelinaz

Cnemidocarpa etheridgii (Herdman)
Srucle exheridgii Herdman, 1899; 38. Kolt: 1952: 219 and syponymy: 1964: 139 (f. persomata). Millar, 1966: 370.
New Recoords: Tapley Shoal, off West Beach. West I. (off Oedipus Point). Wright I. Previous Recorde: W. Aust. (Prigg 1.), S. Aust. (Spencer Gulf and St. Vincent Gult). Vic. (Philtip I. $-K$ Kott 1952. (Pori Phillip Bay) - Millar 1966. Tas. (D'Entrecasteaux Channely-Kott 1952. N.S.W. (Port Jackson, Port Stephens) - Herdman 1899 . QIJ. (Morcton Bay)-Kott 1964. The species is known intertidally and down to 30 m . It is abundant in St Vincent Gulf on sandy boltoms at $7-20$ in with slow carrents, ind on oper coasts in deeper water of $20-30 \mathrm{~m}$ (Shepherd, pers. comm.).

FIGS. 48, 49
Description: Individuals are lorge, ap to 11 cm high, rounced and of greatest diameter posteriorly gradually reducing in diameter to the terminal branchial aperture. The terminal branchial aperture is sometimes curved. The atrial aperture is on a slight rounded projection from abour half way jlong the dorsal surface. Colour of living specimens varies from pale cream to bright vellow (most often the tatter). In preservative the lest is white and opaque, with longitudinal furrows converging to the branchial aperture on that patt of the body anterior to the atrial aperture, The test is thin and leathery. There are up to 25 internal longitudinal vessels on the folds and up to 7 betwecn, although in some specimens there are as lew as 4 internal longitadinal vessels between the folds. There are 6 stigmata per mesh.

Fig. 46. Sulonica australis. (Tipara Reef), Gul loop.
Fig. 47. Stolonica carnoser. (Tiparn Reef). Right side of body removed to show ergans an left hody wall.
Figs. 48 , 49. Cnemidocurpa athertigii. (Tapley Shoat, 13 m). Fig. 48. Whole individual. Fig. 49.,Individual bisected slong the ventral surface, hranchial sate removed, showing gonads and endocarps in body wal!.
Fig. 50 Polycarpa clavata. Whole individual.
Figs. 51. 52 Polyedrpa papillata. (Off Glenelg. 15 ml). Fig. 51 -Body wall on left showing gut loop, gonuds and endocarps. Fig. 52. - Individual showing gonads on right side of the hody.
Figs, 53-56. Potyearpa pedancatala. Fig. 53-Individual from Aldinga ($10-25 \mathrm{~m}$). Fig 54 - IndiviLual from Tapley Shoal 124 m$)$. Fig. 55 .-Individual from West $1 .(25 \mathrm{~m})$. Fig. 56 -Gut lowp and endacarp,

The gut forms : gently curved, fairly narrow loop across the left side of the posterior end of the body, encloxing a long narrow curved endocarp which is continuous with the body wall on both the right and left side. The gut loop is almost entirely posterior to the bran-
chial sac; the elongate stomach and proximat part of the intestine forming the proximal limb of the gut loop lie almost in the mid line pos-tero-ventrally and the distal limb of the gut loop passes to the left of the posterior end of the branchial sac. The gut loop is almost
entirely embedded in the thickened body wall and is covered by endocarp which encloses the left gonad (in the curve of the gut) and extends ventrally across the pole of the gut loop to foin the thickened body wall ventrally and posteriorly. The pole of the gut loop thus projects into a pocket in the thickened body wall. The oesophagus is short and the stomach is long and elliptical with internal longitudinal glandulat lolds. The anal opening has a smooth border.

There are one or two flask-shaped gonads on the right side of the body. On the left the gonad is embedded in a single large endocarpal thickening of the body watl. Here there may he a single branched gonad with single 3 and i ducts emerging from the endocarp and directed to the utrial aperture This condition may have resulted from the fusion of two gonards. In another specimen there are two dixcrete gonads embedded in the left side of the body with their own sets of δ and q ducts emerging from the endocarp. The testis lobes are enclosed by the ovarian tube as is characteristic of this genus.

Remarks: The present farge specimens conform with those ascribed (Kou 1952) to the "rtheridelgi" condition of this species, It is most probable that this distinction relates only to the stage of maturity of the individuat, where the "persimaln" condition represents Iess mature indiviluals. Both forms have been taken from the same locations in both east and western Australia.

Polycarpa clavata Hartmeyef. Millar. 1963: 723.

Polycurpa mentin (Qucoy \& Gaimard) f Divates Hatmeycr. 1919: 40. Michactsen \& Hatmeyer, 1928: 363. Kott, 1952: 236 . Tokioka 1961: 123 Vasseut. 1967: 133.
New Records: Tapley Shoal, hear Marion Light. off Troubridge Light. Provions Records: W. Aust, (Bathurst I, to Rottnest [)-Hartmeyer 1919; Kott 1952; Millar 1963. Pueific (Noumea, New Caledonia) Tokibka 1961: Vasseur 1967.

FIG. 50)
Description: Lacge stalked specimens from fawn to reddish-brown The test is very soft and gelatinous and the surfice is marked with rounded longitudinal ridges which are sometimes interrupted horizontally. The branchial aperture is on a shore siphon from the basal one third of the dorsal surface. directed to-
ward the substrate. The atrial aperture is sessile and inconspictous from the midde third of the dorsul surface. The upper, or posterior. end of the head is high and romnded. The stalk, about the same length as the head is also thick and lleshy, wider toward the base in the larger specimen, and bulbous, or. in smaller specimens (Murion Light) fairly narrow: in the smaller specintens there are fandomily dixtribuled concavilies, surrounded by well defined lips, on the sides and base of the stalk. These concavities are richly supplied with blood vessels which end in terminal ampullae in the base and lips of the congavity, It is possible that these organs are involved in the fixing of these individuals to the substrate, especially at they do not appear to be present in the larger specimon where the surfiace test of the stalk is uniformly transversely ridged.

The musculature is rather difluse in the thick. body wall which is produced into a tongue-like projection extending about one third of the distance down into the stalk. The stalk is eam. posed of solid test material for the remainder of its length. The dorsal tubcerele is large, completely filling the perituhercular area and has a complicated, convoluted and interrupted openang. There are 4 branchial foids on either side of the body. sometimes only apparent as an accumatation of longiludinal vessels. The branchial sac does not project into the anterior tongue of the bady wall where il projects into the stalk.

The gut forms a double loop confined to the posterior part of the body. The anal horder has small rounded tobes. Endocarps enclosed in the gue lonp may be subdivided termmatly into two or more branches. Gonads, more or less in 3 rows down each side of the hody wall. are "root" shaped. fixed to the body zvall by the metaphorical "ankle", with the "toc" pointirig toward the atrial aperture.

There are numerous uptight endocarps seatlered over the body wall between the gonads

Remarks: The dorsal luberele of Polycarpo pedata Herdman (Siyela pedata) which Hartmeyer $\langle 1919$) listed as a synorym of the present species is distinguished by the presence of numerous pit-like openings white the dorsal tubercle of the present species. although complicated, has a convoluted slit-like opening interrupted several times along its leneth. The present species appears closely related to Polycarpa longiformis Tokioka (Kott 1966).
which has similat gonads and appears to be distinguished only by the orientation of the budy, the absence of the distinctive stalk and the simple opening of the neural gland. Polycorpa uffollett Herdman (1899) has a similar convoluted opening on the dorsal tuberele, somerimes broken intos several openings along its length. The gonads in P-arrollens. howeyer. are upright.

Milfar (1963) drew attention to the difference between P. aurata (Quwy \& Gaimard) and the present species first described as P. atwata clavinn Hartmeyer.
P. Ambata: Hastings. 1931, is described as agrecing well "with Hartmeyer's (1919) und Herdman's (1 P safcata: Herdman J886) descriptions". Harimeyer's deseription. however. is of Polvacerte curata \&. clenvera $1<P$. clavata) and is is with P. aurad ($>P$. sulcata) that Hasting's specimen is jdentical A reexaminafion of the type specimen of P. autara var. plert Ferdman. 1899 from Porl Jackson has thown that its ponads are also the usual short polycarps of P. atrata which is now known from Port Isckson and the Great Barrier Reef ind from the Indian Occan. Malaya, and Indonesia The range of P - aurato, therefore, does not overlan that of P. clavgra,

Polycarpa papillata (Sluiter).
Sivelu pupillota Sluiter, 1886: 192. Tokiona, 1952: 117. Vasseur, 1969: 925.
Pollesarpe intestimate Kott, 1952: 238.
New Recordf: Tipara Reet, off Port Gawter, uff Gienelg. Aldinga "drop-off" Previous Records: N.S.W, (Port Jackwon)-Kott 1952. Indian Ocean (Madagascar) Vasscur 1969 Imdonesia Sluiter 1886: (Arafura Sea)-Tokioka 1952.

Flos. 51, 52
Description: Small aggregates of individuals. the posterior test sometimes extended into a shorl stalk. The branchial aperture is termional, the atrial aperture one third to one half of the distance along the dorsal surface Both aperthres are sessile. The test is tough, rough and wrinkled externally, with some sand and algae irrgularly adhering but generally the surface lest is taked. The body musculature consists of a moderately thick continuous external coat of circular muscles with longitudinat bands internally. The dorsal tubercle is a large blisterlike swelling with a simple U-shaped opening: it completely fills the V of the peri-tubercular anca. Thete are 4 wide overlapping folds with about 15 internal longitudinal vessels on each
fold and 3 to 4 between folds. There are 4 tos 8 stigmata in each mesh. Antcrionly the endostyle follows a winding course, which is effected by the subdivision of ransverse pessels and multiplication of the number of rows of stigmata ventrally, in a localised region alont the anterior extent of the endostyle. The gut forms in hrizizontal loop in the posterior end of the body. The stomach is elliptical with longitudinal striations. The rectum extends anteriorly toward the atrial opening. The anal border is broken up into 14 long finger-tike tobes. Tall endocarps are present in the gut loop and seatiered over the body wall. Seven to 12 oval to elongate polycarps are present in 1 to 2 rows in the centre of each side of the body, directed towand the atrial aperture. These polycarps ate fixed to the body wall along their whole length. In snmalier specimens with smaller immature gonads there are more often 2 rows of polycarps, and. as the gonads increase in length and the body length increases. these rows appear to merge into a single irregular row. while in a single specimen with well developed gonads there is only a single regular row.
Remarks: The present species resembles Polycorpa clavata (Hartmeyer) P. lunsilormis Tokioka and P. atollens Herdman, in the tall endocarps enclosed in the gut loop, but is distinguished by the rows of recumbent gonads fixed along their whole length to the body wall. The anal lobes also resemble those of P. ahollents and P - iongiformis

The form of the body, the position of the atrial aperture, the form of the dorsal tubercle. and the form and arrangement of the gonads are simblar to P. circurnurua (Sluiter): Vasscur. 1967. which is distinguished by its short oyal stomach. greater number of rows of gonads and greater number of internal longituitinal vessels between the branchial folds.

Cnemidocarpa mudagascercersǐ" neadasuscariensis: Hartmeyer from Madagascar and C, madagascarienvis regulis Michaelsen from New 7ealand (sec Kott 1971a) also resemble the present species in external appearance and in the arrangement of gonads, and are distinguished principally by the greater length of the gut loop and greater number of internal longitudinal vessels between the branchial folds The papillac on the branchial sac described by Sluiter (1886) are not present either in the South Australian specimens or in the specimens from the Arafura Sea (Tokioka 1952). It is possible that Sluter mistook particles adhering to the branchial sac for papillae.

The species has a wide geographical distribution from Intonesia and apparently around the cast coast of Australia. from rocky substrates It shetered localifies, or in Offshore Benthic focations where there are slight currents.

Populations of this species do not appear to be dense and records atc fow,
Polyearpa pedumculata Heller, 1878: 106. Kott, 1952; 232 and synonymy. Miltar. 1966: 369.

Polyorrora obscira Kott, 1952; 245 and sупотупуу.
Polycarpa steplenensis Elerdman. 1899: 45. Kon, 1952: 232. Millar. 3963; 726.
Polycappu moehti, Koth, 1952: 244 and synomymy: 1966: 299. Vasseur. 1967: 136.
Polycarpa obtecta. Kote 1952t 242 (not P. obrecta Traustedt).
Nen-Records: Tipara Reef. Tipley Shoal. near Marion Light, upper St. Vincent Gull, off Port Gawler. off Semaphore, off Grange, off West Beach, off Glenclg, of Broadway, off Hallen Cove. Port Noarlunga, Aldinga, Carickalinga Head. Ripid Head. West I., Wright I. Previnns Records: W. Aust (Cape Jaubert to Bunbury)-Hurtmeyer 1919: Michselsen \& Hertmeyer 1928; Kott 1957. S. Aust. (Recvesby 1.). Vic, (Balnarring Beach)-Kotl 1952; (Bass Strait)-Heller 1878: Michaclsen 19015; (Port Phillip Bay) -Millar 1966. N,S.W. (Port Jackson, Twofold Bay)-Herdman 1881. Qtd. (Mereton Bay)-Koll 1964. The species hav also been recorded from New Caledonia (Vasscur 1967).

FIGS. 53-56
Description: This is by tar the most common atcidian in St. Vincent Gulf and is very variable in external appearance The colour of living specimens from Port Nosrlunga has been described as "bright to pale yellow". These specimens arc black to greenish in preservative. Most often living specimens are sandy with u "redulish tinge" to "reddish brown" becoming brown to purplish brown when preserved in formalin. They are slightly laterally thatened and atmost oval shaped, and are most often 3 to 4 cm long and 2 to 3 cm wide, Larger specimeris up to 8 cm long are usually grecnishblack in preservative. The apertures are sessile, the branchial aperture terminal but directed slightly to the side, away from the dorsat surface, and the atrial aperture one-third of the distance down the dorsal surface.

The test is tirm and gelatinous and the surface is geverally smonth and maked. There is often. however, a light encrustation of sand
or the test may be more heavily encrusted. or may hecome almost brittle with included sand. In larger specimens the test becomes thinner. more flaccid and leathery,

Posteriorly the test may be produced into a garrow stalk up to half the length of the body, or the body may taper gradually from a straigti upper or anterior surface where the branchial aperture is central and the atrial aperture is on the antero-dorsal corner. The posterior end of the body, with or without a stalk. may be produced into root-like structures, or the individual may be fixed to the substrate by the postero-ventral surface.

The body wall is light tu dark brown, hrownish-green. greenish-black, or black. it is not very tlosely adherent to the test and is thick, firm and very muscular with internal longitudinal bands and a continuous thick external coat of circular muscles. Both layens of musculatire are often embeduld in fleshy non-muscular tissue and yencrally spherical vesicles are embedded in the muxcle layers interrupting the regutarity and continuity of the libres. The hody wall is more flaceid in larger specimens.

There ate about 100 simple tentactes of at least 4 orders. The prepharyngeal area his small papillite and is of moderate width. The dorsal tuberele varies and is sometimes smalt, in the centre of a fairly large peritubercular shea. It is sometimes much larger but never completely fills the peritubercular area. The opening forms a U with horns turned in or out and directed to the side, anteriorly or posteriorly and in larger specimens may be jnterrupted. The dorsit lamina is a plain edged narrow membranc. The branchial folds are low and rounded with 2 to 3 thick internal longitudital vessels between the folds and 11 to 13 on the folds. There are 6 to 8 stigmata in each mesh between the folds but on the folds the internal longitudinal vessels are more crowded wogether. There are oflell vesicles. similar to those embedded in the body wall. enbedded in the branchial vessels and in the dorsal tubercle. The gut is confined to the posterior end of the body distal to the atrial aperture. The intestine forms a short tounded loop enclosing a efreular endocarp. The stomach itself is elliptical with pronounced folds. There may be a second small endocarp separating the rectum from the ocsophagus as the former extends anteriorly toward the base of the atrial opening. In smatler specimens the anal horder is broken into 7 sometimes subdivided rounded
lobes. In larger specimens there are up to 25 lobes. The circular endocarp enclosed by the gut appeats to be the major mechanism anchoring the gut loop to the body wall ind is confluent with the connective tissue surrounding the gut. There are 20 to 50 short oval polycarps on the left and 25 to fil on the right. These are sometimes, but not always, embedded completely in the budy watl. When completcly emhedded only the opening; of the ducts are apparent is holes in the imner surface of the hody wall. Primarily there appear to be sbout 3 longitudinal rows of polycarps on each site of the body: As each polyciarp increases in length it sub-divides and new gomoducts open from the proximal half to form secondary rows of gonads overlapping the primary row closext to the atrial opening It is possible that this process, resulting in increases in the mumber of polyoarps present, explains the great variation in tho number recorded for this species.

Bemarks: Michaclsen \& Harimeyer (1928) drew attention to the simitanty between species hisled in the synonymy above and suggest that P. obveuta is a variely of P. pedunculata (P. Hipidis). Michaclsen regarded Polycurpa mowhi, however, is a disunct species characterised by differences in the gut and gonalds. In this collection there are indivituals demonstrating every condition prevously described for P. pedunculata, P. moebil. P obscuri and P. slawhenehsis. There are specimens demonstrating every condition from stalked or robled to wessile individuals; cevery colour and every condition of the test is found and there is consiolerable variation in the number of polycarps. and the exient to which they are embediled. The gut loop is always constant and encloses the circoldar endocarp which has a pointed tip storsally. Tho thick internal longitudinal vessels of the branchial sac, their erowaing on the narrow tolds. the spherical vesicles embedded in the hranchial sace arut body wall. the thick layer of circular muscle, and the papillated prebranchial area can be reguded as characteristice of this otherwise highly variable single species. The extent to which gonadis are emhedded in the body wall and the extent to which the hody wall is marked oft inta areas probably indieates more mature specimens.

Polycarpa macnima Hartmeyer, 1906, has at similar enkdocarp enclosed by the gut toop and the same sype of vericles embedded in the body wall. It is distinguished from the present spectes, however hy the weaker musculature
which also distinguishers it trom the West Indian species P. obhucter Traustedt.
P pedturwlona is the most common ascitian in St. Vincent Gulf and generally both greenish and reddist frown specimens oceur. Larte black specimens were also taken from Stal Rock. West 7. from Hallett Cove, ind from Tapley Shoat. There is no apparent correlation between the type of enviromment and the colour of the individuals at each Station. A cuse of genetic polymorphism in Ascidiacea has been described for Bultenia ovifera (L) (Ploush 1969). This dominant in the ascislian pepulation of the Gulf of Maine, has coloursranging from white to crimson red in a single haul. and variations in lest texture and in muscle band colour and thickness can be related to these colour variations. It has been suggested that the spocies dernonstrates genetie segregation of the ability of individuals to iecumulate pigments. The situation in Polycarput pedunculate may indicate a similar genctic sogregation.

Family PYURIDAE.

Pyura scoreshiensis n.Sp.
Tepe Locwion; ()ff Semaphote: 18 m in sparse Posidonia, 27.1.69 (Holotype: Souh Australian Museum, registration number ES76). Fwrther Records: Ofl Tapley Show. 18 m .22 m .

FIGS. 57-59
Descriptioa: Ronnded heads on stalks of vary, ing length, sometmer thick and no Jonger than the head, but sometimes long and narrow (up to 20 cm . supporting a head 8 cm long and 3 cm wide. The heal is more or less eggshaped with its greatest diameter basally hefore narrowing abruptly to the stalk. The apertures are both sessile, either side of if more of less pointed projection forming the anterior apex of the head. The atrial aperture is slighty: more pnstesior than the branchial aperture

The test is thim, hard and tough with a dense sandy encrustation on the outer surface of the head and the stalk. The hody wall is thin ond semitramspasent with moderately developed fine and difluse musculature, with muscle bands most closely placed around the anterior part of the branchial sace and siphon.

The branchal sentacles hive a large Hanged axis. farly short primary branches. stumpy secondary branches and minute tertiary branches and are not very bushy. The siphons are lined with long needle-like spines, closely set, up 100.275 man tong. There ore no sm-
cules in either the test or the body wall. The dorsal tubercle is a simple U -shaped opening with both horns turmed inwords. The dorsal lamina has pointed languets but is very shore owing to the close-sel branchigl and atrial siphons and contracted dorsum. The branchial sac is delicate with 6 high, overlapping folds on each side of the body with up to 20 internal jongitudinal vexsels on the lolds and only 2 or 3 belween. There are 4 to 6 stigmata in each mesh.

There is a simple and tairly narrow gut toop enclosing the gonad on the left. The gunad on the right oceupies a corresponding position. There are very arborescent hiver lobules in the region of the stomach. The gonad may consist of an ondulating ovarian tuhe with Eringing testis follicles along both sides with the testis ducts extending along the mesial surface of the ovary. In some specimens the undulations of the ovarian lube extend out into pinnate branches with testis follicles around their extremities. These pinnate branches may subsequently separate off into separate polycarp sacs on either side of a ventral duct. The amal hurder is divided into 3 large shallow lohes,
Remarks: Specimens dentonstrate the development of the polycarp sace of the pyuris gonad from the continuous lubular styelid type of gonad. All stages of this development can be observed in the specimensavailable and it may be that the condition of the gonad indicates the sge of the individual. The stalk of this species also shows great variation in length and thick-ness- Despite these variations the species is characterised by the relatively smooth test, sand encrusted, hut withoul tuhereles or furrows. and by the constant position of the apertures. The position of the apertures, on the upper end of the head, fairly close topether. with the branchial and atrial openings on opposite sides of the apex. is unusual in a stalked species of the Ascidiacea. where more generully, both apertures are on the dorsal side of the head with the branchial aperture directed downwards, and the atrial aperture uppermost and dieceted upwardis.

The relationships, of this species are inklicated by the siphonal spinec, which resemble those described for Pywre albonyenvis Michaelsen \& Harmeyer, 1928, from Oyster Harbour: Albany. Western Australita, in which apettures are atso separated by a cushion of test in the middle of the upper surface and in which the dorsal surfite of the body is very mach contracted and the dorsal lamina consequently very
short. Pyma albanyensis has, however, characteristic papillae on the convex bonier of the scabre-shaped stem and primary branches of the branchial tentacles.

Pyara curvigona Tokioka, 1967, from the Palao 3s. is a similar closely related species. sometimes stalked, with a similar arrangement of endocarps, gontads and gut. The anus, however, has many lobes and the fong (2.75 mm) siphonal spines extend dutside the siphons onto the Jobes surrounding the apertures, is in fyurd vittora (present in this collection). The needle-like siphonal spines found in the present species are not found in the various forms of the Pyura pachydermatina group of stalked speciec. In a specimen from Tapley Shoal (Station 6) there are barnacles growing around the hanchial aperture.
Pyura vittata (Stimpoon). Pérés, 1949: 195. Tokioka. 1952: 134; 1953a: 273; 1967: 202. Millar, 1960: 126. Kotr. 1964: 142 : 1966: 300: 1969: 133. For farther synobymy and Fiterature to the species in the Ailantic and West Indies sere Van Name 1945: 321.
Cymbia vittata SAmpson, 1852: 230 . Pyura jacatrensis. Koth, 1952: 273; 1954; 127. Millai, 1960: 125.
New Records: 'Tapley Shoal, of Troubridge Light. Previous Recorde: W. Aust. (S.W. Aust.) - Kott 1952. Tas.-Kott 1954. Qid. -Kott 1964. 1966. Pucific (Arafura Sea) -Tokioka 1952: (Palao Is.)-Tokioka 1967: (Japan)-Tokioka 1953a: Van Name 1945. Atlantic-Vaan Name 1945; Pérés 1949: Millar 1960. Sub-antarctic (Macquarie I.)-Kott 1954, 1969: (Kerguelen I. F -Kott 1954; (Mation I.)-Millar 1966.
The species has a wide cireumpolar distribution in the southern hemisphere and extends nonth through the Indo-Malayan region to Japan. It is also found in the Alantic and in the Caribhean (see Van Nane 1945).

FIG 60
Description: Only a single individual is avatable. 3 cm long with a terminal hranchial sperture and the atrial opening half the distance along the dorsal surface. Bozh apertures are almost sessile. The external surface of the test is rough and has sand and foreign particles adhering. The viphons are lined with long needle-like spines, 0.1 mm to 0.2 mmi long, overlapping. These extend onto the outer surface of the siphons, cover the lobes hordering the siphons and exlend onto the puter layer of test, The spines have a slight didencence
which eonfers on this ouler siphonal area a greenish tinge. The siphon is lined with red stripes in the preseryed specimen.

The test is thin, leathery and firm. The dorsal tubercle is a rounded cushion filling the peritubercular aren with a simple U-shaped siti with both homns turned in . The branchial tentacles are not hushy and have only primary branches and very shorl secondary branches. The internal siphuns are fairly long. Longrudinal muscle bands radiate from both siphons but do not extend very far down the body on the feft. Circular muscles form a faitly irregular network over the sight side of the body. hecoming more sparse poseriorly. They ate practically absent from the posterior half of the body on the left sids, over the gut loon. The branchial sac is fairly delicate. It has 18 internal longitudinal vessels on cach fold and 4 between. There are 6 stigmata per mesh The gut forms the usual loop enclosing the left gonad. The anal border is smooth and bilabiate. The gonads consist of the usual central ovariun tube with pinnate branches on both sider terminating in polycarp-like sacs. Pndo-carp-tike tissue is present on the free surface of the gonads where it is broken up into lohes.
Rentarks: The syoonymy of this widespread species has been very confusing owing to the variation in the length of the siphonal spimes and the variation in the condition of the anal horder. It appears. howevec. that Sluiter's species from Indonesiat und Northern Australia (P. jocutrensiss. With very much smaller siphonal xpines that do not extend onto the outer surface of the apertures may be a distinct species despite the spines of intermediate length that are present in specimens from the Palau Lsande Tokioka 1950, see Kott 19711. Pyura curvigom Tokioka. 1967, from Palao Is., is anwher closely related specics in which the very tang (2.75 mm) siphonal spines extens onto the outer surfiace of the apenures. In Pywa alhanyonsis Michaelsen \& Hartmeyer. 1928. and P. weoresbiensis nap. the siphonal spines exsend up to 0.275 mm , only slightly fonger than the present species. However, these siphonal spines to not extend onto the outer surface to the apcrtures.
1tyura irregularis (Herdman), Kolt, 1952: 271. Millar. 1963: 739: 1966: 370.
Cvalkin ireegularis Herdman, 1881: 60; 1882: I41
New Records: Tipara Reef, off Beach Hut, T km of Port Vincent, upper Si. Vincent Guif. off Gitange, off West Beach, of Glen-
elg. Port Noarlunga, Aldinga "drop-uf": Carickalinga Head, Previens Records: S, Aust. (Outer Hartrout), Vic, (Port Phillip Ray) - Millar 1963 1466. Tas. (D'Entrecasteatr Channel)-Kott 1952 NS.W 1Pout Jackson)-Herdman 1882. The species toss not prevously been taken in waters of less than 25 m in depth.
Description; living specimens are red orange to light faws. Externally the test is very harat. leathory and wrinkled and thickened into small celagonal plates. There are also wartlike protuberances, especially anteriorly

Individuals are usually clumped together in tight ageregater and the shape of the body is consequently very ittegular The maximunt body length is about 2.5 cm . Both aperlures are present at the end of faurly long siphons which are generatly oriented away from one another. The test is very strong with internal longitudinal and outer circular muscle bands, as in atl species of Pyuriduc.

Delicate cup-shaped scales, 0.02 mm long. line the siphons. There are is branchial tentacles with whor sparse primary branches ind minute secondary branches. The primary opening from the neural gland is U-shaped with horns turnexi it or out. The dorsal wherele is blister-bike and there is often at uccessory opening from the neural gland. The tubercle is not always longitudinally attenuated. bowever the peritubercular are is always a very deep V-shape and generally the tubercle does extend down into it. The neural ganglion is especially long extending most of the distance along the dorsal laminta. The dorsal damina has a double row of languets. These are fine and pointed. closcly set on the left. and on the right they are stouter and more sparsely arranged.

There are from 6 to 10 branchial folds un each side of the body with ahout 12 longitudinal vessels on the folds and 2 between. There are 6 to 8 stigmata in each mesh crossed by parastigmatic vessels. The gut loop is simple and curved and encloses the left gonad which is subdivided into 15 to 20 separate pulycarp sacs dirranged on either side of centrat male and fentale ducts, There is a corrosponding gonad on the right.
Remaks: This species resembles very closely the Antarctic species Pyura discoveryi Herdmat (see Kott 1969) . The tough, wrinkled external text with embedded polygonal thickenings is also reminiscent of the Antarctic Pyura squamart Herdman although the polygonal
sates and the body shape of P, squanata are more highly specialised than in either $P_{\text {, }}$ discovery or in the present species. The braschisil tentacles with their sparse branches and the long siphons are also similar to those of P. disroveryi and it is possible that the protection afforded the imdividual by these long siphons may be associated with the absence of the more bushy tentacles usually found in this genus.

The individuals are never very large and their leathery test and hathi of occurting in aggregates suggests a species adapted for very turbulent conditions. The present records do not support this, however as they are either from Ofishore Benthic locations in St. Vincent Gulf. or from reefs in sheltered coastal locations.
 Nell Records: Tipata Reef. Tapley Shoal. near Marion Light, off West Beach, off Brondway, off Hallell Cove, of Yankalilla Bays. West I., N.W. of Robe. Previous Recorts: W. Aust. (Geraldton to Albany) -Quoy \& Goimara 1834: Michaelsen \& Hartmeyer 1928: Kout 1952; Millar 1963. Vic. (Westemport. Fliders)-Quay \& Gaimard 1834: Kot 1952. Tus (D'Entrecasteaux Channel, Tinderbox)-Kolt 1952. FIG. 61
Descriphion: Specimens of all sizes up to a maximum of 4 cm long head with a stalk of 30 cm . The lest is usually without foreign bodies adhering, though in one specimen there are some circipedes growing on the stalk. The surface of the test is marked with variable longitudinal furrows and ridges but is sometinues almost smooth. In preservative the specimens are piokish-fawn, although living specimens are usually dark red and, oce; siomally, yellow. Both apertures are close together on the dorsal surface the atrial aperture directed upwards and the branchial aperture directed basally. The lobes of the atrial aperture are clearly continuous with the ridges in the dorsal part of the test

There are stellate spicules of aboul 0.02 mm diameter with 6 rays in optical transverse section in the body wall, and the siphons are lined by conical spines of 0.02 mm maximuta beight from base to apex,

The fromehial sac, gut loop and gonad are as previously described and there are 18 long flattened characteristic lobes fringing the and border (see Kott 1952).

Remarks: Nothing can be added to provious descriptions of this constant species which appears to occupy a wide range of couclitions in exposed to sheltered lueations from Geraldton, in Western Australia, to Flinders in Victoria. It is common in wave beaten areas from the low water mark to 22 nt .

Pyura spinifera (Quoy \& Gaimard). Kott. 1952. 269 and synonymy.
Aisidio spintfera Qnoy \& Gaimard, 1834:817. Gywhia mútitadicata Herdman, 1849: 30.
Ner Records: Upper St. Vincent Gulf, off Hallett Cove. Aldinga. Previones Records: W. Ausc. (Albany)-Quoy \& Gaimard 1834. Vic. (Buss Strait)-Michatelsen 1905; Heller 1878. N.S.W. (Part Jackson, Port Hacking)-llerdman 1891, 1899; Kott J952.

FIGS: 62. 63
Dexcription: Spectimens with head to 8 cm long and 4.5 cm wide. Stalk is of very variable length. maximum 20 cm . Externally the Iesi is smooth withuut longitudinit turrows. but with characteristic tubercles, varying in their density, and sometimes. especiplly in larger specimens, absent altogether, The head is often completely enveloped by an investing sponge which in specimens from off Hallett Cove has been noted in the field as yellow.

Minute overlapping scales, 0.05 mm maximum length from posterior part of the base to their apex. line localised areas where thickened lobes of the test project into the siphons. Otherwise, there are no spicules in the text or in the hody wall. There atre 7 branchim folds on cither side of the body wall in the larger specimen but only 6 on cach side in averagesized to smaller specimens. There are about 25 branchial tentacles alternating with rudimentary tentacles. The larger tentacles have regular pinnate primary branches with secondary bramches and minute tertiary branches and are very bushy. The dorsal tubercie has a thouble coiled opening. both harns coiled inwards and the inner spirals of each coil are slightly convoluted. There is it shor dorsal lamina with pointed languets.

There are up to 30 internal longitodinal vessels on the fotds end 2 to 3 between. In larger specimens the under sides of all the mujor

Figs. 57-59. Pyura scorenhichsis. Fig. 57.-Tndividual (off Semaphore, 18 m). Fig. 58. Siphonal spines. Fig. 59.-Gut and gonads.
Fig. 60. Pyura vittata. (Tapley Shoal, off Troubridge Light, 17 m). Siphonal spines.
Fig. 61. Pyara australis. (Hallett Cove, 8 m). Spicules embedted in siphonal lining. and siphonal spine.
Figs. 62, 63. Pyurct spimifera. (Upper St. Vincent Gulf, 10-11 m). Fig. 62.—Dorsal tubercles. Fig. 63.-Papillac from inner body wall.

Fig, 64. Microcosmus nehollsi. (Off Yankalidla Bay, 20m). Siphonal spines and scales,
Fig. 65. Microcosmus squamiger. (Oft Semaphore, 18 m). Siphonal scales.
Fig. 66. Microcosmis stolonifera. (Port Noarlunga, $5-6 \mathrm{~m}$). Siphonal spines.
Figs. 67. 68. Ctericella antipoda. (Yankalilla Bay, 12-20 m). Fig. 67.-Dorsal tubercle. Fig. 68.Inner body wall showing gonads and gut loop and heart on left and right respectively.
blood vessels and the transverse vesscls (but not the parastigmatic vessels) support minute
pointed languets to form a fur-like covering. These projections also cover the gonads and
the whole inner surface of the body wall extending into the base of the atrial siphon alihough here they are reduced in densily.

The gut forms a narrow curved loop enclosing the lell gonod. The right gonad forms a corresponding curve on the right side of the body. The anus is bordered by 12 shallow lobes. There is a mass of orange arborescent liver lobes. In larger specimens there is a blister-like structure on either side of the atrial opening, extending into the curve of the gut loop and into the curve of the gonad on the left and right sides of the body respectively. This ulso has a fur-like surface formed by dense small, pointed projections. The imer cavity of this blister-like organ is continuous into the fumen of the arrial siphon and, presumably, if swollen or distended could occlude the lumen of the siphon. There are also two flaps of tissue, antcrior and postenor to the atrial opening to form an itrial velum.
Remurks: This distinctive species, in which variation in excental appearance involves only the number of tubercles on the test and the length of the stalk has, in S. Vincent Gulf, only been taken from fairly sheltered situations. Other records, however. suggest that the species could occupy greater depths in offshore situations from which it was uprooted only with turbulence occurring during storms. The large head supported on the thin but tough stalk does not appear to favour yery rough conditions, although it could he in advantage in locations where there is steady current flow or surge.
Halocynthia hispida (Herdman). Kott, 196s: 77 and synonymy.
Cyuthin hupides Herdman 1882; 146.
Tholocyuthia cactus. Vassemr, 1967: 144.
Now Records: Tipari Reef, Tapley Shoal, hear Marion light, off Beach Hut, Port Vincent. upper St. Vincent Gulf, off Outer Harbour, off West Beach, off Glenelg, off Port Stanvac ("The Barges") Aldinga, Carickalinga Heach, of Yankalitla Bay, Rapid Head. Previons Records: See Kott, 1968.

Remarks: This species apparently occupies a wide variety of conditions but generally favour sheltered bays or estuaries (see Kott 1968, for description and further discussion of this and related species)
Herduania momus (Savigny) Michaelsen, 1919: 30 and synonymy.

Cynthia montes Savigny, 1816: 143 .
Pyupa momas f. kyomintersis Michaelsen. 1919: 37.

- Pyura mombs f. perlum Michaclsen, 1919: 31.

Pyita mumus 1. iompionata. Mithaetsen, 1919: 54.
Pyura monise f. galei Michaelsen \& Hanimeyer, 1927: 194; 1928; 443.
Pyura momus Savigny f. srandis. Michnefsen \& Harimeyer, 1928: 441.
Herdnuatia momus. Van Nanle, 1945: 341.
Herdmania momus 1 , salei. Koll. 1952 281,
Tokioka, 1967; 132; 1967: 205.
ITerdrrania momus f. grander. Kott. 1952: 279: 1964: 142; 1965: 301. Millar, 1960: 126; 1963: 740; 1966: 374. Tokioka, 1949; 61: 1952: 137: 19534: 277: 1967: 206.
? Irerdmania momus f. curvate Koll, 1952 : 282; 1964: 143.
New Records: ("grondis" type)-Tipara Reef, off West Beach, of Glenelg, Carick 2 linga Hend, N.W. of Rober ("salez" type)Goose I.. upper St. Vincent Gulf. Addinga Reef, West L. Wrigh I. Previous Records ("gramdis" type): W. Aust. (Fremantle to Albany)-Michaelsen \& Hartmeyer 1928: Millar 1963. Vic. (Port Phillip Bay, Westernport) - Millar 1960, 1963, 1966. N.S.W (Port Jackson)-Heller 1878: Herdman 1882; von Drasche 1884; Tokioka 1967; Millar 1963. Qld. (Bowen) -Kott 1952 Indonegia colf West lrian-Herdman 1886; Aridfura Sea)-Tokioka 1952. Japan-Tokioka 1949. Pacific (F_{ij} Is.) -Herdman 1882; Palao, Tahiti)-Heller 1878. Indian Occan (West Indian Ocean)-Michaclsen 1908; Heller 1878. (Red Sea)-Michuelsen 1919. Savigoy 1815; (Dar-es-Salaam) - Michaelsen 1905; (Ceylon) Herdman 1906. Africu (Cape of Good Hope, Simons Bay)-Herdman 1882. West Indies (Jamaica)Heller 1878. ("galei" type)-W. Aust. \{Shark Bay, Point Charles, Dirk Hartog 1.) -Michaelsen \& Hartmeyer 1927, 1928. Tas. N.S.W (Port Stephens). Old. (Bowen. Nelson's Bay)-Kott 1952. Pacific (Mela-nesia)-Tokioka 1961; (Marianas Is.)Tokioka 1967; (Japan)-Tokioka 1967. (For records of specimens recorded as "pallida" form, sce Van Name 1945).
Michaelsen (1919) has considered, in some detail, the distribution of all the forms of this species. Apart from certain forms represented by single records, many of the ranges overlap and no separate geographic ranges can be assigned. The range of the species, represented by the range of the form pallida, for which there are most records, is circumtropical and extending south to the Cape of

Good Hope, Forms from the south coast of Australia have been described as forma grandis. This form is not, however, thistinet from f : pallita (see helow) and it is doubtful whether there is justification for separating any of the specimens assigned to the specics. Their morphological variations are most probably indicative of different stages of maturity,
Description: The distribution of the several forms. II momus I. grandis. H. momus f. padida and 11 . momthe f. galef, overlaps and in the present collection alf forms have beels taken from the same location and it is apparent that if. bromos if. grandis with an opaque whitish lest, a convoluted dorsal tubereular opening and with testis follicles covering the ovary. represents mature individuals of a species in which the juvenile specimens have at Fransparent to translucent tess with the testes follicles arranged regularly around the petiphery of the ovary (5 , galei), Sometimes in intermediato sized specimens the oyarian lube undulates along its length and the testis follicles may remain close to the ovary (as dexcribed farl f. pallida; Van Name, 1945). In other specimens in this collection (3 km off (Glenelg) the testis follicles form an even bonder around an area in which the ovarian tube is undulating, Jn the smallest specimens the anal lohes are rudimentary, later tevelop into even fingerlike llattened lobes. which become less regular and may be absent in larger specimens. but are sometimes present in two clumps at either side of the opening.

Remarks: it is apparent from the present collection that the galef, groudix and pallida forms of this species represent different stages of maturity of a single species. The pelationship of the present torms, in which the ovaries undulate with the testes follicles which sometimes cover it. to II. momust f. typica Savigny ($>$ H. momus f. curvata Kott. 1952; 1964) in which the testes follictes are arranged in an undulating line along the ovary, is problematical However it is probable that the undulation of the ovarian tube could have forced the lestes follicles into as similarly undulating line.

Microcosmus nichullsi Kott, 1952; 290,
New Records: Off Beach Hut, 1 km off Port Vincent, off West Beach. off Hallett Cove, Adinga, Carickalinga Head, West I., Wright 1. Previons Records: Vie. (Flinders) - Kott 1452

FiG. 64

Description: Test generully thick. whitish and coriaceous with pinkish colour around siphon but sometimes tough and almost feathery externally with rounded ridges or thin, siff. rough and embedded with sand. moven and marked by horny scale-like areas. Externally both ipertures are sessile and close together on the upper surface. each surrounded by maised. rounded projections of the lest. Posteriorly the test may be produced into root-like processes. There is a network of longitudinal and rectangular musctes.

The siphouns are forg and the siphonal thusculature is especially strong. Outer circular sphticter muscles surround the base of ench siption and the longitudinal museles extend across the body but are absent from the region over the gut. Pointed conical spines and smaller spines and more numerous scales line the siphons. There are sometimes calcareous spicules embedded in the hody wall and in the tentacles and branchial sac. Brametial Lentacles have primary, secondary and minute tertiary branches. The dorsal tubercle is U-shaped with horns lurned in. The dorsal gangtion is elongate, half the length of the wide plain-edged thersal lamina. There is a pronounced branchial velum. On tuch side of the body wall there are high overlapping branchial folts with up to 20 internal longitudinal vessels on the folls and 1 to 3 between, There are about 10 stigmata per mesh. hetween the folds, crossed by parastigmatic vessels. The gut forms a simple closed and narrow loop around the ventrial border of the body entlosing the terminal lobe of the gonad in its loops. The descending limb is crossed by yonad. There is a stomach enlirgement ohscured by liver lamellae which are smaller at the pyloric end of the stomach. Minute finger-like projections from the surface of the liver lamellae give it a furry appeatance. The anus is bordered by 12 rounded lobes.

On the right, the gonad curves around the ventral border and on the left carves into the toop of the gut just distal to the liver lobes The gonads it ite broken into 2 rounided clumps on the right and 3 on the left, often covered by endocarp.

Remarks: The small siphonal scales and the gonad acrose the gut loop, together with the whitish and more gelatinous lest of the smaller specimeas, distinguish the species from M. solonifera.

Microcosmus squamiger Michaelsen
Microcosmas ciandicans sub, sp, squarniger Michaelsen \& Harmeyer 1928: 405.
Microcosmas cosasperatus sub. sp. aHsrablis. Michaelser, 1908; 272; 1918: 63 (脌 03r, cxcluding M, cirsiralis Herdman, and M. rapusqui Herdmstr),
Ners Reconds: Tipara Reef, off Semaphore, off West Heach, off Glenelg. Previous Records: W. Aust. (Shark Bay to Albany) - Michaelsen \& Hartmeyer 1928, N.S.W. (Sydney)-Michatsen 1908. Old. (Bowen, Rockhampton)-Michaetsen 1908. Red Sea -Michaelsen 19 |8.

FIG, 65
Descriplion: Simall. Kethery. pinkish specimens, aggregated together. The surface of the lest is roised into ridges and mounds. The body wall is very muschiar. The dorsal iuhercie is large with a double spiral opening. There are the usual 8 branchitit folds on each side of the body and the lefi gonad crosses into the gut loop. The gonad on each side of the hody is divided into 3 clumps. There are close-set liver limmellae, Closely set curved seales 0.02 mm long linte the branchial siphon.
Remarke: There has been some contusion berween M. exasperatus. M, australis, and the present species, all common around the Australiar coast and all demonstrating a fairly wide diversily in external appearance. The reddish colour and aggregated habit, the large number of tough branchial folds, the deeply curved gut loop and the gorrad erossing into the gut loop, ate characters shared by all three species, Microcosmtes syuamizer is distinguished by flattened scale-like siphonal scales. while both Microcosmus australis Herdman and M. exasperaus have pointed spines.

Microcosmus stolonifera Kott, 1952: 291.
New Records: Tipara Reef. Port Noarlunga Previous Record. Tas. (Tiny Ic., east eoust)
-Kott 1952.

FIG. 66

Descripion: Onty two specimens are available. They are very irregular externally, and posteriorly are produced into rool-like processes. The upertures are on siphons of variable length. turned away from one another and, in the largest specimen available (2 cm greatest dimension) the siphons are especially long. The test is very tough, hard and leathery. There are large (about 0.1 mm) pointed spines. arranged in fairly regular horizontal rows. lining the siphons. The bratichial tentactes are bushy. The branchial sac has 7 high and deh-
cate overlapping folds, with a single internal longitudinal yessel in the interspace. The gut forms is narrow curved toop with the usual elongate liver lamellae with short finger-like papillac from its surface. The gonads form a single rounded mass in the curve of the gut loop on the left but do not extend into the primaty gut loop. On the right there may be a corresponding single rounded stass or the right gonad is sometimes divided into two rounded lohes joined by the eentral ducts.
Remarks: The test of thes species is harder and less regular than all other species of this genus. It is turther distinguished by the long siphonal spines, the large rounded gonad that does not develop inside the gut loop, and the high delicate overlappting folds of the branchial sac.
it does not appear to be a very common species and the only two records afc from the southern coast of Australia. However the tough and roughened test, forming a very slrong attachment. causes the species to be inconspicuous and diffieult to collect.

Mierocosmus helleri Herdmant, 1880: 54; 1882 . 131. Stuter, IK95; 184. Harmeyer, 1919: 19. Michaelsen \& Haqmeyer, 1928: 397. Kott. 1952: 292; 1972: 12. Millar, 1963 : 742.

Michocesombs goantus Michaelsen, 1918:12, New Records: Tapley Shoal, olf Beach Hut (1 km off Port Vinicent). Prevlous Records: W. Ausi, (Cape Jaubert to Fremantle)Harmoyer 1919; Michadsen \& Harmeyer 1928: Kou 1952; Millar Jy63. Qld (Great Barrier Recf) - Koti 3952: (Torres Strait) -Herdman 1882. Malaysia-Slunter 1895 Portugesc East Africa (Delagoa Bay)Michaelsen 1918.

Description: The single spherical specimen from Tapley Shoal is 6 cm in diameter. This large diameter is contributed to by a 1 cm thek coating of sand held together by terminatly branching and coatescing projections from the test to form a thick dense fayer enclosing a space around the body. This coating is interrupted to form is single opening above the apertures. The specimen from off Beach Hut is more typically rough externally and is a purple colous. The apertures are sessile, onethird of the body circumference apart. At the base of the branchial siphon there are 3 fisplike projections.

The body musculature is of the usual pyurid type with muscle bands from each of the siphoons crossing one another on both sides of
the body. There are very strong circular mnseles. circling each siphon,

Branchial tentacles bave primary and secondiry branches and wide, flat, membraneous extensions from their anterior or concave border. The dorsal lamina is plain. There are 6 high, overlapping folds on cach side of the bodv with up to 18 internal longitudinal vessels on the folds and 3 between. The gut forms the usual long, narrow attentated loop. typical of the species, and the proximal tobe of the 3 lobed left gonad is accommodated in the open pole of the otherwise closed gut loop.

Remarks: The tough tlap-like projections in the brimehial siphon sometimes appear as cones. These structures, together with the gut loop and branchial sac. distinguish the specier.

The sandy coating thas not been described previously for this species, but has been described for Pyura cuncellata Brewin from New Zealand (see Kott 1971) and for Pyurd tunica Kot, 1969 from the Antarctic. This condition demonstrates the versatility of the ascidian test which in this specimen rexponds to the substrate by growing out to entangle sand grains as there is no firm substrate onto which it can directly be fixed.

Ctenicella antipoda n.sp.

Type Locality: Off Yankatitla Bay. at 12 to 20 ml (2 specimens); in Amphibolis community with limestone outcropping oecasionaliy. Hololype: South Australian Mustum (reg. no. E877). Further Recorif: Tipara Reef.

FIGS. 67. 68

Descriptinn: Specimens are up to 10 cm fong, slightly dorsu-ventrally flattened. Extcrually they are very itregular and covered with module which also protect the sessile apertures on the dorsal or upper surfice. The test is up to 1.5 cm thick. gelatinous but entirely impregnated with anfod wo that it is hard and rigid. It is sometimes produced into a ridge strerounding the siphons, There are hard brown papillae around the sessile apertures but there are no spines lining the siphons.

The berly musculature is strong on the upper half of the body with lengitudinal bands radiating trom the siphons and inner circular bands around the siphons and at their base. However, on the lower balf of the body the musculature is almost entirely absent and is represented by two vertical rows of very thor parallel bands.

There are IS large compound branchial tentacles with primary, secondary, and minute tertiary branches alternating with rudimentary tentacles. The dorsal tubercle is at the base of the tentactes anterior to the V of the peritubercular area. The opening is a double spirat slit turned to the left. The dorsal tamina is very shott and has close-set slender. pointed languets.

The branchial sac has 6 high, overlapping folds on each side of the body. widely spreat at their base, Longitudinal vessels are arranged as follows:
DL $3(26) 3(33) 5(28) 4(26) 3(24) 2(15) 3 \quad E$
There are about 12 stigmatit in each mesh. They are rectangular, and crossed by parastigmatic vessels. The meshes are wider than fong and there is no sign of irregularity in the stigmata which do not eoil nor form infundibula.

The gut forms at narrow. closed and decply curved loop with branched liver lobules extending along the inside of the gut loop for its whole lengh. The liver is spongy with short rounded finger-like papillae projecting from its surface. and supporting tissue between the liver lobules.

The inlestine is filled with mud. The anal bonder has about 30 or more rounded tobes. On the right side of the body there is a long curved bypertrophieal heart in the position occupied by the kidney in Molgulidac. There is a single gonad on each side of the botly parallel to and lying against the long conspicuous heart on the right, and on the left extending parallel to the descending line of the primary gut loop. The left goriad descends into the secondary gut loop where its short ducts turn dorsally loward the atrial aperture. The ovary is central and tubular while the especially small pyriform textis lobes cxtend into folds in its wall. giving the appeatance of being emberded in the ovary. In one of the specimens from Tipara reel the gonads are immature and groups of very minute testis lobes are arranged around the upper ind outer surPace of both sides of the ovary, Yasa efferentia from each group of follicles join together to open into the vas deferens along the median surface of the ovary.

Remarks: Citnicella Lacaze Duthiers (Type Species: Ctenicella appendiculata (Heller). from the Meditertanean), has few known specics, although a rumber of Molgula spp-
have been erroncously ascribed to it. The genus is characterised by the presence of dorsal languets, straight stigmata, a kidney on the right. and the left gonad outside the primary gut loop. In addition to the type species which is distinguished by its long recurved siphons, Ctenicella umdutura Tokioka, 1949, from Japan, has a posterior stalk and a folded stomach.

Hartmeyerio Ritrer was also thought to be intermediate between Pyuridae and Molgulidac. with pyurid branctial sac, siphonal spines, a smooth dorsal lamina and the left gonad partly in the gut loop (as in certain species of Microcosmus). Monniot (1969) has shown, however, that what was thought to be a kidney, is in fact an hypertrophied heart and that Hartmseyeriar is without doubt a pyurid genus telated to Mirrncosmas and with a liver similar to that of Halocynthia with longitudinal plications proximally and branched tubules distally. Hartmeverta differs from the present spectes in its smooth dorsal lamina and siphonal spines, and in the position of its left gonad which crosses into the gut loop. It is probable that
the kidney, which has been described for Crenicella undulata and C. appendiculata is, in fact, an hypertrophical heart, as described for Horimeyeria and as demonstrated for the present species.

The identity of Ctenicella uriditara Tokioka is puzzling as it has dorsal languets and the gonads on the left and right respectively in the usual posifion for the genus, outside the gut loop and adjacent to what has been described as an excrelory organ. However, the stomach appears to have proximal glandolar folds and distal arborescent lobes as described for Hartmeyeria and Halocynthia and it has a Hurimeyerta type of stalk. Therefore, both Cenicella and Hormevesia appear to be genera of the Pyuridae, distinguished from Pyura, Halacyutha and Mierocosmus by an hypertrophied hearl. They ippear to be distinguished from one another only by the absence of siphonal spines, the presence of dorsal Janguels and by the position of the gonad ousside the primary gut loop in Cierticeller spp. The relationstrips of these pyurid genera are shown in the following Table.

TABLE 1
Compariyn of Charncteristics of the Genera of the Fomily Pywritae.

	Pyurs	Hufocynthia	Ctenicella	Hertmeyerin	Aficrocosmas
Siphonal spines	present	present	none	present	present
Dursai lantina	languets	1angerets	languets	5mooth	smouth
Giver lissue	artureseen lohes	long folds and arborescent labes	arborescent lobes (1 species witi long folds and arborescemt lobes)	long folds and arborescent jobes	atborescent lahes
Gonads	in primaiy gut	eross guit lowp	putside gut loon	cross gut loop	crass gigut loop

Fanily motgulidat

Molgula molis Herdman, 1899: 54. Kott, 1952; 298; 1964: 144.
Molgule sydteverwis Herdman, 1899: 55. Molgula janik Kott, 1952: 295. Millar, 1966 374.

New Record: Carickalinga Head. Previous Renords: N.S.W. (Port Jackson, Sydney) Herdnatn 1899; (Twofold Bay) -Kott 1952. Qld. (Gladstone to Moreton Bay)-Kolt 1964.

Descriprion: Small, rounded, laterally fiattened specimen of 0.6 cm diameter. The apertures are prescot anteriorly in a depressed, sand. free areat of lest, surrounded by sandy prouberances and hairs from the thin test.

The dorsal tubercle is oval with a longitudinal, more or less S-shaped slit, The neural gland is conspicuous beneath the tubercle,

The branchial sac has 7 folds on each side of the hody with only 2 internat longiludinal vessels along the top of each fold. Stigmata coil to form infundibula projecting into the fokls and subdividing into two in the summit of the fold. Between the folds there are someinlerstitial stigmatal coils but no primary infundibula. The spirals of the primary coils are interrupted in their median longitudianal and transverse planes and their arrangement. especially at the base of the spiral between the folds, is obscured,

The gonads are flask-shaped and the testis follicles form a circle around the proximal end of the ovary, with it comnective fiom the centre of this cifele is previously deseribed (Milar 1966).

Remarks: The species is characterised by the
small number of tongitudinal versels on one side of the branchial folds. There is some variation in the development of the hollow extensions of the test which Kolt (1952) hid thought distinguished M. fanis. It is clear. however. that the species is synonymions wilh M. molls.

References

ArNback-Chisisile-Linde, Adgusia (1923). Northern and arctic invertebrates in the colJection of the Swedish State Museum, VIlL. Tunicata. 2. Botryllidae. K. svensha VetenskAkud. Handl. 63 (9), 1-25.
Bovien. P. (1922). Ascidiat from the Nuckland and Campbell tsiands (holostomatons forms), (Pagers From Dr, It. Mortensen's Pacific Expedition 1914-1916 Vo. IV). Vidensk. Medde datsk nuturd. Foren. 73. 33-47.
Brewns, Raryt. I. (1916).-Ascidians in the vicinity of the Portobello Maritte Biological Sta(ion. Otugo Harbour. Iruns, R. $S o C_{7}$ N. Z. 76 (2). $87 \quad 131$.

Brewin, Berye 1. (1948)-Ascidians of the Hanraki Gulf, Part 1. Trans. R. Soc, N.Z. 77 (1). 115-138.

Brewin. Bicry. I. (1950a)--Ascidians fram Otitgo coastal waters. Tikns. R, Foc N.Z. 78 (1), 54-53.

Brewin, Brave I. (1950b)-Ascidians of New Zeatamb, Part IV. Ascidians in the viesaity of Christchurch, Trans. R. Sos, N.7. 78 (2-3). 344-353.
Frewiv Beryl 1. (1950e)-Axcidians of New Zoaland. Part V Ascidians from the casi coust of Great Bariler flund. Troms. R. Suc. N. 7.78 (2-3), 354-362.

Brewirv. Beryl I. (1951),-Ascidians of the Hauraki Gulf, Part 2. Trans, R. Sos: N.Z. 79 (1), 104-113)

Brrwin, Berel. 1, (1952a).-Ascidians of New Zeatand, Parl VII. Ascidians from Olago coastal waters, Part II. Trans, R. Soc. N,Z. 79 $(3-4), 452458$.
Brewin. Berve 1. (1952b),-Ascidians of New Zealand, Part VIII. Ascidians of the East Cape region. Trals. R. Soc, N, Z. 80 (2). 187-195.
Brewng. Buryl 1. (1953).-Australian ascidians of the sub-family Holozointae and a review of the sub-family- I rums R. Sor: N.Z. 81 (1). 53-64.
Arfwin, Beryt of (1956):-Ascidians from the Chatham Lalands and the Chatham Rise. Truns. R. Sacc N. 7.84 (1) 121-137.
Brewin, Beryl J. (1957)-Ascidians of New Zcaland, Part X. Ascidians from North Auckland. Trans. K. Sec. N.Z. 84 (3), 577-580.
Brewind, Bery1. I. (1958a).-Ascidians of New Zedland.: Patt XI. Ascidjars of the Stewart Island region, Truels. R, Sor. N. 7.85 (3), 439-453.
Brawin. Beryl 1. (1958b),-Ascidians of New Zealand, Part X1I. Ascidians of the Haturaki Gulf. Part 3. Trans, R. Sor. N.Z. 85 (3), 455-458.
Brewin Beryt. T. (1960) -Ascidians of New Zealand. Part XIII. Ascidians of the Cook

Strait region. Trans. < Soce N.Z. 88 (1) 115.120.

Carliste, D. B. (1954), -Nomes on the Didemmidae (Ascidiacea) IIL. A comparison of Didomum mathlovim. D. candidam, D. heloglandicume and Trididemume alleni. I. matr. hiol. Ass. U.K. 33, 313-324.
Caullery. M. (1908), - Récherches sur la famille des Distomidae. Bull wipur jr, Bedg. 42, 1-59.
Delle Chiaif, S ($178+1$),-Descrizione e notomia delgi animali invertebrati della Sicilis assenvati negli anni 1822-30. Napoli 1841-44. 3. $13-46$.
DeviA virnt. A. (1877).-"Contribuzioni sall storia naturate della ascidie composte del golfo di Napoli con la descricione di alcane apecie e varicta nuove e di allere poces note." (Tip. Comuni: Napoli.)
Dutsitht, R. vain (1883). "Die Synabeidian der Bucht von Rovieno (Tstrien). Ein beitran zur tauna der Adra," (Wien)
Drasobs. R, von (1884).- Ueber tinige neve ond weniger gekannte susserearopmische einfache Ascidien. Denkschr. Akad. Wiss., Wien. 48 , 369-387.
Fiprivge T.. G. (1967). - A taxonomic review sf Indo-Pacific didemnid ascidians and deserip. ticns of twenty-thtce central Pacific species Microitcsion 2, |6|-26|.
Eher Nherg. C. G. (1828)-Pracfatio. In Symibolat physicae I, Zoologica (Berolini) 1 (7), 1-4.
Gipar. 3. [. (1868).-Note on Oculimaria, a new senus of social Ascidia. Proc. zool Soc. Loncl. 1868. 564-565.
HArant. H. (1925) -Ascidies recoltées all cours des campagnes scientifiques de S. A.S. le Prince Albert 1 er de Monaco (note préliminaire) Bull. Inst. oc cianogr. Mouaco. 467, fo pp:
Harint. H. (1929). Ascidies provenant des craisiecres do Prince Albert I er de Monaco. Reswit. Camp. seiput. Prince Aiberi 1. 75. T-112.
Hartmeybe, R. (1906), - Fin beitrag zue ketatniss der japanischen ascidienfauna. Zoal. Art. $31.1-30$.
Hartmeyer, R. (1909-11),-Ascidien (Continualtion of work by Seeliger, In I1. G. Bronn. "Klassen und Ordnungen des Tier-reiches." 3. suppl (89-98), 1281-1772 (Leipzig). (Abstract, repeating lists of species by A. Schepotieff in Arch. Nuturgesch, 1911. 6 . 3-27.)
Hartmeyta, R. (1911).-Die ascidien den dcutschen sudpolar Expedition 1901-1901 Dt. Sudpol-Exped. 12, 408-606.

HARTARFER, K, (1912)-Die ascidien der densichen ticfsce Expedition. Wiss Ergeon, dt, Theree-Exped TValdivia 16 (31, 223-392.
HAKIMEYER, R. (1977), IVDicata DI I. Schultze, Fool. U, inthrop. Ergebnissee Forschuogsicise in Sudafrika. Be, 5. Lft 2. Denkschs med-thutw Gis Jena 17. 125. 144.

Harimeyer. R. (1919)-Ascidied. Results of Dr. F. Mjoberg's Swedish scienlifi- expeditoons to Australia 1910-13 Ki. sventia Wernst-Akad, Hamdl. 601 (4) 1-150.
Habtmeyer. R. (1923), Ascidiacen, part 1. Zogleich tine ubersicht liber die arktische and boreale accidientanna auf liergeographischer Gitundlage. Ingolf Exped. 2 (6), 1-365.
Marimevrk, R. (1928) - see Michaelsen \& Martmeyer 1928.
Hagilvge AnNa B. (1931).-Tnnicata. Scient. Rep. Gi Burrier Reef Exped. 4 (3), 69-109,
Hulef, C. (1878):-Beitrage zur nähern kenminiss der tunicaten. Sber Akud. Wiss. Wien 77 111. $2-28$ + p1s.

Headsian, W. A. i/881),-Prelimimary report on the Tunicata of the Challenger expedition. Eynthidac, Molgulidae, Proc. R.Soc. Edith. 11 (3), 52 88: (4), 233-240.
ITeruman, W. A. (1882). Report or the Tunicald collected durine the voyage of H.M.S. Challenger during the years 1873 -1876. PL I, Ascidiae simplices, In Report on the scientific results of H.M.S. Chateriger ducing the years 1873-1876. Zoology 6 (17), 1-296 (Edinburgh).
Heribman, W. A. (1884)-Repoit on Tumicuta collected during voyage of H.M.S. "Challenger" during years $1873-76 \mathrm{Pt} . \mathrm{M}$. Ascidiae compositae. In Report on the Scietblific results of H.M.S. "Challenger" during the years 1873-1876. Zoology 14 (38), 1-425. (Edinburgh),
HEkopsan. W. A (1891) --A revised classification of the Tunicata, with definitions of the arders, sub-orders, families, sub-families and genera, and nonalytical keys to the species. f, Jlan. Soc. 23. 558-625,
Hesomst, W. A. (1899),-Descriprive catalogue of the Tunicata in the Australian Museum. Australian Musetim, Sydney. Catalogue 17. 1-139
Herdman. W, A, 119061-Report on the Tuaicata. Ceyton Poarl Oyster Fisheries, Suppl, Rep No. $39.295+748$
Herdman. W. A \& Riddel.L, W, (1913). The Tunicata of the "Thotix" Expedition. (h Screntific results of the teswl expedition Thetis Part 17. Mern. Alast. Mhs. 4 873-889.
Kott, Patricia (1952), The ascidians of NusIralia. 1. Srolidobranchiain ind Phicto. hranchista Aust. J. mar, Freshw. Res. 3 (3), 206-333

Koti, Pstricia (1954). - Tunicata, Rep. B.A.N.Z. ghtarel. Res, Exped 1 (41, 121-182,
Kott. Patricia (1957a).- The ascidians of Aus. tralla, II. Aplousohranchiata Lahille: ClaveFinidae Forbes and Hanly and Polyclinidac Verrill Aust. I. mat. Freshw, Res. 8 (1), 64110.

Kott, Patricha (1957b) -The sessile Tunicata. Sciens. Rep. John Marray Eyped. 10 (4), 129-150.
Kort, Patricia (1962). - The ascidians of Australia, III. Aplousobranchiata Lobille: Didemnidae Giatd. Aust. I. mot Frempe. Res. 13 (3), 265-3.34.
Kott, Palricsa (1963).-The ascidians of AusIralia, 1V. Aplousobranchiata Lahille: Polyclinidate Vermil (cominued). Alist. A- thar. Frashw: Kes. 14 (1). 70-118.
Kurt, Patricia (1964). - Stolidobranch and phlebubranch ascidians of the Quecensland coast. Papp. Dcp. Loot. Univ, Qu, 2171. 127-3.52.
Kortr. Pathtela (1966).-Ascidians of north Austratia. Pap, Neg Zool Uriou. Qd. 2 (15).
279.304. 279-304.
Kotr, Patricta (1967)-Atopozod (ske) demman (Slufter): a discussian of the relitionstup ut the genus and species. Pros Limm. Sres. N.S.W. 91 (3), 185-188.

Kott, Patricta (1968)-A teview of the genus Thalooynitiat Verrill, 1897. Proc. Lime Soc. N.S.W. 93 (1), 76-89,

Kofr: Patracta (1969) - Antarclic Ascidiacen. A monographic acoount of the known specics bused on specimens collecied uoder U,S. auspices 1947 to 1963. Anrorel. Res. Sm. 13. i-xv, $1-239$.
Koft, Patricia (1971) Antarelic Ascidiamea II. Collections mide soyth of 40 south latilade $1963 / 67$, principatly by the U.S.NS. Ehanin. Anfarct. Ros, Ser. Biology 16 (4), 1-iii, 1-60.
Kinte Patbicia t1072) - Fitina of the Gulf of Carpentarig: 2. Ascidiacea (Chordata: Tunicata I. Fish. Notes NS, 3 (2), 1-15.

1. ACAZE-DUthuras, F- J. H, DE (1865),-Sur un genre "ouycan d'ascidien. Ie Ctwerculius callensis, Lac-Duth. Ann, S. , nai, (5), 7ool. 4, 293-316.
Lafargue. F. (1968).-Les peuplements sesciles de L'Archipel de Glenan. It. Ler Videmmilat -Systématique-Ecolagie. Tie Milien 21 (2-A), 353-446.
I. amflie. F. (1890) - Kécherches sul les tumiciers des cotes de France." (Toulouse.)
MacDonald, J. D. (1858).-Anatomical abservations on a new form of compolind Trunicata (Chomidrasfaches), Ath. Mas, not. Hist Ser. 3, 1, 401-406, 31. 11.
Mifhaelsen, W. (1905)-Revision von Heller's ascidien-typen alls dem Museum Godeflroy. Zoot, Jh. (sumpl.) 8, 71-120.
Mhatelsen. W. (1908)-Die Pyuriden fHaldcynthiiden) des Naturhistorischen Mosewm zu Hamburg. Ib, hamb. wiss Anst, 25 (2), 227-287.
Miciafisfn. W. (1915).-Tunicaten. In "Reitrage zue kenntniss der mecresfamm West Atricas". pp. 325-518. (Hamburg)
Michaelsen. W. (1918),-Die plychobranchen und diktyobrancher iscidien des westlichen Indischen Ozeans, ith hamb. wisk Anst, 35. 1-71.

Mratreses. W, (1919).-Expedifion S.M. Schifi "Pola" in dirs Rote Meer nördliche und südliche hälfe 1895/96-1897/98 zoologiscle cigebnisse, xxxit, Ascidia Plychobranchia und Dietyobranchia des Rolen Meeres. Denkstore: Akad. Wiss. Wien. 95. 1-120.
Michaelsen, W. (1921). Die Buntrlliden und Didemniden der Nordsee und der zur Osssee führenden meeresgebiete. Wiss. Merrestonters. 97-124.
Michamerif, W. (1922)-Ascidiae Plychobratachise ond Diktyobranchiae von Neusseeland und den Chatham-Inseln. (Papers fiom Dr, Th. Mortensen's Pacitic Expedition 1914-16. No. X1) Midensk. Mesieir dansk natirh Foren. 73. 359-458
Michaelstn w. (1923al-Siidafrikanische axcidian. Göteborgs K. Vetensk. o. Vitlerd Samh. Humall Ser B: 26 (8), 1-23.
Micyaflsen. W. f 192.3 h$)$.-Neue Und altiekamnte ascidien aus dem Reichsmuseum zu Stockbolor. Mits zaol Silhst Hamh, 40, 1-60.
Miciables.n. W. (1923e),-Ascidien vom weshlichen Indischen Ozean aus dem Reichsmiseum zu Stockholm. Ark, Gool. 13 (23). 1-25.
Mtchaelsen, W. (1924)-Ascidiae Krikubranchiue von Neuseeland. dert Chatham und den Auckland Inseln. (Papers from Dr. Th. MorIenser's Pacific Txpedition 1914-16. No. XXII. Vidensk. Meddr dansk naturh. Foren. 77. 263-434

Mcmabisen. W. (1927)-Einige ncue wextutut alisehe ptychobranchiate aseidien. hoot. Anz. 71. 193-203.
Mcusisten. IV. (1930)-Ascidae krikohminchac Paimn Sïdwess-Anst, $\$$ (7), 463-55*
Michaflsen, W.- \& Habimever. R. (1927).-7ui kenutnis phlebobranchiata und diktyohranchiaft Ascidien. Mill. zoot Moss. Bert. 13 159-196.
Michaflsen, W \& Hartmeyci, R. (1928), Ascidiac dikwobranchiae und ptychobrancliae. Fauma Südurest-411st. 5, 251-460.
Mulas. R. H. (1952)-Littoral ascidians of Argyll. Seouish Normoalut 64. 19-25.
Mulaf. R. H. (1953) On a collection of ascidians from the Gold Coast. Proe rool. Sas. 1 cmi 123 (2), 277-325.
Mirlat, R. H (1955).-On a collection of ascidibns fram South Africa. Proc; zuol SarLond 125 (1). 169-221
Mmiar. R. H. (1955)- Notes one some ascidians from Sierra Leone and Gambia. Amb, Mag. nat. Hist (12) 9. 409-417.
Millar, R. 11. (1960)-Ascidiacea. "Divediary" Rep. 30, 1-1́G0.
Musar, R. H. (1961) -Ewherdmanta virmen, a new species of ascidian from Brazil. AnH. Mas. nat Hist 4 (13), 143-147.
Mulah, R. 11. (1962)-Further deseriptions of South African ascidians Ann, S. Afr, Mus. 46 (7), 113-221

Millae. R. 11. (1963).-Australian ascidians in the British Museuni (Natural History). Proc. tool. Soc. Lond. 141 (4), 689-746
Miltar, R. II. (1966)-Ascidiacea. Port Philifp Survey Mcm nath. Mus. Viet. 27, 357-375,
Monsiot. F. (1969)-Sur une collection dascidies composées de Dakar. Mem. Mur. Hort Ilist. mur, Paris 41 (2). 426-457,

Ona. A. (1927) - - or kenatoiss der japanischen Borryllidac. Proce imp. Acud. Jupoi 3 (9). 607-609.
Pallas. P. S. (1766)-Flenchi 7qophytorum, Hrighe-comitum, 352-357.
PekEs. J. M. (1948), Sur une collecion d'Ascidies de la core mtercolidale de Dakar Bull. Mus. mith. Bist. Hat, Paris Ser. 2, 20 (1). 91
peres 1. M. 1949). Contribution a pithate des uscidies de fo cóte occidentale d:Afrieque. Bull Inst. fr. Afr apure 11. 159-207
Peres, I. MT, (1952).-Nseidies de la nebe fitworale Colsc, Rur, Srar mur- d'Endomene 6. 35-44.
3.oucir, H. H. (1969). Generic polymophism in a stalked ascidian from the Culf of Maine. J. Hered. 60 (4), 193-205,

Plough. H. H., \& Jonsis, N, (1437), Invesugations on ascidians, Yb. Camegn fnsen Wash. $36,100-101$.
 decouvertes de 1 Astrolabe 182h-29. MolHusques, Znologie 3, 559-626: 4, 304-306
Reinkorzey. V. (1927).-Eine newe ascidie. Io "Fests-hrift fïr knipowsisch," PF 51-3.93. ? figs. (Moscow.)
SAvuny. 1. C. \quad Y 18101 ,-Tableat eystematiqute des ascidies, taut simple que composées. 1-7 (Paris.)
SAvigny, 1. [. $1(816)$.- "Mémotres sur les noimaux sans vectebrés" P1. 2. (Paris.)
SChmeli久, f. D. E, (1866-74)-Muscum Godeffroy 7 vols. (Catalogues) 8 . Hambare, ${ }^{3}$ (1866), 42-43. 4 (1869), 117-1 18: 5 (1874). 181-182; 6 (1877). 98:7 (1874), 84-90.
 -The sublitioral ecology of West Jstand. South Australia: I. Environmental leatores and algal ecology Trums R, Soc. S. Must. 94. 705-137
Sronter $6, P(1 \times 86)$ - Veber einige einfachen ascadien yon der Iasel Billiton. Nut Tijderht. tuederl. horl. $45,1 \mathrm{AO} 0-232 \mathrm{pl} .1$, fig. 8. P1, 5. figs. 1.4.
Sthmer, C: P. (1895)-Tumicaten in Semon, K. Zonlogivehe forschungreisen in Australien und den Molagischen Archipel Donksthr. intet. Hathese Ger foma 8, 163-166.
Slmiter. C. P. (1898) - Bejtrage zar kenmeniss det falloa von Sudafrica, II. Tonicaten. Zmol. Ih. (Systemstik) 1I, 1-6.4.
Sluiler. C. P, (1900).-Tuncaten alls dem Stillen Oeean. Znol. Jb. (Systematik) 13. 1-35.
Stumbit, C P. (1904)-Die Tunitaten der Sihoga-Fxpedition. Pt. I. Dic socialen und holosomen Ascidien. Sibora Erged. 56 A . i-126.
Sluttek, C. P (1909)--Dic Funicatert der Siboge Expedition. PL. 2. Die merokomen ascidien Sihoga Exped. 56B, 1-112.
Stunter, C P (1913). - Ascidien von den AruInseln Ahh. senckenb, naturforsch. Ges. 35 $65-78$.
Sluter, C. P, (1919) -Ober einige alte and neue nscidjen aus dem Zootogischen Museumt voll Amsterdam. Bijidr, Dierk 21, 1-12.

Stimpson. W. (1852).-Several new ascidians from the coast of the United Slates. Proc. Bostog Sol. nat. Hist. 4. 228-232.
Stimpson, W. (1855).-Description of some new marine invertebrata from the Chinese and Japanese Seas. Proc. Acod. nat. Sci. Philfd. 7 , 375-384.
Tokroka, T. (1949) -Contributions to the Japanese ascidian Fauna 11. Notes on some asciJians collecled chiefly along the coast of Koo Peninsula. Publs Sera mar biol Lah. 1 (2). 39-64.
7okloks, T. (1950) --Ascidians from the Palan I5., I. Pahils Sczo mor. biol, Lab. 1 (3), 115150
Tostoka. T. (1952)-Ascidians collected by Mesgrs. Renzi Wada and Seizi Wada from the pearl oyster beds in the Arafura Sca in 1941), Puhls Seto mar biol, Lab, 2 (2), 91-142.
Tokrokit 1: (953 a).-"Ascidians of Sagams Bay". (Iwanami Shoten "Iokyo).
Toktoka, T. (1953b)-Contributions to Japanese ascidian fatma. V. Ascidians collected near the marine biologieal Jabotatory of Hiroshima University in the laland Sea. Fubls Sero mar. bjed. Lab. 3 (1), 1-25.
Tokioka, T. (1954a) Contributions to Iapanese ascidian fatina VII. Invertehrate faona of the incertidal zone of the Tokatra slands VII, Ascidiais. Puthls Seto mar, biol, Lab, 3 (3), 239-264.
「okimka, T. (1954b)-Contributions to Japarnesc ascidian faunt X. Notes on some asemdians collected Osaka Buy (2). Pubts Seto mar. bial Lah. 4 (1), 75-98.
Tokroke, T. (1955a)--Contributions to Japanese ascidian fauma XI. Sporadie memoranda 12). Publs Seto mar biod. Iah. 4 (2-3), 205-222.
Tokioks, T. (1955b)-Ascidians from the Palao Elands JI. Publs Seio mar. binh, Lah. 5 (1). 43-57.
Toкtoks. T, (1958)-Contributions to Japanese ascidian fauni XIT. Sporadic memoranda. Piobls Seto mar bioh Lab. 6 (3), 313-325.
Toxioks. T. (1959).-Contributions to Japanese ascidian fauna XIII. Sporadic memoranda. Publs Seto mar. biol. Lab. 7 (2), 223-236.
Toxtokn. 1. (1961)-_tacidians collected during the Melanesin Expedition of The Osaka Miseum of Natural History. T. Ascidians presented by Dr. R. I. A. Catala of the Aquarium of Noumea Publs Seto mar. biot Lab. 9 (1). 104-138.
Tokioks. T. (1962)-Contributions to Japanese ascidian fauna XVIII. Ascidians from Sado Island and some recards from Sugami Bay Publs Soto mar, biol, Lab. 10 (1). 1-20.
Tokinss, T (1967) -Picific Tunicata of the United States National Museum. BuIV, U. S. natn. Mus. 251, 1-242.
Trausredr, M. P. A. (1882) -Vestindiske ascidiae simplices, forste afdeling. Phallusjadae. Ydensk. Meddr dansk naturth. Foren. 1881, 157-288.
Thusterit, M. F, A. (1885),-Ascidiae simptires fra de stille Ocear Vidensk Medir danso natarh. Foren. 1884, 1-60

Thaustedt, M. P. A., \& Welinelk, W, (1894)Bericht über die von Herr Dr. Sander gesammelten tunicaten. Arch. Naturgesch 60 (1), $10-14, \mathrm{pl} .2$.
Van Name, W. G. (1902) - 1 he Axcidians of the Bermida lslands. Trans. Conn. Acod, Ares Sci. 11, 325-412.
Van Nime, W, G. (1918).-Ascidians from the Philippines and adjacent waters. Bull. U.S natn. Mus. 100 (1), 49-174,
Van Name, W. G, (1945),-The North and South American Ascidjans. Bull. Am. Mhs. hat. Hist. 84, $1-476$.
Vassnur. P. (1967).-Ascidies de Nouvelle-Caledonie. Editions de li Fondation SingerPolignac, 127-146, 2 pls.
Vasseur. P. (1969).-Denxieme contribution a letude des ascidies de Madagascar region de Tulear Ment. Mins. nain. Mistr- witri Paris $(1968), 40(5), 912.943$
Vemrili A. F. © Smites, S. I. (1373)-Repoit upon the inverfehrate amimals of Vineyard Sound and the rdjacent waters. Rep. I/.s. Commatr Fish 1, 311-513, 698-707.
Womersley, 11. B. S., \& Fomonds, S. J. (1958). -A general account of the infertidal ecology of the South Australian coast. Aust. J. mat. Freshw. Res, 9 (2), 217-260.

Appendix I-Station List

A. ROUGH COAST SUBFORMAIION

What Island; on granite usually on vertical faces or in caves.

1. Region A : rough (Shepherd \& Womersley 1970); depth indicaled for each species.

Padoclavella cylindrica 25 nt
Leptosindes rufus 16 m Botrylloides magnicacevs 22-25m
Rotrylloidos leuchi 16 25 m Botrylloides nigrum $12-20 \mathrm{~m}$ Oculinaria ansitalis $12-25 \mathrm{~m}$ Cnemidocerpa elheridgü̈ 25 m Polycarpa peduncsiañ $16-25 \mathrm{~m}$ Pvira onstratis $12-20 \mathrm{~mm}$ Mlerocosmas nichoilai 22 m Ilerdmania momus $16-22 \mathrm{~m}$
L. Region B: moderately rough (Stheplend \&
Wimersley 1970); depth 15 m . Wimersley 1970); depth 15 m . Syeozod cerebriformis Folycitor gigantcium. Botrvllaides leachi
3. Region D: sheltered (Shepherd \& Womersley 1970): depth $2-5$ m; 27.xi.66. Podoclavella cyliadica Cystedyer dellechiajei Synoicium papillijerum Didernnam canstidum Didemnam maseleyi Trididemnum spicalatum Didemnumsp. Leptoclloide's rufus Borrylloides nigrum
Wufint Island: roagh coast, stiong surge; on verrical granite faces; depih $10 \mathrm{~m} ; 28, \times \mathrm{i}, 66$.

Podoc:lavella cylindriea

Syeozoa cerebriformis
Atapozoa fantasioure
Polycitor gigantenm.
Eudistuma reniert
Didemnum candiutum
Leptostinides ruins
Photluaia depressitiscitha
Ascidia sydneyensis
Borryllrides leachi
Botrythoides nigrum
Oculinaria australis
Cnemulocarpor etherishai
Polycarpa pedurcitata
Microcosmus nicholfai
Herdmanta momus
King Beacir, Encounter Bay: under boulder on intertidal reef.

Corelli enmpota
Nora Creina Bay, near Robe: on roof of cave; strong surge. depth 10 m ; 11.i.67.

Fudistoma sp.
Psendodistoma rercum
24 kM North-west of Robe, South Australia: on acolianite; slight surge attached to red algae: depth 40 m .: 20 xi. 68.

Pyura australis
Herelmasia momus

B. SHELTERED COAS' SUBFORMATION

Ofe Hallett Cove. on reet: rocky boltom: depth $8 \mathrm{~m}, 26 . \mathrm{xii}, 66$.

Podoclaveliacytindrica
Distaptia viridis
Sycozoa carebriformis
Potycitor gigotheum
Aplidiant pliciferam
Leptoclinides erifos
Erhitnoclinum verrilli
Rhodosome turcicitm
Corello cumyota
Phallusia depressiascala
Ascidia thomproni
Ascidia sydnevensis
Polyearpa pedunctiata
Micheasmus nichollsi
Inside Port Noaritinga beff: moderate surge; in caves or on vertical faces; depth $2-5 \mathrm{~m}$; 20, xi. 66.

Podocluvella wyliudriea
Distaplia viridis
Rituerella herdmania
Synoicatm papilliferum
Lepraclinides rufus (sometimes investing Pyura
irregularis and Micmoosmus stotoniferi)
Ascidia syulneyensis
Botryllevides toachi
Stolonica alestralis
Polycarpa pedunculata
Pyurs irregularis
Micrecosmus stolonifera
Aldinga keef at "Drop-off": racky bottom;
slight surge: depth $10-25 \mathrm{~m} ; 12$ xii 66 .
Podoclavella cylindrica
Palycitur gipanteum.
Didemnum lambitum
Didemnum patulum
Polvcarpa papilluta
Polycarpa pedyneculata
Pyura irregularis

Pyura spinifuta
Halocyuthia hispita
Herdmania momis
Microcosmus michollsi
Carickalinga Head: in caves and on vertical rock
faces: moderate surge, depth $5-6 \mathrm{~m}$; 18.ii. 67 .
Clavelina bautinentisis
Distaplia viridis:
Sycozou nerebriformis
Didertutm moseleyi

- Ascidia thompsoni

Botrylloides magrum
Polycarpa pradunculama
Pyara itregularis
Herimumia momus
Halucynthia hispida
Microcosmas nechollai
Molgula mollis
Rapio Heab: on vertical faces and under ledges:
slight to moderate surge; depth $10 \mathrm{~m} ; 25 . \mathrm{iv} 66$.
Clavelifa baudinensis
Polysyneramon orhiculam
Leptoclintdes rufus
Botrylloides nigitum
Polycarpa pedimentata
Halocynthia hispida

OFFSHORE BENTIIC LOCATIONS

Goose 1, Spencer Gulf; on rocky botfom; depth 3-5 m; 1.x. 66.

Didemnum moveloyi
Herelmania momus
Tipara Reef. Spencer Gulf:
I. On travertine vertical faces and under ledges: depth $6 \mathrm{~m}: 24 . \mathrm{v} .69$.
Podoclavella molucernsis
Stolonico australis (aggregates I
Polyearpa pedunculata
Pyera irregudaris.
Herdmenia momus
Mirrocosmus squamiger
2. an surface of rocks; slow eurrent; depth 6m; 24.8. 69

Leptoclitides Periculatus
Phallusia depressinsmila
Ascidias sydncyensis
Stolonica carnosa
Pobycarpa papilluta
Polycarpa pedunculata
Pyara wistralis
Pyura irreghlaris
Halocynthia hispüda
Microcosmus stolonifera
Microwsmus squamiger
Ctemicella antípoda
3. epizoic on Amplibolis amtaretica; moderate current. $2 \mathrm{~m} / \mathrm{sec}_{-}^{-}$depth $12 \mathrm{~m} ; 19 . \mathrm{v} .71$.
Botrylloides leachi
Pura australis
Merdmartia momus
Off Beach Hut, 1 km off Port Vincent: on travertine; no wave action; slight current; depih 4 m: 24.ii.69.

Ascidia sydneyensis
Pvarairregularis
Malocynthia hispida
Microcosmus nichollst
Microcosmus helleri

Orontes Bank, off Port Vincent: $20 \mathrm{mi}: 26 . \mathrm{iii}, 66$. Syeozoa cerebriformis

Taplfy Shoal, St Vincent Gulf: depth indicated for each species; Feb 1969.

1. Sluggish current, sandy botiom.

Pliallusia depressinscula 16 m
Aseidia sydneyensis 12 m
Polycarpa pedunsukta 16 m
Chernidocurpa etheridgii 12 m
Pvita acoreshiensis 16 m
Holocynthia hispida $12 \mathrm{~m}, 16 \mathrm{~m}$ Microcosmushrlleni 12 m
2. Moderate current (to $1 \mathrm{~m} / \mathrm{sec}$) ; travertine bottom covered by shallow sand; depth indicated for each species.
Apridiarn colelloides 18 m
Polycurpa clavata 20 m
Polysarpa patuncatata $18 \mathrm{~m}, 20 \mathrm{~m}, 22 \mathrm{~m}$
Pyura susmalis 20 m
Halocynthia hispida
Pywascoreshichsis 22 m
3. Mostly sand with some travertine outerops; depth 23 mt .
Sycuzon creabriformis (on rock)
Aplidium coletloides
Polycarpa clavata
Pyura vithata
4. Strong current (to $2 \mathrm{~m} / \mathrm{sec}$), sheet fraverlinc; depth 24 m .
Polycitor giganerum
Aplidium pliciferum
Polycurpa pedunctulata
Pyura australis
Upper St. Vincent Gulf: on sandy bottom in Posidonia allstralis community; moderate curcent (In $1 \mathrm{~m} / \mathrm{sec}$.) ; depth $10-11 \mathrm{~m} ; 4 \mathrm{i} .67$.

Leptoclinietes Fingi
Pyura spinifera
Pvura irregularis
Malorynthia hispida
and growing on razor shell Pinna dolobrata:
Sycozon cerebrilormis
Aplidium rahicollum
Ascidia gemenata
Polycarpa pedtanculata
Herdmania momts

Off Port Gawler, St. Vincent Gulf; growing on Pinna and an Cellepora spp; slow current; depth 18-20 m; 11.ii 67.

> Sycozoa cerebriformis
> Leptoclinides rufus
> Phallusia depressiuscula
> Ascidia gemmata
> Botrylloüdes niarum
> Polycarpa papillata
> Polycarpa pedunculater

Off Outer Hariolur, St. Vincent Gulf: on Pimna: slow current; depth $8 \mathrm{~m} ; 2$.xii. 68 .

Halocynthia hispida

Off Shmaphore; St. Vincent Gulf: in sparse Posidonia community, silty bottom; slow current; depth $31 \mathrm{~m} ; 27$ i. 69.

Polycarpa pedunzzilata
Pyura scoresbiensis
Microcosmus squamiger
Off Semaphore, St. Vincent Gulf: silty bottom: slow current. depth $24 \mathrm{~m} ; 28$ xii 68 .

Polycarpa peduprutata
Ofe Grange, St. Vincent Gulf: rucky hotom; slow current; depth $18 \mathrm{mt} 7 . \mathrm{xii} .68$.

Phallusio depressiuscula
Polvcarpa pedunculata
Off Granim, St. Yincent Gulf; in Posidoaia community on shell; depih 6 m ; 7.xii. 68 .

Pyura irregtitaris
Ofr West Beach (about 3 km), Si. Vincent Gulf: on rocky bottom; depth 10 m ; \& vi. 68 .

Ascidia thompsoni
Boarylhoides magricoecus:
Polycarpa pedunculata
Cremidocarpa etheridgii
Halocynthia hispida
Pyura unstralis
Pyura tricgularis (ageregates)
Microcasmus squamiger
Microcosmus nichollsi
Off West Beach (about 7 km), St. Vincent Gulf:
in Posidonia community, slow current; depth 12 -
$20 \mathrm{~m}, 27$.xii. 66.
Eudistoma pyriforme
Phallusia depressiuscula
Borryllotides nigrtrm
Polycarpa pedinculata
Pyiferaustralis
Herdmania momus
Halocynthia hispida
Off West Beach (aboul 9 km), St. Vincent Gulf: on silty bottom; slow current; depth $20-25 \mathrm{~m}$; 27 xii. 66.

Phallusia depressiuserila
Ofe Brtanday or Glenelo (several stations).
St. Vincent Gulf: on sandy bottom; slow current;
depths indicated for each species; $10, \times \mathrm{i} .68$.
Sycozoa tenuicualis (on scallop shell; 22 m)
Palycarpa peduncultita $6,16 \mathrm{~m}$
Pyura australis 12 m
Halocynthia hispida 6 m
Off Glenerg (5 km), St. Vincent Gulf: rocky bettom; slow current; depth $13 \mathrm{~m} ; 13 . \mathrm{v} .67$,

Ascidia gemmata
Polycarpa papillata
Polycarpa peduttculata
Iferdmania momus
Off Gienelfi $(1.5 \mathrm{~km})$, St. Vincent Gulf: on Posidonia toots; depth $6 \mathrm{~m} ; 30 \mathrm{v} 70$.

Polycarpa pedumpulata
Pyura irfegularis
Thalocynthia hispida
Microcosmus squamiger

Off Glenelg (18 km). St. Vin:ent Gulf: depth $35 \mathrm{~m} ; 4 \mathrm{ix} .69$.

Herdmaniri momus
Onf: Semolift, St. Vincent Gulf: in Posidomia community, on sandy bottom, fair sediment, slow current: depth $16 \mathrm{~m}: 21 \mathrm{i} .69$.

Ascidia aclara
Ort Seacliff, St. Vincent Gulf: on Amphibolis autarclica: slow current; depth 9 mm ; 28.ix. 68 .

Botrphoides migrum-with sponge
Off Hal lety Cove ($3-5 \mathrm{~km}$), St, Vincent Gulf: on silty bollom; slow curent; depth $15-22 \mathrm{~m}$; 27 xii. 66.

Phallusia depressiuscula

Botryllus schlosseri
Polycarpa pedunculata
Pyura australis
Pyura spinifera
Off Port Stavyac: $(6.4 \mathrm{~km})$. St. Vincent Gulf: on sleel wreckage ("The Barges"), slow current: depth 30 m ; 26.ini. 66.

Phulhusia depressiuscula
Halocynthia hispida
Off Yankalilla Bay, St. Vircent Gulf: in Amphiholis community. sandy bottom: slight strge; depth as indicated: 18.ii.67.

Pyura australis 20 m
Balocumthiahispida 20 m
Ctenticelle antipoda 15 m

Index to Genera and Species

[^0]: * Zoology Department, University of Queensland, Qld., Australia 4067.

