Nymphal taxonomy and systematics of the Psylloidea (Homoptera)

I. M. White
Commonwealth Institute of Entomology, c/o British Museum (Natural History), Cromwell Road, London SW7 5BD
I. D. Hodkinson
Department of Biology, Liverpool Polytechnic, Byrom Street, Liverpool L3 3AF

Contents

Synopsis 153
Introduction 154
Methods of illustration 157
Material examined 157
Morphology of final instar nymphs 168
Selection of nymphal characters 179
Phenetic analysis of nymphs 212
Incorporation of adult characters 224
Cladistic analysis 228
Host-plant considerations 255
Zoogeographic evidence 258
Classification and phylogeny 261
Nymphal phenetic classification 261
General classification 263
Possible phylogeny 265
Keys 275
Key construction 275
Artificial key to families 275
Keys to subfamilies and genera of Aphalaridae 278
Key to genera and species groups of Spondyliaspididae 284
Key to subfamilies and genera of Psyllidae 285
Key to genera of Calophyidae 288
Key to genera of Phacopteronidae 288
Key to genera of Homotomidae 288
Key to subfamilies of Carsidaridae. 289
Key to genera of Triozidae 289
Acknowledgements 290
References 291

Synopsis

The objectives of this study are to form a phenetic classification of Psylloidea using nymphal characters; to compare phenetic relationships suggested by nymphs with relationships suggested by adults; to combine nymphal data with existing adult data and produce a new classification; to devise keys based upon nymphal characters; to produce a predictive model (a cladogram) which describes the probable evolutionary history of the Psylloidea.

Nymphs of 303 species belonging to 94 genera were examined: these represented every existing psyllid family and included material from all zoogeographic regions.

Phenetic analyses were carried out using cluster analysis and ordination. A summary phenetic classification of nymphs is presented which defines four major groups: species with sectasetae (mainly Triozidae); species with lanceolate setae (mainly Aphalaridae); species with capitate setae (most Psyllidae); species without sectasetae, lanceolate setae or capitate setae (some species of each family).

Construction of an evolutionary ground plan for the Psylloidea was aided by the phenetic analyses. A cladogram of 106 psyllid genera and subgenera, based on this ground plan and using adult nymphal characters, is presented. Host-plant and zoogeographic evidence in association with the cladogram suggest that the modern psyllids evolved from an ancestor associated with the plant order Rutales in Gondwanaland.

General trends in the cladogram indicate that the following six families derived from an extinct ancestral group: Triozidae; Carsidaridae; Homotomidae (= Carsidaridae auctt., partim); Phacopteronidae (= Carsidaridae auctt., partim); Calophyidae (= Carsidaridae auctt., partim); Aphalaridae. The Spondyliaspididae and Psyllidae appear to have evolved from a common aphalarid ancestor.

The main contributions made to psyllid systematics are: phenetic groups of nymphs are defined more precisely than they were previously; phenetic and cladistic studies indicate characters of especial value in forming psyllid taxa of rank above the generic category, e.g. tarsal arolium structure; a theory of the origin and evolution of psyllids is proposed incorporating information on nymphal and adult characters plus host-plant and zoogeographic data; a revised classification based on a cladogram incorporating taxa from all zoogeographic regions is presented; keys to genera are produced based on nymphal characters; at the theoretical level the method of cladogram construction is an advancement on that of Hennig (1966); nine new family group taxa are proposed.

Introduction

Psyllids or jumping plant-lice (Homoptera, Sternorrhyncha, Psylloidea) are small (1-5 mm long) phloem-sucking insects which breed almost exclusively upon perennial dicotyledonous plants (Eastop, 1972; Hodkinson, 1974). A review of psyllid biology is given by Hodkinson (1974).

Nomenclatural history

The first psyllid described was Chermes alni Linnaeus, 1758 (= Psylla alni), the type-species of the group. Four years later Geoffroy described Psylla, which is the type-genus, Chermes Linnaeus, 1758 having been suppressed and P. alni designated as the type-species by the International Commission on Zoological Nomenclature (Eastop, 1963 and Opinion 731, Bull. zool. Nom. 22: 86-87, 1965). The first major contribution to psyllid systematics was by Förster (1848) who described the genera Aphalara, Euphyllura, Rhinocola, Spanioneura and Trioza.

Löw (1879) produced the first formalized classification of the psyllids which he regarded as one family, the Psyllidae, comprised of four defined subfamilies: Liviinae (containing the genus Livia), Aphalarinae (containing the genera Aphalara, Euphyllura, Psyllopsis and Rhinocola), Psyllinae (Alloeoneura, Amblyrhina, Arytaina, Calophya, Diaphorina, Floria, Homotoma, Psylla and Spanioneura) and Triozinae (Bactericera and Trioza). Subsequently, Scott (1882) erected the subfamily Livillinae (for which he only lists Creiis) and the family Prionocnemidae (Carsidara and Tyora) but neither of these are valid as they are not based on recognised genera. Löw's subfamilies were raised to family status by Edwards (1896) but this was not generally accepted for another 60 years.

Schwarz (1898) erected a further subfamily, the Spondyliaspinae, for the genus Spondyliaspis, and several genera, such as Carsidara, Tyora and Ciriacremum, were placed in the subfamily Ciriacreminae by Enderlein (1910). However, Crawford (1911) separated Ciriacremum from Carsidara and erected a new subfamily, the Carsidarinae, to include such genera as Carsidara and Tyora. Later, Aulmann (1913) listed six subfamilies: Psyllinae (e.g. Calophya, Diaphorina, Mycopsylla, Pauropsylla and Psylla), Triozinae (e.g. Bactericera and Trioza), Aphalarinae (e.g. Aphalara, Cardiaspis (= Cardiaspina), Euphalerus, Euphyllura and Phytolyma), Liviinae, Ciriacreminae (e.g. Carsidara, Ciriacremum and Phacopteron) and Spondyliaspinae.

The classification was further revised by Crawford (1914) who recognised six subfamilies: Liviinae (Aphalara, Aphalaroida, Livia and Rhinocola), Pauropsyllinae (Calophya, Heteropsylla, Paurocephala and Pauropsylla), Carsidarinae (Carsidara, Epicarsa, Freysuila sensu Schwarz (= Mastigimas) and Rhinopsylla), Ceriacreminae (Ceriacremum (= Ciriacremum)), Triozinae (e.g. Trioza) and Psyllinae (e.g. Euphalerus, Euphyllura, Pachypsylla and Psylla). A similar
classification was presented by Pflugfeilder (1941) except that Liviinae and Aphalarinae (including Diaphorina and Psyllopsis) were again separated.

The Spondyliaspinae was first properly defined by Heslop-Harrison who reviewed the subfamily groupings and separated the subfamilies Aphalarinae, Ciriacreminae (including Bactericera, Carsidara, Ciriacremum and Pauropsylla), Liviinae, Psyllinae, Spondyliaspinae, and Triozinae in a key (Heslop-Harrison 1949, 1951, 1954, 1958, 1959).

Fig. 1 Cladogram showing the relationships of subfamilies according to Becker-Migdisova (1973).
Superfamily status was given to the psyllids by Handlirsch (1903) and the subfamily units were again promoted to families by Vondracek (1957) who recognised the Aphalaridae (e.g. Aphalara, Paurocephala and Pauropsylla), Carsidaridae, Liviidae, Psyllidae (e.g. Calophya, Ciriacremum, Diaphorina, Psylla and Psyllopsis), Spondyliaspidae and Triozidae. Vondracek (1963) later replaced the Carsidaridae by the Ciriacremidae (which included Bactericera, Ciriacremum, Syndesmophlebia ($=$ Klieniella) and Triozamia) and expanded the content of Spondyliaspididae to include Anomalopsylla, Phytolyma and Tainarys.

The classification of Klimaszewski (1964) differed from that of Vondracek in certain respects: Bactericerinae (e.g. Triozamia) was moved to Triozidae, Anomalopsyllinae (e.g. Phytolyma and Tainarys) to the Aphalaridae, and Ciriacremum to the Psyllidae. Genera such as Carsidara, Homotoma and Tenaphalara were placed in the Carsidaridae. A similar classification for Palaearctic genera is given by Loginova (1964b).

The most recent comprehensive study of psyllid systematics was undertaken by BeckerMigdisova (1973), who produced a classification similar to that of Klimaszewski. Subsequently Loginova (1972, 1973, 1974a, 1974b, 1975, 1976a, 1976b, 1977) has revised several subfamilies and tribes and since completion of this work, has produced a paper on nymphal morphology (Loginova, 1982).

Recently Eastop (1978) presented a classification (attributed to D. Hollis) in which only two families, the Psyllidae (including Aphalara, Calophya, Diaphorina, Livia, Psylla and Spondyliaspis) and the Triozidae (including Carsidara and Trioza) were proposed.

Contemporary classifications of the Psylloidea (Vondracek, 1957; Klimaszewski, 1964; Becker-Migdisova, 1973) are based on suggested phyletic trees and a summary of the tree of Becker-Migdisova is given in Fig. 1. No attempt has been made to produce cladograms for the Psylloidea as a whole, but they have been constructed for a few genera and tribes, namely Glycaspis (Moore, 1970), Psylla (Burckhardt, 1979), Strophingia (Hodkinson, 1981) and Ciriacremini (Hollis, 1976).

Comprehensive faunal surveys have been made for several temperate and subtropical regions. They include Alaska (Hodkinson, 1978), Australia (Tuthill \& Taylor, 1955), central Europe (Haupt, 1935), Czechoslovakia (Vondracek, 1957), European U.S.S.R. (Loginova, 1964a), Great Britain (Hodkinson \& White, 1979b; White \& Hodkinson, 1982), Mallorca (Hodkinson \& Hollis, 1981), New Zealand (Tuthill, 1952), North America (Crawford, 1914; Tuthill, 1943), Poland (Klimaszewski, 1969, 1975), Rumania (Dobreanu \& Manolache, 1962), Spain (Gomez, 1956a, 1956b, 1960) and Switzerland (Schaefer, 1949). The only relatively complete faunal surveys of major tropical areas are for India (Mathur, 1975) and Taiwan (Yang, 1984).

Other substantial faunistic papers on psyllids cover Central Africa (Vondracek, 1963), South Africa (Pettey, 1924, 1925, 1933; Capener, 1968, 1970, 1973), Central America (Crawford, 1914; Caldwell, 1944a, 1944b; Tuthill, 1944, 1945, 1950), South America (Crawford, 1914, 1925; Lima, 1942; Tuthill, 1959, 1964a), Borneo (Crawford, 1920), Hawaii (Zimmerman, 1948), Japan (Miyatake, 1963, 1964), Micronesia (Tuthill, 1964b), Philippines (Uichanco, 1921: Miyatake, 1971, 1972) and Puerto Rico (Caldwell \& Martorell, 1952). Comprehensive bibliographies of taxonomic literature are available for the Palaearctic (Klimaszewski, 1973) and Neotropical (Hodkinson \& White, 1981) regions and the Austro-Oriental, Pacific and Hawaiian regions (Hodkinson, 1983).

Aims of present study

A classification such as that of Becker-Migdisova (1973) is adequate for studies on temperate psyllid faunas. However, an increasing knowledge of tropical psyllids has brought with it a realisation that a classification which has been largely based on a knowledge of north temperate psyllids is perhaps inappropriate when applied to tropical forms.

This problem cannot be resolved simply by defining more major groups; new information of a suitable nature for incorporation in a systematic study is required. A study of nymphal morphology is one possible source of such information.

The aims of this work were: to investigate the phenetic taxonomic relationships of psyllids as suggested by nymphal data; to compare phenetic relationships based upon nymphal or adult data; to pool nymphal data with existing adult data and produce a new predictive classification, i.e. a classification which has maximal likelihood of predicting unknown character states; to produce a predictive model (a cladogram) against which other forms of data can be compared, and to use this model to derive a theory as to the age, possible origin and ancestral host of the psyllids; to write provisional keys for the nymphs of psyllids.

Over 2000 species of Psylloidea have been described and for nymphal data to be of any value the nymphal stages of a few hundred species, representing as many genera as possible, had to be examined and described. This was facilitated by the use of numerical description and computerised data-handling techniques.

Use of numerical taxonomic methods

The use of phenetic methods indicates, within the bounds of the characters used, which taxa are most similar to other taxa, without any characters being empirically weighted. They can initiate new ideas, they are resistant to preconceived ideas, and they can help in deciding whether an attribute is ancestral or derived.

The first application of numerical techniques to psyllid taxonomy was a study, based upon inadequate data, of Polish Trioza adults (Klimaszewski, 1967). Recently, Hodkinson (1981) used principal component analysis in a study of Strophingia adults.

Previous studies of nymphal psyllids

Many descriptions of nymphal psyllids have been published and these are listed by White (1980). Prior to 1920 these were generally colour descriptions, such as those of Scott $(1886 a, 1886 b$, $1886 c$), although a few authors, such as Löw $(1876,1884,1886)$, presented outline drawings. The first descriptions of any taxonomic value were those of Ferris (1923, 1924, 1925, 1926, 1928a, $1928 b$) who also presented a phenetic classification of the nymphs (Ferris, 1925) which was later expanded by Rahman (1932). There are only three keys to nymphal psyllids: Swedish species of Psylla (Ossiannilsson, 1970), subgenera of Psylla (Loginova, 1978) and the British Psylloidea (White \& Hodkinson, 1982). Good nymphal descriptions of almost half the species known from the Indian subcontinent have been provided by Mathur (1975).

Methods of illustration

Nymphal morphology

In whole nymph drawings (Figs 2-4) and in most illustrations of anal pore fields (Figs 97-160) the dorsal view is shown to the left of the body mid-line and the ventral view to the right.

Minimum spanning networks (MSN)

MSN's use abbreviated generic names with numbers denoting species (Table 1). In Figs 178 and 182 a summary of each MSN is given in which species are only labelled with the initial letter of the family to which they belong in the classification of Becker-Migdisova (1973) (A - Aphalaridae, C - Carsidaridae, L - Liviidae, P - Psyllidae, S - Spondyliaspididae, T - Triozidae).

Phenograms

Phenograms are labelled with the full names of species. Species adjacent in the phenogram but belonging to different Becker-Migdisova families are spaced further apart than species of the same family so as to give a visual impression of which clusters are highly congruent with the families of Becker-Migdisova (congruent clusters appear more tightly packed than incongruent clusters). The initial letter of the family of Becker-Migdisova (1973) to which each species belongs is indicated in the phenogram.

Material examined

Taxonomic and zoogeographic coverage

The final instar nymphs of 301 species were examined (Table 1). Two species descriptions (Tetragonocephala sp. from Ferris, 1926 and Togepsylla matsumurana from Miyatake, 1970) were incorporated from the literature as they were considered valuable additions to the study.

Figs 2-4 Psylloidea nymphs, morphological features of the three types of nymph defined by Rahman (1932). 2, psylline type nymph; 3, pauropsylline type nymph; 4, triozine type nymph. (a - antenna; aplanal plate; c-coxa; cl-clypeus; cp-cephaloprothorax; cpl-caudal plate; cr-circum-anal pore ring; eeye; f-femur; fw - forewing-pad; h - humeral lobe; hw - hindwing-pad; l-labium; ms - mesothoracic sclerites; mt - metathoracic sclerites; ss - sectasetae arranged $4+4$ on abdomen margin; ts - tibiotarsus; t - tarsal segment II.) Modified from White \& Hodkinson (1982).

This represents a total species coverage of approximately 15 per cent and a generic coverage of about 43 per cent.

For purposes of comparison the genera examined are fitted as closely as possible to the phylogenetic tree proposed by Becker-Migdisova (Fig. 1 and Table 1).

The generic and specific representation across each recognised family and each zoogeographic region are given in Tables 2 and 3. The absolute total number of genera and species is not given because taxonomic position and status of many groups is uncertain; the Liviidae, however, contains only one genus.

Recognition of final instar nymphs

In all cases where the life-cycle of a psyllid has been carefully studied five nymphal instars were recorded (e.g. Mathur, 1975). The most certain method of recognising a fifth instar nymphal

Table 1 Species examined listed according to the classification of Becker-Migdisova (1973). Type-species of genera and subgenera, when examined, are indicated by an asterisk. Genera not examined by Becker-Migdisova are indicated by \dagger. Abbreviated generic and subgeneric names of up to eight small capital letters are given on the right of each generic and subgeneric name. These abbreviations are used in the minimum spanning network diagrams, in combination with the species numbers. Species numbers are given in parentheses on the right-hand side of the table.

Depositories of material are indicated after each species name. Locality data for each specimen are given by White (1980).

Abbreviations of depositories

BMAG Bolton Museum and Art Gallery, Bolton, Lancs.
BMNH British Museum (Natural History), London.
FRI Forest Research Institute, Dehra Dun, India.
IDH I. D. Hodkinson (private collection), Liverpool.
LC Loyola College, Madras, India.
TRL Tasmanian Regional Laboratory, Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania, Australia.
UC University of California, Davies, California, U.S.A.
USDAC United States Department of Food and Agriculture (California), Sacramento, California, U.S.A.

USNM United States National Museum of Natural History, Entomological Collection at the Systematic Entomology Laboratory, USDA, Beltsville, Maryland, U.S.A.

APHALARIDAE

Paurocephalinae
Rhinocolini
Rhinocola Förster, 1848 RHINOCOL
*aceris (Linnaeus, 1758) [BMNH]
\dagger Leurolophus Tuthill, 1942 LEURoLop

* vittatus Tuthill, 1942 [USNM]

Euphyllurini
Euphyllura Förster, 1848 EUPHYLLU
?aethiopica Silvestri, 1934 [BMNH]
olivina (Costa, 1939) [BMNH]
*phillyreae Förster, 1848 [BMNH]
\dagger Neophyllura Loginova, 1973
NEOPHYLL
Arbutophila Loginova, 1973
*arbuti (Schwarz, 1904) [USNM]
Neophyllura Loginova, 1973
*arctostaphyli (Schwarz, 1904) [USNM]
bicolor (Martin, 1931) [USNM]
Paurocephalini
Paurocephala Crawford, 1914 PAURocep
gossypii Russell, 1943 [BMNH]
urenae Russell, 1946 [USNM]
Strophingia Enderlein, 1914
STROPHIN
cinereae Hodkinson, 1971 [BMNH]
*ericae (Curtis, 1835) [BMNH]
(1)

Agonoscena Enderlein, 1914
AGONOSCE
A.sp. (A) [USNM]
(1)
A. sp. (B) [BMNH]
A. sp. (C) [BMNH]

Aphalaroida Crawford, 1914 [USDAC]
APHROIDA
inermis Crawford, 1914 [USDAC]
(1)
?near pithecolobia Crawford, 1914 [USNM]
\dagger Camarotoscena Haupt, 1935
*speciosa (Flor, 1861) [BMNH]
\dagger Moraniella Loginova, 1972
*calodendri (Moran, 1968) [BMNH]
\dagger Paraphalaroida Loginova, 1972
PARAPHAL *fremontiae (Klyver, 1930) [USDAC]
Aphalarinae
Aphalarini
Aphalara Förster, 1848
APHALARA
curta Caldwell, 1937 [USNM]
(1)
exilis (Weber \& Mohr, 1804) [BMNH] (2)
monticola Hodkinson, 1973 [IDH] (3)
?nubifera Patch, 1912 [USNM] (4)
persicaria Caldwell, 1937 [USNM] (5)
polygoni Förster, 1848 [BMNH] (6)
rumicis Mally, 1894 [USNM] simila Caldwell, 1937 [USNM]
Craspedolepta Enderlein, 1921
?angustipennis (Crawford, 1911) [USNM]
(1)
*artemisiae (Förster, 1848) [BMNH] (2)
?vancouverensis (Klyver, 1931) [USNM]
?constricta (Caldwell, 1936) [USNM]
furcata (Caldwell, 1936) [USNM]
minuta (Caldwell, 1938) [USNM]
minutissima (Crawford, 1914) [USNM]
nebulosa (Zetterstedt, 1828) [IDH]
nervosa (Förster, 1848) [BMAG]
sonchi (Förster, 1848) [IDH]
suaedae (Crawford, 1914) [USNM]
subpunctata (Förster, 1848) [BMNH]
?veaziei (Patch, 1911) [USNM]
\dagger Gyropsylla Bréthes, 1921
ilicis (Ashmead, 1881) [USNM]
spegazziniana (Lizer, 1917) [USNM]
Colposceniini
Colposcenia Enderlein, 1929
COLPOSCE
C. sp. [USNM]

Crastina Loginova, 1964
CRASTINA
?linavuorii Loginova, 1974 [BMNH]
Anomalopsyllinae
Apsyllini
Apsylla Crawford, 1912 APSYLLA

* cistellata (Buckton, 1896) [LC]

Anomalopsyllini
Tainarys Bréthes, 1920 TAINARYS
*schini Bréthes, 1920 [USNM]
Phytolymini
Phytolyma Scott, 1882
PHYTOLYM
fusca Alibert, 1947 [BMNH]
(1)
*lata (Walker, 1852) [BMNH]
minuta (Hollis, 1973) [BMNH]
CARSIDARIDAE
Calophyinae
Calophya Löw, 1878
?californica Schwarz, 1904 [USDAC]
dubia Crawford, 1914 [USNM]
flavida Schwarz, 1904 [USNM]
schini Tuthill, 1959 [USNM]

Pauropsyllinae
Microceropsyllini
Microceropsylla Boselli, 1930 microcer
M. sp. [BMNH]

PelmatobrachiaEnderlein, 1921 PElmatob
P. sp. [LC]

Pauropsyllini
Pauropsylla Rubsaamen, 1899
PAUROPSY
beesoni Laing, 1930 [BMNH]
depressa Crawford, 1912 [LC]
trichaeta Pettey, 1924 [BMNH]
Leptynopterinae
Leptynoptera Crawford, 1919 LEPTYNOP
*sulfurea Crawford, 1919 [BMNH]
Phacopterinae
Pseudophacopterini
Pseudophacopteron Enderlein, 1921 PSEUDOPH
floccosa (Crawford, 1915) [USNM]
sp. (A) [BMNH]
sp. (B) [BMNH]
Phacopterini
Phacopteron Buckton, 1894 PHACOPTE
*lentiginosum Buckton, 1894 [USDAC]
Tenaphalarinae
Tenaphalarini
Protyora Kieffer, 1906
PROTYORA
*sterculiae (Froggatt, 1901) [BMNH]
Tenaphalara Kuwayama, 1907
TENAPHAL
?acutipennis Kuwayama, 1907 [BMNH]
(1)
malayensis Crawford, 1919 [BMNH]
sp. [BMNH]
Togepsyllini
Togepsylla Kuwayama, 1931
TOGEPSYL
matsumurana Kuwayama, 1949 [described from Miyatake, 1970]
Diclidophlebiini
Diclidophlebia Crawford, 1920 DICLIDOP
?eastopi Vondracek, 1963 [BMNH]
Mastigimatini
Mastigimas Enderlein, 1921 MASTIGIM
cedrelae (Schwarz, 1899) $[\mathrm{BMNH}]$
sp. (A) $[\mathrm{IDH}]$
sp. (B) [BMNH]
Carsidarinae
Mesohomotomini
Epicarsa Crawford, 1911
EPICARSA
E. sp. [USNM]

Mesohomotoma Kuwayama, 1907
MESOHOMO
hibisci (Froggatt, 1901) [BMNH]
tessmanni (Aulmann, 1912) [BMNH]
Paracarsidara Heslop-Harrison, 1960 PARACARS
dugesii (Löw, 1886) [USNM]
gigantea (Crawford, 1911) [BMNH]
sp. [USNM]

Unplaced

\dagger Bharatiana Mathur, 1974
*octospinosa Mathur, 1974 [BMNH]

Synoziini	
Synoza Enderlein, 1918	synoza
floccosa Ferris, 1928 [UC]	(1)
sp. [USNM]	(2)
Dynopsyllini	
Macrohomotoma Kuwayama, 1907	MACROHOM
*gladiatum Kuwayama, 1907 [BMNH]	(1)
striata Crawford, 1925 [BMNH]	(2)
Mycopsylla Froggatt, 1901	MYCOPSYL
?*fici (Tryon, 1895) [BMNH]	(1)
gardenensis Bhanotar, Ghosh \& Ghosh, 1972 [BMNH]	(2)
\dagger Pseudoeriopsylla Newstead, 1911 nyasae Newstead, 1911 [BMNH]	PSEUDOER
Homotomini	
Homotoma Guérin-Méneville, 1834	номотома
*ficus (Linnaeus, 1767) [BMNH]	(1)
indica (Mathur, 1975) [FRI]	(2)
LIVIIDAE	
Livia Latreille, 1804	LIVIA
coloradensis Crawford, 1914 [USNM]	(1)
crefeldensis (Mink, 1855) [BMNH]	(2)
*juncorum (Latreille, 1798) [IDH]	(3)
maculipennis (Fitch, 1857) [USNM]	(4)
vernalis Fitch, 1851 [USNM]	(5)

PSYLLIDAE
Ciriacreminae
Ciriacremini
Ciriacremum Enderlein, 1910
CIRIACRE
capeneri Hollis, 1976 [BMNH]
capense Enderlein, 1923 [BMNH]
harteni Hollis, 1976 [BMNH]
julbernardioides Hollis, 1976 [BMNH]
Anomoneurini
Anomoneura Schwarz, 1896
ANOMONEU
*mori Schwarz, 1896 [USNM]
Arytaininae
Diaphorini
Diaphorina Löw, 1879 DIAPHORI
albomaculata Capener, 1970 [BMNH]
cardiae Crawford, 1924 [BMNH]
chobauti Puton, 1898 [BMNH]
citri Kuwayama, 1907 [BMNH]
clutiae Capener, 1970 [IDH]
florea Capener, 1970 [IDH]
punctulata (Pettey, 1924) [BMNH]
*putonii Löw, 1878 [USNM]
solani Capener, 1970 [IDH]
†Pennavena Capener, 1968
*fabulosa Capener, 1968 [IDH]
Arytainini
Arytaina Förster, 1848
ARYTAINA
*genistae (Latreille, 1804) [BMAG]
\dagger Acizzia Heslop-Harrison, 1961
acaciae (Maskell, 1894) [BMNH]
acaciaebaileyanae (Froggatt, 1901) [BMNH]
hakeae (Tuthill, 1952) [BMNH]
russellae Webb \& Moran, 1974 [BMNH]
uncatoides (Ferris \& Klyver, 1932) [BMNH]
\dagger Amorphicola Heslop-Harrison, 1961

* amorphae (Mally, 1894) [USNM]
\dagger Arytainilla Loginova, 1972
AMORPHIC
cytisi (Puton, 1873) [BMNH]
ARYNILLA
hakani Loginova, 1972 [BMNH]
spartiicola (Šulc, 1907) [BMNH]
spartiophila (Förster, 1848) [BMNH]
\dagger Ceanothia Heslop-Harrison, 1961
CEANOTHI
aculeata (Crawford, 1914) [USNM]
*ceanothi (Crawford, 1914) [USNM]
\dagger Euceropsylla Boselli, 1929
EUCEROPS
cayeyensis (Caldwell, 1942) [USNM]
minuticona (Crawford, 1914) [USNM]
*russoi Boselli, 1949 [USNM]
sp. [USNM]
\dagger Euglyptoneura Heslop-Harrison, 1961
fuscipennis (Crawford, 1914) [USNM]
EUGLYPTO
robusta (Crawford, 1914) [USNM]
sp. [USNM]
\dagger Floria Löw, 1879
FLORIA
variegata Löw, 1881 [BMNH]
\dagger Insnesia Tuthill, 1964
INSNESIA
glabruscuta (Caldwell, 1942) [USNM]
\dagger Purshivora Heslop-Harrison, 1961
PURSHIVO
chelifera (Crawford, 1914) [USNM]
pubescens (Crawford, 1914) [USNM]
Euphalerini
Colophorina Capener, 1973
COLOPHOR
* cassiae Capener, 1973 [BMNH]

Euphalerus Schwarz, 1904
EUPHALER
gallicolus Ferris, 1928 [UC]
jugovenosus Tuthill, 1937 [USNM]
nidifex Schwarz, 1904 [USNM]
rugipennis Crawford, 1914 [USNM]
tantillus Tuthill, 1937 [USNM]
(3)
vermiculosus Crawford, 1914 [USNM]
sp. (A) [BMNH]
sp. (B) [BMNH]
sp. (C) [LC]
sp. (D) $[\mathrm{BMNH}]$
Psyllopseini
Psyllopsis Löw, 1879
PSYLLOPS
fraxini (Linnaeus, 1761) [BMAG]
*fraxinicola (Förster, 1848) [BMNH]
Psyllinae
Psylla Geoffroy, 1862
Asphagidella Enderlein, 1921
P-ASPHAG
*buxi (Linnaeus, 1758) [BMNH]
Baeopelma Enderlein, 1926
P-BAEOPE
foersteri Flor, 1861 [BMNH]
Cacopsylla Ossiannilsson, 1970 P-CACOPS
*mali (Schmidberger, 1836) [IDH]
peregrina Förster, 1848 [BMNH]
sorbi (Linnaeus, 1758) [IDH]
stricklandi (Caldwell, 1939) [USNM]
ulmi Förster, 1848 [BMNH]

Hepatopsylla Ossiannilsson, $1970 \quad$ P-hepato
albagena (Caldwell, 1938) [USNM]
ambigua Förster, 1848 [IDH]
brunneipennis Edwards, 1896 [BMNH]
moscovita Andrianova, 1848 [BMNH]
myrtilli Wagner, 1847 [IDH]
*nigrita (Zetterstedt, 1828) [IDH]
?parallela Crawford, 1914 [USNM]
palmeni Löw, 1883 [IDH]
pulchra (Zetterstedt, 1840) [BMNH]
pyri (Linnaeus, 1758) [USNM]
pyricola Förster, 1848 [BMNH]
saliceti Förster, 1848 [BMNH]
visci Curtis, 1835 [BMNH]
?Hepatopsylla Ossiannilsson, 1970
alba Crawford, 1914 [USNM]
americana Crawford, 1914 [USNM]
annulata Fitch, 1851 [USNM]
brevistigmata Patch, 1912 [USNM]
?coryli Patch, 1912 [USNM]
hamata Tuthill, 1944 [IDH]
hirsuta Tuthill, 1938 [USNM]
magnicauda Crawford, 1914 [USNM]
minor v. flava Crawford, 1914 [USNM]
minuta Crawford, 1914 [USNM]
negundinis Mally, 1895 [USNM]
rhododendri Puton, 1871 [USNM]
sinuata Crawford, 1914 [USNM]
subspiculata Hodkinson, 1976 [IDH]
Osmopsylla Loginova, 1978 [IDH]
(27)
*ribesiae Crawford, 1911 [USNM]
Psylla Geoffroy, 1862
O-PSYLLA
*alni Linnaeus, 1758 [BMNH]
betulaenanae Ossiannilsson, 1970 [IDH]
carpinicola Crawford, 1914 [USNM]
floccosa Patch, 1909 [USNM]
galeaformis Patch, 1911 [USNM]
striata Patch, 1911 [USNM]
trimaculata Crawford, 1911 [USNM]
Thamnopsylla Loginova, 1978
melanoneura Förster, 1848 [BMNH]
*pyrisuga Förster, 1848 [BMNH]
rhamnicola Scott, 1876 [BMAG]
?Thamnopsylla Loginova, 1978
magna Crawford, 1914 [USNM]
media Tuthill, 1943 [USNM]
pruni (Scopoli, 1763) [IDH]
sp. near simlae Crawford, 1912 [BMNH]
subgenus not certain
phoradendrae Tuthill, 1939 [USNM]
pulchella Löw, 1878 [BMNH]
\dagger Spanioneura Förster, 1848
*fonscolombii Förster, 1848 [BMNH]
Unplaced
\dagger Arepuna Tuthill, 1959
AREPUNA
A. sp. [USNM]
\dagger Epipsylla Kuwayama, 1907 EPIPSYLL
E. sp. (A) [BMNH]
E. sp. (B) $[\mathrm{BMNH}]$
\dagger Freysuila Aleman, 1887
FREYSUIL
F. sp. [USNM]
\dagger Heteropsylla Crawford, 1914
heterops
incisa (Šulc, 1914) [BMNH]
*texana Crawford, 1914 [USDAC]
\dagger Isogonoceraia Tuthill, 1964
(1)
divergipennis White \& Hodkinson, 1980 [BMNH]
\dagger Mitrapsylla Crawford, 1914
ISOGONOC
?deserata Caldwell, 1944 [USNM]
\dagger Neopsyllia Caldwell, 1947
NEOPSYLL
erythrinae (Lizer, 1918) [USNM]
sp. [USNM]
\dagger Pexopsylla Jensen, 1957
*cercocarpi Jensen, 1957 [USNM]
\dagger Platycorypha Tuthill, 1945
PLATYCOR
*princeps Tuthill, 1945 [USNM]
\dagger Retroacizzia Heslop-Harrison, 1961
Retacizz
*antennata Heslop-Harrison, 1961 [BMNH]
\dagger Trigonon Crawford, 1920
*longicornis (Crawford, 1919) [USNM]

SPONDYLIASPIDIDAE

Spondyliaspidinae
Spondyliaspis Signoret, 1879
SPONDYLI
S. sp. [BMNH]
\dagger Cardiaspina Crawford, 1911
CARDIASP
albitextura Taylor, 1962 [BMNH]
(1)
densitexta Taylor, 1962 [IDH]
squamula Taylor, 1962 [TRL]
sp. [TRL]
\dagger Creiis Scott, 1882 CREIIS
C. sp. [TRL]
\dagger Ctenarytaina Ferris \& Klyver, 1932 CTENARYT
*eucalypti (Maskell, 1890) [BMNH]
\dagger Eucalyptolyma Froggatt, 1901
EUCALYPT
E. sp. [BMNH]
†Glycaspis Taylor 1960
GLYCASPI
baileyi Moore, 1961 [BMNH]
imponens Moore, 1961 [BMNH]
rivalis Moore, 1961 [BMNH]
aggregata Moore, 1961 [BMNH]
conflecta Moore, 1961 [BMNH]
conserta Moore, 1961 [BMNH]
orientalis Moore, 1961 [BMNH]
salebrosa Moore, 1961 [BMNH]
\dagger Phellopsylla Taylor 1960
PHELLOPS
Pachypsyllinae
Pachypsylla Riley, 1883
?celtidisgemma Riley, 1883 [USDAC]
celtidismamma (Riley, 1876) [USDAC]
celtidisvesiculum Riley, 1883 [USDAC]
japonica Miyatake, 1968 [USNM]
*venusta (Osten-Sacken, 1861) [USDAC]
Tetragonocephala Crawford, 1914
BactericerinaeTriozamiiniTriozamia Vondracek, 1963TRIOZAMI*lamborni (Newstead, 1913) [BMNH]
UnplacedNeolithus Scott, 1882NEOLITHU$N . \mathrm{sp} .[\mathrm{BMNH}]$TriozinaeEutriozini
Trichochermes Kirkaldy, 1904*walkeri (Förster, 1848) [BMNH]Paracomecini
\dagger Leuronota Crawford, 1914 LEURONOTmichoacana Ferris, 1828 [UC]TrioziniEgeirotrioza Boselli, 1931EGEIROTR
*ceardi v. euphratica Boselli, 1931 [BMNH] (1)
verucifica Loginova, 1965 [BMNH] (2)sp. (A) [BMNH]sp. (B) $[\mathrm{BMNH}]$
Paratrioza Crawford, 1911(3)arbolensis Crawford, 1910 [USNM](4)cockerelli (Sǔlc, 1909) [USNM]PARATRIO
lavaterae (Van Duzee, 1925) [USNM](1)
(3)maculipennis (Crawford, 1910) [USNM](4)
Trioza Förster, 1848
Bactericera Puton, 1876T-BACTER
crithmi Löw, 1880 [BMAG](1)
?curvatinervis Förster, 1848 [BMNH] (2)
?nigricornis Förster, 1848 [USNM] (3)salicivora Reuter, 1876 [USNM](4)
?Bactericera Puton, 1876atkasookensis Hodkinson, 1978 [IDH](5)
aylmeriae Patch, 1912 [USNM] (6)
frontalis Crawford, 1910 [USNM] (7)obtusa Patch, 1911 [IDH]tripunctata (Fitch, 1851) [USNM](8)(9)
Heterotrioza Dobreanu \& Manolache, 1962 T-HETERO
alacris Flor, 1861 [BMNH] (1)
albiventris Förster, 1848 [BMAG] (2)
remota Förster, 1848 [IDH] (3)
chenopodii Reuter, 1876 [BMNH] (4)?Heterotrioza Dobreanu \& Manolache, 1962lobata Crawford, 1914 [USNM](5)
magnoliae (Ashmead, 1881) [USNM] (6)
minuta Crawford, 1910 [USNM] (7)
obsoleta (Buckton, 1900) [BMNH](8)
litseae ?Bordage, 1914 [BMNH] (9)Megatrioza Crawford, 1915T-MEGATR
diospyri (Ashmead, 1881) [USNM](1)
hirsuta (Crawford, 1912) [BMNH] (2)incidata Tuthill, 1945 [USNM](3)
palmicola Crawford, 1918[USNM] (4)
vitiensis (Kirkaldy, 1907) [BMNH](5)
Trioza Förster, 1848

```
    ?Trioza Förster,1848
    albifrons Crawford,1910[USNM]
    bakeri Crawford, 1910[USNM]
bakeri Crawford, 1910 [USNM]
beameri Tuthill, 1939 [USNM] (6)
erytreae (Del Guercio, 1918) [BMNH]
falcata (Ferris \& Klyver, 1932) [BMNH] (8)
panacis Maskell, 1890 [BMNH]
phoradendrae Tuthill, 1939 [USNM]
quadripunctata Crawford, 1910 [USNM]
vitreoradiata (Maskell, 1879) [BMNH]
subgenus not certain
?anceps Tuthill, 1944 [USNM]
sp.[USNM]
\(\dagger\) Aacanthocnema Tuthill \& Taylor, 1955
*?casuarinae (Froggatt, 1901) [IDH]
\(\dagger\) Ceropsylla Riley, 1884 CEROPSYL ?martorelli Caldwell, 1942 [USNM] (1)
?sideroxyli Riley, 1883 [UC]
sp. [USNM]
\(\dagger\) Crawforda Caldwell, 1940
CRAWFORD
triopsyllina Caldwell, 1940 [USNM]
\(\dagger\) Hevaheva Kirkaldy, 1902
HEVAHEVA
swezeyi Crawford, 1928 [USNM]
\(\dagger\) Kuwayama Crawford, 1911
KUWAYAMA
pisonia Caldwell, 1940 [USNM]
\(\dagger\) Swezeyana Caldwell, 1940 SWEZEYAN
elongagena Caldwell, 1940 [USNM]
\(\dagger\) Triozoida Crawford, 1911
TRIOZOID
silvestris Tuthill, 1959 [USNM]
```

Table 2 Numbers of genera and species examined in each psyllid family.

Family	Genera examined	Species examined
APHALARIDAE	19	51
CARSIDARIDAE	21	43
LIVIIDAE	1	5
PSYLLIDAE	30	119
SPONDYLIASPIDIDAE	9	24
TRIOZIDAE	14	61
TOTAL	94	303

skin was by the presence of a pharate adult within. Such specimens had at least one tarsal segment separate from the tibiotarsus of the hindleg (and usually the fore and midlegs as well). It was therefore assumed that the maximum differentiation of tarsi from the tibia occurred in the final instar. As a further check the size of the final instar nymph was compared with the adult of the same species. With experience the size of the wing-pads relative to the body proved to be a further confirmatory character.

Table 3 Numbers of species and genera, and total genera recorded from each zoogeographic region.

Region	Species examined	Genera examined	Total recorded genera
AUSTRALASIAN	21	12	27
AUSTRO-ORIENTAL	2	20^{*}	34
ETHIOPIAN	31	28	36
HAWAIIAN	6	6	9
MALAGASIAN	1	4^{*}	4
NEARCTIC	10	24	30
NEOTROPICAL	36	24	52
NEW ZEALAND	4	5	7
ORIENTAL	23	34^{*}	50
PACIFIC	4	10^{*}	17
PALAEARCTIC	75	29	59

*Figure includes species collected outside the region.

Morphology of final instar nymphs

Pflugfelder (1941) gives a general account of nymphal morphology. The following account is intended as an explanation of terminology, a discussion of possible homology and an indication of the taxonomic distribution of attributes within the superfamily Psylloidea. Major body parts are shown in Figures 2-4.

General form

Nymphal psyllids are generally dorso-ventrally flattened, a condition reaching its maximum expression in pit-gall inhabiting species, e.g. many Trioza spp. (Fig. 4). Ferris (1925) defined two morphological types of nymph, i.e. 'psylline' and 'triozine'. This division was made on the basis of wing-pad shape. The 'psylline' type (Fig. 2) does not have the forewing-pad produced anteriorly into a prominent humeral lobe and the apical extremity projects prominently from the contour of the body. In the 'triozine' type there is an anteriorly produced humeral lobe (Fig. 4) to the forewing-pad and the margins of the pads are confluent with the body margin. Rahman (1932) defined a third type of nymph in which the humeral lobe is present but not produced anteriorly and the forewing-pad margin is parallel to the general body contour. He termed this the 'pauropsylline' type (Fig. 3) and gave examples of each of the three nymphal forms, e.g. Aphalara calthae and Pauropsylla depressa ('pauropsylline'), Paracarsidara gigantea and Psylla alni ('psylline') plus Diaphorina citri and Trioza urticae ('triozine'). These descriptions of morphological types were found to be inadequate and emphasis was placed upon the characters described below.

Head

The main dorsal sclerite or pair of sclerites generally extend posteriorly so that the hind margin is posterior to the procoxae. This suggests that these sclerites are derived from a fusion of the vertex and part of the pronotum at least. This fusion is least expressed in the Spondyliaspididae, whereas complete fusion is observed in many Carsidaridae and Triozidae, especially those forming pit-galls.

The length, basal position and number of apparent segments of the antennae vary within the group. Free-living forms such as Psylla alni have long antennae with many apparent segments and the antennal base is on the margin of the head. Most Triozidae and Calophya spp. which inhabit pit-galls have short antennae, often with a total of only one apparent segment, and the

Figs 5, 6 Body measurements. 5, psylline type nymph; 6, triozine type nymph. (AL-antenna length; BB - body breadth; BL - body length; WL - forewing-pad length.) Modified from White \& Hodkinson (1982).
base is usually ventrally placed (Fig. 4). Adults normally have 10 antennal segments with rhinaria or antennal sensoria at the apices of segments IV, VI, VIII and IX. Most nymphs also have four rhinaria which, when 10 antennal segments are present, occur on segments IV, VI, VIII and IX. In those nymphs with fewer than 10 apparent segments fine sutures can sometimes be seen suggesting the positions where further division of the antennae will occur. However, to avoid implication of homology between nymphs and adults, the term 'division' will be used and the divisions will be numbered with arabic numerals. Rhinaria positions are assumed to be homologous with those of the adult and the first, second, third and fourth rhinaria are referred to as rhinaria IV, VI, VIII and IX respectively.

Some nymphal Carsidaridae (Microceropsylla sp. and Calophya rotundipennis) appear to have fewer than four rhinaria. Many adult Aphalaridae have six rhinaria placed singly at the apices of segments IV, V, VI, VII, VIII and IX. However, their nymphs have four, five or six rhinaria, e.g. the adults of Craspedolepta artemisiae and C. angustipennis have four and five respectively.

The mouthparts are of the normal sternorrhynchous type, i.e. the apex of the clypeus extends to the mesothorax. The labium is two-segmented.

Thorax

The prothoracic tergum is assumed to be the area posterior to the eyes and anterior to the thoracic area which is continuous with the dorsal surface of the mesothoracic or forewing-pads. Most of the sclerites are generally fused with the head to form the 'cephaloprothorax'. The Aphalaridae and Psyllidae normally have at least $2+2$ sclerites between the mesothorax and cephaloprothorax (Fig. 9) whereas most Triozidae have $1+1$ (Fig. 10) or no sclerites of the prothorax.

Figs 7-10 Circum-anal pore rings, antenna and prothorax forms. 7, circum-anal pore ring terminology and measurement; 8 , antenna not extending beyond head margin, character N35; 9, $2+2$ prothoracic sclerites (shaded), character N7; 10, $1+1$ prothoracic sclerite (shaded), character N7. (a - antenna; ananus; cl - clypeus; cp - cephaloprothorax; fw - forewing-pad; ir - inner circum-anal pore ring; or - outer circum-anal pore ring.) Fig. 7 from White \& Hodkinson (1982).

The mesothoracic tergum is taken to be the area between the lines of attachment of the forewing-pads with the body. The sclerites are completely fused in many Triozidae, especially those forming pit-galls. Some species of Euphalerus and Pachypsylla have large numbers of very small sclerites. In general the sclerites may be divided into laterals and medials. Nymphs of most Psyllidae and Spondyliaspididae have small laterals and small medial sclerites (Fig. 11). The nymphs of Aphalara and Diaphorina have elongate small lateral sclerites and at least $2+2$ enlarged medials (Fig. 12) and Paurocephala have no laterals but at least $2+2$ large medials (Fig. 13). Egeirotrioza and Homotoma have $1+1$ medial sclerites only (Fig. 14). The metathoracic tergum is assumed to be the area between the lines of attachment with the hindwing-pads with the body. The sclerites of the metathoracic tergum take the same form as those of the mesothoracic tergum.

Figs 11-14 Thoracic morphology, character N8. 11, small lateral and small medial sclerites (shaded); 12, elongate lateral (adjacent to wing-pad) and $2+2$ large medial sclerites on both meso- and metathorax; 13 , no lateral and $2+2$ large medial sclerites on both meso- and metathorax; 14 , no lateral and $1+1$ large medial sclerite on both meso- and metathorax. (fw - forewing-pad; hw - hindwing-pad.)

Many species have paired depressions on each thoracic tergite. These are very well developed on the meso- and metathoracic tergites of Aacanthocnema casuarinae. The dorsal thoracic and abdominal areas of some Calophya spp. are covered in long processes (Fig. 144) while other species of the genus have apparent 'perforations' in their dorsal sclerites.

The forewing-pad is extended anteriorly as a humeral lobe in many Aphalaridae, Carsidaridae, Diaphorina and Triozidae. In Aphalara and Diaphorina the humeral angle is normally placed away from the head margin (Fig. 17) while in Triozidae the humeral lobe may be adjacent to the eye (Fig. 19). In most species the apical (posterior) angle of the forewing-pad is adjacent or exterior to the margin of the hindwing-pad (Fig. 20). However, in some Calophya spp. and Triozidae the apical angle is interior to the hindwing-pad margin, and the margins of the

Figs 15-19 Humeral lobe development, character N1. 15, forewing-pad without a humeral lobe; 16, humeral lobe present, but not extending anterior to procoxa; 17, humeral lobe anterior to procoxa; 18, humeral lobe anterior to posterior margin of eye; 19, humeral lobe anterior to eye. (C-level of anterior margin of procoxa; cp - cephaloprothorax; fw - forewing-pad; H - level of humerus; pc - procoxa.)

Figs 20-26 Wing-pad and tarsal arolium forms. 20, apex of forewing-pad exterior to margin of hindwingpad, character N2; 21, apex of forewing-pad interior to margin of hindwing-pad, but apex of hindwingpad external to abdomen margin, characters N2 and N3; 22, apex of forewing-pad adjacent to margin of hindwing-pad and wing-pad margins confluent, character N2; 23, apex of forewing-pad interior to margin of hindwing-pad, apex of hindwing-pad interior to margin of abdomen and all margins confluent, characters N 2 and $\mathrm{N} 3 ; 24$, triangular tarsal arolium, character N41; 25, triangular and petiolate arolium, character N4; 26, almost circular arolium, character N5. (a - arolium; ab-abdomen; fw-forewing-pad; hw - hindwing-pad; tc - tarsal claw.)
forewing-pad and hindwing-pad are confluent (Fig. 22). Furthermore, the hindwing-pad margin may also be confluent with the abdominal margin (Fig. 23). These features are especially well developed in species which form pit-galls. Adults of Leptynoptera sulfurea and Trioza diospyri have very reduced hindwings and thus the nymphs have reduced hindwing-pads (Fig. 48). Wing-pad tracheation is sometimes observed just before adult moult and Heslop-Harrison (1951) illustrates this for Psylla sp. and Trioza sp.

Psyllid nymphal legs lack such elaborate features as meracanthi, genual spurs, metatibial spines and metabasitarsal spines which are seen in the adult. Of the nymphs studies only two, i.e. Paraphalaroida fremontiae and Togepsylla matsumurana, appear to have articulate tarsi, as in the adult (Fig. 55). Pachypsylla celtididisgemma and Pelmatobrachia sp. also have twosegmented tarsi but they appear non articulate (Fig. 52). Most species have a single apparent tarsal segment on each leg. This appears to be homologous with segment II of the adult because the apparent 'tibia' is often constricted sub-apically at a point assumed to represent the division line between the tibia and segment I (Fig. 53). The division line is often marked by simple setae. Because this division line is not always visible the apparent tibia and tarsus will hereafter be called the tibiotarsus and the one apparent tarsal segment will be called a division. Most species have a pad between the tarsal claws. Ferris (1923, 1925, 1926), Ferris \& Hyatt (1923) and Rahman (1932) term this a pulvillus. Ferris (1928a, 1928b) uses the word empodium and Lal (1937) was inconsistent. However, the correct term is arolium (Imms, 1957; Chapman, 1971). Arolia are very reduced, or absent, in some Carsidaridae, while in many Triozidae they are at least semicircular (Fig. 26) and in most Psyllidae the arolia are petiolate (Fig. 25).

Abstract

Abdomen The abdomen is assumed to be any body part posterior to the join of the metathoracic tergum and hindwing-pads. Any short broad free sclerites near the base of the abdomen are discounted when describing the sclerites of the abdomen as they may equally well be of thoracic origin. In most species free sclerites and transverse rows of setae indicate the segments. In these species the sclerites are arranged at least $1+1$ per segment but in the apical area the individual sclerites are often fused to form a caudal plate (Figs 2-4). Some Carsidaridae have completely membraneous abdomens while in many Triozidae the caudal plate covers the whole abdomen (Fig. 4). With this confusing set of possibilities no attempt has been made to homologise the abdominal sclerites. The ventral abdominal surface of most species has $2+2$ sclerites on each segment anterior to the anal plate. The anal plate is formed by a fusion of the individual sclerites in the apical area. The most lateral free sclerites surround the spiracles. Because the true base of the abdomen is poorly defined and spiracles can 'migrate' or 'float' (Heslop-Harrison, 1952a) or be reduced in number (Matsuda, 1976) the possible homology of the spiracles was not studied.

The abdomen of Paurocephala spp. has large apical tubercles (Fig. 114) and many Spondyliaspidinae have lateral bulges, coincident with each apparent segment (Fig. 28). Some species have apical 'teeth' (Fig. 122). In most Pachypsylla spp. the central 'tooth' or 'teeth' are larger than the most lateral 'teeth' (Fig. 125) while in Euphalerus gallicolus the most lateral 'teeth' are enlarged (Fig. 120).

Some species of each family have the anal opening posterior (i.e. apical) while others have a ventral anal opening. In many species the sex of the final instar nymphs can be determined by the shape of the suture which extends anteriorly from the anus (Ball \& Jensen, 1966; Ossiannilsson, 1970; Hodkinson, 1973).

Most species have an anal pore-field which usually surrounds the anus as a ring (Figs 7, $130-142$). This ring, which is often double, is called the circum-anal pore ring by Ferris (1928a). The following types of anal pore-fields have been observed. (i) Circum-anal ring only (Fig. 111). (ii) Circum-anal ring plus two additional rings placed laterally to it (Fig. 110). (iii) Two rings each lateral to the anus and no circum-anal ring (Fig. 150). (iv) Four rings and no circum-anal ring (Fig. 120).

Figs 27-33 Abdomen shapes and setal types. 27, abdomen margin with lateral bulges, character N44; 28, abdomen margin serrate (typical of many Spondylaspididae), character N44; 29, capitate seta, showing hollow structure (as observed with a scanning electron microscope); 30, rod seta; 31, lanceolate seta; 32, sectaseta, pointed and without a ring; 33 , sectaseta, pointed and with a ring.
(v) Outer circum-anal ring broken at two or more places (Fig. 97).
(vi) Circum-anal ring very small and remainder of pore-field arranged as bands (Fig. 155).
(vii) Circum-anal ring absent - otherwise as (vi).
(viii) Circum-anal ring plus round or ovoid groups of pores which are probably derived from an outer ring (Fig. 99).
(ix) Small groups of pores (Fig. 154).
(x) Individual or grouped pores arranged in rings (Fig. 123) or broken rings (Fig. 119).
(xi) Small groups of pores dispersed in anal region, no circum-anal ring (Fig. 129).

Ferris (1928a) discussed the homology of the anal pore-field. He concluded that the pore rings of Euphalerus gallicolus (iv) were not homologous with the circum-anal ring. However, species were observed whose circum-anal rings were constricted, suggesting a tendency to break into separate rings, e.g. Livia spp. feeding on Carex (Fig. 111) and Macrohomotoma gladiatum (Fig. 148). This breakage of the circum-anal ring is complete in Livia spp. feeding on Juncus (Fig. 110) and in M. striata (Fig. 149). This suggests that the pore rings of E. gallicolus (Fig. 120) may be of similar origin, i.e. homologous with the circum-anal ring. Groups of pores (type x) may represent a reduction of pore rings (of type ii, iii or iv) as in Eucalyptolyma sp. (Fig. 119). Further breakdown may result in isolated pore groups (type xi) as in many Spondyliasipidinae (Fig. 129). The homology of pore bands (type vi \& vii), e.g. Mesohomotoma hibisci (Fig. 155), remains uncertain although they may derive from the outer circum-anal ring.

Setal types and chaetotaxy

Simple setae, including the ring-based setae of Lal (1937), are simple articulated hairs showing a general distribution over many body parts in all major groups. It may be possible to homologise the positions of some of these setae within a few groups. Because this study is concerned with formation of, and the relationships between higher groups, these setae are not further considered.
Capitate setae (Ossiannilsson, 1970) or spatulate setae (Klyver, 1931; Lal, 1937) are defined as any seta which is apically dilated. Under the SEM the apex appears to be 'cup-like' (Fig. 29) and broken setae reveal a hollow structure. Capitate setae are found on the head, dorsal surface of the thorax, wing-pads, tibia and abdomen of many Psyllidae. These setae are also found singly or in pairs at the tarsal apices of many psyllids and they are best developed in most Spondyliaspidinae (Fig. 38).
Clavate setae (Ferris, 1923) are very short setae with a narrow base broadening gradually to maximum breadth just prior to the blunt apex (Fig. 172). Clavate setae are observed in Arepuna sp., many Diaphorina spp. and some Triozidae. In some individual species of Diaphorina they occur together with lanceolate setae while in some Triozidae they occur together with sectasetae or scales. Clavate setae are very small and difficult to observe. In reality they may be modified lanceolate setae, sectasetae or scales.
Sectasetae (Ferris, 1923; Boselli, 1929; Lal, 1937). These include dagger-shaped and spearshaped setae (Lal, 1937), and dagger-like setae (Klyver, 1931). Sectasetae are defined as setae having an angle (Fig. 32) or ring (Figs 33, 34), around their circumference, in the basal third which is visible under phase contrast. Sectasetae arranged in the $1+1,2+2,3+3$ and $4+4$ pattern, spaced from the next by more than their own length (Fig. 37), along the abdomen margin occur in two forms. In Ciriacremum spp., Euceropsylla spp., Insnesia glabruscuta and Isogonoceraia divergipennis they are tubular. However, these sectasetae are pointed in other Psyllidae. Species with this precise arrangement of abdomen margin sectasetae normally lack sectasetae on other body areas. The only exceptions are Neopsyllia spp. and Platycorypha princeps each of which have a single sectaseta on the hindwing-pad margin.

Pointed sectasetae (Figs 32-33) arranged in large numbers on many body areas are a feature of some Aphalaridae, some Carsidaridae and some Triozidae. However, on most Triozidae the

35

36

Figs 34-37 Setal types and chaetotactic arrangements. 34, sectaseta, truncate and with a ring; 35, truncate sectasetae on a body margin, adjacent to each other, character $\mathrm{N} 25 ; 36$, scales on a body margin (typical of many Hawaiian Triozidae); 37, the positions in which up to $4+4$ setae are placed on the abdomen margin of many Psyllidae, and the three types of setae which occupy these positions, namely lanceolate (e.g. Mitrapsylla deserata), pointed sectaseta (e.g. many Psylla spp.) and the tubular shaped truncate sectaseta of Ciriacremum spp. (ab-abdomen; l-lanceolate seta; ss - sectaseta; ts - tubular sectaseta).

39

Figs 38-41 Chaetotactic arrangements and antennae. 38, a pair of capitate setae at the apex of a tarsus (these setae are, especially well developed in many Spondyliaspididae), characters N20-N22; 39, a capitate seta placed behind the eye, character N13. Antennae. 40, Calophy a californica; 41, Gyropsylla spegazziniana. (c-capitate seta; cp-cephaloprothorax; fw-forewing-pad; r-rhinaria; ss - sectaseta; tc - tarsal claw.)
sectasetae are truncate (Fig. 34). Three distribution patterns of sectasetae could be recognised on the antennae. One row on the opposite side to the rhinaria occurs in many Calophya spp. (Fig. 40) while one row adjacent to the rhinaria occurs in Diclidophlebia eastopi. Species with more than one row (Fig. 45) are Moraniella calodendri, Paraphalaroida fremontiae, Paurocephala spp. and Togepsylla matsumurana.
Lanceolate setae (Ferris, 1923; Boselli, 1929; Rahman, 1932; Lal, 1937) are defined as stout setae with a convex profile and a constricted base (Fig. 31). The maximum breadth of the seta is normally in the basal two-thirds. Lanceolate setae are a feature of most Aphalaridae, Diaphorini and Psyllopsis spp. They are also observed in a few Carsidaridae (e.g. Epicarsa sp., Mycopsylla fici and Pseudophacopteron floccosa) and some Spondyliaspididae (Ctenarytaina eucalypti, Eucalyptolyma sp. and Phellopsylla sp.). Homotoma ficus has lanceolate setae based upon tall tubercles (Fig. 171).

Heteropsylla spp. have lanceolate setae arranged $3+3$ in positions resembling the similarly placed sectasetae in many species of Psyllidae (Fig. 37). These lanceolate setae are treated as homologous with similarly placed sectasetae and not with other lanceolate setae.
Scales are defined as broad, apparently flat setae with a narrow base (Fig. 36) which are placed marginally on some New World and Hawaiian Triozidae.
Rod setae are long, parallel or subparallel-sided, with a constricted base (Fig. 30), and they are found covering the bodies of Aphalaroida pithecolobia, Euglyptoneura robusta, Pexopsylla cercocarpi and Psylla ulmi.

All attempts to recognise homology of setal positions across the whole of the Psylloidea failed except in one case, i.e. a single capitate seta placed laterally or sublaterally behind each eye (Fig. 39). In general the specialised setae occur in large numbers in any one body area. It is assumed that at least some of the setae in one body area of one species are homologous with some of the same type of seta in the same body area in any other species. The only exception to this rule is the sectasetae and lanceolate setae on the margin of the abdomen. Two arrangements of these setae were recognised: a set of one to four pairs spaced well apart (Fig. 37) and secondly much larger numbers with no obvious individual positions.

Selection of nymphal characters

A set of 88 ordered multistate and two-state characters were initially defined. From these characters those most likely to be of value in forming major groups were selected for a detailed series of analyses.

For character selection the ordered multistate characters were recoded into 120 additive two-state characters (Sneath \& Sokal, 1973). Characters which correlated with large numbers of other characters were identified by the SUMRAT information statistic (Legendre \& Rogers, 1972). Only those characters having a SUMRAT value in excess of the mean value were accepted (Baum, 1977). Characters selected by this method were almost identical with those selected by an examination of character eigenvector values in a principal component analysis, carried out on the original character covariance matrix (see Davies \& Boratynski, 1979 for method).

After these initial analyses, 45 selected two-state characters remained and these were combined to form 34 ordered multistate and two-state characters (Table 4). Rejected characters are summarised in Table 5.

Once the number of characters has been reduced to 34 , many species are identical as defined by the selected character set. Forty-eight species groups were formed, and one representative species was chosen from each (Table 6). The 134 species which remain distinct are also listed in Table 6, making a total of 182 selected species. All subsequent phenetic analyses are conducted 1 using the 34 selected characters and the 182 selected species.

Figs 42-47 Antennae. 42, Microceropsylla sp.; 43, Moraniella calodendri; 44, Mycopsylla gardenensis; 45, Paurocephala gossypii; 46, Pauropsylla depressa; 47, Phacopteron lentiginosum. (r - rhinaria.)

Figs 48-53 Wing-pads, hind tibia and tarsi. 48, Leptynoptera sulfurea wing pads, showing reduced hindwing-pad corresponding to the dipterous adult. Wing-pads and chaetotaxy, 49, Pauropsylla trichaeta; 50, Trioza chenopodii. Hind tibia and tarsi, 51, Camarotoscena unicolor showing tibiotarsus (tibia + tarsal segment I) and the differentiated tarsal segment II; 52, Pelmatobrachia sp. showing the tibia and both tarsal segments differentiated; 53, Phytolyma fusca showing tibiotarsus and tarsal segment II. (fw - forewing-pad; hw - hindwing-pad.)

Figs 54-66 Hind tibia and tarsi, and tarsal arolia (uniguitractor shown in black). Hind tibia and tarsi, 54, ?Pseudophacopteron floccosa (?Chineura sp.) showing tibiotarsus, tarsal segment II and associated setae; 55, Togepsylla sp. showing both tarsal segments separate to tibia. Tarsal arolia of Aphalarinae: 56, Aphalara persicaria; 57, Colposcenia sp.; 58, Gyropsylla ilicis. Tarsal arolium of Aphalaroidinae. 59, Aphalaroida ? pithecolobia. Tarsal arolium of Diaphorininae: 60, Diaphorina solani; 61, Psyllopsis fraxinicola. Tarsal arolium of Euphylurini: 62, Euphyllura? aethiopica; 63, Neophyllura (Arbutophila) arbuti; 64, N. (N.) arctostaphyli. Tarsal arolium of Paraphalaroidini: 65, Diclidophlebia eastopi; 66, Paraphalaroida fremontiae. Scale line represents 0.05 mm .

Figs 67-82 Tarsal arolia (unguitractor shown in black). Liviinae: 67, Livia maculipennis; 68, L. vernalis. Paurocephalinae: 69, Camarotoscena unicolor; 70, Paurocephala urenae. Strophingiinae: 71, Strophingia ericae. Rhinocolinae: 72, Agonoscena sp. (A); 73, Leurolophus vittatus; 74, Moraniella calodendri; 75, Rhinocola aceris; 76, Tainarys schini. Euphalerinae: 77, Euphalerus nidifex; 78, Retroacizzia antennata. Psyllidae: 79, Acizzia acaciaebaileyanae; 80, A. uncatoides; 81, Anomoneura mori; 82, Ciriacremum julbernardioides. Scale line represents 0.05 mm .

Figs 83-96 Tarsal arolia (uniguitractor shown in black). Psyllidae: 83, Epipsylla sp. (A); 84, Epipsylla sp. (B); 85, Euceropsylla cayeyensis; 86, Freysuila sp.; 87, Insnesia disjuncta; 88, Isogonoceraia sp.; 89, Mitrapsylla deserata; 90, Neopsyllia erythinae; 91, Platycorypha princeps; 92, Psylla parallela; 93, Trigonon longicornis. Phacopteronidae: 94, Pseudophacopteron sp. (A). Triozidae: 95, Egeirotrioza sp. (A); 96, Trioza hirsuta. Scale line represents 0.05 mm .

Figs 97-103 Anal pore-fields of Apalaridae. 97, Agonoscena sp. (A); 98, Aphalara polygoni; 99, Camarotoscena speciosa; 100, C. unicolor (broken line indicates position of abdomen margin); 101, Craspedolepta nebulosa; 102, C. suaedae; 103, C. subpunctata.

Figs 104-107 Anal pore-fields of Aphalaridae. 104, Craspedolepta? vancouverensis; 105, Ctenarytaina eucalypti (inset shows detail of pore-field); 106, Diclidophlebia ? eastopi; 107, Euphyllura ? aethiopica.

Figs 108-111 Anal pore-fields of Aphalaridae. 108, Gyropsylla ilicis; 109, Leurolophus vittatus; 110, Livia maculipennis; 111, L. vernalis.

Figs 112-115 Anal pore-fields of Aphalaridae. 112, Neophyllura bicolor; 113, Paraphalaroida fremontiae; 114, Paurocephala gossypii; 115, Psyllopsis fraxinicola.

Figs 116-118 Anal pore-fields. Aphalaridae: 116, Strophingia cinereae. Spondyliaspididae: 117, Colophorina cassiae; 118, Creiis sp. (insets show pore details and 'tooth' at apex of abdomen).

Figs 119, 120 Anal pore-fields. Aphalaridae: 119, 'Eucalyptolyma' sp. (inset shows detail of pore field). Spondyliaspididae: 120, Euphalerus gallicolus.

Figs 121-123 Anal pore-fields of Spondyliaspididae. 121, Euphalerus jugovenosus; 122, E. nidifex; 123, Euphalerus sp. (A).

Figs 124-126 Anal pore-fields and abdomen apex shapes of Spondyliaspididae. 124, Glycaspis baileyi (inset shows detail of pore-field); 125, Pachypsylla celtidismamma, which lacks a pore-field; $126, P$. japonica (inset shows detail of pore-field).

Figs 127-129 Anal pore-fields and abdomen apex shapes of Spondyliaspididae. 127, Phellopsylla sp. (insect shows detail of a pore group); 128, Retroacizzia antennata, which lacks a pore-field; 129, Spondyliaspis sp. (inset shows detail of two of the pore groups).

Figs 130-133 Anal pore-fields and abdomen chaetotaxy of Psyllidae. 130, Anomoneura mori; 131, 'Euphalerus' sp. (C); 132, Euglyptoneura fuscipennis; 133, Mitrapsylla deserata (inset shows detail of funnel setae).

Figs 134-138 Anal pore-fields of Psyllidae. 134, Psylla buxi; 135, P. foersteri; 136, P. galeaformis; 137, P. phoradendrae; 138, P. pulchella.

Figs 139-142 Anal pore-fields of Psyllidae. 139, Psylla saliceti; 140, P. simlae; 141, P. sorbi (inset shows pore structure of part of outer circum-anal ring); 142. Spanioneura fonscolombii.

Figs 143-145 Anal pore-fields and abdominal structures of Calophyidae and Phacopteronidae. Calophyidae: 143, Apsylla cistellata (inset shows pore structure of parts of the pore-field which is outside the circum-anal rings); 144, Calophya californica, showing the long processes which cover the dorsal surfaces of the abdomen and thorax. Phacopteronidae: 145, Bharatiana octospinosa.

Figs 146-149 Anal pore-fields. Phacopteronidae: 146, Phacopteron lentiginosum (anus crosshatched); 147, Pseudophacopteron sp. (B). Homotomidae: 148, Macrohomotoma gladiatum; 149, M. striatum.

Figs 150-152 Anal pore-fields of Homotomidae. 150, Mycopsylla ? fici; 151, M. gardenensis; 152, Pseudoeriopsylla nyasae.

Figs 153-155 Anal pore-fields and abdomen chaetotaxy. Homotomidae: 153, Synoza floccosa (inset shows abdomen margin sectaseta). Carsidaridae: 154, Mastigimas cedrelae; 155, Mesohomotoma hibisci.

Figs 156-158 Anal pore-fields and abdomen margin shapes of Triozidae. 156, Leuronota michoacana; 157, Neolithus sp., showing shape of abdomen apex; 158, Triozamia lamborni (inset shows detail of a pore area).

Figs 159-164 Anal pore-fields and chaetotaxy. Triozidae: 159, Trioza alacris, with details of circum-anal pore ring and abdomen margin setae; 160, Triozoida silvestris, circum-anal pore rings. Aphalaridae: 161, Aphalaroida pithecolobia, abdomen margin rod setae; 162, Phytolyma minuta, circum-anal pore rings and abdomen margin lanceolate setae; 163, Crastina linavuorii, abdomen margin lanceolate setae; 164, Aphalara persicaria, abdomen margin lanceolate setae.

165

Figs 165-167 Chaetotaxy of Aphalaridae. 165, Diaphorina putonii, abdomen margin lanceolate setae; 166, Moraniella calodendri, forewing-pad margin sectasetae; 167, Tainarys schini, abdomen margin lanceolate setae.

172

173

Figs 168-173 Chaetotaxy. Aphalaridae: 168, Rhinocola aceris, abdomen margin with truncate lanceolate setae. Spondyliaspididae: 169, Arepuna sp., abdomen margin clavate setae. Psyllidae: 170, Pexopsylla cercocarpi, abdomen margin rod and sectasetae. Homotomidae: 171, Homotoma ficus, lanceolate seta mounted on a tubercle. Triozidae: 172, Crawforda triopsyllina, forewing-pad dorsal surface clavate seta; 173, Hevaheva swezeyi, abdomen margin scales.

174

Figs 174-177 Abdomen margin scales of Triozidae. 174, Ceropsylla sideroxyli; 175, Kuwayama pisonia; 176, Swezeyana elongagena; 177, Trioza palmicola, showing both scales and sectasetae.

Table 4 Selected nymphal characters.
Selected characters are numbered N1-N34. All the character states in the original list of 88 characters are tabulated. However, some character states became combined by the selection procedure and, hence, in some characters two consecutive states are marked with the same value.

Characters describing shape and position

N1. Humeral lobe (in the case of variability the code chosen was the highest observed).
No humeral lobe (Fig. 15).
Humeral lobe present, anterior margin of forewing-pad not extending anterior to procoxa (Fig. 16).
Humeral lobe present, anterior margin of forewing-pad anterior to procoxa and posterior to eye (Fig. 17).
$=0$

Humeral lobe present, anterior margin of forewing-pad anterior to posterior of eye and posterior to anterior of eye (Fig. 18).
Humeral lobe present, anterior margin of forewing-pad anterior to eye (Fig. 19). $=4$
N2. Forewing-pad; position of apex.
Apex exterior to margin of hindwing-pad (Fig. 20).
$=0$
Apex adjacent or interior to margin of hindwing-pad, margin of forewing-pad not confluent with margin of hindwing-pad (Fig. 21).
Apex adjacent or interior to margin of hindwing-pad, margin of forewing-pad confluent with margin of hindwing-pad (Fig. 22).
N3. Hindwing-pad; position of apex.
Apex exterior to margin of abdomen (Fig. 21).
Apex adjacent or interior to margin of abdomen, margin of hindwing-pad not confluent with margin of abdomen (Fig. 22).
Apex adjacent or interior to margin of abdomen, margin of hindwing-pad confluent with margin of abdomen (Fig. 23).
N4-N5. Form of tarsal arolium (clarifying characters of N41).
N4. Triangular and petiolate (Fig. 25).
No $=0 \quad$ Yes $=1$
N5. Disc-like or more than semicircular (Fig. 26).
No $=0 \quad$ Yes $=1$
N6. Anal opening ventral.
No $=0 \quad$ Yes $=1$
Characters of sclerite fusion
N7. Prothorax dorsal sclerites. Extent of fusion with head.
Prothorax dorsal sclerites completely separate from head. $=0$
Prothorax dorsal sclerites partly fused with head. At least $2+2$ sclerites of prothorax separate to cephaloprothorax (Fig. 9).
Prothorax dorsal sclerites fused with head. $1+1$ sclerite of prothorax separate to cephaloprothorax (Fig. 10).
$=0$

Prothorax dorsal sclerites fused with head.

$$
=1
$$

$=2$
N8. Mesothorax and metathorax dorsal surface sclerite arrangement (species which are membraneous or completely sclerotized, i.e., the separate sclerites are undifferentiated, are coded zero).
Medial sclerites (more than $1+1$) small. Lateral sclerites small (Fig. 11). $=0$
Medial sclerites (more than $1+1$) large. Lateral sclerites small (Fig. 12).
$=1$
Medial sclerites (more than $1+1$) large. Lateral sclerites absent (Fig. 13). $=1$
Medial sclerite ($1+1$) large. Lateral sclerites absent (Fig. 14).
N9. Abdomen dorsal surface with many free sclerites. Caudal plate, if present, covering less than whole abdomen (small transverse sclerites at base of abdomen are discounted) (Fig. 2).
No $=0 \quad$ Yes $=1$
N10. Abdomen dorsal surface heavily sclerotized (caudal plate). At most with a few small transverse sclerites at the base of the abdomen (Fig. 4).
No $=0 \quad$ Yes $=1$

Chaetotaxy characters

Twelve following characters (N11-N22). Capitate setae present.
No $=0 \quad$ Yes $=1$
N11. Head margin capitate setae.
N12. Antenna with capitate setae close to rhinaria IV and VI.
N13. Capitate seta placed laterally or sublaterally behind eye (Fig. 39).
N14. Thorax dorsal capitate setae.
N15. Forewing-pad dorsal capitate setae.
N16. Forewing-pad margin capitate setae.
N17. Hindwing-pad margin capitate setae.
N18. Abdomen dorsal capitate setae.
N19. Abdomen margin capitate setae.
N20-N22. Tarsal apex with 2 capitate setae (Fig. 38).
N20. Foretarsi.
N21. Midtarsi.
N 22 . Hindtarsi.
Three following characters (N23-N25). Lanceolate setae present.
No $=0 \quad$ Yes $=1$
N23. Forewing-pad margin lanceolate setae.
N24. Hindwing-pad margin lanceolate setae.
N25. Abdomen margin lanceolate setae present, numbering more than $4+4$, or if fewer than $5+5$ they are separated by less than their own length.

Eight following characters (N26-N33).
Sectasetae. Up to three 'present' states were recognised in the initial coding.

Absent.
$=0$
Present and pointed (Figs 32, 33). $=1$
Present and truncate (Fig. 34). $=2$
Present, truncate and each seta adjacent to the next or separated by less than one-quarter its maximum breadth from the next seta (Fig. 35).

N26. Head margin sectasetae.
Absent $=0 ;$ Pointed $=1 ;$ Truncate $=2 ;$ Adjacent $=2$
N27. Head dorsal sectasetae.
Absent $=0 ;$ Pointed $=1$.
N28. Mesothoracic and metathoracic dorsal sectasetae.
Absent $=0 ;$ Pointed $=1 ;$ Truncate $=2$.
N29. Forewing-pad dorsal sectasetae.
Absent $=0 ;$ Pointed $=1 ;$ Truncate $=2$.
N30. Forewing-pad margin sectasetae.
Absent $=0 ;$ Pointed $=1 ;$ Truncate $=2 ;$ Adjacent $=2$.
N31. Hindwing-pad margin sectasetae.
Absent $=0 ;$ Pointed $=1 ;$ Truncate $=2 ;$ Adjacent $=2$.
N32. Abdomen dorsal surface sectasetae.
Absent $=0 ;$ Pointed $=1 ;$ Truncate $=2$.
N33. Abdomen margin sectasetae numbering more than $4+4$, of if less than $5+5$ they are each separated from the next by less than their own length.
Absent $=0 ;$ Pointed $=1 ;$ Truncate $=2 ;$ Adjacent $=2$.
N34. Abdomen margin sectasetae or lanceolate setae present and numbering $1+1,2+2,3+3$, or $4+4$ and each separated by more than their own length (Fig. 37).
No $=0 \quad$ Yes $=1$

Table 5 Rejected nymphal characters.
Rejected characters are numbered N35-N88. Values are not given against the states, which are separated by a ' $/$ '.

Characters describing shape and position

N35. Antenna base position.
On head margin, or if ventral antenna apex extends beyond head margin (Fig. 4)/Ventral, antenna apex not extending beyond margin of head (Fig. 8).
N36. Antenna with one rhinarium (Fig. 42). No/Yes.
N37. Antenna with five rhinaria. $\mathrm{No} / \mathrm{Yes}$.
N38. Antenna with six rhinaria. No/Yes.
N39. Thorax with pairs of large depressed areas on each segment. No/Yes.
N40. Hindwing-pad very small (Fig. 48). No/Yes.
N41. Tarsal arolia. Very reduced or apparently absent/triangular (Figs 24, 25) or disc-like (Fig. 26).
N42. Thoracic and abdominal dorsal sclerites with large 'perforations'. No/Yes.
N43. Thoracic and abdominal dorsal surfaces with cuticular processes (Fig. 144). No/Yes.
N44. Abdominal segments laterally bulging or serrate. No. Margin evenly shaped/Lateral bulges (Fig. 27)/Serrate (Fig. 28).

N45. Apical margin of abdomen with 'tooth-like' processes. $\mathrm{No} / \mathrm{Yes}$ (plus the two following clarifying characters).
N46. No medial 'tooth' (Figs 120, 122). No/Yes.
N47. Medial 'tooth' present (Fig. 125). No/Yes.
N48. Anal pore-field present (in any form). No/Yes (plus 6 following clarifying characters).
N49. Circum-anal ring with two additional rings placed laterally to it (Fig. 121). No/Yes.
N50 Two rings each lateral to the anus, no circum-anal ring (Fig. 150). No/Yes.
N51. Four rings, no circum-anal ring (Fig. 120). No/Yes.
N52. Outer circum-anal ring broken at two or more places. No/Yes, but remaining in form of a circum-anal ring (Fig. 97)/Bands dispersed. Not forming a circum-anal ring. A small circum-anal ring may remain which is assumed to derive from an inner ring (Fig. 155)/Bands dispersed and broken. Not forming a circum-anal ring. A small circum-anal ring may remain which is assumed to derive from an inner ring (Fig. 154).
N53. As N52 but describing absence of small circum-anal ring. Present/Absent.
N54. Outer circum-anal ring broken into single pores or small groups of pores. $\mathrm{No} / \mathrm{Yes}$, pores or groups of pores in the form of rings (Fig. 117)/Yes, pores or groups of pores dispersed (Fig. 129).

Characters of sclerite fusion

N55. Mesothorax and metathorax dorsal surface. Numerous very small sclerites. No/Yes.
Three following characters (N56-N58):
Tibio-tarsal fusion of each leg. Two tarsal segments free, articulate (Fig. 55)/Two tarsal segments free, not articulate (Fig. 52)/One tarsal segment free, (segment II) not articulate (Fig. 51)/No tarsal segment free.
N56. Foreleg (as above).
N57. Midleg (as above).
N58. Hindleg (as above).
N59. Abdomen dorsal surface membraneous. No/Yes.

Chaetotaxy characters

N60. Head dorsal capitate setae present. No/Yes.
N61. Antenna segment I inner apical angle capitate seta present. No/Yes.
N62. Abdomen ventral capitate setae present. No/Yes.
N63. Rod setae on body surface present. No/Yes.

Nine following characters (N64-N72). Clavate setae present. No/Yes.
N64. Head margin clavate setae.
N65. Head dorsal clavate setae.
N66. Antenna segment I inner apical angle clavate seta.
N67. Thorax dorsal clavate setae.
N68. Forewing-pad dorsal clavate setae.
N69. Forewing-pad margin clavate setae.
N70. Hindwing-pad margin clavate setae.
N71. Abdomen dorsal clavate setae.
N72. Abdomen margin clavate setae.
Six following characters (N73-N78). Lanceolate setae present. No/Yes.
N73. Head margin lanceolate setae.
N74. Head dorsal lanceolate setae.
N75. Antenna segment II with lanceolate setae.
N76. Thorax dorsal lanceolate setae.
N77. Forewing-pad dorsal lanceolate setae.
N78. Abdomen dorsal lanceolate setae.
N79. Lanceolate setae present and placed on tall tubercles (Fig. 171). No/Yes.
N80. Antenna with one row of sectasetae located on the opposite margin of the antenna to the rhinaria (Fig. 40). No/Yes.
N81. Antenna with more than one row of sectasetae (Fig. 45). No/Yes.
N82. Antenna with one row of sectasetae located on the same margin as the rhinaria. No/Yes.
N83. Tibia with stout setae (Fig. 51). No/Yes.
N84. Abdomen margin sectasetae present and based on large clustered tubercles (Fig. 114). No/Yes.
N85. Scales present on body margin (Fig. 36). No/Yes.
Three clarifying characters of N34.
N86. Sectasetae (of N34 type) tubular. No/Yes.
N87. Lanceolate setae (of N34 type) present. No/Yes.
N88. Sectasetae (of N34 type) pointed. No/Yes.

Table 6 Groups of species identical with the selected nymphal characters. The species chosen to represent the group is named at the top of each list.

1. Aacanthocnema casuarinae

Ceropsylla matorelli
2. Acizzia a caciae

Acizzia acaciaebaileyanae
Psylla phoradendrae
3. Agonoscena sp. (C).

Agonoscena sp. (B).
Strophingia cinereae
4. Apsylla cistellata

Mastigimas cedrelae
M. sp. (B)

Mesohomotoma tessmanni
Tenaphalara malayensis
5. Calophya nigripennis

Calophya flavida
6. Calophya triozomima

Calophya dubia
7. Ceanothia ceanothi

Euphalerus tantillus
Psylla simlae
8. Colophorina cassiae Epipsylla sp. (B).
9. Colopscenia sp . Craspedolepta minuta
C. minutisimma

Diaphorina cardiae
D. chobauti
10. Creiis sp .

Livia coloradensis
L. maculipennis
11. Ctenarytaina eucalypti

Craspedolepta subpunctata
12. Diaphorina citri

Craspedolepta constricta
Diaphorina florea
13. Diaphorina putonii

Diaphorina clutiae
D. punctulata
14. Euceropsylla russoi Ciriacremum capense Euceropsylla minuticona E. sp.
15. Euphalerus jugovenosus
E. rugipennis
E. vermiculosus

Psylla betulaenanae
P. carpinicola
P. floccosa
P. galeaformis
P. striata
P. trimaculata
16. Glycaspis baileyi

Cardiaspina albitextura
C. sp.
C. squamula

Glycaspis spp.
17. Gyropsylla ilicis

Gyropsylla spegazziniana
18. Insnesia glabruscuta Mitrapsylla deserata
19. Mycopsylla fici Macrohomotoma gladiatum Mycopsylla gardenensis
20. Neophyllura arctostaphyli Neophyllura arbuti
21. Neopsyllia erythrinae Euglyptoneura sp. Neopsyllia sp. Platycorypha princeps
22. Pachypsylla venusta Pachypsylla spp. Tetragonocephala sp.
23. Paracarsidara gigantea Bharatiana octospinosa Mastigimas sp. (A) Mesohomotoma hibisci Paracarsidara spp. Tenaphalara acutipennis
24. Paratrioza cockerelli Paratrioza arbolensis P. maculipennis

Trioza curvatinervis T. minuta T. salicivora
25. Paurocephala gossypii Paurocephala urenae
26. Pennavena fabulosa Craspedolepta furcata C. nervosa
27. Psylla alba

Psylla sinuata
28. Psylla alni

Psylla buxi
Spanioneura fonscolombii
29. Psylla brevistigmata

Psylla minuta
P. parallela
30. Psylla brunneipennis

Psylla coryli
P. hirsuta
P. moscovita

Purshivora chelifera
31. Psylla mali

Euglyptoneura robusta
Pexopsylla cercocarpi
Psylla ribesiae
32. Psylla media

Arytainilla hakani
33. Psylla minor

Psylla magnicauda
34. Psylla nigrita

Psylla saliceti
35. Psylla pulchra

Psylla hamata
36. Psylla pyricola

Psylla myrtilli
P. visci
37. Psylla pyrisuga

Arytainilla cytisi
Psylla melanoneura
38. Psyllopsis fraxinicola

Aphalaroida pithecolobia
Psyllopsis fraxini
39. Spondyliaspis sp.

Cardiaspina densitexta
40. Strophingia ericae

Aphalara curta
A. nubifera
A. polygoni
A. simila

Craspedolepta augustipennis
C. artemisiae
C. sonchi
C. suaedae
C. vancouverensis
C. veaziei

Tainarys schini
41. Swezeyana elongagena

Trioza palmicola
42. Trichochermes walkeri

Trioza phoradendrae
43. Trioza albifrons

Paratrioza lavaterae
Trioza beameri
T. quadripunctata
44. Trioza albiventris

Trioza atkasookensis
T. crithmi

45. Trioza chenopodii
 Trioza litseae
 46. Trioza diospyri
 Trioza bakeri
 T. frontalis

The following species have unique descriptions:
Acizzia hakeae
A. russellae
A. uncatoides

Agonoscena sp. (A)
Amorphicola amorphae
Anomoneura mori
Aphalara exilis
A. monticola
A. persicaria
A. rumicis

Aphalaroida inermis
Arepuna sp.
Arytaina genistae
Arytainilla spartiicola
A. spartiophila

Calophya californica
C. rhois
C. schini
C. rotundipennis
C. sp.

Camarotoscena spp.
Ceanothia aculeata
Ceropsylla sideroxyli
C. sp.

Ciriacremum capeneri
C. harteni
C. julbernardioides

Craspedolepta nebulosa
Crastina linavuorii
Crawforda triopsyllina
Diaphorina albomaculata
D. solani

Diclidophlebia eastopi
Egeirotrioza spp.
Epicarsa sp.
Epipsylla sp. (A)
Eucalyptolyma sp.
Euceropsylla cayeyensis
Euglyptoneura fuscipennis
Euphalerus gallicolus
E. nidifex
E. sp. (A).
E. sp. (B).
E. sp. (C).
E. sp. (D).

Euphyllura spp.
Floria variegata
Freysuila sp.
Heteropsylla spp.
Hevaheva swezeyi
Homotoma spp.
47. Trioza incidata

Trioza tripunctata
48. Trioza marginepunctata

Trioza vitiensis
T. sp.

Isogonoceraia divergipennis
Kuwayama pisonia
Leptynoptera sulfurea
Leurolophus vittatus
Leuronota michoacana
Livia crefeldensis
L. juncorum
L. vernalis

Macrohomotoma striata
Microceropsylla sp.
Moraniella calodendri
Neolithus sp .
Neophyllura bicolor
Paraphalaroida fremontiae
Pauropsylla spp.
Pelmatobrachia sp.
Phacopteron lentiginosum
Phellopsylla sp.
Phytolyma spp.
Protyora sterculiae
Pseudoeriopsylla nyasae
Pseudophacopteron spp.
Psylla albagena
P. ambigua
P. americana
P. annulata
P. foersteri
P. magna
P. negundinis
P. palmeni
P. peregrina
P. pruni
P. pulchella
P. pyri
P. rhamnicola
P. rhododendri
P. stricklandi
P. sorbi
P. subspiculata
P. ulmi

Purshivora pubescens
Retroacizzia antennata
Rhinocola aceris
Synoza spp.
Tenaphalara sp .
Togepsylla matsumurana
Trigonon longicornis
Trioza alacris
T. aylmeriae
T. anceps
T. cinnamomi
T. erytreae
T. falcata
T. hirsuta
T. lobata
T. magnoliae
T. nigricornis
T. obsoleta
T. obtusa
T. panacis
T. remota
T. urticae
T. vitreoradiata

Triozamia lamborni
Triozoida silvestris indet. (A). indet. (B).
indet. (C).

Phenetic analysis of nymphs

The selected characters are used for these analyses of 182 selected species and resemblance was measured using the mean character difference (Cain \& Harrison, 1958).

Minimum spanning network (MSN)

The MSN (Fig. 178) was constructed using an algorithm given by Farris (1970). In a MSN a set of \mathbf{t} taxa are joined by the shortest possible set of linkages (numbering $\mathbf{t - 1}$) and it indicates which species are phenetically most similar to each other. The main features of the MSN relative to the Becker-Migdisova (1973) families are as follows.

1. The following genera of Psyllidae form one group (Fig. 178a): Acizzia, Amorphicola, Anomoneura, Arepuna, Arytaina, Arytainilla, Ceanothia, Ciriacremum, Colophorina, Euceropsylla, Euglyptoneura, Floria, Freysuila, Heteropsylla, Insnesia, Isogonoceraia, Mitrapsylla, Neopsyllia, Pexopsylla, Platycorypha, Psylla, Purshivora, Retroacizzia, Spanioneura and Trigonon plus Epipsylla sp. (B) and many Euphalerus spp. Genera of Psyllidae not included in this group are: Diaphorina, Pennavena and Psyllopsis plus Epipsylla sp. (A)., Euphalerus gallicolus, E. nidifex and E. sp. (A).
2. The following genera of Triozidae form one group (Fig. 178c): Aacanthocnema, Ceropsylla, Crawforda, Hevaheva, Kuwayama, Paratrioza, Swezeyana, Trichochemes, Trioza (minus 2 spp.) and Triozoida. Genera of Triozidae not included in this group are: Egeirotrioza, Leuronota, Neolithus and Triozamia plus Trioza alacris and T. hirsuta.
3. All members of the Liviidae form one group; however, two are included with Creiis sp. (Fig. 178b).
4. The following genera of Aphalaridae form one group (Fig. 178b): Agonoscena, Aphalara, Colposcenia, Craspedolepta, Crastina, Euphyllura (minus E. phillyreae), Leurolophus, Neophyllura, Rhinocola, Strophingia and Tainarys plus Aphalaroida pithecolobia and Camarotoscena speciosa. Genera of Aphalaridae not included in this group are: Apsylla, Gyropsylla, Moraniella, Paraphalaroida, Paurocephala and Phytolyma plus Aphalaroida inermis, Camarotoscena unicolor and Euphyllura phillyreae.
5. The following genera of Spondyliaspididae form one group (Fig. 178c): Cardiaspina, Eucalyptolyma, Glycaspis and Spondyliaspis.
6. A second group of Spondyliaspididae consists of the genera (Fig. 178b) Creiis, Pachypsylla, Phellopsylla and Tetragonocephala.
7. The Carsidaridae failed to form as one major group.

In the MSN many genera and species are not placed with the majority of their family. The main discordant features are as follows.

1. Aphalaroida inermis and Paraphalaroida (Aphalaridae), and Diclidophlebia (Carsidaridae) are placed with the Psyllidae (Fig. 178a) because they share the feature of a petiolate tarsal arolium.
2. Calophya schini, Calophya rotundipennis and Microceropsylla (Carsidaridae) are placed with the Triozidae (Fig. 178c). These species have a well-developed humeral lobe of the
fore-wing pad like most Triozidae. Calophya schini is surrounded by pointed sectasetae like Crawforda to which it is linked, whereas Calophya rotundipennis and Microceropsylla lack sectasetae like Kuwayama pisonia to which they link.
3. Creiis (Spondyliaspididae) is identical to some species of Livia (Liviidae), as defined by the selected characters. This is because these species have almost entirely zero character states. Euphalerus sp. (A) (Psyllidae) also links to Livia.
4. Diaphorina, Pennavena and Psyllcpsis (Psyllidae), Ctenarytaina (Spondyliaspididae) plus Epicarsa, Homotoma ficus, Phacopteron and Pseudophacopteron floccosa (Carsidaridae) are placed with most Aphalaridae (Fig. 178b). Group 4 is a collection of species with lanceolate setae.
5. Euphalerus nidifex (Psyllidae) is linked with Glycaspis (Spondyliaspididae).
6. Euphalerus gallicolus (Psyllidae) is linked with Creiis (Spondyliaspididae).
7. Most taxa with pointed sectasetae form one group (Fig. 178b): most Calophya spp., Camarotoscena unicolor, most Egeirotrioza spp., Homotoma indica, Leuronota, Moraniella, Paurocephala, Synoza floccosa and Trioza alacris.
The remaining genera and species lack specialised chaetotaxy. They are placed near to the centre of the minimum spanning network and the distinct groups branch from them.

Average linkage phenogram (AL)

Further insight into the resemblances between nymphs is provided by a hierarchical representation of data as provided by an average linkage phenogram.

An average linkage phenogram was constructed using the 'weighted pair group method with arithmetic averages' (Fig. 179) which was computed by the 'JOIN' algorithm of Hartigan (1975).

Most of the groups formed in the minimum spanning network were also recognised by average linkage. Three major clusters were formed (Figs 179b-d).

Cluster 1 (Fig. 179b). This includes members of the family Psyllidae which have capitate setae: Acizzia hakeae, A. uncatoides, Amorphicola, Arytaina, Arytainilla, Ceanothia, Ciriacremum, Euceropsylla, Euphalerus tantillus, E. sp. (B)., E. sp. (C)., Floria, Freysuila, Heteropsylla, Insnesia, Isogonoceraia, Mitrapsylla, Psylla (minus subgen. Asphagidella, subgen. Psylla, P. annulata, P. mali, P. phoradendrae \& P. ribesiae), Purshivora and Trigonon. The remaining Psyllidae are in cluster 3 (except Retroacizzia).

Cluster 2 (Fig. 179c). This contains taxa with sectasetae. It also includes Retroacizzia: Camarotoscena unicolor, Moraniella, Paraphalaroida and Paurocephala (Aphalaridae), Calophya, Diclidophlebia, Homotoma, Leptynoptera, Microceropsylla, Pauropsylla depressa, P. trichaeta, Synoza floccosa and Togepsylla (Carsidaridae), Retroacizzia (Psyllidae), Aacanthocnema, Ceropsylla, Crawforda, Egeirotrioza, Hevaheva, Kuwayama, Leuronota, Neolithus, Paratrioza, Swezeyana, Trichochermes, Trioza (minus T. hirsuta), Triozoida and indet. sp. (A). (Triozidae).

Cluster 3 (Fig. 179d,e). This includes taxa with lanceolate setae plus most taxa which lack capitate setae and sectasetae: Agonoscena, Aphalara, Aphalaroida, Apsylla, Camarotoscena speciosa, Colposcenia, Craspedolepta, Crastina, Euphyllura, Gyropsylla, Leurolophus, Neophyllura, Phytolyma, Rhinocola, Strophingia and Tainarys (Aphalaridae), Bharatiana, Epicarsa, Macrohomotoma, Mastigimas, Mesohomotoma, Mycopsylla, Paracarsidara, Pauropsylla beesoni, Pelmatobrachia, Phacopteron, Protyora, Pseudoeriopsylla, Pseudophacopteron, Synoza sp. and Tenaphalara (Carsidaridae), Livia (Liviidae), Acizzia acaciae, A. acaciaebaileyanae, A. russellae, Anomoneura, Arepuna, Colophorina, Diaphorina, Epipsylla, Euglyptoneura, Euphalerus gallicolus, E. jugovenosus, E. nidifex, E. rugipennis, E. vermiculosus, E. sp. (A)., E. sp. (D)., Neopsyllia, Pennavena, Pexopsylla, Platycorpha, some Psylla spp. (subgen. Asphagidella, subgen. Psylla, P. annulata, P. mali, P. phoradendrae and P. ribesiae) and Psyllopsis (Psyllidae), Cardiaspina, Creiis, Ctenarytaina, Eucalyptolyma, Glycaspis, Pachypsylla, Phellopsylla, Spondyliaspis and Tetragonocephala (Spondyliaspididae).

Cluster 3 (Fig. 179d) is clearly least congruent with the classification of Becker-Migdisova (1973). Capitate setae (N $11-\mathrm{N} 19$) and sectasetae ($\mathrm{N} 26-\mathrm{N} 33$) are described by nine and eight
selected characters respectively. However, lanceolate setae (N 23-N 25) are only described by three selected characters and therefore contribute less weight to the classification than either capitate setae or sectasetae. Hence most taxa which lack any of these three major setal types are phenetically closer to taxa with lanceolate setae than to taxa with capitate setae or sectasetae and cluster 3 is produced.

Detailed analysis of the characters which are responsible for groups is more easily performed using principal component analysis.

Principal component analysis (PC)

Principal component analysis, like other forms of ordination, aims to transform a data matrix, whose variance is in many dimensions, into a matrix with most of the variance explained by a

Fig 178a Part of a minimum spanning network of 182 selected species with 34 nymphal characters. Internode lengths are not drawn in proportion to taxonomic distance and for convenience the network is divided into 3 sections. Continued in Figs 178b-c.
very few dimensions. In this case 34 dimensions (because there are 34 characters) would be needed to illustrate the spatial relationships of 182 species. However, when principal component analysis was carried out almost $60 \%(58 \cdot 2 \%)$ of the variance was accounted for by just three dimensions, i.e. a three dimensional figure of spatial relationships of the species could illustrate more than half of the variance in the data. Other forms of ordination, such as principal coordinate analysis, tend to yield very similar results (Boratynski \& Davies, 1971) and are not practical when the number of taxa is large and in excess of the number of characters (Rohlf, 1972).

For this analysis data were scaled by ranging and eigenvectors were extracted from correlation and covariance matrices for the first 10 principal components, which accounted for most of the variance (82.8% when extracted from a correlation matrix and 83.7% from a covariance

Fig. 178b Part of a minimum spanning network of 182 species; continued in Figs 178a and 178c.
matrix). Only the analysis based upon the covariance matrix is considered further (this explained $34 \cdot 3,16 \cdot 8$ and $7 \cdot 1 \%$ variance on each of the first three axes).

To reduce the number of species to a number which could be easily represented visually an average linkage phenogram was generated across PCs I to X, using average distance (White, 1980). This produced 68 clusters below phenon level $0 \cdot 2$, which is a convenient number of points for visual representation in three dimensions. The position of one species from each of these clusters was plotted relative to PCs I to III (Fig. 180). Each species is labelled with the initial letter of the family to which it is assigned by Becker-Migdisova (1973).

The species content of each of the three main 'arms' of the trifurcate scatter roughly corresponds with that of the minimum spanning network (Fig. 178) and the average linkage phenogram (Fig. 179). Again the three main groupings are dominated by the Aphalaridae, Psyllidae and Triozidae. Furthermore, the major incongruences with the classification of Becker-Migdisova (1973) are the same. For example those Psyllidae and Carsidaridae, which are placed with the Aphalaridae, have lanceolate setae, e.g. Diaphorina, Psyllopsis and

Fig. 178c Part of a minimum spanning network of 182 species; continued in Figs 178a-b.

Fig. 179a Average linkage phenogram of 182 selected species with 34 nymphal characters; key diagram showing linkages to Figs 179b-d.

Fig. 179b Part of a phenogram of 182 species; continued from Fig. 179a.

Fig. 179c Part of a phenogram of 182 species; continued from Fig. 179a.

Fig. 179d Part of a phenogram of 182 species; continued in Fig. 179e and from Fig. 179a.

Epicarsa. The Carsidaridae and Aphalaridae placed with Triozidae have sectasetae, e.g. Pauropsylla trichaeta and Paurocephala spp. However, the major advantage of principal component analysis is that it permits the analysis of characters that are responsible for the formation of major groupings.

Characters with absolute eigenvector values on PCs I to III of at least the mean eigenvector value $(0 \cdot 17)$ are listed in Table 7. These are the characters which largely control the placing of species on PCs I to III.

On PCI (Table 7) the positive eigenvectors account for sectasetae (other than N 34) and shape (N 7) while the large negative values correspond to the petiolate tarsal arolium and capitate setae. The present states of those characters are mainly associated with Triozidae (positive values) and Psyllidae (negative values). On PC II the positive values are those applying to Triozidae and Psyllidae while the negative ones relate to the Aphalaridae (plus Diaphorini and Psyllopsis). PC III has a very high positive value for anus position, while other characters with positive values apply to Aphalaridae (plus Diaphorini and Psyllopsis). The remaining negative value is a shape character which relates to the Triozidae.

Fig. 179e Part of a phenogram of 182 species; continued from Fig. 179d.

Table 7 Absolute eigenvector values in excess of the mean on principal component I, II and III.

Character	PC I	PC II	PC III
N3			-0.21
N4	-0.30	0.18	0.47
N6		0.24	
N7	0.27	-0.22	0.33
N8			0.44
N9	-0.22	0.17	
N13	-0.27	0.18	
N14	-0.18	0.18	
N16	-0.31		
N17	-0.31	0.18	
N18	-0.22	-0.19	0.22
N19	-0.32	-0.22	0.21
N23		-0.28	0.32
N25		0.28	
N26	0.19	0.28	
N30	0.19	0.27	
N31	0.20	0.27	
N33	0.20		

When the eigenvector values (EVs) of the 34 selected characters are plotted in three dimensions they form eight major groups (Fig. 181).

1. Characters N7, N26, N30, N31 and N33 describe the fusion of the head and prothorax and marginal positions of sectasetae. These characters have positive states for most Triozidae.
2. Characters N1, N2, N3, N5, N10, N27, N28, N29, and N32 describe the humeral lobe position, position of wing-pad apices, disc-like tarsal arolium, sclerotization of dorsal surface of abdomen and dorsal positions of sectasetae. The taxonomic distribution of positive states of these characters is similar to those in group 1.
3. Character N6 refers to the position of the anus. The extreme lack of compatibility of this character with most other characters causes it to be placed alone. All previously recognised major taxa have some species with each state of this character.
4. Characters N11, N12, N13, N14, N15, N16, N17, N18, N19 and N34 are positions of capitate setae and positioned abdominal margin lanceolate setae/sectasetae. These are exclusively features of the Psyllidae. As with the sectasetae the dorsal surface setal positions fall nearer the zero eigenvector values than the marginal setal positions.
5. Character N4 described the presence or absence of a petiole on the tarsal arolium. This feature is present in most Psyllidae as well as a few other groups.
6. Characters N20, N21 and N22 refer to the pair of tarsal capitate setae which are best developed in the Spondyliaspidinae.
7. Characters $\mathrm{N} 8, \mathrm{~N} 23, \mathrm{~N} 24$ and N 25 refer to the large thoracic sclerites and marginal lanceolate setae typical of the Aphalaridae.

Character groups 1, 2 and 3, groups 4 and 5, plus groups 6 and 7 each form one of three 'arms' of a trifurcate scatter (Fig. 181). Group 8 however, consisting only of characters N 9 (free dorsal sclerites on abdomen), does not fit this trifurcate scatter because it is a feature of both Aphalaridae and Psyllidae.

Overall, the scatter of characters shown in Fig. 181 mirrors the trifurcate scatter of species (Fig. 180). This is because only the data matrix is required to transform the character eigenvector values to principal component values.

Incorporation of adult characters

Selection of characters

Examination of the adults of the species studied was beyond the scope of this work. However, it was desirable to study adult characters as the interpretation of possible cladistic relationships requires the incorporation of characters controlled by different selection pressures. Characters selected from two rather than one life cycle stages are more likely to meet this criterion. Furthermore, such a study should provide insight into the underlying causes of the partial congruence between the nymphal phenetic relationships and the classification of BeckerMigdisova (1973), which was based almost exclusively upon adult data.

Twenty-seven adult characters were coded largely from the literature (Tables 8, 9). Major sources of information included those of Crawford (1914), Eastop (1958), Heslop-Harrison (1959), Hodkinson \& White (1979b), Klimaszewski (1964), Loginova (1964a, 1972), Mathur (1975), Tuthill (1943, 1959, 1964a), Tuthill \& Taylor (1955) and Zimmerman (1948). When descriptions are coded in this way several problems occur (Young \& Watson, 1970). The greatest problem was the lack of consistency in the conventional approach to description which often made it impossible to distinguish between a genuine absence and mere failure to record the state of the character concerned. The least recorded characters are marked by an asterisk in the character listings (Tables 8,9). In several cases the states of characters were deduced from family or tribal descriptions.

The 27 characters were coded identically for all species within each genus except for Euphalerus and Pauropsylla. These genera are variable intra-generically and the species were grouped as follows.
Euphalerus spp. received four different group descriptions:
a. E. nidifex, E. tantillus, E. sp. (A), E. sp. (B) and E. sp. (D).
b. E. gallicolus
c. E. jugovenosus, E. rugipennis and E. vermiculosus
d. E. sp. (C)

Pauropsylla spp. received two different group descriptions:
a. P. beesoni
b. P. depressa and P. trichaeta

The 27 adult characters were combined with the original 88 nymphal characters (Tables 4,5) and the ordered multistate characters were recoded into additive two-state code to give 33 adult and 120 nymphal characters. The SUMRAT information statistic was applied and 18 adult and 40 nymphal two-state characters were selected. These were then combined to form 14 adult (Table 8) and 30 nymphal (Table 10) multistate and two-state characters.

Several groups of species were identical with respect to the selected adult plus nymphal characters. Forty-seven species groups were formed and one representative species was chosen from each (Table 11). A further 161 species remained distinct (Table 11) making a total of 208 'taxa' available for further analysis.

Cluster analysis of combined adult and nymphal data

A MSN was generated across the data (Fig. 182). It was not possible to place an average linkage (AL) phenogram across the combined data because the required computing time was in excess of that available. Instead, as the first 10 principal components (PCs), extracted from a between character covariance matrix, explain most of the variance (79%), an AL phenogram calculated across them should approximate an AL phenogram using the untreated combined data. Such an AL phenogram using average distance is given in Fig. 183.

Five major clusters are formed by the AL.
1 (Fig. 183b). The members of the family Psyllidae whose nymphs have capitate setae.
2 (Fig. 183c). The members of the families Triozidae and Carsidaridae which are typified by adult 'triozine' wing venation (Character A6) and nymphal sectasetae.

Fig. 182a Part of a minimum spanning network of 208 selected species with 14 adult and 30 nymphal characters. Internode lengths are not drawn in proportion to taxonomic distance; for convenience the network is divided into three sections. Continued in Figs 182b-c.

Fig. 182b Part of a minimum spanning network of 208 species; continued in Figs 182a and 182c.

3 (Fig. 183d). The members of this cluster are typified by numerous adult metatibial spines, usually with a lack of pronounced adult genal cones and the presence of nymphal lanceolate setae. It includes many Aphalaridae, all Liviidae, some Carsidaridae (many Homotominae and Phacopterinae) and a few Psyllidae (Diaphorini and Psyllopsis).
4 (Fig. 183e). This cluster contains species whose nymphs have pointed sectasetae together with those lacking capitate setae, lanceolate setae and truncate sectasetae. The incorporated taxa are Aphalaridae (e.g. Paraphalaroida) and Carsidaridae (e.g. Calophya) whose nymphs have

Fig. 182c Part of a minimum spanning network of 208 species; continued in Figs 182a-b.
pointed sectasetae, Psyllidae lacking capitate setae (e.g. Acizzia acaciae) and species with no specialised setae belonging to the families Carsidaridae (e.g. Tenaphalara) and Spondyliaspididae (e.g. Glycaspis). The genera Ctenarytaina, Eucalyptolyma and Phellopsylla (all Spondyliaspididae are exceptional in that their nymphs do have lanceolate setae).
5 (Fig. 183a). This cluster is the genus Euglyptoneura which is a long distance from other species and hence are not included in any larger hierarchical cluster. However, in the MSN this genus is joined to Psylla.

In general, these clusters are very similar to those formed by analysis of nymphal data only.
The incorporation of adult data now enables observations to be made of the causes of congruence and incongruence between adult and nymphal resemblances.

A between character correlation matrix was generated across the selected adult plus nymphal data. The high correlations (r greater than 0.5) were as follows.

1. Triozidae attributes of adults and nymphs correlate (A3, A5, A6 and A12 with N1, N7, N10, N26, N30, N31 and N33), e.g. the adult wing venation and nymphal sectasetae.
2. Aphalaridae attributes of adults and nymphs correlate (A11 with $\mathrm{N} 8, \mathrm{~N} 23, \mathrm{~N} 24$ and N 25), i.e. large numbers of adult metatibial spines with, for example, nymphal lanceolate setae.
3. Psyllinae attributes of adults and nymphs correlate (A4 with N4, N16, N17 and N19), i.e. a diagonal suture between the epimeron and episternum of the adult with, on the nymph, a petiolate tarsal arolium and capitate setae.
These correlated sets of characters, whose positive states roughly define currently recognised higher taxa, are the characters which weight the analyses towards complete congruence with the existing classification.

One observed form of incongruence is that groups of species that are regarded as genera on the basis of adult morphology often fail to cluster when nymphal data are analysed. In the minimum spanning network (MSN) (Fig. 182) 11 genera failed to cluster. These were Acizzia, Aphalaroida, Ceropsylla, Ciriacremum, Craspedolepta, Egeirotrioza, Euphalerus, Paratrioza, Pauropsylla, Pseudophacopteron and Trioza. A total of 21 other genera, of which more than one species was examined, are clustered. It is tentatively concluded that nymphal dissimilarity within a genus does not usually outweigh adult similarity.

Cladistic analysis

Ground plan construction

Prior to carrying out a cladistic analysis a ground plan was formed, i.e. a description of the hypothetical ancestor to present day Psylloidea. Various 'directional arguments' have been proposed for deducing which character states are primitive and therefore belong to the ground plan, and the methods are reviewed by de Jong (1980) and Arnold (1981). The favoured technique is known as out-group comparison, i.e. a character state that is not restricted to a single monophyletic group is likely to be ancestral. To apply the out-group criterion a previously suggested phylogeny is needed. Watrous \& Wheeler (1981) noted that there could be circularity involved in forming monophyletic groups from directional arguments based upon monophyletic groups. Instead a previous classification can be used and in this study directional arguments were based on the results of the phenetic analyses presented earlier. For example, pointed sectasetae are present in many clusters in any given phenogram and so they appear to be an ancestral

Fig. 183a Average linkage phenogram of 208 selected species. Distances were calculated from the first 10 principal components derived from 14 adult and 30 nymphal characters; key diagram showing linkages to Figs 183d-e.
feature. Conversely, truncate sectasetae, capitate setae and lanceolate setae each occur in a single large cluster and are therefore assumed to be derived features.

A summary of the ground plan is as follows.
Adult
Head rounded. Genal cones absent. Anteoccipital lobes present. Antenna with narrow flagellar segments and rhinaria on segments III, IV, V, VI, VII, VIII, IX.

Suture between epimeron and episternum vertical. Forewing: coriaceous, rhomboidal in shape, costal break present, pterostigma present, nodal line present and veins $C u+M$ with a common stalk after the branching of R from the $R+M+C u$ stalk. Hind leg: meracanthus well developed, genual spine present, apex of tibia with a crown of many (c.12) spines and apex of tarsal segment I with two spines.

Proctiger of male bipartite.

Fig. 183b Part of a phenogram of 208 species; continued from Fig. 183a.

Fig. 183c Part of a phenogram of 208 species; continued from Fig. 183a.

Fig. 183d Part of a phenogram of 208 species; continued from Fig. 183a.

Fig. 183e Part of a phenogram of 208 species; continued from Fig. 183a.

Table 8 Selected adult characters.
Selected characters are numbered A1-A14. All the character states in the original list of 27 characters are tabulated. However, some character states become combined by the selection procedure and, hence, in some characters two consecutive states are marked with the same value. An asterisk indicates a character which was poorly recorded in the literature.

Head characters

A1. Form of genae.
Genae not swollen
$=0$
Genae swollen but not conical $=1$
Genae conical, frons not enveloped by genae $=2$
Genae conical, frons enveloped by genae $=3$
*A2. Antenna with rhinaria on following segments.

III, IV, V, VI, VII, VIII, IX	$=0$
IV, V, VI, VII, VIII, IX	$=0$
IV, V, VI, VIII, IX	$=1$
IV, VI, VIII, IX	$=2$
III, VI, VIII, IX	$=2$

Thorax characters
*A3. Pronotum vertically or subvertically inclined, and laterally constricted. Often completely or partly concealed by head.

$$
\mathrm{No}=0 \quad \mathrm{Yes}=1
$$

*A4. Suture between epimeron and episternum.
Horizontal $=0$
Vertical (dorsally terminating at mid point of pronotal lateral margin) $=0$
Diagonal (dorsally terminating at posterior of pronotal lateral margin) $=1$

Forewing characters

A5. Forewing with apex acute or acutely rounded. Costal margin curved. M_{1+2} terminating at or anterior to apex.

No $=0 \quad$ Yes $=1$
A6. $C u+M+R$ or $M+R$ common stalk present.

$$
\text { No }=0 \quad \text { Yes }=1
$$

*A7. Costal break absent.

$$
\text { No }=0 \quad \text { Yes }=1
$$

A8. Pterostigma absent.

$$
\mathrm{No}=0 \quad \text { Yes }=1
$$

A9. $C u_{2}$ not terminating adjacent to $C u_{1 \mathrm{~b}}$
No $=0 \quad$ Yes $=1$

Hind-leg characters

*A10. Metatibia with basal (genual) spine present.

$$
\text { No }=0 \quad \text { Yes }=1
$$

*A11. Metatibial apical spines or platellae numbering more than five.

$$
\mathrm{No}=0 \quad \text { Yes }=1
$$

*A12. Metatarsal spines.
Absent

Male genitalia characters

A13. Male proctiger unipartite.

$$
\text { No }=0 \quad \text { Yes }=1
$$

A14. Male proctiger with long caudal lobes present in at least some species of the genus.

$$
\text { No }=0 \quad \text { Yes }=1
$$

Table 9 Rejected adult characters.
Rejected characters are numbered A15-A27. Values are not given against the states, which are separated by a ' $/$ '. An asterisk indicates a character which was poorly recorded in the literature.

Head characters

A15. Vertex with cleft and antennae based upon apices of blunt vertex lobes. No/Yes.
A16. Vertex produced into lobes and enveloping genae. No/Yes.
A17. Preoccipital lobes present. No/Yes.
A18. Preoccular tubercules present: $\mathrm{No} / \mathrm{Yes}$.
A19. Antenna segment II greatly enlarged. No/Yes.
A20. Apical antennal spines longer than antennal segment III. No/Yes.
A21. Clypeus long and cylindrical, projecting to anterior margin of head. $\mathrm{No} / \mathrm{Yes}$.
Forewing characters
A22. Forewing with apex acute or acutely rounded. Costal margin curved. M_{1+2} terminating posterior to apex. No/Yes.
A23. Nodal line absent. No/Yes.
A24. $R-M_{1+2}$ cross vein or anastomosis present. No/Yes.
A25. $R-M$ (bifurcation of M_{1+2} and M_{3+4}) cross vein present. No/Yes.
Hind-leg characters
*A26. Meracanthus reduced or absent. No/Yes.
Male genitalia characters
A27. Male subgenital plate with hypovalves. No/Yes.

Table 10 Nymphal characters selected after incorporation of adult characters.
Characters previously selected and now reselected: N1, N3, N4, N5, N6, N7, N8, N9, N10, N11, N13, N14, N15, N16, N17, N18, N19, N23, N24, N25, N26, N27, N28, N30, N31, N32, N33 and N34. Two further characters were selected, as follows.

- Outer circum-anal pore ring broken at two or more places (modified N52).

No $=0 \quad$ Yes $=1$

- Forewing-pad dorsal surface sectasetae (modified N29).

Absent $=0 \quad$ Pointed $=1 \quad$ Truncate $=1$

Table 11 Groups of species identical with the selected adult plus nymphal characters. The species chosen to represent the group is named at the top of each list.

1. Acizzia a caciae

Acizzia acaciaebaileyanae
2. Agonoscena sp. (B).

Agonoscena sp. (A).
3. Agonoscena sp. (C).

Strophingia cinereae
4. Aphalara polygoni

Aphalara curta
A. nubifera
A. simila
5. Calophya flavida

Calophya nigripennis
6. Cardiaspina albitextura

Cardiaspina spinifera
C. squamula

Creiis sp.
7. Craspedolepta augustipennis

Craspedolepta artemisiae
C. sonchi
C. suaedae
C. vancouverensis
C. veaziei
8. Craspedolepta furcata Craspedolepta nervosa
9. Craspedolepta minuta Craspedolepta minutissima
10. Diaphorina cardiae Diaphorina chobauti
11. Diaphorina citri Diaphorina florea
12. Diaphorina putonii Diaphorina clutiae D. punctulata
13. Euceropsylla russoi Euceropsylla minuticona E. sp.
14. Euphalerus nidifex Euphalerus jugovenosus
E. rugipennis E. vermiculosus
15. Glycaspis baileyi Glycaspis spp.
16. Gyropsylla ilicis Gyropsylla spp.
17. Livia coloradensis

Livia maculipennis
18. Mastigimas cedrelae Mastigimas spp.
19. Mesohomotoma hibisci Mesohomotoma spp.
20. Mycopsylla fici Mycopsylla spp.
21. Neophyllura arctostaphyli Neophyllura bicolor
22. Neopsyllia erythrinae Neopsyllia spp. Platycorypha princeps
23. Pachypsylla venusta Pachypsylla spp.
24. Paracarsidara gigantea Paracarsidara spp.
25. Paratrioza cockerelli Paratrioza maculipennis
26. Paurocephala gossypii Paurocephala urenae
27. Psylla alba

Psylla sinuata
28. Psylla alni

Psylla buxi
Spanioneura fonscolombii
29. Psylla betulaenanae

Psylla carpinicola
P. floccosa
P. galeaformis
P. striata
P. trimaculata
30. Psylla brunneipennis

Psylla brevistigmata
P. coryli
P. hamata
P. hirsuta
P. minuta
P. moscovita
P. parallela
P. pulchra
31. Psylla magnicauda

Psylla minor
32. Psylla mali

Psylla ribesiae
33. Psylla nigrita

Psylla saliceti
34. Psylla pyri Psylla ulmi
35. Psylla pyricola

Psylla myrtilli P. visci
36. Psylla pyrisuga Psylla melanoneura P. sorbi
37. Psyllopsis fraxinicola

Psyllopsis spp.
38. Strophingia ericae Tainarys schini
39. Tenaphalara acutipennis

Tenaphalara malayensis
40. Trioza albifrons

Trioza beameri
T. quadripunctata
41. Trioza albiventris

Trioza atkasookensis
T. crithmi
42. Trioza bakeri Trioza cinnamomi
T. diospyri
T. frontalis
43. Trioza chenopodii Trioza litseae
44. Trioza curvatinervis Trioza minuta T. salicivora
45. Trioza erytreae Trioza panacis
46. Trioza marginepunctata Trioza vitiensis T. sp.
47. Trioza tripunctata Trioza incidata

The following species have unique descriptions:
Aacanthocnema casuarina
Acizzia hakeae
A. russellae
A. uncatoides

Amorphicola amorphae
Anomoneura mori
Aphalara exilis
A. monticola
A. persicaria
A. rumicis

Aphalaroida spp.
Apsylla cistellata
Arepuna sp.
Arytaina genistae
Arytainilla spp.

Bharatiana octospinosa
Calophya californica
C. dubia
C. rhois
C. schini
C. triozomima
C. rotundipennis
C. sp .

Camarotoscena spp.
Cardiaspina densitexta
Ceanothia spp.
Ceropsylla spp.
Ciriacremum spp.
Colophorina cassiae
Colposcenia sp.

Craspedolepta constricta
C. nebulosa
C. subpunctata

Crastina linavuorii
Crawforda triopsyllina
Ctenarytaina eucalypti
Diaphorina albomaculata
D. solani

Diclidophlebia eastopi
Egeirotrioza spp.
Epicarsa sp.
Epipsylla spp.
Eucalyptolyma sp.
Euceropsylla cayeyensis
Euglyptoneura spp.
Euphalerus gallicolus
E. tantillus
E. sp. (A).
E. sp. (B).
E. sp. (C).
E. sp. (D).

Euphyllura spp.
Floria variegata
Freysuila sp.
Heteropsylla spp.
Hevaheva swezeyi
Homotoma spp.
Insnesia glabruscuta
Isogonoceraia divergipennis
Kuwayama pisonia
Leptynoptera sulfurea
Leurolophus vittatus
Leuronota michoacana
Livia crefeldensis
L. juncorum
L. vernalis

Macrohomotoma spp.
Microceropsylla sp.
Mitrapsylla deserata
Moraniella calodendri
Neolithus sp.
Neophyllura arbuti
Paraphalaroida fremontiae
Paratrioza arbolensis
P. lavaterae

Pauropsylla spp.
Pelmatobrachia sp.
Pennavena fabulosa
Pexopsylla cercocarpi
Phacopteron lentiginosum
Phellopsylla sp.

Phytolyma spp.
Protyora sterculiae
Pseudoeriopsylla nyasae
Pseudophacopteron spp.
Psylla albagena
P. ambigua
P. americana
P. annulata
P. foersteri
P. magna
P. media
P. negundinis
P. palmeni
P. peregrina
P. phoradendrae
P. pruni
P. pulchella
P. rhamnicola
P. rhododendri
P. simlae
P. stricklandi
P. subspiculata

Purshivora spp.
Retroacizzia antennata
Rhinocola aceris
Spondyliaspis sp.
Swezeyana elongagena
Synoza spp.
Tenaphalara sp.
Tetragonocephala sp.
Togepsylla matsumurana
Trichochermes walkeri
Trigonon longicornis
Trioza alacris
T. anceps
T. aylmeriae
T. falcata
T. hirsuta
T. lobata
T. magnoliae
T. nigricornis
T. obsoleta
T. obtusa
T. palmicola
T. phoradendrae
T. remota
T. urticae
T. vitreoradiata

Triozamia lamborni
Triozoida silvestris

Nymph

Prothorax completely separate to head. Mesothorax and metathorax with well-defined medial and lateral sclerites. Abdomen with well-defined sclerites and a small caudal plate. Anus ventral and surrounded by a pore field of uncertain form.

Whole body (dorsal, margin, including wing-pads, and antennae) covered in pointed sectasetae and simple setae.

It is interesting to note that pointed sectasetae appear to be an ancestral attribute. However, Becker-Migdisova (1973) believed the ancestral nymph lacked sectasetae and was similar to Tenaphalara. This would imply that sectasetae, which are a highly complex structure, must have evolved several times. Becker-Migdisova fails to explain this unparsimonious assumption.

Wagner tree

An attempt was made to analyse cladistic relationships by constructing a Wagner tree (Farris, 1970). Characters were selected by phyletic weighting (Cain \& Harrison, 1960), so that only one character out of a set of characters that might be functionally or ecologically correlated was used in the analysis. This weighting left only 17 characters, which were inadequate for meaningful analysis (White, 1980). However, this analysis did indicate a need to re-examine the structure of the tarsal arolium.

Reanalysis of tarsal arolium structure

One large branch of the Wagner tree was initially defined by the presence of a petiolate tarsal arolium in the nymph and the branch included all the Psyllidae except Diaphorini and Psyllopsis. Furthermore, the presence or absence of a petiolate tarsal arolium in the nymph, received very high eigenvector and SUMRAT values in previous analyses, and the presence state appears to be largely confined to the Psyllidae. However, it was also recorded as present in a few Aphalaridae (Aphalara persicaria and Paurocephala) and Triozidae (Trioza hirsuta). Upon re-examination the finer structure of the arolium became apparent. Most species have a sclerotized 'rod' or 'rods' running longitudinally from the base of the arolium (shown black in Figs 59-94). The homology of this structure is uncertain, but it will be referred to as an unguitractor. Some species lack any visible arolium (most Spondyliaspididae), while others lack any visible unguitractor (Aphalarinae (Aphalaridae) and Egeirotrioza (Triozidae)) (Fig. 95). A short unguitractor is probably the ancestral state (Fig. 67). It is greatly elongated in almost all the Psyllidae, Diclidophlebia (Carsidaridae), Aphalaroida, Camarotoscena, Euphyllurini, Paraphalaroida and Paurocephala (Aphalaridae) (Figs 59, 62-66, 69, 70, 79-93). Some species have retained a membrane adjacent to the long unguitractor: Diaphorini (Fig. 60) and Euphyllurini (Figs 62-64) while in others it is lost (Fig. 59). Careful analysis of arolium form was found to be of great value in cladistic analysis of species which otherwise differ little from the ground plan.

Cladistic method

The Wagner tree analysis indicated that a method of cladogram construction was needed which used all of the available characters. To overcome the problem of Gain characters being of greater value than loss characters a two-phase method of cladogram construction was devised.

A gain character is here defined as one whose derived state is the presence of an attribute. A loss character is defined as one whose derived state is the absence of an attribute. Loss characters should be accorded low weight because a structure could be lost in many distantly related phyletic lines (Mayr, 1969). When a high proportion of characters are of the loss type certain modifications to the cladistic principles of Camin \& Sokal (1965) and Hennig (1966) must be applied.

A total of 159 adult and nymphal characters was divided into two sets (Table 12): 1, gain characters and, 2 , loss characters. Using gain characters only, the most parsimonious cladogram was formed. The loss characters were then added to the cladogram such that each group of taxa
which was divided by loss characters only had maximum parsimony. However, the loss characters were not most parsimonious over the entire tree.

When a section of the tree could only be structured by loss characters and many equally parsimonious solutions were possible, the characters were weighted and added to the tree in order of decreasing weight. The weights were the sum of the mutual information (Legendre \& Rogers, 1972) values for each character with all other characters in the section of tree under study. This method is similar in principle to using the compatibility method of Le Quesne (1969).

In the illustration of the cladogram (Figs 184-196) the following convention was adopted.

1. Gain characters are marked by squares; black for derived and white for ancestral.
2. Loss characters are marked by circles; black for derived and white for ancestral. This enables clades which are only defined by loss characters to be instantly recognisable.
3. Each ancestor is numbered, e.g. the ancestral psyllid is number one. All descendants are said to belong to clade one. There are 94 ancestors giving rise to 106 taxa of generic, subgeneric and in some cases species level groupings.

Formation of initial branches in the cladogram (Fig. 185)

A few of the characters used by Schlee (1969) and Szelegiewicz (1971) are included at the base of the cladogram, to define both the Psylloidea and their supposed sister clade the Aleyrodoidea (Fig. 184).

Certain major clades $(2,6,13,15,17,32,37$ and 39$)$ are defined by complex gain characters. Apsylla, Bharatiana, Livia, Mastigimas and Strophingia are separated from the ground plan almost entirely by loss characters and are not easily placed.

Apsylla adults have very long apical antennal spines, which is a gain character ancestral to clade 39 (Fig. 190), e.g. Calophya, although Pseudophacopteron (clade 37, Fig. 189) also has this attribute. Apsylla is therefore placed as a sister group to clade 39 (clade 10 is formed). Bharatiana adults have a fairly large clypeus and large lateral ocelli, though not as pronounced as in clade 37, e.g. Phacopteron. With hesitation, Bharatiana is placed as a sister group to clade 37 (clade 8 is formed). Mastigimas nymphs have broken bands of anal pores, a feature which could be derived from bands of anal pores, an attribute which is ancestral to clade 32, e.g. Paracarsidara (Fig. 187). Although anal pore bands also occur in Epicarsa, Mastigimas is placed as a sister group to clade 32 (clade 4 is formed). Livia and Strophingia are only separated from the ground plan by loss characters and cannot be placed with any clade so far formed.

The ten-way furcation from the ground plan (to clades $2,4,6,8,10,13,15$ and 17 plus Livia and Strophingia) was resolved using weighting and the resulting branches are shown in Fig. 185.

Becker-Migdisova (1973) proposed that the ancestral psyllid gave rise to three separate lines (a Carsidara/Trioza line, an Aphalara line and a Psylla line). However, Klimaszewski (1964) proposed a bifurcation into a Carsidara/Trioza line and an Aphalara/Psylla line. Furthermore, Vondracek (1957) suggests a Spondyliaspis/Carsidara/Trioza line and a CalophyalPsylla/Aphalara line. The present cladogram agrees with a line typified by Trioza and Carsidara (cf. Paracarsidara) and includes some of the groups which these authors have referred to Carsidaridae, such as Calophya, Phacopteron and Homotoma. However, the present cladogram provides no justification for the Aphalaridae, except as a collection of groups phenetically close to the ground plan from which other clades can be derived. The Psyllidae arise from one such group (clade 17).

Clade descriptions

Clade 2 (Fig. 186) corresponds with the Triozidae plus the Leptynopterinae and Pauropsyllini of Becker-Migdisova (1973). However, this is not the Pauropsyllini of Loginova (1972), many of which are placed in clade 17, e.g. Paurocephala (Figs. 193-196). The genera Leptynoptera and Pauropsylla have a typical Trioza type adult pronotum, wing venation and sometimes nymphal form. They are placed in clade 18 with other genera possessing these features. The pronotal structure of Trioza is also found, to a lesser extent of development, in Homotoma (clade 6,

Figs 184, 185 Clades 0 and 1.184, clade 0 , including the Psylloidea (clade 1) and Aleyrodoidea; 185, clade 1, the Psylloidea. Details of clades 2, 4, 6, 8, 10, 13, 15 and 17 are illustrated in Figs 186-196.

Fig. 188) and Microceropsylla (clade 10, Fig. 190). Clade 2 can be divided into three major sections.
(i) Clade 2 (minus clade 18) (Fig. 186a), e.g. Trichochermes includes those genera which lack the Trioza type adult pronotum and the fusion of the dorsal surface of the nymphal abdomen.
(ii) Clade 18 (minus clade 23) (Fig. 186b) contains genera in which the nymphs are fairly elongate, the hindwing-pad margin is not confluent with the abdomen margin and the marginal sectasetae are normally well spaced apart.
(iii) Clade 23 (Fig. 186c) contains genera which have 'disc'-shaped nymphs, often with marginal scales, dorsal clavate setae or closely spaced marginal sectasetae.

Clade 4 (Fig. 187) is equivalent to the Carsidarinae and Tenaphalarinae of Becker-Migdisova (1973) and Klimaszewski (1964). Clade 32 is defined by the presence of a cross-vein in the adult forewing. This is subdivided into Tenaphalara (with an extra cross vein) and clade 31 (with a deeply cleft adult head).

Figs 186a, b Clades 2 and 18. 186a, clade 2, continued in Figs 186b, c; 186b, clade 18, continued in Fig. 186c and from Fig. 186a.

Fig. 186c Clade 23; continued from Fig. 186b.
Clade 6 (Fig. 188) is the Homotominae of Becker-Migdisova (1973). Clade 33 represents a group in need of some revision, for some Homotoma spp. not examined in this study may be placed with Synoza in the present cladogram, e.g. H. gressitti Miyatake has no $M+C u$ vein in the wing. Miyatake (1974) revised some Homotoma spp. but overlooked Synoza and was unaware of undescribed African species of the group (in coll. British Museum (Natural History)).

Clade 8 (Fig. 189) is the Phacopterinae of Becker-Migdisova (1973) plus ?Epicarsa and Bharatiana. The latter is only tentatively placed. The nymph examined of the former was labelled as being found with an adult close to Epicarsa, from Brazil. The adult characters in the present cladogram are largely those given by Crawford (1911); Ferris (1928b) described an Epicarsa from Mexico, but there is some doubt about its true identity. Lima \& Guitton (1962) described another Brazilian member of clade 37 (Phacosemoides sicki). The Pacific genus Chineura Tuthill should also be placed here. In the cladogram Pseudophacopteron nymphs are described as having lanceolate setae. This only applies to material labelled as ?P. floccosa from Guam: these setae are lost in other Pseudophacopteron spp. examined. P. floccosa is a Sri Lanka species which is unlikely to occur on Guam. Since wing form in this group is distinct it is assumed that the material from Guam is a member of clade 37. Guam is the type locality of Chineura paucivena Tuthill which may have been confused with Pseudophacopteron.

Clade 10 (Fig. 190) includes Calophya plus some genera referred to Pauropsyllinae: Microceropsyllini and Anomalopsyllinae: Apsyllini by Becker-Migdisova (1973). Loginova (1972) places Microceropsylla and Pelmatobrachia in the Pauropsyllini. The genus Calophya itself is referred to the Carsidaridae by Becker-Migdisova (1973), the Pauropsyllinae by Crawford (1914), and the Psyllidae by many authors (Klimaszewski, 1964; Dobreanu \& Manolache, 1962; Hodkinson \& White, 1979b). Several species which probably belong within clade 34 are still

Figs 187, 188 Clades 4 and 6. 187, clade 4; 188, clade 6.
placed in Pauropsylla, e.g. P. longispiculata Mathur, P. maculata Mathur and P. verrucosa Mathur. There is little apparent difference in general form between some Calophya s.str., Neocalophya Miyatake (a subgenus of Calophya), Paracalophya Tuthill and Holotrioza Bréthes. The entire group is in urgent need of revision as indicated by Miyatake (1971).

Livia and Strophingia (Fig. 185) must be regarded as morphologically primitive genera, although it is not intended to imply that they are very ancient. They have retained the ground plan facies and have no gain characters in common with other clades and their true cladistic relations are uncertain. Cladistic relations within the genus Strophingia are postulated by Hodkinson (1981).

Clade 13 (Fig. 191) contains species with 'Aphalarid' facies, i.e. species which are phenetically close to the ground plan but possess a caudal lobe on the adult male proctiger. The caudal lobe also occurs in clade 83 and it is possible that it has evolved more than once among the species in clade 13 . Although clade 13 may not be a monophyletic group, clade 41 is partly defined by the unique feature of a 'tooth', lobe or hook-like structure on the ventral edge of the caudal lobe. Hence, only the position of Phytolyma is dubious. Phytolyma has in the past been assigned to many different groups. Heslop-Harrison (1952b) placed it near Rhinocola (clade 15), but later he (Heslop-Harrison, 1958) added it to the Pauropsyllini. Both Vondracek (1963) and BeckerMigdisova (1973) referred it to the Anomalopsyllinae, though the former regarded that subfamily as belonging to the Spondyliaspididae, while the latter placed it in the Aphalaridae. In reality Phytolyma is probably a relic genus retaining many features of the ground plan, a bipartite male proctiger and preoccipital lobes in the adult. Hollis (1973) stated that the tropical

Figs 189, 190 Clades 8 and 10. 189, clade 8; 190, clade 10.
components of this group are poorly known; they probably derived from basic psyllid stock earlier than temperate forms, and are difficult to place in the existing classification.

Clade 43 is defined by the diagonal suture between the adult epimeron and episternum. Clade 42 is the tribe Stigmaphalarini of Vondracek (1957) and Colposceniini of Becker-Migdisova (1973). Clade 40 is the Aphalarini of most authors.

Clade 15 (Fig. 192) contains species which have retained many ground plan features: Moraniella nymphs are surrounded by pointed sectasetae and adult males of Tainarys have a bipartite proctiger. However, the form of the tarsal arolium which defines clade 15 is unique. Nevertheless, the branching within the clade is based on loss characters only, and weights were applied.

Clade 17 (Figs 193-196) contains over half of the species studied and it is defined by the elongation of the unguitractor in the tarsal arolium of the nymph. The major division is into clades 48 and 53 (Fig. 193).

Clade 53 is defined by nymphal capitate setae, but excludes those species where the nymph has retained numerous sectasetae or where the sectasetae are reduced to lanceolate setae. Clade 48 is formed by adult loss characters, which are in common to all of these morphologically more primitive species. It is further divided into clades 47 and 50.

Clade 47 (Fig. 194), defined by the presence of $1+1$ pore rings (or a derivable feature) on the nymphal abdomen, is divided into clades 60 and 62 . Clade 62 contains the genera Diclidophlebia and Paraphalaroida. Paraphalaroida contains one species (P. fremontiae) which, prior to the revision of Loginova (1972), was regarded as a Paurocephala sp. Diclidophlebia was referred to the Carsidaridae: Tenaphalarinae, Diclidophlebiini by Becker-Migdisova (1973). The genus

Figs 191, 192 Clades 13 and 15. 191, clade 13; 192, clade 15.
Togepsylla (omitted from this cladogram due to lack of information on certain character states, e.g. the form of the tarsal arolium) may belong to clade 62 because its adult head structure is similar to Diclidophlebia (Becker-Migdisova, 1973). Certain species still referred to the genus Paurocephala, such as P. tuxtlaensis Conconi from Mexico and P. menoni Mathur from India, probably belong to clade 62 .

Clade 60 is divided into clades 59 and 61 by the development of adult vertex lobes as opposed to genal cones and elongated wing cells. Clade 59 is the Euphyllurini of Loginova (1973) and part of the Euphyllurini of Becker-Migdisova (1973).

Clade 61 is referred to the Spondyliaspididae by most authors (Becker-Migdisova, 1973; Hodkinson \& White, 1979b; the Spondyliaspidinae by Heslop-Harrison, 1954). Unlike the nymphs of other Spondyliaspididae (clade 55, Fig. 195) examined, Ctenarytaina and Eucalyptolyma have marginal lanceolate setae and, therefore, fit the cladogram outside of clade 56. Both are characterised by the reduction or absence of tarsal arolia and if they do belong to clade 17 this must represent a secondary loss. The pore field on the nymphal abdomen of Eucalyptolyma sp. and Ctenarytaina eucalypti may be derived from $1+1$ pore rings, the defining character of clade

Fig. 193 Clade 17, giving rise to clades 47, 55 and 56 which are illustrated by Figs 194, 195 and 196 respectively.

47, and hence clade 61 is placed in a position of maximum parsimony. Nymphs of Ctenarytaina thysanura Ferris \& Klyver, which we have subsequently seen, lack the abdominal pore field. The position of Eucalyptolyma requires further investigation since recently acquired material of E ? fuscipennis Froggatt nymphs are of a structure concordant with clade 61 while those of E. maideni Froggatt are structurally close to clade 68. Two Indian species (Euphyllura caudata Mathur and E. concolor Mathur) may also belong to clade 61 on the basis of the pore field of the nymphal abdomen and the structure of the adult female proctiger.

Fig. 194 Clade 47.

Clade 50 (Fig. 193) is a maximum parsimony collection, based on loss characters, of genera belonging to clade 17 but not clades 47 or 53. It is divided into clades 49 and 51 . Clade 51 is defined by the presence of genal cones, a feature which occurs many times in the cladogram, and clade 49 is only formed by loss characters.

Clade 49 (Fig. 193) contains the genera Camarotoscena and Paurocephala, the former of which was regarded as a subgenus of Paurocephala by Vondracek (1957). Most authors have placed these genera in the tribe Paurocephalini of the Aphalaridae: Paurocephalinae (BeckerMigdisova, 1973; Klimaszewski, 1964). Because the general facies of the adult head is similar to Pauropsylla (clade 25, Fig. 186b) many authors placed Paurocephala in the Pauropsyllinae (Crawford, 1914; Loginova, 1972; Mathur, 1975).

Clade 51 (Fig. 193) is the Psyllidae: Arytaininae, Diaphorinini of Vondracek (1957), Dobreanu \& Manolache (1962) and Klimaszewski (1975). Becker-Migdisova (1973) placed Psyllopsis in the Psyllidae: Arytaininae, Psyllopseini. Pflugfelder (1941) placed Diaphorina and Psyllopsis in the Aphalaridae, and Löw (1879) placed them in the Psyllidae and Aphalaridae respectively. The nymphs of Psyllopsis, Diaphorina and Pennavena have an 'Aphalara' facies and are surrounded by marginal lanceolate setae. The long unguitractor of the nymphal arolium suggests that these genera belong in clade 17. However, the presence of lanceolate setae excludes these genera from clade 56 where most former authors have placed them. Furthermore, the adults retain a crown of about 10 spines at the apex of the metatibia, a feature always reduced in clade 57 (Fig. 196).
Clade 53 (Figs 193-196) begins with a major transition between members of clade 17 with 'Aphalara' and 'Psylla' type facies. The nymph of Aphalaroida is in many respects similar to Euphalerus or Acizzia while the adult is phenetically similar to Strophingia. The nymph of Aphalaroida pithecolobia is covered by rod setae, similar to Euglyptoneura robusta and Pexopsylla cercocarpi (both Clade 56, Fig. 193). The position of E. robusta (clade 82, Fig. 196e) suggests that rod setae are modified capitate setae and therefore, in the cladogram, rod setae are not differentiated from capitate setae.
The adult of Arepuna has a wing of a Euphalerus type and the nymph is surrounded by clavate setae. These could be very reduced sectasetae, which would place Arepuna outside of clade 56, or reduced capitate setae, which would place it anywhere in clade 53. A larger number of losses must be proposed if Arepuna is to be placed within clade 56 rather than as a sister group to it.
Clade 55 (Fig. 195) is initially defined by the presence, in the nymph, of $1+1$ pore rings additional to the circum-anal ring. It is assumed that these rings become split to form the $2+2$ rings which initially define clade 66 . Even without this assumption the contents of clades 64 and 66 would still arise from close to the start of clade 56 (Fig. 193). In clade 63 the preoccipital lobes are lost and the $1+1$ pore rings become areas of separated pores. Although nymphal capitate setae are regarded as lost in clade 55, they may be retained in some species, such as Psylla bengalensis Mathur, which were not examined but appear to belong to clade 64.

Clade 66 is initially defined both by the presence of $2+2$ nymphal pore rings and a serrate apex to the nymphal abdomen. Clade 65 is a collection of species in which the serrate apex to the abdomen is retained but the pore rings are often lost or reduced to small groups of pores. This reduction could be derived from $1+1$ or $2+2$ pore rings and species which belong to clade 55 , but are excluded from clades 64 and 67, are grouped for convenience into clade 65. Clade 65 consists of the following taxa: clade 72, Euphalerus nidifex, Pachypsylla spp. (other than P. japonica), Phellopsylla and Retroacizzia all of which are only separated from ancestor 65 by loss characters. The details of clade 65 were constructed by weighting. Phellopsylla belongs to the Spondyliaspididae of all authors, clade 73 to the Spondyliaspididae: Pachypsyllinae of BeckerMigdisova (1973) and clade 74 to the Psyllidae.
Ancestor 67 (Fig. 195a) marks a transition. Clade 67 is initially defined by having enlarged outer teeth on the serrate apex of the nymphal abdomen, as in Euphalerus gallicolus. Clade 68 is a collection of species with a pointed cauda in the nymph: Creiis has both a pointed cauda and $1+1$ tooth-like structures near the apex of the abdomen. These are treated as being homologous with the enlarged outer teeth in E. gallicolus. Further evidence for the inclusion of clade 68 in 66 is provided by the fact that lerp-forming species are confined to clades 65 and 68.
Nymphs of species in clade 68 have weakly sclerotized abdomens and the caudal plate is rudimentary. This implies either that a large caudal plate has been derived separately in several branches, or that a reversal to separate segments has occurred. This appears to contradict Dollo's Law. However, the genotype must contain coding for all abdominal segments since they occur in the adult, i.e. Dollo's Law is not broken at the level of the genotype.

Clade 57 (Fig. 196) is defined by loss characters only and contains genera which belong within clade 56 but not 55 . With the exception of clade 51 (Fig. 193), and some Euphalerus spp. (including the type-species of the genus, E. nidifex) and Retroacizzia which have been assigned to clade 55 (Fig. 195), it is the Psyllidae of most authors.
Certain clades $(78,82$ and 85$)$ are defined by gain characters leaving the genera Acizzia,

Figs 195a, b Clades 55 and 65. 195a, clade 55, continued in Fig. 195b; 195b, clade 65, continued from Fig. 195a.

Amorphicola, Anomoneura, Arytaina, Arytainilla, Epipsylla, Floria, Mitrapsylla, Trigonon and a few species referred to the genus Euphalerus unplaced. Character 43 (caudal lobe on adult male proctiger) was incompatible with character 1 (very broad head) and was initially ignored because it occurs in other apparently unrelated groups such as Aphalara and may also have evolved many times within clade 57. Character 13 (position of antennal insertions) was also omitted initially since a tendency for the antennal bases to move back not only occurs in all of
clade 82 (Fig. 196e), Arytaina, Arytainilla and Floria but also in a few species of other clades, such as Ciriacremum nigripes Hollis. Character 106 (broad anal ring) is also ignored since this occurs in Psylla s.str. (clade 82) as well as in Anomoneura and Epipsylla, and its derivation is uncertain. The details of clade 57 were then constructed by weighting to form five major clades ($75,76,78,80$ and 82); characters 43,13 and 106 were then replaced.

Clade 75 (Fig. 196b): the first branch, from the general line in clade 57, forms clade 75. The largest genus in this clade is Acizzia, some species of which, such as the type-species (A. acaciae), differ from the description used in the cladogram in that they have lost one spine from the apex of adult basal metatarsus. Furthermore, there is a very high diversity of nymphal form in the genus. Neopsyllia and Platycorypha, two genera which apparently differ only in the relative length of the caudal lobes of the adult male proctiger, are the only taxa in clade 57 to retain nymphal sectasetae on the hindwing-pad margins. Freysuila is placed as a sister group to Neopsyllia and Platycorypha on the basis of the very broad adult head and, therefore, a secondary loss of the caudal lobes is assumed to occur in Freysuila. Mitrapsylla deserata nymphs have lanceolate setae on the dorsal surface indicating the retention of dorsal sectasetae, or the derivative lanceolate setae, well into clade 57. The abdomen margin sectasetae (character 114) are reduced to lanceolate setae in M. deserata, a feature known elsewhere only in Heteropsylla (clade 78). In the remainder of clade 57 (clade 77) the only remaining sectasetae are (up to $4+4$ in number) on the abdomen margin (character 114).

Figs 196a, b Clades 57 and 75. 196a, clade 57, continued in Figs 196b-e; 196b, clade 75, continued from Fig. 196a.

Clade 76 (Fig. 196c). In the character weighting procedure character 76 (loss of genual spine) received the greatest weight and defined clade 76, which includes Amorphicola, Anomoneura, Epipsylla and some species referred to the genus Euphalerus. Euphalerus spp. are placed in both major branches of clade 56 (Fig. 193) and these separate groups may only be recognisable in the nymphal stages. Some species at present referred to the genus Psylla, such as P. hyalina Mathur and P. oblonga Mathur, probably belong to clade 76. Adults of Anomoneura and Epipsylla are radically different in facies due to such characters as the presence of forewing cross veins in the former and very long genal cones in the latter. The nymphs, however, differ only in the presence of abdominal sectasetae in A. mori.

Clade 78 (Fig. 196d) is defined initially by the shape of the adult male paramere (character 46) and by the fact that antenna segment III is not the longest. Both these characters are subsequently lost by many species. There is also a tendency for the base of the pterostigma to be broader than the length of the vein R between the $R / R s$ fork and the $R /$ pterostigma base positions. This feature reaches its maximum development in certain Kleiniella spp. (Hollis, 1976). The African genus Kleiniella Aulmann is one of several genera which probably belong to clade 90 but whose nymphs are unknown; others being Delina Blanchard (South America), Palmapenna Hollis (Africa) and Panisopelma Enderlein (South America). Clade 89 is defined by tubular abdominal sectasetae (character 115) on the nymphs. The adults of Euceropsylla and Heteropsylla differ only in the development of the genae, despite radically different nymphs. An absence of genal cones in Heteropsylla has previously caused it to be referred to the Pauropsyllinae by many authors, who also include Paurocephala in that group. There is also a tendency for the genal cones to be reduced in Ciriacremum, though only in some species. Contrary to the opinion of Becker-Migdisova (1973) Ciriacremum spp. have neither rudimentary genal cones nor a bipartite male proctiger. Further details of the cladistic relations of clade 90 are given by Hollis (1976). Many Neotropical species at present referred to the genus Psylla, such as P. forcipata Tuthill, P. fuscinodulus Enderlein and P. ingae Tuthill, probably belong close to

Figs 196c, d Clades 76 and 78. 196c, clade 76, continued from Fig. 196a; 196d, clade 78, continued from Fig. 196a.

Fig. 196e Clade 82; continued from Fig. 196a.

Euceropsylla in clade 78. Many of the described species of Euceropsylla are very similar and a full revision is required. The genus Arytaina may contain some Pacific species belonging close to Insnesia or Isogonoceraia.

Clade 81 (Fig. 196a) is formed by replacing character 13 (antennal base position) which was omitted in the initial weighted analysis of clade 57 and is divided into clades 80 and 82 .

Clade 80 (Fig. 196a) is the Arytainini of Becker-Migdisova (1973). Loginova (1976a, 1977) divided the Arytaininae into the tribes Arytainini (containing Arytaina and Floria) and the Cyamophilini (containing Arytainilla, plus Acizzia of clade 75 and Amorphicola of clade 76). The character used to separate the tribes was the absence and presence of the costal break in the forewing, respectively. However, this character is variable in the type-species of Floria (Hodkinson \& White, 1979a) and is therefore a poor character on which to base tribal groups. Heslop-Harrison (1961) included within the Arytainini, Amorphicola (clade 76), Ceanothia, Euglyptoneura and Purshivora (all clade 82) together with Acizzia (clade 75) and clade 80.

Nymphs of Amblyrhina torifrons Löw which we recently collected are, within the bounds of the characters used in the cladogram, identical to Arytaina. Other genera which probably fit clade 80 are Alloeoneura Löw and Livilla Curtis.

Clade 82 (Fig. 196e) is the genus Psylla s.l. (minus species which have already been referred to other clades) plus Spanioneura and three North American genera, Ceanothia, Euglyptoneura and Purshivora, placed in the Arytainini by Heslop-Harrison (1961). Additional information, on the number of gonads, is available for a few of the subgenera of Psylla shown in clade 82 and

Table 12 Characters used in the cladogram.
There are four categories of characters used in the cladogram: 50 adult gain, 32 adult loss, 35 nymphal gain and 41 nymphal loss. In some cases shape changes could not easily be categorized as gain or loss. In general, such characters were described as gains, especially if of a complex nature. However, when a shape change was lacking in compatibility with complex type gain characters, i.e. liable to be multiply derived, it was listed with the loss type characters. Only the derived state of each character is given in the following tabulation.

Adult 'gain' characters

1. Head, with eyes, more than six times as broad as vertex is long.
2. Vertex deeply cleft and antennae based upon apices of blunt vertex lobes.
3. Genae swollen.
4. Genae formed into cones which are in the same plane as the vertex.
5. Genae formed into cones which are deflected ventrally from plane of vertex.
6. Vertex produced into lobes and enveloping genae.
7. Vertex mid-line paralleled by closely proximal ridges.
8. Preocular tubercles present.
9. Lateral ocelli at extreme posterior margin of head and very prominent.
10. Clypeus large.
11. Clypeus produced anteriorly.
12. Antennal insertions high on vertex, not on front vertex/genal area.
13. Antennal flageller segments (III-X) as broad as basal two segments.
14. Antennal segment II greatly enlarged.
15. Antennal segment VIII longer than segment III.
16. Antennal apical spines very long (at least as long as segments IX and X together or segment III and often almost as long as whole antenna).
17. Pronotum vertically or subvertically inclined, and laterally constricted. Often completely or partly concealed by head.
18. Suture between episternum and epimeron diagonal (dorsally terminating at posterior of pronotal lateral margin).
19. Suture between episternum and epimeron horizontal.
20. Wing very broad subapically (Pauropsylla shape).
21. Wing of Spanioneura shape.
22. Wing very elongate with veins straight and almost parallel.
23. Forewing with apex acute or acutely rounded. Costal margin curved. M_{1+2} terminating at or anterior to apex.
24. Forewing with apex acute or acutely rounded. Costal margin curved. M_{1+2} terminating posterior to apex.
25. Wing thick or coriaceous, not membraneous. Shape rhomboidal.
26. Wing veins broad.
27. Costa broad.
28. Lenticula costal field.
29. Veins $R s$ and M sinuate (Neophyllura subgenus Arbutophila).
30. Cells $c u_{1}$ and m_{2} very elongate. Wing fairly broad (Auchmerina, Caradocia, Freysuila, Geijerolyma and Macrocorsa wing forms).
31. Subcosta and costa coalesced.
32. Veins R, M and $C u_{1}$ with a common stem.
33. Veins R, M and $C u_{1}$ separated from common stem at one point or veins R and M with a common stalk after the branching of $C u_{1}$.
34. $C u_{2}$ terminating at a point well separated from $C u_{1 \mathrm{~b}}$, and often closer to the wing base (this separation occurs in many clades but is only well expressed in clade 22, e.g. Trioza).
35. Cross veins: pterostigma $-R s$.
36. Cross vein: $R-R s$.
37. Cross vein: $R-M$ (bifurcation of M_{1+2} and $M_{3}+_{4}$) cross vein.
38. Cross vein: $R-M_{1+2}$ (or anastomosis of R and M_{1+2}).
39. Well-developed radular spinules.
40. Mid tibia with a dark heavily sclerotized band around apex.
41. Sperm pump of form common to Psylloidea and Aleyrodoidea.
42. Male proctiger expanded posteriorly to form caudal lobes.
43. 'Tooth'-like armature placed ventrally in basal half of caudal lobe.
44. Paramere with inner spiniform process (Purshivora).
45. Paramere bifid when viewed posteriorly (e.g. Heteropsylla).
46. Paramere bifid when viewed laterally (Egeirotrioza).
47. Long thin paramere (Arytainilla).
48. Stout paramere with a heavily sclerotized and thickened blunt apex (Arytaina).
49. Female dorsal valve short, rounded down and densely covered by long thin setae (Pachypsylla japonica and Tetragonocephala sp.).
50. Female dorsal valve (proctiger) with lanceolate setae arranged along margin (Ctenarytaina, Euphyllura caudata and E. concolor).

Adult 'loss' characters

52. Genal cones greatly reduced or lost (derived from character 5).
53. Anteoccipital lobes absent.
54. Antenna without very narrow (Mastigimas type) flagellum (segments III to X).
55. Antenna less than twice as long as head breadth (a character of secondary loss which is only applied to clade 82, e.g. Psylla).
56. Rhinarium absent from segment III.
57. Rhinarium absent from segment IV.
58. Rhinarium absent from segment V.
59. Rhinarium absent from segment VII.
60. Wing apex rounded, remaining coriaceous (unless combined with character 61) (derived from character 26).
61. Wing membraneous (derived from characters 26 or 60).
62. Euphalerine wing (derived from character 26). Generally maculate.
63. Wing apex rounded (derived from character 62).
64. Wing apex rounded (derived from character 24).
65. Wing apex rounded (derived from character 25).
66. Branches of M and $C u$ reduced.
67. Cell cu_{2} (claval field) and anal vein absent.
68. Cell $c u_{1}$ absent.
69. Nodal (fold) line absent.
70. Costal break absent.
71. Pterostigma reduced (only applied to clade 82, e.g. Psylla).
72. Pterostigma absent or very reduced.
73. Hind wing very reduced or absent.
74. Meracanthus very small.
75. Meracanthus absent.
76. Metatibia basal (genual) spine absent.
77. Fewer than six spines at apex of metatibia.
78. Metatarsus segment I with one apical spine.
79. Metatarsus segment I with no apical spines.
80. Male proctiger not bipartite (segment X and XI of abdomen fused to produced a unipartite proctiger).
81. 'Tooth'-like armature in basal half of caudal lobe absent. (Applies only to clade 41. Secondary loss of character 44.)
82. Caudal lobe absent (secondary loss of character 43).
83. Paramere of bifid form (character 46) secondarily lost.

Nymphal 'gain' characters

84. General body form broader than long (Homotoma, Macrohomotoma, Mycopsylla and Pseudoeriopsylla).
85. General body form rounded (facies of e.g. Ceropsylla).
86. General body form very elongate (facies of Aacanthocnema).
87. Antenna short and narrowed evenly to apex (Fig. 44).
88. Head and prothorax completely fused dorsally.
89. Humeral lobe of forewing-pad anteriorly produced to an extreme which is anterior to the procoxa (Figs 17-19).
90. Unguitractor long (Figs 77-94).
91. Arolium with a long petiole (Figs 65, 66).
92. Arolium broader than long, without petiole and with a pair of darkened areas (Figs 72-76).
93. Arolium base/petiole apex with a semicircular membraneous area (Fig. 65).
94. Abdomen with all dorsal sclerites fused with caudal plate.
95. Abdominal apex serrate (Fig. 122).
96. Abdominal apex with large 'teeth' at lateral extremities of serrate area (follows from character 95) (Figs 118, 120).
97. Abdominal apex with large medial 'teeth' (Fig. 125) (from character 95).
98. Abdominal apex with a pair of apical 'teeth'.
99. Abdominal segments produced laterally as rounded or 'tooth' like projections (Fig. 118).
100. Cauda pointed (Fig. 118).
101. Lingula present.
102. Circum-anal ring constricted either side of anus (Fig. 111) or broken into three rings (Livia) (Fig. 110).
103. Circum-anal ring constricted either side of anus (Fig. 148) or broken into three rings (Fig. 149).
104. Anal pore-field arranged as bands (Fig. 155).
105. Specialised circum-anal ring (subgenus Baeopelma of Psylla) present (Fig. 135).
106. Broad circum-anal ring present (Figs 134, 136, 142).
107. Specialised shape of broad circum-anal ring (Fig. 136).
108. Anal pore-field (other than circum-anal ring) arranged as $1+1$ rings or of derivable form (discount characters 102 and 103). Rings placed ventrally or dorso-ventrally, i.e. each ring is partly dorsal and partly ventral) (Figs 106, 107, 112, 113, 117, 119, 121).
109. Anal pore field (other than circum-anal ring) arranged as $2+2$ rings or of derivable form. The rings are arranged ventrally $1+1$ and dorsally $1+1$ (Fig. 120).
110. Sectasetae (marginal and dorsal) trunate (Fig. 34).
111. Abdominal sectasetae arranged on large tubercles (Fig. 114).
112. Body margin surrounded by long scales (probably derived from sectasetae) (Fig. 173).
113. Body margin surrounded by broad scales (probably derived from sectasetae) (Figs 174-176).
114. Most abdominal margin sectasetae lost, leaving a distinct arrangement (treated as a gain character because of complexity) of up to $4+4$ sectasetae. Secondary loss may reduce this number to $3+3$, $2+2$ or $1+1$ (Fig. 37).
115. Sectasetae of character 114 type truncated to form tubes which are normally based on slight tubercles (Fig. 37 [ts]).
116. Lanceolate setae (marginal) greatly elongated.
117. Very thin lanceolate setae (assumed to derive from thickened simple setae) present.
118. Capitate setae present on body plus wing-pad margins and dorsal surfaces (Fig. 29).

Nymphal 'loss' characters
119. General body form not broader than long (secondary loss of character 84).
120. Thorax dorsal surface with distinct sclerites (at least medials); lateral sclerites small or absent (Figs 12-14).
121. Tarsal claws absent.
122. Unguitractor not visible with optical microscope. Arolium present (Figs 56-58).
123. Basal area of arolium reduced to a thin membrane (Figs 60, 64).
124. Basal membrane of arolium absent (derived from character 123) (Fig. 59) (or reduced; Fig. 62).
125. Unguitractor and arolium not visible with optical microscope.
126. Dorsal surface of abdomen lacking distinct sclerites (membrane only anterior to caudal plate area).
127. Anus at posterior of abdomen, not on ventral surface.
128. Abdominal apical teeth absent (secondary loss of 95 and 96).
129. Anal pore-field bands broken into round areas of pores (derived from 104) (Fig. 154).
130. Broad outer area of circum-anal ring broken into round or ovoid areas of pores (Figs 97, 99, 100).
131. Anal pore-field of type described by character 108 broken into round areas of pores (Fig. 113).
132. Anal pore-field of type described by character 108 reduced to narrow bands (Fig. 107).
133. Anal pore-field of type described by character 108 with pores reduced as in Fig. 117.
134. Small groups of pores in abdominal areas such that a reduction of rings as described by character 108 may have occurred (used in clades containing character 108 but not 109) (Fig. 119).
135. Small groups of pores in abdominal areas such that a reduction of rings as described by character 108 may have occurred (used in clades containing characters 108 and 109) (Fig. 129).
136. Anal pore-field in broken rings, probably derived from character 108, as in Fig. 112.
137. Circum-anal pore ring of type described by character 103 with pores widely separated.
138. Outer circum-anal pore ring reduced to a single row of pores (only applied to clade 82) (Fig. 139).
139. Circum-anal pore ring absent.
140. Anal pore-field absent.
141. Anal pore-field of $1+1$ rings very reduced (derived from character 134), or absent.
142. Circum-anal pore ring reduced to a few large pores (Fig. 146).
143. Body margin without sectasetae or derivable structures.
144. Body dorsal surface without sectasetae or derivable structures.
145. Body margin (other than abdomen) without sectasetae except for a small number around the hindwing-pad.
146. Abdomen margin without sectasetae (derived from 114).
147. Antennae without sectasetae or derivable structures.
148. Hindwing-pad without marginal sectasetae (derived from character 145).
149. Pointed sectasetae (derived from character 110).
150. Body and wing-pad surfaces (antennae, dorsal body surface and body margin) with lanceolate setae (assumed to derive from reduced sectasetae).
151. Abdominal $4+4$ (or fewer) sectasetae positions with lanceolate setae (assumed to derive from character 114) (Fig. 37).
152. Dorsal surface of body and wing-pads with lanceolate setae (assumed to derive from reduced sectasetae). Character only applied when other sectasetae characters are in a derived state.
153. Clavate setae present on body (probably very small sectasetae or lanceolate setae and therefore regarded as a loss character).
154. Body margin lanceolate setae absent (derived from character 150).
155. Dorsal surface of body without lanceolate setae (derived from character 150).
156. Antennae without lanceolate setae (derived from character 150).
157. Clavate setae absent (derived from character 153).
158. Body margin without capitate setae (except in some species which retain one seta behind each eye) (derived from character 118).
159. Body dorsal surface without capitate setae (derived from character 118).
this has been incorporated in a cladogram of these subgenera by Burckhardt (1979). The details of clade 82 are largely governed by loss characters and it is very unlikely that any cladogram of the subgenera of Psylla, based upon present knowledge, will approximate its true cladistic history.

Host-plant considerations

Psyllids are monophagous or narrowly polyphagous and breed almost exclusively upon angiosperms. Eastop (1972) considered the plant family level relations of 847 species of Psylloidea, of which only 8 were associated with the Monocotyledoneae and the remainder (99\%) with the Dicotyledoneae. In this study the probable hosts of 298 of the 303 species examined were known. Of these, only five species of Livia, on Juncus and Carex in the Holarctic region, and Trioza palmicola, on an endemic Hawaiian palm, were associated with monocotyledons, and very few species are associated with annual or biennial herbs.

Closely related psyllid species usually occur on closely related host-plants, i.e. psyllid clades are usually restricted to definite angiosperm taxa (Table 13) (Hodkinson, 1974). Individual species of Psylloidea usually occur on host-plants of only one genus and almost exclusively of one family. Examples of psyllids breeding on host-plants in separate families are rare.

Empirical observation suggests that certain psyllid taxa have a narrow taxonomic distribution of host-plants while others have a broad distribution. It is instructive to examine the taxonomic distribution of host-plants, for certain psyllid clades, across the 28 plant orders of relevance to this study. Such an analysis was performed for clades in which at least one terminal taxon descends directly from the ancestor of the clade. The null hypothesis is as follows:

$$
\frac{a}{b}=\frac{c}{d}
$$

where
$\mathrm{a}=$ no. psyllid species in clade x associated with plant order y ;
$\mathrm{b}=$ no. psyllids in all clades associated with plant order y ;
$\mathrm{c}=$ no. psyllids in clade x ;
$\mathrm{d}=$ no. psyllids in all clades.
The deviation from the regular distribution was measured by the Kolmogorov-Smirnov two-sample test (with two tails of significance). This was converted to a χ^{2} value, by an approximation, with two degrees of freedom (Siegel, 1956). It is expected that χ^{2} is underestimated for any clade with less than 40 species, that is all except 2 and 53 , which makes the test conservative (Siegel, 1956), i.e. the significance level may be underestimated. This test (Table 14) indicates that most clades have a taxonomic distribution of host-plants which is significantly non-regular. The variance $\left(\mathrm{s}^{2}\right)$ and the mean ($\overline{\mathrm{x}}$) number of psyllid species in each of the 28 host-plant orders were calculated for each clade shown to depart significantly from a regular distribution. These values were expressed as a ratio (Table 14) which is a measure of dispersion, such that the greater the value the more clumped the host-plant distribution. Clades with very small variance-mean ratios, and with large sample sizes (more than 10 psyllid species) are clade 51, e.g. Diaphorina, and clade 2, e.g. Trioza. The clade with the most clumped, that is most restricted host distribution, is clade 53, e.g. Psylla.

This does not imply that genera such as Trioza lack distinct groups feeding upon related groups of plants; for example one subgroup of Trioza is exclusively associated with the plant genus Salix (Salicaceae). Taxa such as clade 53, e.g. Psylla, of which 49% feed on Rosales, and most of those on Fabaceae, differ from taxa such as clade 2 (e.g. Trioza) in that distinct host associations exist at a suprageneric rather than subgeneric level. If the cladogram roughly represents the true cladistic history of the Psylloidea, then in clade 53 (e.g. Psylla) morphological divergence exceeds host-plant choice divergence. However, in clade 2 (e.g. Trioza) host-plant choice has undergone more evolutionary changes than morphological form.

The cladogram was assumed to be a true record of the cladistic history of the Psylloidea and an attempt was made to find the most parsimonious fit of the host relationships to the cladogram.
Clade 2 (Fig. 186) (e.g. Trioza) is a large highly polyphagous taxon. Widely separate branch tips feed on plant taxa such as Annonales, Moraceae and Salicaceae. At this stage no hypothesis can be made about the ancestral host of clade 2 .
Clade 4 (Fig. 187) is associated with Malvales (e.g. Paracarsidara) and Rutales: Meliaceae (Mastigimas). Either of these plant groups could represent the ancestral host of clade 4.

Clade 6 (Fig. 188) is associated exclusively with Ficus (Moraceae), the most likely ancestral host of clade 6 .

Clade 8 (Fig. 189) is associated with two families of Rutales, i.e. Burseraceae and Meliaceae. The host of Epicarsa, however, is unknown.

Clade 10 (Fig. 190) is associated with the Rutales (mainly Anacardiaceae, plus Burseraceae and Rutaceae), e.g. Calophya.

It is now reasonable to suggest that Rutales-feeding is an ancestral feature retained by disjunct groups of the above clades and, by the parsimony criterion, is the most likely ancestral host of clade 9. The association with Ficus evolved with clade 6, with Malvales in clade 32 and the ancestral host of clade 2 remains unknown. In the remaining branches of the cladogram Livia and Strophingia are associated with Commelinales (Cyperaceae and Juncaceae) and Ericaceae respectively; none feeds on Rutales.

Clade 13 (Fig. 191) contains several groups with distinct host relations: Phytolyma on Moraceae, Gyropsylla on Ilex (Aquifoliaceae) and Nectandra (Lauraceae), clade 42 on Tamarix and Myricaria (Tamaricaceae) and clade 40 on herbs. Clade 40 (Aphalara and Craspedolepta) has several distinct groups of species restricted to certain families or genera of plants. Aphalara live on Brassicaceae, Polygonaceae and Ranunculaceae, while Craspedolepta are associated

Table 13 Psyllid taxa which, in the present study, are restricted to specified taxa of angiosperms. An asterisk marks entries which are known to occur on other angiosperm taxa, when psyllid species not covered in the present survey are considered.
i. Psyllid taxa restricted to plant orders.

Taxon	Host order
Clades 8,15	Rutales
Clade 32	Malvales
Livia	Commelinales

ii. Psyllid taxa restricted to plant families.

Taxon	Host family	Host order
Clade 58	Ericaceae	Ericales
Clade 62*	Sterculiaceae	Malvales
Clades 63, 74, 78*, 80	Fabaceae	Rosales
Epipsylla, Neopsyllia	Fabaceae	Rosales
Euphyllura	Oleaceae	Santalales
Paurocephala*	Malvaceae	Malvales
Phytolyma	Moraceae	Urticales
Pseudophacopteron	Meliaceae	Rutales
Strophingia, Neophyllura	Ericaceae	Ericales
Tenaphalara	Bombacaceae	Malvales

iii. Psyllid taxa restricted to plant genera

TAxon	Host Genus	Host family	Host ORDER
Clade 6	Ficus	Moraceae	Urticales
Clade 42*	Tamarix	Tamaricaceae	Tamaricales
Clades 61*, 68	Eucalyptus	Myrtaceae	Myrtales
Clade 73	Celtis	Ulmaceae	Urticales
Agonoscena*	Pistacia	Anacardiaceae	Rutales
Aphalaroida*	Prosopis	Fabaceae	Rosales
Camarotoscena, Egeirotrioza	Populus	Salicaceae	Salicales
Euglyptoneura	Ceanothus	Rhamnaceae	Rhamnales
Gyropsylla*	Ilex	Aquifoliaceae	Theales
Psyllopsis	Fraxinus	Oleaceae	Santalales
Purshivora	Purshia	Rosaceae	Rosales

with Asteraceae, Chenopodiaceae and Onagraceae. The ancestral host of clade 13 is uncertain and none feeds on Rutales.
Species in clade 15 (Fig. 192) feed exclusively on Rutales and the ancestral host is assumed to be a species of Rutales.

Clade 17 (Fig. 192) is divided into two major taxa; clades 48 and 53.
Clade 8 (Fig. 193) has a high diversity of host relationships; clade 58 on Ericaceae, Euphyllura on Oleaceae, clade 61 on Myrtaceae, Onagraceae and Rutaceae, clade 62 on Sterculiaceae and Melastomataceae, Paurocephala on Malvaceae and Moraceae, Camarotoscena on Salicaceae, Psyllopsis on Oleaceae, Diaphorina on several families (e.g. Rutaceae and Solanaceae), and Pennavena on Loganiaceae. The ancestral host is most likely to be a plant taxon associated with more than one branch tip, i.e. Malvales (Malvaceae and Sterculiaceae), Oleaceae or Rutales (Rutaceae).
Clade 53 (Fig. 193) is associated with Rosales except for: Arepuna (Solanaceae), Euphalerus jugovenosus group (p. 224) (Rhamnaceae), Phellopsylla (Myrtaceae), clade 73 (Ulmaceae), E. gallicolus (Rhamnaceae), clade 68 (Myrtaceae), Trigonon (host unknown), Freysuila sp. (Solanaceae), one Acizzia sp. (A. hakeae, Proteaceae), Anomoneura (Moraceae), some Insnesia spp. (Euphorbiaceae), and many species in clade 82 (e.g. Betulaceae, Rhamnaceae and Salicaceae). Of those species on Rosales, most (63%) are associated with Fabaceae.

Table 14 Values of χ^{2} approximation to Kolmogorov-Smirnov test, variance/mean ratio, and most favoured host-plant order, of selected clades. Significance levels: *** $P<0.001$, ${ }^{* *} P<0.01$ \& * $P+0.05$.

Clade	χ^{2}	s^{2} / \bar{x}	Favoured host order
2	$10 \cdot 71^{* *}$	$4 \cdot 11$	Salicales
4	$7 \cdot 38^{*}$	$7 \cdot 48$	Malvales
8	$10 \cdot 25^{* *}$	$6 \cdot 00$	Rutales
10	$20 \cdot 10^{* * *}$	$13 \cdot 00$	Rutales
12	$18 \cdot 85^{* * *}$	$5 \cdot 04$	Commelinales
13	$28 \cdot 59^{* * *}$	$6 \cdot 81$	Asterales
33	$5 \cdot 13$	-	Urticales
34	$6 \cdot 39^{*}$	$5 \cdot 00$	Urticales
45	$5 \cdot 18$	-	Rutales
46	$6 \cdot 88^{*}$	$4 \cdot 00$	Rutales
49	$4 \cdot 27$	-	Malvales/Salicales
51	$12 \cdot 84^{* *}$	$2 \cdot 56$	Santalales
53	$27 \cdot 77^{* * *}$	$34 \cdot 26$	Rosales
59	$13 \cdot 95^{* * *}$	$3 \cdot 89$	Ericales/Santalales
61	$1 \cdot 91$	-	Myrtales
62	0.72	-	Malvales

Only Euphalerus tantillus (Rosaceae) and most members of clade 82 (Buxaceae, Rosaceae and Saxifragaceae) are not. It is assumed that Fabaceae-feeding is ancestral to clade 53. No species occur on Rutales. From Fabaceae host changes to Myrtaceae, Rhamnaceae, Rosaceae and Solanaceae must have occurred more than once. The evidence suggests that this has occurred repeatedly in different zoogeographic regions.
Among the remaining clades, Rutales-feeding occurs exclusively in clade 15 and may also be the ancestral host of clade 48 . Rutales-feeding therefore occurs commonly in disjunct clades throughout the cladogram, and application of the parsimony criterion suggests that the ancestral Psylloidea are associated with plants of the order Rutales or a direct ancestral group to the Rutales.

There is evidence, based on a belief that the Rutaceae and Anacardiaceae appeared early enough for direct migration to Australia, that the Rutales evolved at least 95 million years ago (Raven \& Axelrod, 1974). If angiosperm-feeding in psyllids evolved only once then initially this was most likely to have been in conjunction with primitive Rutales, possibly prior to differentiation of the host-plant families Aceraceae, Anacardiaceae, Burseraceae, Meliaceae and Rutaceae. Much of the primary differentiation of the Rutales seems to have taken place in Africa-South America, with long standing connections to Eurasia (Raven \& Axelrod, 1974).

The clades which are restricted to a single plant taxon other than Rutales are as follows: clade 3 (e.g. Carsidara) on Malvales and clade 6 (e.g. Homotoma) on Ficus. Examples of large clades on a diverse range of plants are: clade 2 (e.g. Trioza), clade 13 (e.g. Aphalara) and clade 17 (e.g. Paurocephala, Spondyliaspis and Psylla).

Zoogeographic evidence

A vicariance approach (Platnick \& Nelson, 1978) was applied to fit zoogeographic evidence to the cladogram. The model was restricted to the time period since the earliest appearance of the angiosperms (125 million years before present or 125 m.y.B.P.; Raven \& Axelrod, 1974), and it was assumed that the modern psyllids have evolved since the splitting of Pangea into Laurasia and Gondwanaland (180 m. y.B.P.). Therefore any track or distribution which includes areas of both Laurasia and Gondwanaland is assumed to have been caused by a dispersal event. Furthermore, dispersal is also assumed to account for the presence of psyllids on oceanic islands as this is a more tenable explanation of such tracks than the assumption of an as yet unknown vicariance event (Cracraft, 1975). Additionally some Nearctic-Palaearctic tracks may be better

Fig. 197 Reduced geological area cladogram of the splitting of Laurasia and Gondwanaland. Probable dispersal tracks are also shown (broken lines).
explained by dispersal across Beringia than by vicariance of Laurasia (Hodkinson, 1980). The vicariance/dispersal tracks are shown as a reduced geological area cladogram, based on Rosen (1978) (Fig. 197).

Each section of the psyllid cladogram (Figs 185-196) was compared to the geological area cladogram (Fig. 197). As an example of the reasoning applied, consider a hypothetical clade occurring in the Afrotropical, Malagasy, Oriental, Austro-Oriental and Palaearctic regions. The Palaearctic is not joined by a vicariance track in Fig. 197 to any of these other regions. Dispersal to the Palaearctic is proposed. The Austro-Oriental region must also be reached by dispersal. The Afrotropical, Malagasy and Oriental regions can be seen to have originated from one biota (Fig. 197). The ancestral species of this hypothetical clade is, therefore, assumed to have been distributed in the Afrotropical-Malagasy-Oriental biota, i.e. this is the ancestral track and distribution. Other solutions are less parsimonious.

Extinctions must occasionally be proposed to explain disjunct patterns of distribution. However, 'not yet discovered' may be the correct interpretation in many cases. The full analysis for each major clade is given by White (1980).

The general conclusions to be drawn from this analysis are as follows:

1. Most major clades probably had a Gondwanaland origin, i.e. clade 2 (Fig. 186) (e.g. Trioza), clade 4 (Fig. 187) (e.g. Paracarsidara), clade 6 (Fig. 188) (e.g. Homotoma), clade 8 (Fig. 189) (e.g. Phacopteron), clade 10 (Fig. 190) (e.g. Calophya), clade 13 (Fig. 191) (e.g. Gyropsylla), clade 15 (Fig. 192) (e.g. Tainarys) and clade 17 (Fig. 193) (e.g. Paurocephala and Euphalerus). 2. The ancestor of the Psylloidea probably had a Gondwanaland track. This is consistent with the host-plant evidence, i.e. that the ancestral host was a species of Rutales and that this group of plants must have been distributed throughout Gondwanaland prior to its breakup.

In the geological area cladogram no allowance was made for the possibility of dispersal across the South Atlantic between the Afrotropical and Neotropical regions. Raven \& Axelrod (1974) review the evidence for such a dispersal between the two continents, as they are thought to have remained in near contact until at least $90 \mathrm{~m} . y . B . P$. This dispersal route existed before the breakup of the Australian-Antarctic-South American continent ($45 \mathrm{~m} . \mathrm{y} . \mathrm{B} . \mathrm{P}$.). Any taxon present in both the Afro-Oriental biota and the Neotropical region could be explained by dispersal across the Atlantic or by vicariance of a Gondwanaland track followed by extinction in New Zealand and Australia. Because of this choice of explanations the vicariance model was adhered to purely as a convention. Australia was probably quite humid at a time when it was still joined to South America (Frakes \& Kemp, 1974), and the subsequent lowering of humidity may account for many extinctions.

As the distribution patterns of most clades can be explained largely by vicariance events occurring during the breakup of Gondwanaland, the minimum, and sometimes maximum, age of many of the major clades can be determined from the estimated dates of vicariance events.

Clade 4 (Fig. 187) (e.g. Paracarsidara) had a Gondwanaland ancestor ($90-180 \mathrm{~m}$. y.B.P.). The initial host was a species of Rutales. Ancestors 30, 31 and 32 also appeared to have evolved during this time in association with Malvales. The origin of the Malvales seems uncertain. Raven \& Axelrod (1974) state that the primary radiation of Malvales probably took place in Africa and South America in Maastricktian time ($65-70 \mathrm{~m} . \mathrm{y}$.B.P.) or earlier. There are, however, some doubtful Upper Cretaceous (65-110 m.y.B.P.) macrofossils of Malvaceae (Raven \& Axelrod, 1974). The origin of clade 32 remains uncertain.

Clade 6 (Fig. 188) (e.g. Homotoma) also appears to have originated in Gondwanaland and these taxa are all associated with Ficus (Moraceae). Raven \& Axelrod (1974) say that Moraceae were probably in existence early enough to have been dispersed more or less directly between Africa and South America. Ancestor 6 may have had an Afro-Indian range and been dispersed to South America (Synoza) and later from India to Australia (Mycopsylla) by island hopping. Whichever route was taken ancestor 6 must have existed at least $90 \mathrm{~m} . \mathrm{y}$.B.P.

Clades 8,10 and 15 (Figs 189, 190, 192) are all associated with the Rutales and all appear to have a Gondwanaland distributed ancestor. These groups must each have been distinct by 90 m.y.B.P.

Ancestors 13 and 17 (Figs 191, 193) are of unknown host relations and each probably had a Gondwanaland distribution. These groups must also have been distinct by 90 m.y.B.P. In clade 17 the major host preference is for Rosales, especially Fabaceae (clade 53). However, Raven \& Axelrod (1974) imply that the Fabaceae were of later origin (c. 65 m.y.B.P.) although the Rosales probably existed much earlier.

Despite several problems a number of major conclusions can be drawn. Firstly that most major clades have a distribution which is consistent with a southern ancestry, probably prior to the breakup of Gondwanaland (90 m.y.B.P.). Furthermore, the flowering plants, typified by Annonales, probably evolved about 125 m.y.B.P. (as indicated by data reviewed by Raven \& Axelrod, 1974). The modern psyllids probably evolved with the Rutales (p. 258) and, therefore, later than 125 m.y.B.P. but earlier than 90 m.y.B.P. (although Togepsylla, a morphologically very primitive psyllid associated with Annonales, may be a relic member of a group antedating ancestor 1).

Conversely, the following major groups probably evolved from ancestors in the northern land mass of Laurasia: Livia, Strophingia in the Palaearctic, clade 40 (e.g. Aphalara), clade 81 (e.g. Psylla) and clade 73 (e.g. Pachypsylla). This is assuming that their ancestors dispersed to Laurasia from Gondwanaland. An alternative hypothesis is available if a pure vicariance model is adopted, i.e. that the ancestral psyllid was distributed throughout Pangea. If this were the case then we must accept that modern psyllids diversified before angiosperms evolved and psyllids therefore moved onto angiosperm hosts on several separate occasions, remarkably, often onto the same group of plants, namely the Rutales. On balance, our initial hypothesis that modern psyllids only evolved since the appearance of the angiosperms, and therefore since the splitting of Pangea into the southern Gondwanaland and northern Laurasia, seems more tenable.

Classification and phylogeny

Nymphal phenetic classification

Several phenetic classifications have been presented which provide different summaries of the resemblances between taxa. It now becomes necessary to identify the common factors and produce a summary classification.

Analyses based upon character resemblance, such as principal component and SUMRAT information statistic, indicated the characters of greatest importance in forming a phenetic classification of nymphs. The species groups defined by the presence of each of these 'important' characters coincide with the major groups formed in the minimum spanning networks, phenograms and principal component analyses. Therefore the listing of these species groups forms a summary phenetic classification.

The relationships of the phenetic groups, as defined by the 'important' characters, are shown in Fig. 198 and the approximate positions of the groups and subgroups, of the summary classification, are shown relative to principal components I and II (Fig. 199). This provides a visual representation of the between group relationships. A list of the species in each group, together with the initial letter of the family to which the taxon belongs in the classification of Becker-Migdisova (1973): Aphalaridae (A), Carsidaridae (C), Liviidae (L), Psyllidae (P), Spondyliaspididae (S) and Triozidae (T), is given in Table 15.

Previous phenetic classifications of psyllid nymphs (Ferris, 1925; Rahman, 1932) were based on wing-pad shape. The only similarity between these and the above classification is that the 'truncate sectasetae' subgroup roughly corresponds to the 'triozine' group of Ferris and Rahman.

The percentage of species examined from each of the Becker-Migdisova (1973) families, relative to the new summary classification, is shown in Table 16. The most highly congruent group is 3 (capitate setae) plus subgroups $1 . \mathrm{ii}$ (truncate sectasetae) and 4.i (petiolate arolium). These groups are defined by gain characters and correspond to some Psyllidae, Triozidae and the remaining Psyllidae respectively. By contrast, group 2 (lanceolate setae) and subgroup 4.ii (remainder) are characterised by loss characters. Such characters would be expected to form

Fig. 198 Phenogram of groups and subgroups of species defined by the summary phenetic classification, based on nymphal characters.
evolutionary convergent clusters. Group 2 and subgroups 4.ii and 1.i (pointed sectasetae) are least congruent with the families of Becker-Migdisova. Pointed sectasetae are probably the ancestral character state and, therefore, subgroup 1.i contains those species which have retained an ancestral feature.

Empirical taxonomic studies of psyllid classification have failed to find stable positions for certain genera; for instance, the suggested relationships between Paurocephala and Pauropsylla are radically different in the classifications of Crawford (1914), Becker-Migdisova (1973) and Loginova (1972). In this study, these problematical groups again tended to cluster in different positions in different analyses. The most stable groups in each analysis, group 3 (species with capitate setae) and subgroup 1.ii (species with truncate sectasetae), are highly congruent with the most stable families recognised by empirical taxonomy, that is the Psyllidae and Triozidae respectively. Numerical phenetic methods were, therefore, of little direct value in the placement of problem groups in a new general classification. However, such methods did indicate nymphal groupings which might not be predicted from the existing empirical adult classifications. Furthermore, numerical phenetics were particularly relevant to ground plan construction for cladistic analysis and for the recognition of characters with the greatest classificatory power such as the form of the nymphal tarsal arolium. This was found to have far greater power than had been empirically expected and upon re-examination was found to be one of the most useful characters for later cladistic analysis.

PC I
Fig. 199 Groups and subgroups in the summary classification, placed relative to principal components I and II.

General classification

The most convincing argument in favour of cladistic analysis as a basis for a general reference classification is provided by Mickevich (1978), who compared congruence of phenetic versus cladistic classifications. The latter were found to have greater stability, probably because they were less sensitive to the adverse effects of heterogeneity in the evolutionary rates of characters and, furthermore, they were the most predictive (Platnick, 1978). However, a truly predictive classification, based upon a cladogram, may be impractical if the taxon (clade) to which a species belongs can only be determined from a life-cycle stage which may be unavailable. Therefore, as the nymphs of most species are unknown and many clades are defined by attributes of one life-cycle stage only, it is necessary to produce a compromise 'practical-predictive' classification. For example, clade 13 (Fig. 191, p. 224) (e.g. Aphalara) and clade 15 (Fig. 192) (e.g. Rhinocola) are defined by an adult and a nymphal attribute and are impracticable in a nymphal and an adult classification respectively. If predictability is to be retained some impractical groups have to be tolerated. However, for practical reasons more emphasis has occasionally been placed on adult rather than nymphal characters in finally deciding the position of a taxon.

In deriving the general classification monophyletic groups were preferred. No polyphyletic groups, in the sense of Hennig (1966) or Farris (1974), were formed and paraphyletic groups, of Hennig (1966) and Farris (1974), were allowed if they increased practicality in identifying adults.

This combination of both cladistic and phenetic information is, in general principle, the 'evolutionary' method of Mayr (1969).

The suggested classification (Table 17) includes eight families of which three are new. The probable positions of some taxa not examined are included and these are marked by an asterisk. A major source of information for the inclusion of these additional taxa was Loginova (1964b). The probable family or subfamily to which the residual genera belong are listed in Table 18.

Aphalaridae

This is probably a paraphyletic group, in the sense of Hennig (1966) and Farris (1974), but polyphyletic according to Nelson (1971). It comprises species which are phenetically close to the ground plan of the Psylloidea: clade 1 (Fig. 185) minus clades 9 (Fig. 185) and 54 (Fig. 193). It would be impractical to make each whole clade a separate monophyletic family because most are defined only by derived nymphal attributes and adults could only be assigned to such families when accompanied by nymphs of the same species. This is still a problem at the subfamily level and only polyphyletic subfamily groupings within Aphalaridae would form a practical classification.

The content of the family is similar to the Aphalaridae of Becker-Migdisova (1973) but with the addition of the Diaphorininae (from Psyllidae of Becker-Migdisova), Ctenarytainini (from Spondyliaspididae) and Liviinae (formerly Liviidae). The Diaphorininae and Ctenarytainini are included in the Aphalaridae largely on the basis of nymphal features. Phenetically the Liviinae are distant from other Aphalaridae but the relationship of the single genus Livia is best illustrated by placing it within the family.

Spondyliaspididae

This family is probably a paraphyletic group (in all senses) (clade 54 (Fig. 193) minus clade 57). However, it is only the genus Arepuna which falls outside of a probable monophyletic grouping (clade 55, Fig. 195). Arepuna spp. have a 'Euphalerus' adult facies and it would, therefore, be impractical to place this genus in a separate family to the genus Euphalerus.

Psyllidae

This is a probable monophyletic group (clade 57, Fig. 196). Five subfamilies are tentatively proposed, based upon clades which could only be defined by loss characters. This family is the Psyllidae of Becker-Migdisova (1973) minus the Diaphorinini and Psyllopseini which are now placed in the Aphalaridae: Diaphorininae, and the Euphalerini which are now in the Spondyliaspididae.

Loginova (1976a, 1977) proposed a tribe Cyamophilini, which includes Amorphicola. Nymphs of Cyamophila, the type-genus, were not examined and it is possible that Cyamophila belongs close to Amorphicola in the cladogram. Therefore, no name is proposed for a tribe containing Amorphicola.
Calophyidae
This family is a possible monophyletic group (clade 10, Fig. 190), although Apsylla is only tentatively included. All other genera belong to the subfamily Calophyinae (clade 39). Many species at present referred to the genus Pauropsylla probably belong to the Calophyinae (p. 241).

Phacopteronidae

A family which is a possible monophyletic group.(clade 8, Fig. 189). Bharatiana is only provisionally included and all other genera belong to the subfamily Phacopteroninae (clade 37).
Homotomidae
This is the subfamily Homotominae of Becker-Migdisova (1973) and a probable monophyletic group (clade 6, Fig. 188).

Carsidaridae

This family is not the Carsidaridae of Becker-Migdisova (1973) as the following genera have been placed elsewhere in the present classification: Diclidophlebia and Togepsylla (Aphalaridae), Calophya, Microceropsylla and Pelmatobrachia (Calophyidae), Homotoma, Macro-
homotoma, Mycopsylla, Pseudoeriopsylla and Synoza (Homotomidae), Bharatiana, Epicarsa, Phacopteron and Pseudophacopteron (Phacopteronidae) plus Leptynoptera and Pauropsylla (Triozidae). As now defined, the Carsidaridae is a probable monophyletic group (clade 4, Fig. 187). The genus Mastigimas, however, is only tentatively included and all other genera form the Carsidarinae (clade 32). Unfortunately, nymphs of the type-genus, Carsidara, were not included in the study but the predictive properties of the cladogram suggest that the nymph of Carsidara should be of the type found in clade 4 which is thus referred to the existing family Carsidaridae.

Triozidae

This is a probable monophyletic group (clade 2, Fig. 186) which is the Triozidae of BeckerMigdisova (1973) plus Leptynoptera and Pauropsylla from her Carsidaridae. The tribe Triozini is probably a paraphyletic group (clade 21 minus clade 25) which requires much further study of generic limits before the classification can be improved.

Possible phylogeny

It is conventional to illustrate a phylogeny as a lateral view of a tree diagram (Fig. 200). The ancestral group is extinct and in the absence of fossil evidence the information required to make more than a tentative estimate of the branching sequence is unavailable.
It is more informative to illustrate a terminal cross section of the phyletic tree as an unresolved bush phylogeny (Thorne, 1976) (Fig. 201). Such a phylogeny is said to be unresolved, as no attempt is made to show the exact sequence of branching.
The Ancestral Group comprises extinct species which probably had a Gondwanaland distribution, fed on Rutales and evolved $90-125$ million years before present. A southern ancestry for the psyllids has also been suggested by Eastop (1978) and Hodkinson (1980). Klimaszewski (1964), however, believed that psyllids evolved in South East Asia which, according to Takhtajan (1969), is the 'cradle of the angiosperms'. South East Asia (the Austro-Oriental region) only came into existence in the Miocene with the arrival of the Australian plate in the vicnity of Asia, and angiosperms could not have originated there (Raven \& Axelrod, 1974) and, by the same logic, neither could the psyllids. Unfortunately most of the fossils of insects resembling psyllids, as reviewed by Szelegiewicz (1971), antedate the angiosperms. Furthermore, their morphology suggests that they were not on the direct line of descent to the modern Psylloidea. However, there are a few genera which may be as closely related to the ancestral group as they are to any other extant taxa. They include Apsylla (Calophyidae), Bharatiana (Phacopteronidae), Mastigimas (Carsidaridae) and Strophingia (Aphalaridae) and, with the exception of Strophingia (on Ericales), they are all Rutales-feeders. The most primitive (Cronquist, 1968; Takhtajan, 1969; Thorne, 1976) and thereby the probable ancestral group of angiosperms (Takhtajan, 1969) are thought to be the Annonales. Togepsylla (Aphalaridae), which feeds on Lauraceae (Annonales), may possibly be a relic genus of a psyllid group which antedates the Rutales-feeders.

Fig. 200 Suggested phylogenetic relationships of the families of Psylloidea; as a tree with more than one line leading to the paraphyletic families Aphalaridae and Spondyliaspididae.

Fig. 201 Suggested phylogenetic relationships of the families of Psylloidea; a cross section of the unresolved bush phylogeny, in which each family (solid border) and subfamily (broken border) is shown covering an area roughly in proportion to the number of species it contains.

The Aphalaridae is a collection of five phyletic lines, Strophingiinae, Liviinae, Aphalarinae, Rhinocolinae and Paurocephalinae which originate from close to the probable ancestor. The Strophingiinae are only separated from the ground plan by loss characters. The Liviinae probably had a Laurasian ancestor associated with the Commelinales but further evidence suggesting the origin of the group is unavailable. The Aphalarinae, by contrast, were most likely to have had a Gondwanaland ancestor, although the greatest diversification of species and genera has occurred in northern regions. However, their host-plants are diverse and do not include Rutales. It is conceivable that if Annonales-feeding antedates Rutales-feeding, the ancestor of Aphalarinae was an Annonales-feeder. At least one extant member of the family, Gyropsylla cannela (Crawford) on Lauraceae, is associated with Annonales.

The Rhinocolinae probably had an ancestor with a Gondwanaland distribution. All members of the subfamily examined feed on Rutales.

Table 15 Nymphal summary classification

1. Sectasetae group.

Taxa with pointed or truncate sectasetae (characters N26 to N33, Table 4, p. 207). The forewingpad generally has a well-formed humeral lobe (N1) and the tarsal arolia are very rarely petiolate (N4). There are two subgroups.
i. Pointed sectasetae subgroup.

Taxa with pointed sectasetae (characters N26 to N33)
Calophya (most spp.) C
Camarotoscena unicolor A
Crawforda triopsyllina T
Diclidophlebiaeastopi C
Egeirotrioza spp. T
Homotoma spp. C
Leptynoptera sulfurea C
Leuronota michoacana T
Moraniella calodendri A
Paraphalaroidafremontiae A
Paurocephala spp. A
Synozapulchra C
Triozaalacris T
Triozoida silvestris T
ii. Truncate sectasetae subgroup.
Taxa with truncate sectasetae (characters N26 to N33).
Acanthocnema casuarinae

Ceropsylla martorelli T
Paratriozaspp. T
Pauropsylla trichaeta C
Togepsylla matsumurana C
Trichochermes walkeri T
Trioza (most spp.) T
2. Lanceolate setae group.

Taxa with lanceolate setae (characters N 23 to N 25). There is often a humeral lobe (N 1) and the tarsal arolia are rarely petiolate (N4).
Agonoscena spp. A
Aphalara spp. A
Bharatiana octopsinosa C
Camarotoscena speciosa A
Colposceniasp. A
Craspedolepta spp. A
Crastina linavuorii A
Ctenarytaina eucalypti S
Diaphorina spp. P
Epicarsa sp. C
Eucalyptolymasp. S
Euphyllura spp. A
Leurolophus vittatus A
Livia crefeldensis L
L. vernalis L
Neophyllura spp. A
Pennavena fabulosa P
Phacopteron lentiginosum C
Phellopsylla sp. S
Phytolyma (most spp.) A
Pseudoeriopsylla nyasae C
Pseudophacopteron floccosa C
Psyllopsis spp. P
Rininocola aceris
Strophingia spp. A
Tainarys schini A3. Capitate setae group.Taxa with capitate setae (N11 to N19). All of these species also have a petiolate tarsal arolium (N4).
Acizzia hakeae P
A. russellae P
A. uncatoides P
Amorphicola amorphae P
Arytaina genistae P
Arytainilla spp. P
Ceanothia spp. P
Ciriacremum spp. P
Euceropsylla spp. P
Euphalerus tantillus P
E. sp. (B). P
Floria variegata P
Freysuila sp. P
Heteropsylla spp. P
Insnesia glabruscuta P
Isogonoceraia divergipennis P
Mitrapsylla deserata P
Psylla (most spp.) P
Purshivora spp. P
Trigonon longicornis P
4. Other taxa.

Taxa which lack sectasetae (characters N26 to N33), lanceolate setae (N 23 to N25) and capitate setae (N11 to N19). Two subgroups may, however, be recognised by the presence or absence of the petiolate tarsal arolium, a character which received high eigenvector and SUMRAT values.
i. Petiolate arolium subgroup.

The following taxa have a petiolate tarsal arolium.
Acizzia acaciae
A. acaciaebaileyanae P
Anomoneura mori P
Aphalaroida spp. A
Arepuna sp. P
Colophorina cassiae P
Epipsylla spp. P
Euglyptoneura spp. P
Euphalerus (most spp.) P
Neopsyllia spp. P
Pexopsylla cercocarpi P
Platycorpha princeps P
Psylla betulaenanae P
P. carpinicola P
P. floccosa P
P. galeaformis P
P. mali P
P.phoradendrae P
P. ribesiae P
P. striata P
P. trimaculata P
Retroacizzia antennata P
Spanioneura fonscolombii Pii. Remainder.Apsylla cistellataA
Calophya rhois C
C. rotundipennis C
Cardiaspina spp. S
Ceropsylla sideroxyli T
Creiis sp. S
Euphalerus gallicolus P
Glycaspis spp. S
Gyropsylla spp. A
Hevahevaswezeyi T
Kuwayama pisonia T
Livia (most spp.) L
Macrohomotomaspp. C
Mastigimas spp. C
Mesohomotoma spp. C
Microceropsylla sp. C
Mycopsylla sp. C
Neolithus sp. T
Pachypsylla spp. S
Paracarsidara spp. C
Pauropsylla (most spp.) C
Pelmatobrachia sp. C
Phytolyma lata A
Protyora sterculiae C
Pseudophacopteron (most spp.) C
Spondyliaspis sp. S
Swezeyana elongagena T
Synoza sp. C
Tenaphalara spp. C
Tetragonocephala sp. S
Trioza anceps T
T. hirsuta T
T. palmicola T
Triozamia lamborni T

There are four remaining subfamilies of Aphalaridae; Paurocephalinae, Euphyllurinae, Diaphorininae and Aphalaroidinae. The Paurocephalinae are morphologically most primitive and, hence, this subfamily is illustrated (Fig. 201) as deriving from the ancestral group and giving rise to the other three subfamilies. The Paurocephalinae, Euphyllurinae and Diaphorininae probably had Gondwanaland origins associated with unknown hosts.
The ancestor of the extant Aphalaroidinae was most likely to have had a Gondwanaland distribution, associated with Fabaceae. From such an ancestor the present day Nearctic genus Aphalaroida evolved together with the ancestor of the Spondyliaspididae.

Table 16 Percentage of species in each family of Becker-Migdisova (1973) in each group or subgroup of the nymphal summary classification (rows total 100%).

	Group or subgroup					
	1.i.	1.ii.	2.	3.	4.i.	4.ii.
APHALARIDAE	10	0	80	0	4	6
CARSIDARIDAE	28	5	9	0	0	58
LIVIIDAE	0	0	40	0	0	60
PSYLLIDAE	0	0	10	64	25	1
SPONDYLIASPIDIDAE	0	0	13	0	0	87
TRIOZIDAE	13	72	0	0	0	15

Table 17 A general classification of the Psylloidea.
The following classification includes eight families. An asterisk indicates the probable position in the classification of some taxa not examined.

Psylloidea Löw
Aphalaridae Löw
Togepsyllinae Becker-Migdisova
Togepsylla Kuwayama*
Strophingiinae subfam. n. (type-genus: Strophingia Enderlein)
Strophingia Enderlein
Liviinae Löw
Livia Latreille
Aphalarinae Löw
Phytolymini Becker-Migdisova
Phytolyma Scott
Gyropsyllini trib. n. (type-genus: Gyropsylla Bréthes)
Gyropsylla Bréthes
Colposceniini Becker-Migdisova
Colposcenia Enderlein
Crastina Loginova
Aphalarini Löw
Aphalara Förster
Craspedolepta Enderlein Brachystetha Loginova* Epheloscyta Loginova* Xanioptera Enderlein*
Caillardiini Loginova* Caillardia Bergevin* Eumetoecus Loginova* Rhodochlanis Loginova* Rhombaphalara Loginova*
Xenaphalarini Loginova* Eurotica Loginova* Xenaphalara Loginova*
Rhinocolinae Becker-Migdisova
Rhinocolini Becker-Migdisova
Tainarys Bréthes
Leurolophus Tuthill
Moraniella Loginova
Rhinocola Förster
Agonoscena Enderlein
Aphorma Hodkinson*
Lisronia Loginova*
Rhachistoneura Hodkinson \& Hollis*
Pachypsylloidini Loginova*.
Acaerus Loginova*
Eremopsylloides Loginova*
Pachypsylloides Bergevin*
Paurocephalinae Becker-Migdisova
Camarotoscena Haupt
Paurocephala Crawford
Euphyllurinae Becker-Migdisova
Diclidophlebiini Becker-Migdisova
Diclidophlebia Crawford
Paraphalaroida Loginova
Haplaphalara Uichanco*
Euphyllurini Becker-Migdisova
Euphyllura Förster

Neophyllura Loginova
Katecephala Crawford*
Ligustrinia Loginova*
Syntomoza Enderlein*
Syringilla Loginova*
Ctenarytainini trib. n. (type-genus: Ctenarytaina Ferris \& Klyver)
Ctenarytaina Ferris \& Klyver
(some spp. referred to Eucalyptolyma)
Eurhinocola Crawford*
Syncarpiolyma Froggatt*
Diaphorininae Vondracek
Diaphorinini Vondracek
Diaphorina Löw
Pennavena Capener
Eudiaphorina Loginova*
Psyllopseini Vondracek
Psyllopsis Löw
Aphalaroidinae Loginova
Aphalaroida Crawford
Spondyliaspididae Schwarz
Arepuniinae subfam. n. (type-genus: Arepuna Tuthill)
Arepuna Tuthill
Euphalerinae Becker-Migdisova
Euphalerus Schwarz
Retroacizzia Heslop-Harrison
?Pachyparia Loginova*
Phellopsylla Taylor
Colophorina Capener
Cometopsylla Froggatt*
Pachypsyllinae Becker-Migdisova
Pachypsylla Riley
Tetragonocephala Crawford
Spondyliaspidinae
Spondyliaspis Signoret
Creiis Scott
Cardiaspina Crawford
Glycaspis Taylor
Australopsylla Tuthill \& Taylor*
Eucalyptolyma Froggatt* (not including species examined in this study)
Hyalinaspis Taylor*
Lasiopsylla Froggatt*
Psyllidae Löw
Acizziinae subfam. n. (type-genus: Acizzia Heslop-Harrison)
Acizziini trib. n. (type-genus: Acizzia Heslop-Harrison)
Trigonon Crawford
Mitrapsylla Crawford
Acizzia Heslop-Harrison
Platycorypha Tuthill
Neopsyllia Caldwell
Freysuila Aleman
Macrocorsini Becker-Migdisova*
Auchmerina Enderlein*
Caradocia Laing*
Geijerolyma Froggatt*
Macrocorsa Vondracek*
Anomoneurinae Becker-Migdisova
Anomoneurini Becker-Migdisova
Anomoneura Schwarz
Epipsylla Kuwayama

Tribe - unnamed (may be Cyamophilini Loginova)

Amorphicola Heslop-Harrison
(many species referred to Euphalerus)
?Cyamophila Loginova*
Ciriacreminae Enderlein
Ciriacremini Enderlein
Euceropsylla Boselli
Heteropsylla Crawford
Insnesia Tuthill
Isogonoceraia Tuthill
Ciriacremum Enderlein
Aremica Tuthill*
Delina Blanchard*
Kleiniella Aulmann*
Palmapenna Hollis*
Panisopelma Enderlein*
Russelliana Tuthill*
Arytaininae Crawford
Arytaina Förster
Floria Löw
Arytainilla Loginova
Alloeoneura Löw*
Amblyrhina Löw*
Livilla Curtis*
Psyllinae Löw
Psylla Geoffroy sensu lato (including all subgenera)
Spanioneura Förster
Ceanothia Heslop-Harrison
Euglyptoneura Heslop-Harrison
Purshivora Heslop-Harrison
Calophyidae Vondracek stat. n.
Apsyllinae Becker-Migdisova
Apsylla Crawford
Calophyinae Vondracek
Pelmatobrachia Enderlein
Microceropsylla Boselli
Calophya Löw
Holotrioza Bréthes*
Paracalophya Tuthill*
Phacopteronidae Becker-Migdisova stat. n.
Bharatianinae subfam. n. (type-genus: Bharatiana Mathur)
Bharatiana Mathur
Phacopteroninae Becker-Migdisova
Phacopteron Buckton
Pseudophacopteron Enderlein
Epicarsa Crawford
Chineura Tuthill*
Phacosemoides Lima \& Guitton*
Homotomidae Heslop-Harrison stat. n.
Homotominae Heslop-Harrison
Homotoma Guérin-Méneville
Synoza Enderlein
Macrohomotominae subfam. n. (type-genus: Macrohomotoma Kuwayama)
Mycopsyllini trib. n. (type-genus: Mycopsylla Froggatt)
Mycopsylla Froggatt
Macrohomotomini trib. n. (type-genus: Macrohomotoma Kuwayama)
Macrohomotoma Kuwayama
Pseudoeriopsylla Newstead

Carsidaridae Crawford
Mastigimatinae Becker-Migdisova
Mastigimas Enderlein
Carsidarinae Crawford
Tenaphalarini Heslop-Harrison
Tenaphalara Kuwayama
Carsidarini Crawford
Protyora Kieffer
Mesohomotoma Kuwayama
Paracarsidara Heslop-Harrison
Carsidara Walker*
Triozidae Löw
Neolithinae subfam. n. (type-genus: Neolithus Scott)
Neolithus Scott
Schedoneolithus Tuthill*
Triozamiinae Becker-Migdisova
Triozamia Vondracek
Triozinae Löw
Triozini Löw
Leuronota Crawford
Trichochermes Kirkaldy
Egeirotrioza Boselli
Aacanthocnema Tuthill \& Taylor
Triozoida Crawford
Trioza Förster
Paratrioza Crawford.
Kuwayama Crawford
Ceropsylla Riley
Swezeyana Caldwell
Crawforda Caldwell
Hevaheva Kirkaldy
Anomocephala Tuthill*
Bactericera Puton*
Calinda Blanchard*
Epitrioza Kuwayama*
Eutrioza Loginova*
Hemischizocranium Tuthill*
Hemitrioza Crawford*
Izpania Klimaszewski*
Metatrioza Tuthill*
Myrmecephala Tuthill*
Neotrioza Kieffer*
Neotriozella Crawford*
Ozotrioza Kieffer*
Paracomeca Laing*
Pseudotrioza Miyatake*
Rhegmoza Enderlein*
Schedotrioza Tuthill \& Taylor*
Stenopsylla Kuwayama*
Pauropsyllini Crawford
Pauropsylla Rübsaamen
Leptynoptera Crawford
Sympauropsylla Enderlein*

Table 18 Genera not examined in this study, and the family or subfamily to which they probably belong.

Aconopsylla Tuthill \& Taylor	Carsidarinae
Anomalopsylla Tuthill	Aphalaridae
Astragilita Loginova	Psyllidae
Atmetocranium Tuthill	Aphalaridae
Brachypsylla Froggatt	Psyllidae
Carsidaroida Crawford	Carsidarinae
Cecidopsylla Kieffer	Phacopteronidae
Cecidotrioza Kieffer	Triozidae
Cerotrioza Crawford	Triozidae
Diceraopsylla Crawford	Aphalaridae
Dynopsylla Crawford	Homotomidae
Engytatoneura Loginova	Triozidae
Eriopsylla Froggatt	Psyllidae
Jenseniella Tuthill	Aphalaridae
Labicria Enderlein	Psyllidae
Lanthanaphalara Tuthill	Aphalaridae
Leptotrioza Miyatake	Triozidae
Levidea Tuthill	Triozidae
Lindbergiella Heslop-Harrison	Psyllidae
Megadicrania Loginova	Aphalaridae
Metapsylla Kuwayama	Spondyliaspididae
Nesiope Kirkaldy	Carsidarinae
Optomopsylla Caldwell	Triozidae
Paurotriozana Caldwell	Triozidae
Pexopsylla Jensen	Psyllidae
Pseudacanthopsylla Samy	Psyllidae
Rhinopsylla Riley	Triozidae
Sphingocladia Enderlein	Homotomidae
Sphinia Blanchard	Aphalaridae
Tyora Walker	Carsidarinae

The Spondyliaspididae probably derived from a Gondwanaland ancestor associated with Fabaceae. However, the largest group, the Spondyliaspidinae, is associated with the genus Eucalyptus (Myrtaceae).

It is most likely that the Psyllidae shared a common ancestor with the Spondyliaspididae (minus Arepuniinae) in Gondwanaland in association with the Fabaceae. Present day psyllids are largely associated with Fabaceae and Rosaceae (Rosales). The morphologically most primitive, and probably oldest, subfamilies of Psyllidae are the Acizziinae and Anomoneurinae, most species of which retain the habit of Fabaceae-feeding. The Ciriacreminae have a Gondwanaland distribution suggesting that they are also an old group. The Arytaininae (as here defined) are probably a more recent group, restricted to the Palaearctic, but like most Ciriacreminae, retaining the habit of Fabaceae-feeding. The Psyllinae live on a variety of host-plants, particularly the Rosaceae, a north temperate family (Good, 1974). They are largely Holarctic and may have had a Laurasian ancestor.

The Calophyidae and Phacopteronidae have retained the habit of Rutales-feeding and probably had Gondwanaland origins. However, the families of Rutales with which most species of these families are associated differ; Calophyidae feed on Anacardiaceae and Phacopteronidae feed on Meliaceae.

The family Homotomidae probably had a Gondwanaland origin in association with Ficus (Moraceae). With the exception of a few Indian species on Santalaceae (Mathur, 1975) they feed on Ficus.

Once again, the most probable origin of the Carsidaridae was in Gondwanaland. The genus Mastigimas, which is only tentatively assigned to this family, has retained the habit of

Rutales-feeding, the remaining genera are placed in the subfamily Carsidarinae, which feed on Malvales.
The Triozidae is a cosmopolitan group for which a Gondwanaland origin appears most likely. There is no indication of the ancestral host relationship and, unlike other families, host-plant diversity appears to exceed morphological diversity (p. 256).

Keys

Key construction

These keys are intended to place most psyllid nymphs in the correct subfamily, tribe or in some cases genus. The keys are an application of the predictive properties of the new classification and, hence, they should work for the majority of species not examined by this study as well as the 15% of species which were. To maintain practicality it was sometimes necessary to artificially split some polythetic taxa. For example, the family Triozidae is keyed out in 11 sections in the key to families. In many polythetic taxa no morphological features of the nymphs could be used to separate subordinate taxa. In such cases host-plant differences were often of more practical value than morphological attributes and, hence, some key couplets contain host-plant characters.

Confirmatory data are given after most couplets. Nomomeristic and metric (Figs 5-7) characters are also given as confirmatory data; with the following abbreviations.

Nomomeristic characters

A = Number of antenna divisions (i.e. apparent segments).
$\mathrm{R}=$ Antennal divisions upon which rhinaria occur.

Metric characters (lengths)

$\mathrm{AL}=$ Antenna length (Figs. 5, 6).
$\mathrm{ARB}=$ Circum-anal pore ring breadth (Fig. 7).
BL = Body length (Figs 5, 6).
WL = Forewing-pad length (Figs 5, 6).

Metric characters (ratios)

AWL $=$ Antenna length to forewing-pad length ratio.
BBBL $=$ Body breadth (Figs 5, 6) to body length ratio.
Scale lines are given on drawings of structures whose dimensions are not indicated in the text.

Artificial key to families

The phenetic groups which are usually monothetic, that are most congruent with the classification, are separated first. In this way, the key should have maximum reliability for species which 'key-out' prior to couplet 39. Many of the characters used in the key were shown to have high classificatory power, as indicated by high values of the SUMRAT information statistic and principal component eigenvectors. The key to families of White \& Hodkinson (1982) should be used as an additional check on identity when Holarctic material is being examined.

Artificial key to families of Psylloidea

1 Truncate sectasetae present on margin of forewing-pad (Fig. 50). [Sectasetae not present on
TRIOZIDAE (most species) (p. 289)

- Sectasetae usually absent from margin of forewing-pad; if present they are pointed (except Togepsylla matsumurana Kuwayama which has two rows of truncate sectasetae on the antenna)
2 Scales present on body margin (Figs 173-176)

TRIOZIDAE (many Hawaiian and tropical New World species) (p. 289)

- Scales not present on body margin3
3 Sectasetae (pointed or truncate) present on abdomen margin and numbering more than $4+4$.. 4
- Sectasetae usually absent from abdomen margin; if present then numbering at most $4+4$. 12

- Tarsal arolium with a distinctly visible unguitractor (Figs 65, 66, 69-71,74)

5 Clavate setae present on dorsal surface of abdomen (Fig. 172). [Forewing-pad anteriorly produced as a humeral lobe which extends anterior to eye. Hawaii. On Tetraplasandra]

TRIOZIDAE (Crawforda)(p. 289)
_ Clavate setae absent from dorsal surface of abdomen ... 6
6 Sectasetae present on antenna (Figs 40, 43, 45) ... 7

- Sectasetae absent from antenna .. 8

7 Antenna length to forewing-pad length ratio 0•18-0.47. On Rutales, especially Anacardiaceae. Antennal sectasetae arranged in one row, opposite rhinaria (Fig. 40).

CALOPHYIDAE (most New World spp.) (p. 288)

- Antenna length to forewing-pad length ratio 0.52-1.62. Usually not on Rutales, not known on Anacardiaceae. Antennal sectasetae usually in more than one row (Fig. 45). [On Malvales, Melastomataceae, Moraceae and Rutaceae.]

APHALARIDAE (Paurocephala and other genera often confused with Paurocephala) (p. 278)
8 Apex of abdomen inwardly emarginate (Fig. 153). [Neotropical. On Ficus.]
HOMOTOMIDAE (Synoza) (p. 288)

- Apex of abdomen not inwardly emarginate. 9
9 Tarsal arolium with an unguitractor which forms a petiole (Fig. 69). [Palaearctic. On Populus.] APHALARIDAE (Camarotoscena) (p. 278)
- Tarsal arolium with a short unguitractor and no petiole ... 10

10 Hindwing-pad very reduced, its apex interior to margin of abdomen (Fig. 48). [Austro-

- Hindwing-pad of normal proportions, its apex exterior to margin of abdomen....................... 11

11 General body form very broad; body breadth more than 0.75 times body length. [Old World. On Ficus.] .. HOMOTOMIDAE (p. 288)

- General body form elongate; body breadth less than $0 \cdot 70$ times body length

TRIOZIDAE (some spp.) (p. 289)
12 Lanceolate setae present on abdomen margin and numbering $3+3$ or $4+4$. Capitate setae (sometimes modified into tubular structures, Fig. 133; Mitrapsylla deserata Caldwell) present on abdomen margin and/or dorsal surface. [Tropical and warm temperate New World. On Fabaceae.] PSYLLIDAE (Heteropsylla and Mitrapsylla) (p. 285)

- Lanceolate setae usually absent from abdomen margin; if present, then capitate setae absent from body and wing-pads
13 Lanceolate setae present on abdomen margin and/or forewing-pad margin (Figs 162, 165, 167, 168) 14
- Lanceolate setae absent from abdomen and forewing-pad margins 22
14 Circum-anal pore ring reduced to a few large pores (Fig. 146). [Oriental. On Burseraceae.]
PHACOPTERONIDAE (Phacopteron) (p. 288)
- Circum-anal pore ring not reduced to a few large pores 15
15 Tibia each with a row of stout setae on outer edge (Figs 51,54) 16
- Tibia without a row of stout setae on outer edge 17
16 Tarsal arolium with a long unguitractor which forms a petiole (Fig. 69). [Palaearctic. On Populus.] APHALARIDAE (Camarotoscena) (p. 278)
- Tarsal arolium very reduced (not or hardly visible). [Tropical Old World. On Meliaceae.] PHACOPTERONIDAE (Chineura) (p. 288)
17 Anal pore-field arranged as bands (similar to Fig. 155). Antenna with 10 divisions. [Neotropical.].

PHACOPTERONIDAE (Epicarsa)(p. 288)

- Anal pore-field usually not arranged as bands; or if arranged as bands then antenna with at most 8 divisions.
18 Anal pore-field arranged as 2 rings which are each placed to one side of the anus (Figs 150-152). [Tropical Old World. On Ficus.] HOMOTOMIDAE (some Macrohomotominae) (p. 288)
- Anal pore-field not arranged as 2 rings which are each placed to one side of the anus 19

19 On Anacardiaceae. Antenna with 3 divisions. Small ($\mathrm{BL}=0.93-1.20 \mathrm{~mm}$).
CALOPHYIDAE (Calophya rhois)(p. 288)

- Usually not on Anacardiaceae; or if on Anacardiaceae, antenna with 7 or 8 divisions (some Rhinocolinae) or larger (some Diaphorina, $\mathrm{BL}=1 \cdot 34-2 \cdot 13 \mathrm{~mm}$).
circum-anal ring, pores concentrated at antero-lateral angle of caudal plate (Fig. 127); pores not visible on anal plate. [Australia. On Eucalyptus.]

SPONDYLIASPIDIDAE (Phellopsylla)(p. 284)

- Apical margin of abdomen not truncate-acuminate. Anal pore-field usually comprised of a circum-anal ring only; if pores present on caudal plate then they also occur on the anal plate.
21 Circum-anal pore ring partly on caudal plate, broad and convoluted (Fig. 145). [Oriental. On Toona.]

PHACOPTERONIDAE (Bharatiana) (p. 288)

- Circum-anal pore ring usually confined to anal plate; if partly on caudal plate then usually not convoluted (Fig. 108), or if convoluted then pores in a narrow row (Fig. 112)

APHALARIDAE (most species) (p. 278)
22 Anal pore-field (excluding circum-anal ring) arranged as $1+1$ (Fig. 121) or $2+2$ (Figs 120, 122) rings, which are slightly convoluted. [Tarsal arolium usually with a long unguitractor which forms a petiole (Fig. 77); except Euphalerus gallicolus. On Fabaceae and Rhamnaceae.]

SPONDYLIASPIDIDAE (Euphalerus) (p. 284)

- Anal pore-field (excluding circum-anal ring) usually not arranged as $1+1$ or $2+2$ rings; if arranged as $1+1$ rings then rings not convoluted (Figs 110, 149)
23 Apical margin of abdomen serrate-acuminate (Figs 125, 126, 128). Circum-anal pore ring absent. Anus posterior. [Anal pore-field, if present, comprised of small groups of pores, most of which occur on the caudal plate. On Celtis and Colophospermum.]

SPONDYLIASPIDIDAE (Pachypsyllinae and Retroacizzia) (p. 284)

- Apical margin of abdomen usually not serrate-acuminate; or if serrate-acuminate (Figs 149, 157) circum-anal pore ring present and anus ventral

24 Caudal plate pointed (Figs 118, 124). [Abdomen segments usually laterally bulging (Fig. 27). Anal pore-field, if present, comprised of small groups of pores placed ventrally (Figs 118, 124, 129). Anus posterior. Tarsal apical setae usually strongly capitate (Fig. 38). Australia. On Eucalyptus.]............................... SPONDYLIASPIDIDAE (Spondyliaspidinae) (p. 284)
Caudal plate (if developed) not pointed 25
25 Abdomen margin with $1+1,2+2,3+3$ or $4+4$ sectasetae PSYLLIDAE (many spp.) (p. 285)
Abdomen margin without sectasetae 26
26 Abdomen margin with capitate setae PSYLLIDAE (many spp.) (p. 285)
Abdomen margin without capitate setae 27
27 Tarsal arolium with a petiole. Arolium pad usually large relative to tarsal claws (Figs 59,80-93); if pad small (Fig. 179) then host-plant is a species of Fabaceae (some Acizzia spp.)28

- Tarsal arolium usually without a petiole; if with a petiole then arolium pad small and host-plantis a species of Meliaceae (some Pseudophacopteron spp., Fig. 94) or Terminalia (Triozahirsuta, Fig. 96)31
28 Abdomen margin with rod setae (Fig. 161) 29
Abdomen margin without rod setae 30
29 Tarsal arolium with a very long petiole (Fig. 59). Antenna with 7 divisions. New World. On Fabaceae. APHALARIDAE (Aphalaroida pithecolobia) (p. 278)
- Tarsal arolium with a short petiole (similar to Fig. 92). Antenna with 7 or 8 divisions.Palaearctic. On Ulmus... PSYLLIDAE (Psylla ulmi) (p. 285)30 Tarsal arolium with a very long petiole (Fig. 59). [New World. On Fabaceae.]
APHALARIDAE (Aphalaroida inermis) (p. 278)
- Tarsal arolium with a short petiole (Figs 79-93).31 Abdomen margin with clavate setae (Fig. 169). [Neotropical. On Solanaceae.]SPONDYLIASPIDIDAE (Arepuna) (p. 284)
- Abdomen margin without clavate setae 32
32 Anal pore-field with $1+1$ incomplete rings in addition to circum-anal pore rings (Fig. 143).Host-plant is Mangifera indica. [Oriental.] CALOPHYIDAE (Apsylla) (p. 288)
- Anal pore-field usually comprised of circum-anal rings only; if $1+1$ additional rings present they are complete and the host-plant is Juncus (some Livia spp., Fig. 110) or Ficus (Macrohomotoma striata, Fig. 149)
33 Anal pore-field comprised of circum-anal rings plus bands of pores which cover a more extensive area of the anal plate than of the caudal plate (Fig. 158). [Aftrotropical. On Antiaria.]

TRIOZIDAE (Triozamia) (p. 289)

- Anal pore-field usually comprised of circum-anal pore rings only; if pore bands present then they are more extensive on the caudal plate than on the anal plate (Fig. 155)
Anal pore-field (excluding circum-anal ring which may be present or absent) comprised of pore
bands (Fig. 155) or a single band plus numerous ovoid pore areas (Fig. 154). [On Meliaceae and Malvales.]

CARSIDARIDAE (p. 289)

- Anal pore-field (excluding circum-anal pore ring which is present) usually absent; if present then comprised of $1+1$ rings (Figs 110, 149)
35 Apical margin of abdomen notched and with $1+1$ stout setae (Fig. 157). [Neotropical. On
Euphorbiaceae, Myrtaceae and Solanaceae.]...................... TRIOZIDAE (Neolithus) (p. 289)
- Apical margin of abdomen not notched and without $1+1$ stout setae 36
36 Anal pore-field comprised of a circum-anal ring plus $1+1$ additional rings each of which is separated from the circum-anal ring (Fig. 110). [Holarctic and northern Oriental. On Juncus.] APHALARIDAE (some Livia spp.) (p. 278)- Anal pore-field usually comprised of circum-anal pore rings only; if $1+1$ additional ringspresent then they are adjacent to the circum-anal pore ring (Fig. 149).37
37 Anal pore-field comprised of circum-anal pore rings plus $1+1$ additional rings (Fig. 149).
[Austro-Oriental and Oriental. On Ficus.] HOMOTOMIDAE (Macrohomotoma) (p. 288)
- Anal pore-field comprised of circum-anal pore rings only (which may occasionally be incom-plete, Figs 150, 151; Mycopsylla).38
38 Circum-anal pore rings broken and with a convoluted inner margin to the outer ring (Figs 150, 151). [BBBL more than $0 \cdot 83$. Australasian, Austro-Oriental and Oriental. On Ficus.]
HOMOTOMIDAE (Mycopsylla)(p. 288)
- Circum-anal pore rings usually not broken; if broken (Fig. 147) then inner margin of outer ring not convoluted 39
39 Antenna with 1 division. [On Rutales.]
CALOPHYIDAE (Calophya rotundipennis and Microceropsylla)(p.288)
- Antenna with more than 1 division. 40 40
40 Antenna with 2 divisions. [Oriental. On Ficus.] TRIOZIDAE (Pauropsylla depressa) (p. 289)
- Antenna with more than 2 divisions 41
41 Antenna with 3 divisions 42
- Antenna with more than 3 divisions 43
42 Tarsus with 2 segments (Fig. 52). [Oriental. On Anacardiaceae.]
CALOPHYIDAE (Pelmatobrachia)(p. 288)
- Tarsus with 1 segment separate from the tibiotarsus (Fig. 53). [Afrotropical and Palaearctic. On Moraceae and Tamarix.] APHALARIDAE (Phytolyma and some Colposceniini) (p. 278)43 General form broad (BBBL more than 0.90). [Austro-Oriental and Oriental. On Ficus.]HOMOTOMIDAE (Macrohomotoma) (p. 288)
- General form elongate (BBBL less than 0.85) 44
44 Antenna with 5 or 6 divisions. [On Lauraceae.]
TRIOZIDAE (Pauropsylla beesoni and Trioza anceps) (p. 289)
- Antenna with 8,9 or 10 divisions 45
45 General form broad (BBBL more than 0.77). Antenna with 6 rhinaria (Fig. 41; often difficult to see). [Tarsal arolium without a visible unguitractor (Fig. 58). New Zealand and New World. On Ilex and Nectandra.] APHALARIDAE(Gyropsylla) (p. 278)
- General form elongate (BBBL less than 0.76). Antenna with 4 rhinaria 46
46 Tarsal arolium usually not visible; if visible then very small relative to claws, with a short petioleand a well-developed pad (Fig. 94). [Old World tropics. On Meliaceae.]PHACOPTERONIDAE (Pseudophacopteron)(p. 288)
- Tarsal arolium large relative to claws, with a stout petiole and a very reduced pad (Fig. 96).[Oriental. On Terminalia.]TRIOZIDAE (Trioza hirsuta) (p. 289)

Keys to subfamilies and genera of Aphalaridae

Many subfamilies are largely characterised by the form of the tarsal arolium, which is often difficult to observe. Because of this two keys to subfamilies are provided: (1) a key which follows the classification as closely as possible and (2) a much simplified artificial key. Material of Togepsylla sp. was not available for the analyses described earlier in this paper. However, material has since become available and the genus is tentatively included in the following keys (material in British Museum (Natural History); from New Guinea).

Key to subfamilies of Aphalaridae

1 Tarsus without an arolium, but with a pair of pulvilli (each situated beneath a claw).
[Austro-Oriental, Oriental and Palaearctic. On Lauraceae.] TOGEPSYLLINAE (p. 281)

- Tarsus usually with a well-developed arolium; or if without a visible arolium, pulvilli also absent 2
2 Tarsal arolium not visible 3
- Tarsal arolium well developed and visible 4
3 Abdomen margin with short lanceolate setae (similar in proportion to those in Fig. 164). [Analpore-field usually comprised of groups of pores on the caudal plate in addition to thecircum-anal ring (Fig. 105). Australasian, Oriental, Pacific, New Zealand and introduced toother areas on cultivated Eucalyptus. On Myrtaceae, Onagraceae and Rutaceae.]
EUPHYLLURINAE (Ctenarytainini) (p. 282)
- Abdomen margin usually with long simple setae; exceptionally slightly lanceolate (Fig. 162; Phytolyma minuta). [Anal pore-field comprised of circum-anal pore rings only (Fig. 162). Afrotropical. On Moraceae.] APHALARINAE (Phytolyma) (p. 281)
4 Tarsal arolium without a visible unguitractor (Figs 56-58).APHALARINAE (minus Phytolyma) (p. 281)
- Tarsal arolium with a well-developed unguitractor (Figs 59-76)5
5 Anal pore-field comprised of circum-anal pore rings plus $1+1$ incomplete rings (Figs 106, 107, 112, 113) EUPHYLLURINAE (minus Ctenarytainini) (p. 282)
- Anal pore-field usually comprised of circum-anal rings only; or if additional pore areas present they form ovoid areas (Figs 97, 99, 100) or complete rings (Fig. 110) 6
6 Unguitractor less than half as long as whole arolium and not forming a petiole (Figs 67, 68, 71-76) 7
- Unguitractor usually more than half as long as whole arolium (Figs 59-61, 69, 70); if less than half as long as whole arolium then arolium petiolate (Fig. 69) 9
7 Tarsal arolium pad longer than broad (Fig. 71). [Palaearctic. On Ericaceae.]
- Tarsal arolium pad broader than long (Figs 67, 68,72-76).8
8 Tarsal arolium pad more than $2 \cdot 0$ times as broad as long and with a pair of sclerotized areas (Figs 72-76). [On Rutales.]. RHINOCOLINAE (Rhinocolini) (p. 282)
- Tarsal arolium pad less than $1 \cdot 5$ times as broad as long and without sclerotized areas (Figs 67,68). [Holarctic and Oriental. On Carex and Juncus.].LIVIINAE (p. 281)
9 Abdomen margin with lanceolate setae. Anal pore-field comprised of circum-anal rings only.Tarsal arolium as in Figs 60, 61
- Abdomen margin usually without lanceolate setae; or if with lanceolate setae anal pore-fieldcomprised of circum-anal rings plus ovoid pore areas (Figs 97, 99, 100). Tarsal aroliumpetiolate (Figs 59, 69, 70)10
10 Abdomen margin with sectasetae or lanceolate setae. Petiole of tarsal arolium short relative to extension of claws (Figs 69, 70). [On Populus, Malvales and Urticales.]
PAUROCEPHALINAE (p. 283)- Abdomen margin without sectasetae or lanceolate setae. Petiole of tarsal arolium long relativeto extension of claws (Fig. 59). [New World. On Fabaceae.]

Simplified key to subfamilies of Aphalaridae

1 Abdomen margin with rod setae. [Tarsal arolium with a very long petiole (Fig. 59). New World. On Fabaceae.] APHALAROIDINAE (Aphalaroida pithecolobia)(p. 283)

- Abdomen margin without rod setae 2
2 On Moraceae (Clorophora and Ficus). [Abdomen margin with long setae, which may be
2 On Moraceae (Clorophora and Ficus). [Abdomen margin with long setae, which may be slightly lanceolate (Fig. 162). Anus posterior. Tarsal arolium not visible. Afrotropical.]APHALARINAE (Phytolyma) (p. 281)
- Noton Moraceae 3
3 Abdomen margin with sectasetae 4
- Abdomen margin without sectasetae 9
4 Antenna without sectasetae 5
- Antenna with sectasetae 6

5 Anal pore-field comprised of circum-anal rings plus ovoid pore areas (Figs 99, 100). Tarsal arolium petiolate (Fig. 69). On Populus [Palaearctic.]

PAUROCEPHALINAE (Camarotoscena) (p. 283)

- Anal pore-field comprised of circum-anal rings only. Tarsal arolium not petiolate (Fig. 71). On

Ericaceae (Calluna and Erica). [Palaearctic.].
STROPHINGIINAE (p. 281)
6 Anal pore-field comprised of circum-anal rings plus additional broken rings (Figs 106, 113)
EUPHYLLURINAE (Diclidophlebiini) (p. 282)

- Anal pore-field comprised of circum-anal rings only. 7
7 Abdomen margin sectasetae based upon large clustered tubercles (Fig. 114). Tarsal arolium
PAUROCEPHALINAE (Paurocephala) (p. 283)
- Abdomen margin sectasetae not based upon clustered tubercles. Tarsal arolium, if present, not petiolate

8 Abdomen, wing-pads and antennal sectasetae truncate. On Lauraceae (Lindera and Litsea).
Tarsal arolium absent. Paired pulvilli present, one under each claw. [Austro-Oriental,
Oriental \& Palaearctic.]

TOGEPSYLLINAE (p. 281)

- Abdomen, wing-pads and antennal sectasetae pointed. On Rutaceae (Calodendrum). Tarsal
arolium present (Fig. 74). Pulvilli absent. [Afrotropical.] RHINOCOLINAE (Moraniella) (p. 282)

9 Abdomen margin usually with lanceolate setae; if abdomen margin without lanceolate setae then forewing-pad margin with lanceolate setae10

- Abdomen margin and forewing-pad margin without lanceolate setae 21
10 On Carex. [Circum-anal pore rings as in Fig. 111. Tarsal arolium as in Fig. 68. Holarctic.]
- On Dicotyledoneae
11 On Tamaricaceae. Lanceolate setae on abdomen and/or forewing-pad margin more than 6 times as long as broad (Fig. 163). Tarsal arolium without a visible unguitractor (Fig. 57). [Afrotropical, Oriental and Palaearctic.] APHALARINAE (Colposceniini) (p. 281)
- Uusually not on Tamaricaceae; if on Tamaricaceae then lanceolate setae less than 4 times as long as broad and tarsal arolium with a distinct unguitractor (Fig. 71) 12
12 On Calluna or Erica. [Anal pore-field comprised of circum-anal rings only (Fig. 116). Tarsal arolium as in Fig. 71. Palaearctic.] STROPHINGIINAE (p. 281)
- Not on Calluna or Erica 13
13 On Acer. [Tarsal arolium as in Fig. 75. Palaearctic] RHINOCOLINAE (Rhinocola) (p. 282)
Not on Acer 14
14 Anal pore-field comprised of circum-anal rings (which may be very faint, Fig. 112) plus additional broken rings (Figs 107, 112. On Arbutus, Arctostaphylos, Olea and Phillyrea. [Tarsal arolium as in Figs 62-64. Holarctic.] EUPHYLLURINAE (Euphyllurini) (p. 282)
- Anal pore-field usually comprised of cirum-anal rings only; if additional pore areas present then they are in ovoid groups (Figs 97, 99, 100, 105) and the hosts are Populus (Camarotoscena), Rutales (Agonoscena and Ctenarytaina), Myrtaceae or Onagraceae (Ctenarytaina) 15
15 Anal pore-field comprised of circum-anal rings plus adjacent ovoid groups of pores (Figs 97, 99, 100) 16
- Anal pore-field usually comprised of circum-anal rings only; or if with ovoid groups of pores then these are situated some distance from the outer circum-anal ring (Fig. 105) 17
16 On Populus. Tarsal arolium narrow (Fig. 69). [Palaearctic.]
PAUROCEPHALINAE (Camarotoscena) (p. 283)
- On Ruta or Pistacia. Tarsal arolium broad (Fig. 72) RHINOCOLINAE (Agonoscena) (p. 282)
17 On Anacardiaceae in the New World. [Tarsal arolium as in Figs 73, 76.]
RHINOCOLINAE (Leurolophus and Tainarys) (p. 282)
- Usually not on Anacardiaceae; if on Anacardiaceae then Old World. 18
18 On Fraxinus. Tarsal arolium with a very long petiole (Fig. 61)
DIAPHORININAE (Psyllopsis) (p. 283)
- Not on Fraxinus. Tarsal arolium, if visible, without a long petiole. 19
19 Antenna with 8 or 9 divisions. Tarsal arolium not visible. Abdomen margin usually sinuatebefore apex (Fig. 105). Anal pore-field sometimes with groups of pores in addition tocircum-anal pore rings (Fig. 105). [On Myrtaceae, Onagraceae and Rutaceae.]
- Antenna usually with less than 8 divisions; if with 8 divisions then tarsal arolium clearly visible.

Abdomen margin not sinuate before apex and anal pore-field comprised of circum-anal rings only
20 Abdomen margin lanceolate setae at least 4 times as long as broad (Fig. 164). Tarsal arolium without a visible unguitractor (Fig. 56). Antenna usually with 5 or 6 rhinaria, sometimes 4 . Humeral lobe of forewing-pad not usually extended anterior to the posterior margin of the eye. [Cool temperate Holarctic and Oriental. On Asteraceae, Brassicaceae, Chenopodiaceae, Onagraceae, Polygonaceae and Ranunculaceae.] APHALARINAE (Aphalarini) (p. 281)

- Abdomen margin lanceolate setae less than 4 times as long as broad (Fig. 165). Tarsal arolium with a long unguitractor (Fig. 60). Antenna with 4 rhinaria. Humeral lobe of forewing-pad usually extended anterior to the posterior margin of the eye. [Warm temperate and tropical Afrotropical, Oriental and Palaearctic. On numerous hosts.]

DIAPHORININAE (Diaphorinini) (p. 283)
21 Anal pore-field comprised of a circum-anal ring plus $1+1$ additional rings (Fig. 110). Tarsal arolium with a distinct unguitractor but not petiolate (Fig. 67). [Holarctic. On Juncus.]

LIVIINAE (some spp.) (p. 281)

- Anal pore-field comprised of circum-anal rings only. Tarsal arolium without a distinct unguitractor (Figs 57,58) or, if with an unguitractor then petiolate (Fig. 59)
22 Tarsal arolium with a long petiole (Fig. 59). On Fabaceae. [New World.]
APHALAROIDINAE (Aphalaroida inermis) (p. 283)
- Tarsal arolium without a long petiole (Figs 57, 58). On Ilex, Nectandra or Tamarix

APHALARINAE (Colposceniini and Gyropsylla) (p. 281)

Confirmatory characters of Togepsyllinae

Body, antenna and wing-pads with truncate sectasetae. Tarsus with paired pulvilli, one under each claw. $\mathrm{BL}=0.93-1.27 \mathrm{~mm}, \mathrm{WL}=0.35-0.46 \mathrm{~mm}, \mathrm{ARB}=0.08 \mathrm{~mm}, \mathrm{AWL}=0.89-1.12$, $\mathrm{BBBL}=0 \cdot 40-0 \cdot 51, \mathrm{~A}=7, \mathrm{R}=3456$. Austro-oriental, Oriental and eastern Palaearctic. On Lauraceae

TOGEPSYLLA

Key to species groups of Liviinae

One genus only: Livia. Species formerly referred to Diraphia Waga can be separated from other species of Livia, as follows.
1 Anal pore-field comprised of circum-anal pore rings plus $1+1$ additional rings (Fig. 110).
Tarsal arolium pad with angles acutely rounded (Fig. 67). On Juncus. [BL $=1 \cdot 44-2.45 \mathrm{~mm}$, $\mathrm{WL}=0.65-0.83 \mathrm{~mm}, \mathrm{ARB}=0.06-0.08 \mathrm{~mm}, \mathrm{AWL}=0.49-0.75, \mathrm{BBBL}=0.48-0.71, \mathrm{~A}=3$ or $7, \mathrm{R}=3333$ or 3577 .] \qquad LIVIA (minus species formerly referred to Diraphia)

- Anal pore-field comprised of circum-anal rings only (Fig. 111). Tarsal arolium pad with angles broadly rounded (Fig. 68). On Carex. [BL $=1.75-2.63 \mathrm{~mm}, \mathrm{WL}=0.80-0.92 \mathrm{~mm}, \mathrm{ARB}=$ $0 \cdot 47-0.60 \mathrm{~mm}, \mathrm{AWL}=0 \cdot 55-0 \cdot 76, \mathrm{BBBL}=0.51-0 \cdot 75, \mathrm{~A}=7$ or $10, \mathrm{R}=4677$ or 4689 .]

LIVIA (formerly Diraphia spp.)

Confirmatory characters of Strophingiinae

Abdomen and wing-pad margins with lanceolate setae or pointed sectasetae. Tarsal arolium as in Fig. 71. $\mathrm{BL}=1 \cdot 11-1.58 \mathrm{~mm}, \mathrm{WL}=0.46-0.60 \mathrm{~mm}, \mathrm{ARB}=0.09-0.13 \mathrm{~mm}, \mathrm{AWL}=$ $0 \cdot 41-0 \cdot 56, \mathrm{BBBL}=0.72-0 \cdot 86, \mathrm{~A}=3, \mathrm{R}=3333$. Palaearctic. On Calluna and Erica

STROPHINGIA

Key to genera of Aphalarinae

1 Each tarsus without a visible arolium. On Moraceae. [Longest seta on abdomen margin simple, others at most only slightly lanceolate (Fig. 162). Anus posterior, Fig. 162. BL $=1 \cdot 72-$ $2.47 \mathrm{~mm}, \mathrm{WL}=0.72-1.11 \mathrm{~mm}, \mathrm{ARB}=0.31-0.69 \mathrm{~mm}, \mathrm{AWL}=0.60-0.78, \mathrm{BBBL}=0.82-$ 1•11, $\mathrm{A}=3, \mathrm{R}=3333$. Afrotropical. On Clorophora and Ficus.]

PHYTOLYMA

- Each tarsus with a visible and well-developed arolium (Figs 56-58). Not on Moraceae

2 Anus posterior. Circum-anal pore ring more than 0.35 mm broad and without sharp angles (Fig. 108). [Body and wing-pads without lanceolate setae. Antenna with 6 rhinaria (may be very difficult to see) (Fig. 41). $\mathrm{BL}=1.52-1.87 \mathrm{~mm}, \mathrm{WL}=0.74-0.79 \mathrm{~mm}, \mathrm{ARB}=0.36-$ $0.39 \mathrm{~mm}, \mathrm{AWL}=0.65-0.87, \mathrm{BBBL}=0.78-0 \cdot 81, \mathrm{~A}=8$ or $10, \mathrm{R}=456788$ or 456789 . New World and New Zealand. On Ilex and Nectandra.].

- Anus ventral. Circum-anal pore ring usually less than 0.35 mm broad; if more than 0.35 mm broad (some Craspedolepta spp.) then ring with some sharp angles (Figs 102, 103)
3 On Tamaricaceae. Lanceolate setae often absent; or if present they are more than 6 times as long as broad (Fig. 163). Forewing-pad margin sometimes with a deep oblique notch
- Not on Tamaricaceae. Lanceolate setae present and less than 6 times as long as broad (Fig. 164). Forewing-pad margin without a deep oblique notch
4 General form broad (BBBL more than $0 \cdot 83$). [Forewing-pad usually with a humeral lobe. BL $=0.95-1.07 \mathrm{~mm}, \mathrm{WL}=0.37-0.43 \mathrm{~mm}, \mathrm{ARB}=0.09-0.11 \mathrm{~mm}, \mathrm{AWL}=0.38-0.43, \mathrm{BBBL}=$ $0.91-0 \cdot 95, \mathrm{~A}=3, \mathrm{R}=3333$. Afrotropical, Oriental and Palaearctic. On Tamarix.]

COLPOSCENIA

- General form elongate (BBBL less than 0.83). [Forewing-pad without a humeral lobe. BL $=$ $1.84 \mathrm{~mm}, \mathrm{WL}=0.64 \mathrm{~mm}, \mathrm{ARB}=0.14 \mathrm{~mm}, \mathrm{AWL}=0.47, \mathrm{BBBL}=0.75, \mathrm{~A}=3, \mathrm{R}=$ 333333. Afrotropical and Palaearctic. On Tamarix and Myricaria.] CRASTINA

5 On Caltha, Polygonum, Rumex or Sisymbrium. [Antenna usually with 7 divisions, rarely 3 or 8. $\mathrm{BL}=1.65-2.46 \mathrm{~mm}, \mathrm{WL}=0.70-0.93 \mathrm{~mm}, \mathrm{ARB}=0.16-0.31 \mathrm{~mm}, \mathrm{AWL}=0.40-0.62$, $\mathrm{BBBL}=0 \cdot 55-0 \cdot 80, \mathrm{R}=333333,3577,34577,345677$ or 456788 . Holarctic and Mexico.]

APHALARA

- On Asteraceae or Onagraceae. [Antenna usually with 3 divisions, rarely 7. BL $=1 \cdot 58-2 \cdot 80$ $\mathrm{mm}, \mathrm{WL}=0 \cdot 60-1 \cdot 15 \mathrm{~mm}, \mathrm{ARB}=0 \cdot 10-0 \cdot 38 \mathrm{~mm}, \mathrm{AWL}=0 \cdot 34-0 \cdot 66, \mathrm{BBBL}=0 \cdot 52-0 \cdot 91, \mathrm{R}$ $=3333,33333,333333,3577,35677$ or 345677. Holarctic and Mexico.]

CRASPEDOLEPTA

Key to genera of Rhinocolinae: Rhinocolini

1 Forewing-pad and abdomen margins with sectasetae (Fig. 166). [Tarsal arolium as in Fig. 74. $\mathrm{BL}=1.41-1.59 \mathrm{~mm}, \mathrm{WL}=0.60-0.68 \mathrm{~mm}, \mathrm{ARB}=0.14-0.16 \mathrm{~mm}, \mathrm{AWL}=0.52-0.58$, $\mathrm{BBBL}=0.74-0 \cdot 79, \mathrm{~A}=3, \mathrm{R}=3333$. Afrotropical. On Calodendrum.] .. MORANIELLA

- Forewing-pad and abdomen margins without sectasetae

2 Anal pore-field comprised of circum-anal rings plus adjacent ovoid groups of pores (Fig. 97). [Tarsal arolium as in Fig. 72. BL $=0.91-1.30 \mathrm{~mm}, \mathrm{WL}=0.34-0.42 \mathrm{~mm}, \mathrm{ARB}=0.12-$ $0 \cdot 18 \mathrm{~mm}, \mathrm{AWL}=0 \cdot 76-1 \cdot 17, \mathrm{BBBL}=0 \cdot 71-0 \cdot 78, \mathrm{~A}=7, \mathrm{R}=3577$. Afrotropical, Oriental and Palaearctic. On Pistacia and Ruta.].

- Anal pore-field comprised of circum-anal rings only.

3 Anus posterior or nearly so. Outer circum-anal pore ring comprised of multiple rows of pores (Fig. 109). Antenna with 8 divisions. [Tarsal arolium as in Fig. 73. BL $=1.05-1.16 \mathrm{~mm}$, WL
 $=0.42-0.50 \mathrm{~mm}, \mathrm{ARB}=0.19 \mathrm{~mm}, \mathrm{AWL}=0.70-0 \cdot 76, \mathrm{BBBL}=0.68-0 \cdot 76, \mathrm{R}=3577$.
Nearctic. On Rhus.]...

- Anus ventral. Outer circum-anal pore ring comprised of a single row of pores (Fig. 168). Antenna with 7 divisions

AGONOSCENA

4 Lanceolate setae on the head, wing-pads and abdomen truncate (Fig. 168). Antenna with lanceolate setae. [Tarsal arolium as in Fig. 75. BL $=1.56-2.20 \mathrm{~mm}, \mathrm{WL}=0.53-0.68 \mathrm{~mm}$, $\mathrm{ARB}=0 \cdot 13-0 \cdot 19 \mathrm{~mm}, \mathrm{AWL}=0 \cdot 61-0 \cdot 91, \mathrm{BBBL}=0 \cdot 55-0 \cdot 70, \mathrm{R}=3577$. Palaearctic. On Acer.]

RHINOCOLA

- Lanceolate setae on the head, wing-pads and abdomen pointed (Fig. 167). Antenna without lanceolate setae. [Tarsal arolium as in Fig. 76. $\mathrm{BL}=1.61 \mathrm{~mm}, \mathrm{WL}=0.58 \mathrm{~mm}, \mathrm{ARB}=$ $0.09 \mathrm{~mm}, \mathrm{AWL}=0.57, \mathrm{BBBL}=0.78, \mathrm{R}=3577$. Neotropical. OnSchinus.] TAINARYS

Key to genera and subgenera of Euphyllurinae

1 Abdomen margin with sectasetae

- Abdomen margin with lanceolate or stout simple setae

2 Anal pore-field (other than circum-anal rings) comprised of unbroken bands (Fig. 106). [Tarsal arolium as in Fig. 65. $\mathrm{BL}=2.25-2.75 \mathrm{~mm}$, WL $=0.68-0.72 \mathrm{~mm}, \mathrm{ARB}=0.08-0.09 \mathrm{~mm}$, $\mathrm{AWL}=1 \cdot 24-1 \cdot 37, \mathrm{BBBL}=0 \cdot 58-0 \cdot 60, \mathrm{~A}=9, \mathrm{R}=3578$. Old World tropics. On Sterculiaceae.]

DICLIDOPHLEBIA

- Anal pore-field (other than circum-anal rings) comprised of broken bands (Fig. 113). [Tarsal arolium as in Fig. 66. $B L=1.34-1.53 \mathrm{~mm}, W L=0.59-0.68 \mathrm{~mm}, \mathrm{ARB}=0.07-0.10 \mathrm{~mm}$, $\mathrm{AWL}=1 \cdot 44-1 \cdot 62, \mathrm{BBBL}=0.79-0 \cdot 85, \mathrm{~A}=9, \mathrm{R}=3577$. Tropical. On Melastomataceae, Sterculiaceae and Tiliaceae.]
- Tarsal arolium not visible

4 Anal pore-field comprised of circum-anal pore rings, pore bands and ovoid pore groups (Fig. 107). [Tarsal arolium as in Fig. 62. BL $=1.22-2.00 \mathrm{~mm}$, WL $=0.51-0.75 \mathrm{~mm}$, $\mathrm{ARB}=0.08-0.12 \mathrm{~mm}, \mathrm{AWL}=0.72-0.89, \mathrm{BBBL}=0.71-0.92, \mathrm{~A}=8-9, \mathrm{R}=3578$. Afrotropical, Oriental and Palaearctic. On Olea and Phillyrea.] EUPHYLLURA

- Anal pore-field comprised of convoluted rings (Fig. 112)

5 Tarsal arolium not petiolate (Fig. 64). On Arctostaphylos. [BL $=1.90-2.37 \mathrm{~mm}$, $\mathrm{WL}=0.74-1.10 \mathrm{~mm}, \mathrm{AWL}=0.75-1 \cdot 10 \mathrm{~mm}, \mathrm{BBBL}=0.71-0.76, \mathrm{~A}=7, \mathrm{R}=3577$. Nearctic.]

NEOPHYLLURA (NEOPHYLLURA)

- Tarsal arolium petiolate (Fig. 63). On Arbutus. [BL $=2 \cdot 15-2.65 \mathrm{~mm}$, WL $=0.53-0.80 \mathrm{~mm}$, $\mathrm{AWL}=0 \cdot 80-1 \cdot 02, \mathrm{BBBL}=0 \cdot 66-0 \cdot 68, \mathrm{~A}=7, \mathrm{R}=3577$. Nearctic.]

NEOPHYLLURA (ARBUTOPHILA)
6 Anal pore-field comprised of circum-anal rings only, or circum-anal rings plus ovoid groups of pores which are confined to the lateral areas of the abdomen (Fig. 105). [BL $=1 \cdot 18$ $1.38 \mathrm{~mm}, \mathrm{WL}=0.48-0.60 \mathrm{~mm}, \mathrm{ARB}=0.07-0.09 \mathrm{~mm}, \mathrm{AWL}=0.68-0.78, \mathrm{BBBL}=0.58-$ $0 \cdot 70, \mathrm{~A}=8, \mathrm{R}=3577$. Australia, New Zealand and Pacific. On Eucalyptus, Fuchsia and Boronia. Introduced to Afrotropical and Palaearctic on cultivated Eucalyptus.]

CTENARYTAINA

- Anal pore-field comprised of circum-anal rings plus broken bands of pore groups which are predominantly dorsal in position (Fig. 119). $[B L=1.51-2.00 \mathrm{~mm}$, WL $=0.55-0.64 \mathrm{~mm}$, $\mathrm{AWL}=0 \cdot 67-0 \cdot 73, \mathrm{BBBL}=0 \cdot 50-0 \cdot 56, \mathrm{~A}=9, \mathrm{R}=3578$. Australia and Oriental. On Eucalyptus and other Myrtaceae.]
'EUCALYPTOLYMA', 'EUPHYLLURA'
(some species currently referred, but excluding the type-species)

Key to genera of Paurocephalinae

1 Abdomen margin with sectasetae based upon large clustered tubercles (Fig. 114). Antenna with sectasetae (Fig. 45). Anal pore-field comprised of circum-anal rings only. On Malvales and Moraceae. [Tarsal arolium as in Fig. 70. $\mathrm{BL}=0.97-1.41 \mathrm{~mm}$, WL $=0.40-0.53 \mathrm{~mm}$, $\mathrm{ARB}=0 \cdot 13-0 \cdot 16 \mathrm{~mm}, \mathrm{AWL}=0 \cdot 81-1 \cdot 00, \mathrm{BBBL}=0 \cdot 74-0 \cdot 92, \mathrm{~A}=3, \mathrm{R}=3333$. Old World.].

PAUROCEPHALA

- Abdomen margin usually with lanceolate setae; if with sectasetae, then they are not based upon large clustered tubercles. Antenna without sectasetae. Anal pore-field comprised of circumanal rings plus adjacent crescent-shaped (Fig. 99) or ovoid (Fig. 100) pore areas. On Populus. [Tarsal arolium as in Fig. 69. BL $=1.04-1.98 \mathrm{~mm}, \mathrm{WL}=0.44-0.71 \mathrm{~mm}, \mathrm{ARB}=$ $0.05-0.23 \mathrm{~mm}, \mathrm{AWL}=0.70-0.84, \mathrm{BBBL}=0.76-0.85, \mathrm{~A}=7, \mathrm{R}=3577$. Palaearctic.]

CAMAROTOSCENA

Key to genera of Diaphorininae

1 Tarsal arolium with a long petiole (Fig. 61). Antenna with 8 divisions and very long (AL $=$ $0.79-0.87 \mathrm{~mm}$, AWL $=0.91-1 \cdot 23$). On Fraxinus. Forewing-pad at most slightly extended anteriorly as a humeral lobe, which does not extend anterior to procoxa. [BL $=1.52$ $2.57 \mathrm{~mm}, \mathrm{WL}=0.64-0.89 \mathrm{~mm}, \mathrm{ARB}=0.16-0.27 \mathrm{~mm}, \mathrm{BBBL}=0.64-0.81, \mathrm{R}=3578$. Palaearctic and Oriental. Introduced to Nearctic.]

PSYLLOPSIS

- Tarsal arolium without a long petiole (Fig. 60). Antenna with 3 divisions and short (AL $=$ $0.29-0.45 \mathrm{~mm}$, AWL $=0.26-0 \cdot 54$). Not on Fraxinus. Forewing-pad usually extended anteriorly as a humeral lobe, which extends anterior to procoxa
2 Body and wing-pads broad (BBBL $=0.78-0.93)$. $[\mathrm{BL}=1.34-2.13 \mathrm{~mm}, \mathrm{WL}=0.75-1.24 \mathrm{~mm}$, ARB $=0.11-0.24 \mathrm{~mm}, \mathrm{AWL}=0.26-0.54, \mathrm{R}=3333$. Afrotropical, Oriental and Palaearctic. Introduced to Neotropical. On a wide variety of host-plants.]

DIAPHORINA

- Body and wing-pads narrow ($\mathrm{BBBL}=0.73-0.75$). $[\mathrm{BL}=1.91-2.06 \mathrm{~mm}, \mathrm{WL}=0.87-0.88 \mathrm{~mm}$, $\mathrm{ARB}=0.28 \mathrm{~mm}, \mathrm{AWL}=0.38-0 \cdot 43, \mathrm{R}=3333$. Afrotropical. On Strychnos.]

PENNAVENA

Confirmatory characters of Aphalaroidinae

Tarsal arolium with a very long petiole (Fig. 59). $\mathrm{BL}=1.51-1.75 \mathrm{~mm}, \mathrm{WL}=0.59-0.66 \mathrm{~mm}$, $\mathrm{ARB}=0.07-0.09 \mathrm{~mm}, \mathrm{AWL}=0.63-0.77, \mathrm{BBBL}=0.71-0 \cdot 76, \mathrm{~A}=7, \mathrm{R}=3577$. New World. On Fabaceae

APHALAROIDA

Key to genera and species groups of Spondyliaspididae

1 Caudal plate pointed (Figs 118, 124), without apical 'teeth'.. 2

- Caudal plate not pointed (Fig. 121), with apical 'teeth' (Figs 122, 125, 127, 128)

2 Margin of abdomen with 'teeth' placed $1+1$ either side of caudal plate area (Fig. 118). [BL = $3 \cdot 35-3.91 \mathrm{~mm}, \mathrm{WL}=1.03-1.18 \mathrm{~mm}, \mathrm{AWL}=0.83-0 \cdot 90, \mathrm{BBBL}=0.53-0 \cdot 30, \mathrm{~A}=10, \mathrm{R}=$ 4689. Australia. On Eucalyptus.]

- Margin of abdomen without 'teeth' placed $1+1$ either side of caudal plate area (Figs 124,129)

3 Anal pore-field absent. Antenna short relative to forewing-pad (AWL $=0 \cdot 57-0 \cdot 79$). [BL $=$ $1.61-2.89 \mathrm{~mm}, \mathrm{WL}=0.68-0.92 \mathrm{~mm}, \mathrm{BBBL}=0.54-0.78, \mathrm{~A}=9$ or $10, \mathrm{R}=3578$ or 4689 . Australia. On Eucalyptus.]

4 Antenna with 10 divisions and about twice as long as forewing-pad ($\mathrm{AWL}=2 \cdot 02$). [$\mathrm{BL}=$ $2.44 \mathrm{~mm}, \mathrm{WL}=0.61 \mathrm{~mm}, \mathrm{BBBL}=0.55, \mathrm{R}=4689$. Australia. On Eucalyptus.]

SPONDYLIASPIS

- Antenna with 9 divisions and about as long as forewing-pad (AWL $=0.87-1 \cdot 14$). [BL $=$ $1 \cdot 41-2 \cdot 15 \mathrm{~mm}, \mathrm{WL}=0 \cdot 66-0 \cdot 89 \mathrm{~mm}, \mathrm{BBBL}=0 \cdot 67-0 \cdot 84, \mathrm{R}=3578$ or 34578 . Australia. On Eucalyptus.].
- Apical margin of abdomen without 'tooth-like' processes. 13
6 Anal pore-field comprised of $1+1$ ventral and $1+1$ dorsal rings (Figs 120,122) 7
- Anal pore-field usually comprised of scattered pore groups (Fig. 126), or absent .

7 Abdomen with large apical 'teeth' arranged $1+1$ (Fig. 120). Forming galls on Rhamnaceae. $[\mathrm{BL}=2.78-2.88 \mathrm{~mm}, \mathrm{WL}=0.73-0.80 \mathrm{~mm}, \mathrm{AWL}=1.56-1.68, \mathrm{BBBL}=0.55-0.68, \mathrm{~A}=7$, $\mathrm{R}=3567$. New World tropics.]

EUPHALERUS (E. gallicolus)

- Abdomen with about 4 small apical 'teeth' (Fig. 122). Forming lerps on Fabaceae. [BL = $1 \cdot 15-1.17 \mathrm{~mm}, \mathrm{WL}=0.44-0.58 \mathrm{~mm}, \mathrm{AWL}=1.00-1 \cdot 36, \mathrm{BBBL}=0.85-0.94, \mathrm{~A}=9, \mathrm{R}=$ 3578. New World tropics.]

EUPHALERUS (E. nidifex)
8 Antenna with 10 divisions. On Celtis

- Antenna with 8 or 9 divisions. Usually not on Celtis, or if on Celtis antenna with 8 divisions.

9 Abdomen apical 'teeth' without medial 'tooth' or 'teeth' enlarged (Fig. 126). Lerp forming. $[\mathrm{BL}=3.08 \mathrm{~mm}, \mathrm{WL}=0.84 \mathrm{~mm}, \mathrm{AWL}=0.99, \mathrm{BBBL}=0.51, \mathrm{R}=4689$. Eastern Palaearctic.].

PACHYPSYLLA (P. japonica)

- Abdomen apical 'teeth' with median 'tooth' or 'teeth' enlarged (Fig. 125). Gall forming

10 Large, body length more than 4.5 mm . Forming galls on stems and leaf petioles. [BL $=4.91$ $\mathrm{mm}, \mathrm{WL}=1.22-1.53 \mathrm{~mm}, \mathrm{AWL}=0.65-0 \cdot 75, \mathrm{BBBL}=0.61-0.63, \mathrm{R}=4689$. Nearctic.]

PACHYPSYLLA (P. venusta)

- Small, body length less than 4.5 mm . Forming galls on leaves. [$\mathrm{BL}=2.03-4.25 \mathrm{~mm}, \mathrm{WL}=$ $0.69-1.03 \mathrm{~mm}, \mathrm{AWL}=0.73-1 \cdot 00, \mathrm{BBBL}=0.48-0.75, \mathrm{R}=4689$. Nearctic and Mexico.]

PACHYPSYLLA (minus P. japonica and P. venusta)
11 Anal pore-field absent. Tarsal arolium petiolate (Fig. 78). [Apical 'teeth' of abdomen as in Fig. 128. $\mathrm{BL}=2.20-2.61 \mathrm{~mm}, \mathrm{WL}=0.76-0.87 \mathrm{~mm}, \mathrm{AWL}=1.25-1.43, \mathrm{BBBL}=0.67-0.69$, $\mathrm{A}=8, \mathrm{R}=4688$. Afrotropical. Forming lerps on Colophospermum.] $\ldots \ldots$. RETROACIZZIA

- Anal pore-field comprised of scattered pore groups (Fig. 127). Tarsal arolium not visible.

12 Abdomen margin with lanceolate setae. Antenna with 9 divisions. [BL $=2 \cdot 18-2 \cdot 66 \mathrm{~mm}$, WL $=$ $0.70-0.71 \mathrm{~mm}, \mathrm{AWL}=1.08-1 \cdot 21, \mathrm{BBBL}=0.59-0.66, \mathrm{R}=3578$. Australia. In discarded lerps of Spondyliaspidinae on Eucalyptus.]

PHELLOPSYLLA

- Abdomen margin without lanceolate setae. Antenna with 8 divisions. [BL $=3 \mathrm{~mm}, \mathrm{WL}=1 \cdot 1$ $\mathrm{mm}, \mathrm{AWL}=0 \cdot 9, \mathrm{BBBL}=0 \cdot 7, \mathrm{R}=4688$, all estimated from Ferris (1926). Nearctic and Mexico. Forming lerps on Celtis.] TETRAGONOCEPHALA
13 Anal pore-field comprised of circum-anal rings only. Abdomen and wing-pad margins with clavate setae (Fig. 169). [BL $=1.44 \mathrm{~mm}, \mathrm{WL}=0.57 \mathrm{~mm}, \mathrm{ARB}=0.08 \mathrm{~mm}, \mathrm{AWL}=0.81$, $\mathrm{BBBL}=0 \cdot 72, \mathrm{~A}=7, \mathrm{R}=3577$. Neotropical. On Solanaceae.] .

AREPUNA

- Anal pore-field comprised of circum-anal rings plus pore bands (Fig. 121) or pore groups (Figs $117,123)$ arranged as rings. Abdomen and wing-pad margins without clavate setae
14 Anal pore-field comprised of circum-anal rings plus pore bands (Fig. 121). [BL $=1 \cdot 56-1 \cdot 77$ $\mathrm{mm}, \mathrm{WL}=0.53-0.66 \mathrm{~mm}, \mathrm{AWL}=1 \cdot 06-1 \cdot 45, \mathrm{BBBL}=0 \cdot 60-0 \cdot 80, \mathrm{~A}=7, \mathrm{R}=3577$ or 4677 . Nearctic. On Rhamnaceae.] EUPHALERUS (E. jugovenosus, E. rugipennis and E. vermiculosus, but not the type-species of Euphalerus)
- Anal pore-field comprised of circum-anal rings plus pore groups (Figs 117, 123).

1	Abdomen margin with $3+3$ sectasetae (Fig. 123). [Anal pore-field as in Fig. 123. BL $=$ $1.44-1.72 \mathrm{~mm}, \mathrm{WL}=0.48-0.53 \mathrm{~mm}, \mathrm{AWL}=1 \cdot 13-1 \cdot 15, \mathrm{BBBL}=0.65-0.66, \mathrm{~A}=8, \mathrm{R}=$ 3578. Afrotropical. On Fabaceae.] EUPHALERUS (some species assigned to the genus, but not the type species)
	Abdomen margin without sectasetae. [Anal pore-field as in Fig. 117. $\mathrm{BL}=1.69 \mathrm{~mm}, \mathrm{WL}=$
	$0.64 \mathrm{~mm}, \mathrm{ARB}=0.12 \mathrm{~mm}, \mathrm{AWL}=1 \cdot 11, \mathrm{BBBL}=0 \cdot 65, \mathrm{~A}=8, \mathrm{R}=3578$. Afrotropical. On
	Fabaceae.]... COLOPHORINA

Keys to subfamilies and genera of Psyllidae

Key to subfamilies of Psyllidae

1 Hindwing-pad margin with a pointed sectaseta. [Neotropical. On Fabaceae.]
ACIZZIINAE (Neopsyllia and Platycorypha)(p. 285)

- Hindwing-pad margin without sectasetae 2

2 Dorsal surface of abdomen and thorax with lanceolate setae. [Neotropical. On Fabaceae.]
ACIZZIINAE (Mitrapsylla) (p. 285)

- Dorsal surface of abdomen and thorax without lanceolate setae
3 Abdomen margin with $3+3$ or $4+4$ tubular sectasetae (Fig. 37 [ts]) or lanceolate setae (Fig. 37 [1]). [Tropical. On Fabaceae and Euphorbiaceae.]........................ CIRIACREMINAE (p. 286)
- Abdomen margin without tubular sectasetae or lanceolate setae
4 Tarsal arolium pad with two separate spinule-covered areas (Figs 81, 83, 84). Circum-anal pore rings partly on the dorsal surface of the abdomen (Fig. 130). [Tropical Old World and eastern Palaearctic. On Fabaceae and Moraceae.]
- Tarsal arolium pad with one spinule-covered area (Figs 79, 80, 86, 92, 93). Circum-anal pore rings usually confined to the ventral surface of the abdomen (the exceptions being some Psyllinae, Figs 132, 134, 136, 142)5
5 Antenna with 9 divisions 6
- Antenna with less than 9 divisions. 7
6 On Cercocarpus. [Nearctic.] PSYLLINAE (Psylla magna) (p. 287)
- On Fabaceae or Proteaceae ACIZZIINAE (Acizzia) (p. 285)
7 Tarsal arolium pad only slightly broader at apex than at base (Fig. 93)
ACIZZIINAE (Trigonon) (p. 285)
- Tarsal arolium pad very much broader at apex than at base (Figs 86, 92)8
8 Antenna with 5 divisions ANOMONEURINAE (some species assigned to Euphalerus but excluding the type-species)(p. 286)
- Antenna with 7 or 8 divisions9
9 On Cercocarpus. Circum-anal pore ring breadth to antenna length ratio more than $0 \cdot 3$ (0.36-0.40)
ANOMONEURINAE (Euphalerus tantillus but not the type-species of Euphalerus) (p. 286)
- Usually not on Cercocarpus; or if on Cercocarpus then circum-anal pore ring breadth to antenna length ratio less than $0 \cdot 3(0 \cdot 11-0 \cdot 25)$ 10
10 Not on Fabaceae or Solanaceae PSYLLINAE (most species) (p. 287)
- On Fabaceae or Solanaceae 11
11 Circum-anal pore rings convoluted (Fig. 138). PSYLLINAE (Psylla pulchella) (p. 287)
- Circum-anal pore rings not convoluted 12
12 On Bauhinia PSYLLINAE (Psylla simlae) (p. 287)
- Not on Bauhinia 13
13 On Genisteae ARYTAININAE (p. 287)
- Not on Genisteae 14
14 Ventral surface of abdomen with capitate setae ACIZZIINAE (Freysuila) (p. 285)
Ventral surface of abdomen without capitate setae ANOMONEURINAE (some species assigned to Euphalerus but excluding the type-species) (p. 286)

Key to genera of Acizziinae

1 Dorsal surface of thorax and abdomen with lanceolate setae. Abdomen margin with $3+3$ lanceolate setae and 'funnel' shaped setae (Fig. 133). [Tarsal arolium as in Fig. 89. BL $=1.25$

$$
\mathrm{mm}, \mathrm{WL}=0.45 \mathrm{~mm}, \mathrm{ARB}=0.09 \mathrm{~mm}, \mathrm{AWL}=1.67, \mathrm{BBBL}=0.67, \mathrm{~A}=7, \mathrm{R}=3577
$$ Neotropical. On Mimosoideae.] .. MITRAPSYLLA

- Dorsal surface of thorax and abdomen without lanceolate setae. Abdomen margin without lanceolate setae and 'funnel'-shaped setae
2 Hindwing-pad margin with a pointed sectaseta. Abdomen margin with $3+3$ pointed sectasetae
- Hindwing-pad margin and abdomen margin without sectasetae .

3 Antenna with 9 divisions. [Tarsal arolium as in Fig. 91 . BL $=2.41 \mathrm{~mm}$, WL $=0.82 \mathrm{~mm}, \mathrm{ARB}=$ $0 \cdot 14 \mathrm{~mm}, \mathrm{AWL}=2 \cdot 68, \mathrm{BBBL}=0 \cdot 58, \mathrm{R}=3578$. Cuba. On Myroxylon.]

PLATYCORYPHA

- Antenna with 10 divisions. [Tarsal arolium as in Fig. 90. BL $=2 \cdot 11-2 \cdot 31 \mathrm{~mm}, \mathrm{WL}=0 \cdot 84-0 \cdot 90$ $\mathrm{mm}, \mathrm{ARB}=0 \cdot 22-0 \cdot 24 \mathrm{~mm}, \mathrm{AWL}=1 \cdot 22-2 \cdot 11, \mathrm{BBBL}=0 \cdot 66-0 \cdot 69, \mathrm{R}=4689$. South America. On Erythrina and Tipuana.].

NEOPSYLLIA
4 Antenna with 7 divisions. Ventral surface of abdomen with capitate setae. [Tarsal arolium as in Fig. 86. $\mathrm{BL}=1.54 \mathrm{~mm}, \mathrm{WL}=0.61 \mathrm{~mm}, \mathrm{ARB}=0.11 \mathrm{~mm}, \mathrm{AWL}=1.75, \mathrm{BBBL}=0.71, \mathrm{R}=$ 3577. South America. On Caesalpinoideae and Solanaceae.]

FREYSUILA

- Antenna with 8 or 9 divisions. Ventral surface of abdomen without capitate setae
..................
5 Antenna with 8 divisions. Tarsal arolium pad only slightly broader at apex than at base (Fig. 93). $[\mathrm{BL}=2.23 \mathrm{~mm}, \mathrm{WL}=0.64 \mathrm{~mm}, \mathrm{ARB}=0.25 \mathrm{~mm}, \mathrm{AWL}=2.77, \mathrm{BBBL}=0.64, \mathrm{R}=$ 3578. Austro-Oriental and Pacific. Introduced to Hawaii.]

TRIGONON

- Antenna with 9 divisions. Tarsal arolium pad much broader at apex than at base (Fig. 80) or very reduced (Fig. 79). [BL $=0.95-1.66 \mathrm{~mm}, \mathrm{WL}=0.41-0.61 \mathrm{~mm}, \mathrm{ARB}=0.07-0.11 \mathrm{~mm}$, $\mathrm{AWL}=0.91-1 \cdot 57, \mathrm{BBBL}=0.63-0 \cdot 85, \mathrm{R}=3578$. An almost cosmopolitan tropical and warm temperate genus. On Mimosoideae and Proteaceae.].

ACIZZIA

Key to genera of Anomoneurinae

The 'unnamed tribe' includes the genus Amorphicola and several species which are currently referred to the genus Euphalerus (the type-species of which, E. nidifex, is here placed in the Spondyliaspididae). It is possible that this tribe should include Cyamophila Loginova. However, this is not Cyamophilini in the sense in which Loginova (1976a; 1977) defined it. Because of the uncertain status of this tribe it is not further divided in the following key.
1 Circum-anal pore rings confined to ventral surface of abdomen. [BL $=1 \cdot 13-1 \cdot 98 \mathrm{~mm}, \mathrm{WL}=$ $0.45-0.68 \mathrm{~mm}, \mathrm{ARB}=0.11-0.13 \mathrm{~mm}, \mathrm{AWL}=0 \cdot 72-0 \cdot 89, \mathrm{BBBL}=0.60-0 \cdot 81, \mathrm{~A}=5$ or $7, \mathrm{R}$ $=3455$ or 3577. On Fabaceae and Rhamnaceae.]
'unnamed tribe'

- Circum-anal pore rings partly on the dorsal surface of the abdomen (Fig. 130)

2 Abdomen margin with $3+3$ sectasetae. Antenna with 9 divisions. [Tarsal arolium as in Fig. 81. $\mathrm{BL}=2.49-3.11 \mathrm{~mm}, \mathrm{WL}=1.02-1.03 \mathrm{~mm}, \mathrm{ARB}=0.55-0.65 \mathrm{~mm}, \mathrm{AWL}=1.63-1.71$, BBBL $=0 \cdot 69-0 \cdot 75, \mathrm{R}=4689$. Oriental and Palaearctic. On Morus.] $\ldots .$. ANOMONEURA

- Abdomen margin without sectasetae. Antenna with 7 divisions. [Tarsal arolium as in Figs 83, 84. $\mathrm{BL}=2.09-3.38 \mathrm{~mm}, \mathrm{WL}=1.02-1.03 \mathrm{~mm}, \mathrm{ARB}=0.33-0.91 \mathrm{~mm}, \mathrm{AWL}=2.33-2.45$, $\mathrm{BBBL}=0.56-0 \cdot 65, \mathrm{R}=3577$. Tropical Old World. On Fabaceae.]

EPIPSYLLA

Key to genera of Ciriacreminae

1 Abdomen margin with $3+3$ or $4+4$ lanceolate setae, without tubular sectasetae (Fig. 37 [1]). $[\mathrm{BL}=1 \cdot 12-1.53 \mathrm{~mm}, \mathrm{WL}=0.41-0.55 \mathrm{~mm}, \mathrm{ARB}=0.10-0.18 \mathrm{~mm}, \mathrm{AWL}=1.59-2 \cdot 17$, BBBL $=0.58-0.74, \mathrm{~A}=7-8, \mathrm{R}=3577$ or 3578 . Tropical and warm temperature New World. On Mimosoideae.]

HETEROPSYLLA

- Abdomen margin without lanceolate setae but with $3+3$ or $4+4$ tubular sectasetae which are usually placed on slightly raised tubercles (Fig. 37 [ts]). [Tropical. Anus posterior.]
2 Antenna with 9 divisions and abdomen margin with $3+3$ sectasetae. [Tarsal arolium as in Fig. 88. $\mathrm{BL}=1.46 \mathrm{~mm}, \mathrm{WL}=0.49 \mathrm{~mm}, \mathrm{ARB}=0.11 \mathrm{~mm}, \mathrm{AWL}=1.71, \mathrm{BBBL}=0.55, \mathrm{R}=$ 3578. Neotropical and Pacific. On Mimosoideae.]

ISOGONOCERAIA

- Antenna usually with 7 divisions. If antenna with 9 divisions (Ciriacremum harteni and C. julbernardioides) then abdomen margin with $4+4$ sectasetae
3 Abdomen margin with $4+4$ tubular sectasetae. Antenna with 7 divisions. [Tarsal arolium as in Fig. 85. $\mathrm{BL}=1.57-2.58 \mathrm{~mm}, \mathrm{WL}=0.62-0.79 \mathrm{~mm}, \mathrm{ARB}=0.24-0.26 \mathrm{~mm}$, $\mathrm{AWL}=$ $1 \cdot 97-2 \cdot 53, \mathrm{BBBL}=0 \cdot 57-0 \cdot 72, \mathrm{R}=3577$. Neotropical. On Mimosoideae.]
- Abdomen margin usually with $3+3$ tubular sectasetae. If abdomen margin with $4+4$ tubular

4 Forewing-pad dorsal surface without capitate setae. Antenna with 7 divisions. [Tarsal arolium as in Fig. 87. Abdomen margin with $3+3$ tubular sectasetae. $\mathrm{BL}=1 \cdot 80-2 \cdot 43 \mathrm{~mm}$, $\mathrm{WL}=$ $0 \cdot 70-0.75 \mathrm{~mm}, \mathrm{ARB}=0.36-0.40 \mathrm{~mm}, \mathrm{AWL}=1.90-1.91, \mathrm{BBBL}=0.59-0.69, \mathrm{R}=3577$. Pacific. On Caesalpinoideae and Euphorbiaceae.]

INSNESIA

- Forewing-pad dorsal surface usually with capitate setae. If forewing-pad dorsal surface without capitate setae then antenna with 9 divisions. [Tarsal arolium as in Fig. 82. Abdomen margin with $3+3$ or $4+4$ tubular sectasetae. $\mathrm{BL}=1.33-2.25 \mathrm{~mm}, \mathrm{WL}=0.51-0.74 \mathrm{~mm}, \mathrm{ARB}=$ $0 \cdot 12-0.34 \mathrm{~mm}, \mathrm{AWL}=1 \cdot 54-2 \cdot 46, \mathrm{BBBL}=0 \cdot 60-0 \cdot 71, \mathrm{R}=3577$ or 3578 .) CIRIACREMUM

Key to genera of Arytaininae

1 Antenna without capitate setae. [Forewing-pad dorsal surface without capitate setae. Abdomen margin with $3+3$ or $4+4$ pointed sectasetae. $\mathrm{BL}=1 \cdot 37-2.09 \mathrm{~mm}$, WL $=0.57-0.72$ $\mathrm{mm}, \mathrm{ARB}=0 \cdot 14-0 \cdot 28 \mathrm{~mm}, \mathrm{AWL}=0 \cdot 93-1 \cdot 89, \mathrm{BBBL}=0 \cdot 59-0 \cdot 98, \mathrm{~A}=7, \mathrm{R}=3577$. Palaearctic. On Genisteae.]

ARYTAINILLA

- Antenna with a capitate seta positioned close to rhinarium IV

2 Dorsal surface of forewing-pad with capitate setae. Abdomen margin with up to $3+3$ (sometimes none) pointed sectasetae. $[\mathrm{BL}=1.81-2.62 \mathrm{~mm}, \mathrm{WL}=0.62-0.73 \mathrm{~mm}, \mathrm{ARB}=$ $0 \cdot 19-0.23 \mathrm{~mm}, \mathrm{AWL}=1 \cdot 53-1 \cdot 61, \mathrm{BBBL}=0.53-0 \cdot 71, \mathrm{~A}=7, \mathrm{R}=3577$. Palaearctic and Oriental. On Genisteae.]

ARYTAINA

- Dorsal surface of forewing-pad without capitate setae. Abdomen margin with $4+4$ pointed sectasetae. $[\mathrm{BL}=1.91-2.25 \mathrm{~mm}, \mathrm{WL}=0.62-0.79 \mathrm{~mm}, \mathrm{ARB}=0.17-0.22 \mathrm{~mm}, \mathrm{AWL}=$ $1 \cdot 14-1 \cdot 37, \mathrm{BBBL}=0 \cdot 66-0 \cdot 72, \mathrm{~A}=7, \mathrm{R}=3577$. Palaearctic and Afrotropical. On Genisteae.]

FLORIA

Key to genera of Psyllinae

Keys for the separation of Psylla into subgenera have been provided by Ossiannilsson (1970), Loginova (1978) and White \& Hodkinson (1982). In the following key to genera no tenable method could be found to distinguish Purshivora pubescens (Crawford) from some members of Psylla subgenus Hepatopsylla Ossiannilsson.
1 Circum-anal pore rings extending onto dorsal surface of abdomen and of a convoluted shape (Fig. 142). Antenna with 7 divisions. $[\mathrm{BL}=1.34-1.98 \mathrm{~mm}, \mathrm{WL}=0.68-0.75 \mathrm{~mm}, \mathrm{ARB}=$ $0.51-0.57 \mathrm{~mm}, \mathrm{AWL}=0.87-1 \cdot 18, \mathrm{BBBL}=0.66-0.77, \mathrm{R}=3577$. Palaearctic. On Buxus.]

SPANIONEURA

- Circum-anal pore rings usually not extending onto dorsal surface of abdomen (Figs 135-141); or if rings convoluted and extending onto dorsal surface of abdomen (Fig. 134), antenna with 9 divisions
2 Dorsal surface of forewing-pad with capitate or clavate setae. Abdomen margin with $3+3$ pointed sectasetae. $[B L=1.25-1.62 \mathrm{~mm}, \mathrm{WL}=0.45-0.52 \mathrm{~mm}, \mathrm{ARB}=0.11-0.13 \mathrm{~mm}$, AWL $=0 \cdot 45-1 \cdot 09, \mathrm{BBBL}=0 \cdot 60-0 \cdot 72, \mathrm{~A}=7, \mathrm{R}=3577$. Nearctic. On Ceanothus and Cercocarpus.].. CEANOTHIA
- Dorsal surface of forewing-pad usually without capitate and clavate setae; if dorsal surface of forewing-pad with capitate setae, abdomen with $4+4$ pointed sectasetae (Psylla simlae)
3 On Ceanothus. [Outer circum-anal pore ring multiple (Fig. 132). BL $=1 \cdot 25-2 \cdot 16 \mathrm{~mm}$, WL $=$ $0.56-0.75 \mathrm{~mm}, \mathrm{ARB}=0.11-0.37 \mathrm{~mm}, \mathrm{AWL}=0.75-1 \cdot 27, \mathrm{BBBL}=0.69-0 \cdot 85, \mathrm{~A}=7, \mathrm{R}=$ 3577. Nearctic.]

EUGLYPTONEURA

- Not on Ceanothus.

4 On Purshia. Outer circum-anal pore ring comprised of a multiple row of pores. [Abdomen margin without sectasetae. $\mathrm{BL}=1.27-1.56 \mathrm{~mm}, \mathrm{WL}=0.43-0.53 \mathrm{~mm}, \mathrm{ARB}=0.13-0.20$ $\mathrm{mm}, \mathrm{AWL}=1 \cdot 08-1 \cdot 27, \mathrm{BBBL}=0 \cdot 69-0 \cdot 79, \mathrm{~A}=7, \mathrm{R}=3577$. Nearctic.]

PURSHIVORA (P. chelifera)

- Usually not on Purshia; or if on Purshia outer circum-anal pore ring comprised of a single row of pores (similar to Figs 137-139).
5 On Purshia. [Confirmatory characters included with Purshivora chelifera and Psylla confirmatory descriptions.] Purshivora pubescens, Psylla coryli, P. hirsuta, P. minuta
- Not on Purshia. [Circum-anal pore rings of various forms (Figs 134-141). BL $=1.31-3.08 \mathrm{~mm}$, $\mathrm{WL}=0.46-1.15 \mathrm{~mm}, \mathrm{ARB}=0 \cdot 06-0.85 \mathrm{~mm}, \mathrm{AWL}=0 \cdot 61-2 \cdot 20, \mathrm{BBBL}=0 \cdot 50-1 \cdot 08, \mathrm{~A}=7$ or $8, \mathrm{R}=3577$ or 3578 . Holarctic and northern Oriental. On a wide variety of hosts, especially Betulaceae, Rhamnaceae, Rosaceae and Salicaceae.] PSYLLA (most species)

Key to genera of Calophyidae

1 Anal pore-field comprised of circum-anal pore rings plus $1+1$ pairs of partial rings (Fig. 143). Antenna with 10 divisions. [$\mathrm{BL}=2.22 \mathrm{~mm}, \mathrm{WL}=0.81 \mathrm{~mm}, \mathrm{ARB}=0.13 \mathrm{~mm}, \mathrm{AWL}=1.05$, $\mathrm{BBBL}=0 \cdot 80, \mathrm{R}=4689$. Oriental. On Mangifera.] APSYLLA

- Anal pore-field comprised of circum-anal pore rings only, or not discernible. Antenna with 1 to 3 divisions
2 Antenna length to forewing-pad length ratio 0.65-0.73. Humeral lobe of forewing-pad not extended as far forward as eye. [$\mathrm{BL}=1.47-1.75 \mathrm{~mm}$, WL $=0.60-0.68 \mathrm{~mm}, \mathrm{ARB}=0.08$ $\mathrm{mm}, \mathrm{BBBL}=0 \cdot 83-0 \cdot 96, \mathrm{R}=3333$. Oriental. On Buchanania.].... PELMATOBRACHIA
- Antenna length to forewing-pad length ratio $0 \cdot 18-0 \cdot 55$. Humeral lobe of forewing-pad extended forward beyond the posterior margin of the eye
3 Antenna with one rhinarium. Body breadth with wing-pads to body length ratio 1•23-1.25. Margin of head, wing-pads and abdomen without sectasetae. [BL $=1.15-1.34 \mathrm{~mm}, \mathrm{WL}=$ $0.64-0.75 \mathrm{~mm}, \mathrm{ARB}=0.03-0.04 \mathrm{~mm}, \mathrm{AWL}=0.49-0.53, \mathrm{~A}=1$. Oriental. On Mangifera.]

MICROCEROPSYLLA

- Antenna with 3 or 4 rhinaria. Body breadth with wing-pads to body length ratio 0.83-1•16. Margin of head, wing-pads and abdomen usually with sectasetae. [BL $=0.93-1.52 \mathrm{~mm}$, WL $=0 \cdot 49-0.84 \mathrm{~mm}, \mathrm{ARB}=0 \cdot 07-0 \cdot 15 \mathrm{~mm}, \mathrm{AWL}=0 \cdot 18-0 \cdot 56, \mathrm{~A}=1,2$ or $3, \mathrm{R}=111,1111$, 2222 or 3333 . Tropical and warm temperate areas. On Anacardiaceae, Burseraceae and Rutaceae.].

CALOPHYA

Key to genera of Phacopteronidae

1 Anal pore-field arranged as bands (similar to Fig. 155). Antenna with 10 divisions. [Abdomen margin with lanceolate setae. $\mathrm{BL}=2.20 \mathrm{~mm}, \mathrm{WL}=0.70 \mathrm{~mm}, \mathrm{AWL}=2.14, \mathrm{BBBL}=0.68$, $R=4689$. Neotropical.]
?EPICARSA

- Anal pore-field arranged as circum-anal rings only (Figs 145-147), often very reduced (Fig. 146). Antenna with 3-9 divisions.

2 Outer circum-anal pore ring convoluted and extending onto the dorsal surface of the abdomen (Fig. 145). Antenna longer than forewing-pad length (AWL $=1 \cdot 20$). [Abdomen margin with small lanceolate setae. $\mathrm{BL}=3.06 \mathrm{~mm}, \mathrm{WL}=1.25 \mathrm{~mm}, \mathrm{ARB}=0.91 \mathrm{~mm}, \mathrm{BBBL}=0.71, \mathrm{~A}=$ $8, \mathrm{R}=3578$. Oriental. On Toona.]

BHARATIANA

- Outer circum-anal pore ring not convoluted and confined to ventral surface of abdomen. Antenna shorter than forewing-pad length (AWL $=0.50-0.64$).
3 Antenna with 3 divisions, the last of which is covered in prominent hairs (Fig. 47). On Burseraceae. [Abdomen margin with short lanceolate setae. Circum-anal pore ring very reduced (Fig. 146). $\mathrm{BL}=2 \cdot 90-4 \cdot 10 \mathrm{~mm}, \mathrm{WL}=1 \cdot 15 \mathrm{~mm}, \mathrm{AWL}=0 \cdot 50$, $\mathrm{BBBL}=0 \cdot 64, \mathrm{R}=$ 3333. Oriental.]

PHACOPTERON

- Antenna with more than 3 divisions. On Meliaceae

4 Antenna with 5 divisions. Tibia each with a row of stout setae on outer edge (Fig. 54). Abdomen margin with lanceolate setae. $[B L=1.03 \mathrm{~mm}, \mathrm{WL}=0.37 \mathrm{~mm}, \mathrm{ARB}=0.29 \mathrm{~mm}$, $\mathrm{AWL}=0 \cdot 62, \mathrm{BBBL}=0 \cdot 66, \mathrm{R}=3355$. Pacific. On Aglaia.].
?CHINEURA

- Antenna with 8 or 9 divisions. Tibia without stout setae. Abdomen margin without lanceolate setae. [Tarsal arolium often with a short petiole (Fig. 94). Circum-anal pore rings often with separated pores (Fig. 147). $\mathrm{BL}=1.78-2.31 \mathrm{~mm}, \mathrm{WL}=0.61-0.71 \mathrm{~mm}, \mathrm{ARB}=0.17-0.21$ $\mathrm{mm}, \mathrm{AWL}=0 \cdot 50-0 \cdot 64, \mathrm{BBBL}=0 \cdot 60-0 \cdot 75, \mathrm{R}=3578$ or 4689. Afrotropical. On Khaya.]

PSEUDOPHACOPTERON

Key to genera of Homotomidae

1 Abdomen margin with sectasetae

- Abdomen margin without sectasetae

2 Dorsal surface of abdomen with pointed sectasetae. Apical margin of abdomen inwardly
marginate (Fig. 153). General form elongate ($\mathrm{BBBL}=0.65-0.81$). [$\mathrm{BL}=1.97-3.17 \mathrm{~mm}$, $\mathrm{WL}=0.75-1.13 \mathrm{~mm}, \mathrm{ARB}=0.61-0.76 \mathrm{~mm}, \mathrm{AWL}=1.05-1.48, \mathrm{~A}=3, \mathrm{R}=3333$. Neotropical. On Ficus.]

SYNOZA

- Dorsal surface of abdomen without pointed sectasetae. Apical margin of abdomen evenly rounded. General form broad $(B B B L=0.83-1.04)$. $[B L=1.59-2.68 \mathrm{~mm}, \mathrm{WL}=0.81-1.45$ $\mathrm{mm}, \mathrm{ARB}=0.34-0.46 \mathrm{~mm}, \mathrm{AWL}=0.48-0.69, \mathrm{~A}=2-3, \mathrm{R}=2222$ or 3333. Tropical and warm temperate Old World. On Ficus.]

HOMOTOMA
3 Inner margin of outer circum-anal pore ring convoluted and pore rings confined to the ventral surface of the abdomen (Figs 150, 151). Antenna with 2 divisions. [BL $=2 \cdot 33-3 \cdot 09 \mathrm{~mm}$, WL $=1 \cdot 13-1 \cdot 40 \mathrm{~mm}$, AWL $=0 \cdot 43-0 \cdot 53$, BBBL $=0 \cdot 87-1 \cdot 10, \mathrm{R}=2222$. Australasian, Austro-Oriental and Oriental. On Ficus.]

MYCOPSYLLA

- Inner margin of outer circum-anal pore ring usually not convoluted (Figs 148, 149); if convoluted then pore rings extending onto the dorsal surface of the abdomen (Fig. 152). Antenna with more than 2 divisions
4 Circum-anal pore rings extending onto dorsal surface of abdomen (Fig. 152). Antenna with 3 divisions. [BL $=2 \cdot 31-2.50 \mathrm{~mm}, \mathrm{WL}=1 \cdot 20-1 \cdot 40 \mathrm{~mm}$, $\mathrm{AWL}=0 \cdot 46-0 \cdot 53$, $\mathrm{BBBL}=$ $1 \cdot 61-1 \cdot 25, \mathrm{R}=3333$. Afrotropical. On Ficus.]

PSEUDOERIOPSYLLA

- Circum-anal pore rings confined to ventral surface of abdomen (Figs 148, 149). Antenna with 9 or 10 divisions. [$\mathrm{BL}=1.84-2.84 \mathrm{~mm}, \mathrm{WL}=0.87-1.09 \mathrm{~mm}, \mathrm{ARB}=0.72-0.93 \mathrm{~mm}, \mathrm{AWL}=$ $0 \cdot 70-0 \cdot 82, \mathrm{BBBL}=0 \cdot 84-0 \cdot 98, \mathrm{R}=4578$ or 4689. Austro-Oriental and Oriental. On Ficus.]

MACROHOMOTOMA

Key to subfamilies of Carsidaridae

1 Anal pore-field comprised of numerous pore groups (Fig. 154). On Cedrela (Meliaceae). [BL $=1.87-2.71 \mathrm{~mm}, \mathrm{WL}=0.72-0.82 \mathrm{~mm}, \mathrm{AWL}=1.80-2 \cdot 43, \mathrm{BBBL}=0.60-0.77, \mathrm{~A}=9-10, \mathrm{R}$ $=3578$ or 4689 . Neotropical.]........................... MASTIGIMATINAE (Mastigimas)

- Anal pore-field comprised of pore bands (Fig. 155). On Malvales. [BL $=1 \cdot 46-3 \cdot 06 \mathrm{~mm}$, WL $=$ $0 \cdot 59-0 \cdot 87 \mathrm{~mm}, \mathrm{AWL}=1 \cdot 53-2 \cdot 73, \mathrm{BBBL}=0 \cdot 50-0 \cdot 78, \mathrm{~A}=10, \mathrm{R}=4689$. Tropical.]

CARSIDARINAE

Key to genera of Triozidae

1 Apical margin of abdomen with 'tooth-like' processes (Fig. 157). [Head, thorax, abdomen and wing-pads without secta-setae. $\mathrm{BL}=2.80-3.02 \mathrm{~mm}, \mathrm{WL}=1.03-1.13 \mathrm{~mm}, \mathrm{ARB}=0.24-0.26$ $\mathrm{mm}, \mathrm{AWL}=0.70-0.77$, $\mathrm{BBBL}=0.58-0.66, \mathrm{~A}=6, \mathrm{R}=3355$. Neotropical. On Euphorbiaceae, Myrtaceae and Solanaceae.]

NEOLITHUS

- Apical margin of abdomen without 'tooth-like' processes

2 Anal pore-field comprised of circum-anal pore rings plus small groups of pores arranged as bands (Fig. 158). [Head, thorax, abdomen and wing-pads without sectasetae. BL $=$ $2 \cdot 50-3 \cdot 02 \mathrm{~mm}, \mathrm{WL}=1 \cdot 15-1 \cdot 16 \mathrm{~mm}, \mathrm{ARB}=0 \cdot 08-0 \cdot 09 \mathrm{~mm}, \mathrm{AWL}=1 \cdot 40-1 \cdot 46, \mathrm{BBBL}=$ $0 \cdot 91, \mathrm{~A}=10, \mathrm{R}=4689$. Afrotropical. On Antiaria.]

TRIOZAMIA

- Anal pore-field comprised of circum-anal pore rings only

3 Head, abdomen and wing-pad margins with scales (Figs 173-177)

- Head, abdomen and wing-pad margins without scales, usually with sectasetae

4 Marginal scales more than 3 times as long as broad (Fig. 173). [Forewing-pad with a well-developed humeral lobe. Marginal sectasetae absent. $\mathrm{BL}=1.46 \mathrm{~mm}, \mathrm{WL}=0.62 \mathrm{~mm}$, $\mathrm{AWL}=0 \cdot 65, \mathrm{BBBL}=0 \cdot 76, \mathrm{~A}=7, \mathrm{R}=3467$. Hawaiian. On Pelea.]

HEVAHEVA

- Marginal scales less than 2 times as long as broad

5 Dorsal surface of body and wing-pads with clavate setae (similar to Fig. 172). [Forewing-pad with a well-developed humeral lobe. Marginal sectasetae absent. $\mathrm{BL}=2.06-2.31 \mathrm{~mm}$, WL $=1 \cdot 19-1 \cdot 35 \mathrm{~mm}, \mathrm{ARB}=0 \cdot 27-0 \cdot 36 \mathrm{~mm}, \mathrm{AWL}=0 \cdot 18-0 \cdot 19, \mathrm{BBBL}=0 \cdot 84-0 \cdot 88, \mathrm{~A}=2, \mathrm{R}=$ 2222. Tropical New World. On Sideroxylon.]................ CEROPSYLLA (C. sideroxyli)

- Dorsal surface of body and wing-pads without clavate setae

6 Abdomen margin with sectasetae near abdominal apex, scales only present on basal threequarters of abdomen margin (Fig. 177). [Forewing-pad with a well-developed humeral lobe. $\mathrm{BL}=3.78 \mathrm{~mm}, \mathrm{WL}=2.18 \mathrm{~mm}, \mathrm{ARB}=0.43 \mathrm{~mm}, \mathrm{AWL}=0.16, \mathrm{BBBL}=0.74, \mathrm{~A}=2, \mathrm{R}=$ 1222. Hawaiian. On Pritchardia.]

TRIOZA (T. palmicola)

- Abdomen margin without sectasetae
7 Marginal scales ridged (Fig. 176). [Forewing-pad with a well-developed humeral lobe. BL $=$ $3 \cdot 11 \mathrm{~mm}, \mathrm{WL}=1 \cdot 30 \mathrm{~mm}, \mathrm{ARB}=0.26 \mathrm{~mm}, \mathrm{AWL}=0 \cdot 15, \mathrm{BBBL}=0 \cdot 65, \mathrm{~A}=2, \mathrm{R}=2222$. Hawaiian. On Sideroxylon.]
SWEZEYANA
- Marginal scales not ridged (Fig. 175). [Forewing-pad with a well-developed humeral lobe. BL $=1.70 \mathrm{~mm}, \mathrm{WL}=0.95 \mathrm{~mm}, \mathrm{ARB}=0.21 \mathrm{~mm}, \mathrm{AWL}=0.20, \mathrm{~A}=3, \mathrm{R}=1133$. Hawaiian. On Pisonia.]
KUWAYAMA (K. pisonia)
8 Forewing-pad margin with truncate sectasetae
- Forewing-pad margin without truncate sectasetae
9 General form elongate (BBBL $=0 \cdot 37-0.46)$. $[B L=2 \cdot 59-2.69 \mathrm{~mm}, \mathrm{WL}=1.00-1.11 \mathrm{~mm}$, $\mathrm{ARB}=0 \cdot 15-0 \cdot 16 \mathrm{~mm}, \mathrm{AWL}=0 \cdot 18-0 \cdot 24, \mathrm{~A}=1, \mathrm{R}=1111$. Australasian. On Casuarina. $]$
- General form broader ($\mathrm{BBBL}=0.48-0.87$)
10 Antenna with 8 or 9 divisions. Outer circum-anal pore ring comprised of a multiple row of pores. [$\mathrm{BL}=2.59-3.12 \mathrm{~mm}, \mathrm{WL}=1.26-1.48 \mathrm{~mm}, \mathrm{ARB}=0.33-0.36 \mathrm{~mm}, \mathrm{AWL}=$ $0 \cdot 37-0 \cdot 40$, BBBL $=0 \cdot 52-0 \cdot 56, \mathrm{R}=4688$ or 4689. Afrotropical, Oriental and Palaearctic. On Rhamnus.].
TRICHOCHERMES
- Antenna with 3-7 divisions. Outer circum-anal pore ring comprised of a single row of pores .
11 On Ficus. Forewing-pad hind margin broadly rounded (Fig. 49). [BL $=1.41 \mathrm{~mm}, \mathrm{WL}=$ $0.64-0.65 \mathrm{~mm}, \mathrm{ARB}=0.18-0.20 \mathrm{~mm}, \mathrm{AWL}=0.39-0 \cdot 40, \mathrm{BBBL}=0.78, \mathrm{~A}=4, \mathrm{R}=1244$. Tropical Old World.] ..
PAUROPSYLLA (P. trichaeta)
- Not on Ficus. Forewing-pad hind margin usually rounded (Fig. 50). [BL $=1 \cdot 15-2.95 \mathrm{~mm}$, WL $=0.59-1.67 \mathrm{~mm}, \mathrm{ARB}=0.16-0.67 \mathrm{~mm}, \mathrm{AWL}=0.17-1 \cdot 01, \mathrm{BBBL}=0.58-0.85, \mathrm{~A}=3-7$.
TRIOZA (most species of Trioza plus Paratrioza and some Ceropsylla species)
12 Abdomen margin without sectasetae [Several species which form enclosed galls and which cannot be separated by any tenable characters.]
- Abdomen margin with pointed sectasetae
13 Tarsal arolium without a visible unguitractor (Fig. 95). [Abdomen margin usually with more than a single row of sectasetae. Usually forming enclosed galls. $\mathrm{BL}=1.98-3.05 \mathrm{~mm}, \mathrm{WL}=$ $1 \cdot 10-1.54 \mathrm{~mm}, \mathrm{ARB}=0.21-0.43 \mathrm{~mm}, \mathrm{AWL}=0 \cdot 21-0 \cdot 60, \mathrm{BBBL}=0 \cdot 51-0.79, \mathrm{~A}=8$ or 10 , $\mathrm{R}=3578$ or 4689 . Oriental and Palaearctic. On Populus, especially P. euphratica.]
EGEIROTRIOZA
- Tarsal arolium with a clearly visible unguitractor.
14 Dorsal surface of abdomen with clavate setae (Fig. 172). [Humeral lobe of forewing-pad extending anterior to eye. $\mathrm{BL}=2.77 \mathrm{~mm}, \mathrm{WL}=1.54 \mathrm{~mm}, \mathrm{AWL}=0.18, \mathrm{BBBL}=0.87, \mathrm{~A}=$ $3, R=3333$. Hawaiian. On Tetraplasandra.]
CRA WFORDA

15 Hindwing-pad very reduced (Fig. 48). [BL $=1.44-1.66 \mathrm{~mm}$, WL $=0.76-0.85 \mathrm{~mm}, \mathrm{ARB}=$ $0 \cdot 32-0.35 \mathrm{~mm}, \mathrm{AWL}=0.46-0 \cdot 53, \mathrm{BBBL}=0.59-0 \cdot 67, \mathrm{~A}=6, \mathrm{R}=3466$. Austro-Oriental and Pacific. On Calophyllum.]
LEPTYNOPTERA
- Hindwing-pad of normal proportions
16 Dorsal surface of abdomen with pointed sectasetae (Fig. 159). [BL $=1.74-1.98 \mathrm{~mm}$, WL $=$ $0.89-0.97 \mathrm{~mm}, \mathrm{ARB}=0.34-0.37 \mathrm{~mm}, \mathrm{AWL}=0.40-0 \cdot 44, \mathrm{BBBL}=0.62-0 \cdot 65, \mathrm{~A}=6, \mathrm{R}=$ 3466. Palaearctic, introduced to New World. On Laurus and Persea.] TRIOZA (T. alacris)
- Dorsal surface of abdomen without sectasetae.
17 Circum-anal pore rings convoluted (Fig. 156). $[\mathrm{BL}=1.88 \mathrm{~mm}$, $\mathrm{WL}=0.73 \mathrm{~mm}, \mathrm{AWL}=0.51$, BBBL $=0 \cdot 48, \mathrm{~A}=7, \mathrm{R}=3577$. Tropical New World and Oriental. On Celtis and possibly Fabaceae and Shorea.].
LEURONOTA
- Circum-anal pore rings not convoluted (Fig. 160). [BL $=1.59 \mathrm{~mm}, \mathrm{WL}=0.77 \mathrm{~mm}, \mathrm{ARB}=$ $0.29 \mathrm{~mm}, \mathrm{AWL}=0.44, \mathrm{BBBL}=0.56, \mathrm{~A}=1, \mathrm{R}=1111$. Neotropical. On Psidium.]
TRIOZOIDA

Acknowledgements

This study formed the basis of a Ph.D. project by the senior author, supervised by I. D. Hodkinson, Liverpool Polytechnic, and D. Hollis, British Museum (Natural History). Special thanks go to the following colleagues at Liverpool Polytechnic: B. Duncan, M. Forster, J. Higgins, B. Midgeley, J. T. Rasmussen and A. J. K. Walley. I also thank all of the individuals and institutions who donated or lent specimens (listed in Table 1), and the following for reasons too numerous to mention: V. K. Brown and R. G. Davies (Imperial College, London), A. Brockbank (Liverpool School of Tropical Medicine), J. P. Brock (London), D. Burckhardt (Zurich), J. D. Holloway (Commonwealth Institute of Ento-
mology), W. J. LeQuesne (Chesham, Bucks) and A. J. Williams (Software Sciences, Macclesfield). The research was carried out while in receipt of a Liverpool City Council research assistantship to I. D. Hodkinson.

References

Arnold, E. N. 1981. Estimating phylogenies at low levels. Zeitschrift für zoologische Systematik und Evolutionsforschung 19: 1-35.
Aulmann, G. 1913. Psyllidarum Catalogus. 92 pp. Berlin.
Ball, J. C. \& Jensen, D. D. 1966. Sexual dimorphism in nymphs of Psylla pyricola (Hemiptera: Psyllidae). Annals of the Entomological Society of America 59: 1292-1294.
Baum, B. R. 1977. Oats: wild and cultivated. A monograph of the genus Avena L. (Poaceae). Biosystematics Research Institute, Monograph 14, xv +463 pp. Ottawa.
Becker-Migdisova, E. E. 1973. Systematics of the Psyllomorpha and the position of the group within the order Homoptera. In Narchuk, E. P. (Ed.), Doklady na dvadzat chetvertom escheghodnom chtenii pamyati N.A. Kholodovskogo 1971. Leningrad, 1973: 90-117. [In Russian, English translation - British Library, Boston Spa.]
Boratynski, K. L. \& Davies, R. G. 1971. The taxonomic value of male Coccoidea (Homoptera) with an evaluation of some numerical techniques. Biological Journal of the Linnean Society 3: 57-102.
Boselli, F. B. 1929. Studii sugli Psyllidi (Homoptera: Psyllidae o Chermidae) I-II. Bollettino del Laboratorio di zoologia generale e agraria della R. Scuola superiore d'agricoltura 21: 218-264.
Burckhardt, D. 1979. Phylogenetische Verhältnisse in der Gattung Psylla s.l. (Sternorrhyncha, Psyllodea) mit besonderer Berücksichtigung von Psylla colorata Löw. Mitteilungen der Schweizerischen entomologischen Gesellschaft. 52: 109-115.
Cain, A. J. \& Harrison, G. A. 1958. An analysis of the taxonomist's judgement of affinity. Proceedings of the Zoological Society of London 131: 85-98.

- 1960. Phyletic weighting. Proceedings of the Zoological Society of London 135: 1-31.

Caldwell, J. S. 1944a. Notes on Mexican and Central American Psyllidae. Ohio Journal of Science 44: 57-64.
_ 1944b. Psyllidae from tropical and semitropical America (Homoptera). Journal of the New York Entomological Society 52: 335-340.
Caldwell, J. S. \& Martorell, L. F. 1952. A brief review of the Psyllidae of Puerto Rico. Annals of the Entomological Society of America 44: 603-613.
Camin, J. H. \& Sokal, R. R. 1965. A method for deducing branching sequences in phylogeny. Evolution 19: 311-326.
Capener, A. L. 1968. A new genus and species of Psyllidae (Homoptera) from South Africa. Journal of the Entomological Society of Southern Africa 31: 361-364.

- 1970. Southern African Psyllidae (Homoptera) - 2: Some new species of Diaphorina Löw. Journal of the Entomological Society of Southern Africa 33: 201-226.
-_ 1973. Southern African Psyllidae (Homoptera) - 3: A new genus and new species of South African Psyllidae. Journal of the Entomological Society of Southern Africa 36: 37-61.
Chapman, R. F. 1971. The insects, structure and function, 2nd edn, xii +819 pp. London.
Cracraft, J. 1975. Historical biogeography and earth history: perspectives for a future synthesis. Annals of Missouri Botanical Garden 62: 227-250.
Crawford, D. L. 1911. American Psyllidae IV (a partial revision of the subfamilies). Pomona College Journal of Entomology 3: 480-503.
-_ 1914. A monograph of the jumping plant-lice or Psyllidae of the New World. Bulletin. United States National Museum 85: 1-182.
- 1920. The Psyllidae of Borneo. Philippine Journal of Science 17: 353-361.
- 1925. Psyllidae of South America. Brotéria (Serie Zoológica) 22: 56-74.

Cronquist, A. J. 1968. The evolution and classification of flowering plants. $\mathrm{xi}+396 \mathrm{pp}$. London.
Davies, R. G.\& Boratynski, K. L. 1979. Character selection in relation to the numerical taxonomy of some male Diaspididae (Homoptera: Coccoidea). Biological Journal of the Linnaean Society 12: 95-165.
Dobreanu, E. \& Manolache, C. 1962. Homptera Psylloidea. Fauna Republicii populare romine, Insecta 8: 1-376.
Eastop, V. F. 1958. Some neglected taxonomic characters of Psyllidae (Homoptera). Entomologist's Monthly Magazine 94: 18-19.

- 1963. Proposed validation of Psylla Geoffroy, 1762, and suppression of Chermes Linnaeus, 1758, under the plenary powers (Insecta, Hemiptera). Z.N. (S.) 1515. Bulletin of Zoological Nomenclature 20: 139-144.
- 1972. Deductions from the present day host plants of aphids and related insects. Symposia of the Royal Entomological Society of London 6: 157-178.
- 1978. Diversity of the Sternorrhyncha within major climatic zones. Symposia of the Royal Entomological Society of London 9: 71-88.
Edwards, J. 1896. The Hemiptera - Homoptera of the British Islands: 224-261. London.
Enderlein, G. 1910. In Sjöstedt, Y., Wissenschaftliche Ergebnisse der Schwedischen Zool. Exped. nach dem Kilimandjaro, dem Meru und den umgebenden Massaisteppen Deutsches-Ostafrikas, 1905-1906. 12 Hemiptera. 8 Psyllidae, pp. 137-144. Stockholm.
Farris, J. S. 1970. Methods for computing Wagner trees. Systematic Zoology 19: 83-92.
- 1974. Formal definitions of paraphyly and polyphyly. Systematic Zoology 23: 548-554.

Ferris, G. F. 1923. Observations on the Chermidae (Hemiptera: Homoptera) I. Canadian Entomologist 55: 250-256.

- 1924. The nymphs of two species of Chermidae (Hemiptera). Pan-Pacific Entomologist 1: 24-28.

1925. Observations on the Chermidae (Hemiptera: Homoptera) II. Canadian Entomologist 57: 46-50.

- 1926. Observations on the Chermidae (Hemiptera: Homoptera) III. Canadian Entomologist 58: 13-20.
- 1928a. Observations on the Chermidae (Hemiptera: Homoptera) IV. Canadian Entomologist 60: 109-117.
- 1928b. Observations on the Chermidae (Hemiptera: Homoptera) V. Canadian Entomologist 60: 240-245.
Ferris, G. F. \& Hyatt, P. 1923. The life history of Euphyllura arbuti Schwartz (Hemiptera: Chermidae). Canadian Entomologist 55: 88-92.
Förster, A. 1848. Uebersicht der Gattungen und Arten in der Familie der Psylloden. Verhandlungen des Naturhistorischen Vereins der Preussichen Rheinlande, Westfalens und des Regierungsbezirks Osnabrück 5: 65-98.
Frakes, L. A. \& Kemp, E. M. 1974. Palaeogene continental positions and evolution of climate. In Tarling, D. H. \& Runcorn, S. K. (eds), Implications of continental drift to the earth sciences. 1: 539-558. London.

Gomez, C. Ramirez 1956a. Los psilidos de España. Boletin de la Real Sociedad española de historia natural 53: 151-217.

- 1956b. Los psilidos de España. Boletin de la Real Sociedad española de historia natural 54: 63-106.
- 1960. Los psilidos de España. Boletin de la Real Sociedad española de historia natural 57: 5-87.

Good, R. 1974. The geography of the flowering plants, 4th edn, xvi +518 pp . London.
Handlirsch, A. 1903. Zur Phylogenie der Hexapoden. Sitzungsberichte der Akademie der Wissenschaften in Wien Abt. I. 112: 716-738.
Hartigan, J. A. 1975. Clustering algorithms. xiii +351 pp. New York.
Haupt, H. 1935. Gleichflügler, Homoptera. Tierwelt Mitteleuropas 4: 221-252.
Hennig, W. 1966. Phylogenetic systematics. xiii +263 pp. Urbana.
Heslop-Harrison, G. 1949. Subfamily separation in the homopterous Psyllidae I. Annals and Magazine of Natural History (12)2: 802-810.

- 1951. Subfamily separation in the homopterous Psyllidae II. Annals and Magazine of Natural History (12)4: 1-35.

1952a. The number and distribution of the spiracles of the adult psyllid. Annals and Magazine of Natural History (12)5: 248-260.

- 1952b. The genus Rhinocola Förster and associated genera of the Aphalarinae 1. Annals and Magazine of Natural History (12)5: 957-974.
- 1954. Contributions to our knowledge of the Psyllidae of Australia and New Zealand, with special reference to Tasmania II. Annals and Magazine of Natural History (12)7: 519-530.
- 1958. Subfamily separation in the homopterous Psyllidae III (a-c). Annals and Magazine of Natural History (13)1: 561-579.

1959. Subfamily separation in the homopterous Psyllidae III (d-e). Annals and Magazine of Natural History (13)2: 157-168.

- 1961. The Arytainini of the subfamily Psyllinae, Hemiptera-Homoptera, family Psyllidae-II. Annals and Magazine of Natural History (13)3: 417-439.
Hodkinson, I. D. 1973. The biology of Strophingia ericae (Curtis) (Homoptera-Psylloidea) with notes on its primary parasite Tetrastichus actis (Walker) (Hym., Eulophidae). Norsk entomologisk Tidsskrift 20: 237-243.

1974. The biology of the Psylloidea (Homoptera): a review. Bulletin of Entomological Research 64: 325-339.

- 1978. The psyllids (Homoptera-Psylloidea) of Alaska. Systematic Entomology 3: 333-360.

1980. Present day distribution patterns of the holarctic Psylloidea (Homptera-Insecta) with particular reference to the origin of the nearctic fauna. Journal of Biogeography 7: 127-146.

- 1981. Heather-feeding psyllids of the genus Strophingia (Homoptera). Systematic Entomology 6: 77-90.

1983. The psyllids (Homoptera: Psylloidea) of the Austro-Oriental, Pacific and Hawaiian zoogeographical realms: an annotated check list. Journal of Natural History 17: 341-377.
Hodkinson, I. D. \& Hollis, D. 1981. The psyllids (Homoptera-Psylloidea) of Mallorca. Entomologica Scandinavica 12: 65-77.
Hodkinson, I. D. \& White, I. M. 1979a. New psyllids from France with redescriptions of the type species of Floria Löw and Amblyrhina Löw (Homoptera-Psylloidea). Entomologica Scandinavica 10: 55-63.

- 1979b. Psylloidea (Homoptera). Handbooks for the Identification of British Insects (II) 5a: iv +1-98.
- 1981. The Neotropical Psylloidea (Homoptera-Insecta): an annotated check list. Journal of Natural History 15: 491-523.
Hollis, D. 1973. African gall bugs of the genus Phytolyma (Hemiptera, Psylloidea). Bulletin of Entomological Research 63: 143-154.
- 1976. Jumping plant lice of the tribe Ciriacremini (Homoptera-Psylloidea) in the Ethiopian region. Bulletin of the British Museum (Natural History) (Entomology) 34: 1-83.
Imms, A. D. 1957. A general textbook of entomology 9th edn revised by O. W. Richards and R. G. Davies. $\mathrm{x}+886 \mathrm{pp}$. London.
Jong, R. de 1980. Some tools for evolutionary and phylogenetic studies. Zeitschrift für zoologische Systematik und Evolutionsforschung 18: 1-23.
Klimaszewski, S. M. 1964. Studia nad ukladem systematycznym podrzedu Psyllodea. Annales zoologici 22: 81-138. [In Polish, English translation - U.S. Dept. of Commerce, National Technical Information Service, Springfield, Virginia.]
- 1967. Stosunki pokrewienstwa srodkowoeuropejskich gatunkow z rodzaju Trioza Forst. (Homoptera, Psyllodea) w swietle badan metodami taksonomii numerycznej. Annales Universitatis Mariae Curie-Sklodowska (C) 22: 1-20.
- 1969. Homoptera-Psylloidea. Klucze do oznaczania owadów Polski 17 (3): 1-89.
- 1973. The jumping plant-lice or psyllids (Homoptera-Psylloidea) of the Palaearctic: an annotated check list. Annales Zoologici 30: 155-288.
- 1975. Psyllodea. Koliszki (Insecta: Homoptera). Fauna Polski 3: 1-295.

Klyver, F. D. 1931. Notes on the Chermidae (Hemiptera: Homoptera). Part II. Canadian Entomologist 63: 111-115.
Lal, K. B. 1937. On the immature stages of some Scottish and other Psyllidae. Proceedings of the Royal Society of Edinburgh 57: 305-331.
Le Quesne, W. J. 1969. A method of selection of characters in numerical taxonomy. Systematic Zoology 18: 201-205.
Legendre, P. \& Rogers, D. J. 1972. Characters and clustering in taxonomy: A synthesis of two taximetric procedures. Taxon 21: 567-606.
Lima, A. M. de Costa 1942. Insetos do Brasil: Homopteros 3: 1-327. Rio de Janeiro.
Lima, A. M. de Costa \& Guitton, N. 1962. Novo inseto galicola, Phacosemoides sicki, g.n., sp. n. (Homoptera, Psyllidae, Ciriacreminae). Memórias do Instituto Oswaldo Cruz 60: 219-224.
Loginova, M. M. 1964a. Suborder Psyllinea. In G. Ya. Bei. Bienko (ed.), Keys to the insects of the European part of the U.S.S.R. 1: 437-482. Zool. Inst. Akad. Nauk SSR. [English translation: Israeli Programme for Scientific Translations, Jerusalem, 1967.]
_ 1964b. New and little-known psyllids from Kazakhstan. Notes on the system of classification of the Psylloidea (Homoptera). Trudy Zoologicheskogo instituta. Akademiya nauk SSSR 34: 52-112. [In Russian-English translation by Israeli programme for Scientific translation in Collected Articles in Insect Taxonomy, 114-177, U.S. Dept. of Agriculture and National Science Foundation, 1969.]
1972. Revision of the jumping plant lice of the tribe Pauropsyllini Crawf. (Homoptera, Psylloidea, Carsidaridae). Éntomologicheskoe Obozrenie 51: 837-853. [In Russian-English translation: Entomological Review, Washington 51: 497-505.]

- 1973. Taxonomy of the tribe Euphyllurini (Psylloidea, Homoptera). Zoologicheskii Zhurnal 52: 858-869. [In Russian.]
- 1974a. Jumping plant lice of the tribe Stigmaphalarini Vondr. (Psylloidea, Aphalaridae) from arid regions of Palaearctic. Éntomologicheskoe Obozrenie 53: 150-170. [In Russian-English translation: Entomological Review, Washington 53: 106-121.]

1974b. Systematics of the family Liviidae (Homoptera: Psylloidea). Zoologicheskii Zhurnal 53: 858-865. [In Russian.]
1975. Psyllids of the subfamily Diaphorinae (Psyllidae, Homoptera). Zoologicheskii Zhurnal 54: 543-551. [In Russian.]

1976a. Classification of the subfamily Arytaininae Crawf. (Homoptera, Psyllidae). I. A review of the genera of the tribe Arytainini. Entomologicheskoe Obozrenie 55: 589-601. [In Russian-English translation: Entomological Review, Washington 55: 61-67.]

- 1976b. Psyllids of the tribe Pachypsylloidini. Zoologicheskii Zhurnal 55: 612-614.

1977. The classification of the subfamily Arytaininae Crawf. (Homoptera, Psyllidae). II. Review of the tribe Cyamophilini. Éntomologicheskoe Obozrenie 56: 577-587. [In Russian-English translation: Entomological Review, Washington 56: 64-71.]
1978. Classification of the genus Psylla Geoffr. (Homoptera, Psyllidae). Éntomologicheskoe Obozrenie 57: 808-824. [In Russian-English translation: Entomological Review, Washington 57: 555-566.]
1979. Structure and morpho-ecological types of the psyllid nymphs (Homoptera: Psylloidea). Trudy Zoologicheskogo instituta. Akademiya nauk SSSR 105 (1981): 20-52.
Löw, F. 1876. Zur Biologie und Charakteristik der Psylloden nebst Beschreibung zweier neuer Species der Gattung Psylla. Verhandlungen der zoologisch-botanischen Gesellschaft in Wien 26: 187-216.
1980. Zur Systematik der Psylloden. Verhandlungen der zoologisch-botanischen Gesellschaft in Wien 28: 585-610.

- 1884. Beiträge zur Kenntnis der Jungenstadien der Psylliden. Verhandlungen der zoologischbotanischen Gesellschaft in Wien 34: 143-152.

1886. Neue Beiträge zur Kenntniss der Psylliden. Verhandlungen der zoologisch-botanischen Gesellschaft in Wien 36: 149-1\%
Mathur, R. N. 1975. Psyllidae of the Indian subcontinent. xii +429 pp. New Delhi.
Matsuda, R. 1976. Morphology and evolution of the insect abdomen: with special reference to developmental patterns and their bearings upon systematics. viii +534 pp . Oxford.
Mayr, E. 1969. Principles of systematic zoology. $\mathrm{x}+428 \mathrm{pp}$. New York.
Mickevitch, M. F. 1978. Taxonomic congruence. Systematic Zoology 27: 143-158.
Miyatake, Y. 1963. A revision of the subfamily Psyllinae from Japan. I. (Hemiptera: Psyllidae). Journal of the Faculty of Agriculture, Kyushu University 12: 323-357.

- 1964. A revision of the subfamily Psyllinae from Japan. II. (Hemiptera: Psyllidae). Journal of the Faculty of Agriculture, Kyushu University 13: 1-37.
- 1970. Some taxonomical and biological notes on Togepsylla matsumurana Kuwayama, Jr. (Hemiptera: Psyllidae). Bulletin of the Osaka Museum of Natural History 23: 1-10.
- 1971. Studies on the Philippine Psyllidae (Hemiptera: Homoptera). I. Bulletin of the Osaka Museum of Natural History 25: 51-60.
- 1972. Studies on Philippine Psyllidae (Hemiptera: Homoptera). II. Bulletin of the Osaka Museum of Natural History 26: 11-34.
- 1974. A new species of Homotoma from NE New Guinea (Homoptera: Psyllidae). Bulletin of the Osaka Museum of Natural History 28: 17-21.
Moore, K. M. 1970. Observations on some Australian forest insects. 24. Results from a study of the genus Glycaspis (Homoptera: Psyllidae). Australian Zoologist 15: 343-376.
Nelson, G. 1971. Paraphyly and polyphyly: redefinitions. Systematic Zoology 20: 471-472.
Ossiannilsson, F. 1970. Contributions to the knowledge of Swedish psyllids (Hem., Psylloidea) 1-4. Entomologica Scandinavica 1: 135-144.
Pettey, F. W. 1924. South African Psyllids. Entomology Memoirs. Department of Agriculture, Union of South Africa 2: 21-30.
-1925. New South African psyllids. South African Journal of Natural History 5: 125-142.

1933. New species of South African psyllids. Entomology Memoirs. Department of Agriculture, Union of South Africa 8: 3-23.
Pflugfelder, O. 1941. Psyllina. In Bronns, H. G. (ed.), Klassen und Ordnungen des Tierreichs. Volume 5, part 3, book 8.95 pp . Leipzig.
Platnick, N. I. 1978. Gaps and prediction in classification. Systematic Zoology 27: 472-474.
Platnick, N. I. \& Nelson, G. 1978. A method of analysis for historical biogeography. Systematic Zoology 27: 1-16.
Rahman, K. A. 1932. Observations on the immature stages of some Indian Psyllidae (Homoptera: Rhynchota). Indian Journal of Agricultural Science 2: 358-377.
Raven, P. H. \& Axelrod, D. I. 1974. Angiosperm biogeography and past continental movements. Annals of Missouri Botanical Garden 61: 539-673.

Rohlf, F. J. 1972. An empirical comparison of three ordination techniques in numerical taxonomy. Systematic Zoology 21: 271-280.
Rosen, D. E. 1978. Vicariant patterns and historical explanation in biogeography. Systematic Zoology 27: 159-188.
Schaefer, H. A. 1949. Beiträge zur Kenntnis der Psylliden der Schweiz. Mitteilungen der Schweizerischen entomologischen Gesellschaft 22: 1-96.
Schlee, D. 1969. Sperma-Übertragung in ihrer Bedeutung für das phylogenetische System der Sternorrhyncha. Phylogenetische Studien an Hemiptera I. Psylliformes (Psyllina + Aleyrodina) als monophyletische Gruppe. Zeitschrift für Morphologie und Ökologie der Tiere 64: 95-138.
Schwarz, E. A. 1898. Notes on the lerp-insects (Psyllidae) of Australia. Proceedings of the Entomological Society of Washington 4: 66-75.
Scott, J. 1882. On certain genera and species of the group of Psyllidae in the collection of the British Museum. Transactions of the Entomological Society of London 1882: 449-473.
1886a. Description of the nymph of Psylla mali, Schmidtberger. Entomologist's Monthly Magazine 22: 281.
1886b. Description of the nymph of Psyllopsis (Psylla, Foerst.) fraxinicola. Entomologist's Monthly Magazine 22: 281-282.
1886c. Note on Trioza remota, Foerster, together with a description of the nymph. Entomologist's Monthly Magazine 22: 282.
Siegel, S. 1956. Nonparametric statistics for the behavioural sciences xvii +312 pp. New York.
Sneath, P. H. A. \& Sokal, R. R. 1973. Numerical taxonomy xv +573 pp. San Francisco.
Szelegiewicz, H. 1971. Autapomorphous wing characters in the recent subgroups of Sternorrhyncha (Hemiptera) and their significance in the interpretation of the Paleozoic members of the group. Annales zoologici 29: 15-81. [In Polish, English translation - U.S. Dept. of Commerce, National Technical Information Service, Springfield, Virginia.]
Takhtajan, A. 1969. Flowering plants - origin and dispersal. x +310 pp. Edinburgh.
Thorne, R. F. 1976. A phylogenetic classification of the Angiospermae. Evolutionary Biology 9: 35-106.
Tuthill, L. D. 1943. The psyllids of America north of Mexico (Psyllidae: Homoptera) (subfamilies Psyllinae and Triozinae). Iowa State College Journal of Science 17: 443-660.

- 1944. Contributions to the knowledge of the Psyllidae of Mexico. Journal of the Kansas Entomological Society 17: 143-159.

1945. Contributions to the knowledge of the Psyllidae of Mexico. Journal of the Kansas Entomological Society 18: 1-29.
-_ 1950. Contributions to the knowledge of the Psyllidae of Mexico. (Part II). Journal of the Kansas Entomological Society 23: 52-63.

- 1952. On the Psyllidae of New Zealand (Homoptera). Pacific Science 6: 83-125.

1959. Los Psyllidae del Perú Central (Insecta: Homoptera). Revista peruana de entomologia agricola 2: 1-27.

- 1964a. Conociemientos adicionales sobre los Psyllidae (Homoptera) del Perú. Revista peruana de entomologia agricola 7: 25-32.
- 1964b. Homoptera: Psyllidae. Insects of Micronesia 6(6): 353-376.

Tuthill, L. D. \& Taylor, K. L. 1955. Australian genera of the family Psyllidae (Hemiptera: Homoptera). Australian Journal of Zoology 3: 227-257.
Uichanco, L. B. 1921. New records and species of Psyllidae from the Philippine Islands, with descriptions of some preadult stages and habits. Philippine Journal of Science 18: 259-286.
Vondracek, K. 1957. Mery Psylloidea. Fauna ČSR 9: 1-431.
1963. Jumping plant-lice (Psylloidea-Homoptera) of Central Africa. Part I (Congo). Sbornik Entomologického odděleni Národniho musea v Praze 35: 263-290.
Watrous, L. E. \& Wheeler, Q. D. 1981. The outgroup comparison method of character analysis. Systematic Zoology 30: 1-11.
White, I. M. 1980. Nymphal taxonomy and systematics of the Psylloidea (Insecta: Homoptera). xiv +340 , 12, $8,4,20,8,1 \mathrm{pp}$. Unpublished C.N.A.A. Ph.D. thesis, Liverpool Polytechnic.
White, I. M. \& Hodkinson, I. D. 1982. Psylloidea (Homoptera), nymphal stages, Handbooks for the Identification of British Insects (II)5b: 1-50.
Yang, C-T. 1984. Psyllidae of Taiwan. Taiwan Museum Special Publication Series no. 3: 1-305.
Young, D. J. \& Watson, L. 1970. The classification of dicotyledons: a study of the upper levels of the hierarchy. Australian Journal of Botany 18: 387-433.
Zimmerman, E. C. 1948. Insects of Hawaii 5: 12-38. Honolulu.

Index to host plants

Acer 280, 282
Aceraceae 258
Aglaia 288
Aquifoliaceae 256
Anacardiaceae 256, 258, 274, 276, 278, 280, 288
Annonales 256, 261, 265, 266
Antiaria 277, 289
Arbutus 280, 283
Arctostaphylos 280, 283
Asteraceae 257, 281, 282
Bauhinia 285
Betulaceae 257, 288
Boronia 283
Brassicaceae 256, 281
Buchanania 288
Burseraceae 256, 258, 276, 288
Buxaceae 258
Buxus 287
Caesalpinoideae 286, 287
Calluna 280, 281
Calodendrum 280, 282
Calophyllum 276, 290
Caltha 282
Carex 176, 255, 279, 280, 281
Casuarina 290
Ceanothus 287
Cedrela 289
Celtis 277, 284, 290
Cercocarpus 285, 287
Chenopodiaceae 257, 281
Clorophora 279, 281
Colophospermum 277, 284
Commelinales 256, 266
Cyperaceae 256
Dicotyledoneae 255, 280
Erica 280, 281
Ericaceae 256, 257, 279, 280
Ericales 265
Erythrina 286
Eucalyptus 274, 277, 279, 283, 284
Euphorbiaceae 257, 278, 285, 287, 289

Fabaceae 256, 257, 258, 261, 274,

276, 277, 279, 281, 283, 284, 285, 286, 290
Ficus 256, 274, 276, 277, 278, 279, $281,289,290$
Fraxinus 280, 283
Fuchsia 283
Genisteae 285, 287
Ilex 256, 278, 281
Juncaceae 256
Juncus 176, 255, 277, 278, 279, 281
Khaya 288
Lauraceae 256, 265, 266, 278, 279, 280, 281
Laurus 290
Lindera 280
Litsea 280
Loganiaceae 257
Malvaceae 257, 260
Malvales 256, 257, 258, 260, 275, $276,278,279,280,283,289$
Mangifera 288
Mangifera indica 277
Melastomataceae 257, 276, 282
Meliaceae 256, 258, 274, 276, 277, 278, 288, 289
Mimosoideae 286
Monocotyledoneae 255
Moraceae 256, 257, 260, 274, 276, $278,279,281,283,285$
Morus 286
Myricaria 256, 282
Myroxylon 286
Myrtaceae 257, 258, 274, 278, 279, 280, 283, 289

Nectandra 256, 278, 281
Olea 280, 283
Oleaceae 257
Onagraceae 257, 279, 280, 281, 282
Pelea 289
Persea 290

Phillyrea 280, 283
Pisonia 290
Pistacia 280, 282
Polygonaceae 256, 281
Polygonum 282
Populus 276, 279, 280, 283, 290
Populus euphratica 290
Pritchardia 289
Proteaceae 257, 285, 286
Psidium 290
Purshia 287, 288
Ranunculaceae 256, 281
Rhamnaceae 257, 258, 277, 284, 286, 288
Rhamnus 290
Rhus 282
Rosaceae 258, 274, 288
Rosales 256, 257, 261, 274
Rumex 282
Ruta 280, 282
Rutaceae 256, 257, 258, 276, 279, 280, 288
Rutales 256, 257, 258, 260, 261, 265, $266,274,275,276,278,279,280$

Salicaceae 256, 257, 288
Salix 256
Santalaceae 274
Saxifragaceae 258
Schinus 282
Shorea 290
Sideroxylon 289, 290
Sisymbrium 282
Solanaceae $257,258,277,278,284$, 285, 286, 289
Sterculiaceae 257, 282
Strychnos 283
Tamaricaceae 256, 280, 282
Tamarix 256, 278, 281, 282
Terminalia 277, 278
Tetraplasandra 276, 290
Tiliaceae 282
Tipuana 286
Toona 277, 288
Ulmaceae 257
Ulmus 277
Urticales 279, 280

Index

Invalid and misspelt names are in italics; keys (pp. 275-290), place in general classification (table 17, p. 270), and other principal references are in bold. Names listed in tables 1,6,11,15, 17 and 18 are included.

Aacanthocnema 167, 171, 209, 212, 213, 235, 267, 273, 290
acaciae 162, 209, 213, 227, 234, 249, 268
acaciaebaileyanae $162,209,213$, 234, 268

Acaerus 270
aceris $159,211,236,268$
Acizzia 162, 209, 211, 212, 213, 227 , $228,234,235,247,249,251,257$, 268, 271, 277, 285, 286
Acizziinae 271, 274, 285

Acizziini 271

Aconopsylla 274
aculeata 163,211
acutipennis $161,210,235$
aethiopica 159
aggregata 165

Agonoscena 159, 209, 211, 212, 213, 234, 267, 270, 280, 282
alacris $166,211,212,213,236,267$, 290
alba $164,210,235$
albagena $164,211,236$
albifrons 167, 210, 235
albitextura $165,210,234$
albiventris $166,210,235$
albomaculata 162, 211, 236
Aleyrodoidea 238
Alloeoneura 154, 251, 272
alni $154,164,168,210,235$
ambigua $164,211,236$
Amblyrhina 154, 251, 272
americana $164,211,236$
amorphae 163, 211, 235, 268
Amorphicola 163, 211, 212, 213, 235, 248, 250, 251, 264, 268, 272, 286
anceps $167,211,236,269,278$
angustipennis $160,169,210,234$
annulata $164,211,213,236$
Anomalopsylla 155, 274
Anomalopsyllinae 156, 160, 241, 242
Anomalopsyllini 160
Anomocephala 273
Anomoneura 162, 211, 212, 213, $235,248,249,250,257,268,271$, 286
Anomoneurinae 271, 274, 285, 286
Anomoneurini 162, 271, 285
antennata $165,211,236,268$
Aphalara 154, 155, 156, 160, 168, $170,171,210,211,212,213,234$, 235, 237, 238, 247, 248, 256, 258, $261,263,267,270,282$
Aphalaridae 155, 156, 157, 159, 169, 171, 176, 179, 212, 213, 216, 219, 222, 226, 228, 237, 238, 242, 246, 247, 261, 264, 265, 266, 269, 270, 274, 276, 277, 278, 279
Aphalarinae 154, 155, 160, 237, 266, 270, 279, 280, 281
Aphalarini 160, 243, 270, 281
Aphalaroida 154, 159, 179, 210, 211, 212, 213, 228, 235, 237, 247, $268,269,271,277,279,281,283$
Aphalaroidinae 269, 271, 279, 281, 283
Aphorma 270
Apsylla 160, 209, 212, 213, 235, 238, 264, 265, 268, 272, 277, 288
Apsyllinae 272
Apsyllini 160, 241
arbolensis $166,210,236$
arbuti 159, 210, 236
Arbutophila 159, 283
arctostaphyli 159, 210, 235
Aremica 272
Arepuna 164, 176, 211, 212, 213, 235, 247, 257, 264, 268, 271, 277, 284
Arepuniinae 271, 274
artemisiae $160,169,210,234$

Arytaina 154, 162, 211, 212, 213, $235,248,249,251,268,272,287$ Arytainilla 163, 210, 211, 212, 213 , $235,248,249,251,268,272,287$
Arytaininae 162, 247, 251, 272, 274, 285, 287
Arytainini 162, 251
Asphagidella 163, 213
Astragilita 274
atkasookensis 166, 210, 235
Atmetocranium 274
Auchmerina 271
Australopsylla 271
aylmeriae $166,211,236$

Bactericera 154, 155, 166, 273
Bactericerinae 156, 166
Baeopelma 163
baileyi $165,210,234$
bakeri $167,211,235$
beameri 167, 210, 235
beesoni $161,213,224,278$
bengalensis 247
betulaenanae $164,210,235,268$
Bharatiana 161, 210, 213, 235, 238, 241, 264, 265, 267, 272, 277, 288
Bharatianinae 272
bicolor 159, 211, 235
Brachypsylla 274
Brachystetha 270
brevistigmata $164,210,235$
brunneipennis $164,210,235$
buxi 163, 210, 235

Cacopsylla 163
Caillardia 270
Caillardiini 270
californica $160,211,235$
Calinda 273
calodendri 159, 179, 211, 236, 267
Calophya $154,155,156,160,168$, $169,171,179,209,211,212,213$, $226,234,235,238,241,242,260$, $264,267,269,272,276,278,288$
Calophyidae 264, 265, 272, 274, 276, 278, 288
Calophyinae $160,264,272$
calthae 168
Camarotoscena 159, 211, 212, 213, $235,237,246,257,267,270,276$, 280, 283
cannela 266
capeneri 162,211
capense 162,210
Caradocia 271
cardiae 162, 209, 234
Cardiaspina 154, 165, 210, 212, 213, 234, 235, 269, 271, 284
Cardiaspis 154
carpinicola $164,210,235,268$
Carsidara 154, 155, 156, 238, 258, 265, 273
Carsidaridae 155, 156, 157, 160 , $168,169,171,174,176,179,212$, $213,216,219,224,226,227,237$,
$238,241,243,261,264,265,273$, 274, 278, 289
Carsidarinae 154, 161, 240, 265, 273, 274, 275, 289
Carsidarini 273
Carsidaroida 274
cassiae 163, 209, 235, 268
casuarinae $167,171,209,235,267$
caudata 245
cayeyensis $163,211,236$
ceanothi 163,209
Ceanothia 163, 209, 211, 212, 213, 235, 251, 268, 272, 287
ceardi 166
Cecidopsylla 274
Cecidotrioza 274
cedrelae 161, 209, 235
celtidisgemma 165, 174
celtidismamma 165
celtidisvesiculum 165
cercocarpi $165,179,210,236,247$, 268

Ceriacreminae 154

Ceriacremum 154
Ceropsylla $167,209,211,212,213$, $228,235,267,269,273,289,290$
Cerotrioza 274
chelifera $163,210,287$
chenopodii $166,211,235$
Chermes 154
Chineura 241, 272, 276, 288
chobauti $162,209,234$
cinereae 159, 209, 234
cinnamomi $166,211,235$
Ciriacremidae 155
Ciriacreminae $154,155,162,272$, 274, 285, 286
Ciriacremini 156, 162, 272
Ciriacremum 154, 155, 156, 162, $176,210,211,212,213,228,235$, 249, 250, 268, 272, 286, 287
cistellata $160,209,235,268$
citri $162,168,210,234$
clutiae 162, 210, 234
cockerelli $166,210,235$
Colophorina 163, 209, 212, 213, 235, 268, 271, 285
coloradensis 162, 209, 235
Colposcenia 160, 209, 212, 213, 235, 267, 270, 282
Colposceniini 160, 243, 270, 278, 280, 281
Cometopsylla 271
concolor 245
conflecta 165
conserta 165
constricta $160,210,236$
coryli 164, 210, 235, 287
Craspedolepta $160,169,209,210$, $211,212,213,228,234,236,256$, 267, 270, 282
Crastina 160, 211, 212, 213, 236, 267, 270, 282
Crawforda 167, 211, 212, 213, 236, $267,273,276,290$
crefeldensis $162,211,236,267$

Creiis 154, 165, 209, 212, 213, 234, 247, 269, 271, 284
crithmi $166,210,235$
Ctenarytaina $165,179,210,213$, 227, 236, 244, 245, 267, 271, 280, 283
Ctenarytainini 264, 271, 279
curta 160, 210, 234
curvatinervis $166,210,235$
Cyamophila 264, 272, 286
Cyamophilini 251, 264, 272, 286
cyanoreios 165
cytisi 163,210

Delina 250, 272
densitexta 165, 210, 235
depressa $161,168,213,224,278$
deserata 165, 210, 236, 249, 268, 276
Diaphorina $154,155,156,162,168$,
170, 171, 176, 209, 210, 211, 212, 213, 216, 234, 236, 247, 256, 257,
267, 271, 276, 283
Diaphorini 162, 179, 219, 226, 237 (see also Diaphorinini)
Diaphorininae 264, 269, 271, 279, 280, 281, 283
Diaphorinini 247, 264, 271, 281 (see also Diaphorini: Becker-
Migdisova)
Diceraopsylla 274
Diclidophlebia 161, 179, 211, 212, $213,236,237,243,244,264,267$, 270, 282
Diclidophlebiini 161, 243, 270, 280
diospyri 166, 174, 211, 235
Diraphia 281
divergipennis $165,176,211,236$, 268
dubia 160, 209, 235
dugesii 161
Dynopsylla 274
Dynopsyllini 162
eastopi $161,179,211,236,267$
Egeirotrioza 166, 170, 211, 212, 213, $228,236,237,267,273,276,290$
elongagena 167,210,236, 269
Engytatoneura 274
Epheloscyta 270
Epicarsa $154,161,179,211,213$, $219,236,238,241,256,265,267$, 272, 276, 288
Epipsylla 164, 209, 211, 212, 213, $236,248,249,250,268,271,286$
Epitrioza 273
Eremopsylloides 270
ericae 159, 210, 235
Eriopsylla 274
erythrinae $165,210,235$
erytreae $167,212,235$
eucalypti $165,179,210,236,244,267$
Eucalyptolyma 165, 176, 179, 211, 212, 213, 227, 236, 244, 245, 267, 271, 283
Euceropsylla $163,176,210,211$,
I. M. WHITE AND I. D. HODKINSON

212, 213, 234, 236, 250, 251, 268, 272, 286
Eudiaphorina 271
Euglyptoneura 163, 179, 210, 211, 212, 213, 227, 236, 247, 251, 268, 272, 287
Eumetoecus 270
Euphalerinae 271
Euphalerini 163, 264
Euphalerus $154,163,170,174,176$, 209, 210, 211, 212, 213, 224, 228, 234, 236, 247, 248, 250, 257, 258, 260, 264, 268, 269, 271, 272, 277, 284, 285, 286
euphratica 166
Euphyllura 154, 159, 211, 212, 213, 236, 245, 257, 267, 270, 283
Euphyllurinae 269, 270, 279, 280, 282
Euphyllurini 159, 237, 244, 270, 280
Eurhinocola 271
Eurotica 270
Eutrioza 273
Eutriozini 166
exilis $160,211,235$
fabulosa 162, 210, 236, 267
falcata $167,212,236$
fici $162,179,210$
ficus $162,179,213,258,260$
flava 164
flavida 160, 209, 234
floccosa (Pseudophacopteron) 161, 179, 213, 241, 267
floccosa (Psylla) 164, 210, 235, 268
floccosa (Synoza) 162, 213
florea 162, 210, 234
Floria 154, 163, 211, 212, 213, 236, 248, 249, 251, 268, 272, 287
foersteri $163,211,236$
fonscolombii $164,210,235,268$
forcipata 250
fraxini 163, 210
fraxinicola 163, 210, 235
fremontiae $160,174,179,211,236$, 243, 267
Freysuila Aleman 165, 211, 212, $213,236,249,257,268,271,285$, 286
Freysuila sensu Schwarz 154
frontalis $166,211,235$
furcata 160, 210, 234
fusca 160
fuscinodulus 250
fuscipennis (Eucalyptolyma) 245
fuscipennis (Euglyptoneura) 163, 211
galeaformis $164,210,235,268$
gallicolus $163,174,176,211,212$, 213, 224, 236, 247, 257, 269, 277, 284
gardenensis 162,210
Geijerolyma 271
genistae $162,211,235,268$
gigantea 161, 168, 210, 235
glabruscuta $163,176,210,236,268$
gladiatum 162, 176, 210
Glycaspis $156,165,210,212,213$, 227, 234, 269, 271, 284
gossypii 159, 210, 235
gressitti 241
Gyropsylla $160,210,212,213,234$, 256, 260, 266, 269, 270, 278, 281
Gyropsyllini 270
hakani 163, 210
hakeae $163,211,213,235,257,268$
hamata $164,210,235$
Haplaphalara 270
harteni 162, 211, 286
Hemischizocranium 273
Hemitrioza 273
Hepatopsylla 164, 287
Heteropsylla $154,165,179,211$, 212, 213, 236, 249, 250, 268, 272, 276, 286
Heterotrioza 166
Hevaheva 167, 211, 212, 213, 236, 269, 273, 289
hibisci 161, 176, 210, 235
hirsuta (Psylla) 164, 210, 235, 287
hirsuta (Trioza) 166, 212, 213, 236, 237, 269, 277, 278
Holotrioza 242, 272
Homoptera 154
Homotoma 154, 156, 162, 170, 179 , 211, 213, 236, 238, 241, 258, 260, 264, 267, 272, 289
Homotomidae 264, 265, 272, 274, 276, 278, 288
Homotominae 162, 226, 241, 264, 272
Homotomini 162
hyalina 250
Hyalinaspis 271
ilicis $160,210,234$
imponens 165
incidata 166, 211, 235
incisa 165
indica 162,213
inermis 159, 211, 212, 277, 281
ingae 250
Insnesia 163, 176, 210, 212, 213, $236,251,257,268,272,287$
Isogonoceraia 165, 176, 211, 212, 213, 236, 251, 268, 272, 286
Izpania 273
japonica 165, 247, 284
Jenseniella 274
jugovenosus $163,210,213,224,234$, 257, 284
julbernardioides $162,211,286$
juncorum 162, 211, 236

Katecephala 271

Kleiniella 155, 250, 272
Kuwayama 167, 211, 212, 213, 236, 269, 273, 290

Labicria 274
lamborni 166, 212, 236, 269
Lanthanaphalara 274
Lasiopsylla 271
lata 160, 269
lavaterae 166, 210, 236
lentiginosum 161, 211, 236, 267
Leptotrioza 274
Leptynoptera $161,174,211,213$, $236,238,265,267,273,276,290$
Leptynopterinae 161, 238
Leurolophus 159, 211, 212, 213, $236,267,270,280,282$
Leuronota $166,211,212,213,236$, 267, 273, 290
Levidea 274
Ligustrinia 271
linavuorii 160, 211, 236, 267
Lindbergiella 274
Lisronia 270
litseae 166, 211, 235
Livia 154, 156, 162, 176, 209, 211, $213,235,236,238,242,255,256$, 261, 264, 267, 269, 270, 277, 278, 281
Liviidae 155, 157, 158, 162, 212, 213, 226, 261, 264
Liviinae $154,155,264,266,270$, 279, 280, 281
Livilla 251, 272
Livillinae 154
lobata 166, 212, 236
longicornis $165,211,236,268$
longispiculata 242

Macrocorsa 271

Macrocorsini 271
Macrohomotoma 162, 176, 210, 211, 213, 236, 264, 269, 272, 277, 278, 289
Macrohomotominae 272, 276
Macrohomotomini 272
maculata 242
maculipennis (Livia) 162, 209, 235
maculipennis (Paratrioza) 166, 210, 235
magna 164, 211, 236, 285
magnicauda $164,210,235$
magnoliae $166,212,236$
maideni 245
malayensis $161,209,235$
mali $163,210,213,235,268$
marginepunctata $166,211,235$
martorelli 167, 209, 267
Mastigimas $154,161,209,210,213$, $235,238,256,265,269,273,274$, 289
Mastigimatinae 273, 289
Mastigimatini 161
matsumurana $157,161,174,179$, 211, 236, 267, 275
media $164,210,236$
Megadicrania 274
Megatrioza 166
melanoneura $164,210,235$
menoni 244

Mesohomotoma 161, 176, 209, 210, 213, 235, 269, 273
Mesohomotomini 161
Metapsylla 274
Metatrioza 273
michoacana 166, 211, 236, 267
Microceropsylla 161, 169, 211, 212, 213, 236, 240, 241, 264, 269, 272, 278, 288
Microceropsyllini 161, 241
minor $164,210,235$
minuta (Craspedolepta) 160, 209, 234
minuta (Phytolyma) 160, 279
minuta (Psylla) 164, 210, 235, 287
minuta (Trioza) 166, 210, 235
minuticona $163,210,234$
minutissima $160,209,234$
Mitrapsylla 165, 210, 212, 213, 236, 248, 249, 268, 271, 276, 285, 286
monticola 160, 211, 235
Moraniella 159, 179, 211, 212, 213, 236, 243, 267, 270, 280, 282
mori $162,211,235,250,268$
moscovita 164, 210, 235
Mycopsylla 154, 162, 179, 210, 213, 235, 260, 265, 269, 272, 278, 289
Mycopsyllini 272
Myrmecephala 273
myrtilli $164,210,235$
nebulosa $160,211,236$
negundinis $164,211,236$
Neocalophya 242
Neolithinae 273
Neolithus 166, 211, 212, 213, 236, 269, 273, 278, 289
Neophyllura 159, 210, 211, 212, 213, 235, 236, 267, 271, 283
Neopsyllia $165,176,210,212,213$, 235, 249, 268, 271, 285, 286
Neotrioza 273
Neotriozella 273
nervosa $160,210,234$
Nesiope 274
nidifex $163,211,212,213,224,234$, 247, 284, 286
nigricornis 166, 212, 236
nigripennis $160,209,234$
nigripes 249
nigrita $164,210,235$
nubifera $160,210,234$
nyasae 162, 211, 236, 267
oblonga 250
obsoleta 166, 212, 236
obtusa 166, 212, 236
octospinosa 161, 210, 235, 267
olivina 159
Optomopsylla 274
orientalis 165
Osmopsylla 164
Ozotrioza 273
Pachyparia 271
Pachypsylla 154, 165, 170, 174, 210,
$212,213,235,247,261,269,271$, 284
Pachypsyllinae 165, 247, 271, 277
Pachypsylloides 270
Pachypsylloidini 270
Palmapenna 250, 272
palmeni 164, 211, 236
palmicola $166,210,236,255,269,289$
panacis $167,212,235$
Panisopelma 250, 272
Paracalophya 242, 272
Paracarsidara 161, 168, 210, 213, $235,238,256,260,269,273$
Paracomeca 273
Paracomecini 166
parallela $164,210,235$
Paraphalaroida $160,174,179,211$, $212,213,226,236,237,243,267$, 270, 282
Paratrioza 166, 210, 212, 213, 228, 235, 236, 267, 273, 290
paucivena 241
Paurocephala 155, 159, 170, 174, $179,210,212,213,219,235,237$, $238,243,244,246,250,257,258$, $260,262,267,270,276,280,283$
Paurocephalinae 159, 246, 266, 269, 270, 279, 280, 283
Paurocephalini 159, 246
Pauropsylla 154, 155, 161, 168, 211, 213, 219, 224, 228, 236, 238, 242, 246, 262, 264, 265, 267, 269, 273, 278, 290
Pauropsyllinae 161, 241, 246, 250
Pauropsyllini 161, 238, 241, 242, 273
Paurotriozana 274
Pelmatobrachia 161, 174, 211, 213, 236, 241, 264, 269, 272, 278, 288
Pennavena $162,210,212,213,236$, 247, 257, 267, 271, 283
peregrina $163,211,236$
persicaria 160, 211, 235, 237
Pexopsylla 165, 179, 210, 212, 213, 236, 247, 268, 274
Phacopterinae 161, 226, 241 (see also Phacopteroninae)
Phacopterini 161
Phacopteron 154, 161, 211, 213, $236,238,260,265,267,272,276$, 288
Phacopteronidae 264, 265, 272, 274, 276, 277, 278, 288
Phacopteroninae 264, 272 (see also Phacopterinae: BeckerMigdisova)
Phacopteronini (see Phacopterini: Becker-Migdisova)
Phacosemoides 241, 272
Phellopsylla $165,179,211,212,213$, $227,236,247,257,267,271,277$, 284
phillyreae 159,212
phoradendrae (Psylla) 164, 209, 213, 236, 268
phoradendrae (Trioza) 167, 210, 236

Phytolyma $154,155,156,160,211$, $212,213,236,242,256,267,269$, 270, 278, 279, 281
Phytolymini 160, 270
pisonia 167, 211, 213, 236, 269, 290
pithecolobia 159, 179, 210, 212, 247, 277, 279
Platycorypha $165,176,210,212$, 213, 235, 249, 268, 271, 285, 286
polygoni 160, 210, 234
princeps $165,176,210,235,268$
Prionocnemidae 154
Protyora 161, 211, 213, 236, 269, 273
pruni $164,211,236$
Pseudacanthopsylla 274
Pseudoeriopsylla $162,211,213,236$, 265, 267, 272, 289
Pseudophacopterini 161
Pseudophacopteron 161, 179, 211, $213,228,236,238,241,265,267$, 269, 272, 277, 278, 288
Pseudophacopteronini (see Pseudophacopterini: BeckerMigdisova)
Pseudotrioza 273
Psylla 154, 155, 156, 157, 163, 164, $168,174,179,209,210,211,212$, 213, 227, 235, 236, 238, 247, 249, 250, 251, 255, 256, 258, 261, 268, 272, 277, 285, 287, 288
Psyllidae $154,155,156,157,162$, $169,170,174,176,179,212,213$, 216, 219, 222, 224, 226, 227, 237, 238, 241, 247, 261, 262, 264, 271, 274, 276, 277, 285
Psyllinae 154, 155, 163, 228, 272, 274, 285, 287
Psylloidea 154, 156, 157, 168, 179, $228,238,255,256,258,260,264$, 265, 270, 275
Psyllopseini 163, 247, 264, 271
Psyllopsis 154, 155, 163, 179, 210, 212, 213, 216, 219, 226, 235, 237, 247, 257, 267, 271, 280, 283
pubescens $163,211,287$
pulchella $164,211,236,285$
pulchra $164,210,235,267$
punctulata 162, 210, 234
Purshivora 163, 210, 211, 212, 213, 236, 251, 268, 272, 287
putonii $162,210,234$
pyri 164, 211, 235
pyricola $164,210,235$
pyrisuga $164,210,235$
quadripunctata $167,210,235$
remota $166,212,236$
Retroacizzia 165, 211, 212, 213, 236, 247, 268, 271, 277, 284
Rhachistoneura 270
rhamnicola 164, 211, 236
Rhegmoza 273
Rhinocola 154, 159, 211, 212, 213, $236,242,263,268,270,280,282$

Rhinocolinae 266, 270, 276, 279, 280, 282
Rhinocolini 159, 270, 279, 282
Rhinopsylla 154, 274
Rhodochlanis 270
rhododendri $164,211,236$
rhois $160,211,235,269,276$
Rhombaphalara 270
ribesiae $164,210,213,235,268$
rivalis 165
robusta $163,179,210,247$
rotundipennis $160,169,211,212$, 213, 235, 269, 278
rugipennis $163,210,213,224,234$, 284
rumicis $160,211,235$
russellae $163,211,213,235,268$
Russelliana 272
russoi $163,210,234$
salebrosa 165
saliceti $164,210,235$
salicivora $166,210,235$
Schedoneolithus 273
Schedotrioza 273
schini (Calophya) 160, 211, 212, 213, 235
schini (Tainarys) 160, 210, 235, 268
sicki 241
sideroxyli 167, 211, 269, 289
silvestris $167,212,236,267$
simila $160,210,234$
simlae $164,209,236,285,287$
sinuata $164,210,235$
solani $162,211,236$
sonchi $160,210,234$
sorbi $163,211,235$
Spanioneura 154, 164, 210, 212, $235,251,268,272,287$
spartiicola 163, 211
spartiophila 163,211
speciosa $159,212,213,267$
spegazziniana 160, 210
Sphingocladia 274
Sphinia 274
Spondyliaspidae 155 (see also Spondyliaspididae)
Spondyliaspididae 155, 157, 165, $168,170,179,212,213,227,237$, 242, 244, 247, 261, 264, 269, 271, 274, 277, 284, 286 (see also Spondyliaspidae:auctt.)
Spondyliaspidinae 165, 174, 176, 222, 244, 271, 274, 277, 284 (see also Spondyliaspinae:auctt.)
Spondyliaspinae 154, 155 (see also Spondyliaspidinae)
Spondyliaspis 154, 156, 165, 210, $212,213,236,238,258,269,271$, 284
squamula $165,210,234$
Stenopsylla 273
sterculiae 161, 211, 236, 269
Sternorrhyncha 154
Stigmaphalarini 243
striata (Macrohomotoma) 162, 176, 211, 277
striata (Psylla) 164, 210, 235, 268
stricklandi 163, 211, 236
Strophingia 156, 157, 159, 209, 210 , 212, 213, 234, 235, 238, 242, 247, 256, 261, 265, 268, 270, 281
Strophingiinae 266, 270, 279, 280, 281
suaedae $160,210,234$
subpunctata $160,210,236$
subspiculata $164,211,236$
sulfurea $161,174,211,236,267$
Swezeyana 167, 210, 212, 213, 236, 269, 273, 290
swezeyi $167,211,236,269$
Sympauropsylla 273
Syncarpiolyma 271
Syndesmophlebia 155
Synoza 162, 211, 213, 236, 241, 260, 265, 267, 269, 272, 276, 289
Synoziini 162
Syntomoza 271
Syringilla 271

Tainarys $155,156,160,210,212$, $213,235,243,260,268,270,280$, 282
tantillus $163,209,213,224,236$, 258, 268, 285
Tenaphalara 156, 161, 209, 210, 211, 213, 227, 235, 236, 237, 240, 269, 273
Tenaphalarinae 161, 240, 243
Tenaphalarini 161, 273
tessmanni 161, 209
Tetragonocephala 157, 165, 210, $212,213,236,269,271,284$
texana 165
Thamnopsylla 164
thysanura 245
Togepsylla 157, 161, 174, 179, 211, 213, 236, 244, 261, 264, 265, 267, 270, 275, 278, 281
Togepsyllinae 270, 279, 280, 281
Togepsyllini 161
torifrons 251
trichaeta $161,213,219,224,267$, 290
Trichochermes 166, 210, 212, 213, 236, 240, 267, 273, 290
Trigonon 165, 211, 212, 213, 236, $248,257,268,271,285,286$
trimaculata $164,210,235,268$
triopsyllina $167,211,236,267$
Trioza 154, 156, 157, 166, 168, 174, 210, 211, 212, 213, 228, 235, 236, $237,238,240,255,256,258,260$, $267,269,273,277,278,289,290$
Triozamia $155,156,166,212,236$, $269,273,277,289$
Triozamiinae 166, 273
Triozidae 155, 156, 157, 166, 168, $169,170,171,174,176,179,212$, $213,216,219,222,224,227,237$,

238, 261, 262, 265, 273, 274, 275, 276, 277, 278, 289
Triozinae 154, 155, 166, 273
Triozini 166, 265, 273
Triozoida $167,212,213,236,267$, 273, 290
triozomima 160, 209, 235
tripunctata 166, 211, 235
tuxtlaensis 244
Tyora 154, 274
ulmi $163,179,211,235,277$
uncatoides $163,211,213,235,268$
unicolor 159, 212, 213, 267
urenae 159, 210, 235
urticae $166,168,212,236$
vancouverensis $160,210,234$
variegata $163,211,236,268$
veaziei $160,210,234$
venusta $165,210,235,284$
vermiculosus $163,210,213,224$, 234, 284
vernalis $162,211,236,267$
verrucosa 242
verucifica 166
visci $164,210,235$
vitiensis $166,211,235$
vitreoradiata $167,212,236$
vittatus $159,211,236,267$
walkeri $166,210,236,267$
Xanioptera 270
Xenaphalara 270
Xenaphalarini 270

