compitum is the unified pollen tube transmitting tract, which allows the distribution of pollen tubes. In the Apocynaceae, where the overwhelming majority of species are apocarpous, a special type of compitum is formed through the postgenital fusion of the carpel apices, allowing pollen that has been deposited only on one side to be distributed to both carpels (or in the case of the higher pollinium-bearing Apocynaceae, a single inserted pollinium to distribute pollen tubes into both ovaries) (Endress et al., 1983; Kunze, 1991). Secamonoideae have been reported to lack a true style (Swarupanandan et al., 1996), but there is a true style above the carpels in Pervillaea and Calyptranthera, both of which belong to this subfamily (Omlor, 1996; Klackenberg, 1997). Upwardly directed, sterile placental margins are found in Secamone, but also in Mandevilla (basal Apocynaceae), whereas in most basal Apocynaceae, Periplocoideae, and Asclepiadoideae the sterile margins are directed downward (Woodson \& Moore, 1938; Safwat, 1962; Nicholas \& Baijnath, 1994). A critical reexamination of Brown's (1810) palynological characters has led to the proposal of a new set of diagnostic pollinium characters (Civeyrel et al., 1998), which, at present, are the only characters that reliably define the subfamily Secamonoideae. Members of the Secamonoideae can be distinguished from Periplocoideae and Asclepiadoideae by "having 20 pollinia, with their inner walls reduced, and which are connected to a translator apparatus composed of a corpusculum and one (or rarely two) caudicula, in addition to various degrees of staminal synorganization" (Civeyrel et al., 1998: 523). Pollinarium characters, especially the combination of number of pollinia and the way they are attached to the translator apparatus, remain the most valuable characters to distinguish this group. In Asclepiadoideae there are only 10 pollinia, which become attached to the caudiculae of the translator apparatus during ontogeny, whereas in Periplocoideae the 20 pollinia, when they are present, are not attached to the translator apparatus via caudiculae, but are shed onto it, which is very distinctive.

The Secamonoideae, which contain 7 generally recognized genera (Secamone, Toxocarpus, Genianthus, Pervillaea, Secamonopsis, Calyptranthera, and Trichosandra) and under 200 species, are restricted to the Old World tropics. There are also two genera of uncertain taxonomic position, i.e., Goniostemma and Schistocodon. The monotypic African genus Rhynchostigma has recently been put into synonymy under Secamone (Klackenberg, in press). Secamone is the largest genus with more than 80 spe-
cies, which occur mainly in Madagascar (Klackenberg, 1992a), Africa (Goyder, 1992), and Asia (Forster \& Harold, 1989; Klackenberg, 1992b). Toxocarpus with almost 40 species occurs mainly in Asia, as does Genianthus with 16 Asiatic species (Klackenberg, 1995a). The other four genera, Pervillaea (Klackenberg, 1995b), Secamonopsis (Civeyrel \& Klackenberg, 1996), Calyptranthera (Klackenberg, 1996a; Klackenberg, 1997), and Trichosandra (Friedman, 1990) are restricted to Madagascar or to the Mascarene Islands, with less than 10 species each. The main center of endemism is Madagascar, where half of the known species and genera occur, followed by southeast Asia and Africa.

Malagasy genera of Secamonoideae, e.g., Secamone, especially the S. cristata group (S. cristata and its four subspecies, as well as S. bosseri and S. polyantha), Pervillaea, and Secamonopsis, show a remarkable range of growth habits, from erect to partially procumbent, small-bodied shrubs to larg-er-bodied twining lianas. Phylogenetic analysis of Secamonoideae offers the opportunity to analyze changes in growth habit during the evolutionary radiation of this group of plants in Madagascar, particularly with reference to changes from lianoid to shrubby habits. The former Asclepiadaceae are a predominantly lianoid family, but previous analyses have demonstrated reversals from lianoid growth forms to self-supporting habits (Civeyrel, 1996). Biomechanical and anatomical studies have been recently carried out to characterize different plant growth forms and to critically assess the developmental characters that underlie changes in stem mechanics (Rowe \& Speck, 1998; Speck \& Rowe, 1999). For the Secamonoideae we were interested in changes in growth form, in particular transitions from climbing forms to self-supporting species. We also wanted to see whether the mechanics and underlying anatomical development would be similar for lianas of different species, and how historical developmental constraints might have influenced the evolution of growth forms. Our initial investigation of the Secamonoideae presented here illustrates the differences in biomechanical behavior between two species of Secamonopsis also included in the phylogenetic analysis, with one represented by a self-supporting shrub and the other a twining liana. Our preliminary analysis represents a basis for examining the developmental homologies underlying the lianescent growth forms within the group and for investigating those sporadic switches to self-supporting growth forms within a predominantly lianoid group.

The Secamonoideae also show a range of interesting synorganizations in their flowers. In the former Asclepiadaceae, there is an unusual synorganization between floral parts and also between organs of different categories (Endress, 1990, 1996). Endress (1990) has described synorganization as the intimate structural connection of two or several neighboring structures to form a functional system or apparatus. In Secamonoideae there is a special kind of synorganization that occurs between pollinia and the translator apparatus, as well as within pollinia (Civeyrel, 1994, 1996). The pollinarium of Secamonoideae is composed of four pollinia connected to the translator apparatus, which in turn is made up of a corpusculum and one or two caudicula. Two caudicula have been observed in Secamone (Civeyrel, 1994), Genianthus (Civeyrel, 1996), and Secamonopsis (Civeyrel, 1996; Civeyrel \& Klackenberg, 1996; Omlor, 1996). The four pollinia belonging to one pollinarium are each derived from a different pollen sac coming from one theca each of two adjacent anthers and are attached to the translator apparatus, which is secreted by the stigma head. This is the most common form of synorganization found in most taxa of the former Asclepiadaceae (Fig. 1A). In some taxa of the Secamonoideae there is, additionally, a special type of synorganization between pollinia from the same anther (intrapollinial synorganization) (Fig. 1B), as well as synorganization between pollinia from adjacent anthers (interpollinial organization; Fig. 1C). Synorganization within pollinia of an anther, and especially this special type of synorganization of pollinia from the pollen sacs of different anthers constitute the only record of this sort of synorganization in the angiosperms.

THE PIASTID GENE matK

Systematists use cladistic analyses to study relationships among taxa but also to observe character evolution (Sibley \& Ahlquist, 1987; Mickevich \& Weller, 1990). Changes in morphological characters on a cladogram may also be evaluated simply by mapping characters onto molecular phylogenies, or observed directly in analyses combining molecular and morphological characters. One gene frequently used in phylogenetic reconstruction in recent years has been matK (Steele \& Vilgalys, 1994: Johnson \& Soltis, 1994, 1995; Johnson et al., 1996; Liang \& Hilu, 1996; Plunkett et al., 1996; Soltis et al., 1996; Hilu \& Liang, 1997; Manos, 1997; Plunkett et al., 1997; Sang et al., 1997; Matsumoto et al., 1998; Xiang et al., 1998; Hilu \& Alice, 1999; Kron et al., 1999; Les et al., 1999; Li
et al., 1999; Thiv et al., 1999; Wang et al., 1999; Yokoyama et al., 2000) because of its suitable rate of mutation and resolution for infrafamilial relationships. The plastid gene matK (Liere \& Link, 1995; Neuhaus \& Link, 1987; Sugita et al., 1985; Wolfe, 1991; Wolfe et al., 1991, 1992) is a single-copy gene of approximately 1530 base pairs in length, situated in the large single-copy region of the chloroplast. The plastid gene mat K has been previously used to assess the complex relationships within Apocynaceae (Endress et al., 1996; Civeyrel, 1996; Civeyrel et al., 1998), and this new set of molecular, morpho-palynological, and biomechanical characters should help to resolve the relationships and shifts in reproductive morphology and growth habit outside and inside the subfamily Secamonoideae with other groups of Apocynaceae sensu lato.

Indels have been shown to be useful in phylogenetic reconstruction. Indels in coding regions are generally useful to circumscribe lineages and define evolutionary trends (Hilu \& Alice, 1999). In the plastid gene matK, indels occur quite frequently and some are phylogenetically informative (Johnson \& Soltis, 1994, 1995; Steele \& Vilgalys, 1994; Plunkett et al., 1996, 1997; Xiang et al., 1998; Kron et al., 1999).

Materials and Methods

MATERIALS

Ten sequences belonging to the Secamonoideae are published here for the first time and added to the 46 sequences of Gentianales and Solanales previously published (Civeyrel et al., 1998; Endress et al., 1996). Table 1 provides information on these taxa, their voucher specimens and source, as well as EMBL accession numbers for new sequences. The family Apocynaceae constitutes the ingroup with taxa from Solanaceae, Rubiaceae, Loganiaceae, and Gentianaceae forming the outgroup. In the former Asclepiadaceae, representatives of all subfamilies and tribes were included.

METHODS

DNA preparation. Detailed protocols used have been published by Civeyrel et al. (1998) and will only be summarized here. Total DNA was extracted using the 2 X CTAB protocol of Doyle and Doyle (1987). DNA was precipitated using ethanol or pro-pan-2-ol, and proteins were removed with SEVAG (24:1, chloroform and isoamyl alcohol). DNA was purified by ultracentrifugation on a CsCl -ethidium bromide gradient ($1.55 \mathrm{~g} / \mathrm{ml}$). Double-stranded products of matK were amplified from total DNA

Table 1. Taxa used in this study. For each taxon, the major subdivisions to which it belongs, geographic area of origin, the voucher for the material used, and EMBL accession numbers used for the 10 newly reported DNA sequences of the plastid gene mat K are given; * indicates a sequence published in Endress et al. (1996); ** indicates a sequence published in Civeyrel et al. (1998). Pol indicates when used for pollen. Samples used for biomechanical studies are at the end of the table.

Taxonomic divisions	Genus, species author(s)	Voucher	Collector, \#	Herbarium	DNA	Pol	EMBL
OUTGROUP							
GELSEMIACEAE							
Gelsemieae	Gelsemium sempervirens (L.) J. St.-Hil.	N. Amer.	Civeyrel 1069	TL	DNA		*
GENTIANACEAE							
Gentianoideae	Gentiana verna L.	Yugoslavia	Civeyrel 1108	TL	DNA		*
LOGANIACEAE							
Loganieae	Geniostoma rupestre J. R. Forst. \& G. Forst.	New Zealand	Garnock-Jones 2200	WELTU	DNA		*
Strychneae	Strychnos nux-vomica L.	India	Civeyrel 1096	TL	DNA		*
PLOCOSPERMATACEAE							
Plocospermeae	Plocosperma buxifolium Benth.	Mexico	Salinas 8050	Z	DNA		*
RUBIACEAE							
Cinchonoideae							
Cinchoneae	Cinchona pubescens Vahl	Peru	Civeyrel 1063	TL	DNA		*
Coptosapelteae	Luculia gratissima (Wall.) Sweet	India	Civeyrel 1073	TL	DNA		*
Ixoroideae							
Gardenieae	Gardenia thunbergia L. f.	South Africa	Civeyrel 1068	TL	DNA		*
SOLANACEAE							
Solaneae	Solanum tuberosum L.	Cultivated	Du Jardin s.n.	1	DNA		unpublished
INGROUP							
APOCYNACEAE							
Rauvolfioideae							
Alstonieae	Alstonia scholaris (L.) R. Br.	India	FK 212	FTG	DNA		*
Vinceae	Kopsia fruticosa (Ker Gawl.) A. DC.	Malaya	Bremer 3033	UPS	DNA		*
	Rauvolfia mannii Stapf	Tanzania	Sennblad 218	UPS	DNA		*
Tabernaemontaneae	Tabernaemontana divaricata (L.) R. Br. ex Roem. \& Schult.	India	Civeyrel 1097	TL	DNA		*
	Molongum laxum (Benth.) Pichon	Venezuela	Romero et al. 3016	Z	DNA		*
	Chilocarpus suaveolens Blume	Indonesia	Chase 1208		DNA		*
Pleiocarpeae	Picralima nitida (Stapf) T. Durand \& H. Durand	Ivory Coast	Leeuwenberg 12025	UPS	DNA		*
Plumerieae	Plumeria rubra L.	Nigeria	Civeyrel 1087	TL	DNA		*

Table 1. Continued.

Taxonomic divisions	Genus, species author(s)	Voucher	Collector, \#	Herbarium	DNA	Pol	EMBL
	Thevetia peruviana (Pers.) K. Schum.	Peru	Civeyrel 1100	TL	DNA		*
	Allamanda cathartica L.	Brazil	Civeyrel 1054	TL	DNA		*
Carisseae	Acokanthera oblongifolia (Hochst.) Codd	South Africa	Civeyrel 10.53	TL	DNA		*
Apocynoideae							
Wrightieae	Beaumontia grandiflora Wall.	India	Civeyrel 1071	TL	DNA		**
	Nerium oleander L.	France	Civeyrel 1079	TL	DNA		**
	Strophanthus divaricatus (Lour.) Hook. \& Arn.	China	Civeyrel 1094	TL	DNA		*
Apocyneae	Apocynum androsaemifolium L.	U.S.A.	Civeyrel 1058	TL	DNA		*
Periplocoideae	Camptocarpus mauritianus Decne.	Reunion	Civerrel 1062	TL	DNA		**
	Cryptostegia grandiflora R. Br.	Madagascar	Civeyrel 1221	TL	DNA		**
	Hemidesmus indicus (L.) R. Br. ex Schult.	India	Civeyrel 1008	TL	DNA		**
	Periploca graeca L.	Greece	Civerrel 1083	TL	DNA		**
	Raphionacme welwitschii Schltr. \& Rendle	Zaire	Civerrel 1088	TL	DNA		**
	Schlechterella abyssinica (Chiov.) Venter \& Verhoeven (ex. Triodoglossum)	Ethiopia	Civeyrel 1102	TL	DNA		**
Secamonoideae	Genianthus laurifolius (Roxb.) Hook. f.	India	Saldanha \& Ramamoorthy 1164	HIFP		Pol	
				TL	DNA	Pol	**
	Pervillaea phillipsonii Klack.	Madagascar	Civerrel 1241	TL	DNA	Pol	AJ312408
	Secamone alba Jum. \& H. Perrier	Madagascar	Humbert \& Capuron 2395	P		Pol	
	Secamone bosseri Klack.	Madagascar	Civeyrel 1267	TL	DNA	Pol	**
	Secamone cristata subsp. densiflora Klack.	Madagascar	Civeyrel 1320	TL	DNA		AJ312400
	Secamone cristata Jum. \& H. Perrier	Madagascar	Decary 15759	P		Pol	
	Secamone dewevrei De Wild. subsp. dewevrei	Zaire	Becquaert 7052	K		Pol	
	Secamone buxifolia Decne.	Madagascar	Civeyrel 1322	TL	DNA	Pol	AJ312405
	Secamone ecoronata Klack.	Madagascar	Civeyrel 1261	TL	DNA		AJ312407
		Madagascar	Humbert 13408	P		Pol	
	Secamone elliottii K. Schum.	Madagascar	Civeyrel 1304	TL		Pol	AJ312402
	Secamone falcata Klack.	Madagascar	Civeyrel 1228	TL	DNA	Pol	AJ312404
	Secamone geayii Costantin \& Gallaud	Madagascar	Civerrel 1200	TL	DNA		**
		Madagascar	Civevrel 1241	TL		Pol	
	Secamone ligustrifolia ssp. angustifolia (Decne.) Klack.	Madagascar	Civeyrel 1324	TL		Pol	
	Secamone minutifolia Choux	Madagascar	Civeyrel 1257	TL	DNA		AJ312406
		Madagascar	Perrier 16701	P		Pol	
	Secamone parvifolia (Oliv.) Bullock	Tanzania	Goyder et al. 3960	K	DNA		**
	Secamone parvifolia (Oliv.) Bullock	Kenya	Gillet 13225	K		Pol	

Table 1. Continued.

Taxonomic divisions	Genus, species author(s)	Voucher	Collector, \#	Herbarium	DNA	Pol	EMBL
	Secamone sparsiflora Klack.	Madagascar	Civeyrel 1244	TL	DNA	Pol	AJ312401
	Secamone uncinata Choux	Madagascar	Civeyrel 1309	TL	DNA	Pol	AJ312403
	Secamone volubilis (Lam.) Marais	Reunion	Civeyrel 1092	TL	DNA		**
		Reunion	Bosser 21424	P		Pol	
	Secamonopsis microphylla Civeyrel \& Klack.	Madagascar	Civeyrel 1206	TL	DNA	Pol	AJ312409
	Secamonopsis madagascariensis Jum.	Madagascar	Civeyrel 1262	TL	DNA	Pol	**
Asclepiadoideae							
Fockeeae	Fockea capensis Endl.	South Africa	Civeyrel 1067	TL	DNA		**
Marsdenieae	Dregea sinensis Hemsl.	China	Civeyrel 1066	TL	DNA		**
	Tylophora indica (Burm. f.) Merr.	India	Civeyrel 1009	TL	DNA		**
Ceropegieae	Riocreuxia burchellii K. Schum.	Africa	Civeyrel 1109	TL	DNA		**
Gonolobeae	Gonolobus xanthotrichus Brandegee	Mexico	Civeyrel 1060	TL	DNA		**
	Matelea quirosii (Standl.) Woodson	Mexico	Civeyrel 1076	TL	DNA		**
Asclepiadeae	Araujia sericifera Brot.	South Amer.	Civeyrel 1059	TL	DNA		**
	Pentarrhinum insipidum E. Mey.	South Africa	Civeyrel 1081	TL	DNA		**
	Pergularia daemia (Forssk.) Chiov.	India	Civeyrel 1000	TL	DNA		**
	Vincetoxicum nigrum (L.) Moench	France	Civeyrel 1106	TL	DNA		**
Samples for biomechanical studies							
Secamonopsis microphylla Civeyrel \& Klack. Secamonopsis madagascariensis Jum.		Madagascar	Civeyrel 1386				
		Madagascar	Civeyrel 1398				

Table 2. External and internal primers for matK. The boldfaced letters represent multiple bases present in the primer sequences: K represents the base G T, M represents the base A C and Y represents the base C T.

PRIMER	SEQUENCE
$t r n \mathrm{~K} 3914 \mathrm{~F}$	GGG GTT GCT AAC TCA ACG G
$m a t \mathrm{~K}-8 \mathrm{~F}$	AAT TTC AAA TGG AAG AAA TC
matK 174F	TGT GAA ACG TTT AAT TAA TC
matK 174R	CGA KTA ATT AAM CGT TTC AC
matK 503F	TCG CTA TTG GGT AAA AGA TGC
mat K 503R	GCA TCT TTT ACC CAA TAG CG
matK 681F	GTG AAT ACG AAT CYA TTT TC
matK 900F	TGG AAA TTT TAC CTT GTC AA
matK 1309F	GAC TTT CTT GTG CTA GAA CT
matK 1628R	CAT GCT ACA TCA ACA TTT CAG
$t r n \mathrm{~K}-2 \mathrm{R}$	AAC TAG TCG GAT GGA GTA G

using one of the $\operatorname{trn} \mathrm{K}$ primers in combination with an internal primer (list given in Table 2). Direct sequencing of the double-stranded PCR products was performed using the Taq Dye Deoxy ${ }^{\text {(N10) Tivermi- }}$ nator Cycle Sequencing Kit. Excess dye terminators were removed using Centri-sep spin columns. Direct sequencing was performed on an ABI 373A DNA sequencer, and sequences were edited using the programs Sequence Navigator and AutoAssembler ${ }^{\text {(TiD) }}$ (Applied Biosystems, Warrington, Cheshire).

ANALYSIS

For this study all but an average of the first 50 bases at the 5^{\prime} end of mat K were sequenced (our primers were not located so that we could accurately determine the sequence near the forward PCR primer). In all cases, sequences were aligned visually against the published Solanum tuberosum L. sequence (EMBL-Z11741, Du Jardin, unpublished) (aligned matrix available from author upon request). Alignment was straightforward; the length of the individual mat K sequences varied between 1509 and 1551 bp , and there were 24 insertions and deletions (indels), which are in triplets (involving 3 to 21 bp). Indels often consisted of the repetition of a sequence of base pairs present just before the indel itself. Seven of these indels are phylogenetically informative, and two are homoplasious (occurring in two distant genera). None of the indels were coded in the analysis, but inserted regions were retained and coded as missing. In total, the matrix was 1653 bp long with 443 potentially parsimony-informative characters (27%).

Cladistic analysis was performed using PAUP 3.1.1. (Swofford, 1993) with the following options:
heuristic search, 1000 replicates of random taxonadditions, and TBR swapping. Two separate phases were performed: the first one with 1000 replicates, with complete swapping on all trees accumulated in the replicates (which should have found all trees at that length); the second, successive approximations weighting (hereafter SW; Farris, 1969), with characters reweighted according to their rescaled consistency index (RC) based on the best fit of characters on any of the trees. Reasons for using SW have been explained in a previous paper (Civeyrel et al., 1998). Rounds of re-weighting were repeated until the tree length did not change in two consecutive iterations. Confidence in specific clades of the resulting topology was estimated by bootstrap analysis. The following settings were used: 1000 replicates, keeping bootstrap frequencies from 1 to 100%, which were compatible with the 50% majority rule consensus tree, simple addition of taxa, sampling characters with equal probability but applying weights (from SW), and NNI swapping (nearest-neighbor interchange) but holding only 25 trees per step. All illustrated trees use the ACCTRAN optimization. The base weight of 1000 applied in SW was removed for tree presentation.

POLLINARIUM PREPARATION

Samples examined are from the herbarium collection at the Royal Botanical Gardens, Kew, from the author's alcohol collection, and from fieldwork in Madagascar. Pollinaria were removed from flowers under a dissecting microscope, transferred to 100% ethanol, air dried on stubs, and coated with platinum using a Balzers Sputter Coater SPD 050. Entire flowers were prepared for observation by critical-point drying in a Balzers CPD 030; tissues were dehydrated in a graded ethanol series, transferred to acetone and to the CPD, and then observed with a Hitachi S2400 scanning electron microscope (SEM).

BIOMECHANICS AND ANATOMY

Measurements of flexural stiffness, EI (Newtons times square meters: Nm^{2}), structural Young's modulus, E (Mega Newtons per square meter: MNm^{-2}), and axial second moment of area, $I\left(\mathrm{~mm}^{4}\right)$, of $S e$ camonopsis microphylla and S. madagascariensis were taken during fieldwork in Madagascar in April 1999 near Tulear $\left(23^{\circ} 24^{\prime} \mathrm{S}, 43^{\circ} 47^{\prime} \mathrm{E}\right)$. Flexural stiffness represents the tangible resistance to bending of a structure and is the product of the structural Young's modulus and the axial second moment of area. Structural Young's modulus is a value that

Figure 2. Strict consensus tree of the 25 most parsimonious trees obtained with the successive weighting analysis. Bootstrap values are shown below the branch. Abbreviations: APO, Apocynoideae; RAU, Rauvolfioideae; PER, Periplocoideae; SEC, Secamonoideae; and ASC, Asclepiadoideae; * denotes branches not present in the unit weighted strict consensus tree. This follows the classification published by Endress and Bruyns (2000).
describes the elastic mechanical properties of materials and is currently used for describing and comparing quantitatively changes in mechanical properties of plant stems during ontogeny (Rowe $\mathcal{\&}$ Speck, 1998; Speck \& Rowe, 1999): compliant or
flexible materials have low Young's moduli, whereas stiffer materials have higher moduli. Stem segments from basal to distal parts of plants were pruned from living plants and submitted to mechanical bending tests within several hours of being cut.

	Indel A	Indel C
		111111111111
	111111111111111111111111111	111111111222
	00000011111111112222222223	999999999000
Taxon	456789012345678901234567890	234567890123
Riocreuxia burchellii	CAT-----AGTTTAAATTTAAACCGA	ATTAGGAATAAG
Pentarrhinum insipidum	CAT-----AGTTTAAAC-----CGA	ATTAGCAATAAG
Dregea sinensis	CAT-----AGTTTAAAC-----CGA	ATTAGGAATAAG
Pergularia daemia	CAT-----AGTTTAAAC-----CGA	ATT-----AAG
Vincetoxicum nigrum	CAT-----AGTTTAAAC-----CGA	ATTAGCAATAAG
Tylophora indica	CAT-----AGTTTAAAC------CGA	ATTAGCAATAAG
Araujia sericifera	C-T-----AGTTTAAAC-----CGA	ATTAGCAATAAG
Gonolobus xanthotrichus	CAT-----AGTTTAAAC-----CGA	ATTAGCAATAAG
Matelea quirosii	CAT-----AGTTTAAAC-----CGA	ATTAGCAATAAG
Fockea capensis	CAT-----AGTTTAAAC------CGA	ATTAGGAATAAG
Secamone bosseri		ATT-----AAG
S. cristata ssp. densiflora		ATT-----AAG
S. sparsiflora		ATT-----AAG
S. uncinata	CAT---------------------CGA	ATT-----AAG
S. elliottii		ATT-----AAG
S. geayi		ATT-----AAG
S. falcata		ATT-----AAG
S. buxifolia		ATT-----AAG
S. minutifolia		ATT-----AAG
S. ecoronata		ATT-----AAG
S. parvifolia	CAT--------------------CGA	ATT-----AAG
S. volubilis	CATGACCATGGTTTAAAC-----CGA	ATT-----AAG
Pervillaea venenata	CAT-----AGTTTAAAC------CGA	ATT-----AAG
P. phillipsonii	CAT-----AGTTTAAAC-----CGA	ATT-----AAG
Secamonopsis microphylla	CAT-----GGTTTAAAC------CGA	ATT-----AAG
Se. madagascariensis	CAT-----GGTTTAAAC-----CGA	ATT-----AAG
Hemidesmus indicus	CAT-----AGTTTAAAC------CGA	ATT-----AAG
Raphionacme welwitschii	CAT-----AGTTTAAAC------CGA	ATT-----AAG
Schlechterella abyssinica	CAT-----AGTTTAAAC------CGA	ATT-----AAG
Cryptostegia grandiflora	CAT-----AGTTTAAAC------CGA	ATT-----AAG
Periploca graeca	CAT-----AGTTTAAAC-----CGA	ATT-----AAG
Camptocarpus mauritianus	CAT-----AGTTTAAAC------CGA	ATT-----AAG
Allamanda cathartica	CAT------AGTTTAAAC------CGA	ATT-----AAG
Nerium oleander	CAT-----AGTTTAAAC-----CGA	ATT----AAG
Apocynum androsaemifolium	CAT-----AATTTAAAC------CGA	ATT-----AAT
Beaumontia grandiflora	AAT-----AGTTTAAAC------CGA	ATT-----AAG
Strophanthus divaricatus	CAT-----AGTTTAAAC------CGA	ATT-----AAG
Acokanthera oblongifolia	CAT-----AGTTTAAAC------CGA	ATT-----AAG
Alstonia scholaris	CAT-----AGTTTAAAC------CGA	ATT-----AAG
Chilocarpus suaveolens	CAT-----AGTTTAAAC-----CGA	ATT-----AAG
Kopsia fruticosa	CAG-----AGTTTAAAC-----CGA	ATT-----AAG
Molongum laxum	CAT-----AGTTTAAAC------CGA	ATT-----AAG
Picralima nitida	CAT-----AGTTTAAAC-----CGA	ATT-----AAG
Plumeria rubra	CAT-----AGTTTAAAC-----CGA	ATT-----AAG
Rauvolfia mannii	CTA----------AAC------CGG	ATT-----AAG
Tabernaemontana divaricata	CAT-----AGTTTAAAC------CGA	ATT-----AAG
Thevetia peruviana	CAT-----AGTTAAAC-----CGA	ATT-----AAG
Gentianales outgroups	$\star * *----* * * * * * * * *-----* * *$	***-----***
Solanum tuberosum	CAT-----GGTTTAAATAGAAATAGG	***-----***

Figure 3. Aligned sequences of the plastid gene mat K showing the three main phylogenetically informative indels A, B, and C. Numbers indicate position of nucleotides that are numbered consecutively from 5^{\prime} to 3^{\prime}, dashes indicate gaps, question marks an unresolved sequence as for Allamanda cathartica, and bold sequences repeat underlined sequences. The sequences were replaced by a line of asterisks $\left(^{* *}\right)$ for the outgroup taxa where they were present.

Indel B

66 444445555555555666666666777777777788888888889999999999
5678901234567890123456789012345678901234567890123456789

```
AAAGAAAACCAGAAAGAAAACCAGTTTTTCATTTTTTAACAAAAAGAAATCTAAAA
AAAGAAAACT---------------------TTTTTAACAAAAGGAACTCTAAAA AAAGAAAACCAGAAAGAAAACCAGTTTTCATTTTTTAACAAAAAGAAATCTAAAA AAAGGAAATC-----------GGTTTTCATTTTTTAACAAAACGAAATCTAAAA AAAGAAAACC-------------AGTTTTCATTTTTTAACAAAAAGAAATCTAAAA AAAGAAAACC-------------AGTTTTCATTTTTTTAACAAAAAGAAATCTAAAA
AAAGAAAACC------------AGTTTTCTTTTTTTTAACAAAAAGAAATCTAAAA AAAGAAATCC-------------AGCTTTCTTTTTTTTAACAAAAAGAAATCTAAAA
AAAGAAATCC-------------AGTTTTCTTTTTTTAACAAAAAGAAATCTAAAA
AAAGAAAACT-------------TGTTTTCTTTTTTTAACAAAAAGAAATCTAAAA
AAAGAAAACC-------------AGTTTTCATTTTTTGACA-------------AAA
AAAGAAAACC-------------AGTTTTCATTTTTTAACA-------------AAAA
AAAGAAAACC-------------AGTTTTCATTTTTTAACAAAAGAAATCTAAAA
AAAGAAAACC-------------AGTTTTCATTTTTTAACAAAAAGAAATCTAAAA
AAAGAA---C------------AGTTTTCATTTTTTTAACAAAAAGAAATCTAAAA
AAAGAAAACC-------------AGTTTTCATTTTTTTAACAAAAGGAATCTAAAA
AAAGAAAACC------------AGTTTTCATTTTTTTAACAAAAAGAAATCTAAAA
AAAGAAAACC------------AGTTTTTCATTTTTTTA---AAAAGAAATCTAAAA
AAAGAA---C------------TGTTTTCATTTTTTTAACAAAAAGAAATCTAAAA
AAAGAAAACC-----------TGTTTTCATTTTTTAACAAAAAGAAATCTAAAA
AAAGAAAACC-------------AGTTTTCGTTTTTTTAACAAAAAGAAATCTAAAA
AAAGAAAACC------------AGTTTTCATTTTTTAACAAAAAGAAATCTAAAA
AAAGAAAACC------------AGTTTTCATTTTTTTAACAAAAAGAAATCTAAAA
AAAGAAAACC-----------AGTTTTCATTTTTTTAACAAAAAGAAATCTAAAA
AAAGAAAACC------------AGTTTTCATTTTTTTAACAAAAAGAAATCTAAAA
AAAGAAAACC------------AGTTTTCATTTTTTTAACAAAAAGAAATCTAAAA
AAAGAAAACC-----------AGGTTTCATTTTTTTAACAAAAAGAAATCCAAAA
AAAGAAAACC-------------AGGTTTCATTTTTTTAACAAAAAGAAATCCAAAA
AAAGAAAACC------------AGGTTTCATTTTTTAACAAAAAGAAATCCAAAA
AAAGAAAACC-------------AGGTTTCATTTTTTAACAAAAAGAAATTCAAAA
```



```
AAAGAAAACC-------------AGGTTTCATTTTTTAACA-------------AAA
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
AAARAAAACC-------------AGKTTTCATTTTTTTAACA--------------AAA
AAAGAAACCC-------------GGTTTTCTTTTTTTTAACA-------------AAAA
AAAGAAARCC------------AGTTTTCATTTTTTAACAAAAGAAATYCAAAA
AAAGAAAACC-------------AGTTTCAATTTTTTAACA-------------AAAA
AAAGAAACCC-------------AGTTTTTATTTTTTTAACA-------------AAA
AAAGAAACCC-------------AGTTTTTCTTTTTTAACA-------------AAA
AAAGAAACCC-------------GGTTTTGATTTTTTAACA-------------- AAA
```



```
AAAGAAAGAC-------------AGTTTTTATTTTTTAACA-------------AAA
AAAGAAAGCC------------GGTTTTGCTTTTTTCACA--------------AAA
AAAGAAACCC-------------AGTTTGGATTTTTTAACA-------------AAAA
AAAGAACCCC-------------AGTTTTTCTTTTTTAACA-------------AAA
AAAGAAAGTC------------GGTTTTGATTTTTTTAACAAAAATAAATCCAAAA
AAAGAACCCC-------------CGCTTGGATTTTTTAACA-------------AAA
```

**********----------******************-------------AAA

Gentianales outgroups Solanum tuberosum

Figure 3. Continued.

Representative axis segments were selected from the entire plant in order to observe trends in mechanical properties all over the stem system for both shrub and liana. The bending tests were carried out on a steel frame bending apparatus in the close vicinity of the collected sample. Span dis-
tance of the tested stems and weight increments were varied according to the size and bending resistance of the material selected (see Rowe \& Speck, 1996; Speck \& Rowe, 1999). Segments of each tested stem were retained in FAA for anatomical and developmental analyses of plant axes.

Results

PHYLOGENETIC ANALYSIS

The unit weight analysis of the complete data set resulted in 600 trees 1679 steps long, with a consistency index of $\mathrm{CI}=0.642$ (0.530 excluding uninformative characters) and a retention index of RI $=0.730$. The successive weighting analysis resulted in 25 trees 1407 steps long (base weight of 1000 applied in Successive Weighting, SW, removed), with a consistency index of $\mathrm{CI}=0.867(0.725$ excluding uninformative characters) and a retention index of RI $=0.900$. The strict consensus tree of the unit weighting analysis and from the successive weighting are almost identical; only four branches at the base of the tree are not present in the unit weighting analysis. Therefore, comments in the discussion will be based only on the strict consensus tree (Fig. 2) of the SW analysis. In this analysis three indels, occurring in several taxa (Fig. 3), have been examined as putative molecular markers for this phylogeny. They are usually repetitions (represented in bold) of an adjacent sequence (with this adjacent sequence underlined) (Fig. 3).

POLLINARIUM STRUCTURE AND INSERTION

The morphology of non-acetolyzed pollinaria of Secamonoideae was examined and morphological differences were observed in pollinia, corpusculum, and caudicula (Civeyrel, 1994, 1996), as well as pollinia insertion. The corpusculum is coffee beanshaped, with a more or less narrow slit facing the pollinator. The back of the corpusculum is more or less spongy with perforations of different sizes; the front is generally more compact with a verrucate or smooth surface. There are one or two caudicula bearing the pollinia; when there is only one caudiculum, it can be hemispherical (Fig. 4A, B, G) or elongated (Fig. 4D, C, E) and with the pollinia almost sessile on the back. In some cases the corpusculum is surrounded by a caudiculum without a distinct shape bearing four fused pollinia (Figs. 4F, H, I, 5A, B, D, E). When two caudicula are present, they are either short (Figs. 1B, 5F) or long (Fig. 5C, G), and bear a pair of fused pollinia. The samples examined included pollinia arranged in all possible configurations of synorganization. They may be disposed all around the caudiculum (Fig. $4 \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{G}$) or tiered in pairs when there is no pollinial synorganization (Fig. 4D, E). They are fused in pairs when there is intrapollinial synorganization (Figs. 1B, 5C, F, G) or in a unit of four in the case of intra- and interpollinial synorganization (Figs. 4F, H, I, 5A, B, D, E). A reduction of
pollen walls between fused pollinia has also been observed (Civeyrel, 1995).

Pollinium insertions have been examined in Se camone geayi and in S. buxifolia. In Secamone buxifolia only a part of the pollinarium was inserted into the pollination chamber, and sometimes only one pollinium, whereas in Secamone geayi the entire pollinarium was inserted.

BIOMECHANICAL RESULTS OF A SECAMONOID SHRUB AND LIANA

Both Secamonopsis madagascariensis, a twining liana, and S. microphylla, a shrub, show reductions in Young's modulus of the stem during ontogeny. Plant ontogeny is depicted here as increasing stem diameter as indicated by the increase in I, second moment of area, in Figure 6. Young distal stages of S. microphylla show relatively high values of E for the stem of just over $5100 \mathrm{MNm}^{-2}$; this value drops during ontogeny to around $2000 \mathrm{MNm}^{-2}$. The drop in Young's modulus during ontogeny is more marked in the twining liana S. madagascariensis; young distal stages show values of just over 2000 MNm^{-2} and this is followed by a drop to as low as just over $300 \mathrm{MNm}^{-2}$ in the oldest sample measured.

Discussion

STRICT CONSENSUS TREE

The three subfamilies of the former Asclepiadaceae are monophyletic, with Secamonoideae as sister group of the Asclepiadoideae (Fig. 2). Asclepiadoideae and Periplocoideae are both strongly supported, each with a bootstrap value of 100%; the Secamonoideae are supported by a bootstrap value of 82%. The composite group formed by the three subfamilies of the former Asclepiadaceae is less well supported with a bootstrap value of only 69%. The monophyly of the former Asclepiadaceae, which is only poorly supported here, has been much questioned in recent years (Sennblad \& Bremer, 1996; Sennblad et al., 1998; Sennblad \& Bremer, 2000; Potgieter \& Albert, 2001 this volume) and is far from being resolved. The systematic position of the Periplocoideae, however, is beyond the scope of this paper. Here we will focus on the relationships within Secamonoideae.

Within Secamonoideae five groups are strongly supported by bootstrap values above 90% (Fig. 2). These groups are: (1) Secamonopsis, (2) Pervillaea, (3) the two species belonging to the $S e$ camone cristata group sampled here (S. cristata subsp. densiflora and S. bosseri), and two groups

Figure 4. Pollinaria of Secamone, SEM photos.-A. S. sparsiflora. - B. S. uniciata. -C. S. buxifolia. -D. S. parvifolia. -E. S. elliottii. -F. S. geayi. -G. S. falcata. - H. S. ecoronata. -I. S. minutiflora. Voucher specimens are cited in Table 1.
within the remainder of the Secamone clade, (4) S. sparsiflora and S. unciata, and (5) S. minutifolia and S. ecoronata. There is no strong support for the position of Secamone volubilis, endemic to Reunion Island. The only African Secamone included in this study, S. parviflora, is associated with the poorly resolved clade of Malagasy Secamone. Unless more sampling is done on spe-
cies from the African mainland and from Asia and Australasia it will be difficult to assess the origin of the Madagascan species.

INDELS
A six-base insertion from bp 1195 to 1200 characterizes the Asclepiadoideae group (with the no-

Figure 5. Pollinaria of Secamonoideae, SEM photos. - A. Pervillea venenata. - B. Pervillea phillipsonii. -C. Secamonopsis madagascariensis. -D. Secamone bosseri. -E. Secamone cristata. -F. Genianthus laurifolius. -G. Secamonopsis microphylla. Voucher specimens are cited in Table 1.
table exception of Pergularia daemia), and has not been found in any other Apocynaceae or among the outgroup taxa (Fig. 3, C region). Within this sixpair base insertion there is only one change: in the basal taxa Fockea, Riocreuxia, and Dregea, a G (2'deoxyguanosine) is found on position 1197, replacing the C (2^{\prime}-deoxycytidine) found in all other taxa. This insertion could be useful for identifying possible members of the Asclepiadoideae, such as sterile herbarium specimens within the family Apocynaceae, which contains between 4000 and 6000 species.

Another interesting indel that we have been investigating is actually a series of indels found in the matK region from 639 to 696 bp (Fig. 3, B region). It has been found in all the former Asclepiadaceae, with the exception of two taxa belonging to the Secamone cristata group and two species of Periplocoideae in Periploca and Camptocarpus. This insertion has also been found in two unrelated taxa in the basal Apocynaceae: Beaumontia and Tabernaemontana. Looking closely at the base composition of this insertion, it can be seen that in all Periplocoideae and in Beaumontia and Tabernaemontana, there is a C at position 695 , whereas there is a $\mathrm{T}\left(2^{\prime}\right.$-deoxythymidine) for all Secamonoideae and Asclepiadoideae. In this same region two small indels (bp 651-653) have been found in two species of the genus Secamone: S. elliottii and S. minutifolia. There are also two insertions (bp 656-666) in two taxa belonging to different tribes of the Asclepiadoideae in Riocreuxia (Ceropegieae) and Dregea (Marsdenieae).

The third indel, and probably the most interesting one for our study, is a nine bp deletion (bp 118126) that has only been found in the Madagascan Secamone clade including the African species, but not in Secamone volubilis from the Mascarenes.

SYNORGANIZATION

The type of pollinium synorganization between the contents of different pollen sacs we have described in Secamonoideae is not known to occur anywhere else in the angiosperms. A comparison of the geographic distribution of this character has shown that intrapollinial synorganization is much more widespread than interpollinial synorganization. Intrastaminal synorganization is found in taxa in both Asia and Africa and Madagascar, and occurs in Secamone, Genianthus, Pervillaea, Secamonopsis (Civeyrel, 1996), Toxocarpus, and Calyptranthera. In general this feature is linked with two caudicula such as in the pollinaria of Secamone dewevrei (Fig. 1B), Secamonopsis madagascariensis
and S. microphylla (Fig. 5C, G), or Genianthus laurifolius (Fig. 5F). Interpollinial synorganization has a much narrower distribution; it has been found only in Madagascar and does not extend beyond this island, not even in the Mascarenes or the Comoro Islands. It occurs in three different genera: Pervillaea (Civeyrel, 1996; Klackenberg, 1996b) and Calyptranthera (see Klackenberg, 1996a, 1997, 1998, for illustration of pollinarium), both endemic to Madagascar, and in some species of the widely distributed genus Secamone (Civeyrel, 1994). Unfortunately, we do not have sequences for all species of Pervillaea, and those of Calyptranthera are yet to be sequenced. Klackenberg (1996b), however, has suggested that Calyptranthera is the sister group of the genus Pervillaea, where all the examined species have interstaminal synorganization. We have mapped the distribution of this character onto our molecular tree (Fig. 7A) to estimate character evolution among species in Madagascar. Based on the phylogeny presented here, pollinial synorganization has evolved twice within this group, since Pervillaea lies outside of the group of Secamone. It can also be seen that only one type of pollinial synorganization occurs for each of our well supported groups within Secamonoideae. This has to be confirmed by more sampling within the genus Secamone, however.

One way to view the evolution of pollinial synorganization is to relate it to pollination and pollinium insertion. We have started to examine pollination in different species exhibiting different degrees of synorganization. For species without pollinial synorganization such as in the Madagascan species Secamone buxifolia (Fig. 4C), we have noted that when there is an insertion by an insect, only one pollinium is inserted, either alone, or sometimes still attached to the translator apparatus. Kunze (1991) has also demonstrated this with Se camone alpinii. The reverse occurs in species such as Secamone geayi (Fig. 4F), another Madagascan species, with interpollinial synorganization, where we have seen that the entire pollinarium (i.e., all four pollinia and the translator) is inserted. Fused pollinia with intrapollinial synorganization are very strongly glued together, and in Secamone, for example, it is almost impossible to separate the pollinia from the corpusculum without breaking them. The fusion observed may reduce the risk of losing pollinia during transport. But since all four pollinia are fused into a unit, it also means that such a unit can only be distributed once. Conversely, free pollinia (i.e., with neither intrapollinial nor interpollinial synorganization) can be distributed among up to four different flowers. When no pollinial synor-

Figure 6. Double logarithmic plot of biomechanical data for two species of Secamonopsis. Structural Young's modulus (E) is plotted against axial second moment of area (I) of stems sampled throughout the plant body. Both the shrub $(S$. microphylla) and liana (S. madagascariensis) show a decrease in E during ontogeny which is characteristic of woody lianas (Speck \& Rowe, 1999).
ganization is present, however, the risk of losing pollinia during transport may be high, as pollinia are sometimes only loosely attached to the translator apparatus (Civeyrel, 1996) and can easily fall from it (Friedmann, 1990). Pollination success for flowers with intrapollinial synorganization might be intermediate between these two extremes in terms of pollinia loss and numbers of flowers pollinated, and this would be interesting to investigate.

BIOMECHANICS

In addition to studying reproductive traits during the evolution of this group, we have begun to incorporate biomechanical studies for investigating evolution of growth forms. Distribution of plant growth forms mapped onto the molecular tree suggests that self-supporting shrubs have evolved from
lianescent forms at least five times within the Secamonoideae for the examples investigated herein (Fig. 7B). In the genus Secamonopsis, S. madagascariensis is a twining liana with stiff searchers (young stems) and flexible basal stages; Secamonopsis microphylla is a small semi-erect shrub. The phylogeny suggests that the "self-supporting" growth form here is derived within the lianescent group. As expected, the liana species shows a typical drop in the value of E (Young's elastic modulus) for the stem during ontogeny as has been documented for a variety of woody lianas (Rowe \& Speck, 1996; Speck \& Rowe, 1999). What is surprising here is that the shrub actually shows a drop in stem elastic modulus during ontogeny as well. This appears to explain the remarkable habit of this shrub, in which older branches are semi-recumbent

Figure 7. - A. Pollinial synorganization. - B. Biomechanical aspects. Characters mapped onto the strict SW analysis consensus tree of the 25 most parsimonious trees obtained with the successive weighting analysis. Bootstrap values are shown above the branches.

B $\quad \begin{array}{ll}\text { Twining liana } \\ \text { แumuma } & \text { Self supporting shrub }\end{array}$
and lean against each other or along the ground with the more rigid younger branches oriented vertically. Interestingly, the values of E for the shrub are higher than the liana, and this may also reflect the difference between the mechanics of the shrublike form and the liana. Initial observations of the anatomy of the two plants indicate that the shrub has a much denser wood, fewer and smaller vessels, and a relatively narrow band of compliant outer secondary phloem and bark compared with the liana. Ongoing investigations will quantify the contribution of each tissue to the mechanics of the stem during ontogeny; it will then be possible to determine more exactly which developmental traits cause the mechanical patterns observed and thus explain, for example, why the "shrub-like" plant has retained a basically lianescent mechanical signal. Further investigations will also sample additional genera from the Secamonoideae, particularly in terms of assessing shrub-like or self-supporting habits derived from within a largely lianescent clade. Plant growth forms have been common characters in phylogenetic analyses with character states assigned to trees or shrubs or herbs, and so on. However, growth forms themselves are clearly complex aspects of a plant's life history and are the result of a complex array of developmental traits. We hope that both biomechanical and anatomical approaches combined with phylogenetic techniques as outlined here may provide a means of determining the underlying developmental processes in the evolution of different growth forms.

The Secamonoideae have retained some ancestral characters such as four pollinia per stamen and a relatively simple translator apparatus in which the pollinia are only weakly attached to the translator, which help us to understand the evolution of the reproductive system of the entire family Apocynaceae. The Secamonoideae have also evolved some unique characters among angiosperms such as pollinial synorganization, which links together pollen from different pollen sacs and anthers. With their distribution of many endemic taxa, and their remarkable speciation in Madagascar, a detailed phylogenetic study of the Secamonoideae also enables us to study some fundamental aspects of plant evolution, such as changes in reproduction and overall growth form.

Literature Cited

Brown, R. 1810. On the Asclepiadeae. London. Preprint of Brown, R. 1811. On the Asclepiadeae, a natural order of plants separated from the Apocyneae of Jussieu. Mem. Wern. Nat. Hist. Soc. 1: 12-78.
Bruyns, P. V. \& P. I. Forster. 1991. Recircumscription of the Stapelieae (Asclepiadaceae). Taxon 40: 381-391.

Civeyrel, L. 1994. Variation and evolution of pollen types in the genus Secamone (Asclepiadaceae, Secamonoideae). Compt. Rend. Acad. Sci. Paris 317: 1159-1165.
1995. Pollen morphology and ultrastructure of the genus Secamone in Africa. Pp. 207-215 in A. Le Thomas \& E. Roche (editors), 2nd Symposium on African Palynology, Tevuren, Belgium. Publ. Occas. CIFEG 31, Orleans.
1996. Phylogénie des Asclepiadaceae, Approche Palynologique et Moléculaire. Ph.D. Thesis, Université Montpellier II. [Unpublished.]
\& J. Klackenberg. 1996. A second species of the genus Secamonopsis (Asclepiadaceae). Novon 6: 144 146.
, A. Le Thomas, I. K. Ferguson \& M. W. Chase. 1998. Critical reexamination of palynological characters used to delimit Asclepiadaceae in comparison to the molecular phylogeny obtained from plastid mat K sequences. Molec. Phylogenet. Evol. 9: 517-527.
Doyle, J. J. \& J. L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11-15.
Endlicher, S. 1838. Genera plantarum. Asclepiadeae: 586-599. F. Beck, Vienna.
Endress, M. \& P. Bruyns. 2000. A revised classification of the Apocynaceae s.l. Bot. Rev. (Lancaster) 66: 1-56.
, B. Sennblad, S. Nilsson, L. Civeyrel, M. W. Chase, S. Huysmans, E. Grafstrom \& B. Bremer. 1996. A phylogenetic analysis of the Apocynaceae s. str. and some related taxa in Gentianales, a multidisciplinary approach. Opera Bot. Belg. 7: 59-102.
Endress, P. K. 1990. Pattern of floral construction in ontogeny and phylogeny. Biol. J. Linn. Soc. 39: 153-175. - 1996. Diversity and Evolutionary Biology of Tropical Flowers. Cambridge Univ. Press, Cambridge. - , M. Jenny \& M. E. Fallen. 1983. Convergent elaboration of apocarpous gynoecia in higher advanced dicotyledons (Sapindales, Malvales, Gentianales). Nordic J. Bot. 3: 293-300.
Farris, J. S. 1969. A successive approximations approach to character weighting. Syst. Zool. 18: 374-385.
Forster, P. I. \& K. Harold. 1989. Secamone R. Br. (Asclepiadaceae, Secamonoideae) in Australia. Austrobaileya 3: 69-78.
Friedman, F. 1990. Note sur la position systématique du genre Trichosandra Decne. (Asclepiadaceae). Adansonia 12: 131-138.
Goyder, D. J. 1992. Secamone (Asclepiadaceae subfam. Secamonoideae) in Africa. Kew Bull. 47: 437-474.
Hilu, K. W. \& L. A. Alice. 1999. Evolutionary implications of matK indels in Poaceae. Amer. J. Bot. 86: 1735-1741.

- \& H. Liang. 1997. The matK gene: Sequence variation and application in plant systematics. Amer. J. Bot. 84: 830-839.
Johnson, L. A. \& D. E. Soltis. 1994. matK DNA sequences and phylogenetic reconstruction in Saxifragaceae s. str. Syst. Bot. 19: 143-156.
- \& ——. 1995. Phylogenetic inference in Saxifragaceae sensu stricto and Gilia (Polemoniaceae) using matK sequences. Ann. Missouri Bot. Gard. 82: 149-175.
, J. L. Schultz \& P. S. Soltis. 1996. Monophyly and generic relationships of Polemoniaceae based on matK sequences. Amer. J. Bot. 83: 1207-1224.
Klackenberg, J. 1992a. Taxonomy of Secamone s. lat.
(Asclepiadaceae) in the Madagascar Region. Opera Bot. 112: 1-127.

1992b. Taxonomy of Secamone (Asclepiadaceae) in Asia and Australia. Kew Bull. 47: 595-612.
_. 1995a. Taxonomy and phylogeny of the SE Asian genus Genianthus (Asclepiadaceae). Bot. Jahrb. Syst. 117: 401-467.
_. 1995b. Malgasy Asclepiadaceae, reinstatement of the genus Pervillaea and two new combinations. Phytologia 78: 189-191.
——. 1996a. The new genus Calyptranthera (Asclepiadaceae) from Madagascar. Novon 6: 25-28.
——. 1996b. Revision of the Malagasy genus Pervillaea (Asclepiadaceae) and its phylogenetic relationship to Calyptranthera. Nordic J. Bot. 16: 165-184.
——. 1997. Revision of the Malagasy genus Calyptranthera (Asclepiadaceae). Adansonia 19: 21-37.

- 1998. Calyptranthera gautieri Klack (Apocynaceae s. I., Secamoneae), a new species from Madagascar. Candollea 53: 395-398.
\longrightarrow In press. Notes on Secamonoideae (Apocynaceae) in Africa. Adansonia 23(2).
Kron, K. A., R. Fuller, D. M. Crayn, P. A. Gadek \& C. J. Quinn. 1999. Phylogenetic relationships of epacrids and vaccinioids (Ericaceae s. I.) based on mat K sequence data. Pl. Syst. Evol. 218: 55-65.
Kunze, H. 1991. Structure and function in Asclepiad pollination. Pl. Syst. Evol. 176: 227-253.
Les, D. H., E. L. Schneider, D. J. Padgett, P. S. Soltis, D. E. Soltis \& M. Zanis. 1999. Phylogeny, classification and floral evolution of water lilies (Nymphaeaceae; Nymphaeales): A synthesis of non-molecular, rbcL, matK, and 18S rDNA data. Syst. Bot. 24: 28-46.
Li, J., A. L. Bogle \& A. S. Klein. 1999. Phylogenetic relationships in the Hamamelidaceae: Evidence from the nucleotide sequences of the plastid gene matK. Pl . Syst. Evol. 218: 205-219.
Liang, H. \& K. W. Hilu. 1996. Application of the matK gene sequences to grass systematics. Canad. J. Bot. 74: 125-134.
Liere, K. \& G. Link. 1995. RNA binding activity of the matK protein encoded by the chloroplast $t r n \mathrm{~K}$ intron from mustard (Sinapis alba L.). Nucl. Acid Res. 23: 917-921.
Manos, P. 1997. Phylogenetic analyses of higher Hamamelidaceae based on plastid sequence data. Amer. J. Bot. 84: 1407-1419.
Matsumoto, S., M. Kouchi, J. Kabuki, M. Kusunoki, Y. Ueda \& H. Fukui. 1998. Phylogenetic analyses of the genus Rosa using the matK sequence: Molecular evidence for the narrow genetic background of modern roses. Sci. Hort. 77: 73-82.
Mickevich, M. F. \& S. J. Weller. 1990. Evolutionary characters analysis: Tracing character change on a cladogram. Cladistics 6: 137-170.
Neuhaus, H. \& G. Link. 1987. The chloroplast tRNA (UUU) gene from mustard (Sinapis alba) contains a class II intron potentially coding for a maturase-related polypeptide. Curr. Genet. 11: 251-257.
Nicholas, A. \& H. Baijnath. 1994. A consensus classification for the order Gentianales with additional details on the suborder Apocynineae. Bot. Rev. 60: 440-482.
Nilsson, S., M. Endress \& E. Grafstrom. 1993. On the relationship of the Apocynaceae and Periplocaceae. Grana Suppl. 2: 3-20.
Omlor, R. 1996. Do Menabea venenata and Secamonopsis madagascariensis represent missing links between Per-
iplocaceae, Secamonoideae and Marsdenieae (Asclepiadaceae)? Kew Bull. 51: 695-715.
Plunkett, G. M., D. E. Soltis \& P. S. Soltis. 1996. Evolutionary patterns in Apiaceae: Inferences based on matK sequence data. Syst. Bot. 21: 477-496.
\qquad 1997. Clarification of the relationship between Apiaceae and Araliaceae based on mat K and $r b c \mathrm{~L}$ sequences data. Amer. J. Bot. 84: 565580.

Potgieter, K. \& V. Albert. 2001. Phylogenetic relationships within Apocynaceae s.l. based on trn L intron and $t r n \mathrm{~L}-\mathrm{F}$ spacer sequences and propagule characters. Ann. Missouri Bot. Gard. 88: 523-549.
Puri, V. \& R. Shiam. 1966. Studies in floral anatomy VIII. Vascular anatomy of the flower of the Asclepiadaceae with special reference to corona. Agra Univ. J. Res., Sci. 15: 189-216.
Rowe, N. P. \& T. Speck. 1996. Biomechanical characteristics of the ontogeny and growth habit of the tropical liana Condylocarpon guianense (Apocynaceae). Int. J. Pl. Sci. 157: 406-417.
— \& —. 1998. Biomechanics of plant growth forms: The trouble with fossil plants. Rev. Palaeobot. Palynol. 102: 43-62.
Safwat, F. W. 1962. The floral morphology of Secamone and the evolution of the pollinating apparatus in Asclepiadaceae. Ann. Missouri Bot. Gard. 49: 95-129.
Sang, T., D. J. Crawford \& T. F. Stuessy. 1997. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Amer. J. Bot. 84: 1120-1136.
Sennblad, B. \& B. Bremer. 1996. The familial and subfamilial relationships of Apocynaceae and Asclepiadaceae evaluated with $r b c \mathrm{~L}$ data. Pl. Syst. Evol. 202: 153175.
_ $\&-$ 2000. Is there justification for differential a priori weighting in coding sequences? A case study from rbcL and Apocynaceae s.I. Syst. Biol. 49: 101-113.
_. M. E. Endress \& B. Bremer. 1998. Morphology and molecular data in phylogenetic fraternity-The tribe Wrightieae (Apocynaceae) revisited. Amer. J. Bot. 85: 1143-1158.
Sibley. C. G. \& J. E. Ahlquist. 1987. Avian phylogeny reconstructed from comparisons of the genetical material, DNA. Pp. 95-121 in C. Patterson (editor), Molecules and Morphology in Evolution: Conflict or Compromise? Cambridge Univ. Press, Cambridge.
Soltis, D. E., R. K. Kuzoff, E. Conti, R. Gornall \& I. K. Ferguson. 1996. mat K and $r b c \mathrm{~L}$ gene sequence data indicate that Saxifraga (Saxifragaceae) is polyphyletic. Amer. J. Bot. 83: 371-382.
Speck, T. \& N. P. Rowe. 1999. A quantitative approach to analytically defining size, growth form and habit in living and fossil plants. Pp. 447-479 in A. R. Hemsley \& M. H. Kurmann (editors), The Evolution of Plant Architecture. Royal Botanic Gardens, Kew.
Steele, K. P. \& R. Vilgalys. 1994. Phylogenetic analyses of Polemoniaceae using nucleotide sequences of the plastid gene matK. Syst. Bot. 19: 126-142.
Sugita, M., K. Shinozaki \& M. Sugiura. 1985. Tobacco chloroplast $\mathrm{RNA}^{1 \times 2}$ (UUU) gene contains a 2.56 kilo-base-pair intron: An open reading frame and a conserved boundary sequence in the intron. Proc. Natl. Acad. Sci. U.S.A. 82: 3557-3561.
Swarupanandan, K., J. K. Mangaly, T. K. Sonny, K. Kishorekumar \& S. Chand Basha. 1996. The subfamilial
and tribal classification of the family Asclepiadaceae. Bot. J. Linn. Soc. 120: 327-369.
Swofford, D. 1993. PAUP 3.1.1. Phylogenetic Analysis Using Parsimony. Smithsonian Institution, Washington, D.C.

Thiv, M., L. Struwe \& J. W. Kadereit. 1999. The phylogenetic relationships and evolution of the Canarian laurel forest endemic Ixanthus viscosus (Aiton) Griseb. (Gentianaceae): Evidence from matK and ITS sequences, and floral morphology and anatomy. Pl. Syst. Evol. 218: 299-317.
Verhoeven, R. L. \& H. J. T. Venter. 1993. Pollen morphology of Curroria, Mondia, Socotranthus and Stomatostemma (Periplocaceae). Bothalia 23: 105-110.
$-\&-$ 1994. Pollen morphology of the Periplocaceae from Madagascar. Grana 33: 295-308.
$_\&-$ 1998. Pollinium structure in Periplocoideae (Apocynaceae). Grana 37: 1-14.
— \& -. 2001. Pollen morphology of the Periplocoideae, Secamonoideae, and Asclepiadoideae (Apocynaceae). Ann. Missouri Bot. Gard. 88: 569-582.
Wang, X.-R., Y. Tsumara, H. Yoshimaru, K. Nagasaka \& A. E. Szmidt. 1999. Phylogenetic relationships of Eurasian pines (Pinus, Pinaceae) based on chloroplast rbcL, $m a t \mathrm{~K}, r p / 20-r p s 18$ spacer, and $t r n \mathrm{~V}$ intron sequences. Amer. J. Bot. 89: 1742-1753.

Wolfe, K. H. 1991. Protein-coding genes in chloroplast DNA: Compilation of nucleotide sequences, database entries and rates of molecular evolution. Pp. 467-482 in L. Bogorad \& I. K. Vasil (editors), The Photosynthetic Apparatus: Molecular Biology and Operation 7B, Cell Culture and Somatic Cell Genetics in Plants. Academic Press, New York.
, C. W. Morden \& J. D. Palmer. 1991. Ins and outs of plastid genome evolution. Curr. Opin. Genet. Developm. 1: 523-529.
\qquad 1992. Function and evolution of a minimal plastid genome from a non photosynthetic parasitic plant. Proc. Natl. Acad. Sci. U.S.A. 89: 10648-10652.
Woodson, R. E. \& J. A. Moore. 1938. The vascular anatomy and comparative morphology of apocynaceous flowers. Bull. Torrey Bot. Club. 65: 135-166.
Xiang, Q.-Y., D. E. Soltis \& P. S. Soltis. 1998. Phylogenetic relationships of Cornaceae and close relatives inferred from matK and rbcL sequences. Amer. J. Bot. 85: 285-297.
Yokoyama, J., M. Suzuki, K. Iwatsuki \& M. Hasebe. 2000. Molecular phylogeny of Coriaria, with special emphasis on the disjunct distribution. Molec. Phylogenet. Evol. 14: 11-19.

Abstract

Evolutionary innovation is an important mode of morphological diversification. Because explicit phylogenetic analyses are lacking for most evolutionary innovations, the patterns of origin, diversification, and homoplasy of innovations are poorly understood. Asclepiadaceae are a large angiosperm family characterized by a suite of putatively novel features that contributes to extreme floral complexity and diversity. In this paper, I use a preliminary phylogenetic hypothesis for Asclepiadaceae to explore the patterns of diversification in two novel floral characters, the pollinarium and the corona. The presence, number, and orientation of pollinia and the presence and form of corolline and gynostegial coronas are analyzed. Comparison of the histories of these structures suggests a contrast between relatively conserved evolution of pollinaria and labile evolution of coronas. I examine prior homology assessments of pollinaria and coronas and evaluate the sensitivity of evolutionary reconstructions to errors in homology assessment. These analyses point to crucial areas where additional ontogenetic studies, interpreted in a phylogenetic context, are required. This is particularly true in the phylogenetic assessment of the homology of corolline and gynostegial coronas. I also investigate the sensitivity of evolutionary reconstructions to phylogenetic uncertainty, and find this source of error to be slight.

Key words: Apocynaceae, Asclepiadaceae, character evolution, corona, diversification, innovation, novelty, phylogenetic uncertainty, pollinia.

Innovation is considered a central process in the evolutionary origin of morphological diversity (Mayr, 1960; Liem, 1974; Nitecki, 1990). Although the precise meaning of evolutionary innovation may vary from author to author, it generally refers to the appearance in a descendant of a new structure that differs "more than quantitatively" from its ancestral morphology (Mayr, 1960: 351). "Key" innovations have attracted special attention, because of their purported role in accelerating the rate of species diversification (Mitter et al., 1988; Farrell et al., 1991; Hodges, 1997). Despite keen interest in the role of evolutionary innovations in diversification, there has been remarkably little progress in understanding the ontogenetic bases of the origins of nov-
elties and the evolutionary lability of novelties following their origin.
Species of Asclepiadaceae (including Periplocaceae) comprise a large clade of Apocynaceae sensu lato (Judd et al., 1999; Endress \& Bruyns, 2000) that is notable for extreme floral complexity arising from several features that are rare or unknown outside of Apocynaceae s.l. Three floral structures merit particular attention due to their complexity and limited distribution among angiosperms: pollinarium, gynostegium, and corona. Each of these structures has been identified as a distinctive feature of Asclepiadaceae, although the presence of homologous structures (particularly gynostegia and coronas) in non-asclepiad Apocyna-

[^0]
[^0]: ${ }^{1}$ Larry Hufford suggested the investigation of evolutionary novelties in asclepiad flowers. I thank Laure Civeyrel for generously sharing previously unpublished matK sequences and for discussions about asclepiad phylogeny. Discussions with Mary Endress and Shelley McMahon about corolla-androecium synorganization and coronas were particularly illuminating. The comments of Mary Endress, Shelley McMahon, Ashley Nicholas, and Victoria Hollowell substantially improved the final version of the manuscript. I thank Jens Klackenberg for bringing his work on Camptocarpus to my attention. I am also grateful to Doug Soltis and Pam Soltis for supporting my molecular systematics research. Students in the Soltis lab, especially Mark Mort, generously assisted in optimizing techniques for obtaining matK sequences. I am grateful to Chuck Cody, Washington State University, for maintaining research collections and to Chris Davitt and Val Lynch-Holm, WSU Electron Microscopy Center, for expert assistance. Permission to destructively sample herbarium specimens from WS is gratefully acknowledged. I thank Mary Endress and Doug Stevens for the invitation to participate in the symposium "Evolution and Phylogenetics of Apocynaceae s. I." at the XVI International Botanical Congress.
 ${ }^{2}$ School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236, U.S.A. Present address: Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi 39762-5759, U.S.A.

