An expansion of the genus Deinostigma (Gesneriaceae)

M. Möller ${ }^{1}$, K. Nishii ${ }^{1}$, H.J. Atkins ${ }^{1}$, H.H. Kong ${ }^{2}$, M. Kang ${ }^{2}$, Y.G. Wei ${ }^{3}$, F. Wen ${ }^{3}$, X. Hong ${ }^{4} \&$ D.J. Middleton ${ }^{5}$
${ }^{1}$ Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH35LR, Scotland, U.K.
${ }^{2}$ Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
${ }^{3}$ Guangxi Key Laboratory of Plant Conservation and Restoration
Ecology in Karst Terrain, Guangxi Institute of Botany, Guilin 541006, China
${ }^{4}$ College of Life Sciences, Anhui Normal University, Wuhu 241000, China
${ }^{5}$ Herbarium, Singapore Botanic Gardens, National Parks Board, 1 Cluny Road, Singapore 259569 david_middleton@nparks.gov.sg

Abstract

Based on molecular, morphological and cytological studies the previously monotypic genus Deinostigma W.T.Wang \& Z.Y.Li has been expanded to include several species previously ascribed to Primulina Hance. Deinostigma now comprises seven species, including one previously placed in synonymy. The new combinations Deinostigna cicatricosa (W.T.Wang) D.J.Middleton \& Mich.Möller, Deinostigma cycnostrlala (B.L.Burtt) D.J.Middleton \& H.J.Atkins, Deinostigma cyrtocarpa (D.Fang \& L.Zeng) Mich.Möller \& H.J.Atkins, Deinostigma eberhardtii (Pellegr.) D.J.Middleton \& H.J.Atkins, Deinostigma minutihamata (D.Wood) D.J.Middleton \& H.J.Atkins and Deinostigma tamiana (B.L.Burtt) D.J.Middleton \& H.J.Atkins are made. Deinostigma eberhardtii is lectotypified. The genus is defined by a combination of an alternate leaf arrangement, hooked hairs on many plant parts, flowers with the pedicel inserted at an angle and off-centre on the receptacle, and, where known, a somatic chromosome number (2 n) of <36. This new circumscription of the genus expands its distribution from Vietnam into South China.

Keywords. Molecular phylogeny, ovary morphology, Primulina, taxonomy

Introduction

The genus Deinostigma W.T.Wang \& Z.Y.Li in the Gesneriaceae currently has only one species, D. poilanei (Pellegr.) W.T.Wang \& Z.Y.Li from the southern Annamite range of Vietnam. It was erected as a genus to accommodate the species first described as Hemiboea poilanei Pellegr. This species was placed in Hemiboea C.B.Clarke due to its bilocular ovary and the perception that one of the locules was sterile, a trait of the species in Hemiboea. Wang \& Li (1992) argued that it did not belong in Hemiboea due to having alternate leaves, free bracts, inside of corolla glabrous, filaments broader
in the upper half, anthers hairy, anther locules divaricate with apices confluent, disc absent, and stigma bifid. In further arguments they noted how it differed from other Asian genera and concluded that a new genus was necessary to accommodate it. Since then, the status and relationships of Deinostigma poilanei have remained obscure due to being known from only very few specimens and because relatively little research has been done on the Gesneriaceae of Vietnam.

During work at the Muséum National d'Histoire Naturelle in Paris for an as-yetunpublished checklist of the Gesneriaceae of Cambodia, Laos and Vietnam by DJM, it became clear that Deinostigma poilanei was similar to a number of species from Vietnam and China that were moved into Primulina Hance from Chirita Buch.-Ham. ex D.Don by Weber et al. (2011), namely P. cycnostyla (B.L.Burtt) Mich.Möller \& A.Weber, P. cyrtocarpa (D.Fang \& L.Zeng) Mich.Möller \& A.Weber, P. eberhardtii (Pellegr.) Mich.Möller \& A.Weber, P. minutihamata (D.Wood) Mich.Möller \& A.Weber and P. tamiana (B.L.Burtt) Mich.Möller \& A.Weber. None of these Deinostigma-like species were included in the molecular phylogenetic analyses by Weber et al. (2011) but were moved into Primulina based on their previous inclusion in Chirita sect. Gibbosaccus C.B.Clarke by Wood (1974). All species of the hitherto Chirita sect. Gibbosaccus that were included in the molecular analyses formed a single highly supported clade with Primulina tabacum Hance, the type of Primulina (Weber et al., 2011).

Deinostigma poilanei and the species of Primulina similar to it share a number of morphological traits that are not found in other species of Primulina. These are alternate leaf arrangement (opposite or verticillate in the remaining Primulina species), hooked hairs on many plant parts but particularly on the pedicels, and flowers with the pedicel inserted at an angle and off-centre on the receptacle. In several species the fruit is strongly curved. The alternate leaf arrangement is not particularly clear in the species with a congested rosette of basal leaves but is nevertheless observable by only a single leaf emerging from the apical meristem at a time. Differences also exist in the basic chromosome numbers, with Primulina having exclusively $x=18(>100$ species counted out of >150 described) (Möller \& Pullan, 2015 onwards) while one Deinostigma-like species, P. tamiana, has been counted with $\mathrm{x}=16$ (Christie et al., 2012). In other features the plants are indeed similar to Primulina. It should also be noted that these Deinostigma-like Primulina species occur on a variety of substrates but not on limestone and that the majority of the remaining Primulina species occur on limestone substrates.

In Wang et al. (1998) Chirita cicatricosa W.T.Wang is placed in synonymy of C. minutihamata D.Wood (= Primulina minutihamata), typified by material from China and Vietnam respectively. We found that the material from China has longer, more slender and more falcate fruits and somewhat larger flowers than material from Vietnam. Coupled with their large disjunct distribution, and pending a revision of the species, we suspect that they may represent distinct species and treat them thus here (see also below).

The aim of this study was to investigate the relationship between Deinostigma and Primulina and clarify the status of the Deinostigma-like Primulina species.

Materials and Methods

Plant materials

Herbarium specimens and living collections of Deinostigma poilanei and the Deinostigma-like Primulina species were studied in the Royal Botanic Garden Edinburgh and the Muséum National d'Histoire Naturelle in Paris.

Materials for morphological and phylogenetic analyses were collected in Vietnam (Deinostigma poilanei, Primulina tamiana) and China (Primulina cyrtocarpa, Chirita cicatricosa) (Table 1). Data for the phylogenetic analyses were downloaded from GenBank (including one additional sample of Primulina minutihamata from China which we are treating here as Chirita cicatricosa). These basically represented a reduced matrix of Old World Gesneriaceae as presented in Middleton et al. (2015). Altogether 132 samples (129 species) were included, covering all 32 genera currently recognised in the subtribe Didymocarpinae of tribe Trichosporeae (Möller et al., 2009, 2011, 2014; Weber et al., 2013; Middleton et al., 2014a, 2015). The sampling included 20 samples of 19 species of Primulina, including the type, P. tabacum (Table 1). The phylogenetic trees were rooted on samples of Microchirita (C.B.Clarke) Yin Z.Wang (Möller et al., 2009, 2011).

DNA extraction, PCR and phylogenetic analysis

Sequences of the nuclear ribosomal internal transcribed spacers (ITS) and the plastid trnL-F intron-spacer (trnL-F) for four samples, Chirita cicatricosa, Deinostigma poilanei, Primulina cyrtocarpa, and P. tamiana, were obtained. The extraction of genomic DNA was carried out using a CTAB procedure (Doyle \& Doyle, 1987, 1990).

The PCR amplification of ITS and $t r n \mathrm{~L}-\mathrm{F}$ were performed using primers '5P' (5'-GGA AGG AGA AGT CGT AAC AAG G-3') and '8P' (5'-CAC GCT TCT CCA GAC TAC A-3') (Möller \& Cronk, 1997) and 'c' (5'-CGA AAT CGG TAG ACG CTA CG-3') and ' f ' (5'-ATT TGA ACT GGT GAC ACG AG-3') (Taberlet et al., 1991), respectively, run on a Biorad T100 ${ }^{\mathrm{TM}}$ Thermal Cycler (Hemel Hempstead, UK). The $10 \mu \mathrm{~L}$ reactions contained $1 \mu \mathrm{~L} 10 \times \mathrm{NH}_{4}$ reaction buffer (Bioline, UK), $1 \mu \mathrm{~L}$ dNTPs $(2 \mathrm{mM}), 0.3 \mu \mathrm{~L} \mathrm{MgCl}_{2}(50 \mathrm{mM}), 0.4 \mu \mathrm{~L}$ of each primer $(10 \mu \mathrm{M}), 5.6 \mu \mathrm{~L} \mathrm{ddH}_{2} \mathrm{O}, 0.1$ $\mu \mathrm{L}$ Biotaq polymerase ($5 \mathrm{U} / \mu \mathrm{L}$) (Bioline, UK) and $1.2 \mu \mathrm{~L}$ DNA template. The PCR thermocycle profile for ITS started with an initial denaturation for 3 min at $94^{\circ} \mathrm{C}$, followed by 30 cycles of 1 min at $94^{\circ} \mathrm{C}, 1 \mathrm{~min}$ at $55^{\circ} \mathrm{C}$ and 1.5 min at $72^{\circ} \mathrm{C}$, finished with a final extension step for 5 min at $72^{\circ} \mathrm{C}$. For $\operatorname{trn} \mathrm{L}-\mathrm{F}$ it was: initial denaturation for 4 min at $94^{\circ} \mathrm{C}$, followed by 30 cycles of 45 s at $94^{\circ} \mathrm{C}, 45 \mathrm{~s}$ at $55^{\circ} \mathrm{C}$ and 3 min at $72^{\circ} \mathrm{C}$, with a final extension step for 10 min at $72^{\circ} \mathrm{C}$. PCR products were run on 1% agarose gels to check for amplification success and quality. PCR amplified fragments were purified using ExoSAP-IT (Affymetrix, UK) following the manufacturer's protocol, and sequenced using the dideoxy chain-termination method. Sequencing samples were prepared using the BigDye Terminator v3.1 Cycle Sequencing Kit (Thermo Fisher Scientific, UK) following the manufacturer`s recommendations, and sequencing was carried out by the Edinburgh Genomics sequencing service (University of Edinburgh,

UK). Editing and assemblage of sequencing results were performed using the programs Sequencher 4.5 (Gene Codes Corp, Ann Arbor, USA). The newly acquired sequences were added to the reduced matrix of Middleton et al. (2015) and the matrices realigned manually. They were subsequently submitted to GenBank (Table 1).

Since the combinability of the ITS and $t r n$ L-F matrices, tested with the ILD test (Farris, 1995a, 1995b), implemented as PHT in PAUP* 4.0a146 (Swofford, 2002), did not indicate incongruent phylogenetic signals $(P=0.58)$, the two matrices were analysed together. The reconstruction of phylogenetic trees by maximum parsimony (MP) and Bayesian inference (BI), including the calculation of bootstrap (BS) and posterior probability (PP) branch support values, were carried out as previously described (Möller et al., 2009, 2011; Weber et al., 2011; Middleton et al., 2015): the MP analysis on the combined data was carried out in PAUP* v.4.0b10 (Swofford, 2002), on unweighted and unordered characters. Alignment gaps were treated as missing data. Starting trees were found by parsimony ratchet (Nixon, 1999), in PAUPRat (Sikes \& Lewis, 2001) and PAUP*, and the saved trees further optimised in PAUP*, with both TBR and Multrees on. Statistical branch support was obtained from 10,000 heuristic bootstrap replicates each starting with a random addition tree, optimized with TBR on and Multrees off in PAUP* (Möller \& al., 2009, 2011).

The BI analyses were run in MrBayes v.3.1.2 (Huelsenbeck \& Ronquist, 2001; Huelsenbeck et al., 2007). Models and parameter prior settings were obtained independently for the $\operatorname{trn} \mathrm{L}-\mathrm{F}$, the ITS spacers and 5.8 S sequences using MrModeltest v.2.3 (Nylander, 2004), and were GTR + I + G for $\operatorname{trnL}-\mathrm{F}$ and the ITS spacers, and SYM $+\mathrm{I}+\mathrm{G}$ for the 5.8 S gene, respectively, as suggested by the Akaike Information Criterion (AIC; Akaike, 1974). Five million generations were run in two independent analyses each with four Markov chain Monte Carlo (MCMC) chains. One tree was sampled every $1000^{\text {th }}$ generation ($=5000$ trees), and the first 250 trees (5%) discarded as burn-in, determined after plotting the generations against the $\log (n)$ likelihoods and a majority rule consensus tree construct with the 'sumt' command and posterior probabilities (PP) obtained in MrBayes.

Cytology

The chromosome numbers for Deinostigma poilanei (R. Rybková HB 222) and Primulina cyrtocarpa (M.Möller \& Y.G.Wei MMO 06-908) (Table 1), were determined from root tips as previously described (Jong \& Möller, 2000; Christie et al., 2012). For Chirita cicatricosa (Zulin 131585, China, Guangxi, Shangsi), leaf cuttings were cultivated in pots at the South China Botanical Garden, Chinese Academy of Sciences. Actively growing root tips were harvested and pretreated in the dark with 0.1% colchicine and 0.1%-Hydroxyquinoline (1:1) at room temperature for 3 hours and then fixed in 3:1 absolute ethanol : glacial acetic acid at $4^{\circ} \mathrm{C}$ for 2 hours. They were macerated in a mixture of $1: 11 \mathrm{M} \mathrm{HCl}$ and 45% acetic acid at $37^{\circ} \mathrm{C}$ in a water bath for 45 min , and stained and squashed in 1% aceto-orcein.

Results and Discussion

Phylogeny

The MP analysis resulted in 204 most parsimonious trees with a length of 4123 steps, CI of 0.3772 and RI of 0.6797 . For the BI runs, the average standard deviation of split frequencies was 0.003949 indicating a strong convergence of the two runs. Furthermore, a close correlation of the PP values between the two runs was observed, confirming the reproducibility of the runs.

In both the MP (Fig. 1) and BI (Fig. 2) phylogenetic trees, Primulina s.s. (excluding Chirita cicatricosa, P. cyrtocarpa, and P. tamiana) forms a highly supported clade ($\mathrm{BS}=100 \% ; \mathrm{PP}=1$), and, most importantly, is the sister clade to Petrocodon with maximum branch support $(\mathrm{BS}=100 \% ; \mathrm{PP}=1)$. Deinostigma poilanei, together with Chirita cicatricosa, Primulina cyrtocarpa and P. tamiana, forms a separate clade ($\mathrm{BS}=73 \% ; \mathrm{PP}=0.88$), which is sister to the monotypic Metapetrocosmea W.T.Wang with maximum branch support ($\mathrm{BS}=100 \% ; \mathrm{PP}=1$). Although most of the genera are in highly supported clades, as in previous studies (Möller et al., 2009, 2011), the backbone of the phylogenetic tree is not resolved. However, since both Primulina s.s. and the Deinostigma clade form strongly supported sister relationships to other genera respectively, it is unlikely that the two genera are closely related. Consequently, we transfer the Deinostigma-like Primulina species to Deinostigma and refer to them thus hereafter.

Morphology

All species are herbs. They are all probably perennial and, judging from the numerous leaf scars on the stems of some species, they are likely to be deciduous in the dry season. In particular, Deinostigma cycnostyla has a thick stem with numerous congested leaf scars. The other species have a relatively thin stem and species such as Deinostigma minutihamata are mostly procumbent.

All species have an alternate leaf arrangement although this is not so obvious in Deinostigma cycnostyla where the leaves are very congested. The alternate leaf arrangement is in contrast to Primulina s.s. where the leaves are opposite or in whorls, usually of three. The leaf blade is ovate to elliptic with a weakly (Deinostigma tamiana) to strongly (D. cyrtocarpa) crenate or dentate margin. In all species the length of the petiole is very variable within an individual, but compared to most other Asian genera, it is generally long in proportion to the length of the leaf blade, and often longer than the blade.

The inflorescences arise from the axils of the upper leaves, are borne on long peduncles, and are dichasia with the typical paired-flower arrangement of the Gesneriaceae. They are few-flowered in most species to many-flowered in Deinostigma eberhardtii. In most species the inflorescence is fairly lax but is rather congested in the terminal branches in Deinostigma cycnostyla. There are hooked hairs on the pedicels, which are not found in Primulina s.s.

The corolla is white, blue or variations on purple (or combinations of these), infundibuliform, with the lower lip 3-lobed and the upper lip 2-lobed. From the colour and morphology bee pollination is likely.

Fig. 1. Maximum parsimony strict consensus tree based on combined ITS and $t r n \mathrm{~L}-\mathrm{F}$ sequence data. Clades representing entire genera are collapsed. Numbers along the branches are bootstrap values. Asterisks denote branches receiving $<50 \%$ support.

Fig. 2. Bayesian inference majority rule consensus tree based on combined ITS and trnL-F sequence data. Clades representing entire genera are collapsed. Numbers along the branches are posterior probability values. Asterisks denote branches with <0.5 posterior probability.

There are two fertile stamens and three staminodes (the central one sometimes obscure). The filaments are geniculate around the middle and glandular or hairy distally. The anthers are hairy or glandular in all species.

The ovary of Deinostigma poilanei is small, c. 5 mm long, at an oblique or sometimes almost a right angle to the pedicel and slightly curved upwards, similar to D. cycnostyla (c. 2.4 mm long), D. eberhardtii (c. 4.5 mm long), D. tamiana (c. 5.5 mm long) and D. cyrtocarpa ($7-9 \mathrm{~mm}$ long). At maturity, the capsules in Deinostigma poilanei, D. tamiana and D. cyrtocarpa are $1.5-2 \mathrm{~cm}$ long and in D. eberhardtii $2.5-2.9 \mathrm{~cm}$ long. In these species, the capsules are falcate and inserted at an angle to the pedicel to be carried \pm horizontally (not known in Deinostigma cycnostyla).

In Deinostigma cicatricosa and D. minutihamata, the ovary is much larger, c. 12-18 mm long, and only at a slight angle in relation to the pedicel. In Deinostigma cicatricosa, the mature capsule is $4.5-5 \mathrm{~cm}$ long, has a slight curve and is slender, while in D. minutihamata, the capsule remains straight, $2.3-3.5 \mathrm{~cm}$ long, and is broader. In all Deinostigma species where it is known the capsule dehiscence is loculicidal.

The internal structure of the ovaries could not be studied in all species. In the species studied the internal structure varies considerably. In Deinostigma poilanei it is bilocular for its entire length, with axile recurved bifid placentation (Fig. 3A). In Deinostigma tamiana and D. cicatricosa only the basal part is bilocular while in the middle and distal parts the carpels are not fused and the ovary is unilocular (Fig. 3B, C). We surveyed other species previously within the circumscription of Chirita, and now included in other genera (i.e., Henckelia dielsii (Borza) D.J.Middleton \& Mich. Möller, Microchirita prostrata J.M.Li \& Z.Xia, Primulina hochiensis (C.C.Huang \& X.X.Chen) Mich.Möller \& A.Weber and Primulina liguliformis (W.T.Wang) Mich. Möller \& A.Weber), and found them to possess a unilocular ovary for their entire length (Fig. 3E-G). The exception was Primulina dryas (Dunn) Mich.Möller \& A.Weber, the ovary of which is bilocular throughout but with the abaxial locule being sterile (Fig. 3D).

Chromosome numbers

The chromosome number of Deinostigma poilanei and D. cicatricosa was determined as $2 \mathrm{n}=32$, that of D. cyrtocarpa as $2 \mathrm{n}=\mathrm{c} .30$ (Fig. 4). For all species, the chromosomes within each complement did not differ significantly in size and were c. $0.8-1.2 \mu \mathrm{~m}$ in length. Deinostigma tamiana was counted previously as $2 \mathrm{n}=32$ (Christie et al., 2012).

The counts for all other Primulina species to date (139 counts for 118 species and 4 varieties, Möller \& Pullan, 2015 onwards) were uniformly $2 \mathrm{n}=36$, except for a tetraploid count of $2 \mathrm{n}=72$ for one accession of P. longgangensis (W.T.Wang) Y.Liu \& Y.Z.Wang (Christie et al., 2012) and one count of $2 \mathfrak{n}=28$ for the same species (Cao et al., 2003), the latter likely erroneous since two other counts of P. longgangensis showed $2 \mathrm{n}=32$ (Liu et al., 2012; Kang et al., 2014). Overall, the chromosome size of species of Primulina s.s. is slightly larger than those with $2 \mathrm{n}=\mathrm{c} .30$ and 32 chromosomes, being mostly up to $1.6 \mu \mathrm{~m}$ long, with the exception of P. aff. balansae (Drake) Mich. Möller \& A.Weber with chromosomes up to $2.0 \mu \mathrm{~m}$ long. Overall, the chromosome numbers are in full congruence with the phylogeny, separating Primulina s.s. with 2 n $=36$ from those with $2 \mathrm{n}=\mathrm{c} .30$ and $2 \mathrm{n}=32$ chromosomes.

Fig. 3. Photographic sections taken near the base, the middle and the tip of ovaries of diverse species belonging to Deinostigma W.T.Wang \& Z.Y.Li (A-C), species previously included in Chirita Buch.-Ham. (D-F) and Microchirita prostrata J.M.Li \& Z.Xia (G). (Photos: M. Möller)

Fig. 4. Chromosome spread preparations of three Deinostigma W.T.Wang \& Z.Y.Li species. A. Deinostigma poilanei (Pellegr.) W.T.Wang \& Z.Y.Li prometaphase with $2 \mathrm{n}=32$ chromosomes. B. Deinostigma cicatricosa (W.T.Wang) D.J.Middleton \& Mich.Möller metaphase with $2 \mathrm{n}=$ 32 chromosomes. C. Deinostigma cyrtocarpa (D.Fang \& L.Zeng) Mich.Möller \& H.J.Atkins prometaphase with $2 \mathrm{n}=\mathrm{c} .30$ chromosomes. Scale bar: $10 \mu \mathrm{~m}$. (Photos: A, C: M. Möller; B: Hui-Min Li)

Geography

The Annamite range of mountains that straddles the border between Vietnam and Laos, and extends into NE Cambodia and further south in Vietnam to just north of Ho Chi Minh City, is known to be an area of high biodiversity and home to many endemic species of plants and animals (Averyanov et al., 2003; WWF, 2015). The Annamites are particularly interesting for Gesneriaceae as the genus Billolivia D.J.Middleton, now with seven species (all of which were also described as new), was recently described from the southern end of this range (Middleton et al., 2014a, 2014b; Vu et al., 2015). Deinostigma, however, occurs across almost the full length of the mountain range and into southern China, a distribution pattern not otherwise observed in other Gesneriaceae genera except for those which are generally much more widespread (e.g. Aeschynanthus Jack, Didymocarpus Wall., Rhynchotechum Blume).

Conclusion

In summary, phylogeny, cytology and morphology support a separation of Chirita cicatricosa (previously included in synonymy of Primulina minutihamata), Primulina cyrtocarpa and P. tamiana from Primulina and their integration into an expanded genus Deinostigma with a distribution range covering Southern China and Vietnam. Primulina cycnostyla, P. eberhardtii and P. minutihamata must also be moved into Deinostigma based on their close morphological similarities to species which have been included in the phylogeny. The genus includes species with leaves in alternate arrangement with distinct nodes (except congested in D. cycnostyla), bilocular ovaries, at least at the base, and a chromosome number smaller than $2 \mathrm{n}=36$, these characters distinguishing Deinostigma from Primulina s.s. Metapetrocosmea, though monotypic and sister to Deinostigma in the phylogeny, is excluded from Deinostigma due to its many differences, such as the unilocular ovary, epipetry, free anthers, capitate stigma, and the capsule globose and straight in relation to the pedicel.

Taxonomy

We do not attempt a revision here of the species now included in Deinostigma but note that a revision is needed. The only major change to the existing taxonomy that we make is to resurrect Chirita cicatricosa from synonymy of Primulina minutihamata and make combinations in Deinostigma for both (see below). All type material cited below has been seen by the authors.

Deinostigma W.T.Wang \& Z.Y.Li, Acta Phytotax. Sin. 30(4): 356 (1992). - TYPE: Deinostigma poilanei (Pellegr.) W.T.Wang \& Z.Y.Li

Chirita subsect. Cicatricosae W.T.Wang, Bull. Bot. Res., Harbin 1(4): 69 (1981). TYPE: Chirita cicatricosa W.T.Wang

Perennial herbs, caulescent with distinct or short stem. Leaves simple, alternate, sometimes congested into a rosette, petiolate; blade slightly peltate or not, margin crenate or dentate, secondary veins pinnate. Inflorescences axillary, cymose; pedicels with hooked hairs. Flowers with the pedicel inserted at an angle and off-centre on the receptacle. Calyx lobes divided to base, elliptic, those on ventral side slightly longer and wider. Corolla white, purple, blue or combinations thereof, infundibuliform, lower lip 3-lobed, upper lip 2-lobed, lobe apices rounded. Fertile stamens 2, filaments slightly curved, anthers adnate face to face, hairy or with glands, staminodes 3 but with central staminode sometimes obscure. Nectary 5-crenate or apparently lacking. Ovary fusiform, bilocular throughout or at least near base, then unilocular from middle to apex; stigma of only lower lip developing, broad, flat and weakly 2-lobed. Fruit straight to strongly falcate, oblique in relation to the pedicel, dehiscing loculicidally; many-seeded, seeds unappendaged.

Distribution. Seven species in southern China and Vietnam. Some of the Vietnamese material was collected close to the border with Laos and it may also occur in that country.

Deinostigma cicatricosa (W.T.Wang) D.J.Middleton \& Mich.Möller, comb. nov. - Chirita cicatricosa W.T.Wang, Bull. Bot. Res., Harbin 1(4): 69 (1981). - TYPE: China, Guangxi, Dongxing, Banba Commune, Renbei, 3 October 1976, Fang, D. et al. 1525 (holotype GXMI [GXMI050619]). (Fig. 5A-D)

Distribution. China (Guangxi).
Notes. Wood (1974) included a specimen from Southern Guangxi (although he cited it as being from 'Kwangtung' (Guangdong)) in his new species Chirita minutihamata, along with material, including the type, from Vietnam. Wang (1981) later described Chirita cicatricosa from Guangxi without explicitly including the Chinese material
of C. minutihamata or referring to that species. Wang (1985), Wang et al. (1990) and Wang et al. (1998) placed Chirita cicatricosa in synonymy of C. minutihamata and cited localities corresponding to the type locality of C. cicatricosa and the material cited by Wood (1974). We acknowledge that the material from China and the material from Vietnam are indeed very similar but the differences between them, particularly in the longer, slender, more falcate fruits and the somewhat larger flowers of the Chinese material, along with the widely disjunct distribution, lead us to suspect that they may be recognised as distinct species when the group is revised. We therefore provide the combination in anticipation of this.

Deinostigma cycnostyla (B.L.Burtt) D.J.Middleton \& H.J.Atkins, comb. nov. - Chirita cycnostyla B.L.Burtt, Notes Roy. Bot. Gard. Edinburgh 23: 96 (1960). Primulina cycnostyla (B.L.Burtt) Mich.Möller \& A.Weber, Taxon 60: 781 (2011). TYPE: Vietnam, Da Nang, Ba Na, 1000-1500 m, 27 February 1939, Poilane, E. 29123 (holotype P [P00602510]).

Distribution. Only known from the Ba Na Hills of central Vietnam.
Notes. This species has not been included in molecular phylogenetic analyses but has been transferred to Deinostigma based on its morphological similarity to Deinostigma poilanei.

Deinostigma cyrtocarpa (D.Fang \& L.Zeng) Mich.Möller \& H.J.Atkins, comb. nov. - Chirita cyrtocarpa D.Fang \& L.Zeng, Acta Phytotax. Sin. 31(5): 468 (1993). Primulina cyrtocarpa (D.Fang \& L.Zeng) Mich.Möller \& A.Weber, Taxon 60: 781 (2011). - TYPE: China, Guangxi, Hezhou City, 130-140 m, 16 June 1991, Zhou L.S. \& Zeng L. 1263 (holotype GXMI [GXMI050608]). (Fig. 5E-H)

Distribution. NE Guangxi (Hezhou).

Deinostigma eberhardtii (Pellegr.) D.J.Middleton \& H.J.Atkins, comb. nov. - Chirita eberhardtii Pellegr., Bull. Soc. Bot. France 73: 418 (1926), - Primulina eberhardtii (Pellegr.) Mich.Möller \& A.Weber, Taxon 60: 782 (2011). - TYPE: Vietnam, Thua Thien-Hue, Baika, Eberhardt 2466 (lectotype P [P00602512], designated here; isolectotype VNM).

Distribution. Vietnam (Thua Thien-Hue and Da Nang).
Notes. This species has not been included in molecular phylogenetic analyses but has been transferred to Deinostigma based on its morphological similarity to Deinostigma poilanei.

Fig. 5. Deinostigma cicatricosa (W.T.Wang) D.J.Middleton \& Mich.Möller (A-D) and D. cyrtocarpa (D.Fang \& L.Zeng) Mich.Möller \& H.J.Atkins (E-H). A. Habit and mature fruits. B. Flower cut open. C. Flower top view. D. Flower front view. E. Habit. F. Mature fruits. G. Flowering branch. H. Flowers front view. (Photos: A, B, E, F: M. Möller; C, D, G, H: Yi-Gang Wei)

Deinostigma minutihamata (D.Wood) D.J.Middleton \& H.J.Atkins, comb. nov. Chirita minutihamata D.Wood, Notes Roy. Bot. Gard. Edinburgh 31: 370 (1972). Primulina minutihamata (D.Wood) Mich.Möller \& A.Weber, Taxon 60: 783 (2011). - TYPE: Vietnam, Kon Tum, Ngok Pa Not, 2300 m, 12 December 1946, Poilane, E. 35803 (holotype P [P00602518]; isotype P [P00602519]).

Distribution. Vietnam (Kon Tum).
Notes. See notes under Deinostigma cicatricosa. This species has not been included in molecular phylogenetic analyses but has been transferred to Deinostigma based on its morphological similarity to D. cicatricosa and D. poilanei.

Deinostigma poilanei (Pellegr.) W.T.Wang \& Z.Y.Li, Acta Phytotax. Sin. 30(4): 357 (1992). - Hemiboea poilanei Pellegr., Bull. Soc. Bot. France 73: 421 (1926). - TYPE: Vietnam, Khanh Hoa, Nha Trang, 300 m, 29 May 1922, Poilane, E. 3846 (holotype P [P00606338]; isotype P [P00634330]). (Fig. 6A-E)

Distribution. Vietnam (Khanh Hoa, Thua Thien-Hue and Da Nang).

Deinostigma tamiana (B.L.Burtt) D.J.Middleton \& H.J.Atkins, comb. nov. - Chirita tamiana B.L.Burtt, Gloxinian 49(4): 20 (1999). - Primulina tamiana (B.L.Burtt) Mich.Möller \& A.Weber, Taxon 60: 785 (2011). - TYPE: Originally collected as Soviet-Vietnam Expedition 0/114 from Vietnam, Vinh Phuc, Tam Dao National Park, cultivated in RBGE under accession number 19981743*A, vouchered for the herbarium as CULTE 15738 (holotype E [E00269898]). (Fig. 6F-J)

Distribution. Vietnam (Vinh Phuc, Tam Dao NP).

ACKNOWLEDGEMENTS. We are grateful to R. Rybková for providing plant material of Deinostigma poilanei; the horticultural staff of the Royal Botanic Garden Edinburgh (RBGE) for the cultivation of research material, particularly S. Barber and A. Ensoll; S. Barber for photographs of Deinostigma poilanei; and the Science Technical Services at RBGE for access to laboratory facilities and their support of the molecular and morphological work. We acknowledge financial support from the Percy Sladen Memorial Fund (2006) and the RBGE Foreign Travel fund (2006; 2007), and the Guangxi Natural Science Foundation (2015GXN SFBB139004/2015GXNSFBA139105) for fieldwork, and the Museum Nationale d'Histoire Naturelle for funding DJM's visit. The research of DJM in Singapore Botanic Gardens is supported by the National Parks Board, Singapore. The Royal Botanic Garden Edinburgh is supported by the Rural and Environment Science and Analytical Services division (RESAS) in the Scottish Government.

Fig. 6. Deinostigma poilanei (Pellegr.) W.T.Wang \& Z.Y.Li (A-E) and D. tamiana (B.L.Burtt) D.J.Middleton \& H.J.Atkins (F-J). A. Habit. B. Flower side view. C. Flower front view. D. Immature fruit. E. Mature fruit. F. Habit. G. Flower side view. H. Flower front view. I. Immature fruit. J. Mature fruit. (Photos: A, B, C, F-J: M.Möller; D, E: Sadie Barber)

References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans. Automat. Control 19: 716-723.
Averyanov, L.V., Phan, K.L., Nguyen, T.H. \& Harder, D.K. (2003). Phytogeographic review of Vietnam and adjacent areas of Eastern Indochina. Komarovia 3: 1-83.
Cao, L.M., Cao, M., Tang, X.L. \& Wei, Y.G. (2003). Chromosome numbers of 4 species in the Gesneriaceae from Guangxi. Guihaia 23(4): 331-333.
Christie, F., Barber, S. \& Möller,- M. (2012). New chromosome counts in Old World Gesneriaceae: numbers for species hitherto regarded as Chirita, and their systematic and evolutionary significance. Edinburgh J. Bot. 69(2): 323-345.
Doyle, J.J. \& Doyle, J.L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. Bot. Soc. Amer. 19: 11-15.
Doyle, J.J. \& Doyle, J.L. (1990). Isolation of plant DNA from fresh tissue. Focus 12: 13-15.
Farris, J., Källersjö, S.M., Kluge, A.G. \& Bult, C. (1995a). Constructing a significance test for incongruence. Syst. Biol. 44(4): 570-572.
Farris, J., Källersjö, S.M., Kluge, A.G. \& Bult, C. (1995b). Testing significance of incongruence. Cladistics 10(3): 315-319.
Huelsenbeck, J.P. \& Ronquist, F. (2001). MrBayes: Bayesian inference of phylogeny. Bioinformatics 17(8): 754-755.
Huelsenbeck, J.P., Larget, B., Van der Mark, P., Ronquist, F., Simon, D. \& Teslenko, M. (2007). MrBayes, ver. 3.1.2. Bayesian Inference of Phylogeny. Application program distributed by the authors under the GNU General Public License. http:// mrbayes.csit.fsu.edu. (accessed on 30 Mar. 2016).
Jong, K. \& Möller, M. (2000). New chromosome counts in Streptocarpus (Gesneriaceae) from Madagascar and the Comoro Islands and their taxonomic significance. Pl. Syst. Evol. 224(3): 173-182.
Kang, M., Tao, J.J., Wang, J., Ren, C., Qi, Q.W., Xiang, Q.Y. \& Huang, H.W. (2014). Adaptive and nonadaptive genome size evolution in Karst endemic flora of China. New Phytol. 202(4): 1371-1381.
Liu, R.R., Pan, B., Zhou, T.J. \& Liao, J.P. (2012). Cytological studies on Primulina taxa (Gesneriaceae) from limestone karsts in Guangxi province, China. Caryologia 65(4): 295-303.
Middleton, D.J., Atkins, H.J., Luu, H.T., Nishii, K. \& Möller, M. (2014a). Billolivia, a new genus of Gesneriaceae from Vietnam with five new species. Phytotaxa 161(4): 241-269.
Middleton, D.J., Leong-Škorničková, J. \& Nguyễn, Q.B. (2014b). A new species of Billolivia (Gesneriaceae) from Vietnam. Gard. Bull. Singapore 66(2): 189-194.
Middleton, D.J., Nishii, K., Puglisi, C., Forrest, L. \& Möller, M. (2015). Chayamaritia (Gesneriaceae: Didymocarpoideae), a new genus from Southeast Asia. Pl. Syst. Evol. 301(7): 1947-1966.
Möller, M. \& Cronk, Q.C.B. (1997). Origin and relationships of Saintpaulia (Gesneriaceae) based on ribosomal DNA internal transcribed spacer (ITS) sequences. Amer. J. Bot. 84(8): 956-965.
Möller, M., Pfosser, M., Jang, C.G., Mayer, V., Clark, A., Hollingsworth, M.L., Barfuss, M.H.J., Wang, Y.Z., Kiehn, M. \& Weber, A. (2009). A preliminary phylogeny of the "Didymocarpoid Gesneriaceae" based on three inolecular data sets: incongruence with available tribal classifications, Amer. J. Bot. 96(5): 989-1010.

Möller, M., Forrest, A., Wei, Y.G. \& Weber, A. (2011). A molecular phylogenetic assessment of the advanced Asiatic and Malesian didymocarpoid Gesneriaceae with focus on nonmonophyletic and monotypic genera. Pl. Syst. Evol. 292(3-4): 223-248.
Möller, M., Chen, W.H., Shui, Y.M., Atkins, H. \& Middleton, D.J. (2014). A new genus of Gesneriaceae in China and the transfer of Briggsia species to other genera. Gard. Bull. Singapore 66(2): 195-205.
Möller, M. \& Pullan, M. (2015 onwards). RBGE WebCyte2 - An updated Gesneriaceae cytology database. http://elmer.rbge.org.uk/webcyte/webcyteintro.php (accessed on 30 Mar. 2016).
Nixon, K.C. (1999). The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 15(4): 407-414.
Nylander, J.A.A. (2004). MrModeltest v2. Program distributed by the author. Uppsala: Evolutionary Biology Centre, University of Uppsala.
Sikes, D.S. \& Lewis, P.O. (2001). PAUPRat beta software, ver. 1: PAUP* Implementation of the Parsimony Ratchet. Computer program distributed by the authors. Storrs, USA: Department of Ecology and Evolutionary Biology, University of Connecticut.
Swofford, D.L. (2002). PAUP*: Phylogenetic Analysis Using Parsimony (*and other methods), ver. 4. Sunderland, Massachusetts: Sinauer.
Taberlet, P., Gielly, L., Pautou, G. \& Bouvet, J. (1991). Universal primers for amplification of three non-coding regions of chloroplast DNA. Pl. Molec. Biol. 17(5): 1105-1109.
Vu, N.L., Pham, H.N., Nguyen, T.V. \& Luu, H.T. (2015). Billolivia tichii (Gesneriaceae), a new species from Vietnam. Phytotaxa 219(2): 190-194.
Wang, W.T. (1981). Notulae de Gesneriaceis Sinensibus (II). Bull. Bot. Res., Harbin 1(4): 3575.

Wang, W.T. (1985). A revision of the genus Chirita (Gesneriaceae) in China (II). Bull. Bot. Res. 5(3): 37-86.
Wang, W.T. \& Li, Z.Y. (1992). Genus novum Gesneriacearum e Vietnam. Acta Phytotax. Sin. 30(4): 356-361.
Wang, W.T., Pan, K.Y., Zhang, Z.Y. \& Li, Z.Y. (1990). Gesneriaceae. In: Wang, W.T. (ed) Flora Reipublicae Popularis Sinicae 69: 125-581. Beijing: Science Press.
Wang, W.T., Pan, K.Y., Li, Z.Y, Weitzman, A.L. \& Skog, L.E. (1998). Gesneriaceae. In: Wu, Z.Y. \& Raven, P.H. (eds) Flora of China 18: 244-401. Beijing, China: Science Press and St. Louis, Missouri, USA: Missouri Botanical Garden Press.
Weber, A., Middleton, D.J., Forrest, A., Kiew, R., Lim, C.L., Rafidah, A.R., Sontag, S., Triboun, P., Wei, Y.G., Yao, T.L. \& Möller, M. (2011). Molecular systematics and remodelling of Chirita and associated genera (Gesneriaceae). Taxon 60(3): 767-790.
Weber, A., Clark, J.L. \& Möller, M. (2013). A new formal classification of Gesneriaceae. Selbyana 31(2): 68-94.
Wood, D. (1974). A revision of Chirita (Gesneriaceae). Notes Roy. Bot. Gard. Edinburgh 33(1): 123-205.
WWF (2015). Greater Annamites Ecoregion. World Wide Fund for Nature. http://wwf.panda. org/what_we_do/where_we_work/project/projects_in_depth/greater_annamites_ ecoregion/ (accessed on 15 Dec. 2015).
Table 1. List of the 132 Gesneriaceae samples of tribe Trichosporeae included in the phylogenetic analysis, including voucher number, deposition, origin and GenBank accession numbers for trnL-F and ITS respectively.

Taxon	Voucher number	$\underset{\text { in }}{\text { Deposited }}$	Origin	$t r n \mathrm{~L}-\mathrm{F}$	ITS or ITS1 / ITS2
Aeschynanthus bracteatus Wall. ex A.DC.	Wang, Y.Z. 991113	PE	China, Yunnan, Xichou county	FJ501501	-
Aeschynanthus bracteatus Wall. ex A.DC.	Cherry, R. 123 [Cult. RBGE 19970165]	E	Vietnam, Lao Cai	-	AF349203/ AF349284
Aeschynanthus lancilimbus W.T.Wang	Wang, Y.Z. S-10868	PE	China, unknown locality	FJ501499	HQ632992
Aeschynanthus micranthus C.B.Clarke	$\begin{gathered} \text { Möller, M. } M . \& Q i, Y . D . M M O \\ O I-79 \end{gathered}$	$\begin{aligned} & \mathrm{E}, \mathrm{PE}, \\ & \text { WU } \end{aligned}$	China, Yunnan, Hekou county	FJ501500	-
Aeschynanthus micranthus C.B.Clarke	Reid, A. \& Fernie, J. 004 [Cult. RBGE 19951561]	E	China, Yunnan, Xishuangbanna Dai Aut. Pref.	-	AF349218 / AF349299
Aeschynanthus rhododendron Ridl.	Woods, P. 600 [Cult. RBGE 19680624]	E	Malaysia, Genting Highlands	HQ632895	FJ501333
Aeschynanthus roseoflorus Mendum	Argent, G. 87/14	E	Indonesia, Seram	HQ632896	HQ632993
Agalmyla biflora (Elmer) Hilliard \& B.L.Burtt	RBGE-PNH1998 25435 [Cult. RBGE 19980287],	E	Philippines, Palawan, Near summit of Cleopatra Needle	FJ501541	-
Agalmyla biflora (Elmer) Hilliard \& B.L.Burtt	RBGE-PNH1998-25517 [Cult. RBGE 19980292]	E	Philippines, Palawan, near Thumb Peak	-	FJ501361
 B.L.Burtt	RBGE-PNHE 199912	E	Philippines, Leyte Island	HQ632891	HQ632988
Agalmyla clarkei (Elmer) B.L.Burtt	RBGE-PNH1999(P99) 13 [Cult. RBGE 19991911]	E	Philippines, Leyte Island, Mt. Lobi	FJ501540	-
Agalmyla clarkei (Elmer) B.L.Burtt	RBGE-PNH1997 IS26 [Cult. RBGE 19972530A]	E	Philippines, Luzon, Barangay Penicuason	-	FJ501360

Agalmyla glabra (Merr.) Hilliard \& B.L.Burtt	RBGE-PNHE 199928	E	Philippines, Camiguin Island	HQ632892	HQ632989
 B.L.Burtt	Smith \& Galloway 261	E	Indonesia, Sulawesi, Mt. Rantemario	HQ632893	HQ632990
Agalmyla sojoliana Hilliard \& B.L.Burtt	Smith \& Galloway 321	E	Indonesia, Sulawesi, Mt. Sojol	HQ632894	HQ632991
Allocheilos guangxiensis H.Q.Wen, Y.G.Wei \& S.H.Zhong	Wei, Y.G. 06-02	IBK	China, Guangxi, Yongfu county	HQ632897	HQ632994
Allostigma guangxiense W.T.Wang	Möller, M. \& Wei, Y.G. MMO 05-755	E, IBK	China, Guangxi, Longzhou county	HQ632880	HQ632977
Anna mollifolia (W.T.Wang) W.T.Wang \& K.Y.Pan	$\underset{\substack{\text { Möller, M. } \\ 01-146}}{\&} \text { Qi, Y.D. MMO }$	E, PE, WU	China, Guangxi, Napo county	FJ501543	$\begin{aligned} & \text { AF055050 } \\ & \text { AF055051 } \end{aligned}$
Anna ophiorrhizoides (Hemsl.) B.L.Burtt \& R.A.Davidson	Möller, M. \& Wei, Y.G. MMO 08-1280	E, IBK	China, Sichuan, Emei Shan	HQ632937	HQ633034
Anna submontana Pellegr.	$\underset{\substack{\text { Möller }, ~ M . ~ \\ 01-85}}{ } \& Q i, Y . D . M M O$	$\mathrm{E}, \mathrm{PE},$ WU	China, Yunnan, Maguan county	FJ501542	FJ501362
Billolivia longipetiolata D.J.Middleton \& Luu	Luu Hong Truong \& Pham Huu Nhan BD624	E	Vietnam, Lam Dong Province, Bidoup Nui Ba National Park	KU985108	KU985112
Billolivia minutiflora D.J.Middleton \& H.Atkins	Ly Ngoc Sam LY498	E	Vietnam, Lam Dong Province, Da Hoai District	KU985109	KU985113
Billolivia vietnamensis D.J.Middleton \& Luu	Luu Hong Truong \& Nguyen Quoc Dat BGM1601	E	Vietnam, Binh Phuoc, Bu Gia Map National Park	KU985110	KU985114
Billolivia violacea D.J.Middleton \& H.Atkins	Middleton, D.J. 4210	E	Vietnam, Lam Dong, Duc Trong District	KU985111	KU985115
Briggsiopsis delavayi (Franch.) K.Y.Pan	Fang, W. 1	IBK	China, Chongqing, Nanchuan county	HQ632879	HQ632976
Cathayanthe biflora Chun	Möller, M. \& Wei, Y.G. MMO 08-1327	E, IBK	China, Hainan, Tongshi county	HQ632899	HQ632996

Chayamaritia banksiae D.J.Middleton	Middleton, D.J. 5220 (= Newman, M. et al. LAO1428)	E	Laos, Khammouan, Nakai Nam Theun	KP325433	KP325426
Chayamaritia smitinandii (B.L.Burtt) D.J.Middleton \& Mich.Möller	Middleton, D.J. et al. 5632	E	Thailand, Nakhon Nayok, Khao Yai NP	KP325431	KP325424
Chayamaritia smitinandii (B.L.Burtt) D.J.Middleton \& Mich.Möller	Middleton, D.J. et al. 5652	E	Thailand, Nakhon Nayok, Khao Yai NP	KP325432	KP325425
Codonoboea albomarginata (Hemsl.) Kiew	Weber, A. 840805-1/12	WU	Malaysia, Perak, Maxwell's Hill	AJ492297	HQ632961
Codonoboea codonion (Kiew) C.L.Lim	Lim, C.L. FRI 65040	KEP	Malaysia, Terengganu, Jerangau F.R.	JF912538	JF912565
Codonoboea corrugata (Mendum) D.J.Middleton	RBGE-PNHE 1998 s.n.	E	Philippines, Palawan	FJ501484	HQ632962
Codonoboea floribunda (M.R.Hend.) C.L.Lim	Lim, C.L. FRI 64971	KEP	Malaysia, Terengganu, Sg. Nipah F.R.	JF912539	JF912566
Codonoboea malayana (Hook.f.) Kiew	Kiew, R. \& Middleton. D.J. FRI 57513	KEP	Malaysia, Pahang, Fraser's Hill	JF912541	JF912568
Codonoboea venusta (Ridl.) Kiew	Kiew, R. RK 5430	KEP	Malaysia, Pahang, Fraser's Hill	JF912545	JF912572
Conandron ramondioides Siebold $\&$ Zucc.	Takeda Herbal Garden Kyoto [Cult. RBGE 19691267]	E	Japan, unknown locality	FJ501515	FJ501340
Cyrtandra cumingii C.B.Clarke	Kokubugata, G. 11134	TNS	Japan, Ruykyus, Iriomote Island	HQ632905	HQ633002
Cyrtandra cupulata Ridl.	Weber, A. 840806-2/4	WU	Malaysia, Perak, Maxwell's Hill	FJ501532	$\begin{aligned} & \text { AY818826 } \\ & \text { AY818861 } \end{aligned}$
Cyrtandra glabra Banks ex C.F.Gaertn.	Cronk, Q.C.B. \& Percy, D. T91	E	French Polynesia, Society Is., Tahiti, Mt. Tearoa Col	AY423136	FJ501353

Chayamaritia banksiae
Chayamaritia smitinandii
(B.L.Burtt) D.J.Middleton \&
Mich.Möller
Chayamaritia sm
(B.L.Burtt) D.J.Middleton \&
Mich.Möller
Codonoboea albomarginata
(Hemsl.) Kiew
Codonoboea codonion (Kiew)
C.L.Lim
Codonoboea corrugata
(Mendum) D.J.Middleton
Codonoboea floribunda
Codonoboea malayana (Hook.f.)
Kiew
Codonoboea venusta (Ridl.)
Conandron ramondioides Siebold
$\&$ Zucc.
Cyrtandra cumingii C.B.Clarke
Cyrtandra cupulata Ridl.
Cyrtandra glabra Banks ex C.F.Gaertn.

PTBG	Federated States of Micronesia, Caroline Islands	HQ632907	-
PTBG	Federated States of Micronesia, Caroline Islands	-	EU919945
WU	USA, Hawaii, Kauai	FJ501531	EU919939
WU	Malaysia, Negeri Sembilan, Kuala Pilah distr., Jeram Toi	FJ501530	FJ501354
E, IBK	China, Guangxi, Fang Cheng	KU990886	KU990890
IBK	China, unknown locality	JX506817	JX506925
E IBK	China, Guangxi, He Zhou city	KU990885	KU990889
E	Vietnam, Hon Ba Vietnam, Vinh Phu	KU990888	KU990892
E	Malaysia, Perak, Bujong Melaka, Ipoh.	FJ501513	DQ912671
E	Malaysia, Perlis, Kedah Peak	AJ492293	DQ912669

Cyrtandra kusaimontana Hosok.	NTBG 960873
Cyrtandra kusaimontana Hosok.	Flynn 5995
Cyrtandra longifolia (Wawra) Hillebr. ex C.B.Clarke	Kiehn, M. 920825-2/1 [Cult. HBV]
Cyrtandra pendula Blume	Weber, A. \& Anthonysamy 860730-1/2 [Cult. HBV]
Deinostigma cicatricosa (W.T.Wang) D.J.Middleton \& Mich.Möller	Möller, M. \& Wei, Y.G. MMO 07-1148 [KN173]
Deinostigma cicatricosa (W.T.Wang) D.J.Middleton \& Mich.Möller	Xu, W.-B. s.n. [XWB]
Deinostigma cyrtocarpa (D.Fang \& L.Zeng) Mich.Möller \& H.J.Atkins	Möller, M. \& Wei, Y.G. ММО 06-908
Deinostigma poilanei (Pellegr.) W.T.Wang \& Z.Y.Li	Rybková, R. HB 222
Deinostigma tamiana (B.L.Burtt) D.J.Middleton \& H.J.Atkins	Soviet-Vietnam Expedition (Liberec B.G., Czech Republic \& St. Petersburg B.G) 01/114 [Cult. RBGE 19973431/19981743]
Didymocarpus antirrhinoides A.Weber	Jong, K. 9009 [Cult. RBGE 19650167]
Didymocarpus citrinus Ridl.	Davis, P. 69437 [Cult. RBGE 19830510]

AJ492294 DQ912673
DQ912688 DQ912687 HQ633001
HQ632971

HQ632972
AF055052
AF055053
FJ501363

HQ632998
HQ632999
HQ633000
FJ501356
FJ501355

FJ501514
FJ501512 HQ632904
HQ632875

HQ632876
FJ501545

FJ501544

HQ632900
HQ632901
HQ632902
HQ632903
FJ501534
FJ501533

WU	Malaysia, Perak, Maxwell's Hill
E	Bhutan, Deothang District
$\begin{aligned} & \text { E, PE, } \\ & \text { WU } \end{aligned}$	China, Yunnan, Binchuan county
E	Nepal, Sundarijal
E, IBK	China, Guangdong, Fengkai county
E, IBK	China, Guangdong, Longmen county
$\begin{aligned} & \text { E, PE, } \\ & \text { WU } \end{aligned}$	China, Yunnan, Xichou county
PE	China, Chongqing, Nanchuan county
IBK	China, Guangdong, Xinyi county
E	China, Guangxi, Guiping county
E, IBK	China, Guangxi, Wuming county
IBK	China, Guangxi, Rongshui county, Sirong town
E	unknown origin
KUN	China, unknown locality
E, IBK	China, Sichuan, Emei Sha

Weber, A. 860816-2/1
Noltie, H., Pradhan, Sherub \& Wangdi 193
Möller, M. \& Qi, Y.D. MMO 01-156
Adhikari, B. SB 9
Möller, M. \& Wei, Y.G. MMO 08-1310
Möller, M. \& Wei, Y.G. MMO 08-1335
Möller, M. \& Qi, Y.D. MMO 01-122
Wang, Y.Z. $11315 B$
Wei, Y.G. 07-708
Möller, M. \& Wei, Y.G. ММО 06-881
Möller, M. \& Wei, Y.G. MМО 07-1136
Wei, Y.G. 06-208
Voucher from Cult. RBGE 19951207
Z.J.Gu, Z.J. G3
Möller, M. MMO 08-1271

Didymocarpus cordatus Wall. ex
A.DC.

C.B.Clarke

Didymocarpus stenanthos
C.B.Clarke
Didymocarpus villosus D.Don
Didymostigma obtusum
(C.B.Clarke) W.T.Wang Didymostignta trichanthera
C.X.Ye \& X.G.Shi

Glabrella longipes (Hemsl.
ex Oliv.) Mich.Möller \& W.H.Chen

Glabrella mihieri (Franch.) Mich.
Möller \& W.H.Chen
Gyrocheilos chorisepalus
W.T.Wang var. synsepalus
W.T.Wang

Gyrocheilos retrotrichus W.T.Wang

Gyrocheilos retrotrichus
W.T.Wang var. oligolobus
W.T.Wang

Heniboea bicornuta (Hayata)
Ohwi
Hemiboea cavaleriei H.Lév.
Hemiboea cavaleriei H.Lev. Hemiboea omeiensis W.T.Wang

Hemiboea ovalifolia (W.T.Wang) A.Weber \& Mich.Möller	B.M.Nong, B.M. 06-I	IBK	China, Guangxi, Napo county, Nonghua	HQ632883	HQ632980
Hemiboea purpureotincta (W.T.Wang) A.Weber \& Mich.Möller	Möller, M. \& Wei, Y.G. MMO 06-813	E, IBK	China, Guangxi, Tian Ling county	HQ632884	HQ632981
Hemiboea subcapitata C.B.Clarke	Wang, Y.Z. 11306	PE	China, Chongqing, Chengkou county	FJ501535	FJ501357
Henckelia anachoreta (Hance) D.J.Middleton \& Mich.Möller	Middleton, D.J. et al. 4480	E	Thailand, Chiang Mai, Doi Suthep	HQ632870	HQ632966
Henckelia bifolia (D.Don) A.Dietr.	Bhaskar Adhikari L2B6	E	Nepal, Chyalding, near Sybrubesi	JF912522	JF912549
Henckelia dielsii (Borza) D.J.Middleton \& Mich.Möller	Möller, M. et al. MMO 081211	E, KUN	China, Yunnan, Jingdong county	HQ632871	HQ632967
Henckelia floccosa (Thwaites) A.Weber \& B.L.Burtt	Jang, C.G. s.n. [G 157]	WU	Sri Lanka, unknown locality	FJ501486	HQ632964
Henckelia grandifolia A.Dietr.	Möller, M. et al. MMO 081222	E, KUN	China, Yunnan, Jingdong county	JF912527	JF912554
Henckelia incana (Vahl) Spreng.	Vogel, S. SVG s.n.	E	India, Nilghiri mts	HQ632869	HQ632965
Henckelia pumila (D.Don) A.Dietr.	Gaoligong Shan Expedition 19967938 [Cult. RBGE 19962271]	E	China, Yunnan, Nujiang Lisu Aut. Pref., Fugong county	FJ501491	FJ501327
Henckelia urticifolia (D.Don) A.Dietr.	EMAK 109 H (EdinburghMakalu Expedition 1991)	E	Nepal, Sankhuwasabha distr., Arun valley	FJ501492	FJ501328
Hexatheca fulva C.B.Clarke	Sang, J. \& Geri, C. S99358	E	Malaysia, Sarawak, Bau, Fairy Cave	HQ632873	HQ632969
Liebigia barbata (Jack) D.J.Middleton	Woods, P. 1071 (C6570)	E	Indonesia, Java, forest above Cibodas Garden	FJ501538	JF501359
Loxostigma fimbrisepalum K.Y.Pan	Wang, Y.Z. 991005	PE	China, Yunnan, Jinping county	FJ501507	KU985104

HQ633006
FJ501338 HQ633005
FJ501332
AF349152／
AF349233
FJ501331
HQ632974
HQ632968
FJ501325
JF912551
FJ501324
JF912521 HQ632910

AY423137
FJ501498
FJ501495
FJ501497
FJ501496
HQ632872
∞
∞
$\stackrel{\infty}{+}$
$\stackrel{n}{\infty}$
$\stackrel{y}{c}$

China，Guangxi，Napo
\quad county
Nepal，Yamphudin
China，Yunnan
China，unknown locality
China，Yunnan，Nujiang
Lisu Aut．Pref．，

Malaysia，unknown
locality
China，Guangxi，Longzhou county
China，unknown locality
Malaysia，Kelantan，
Gunung Reng
IBK
M～川 川 E，PE，
WU ～10
IBK
3
$\stackrel{\sim}{n}$
山
$\stackrel{\theta}{y}$
Loxostigma glabrifolium D．Fang
\＆K．Y．Pan
Loxostigma griffithii（Wight）
C．B．Clarke
Loxostigma sp． Expedition（1989）
940 ［Cult．RBGE
$19892473 \mathrm{~A}]$
Gaoligong Shan Expedition
19967668 Wang，Y．Z．S－10669
Gaoligong Shan Expedition
19967925 ［Cult．RBGE
$19962269 \mathrm{~A}]$
Möller，M．\＆Qi，Y．D．MMO
O1－101 Wang，Y．Z．S－10669
Gaoligong Shan Expedition
19967925 ［Cult．RBGE
$19962269 \mathrm{~A}]$
Möller，M．\＆Qi，Y．D．MMO
01－101 Wang，Y．Z．S－10669
Gaoligong Shan Expedition
19967925 ［Cult．RBGE
$19962269 \mathrm{~A}]$
Möller，M．\＆Qi，Y．D．MMO
01－101 Wang，Y．Z．S－10669
Gaoligong Shan Expedition
19967925 ［Cult．RBGE
$19962269 \mathrm{~A}]$
Möller，M．\＆Qi，Y．D．MMO
01－101
Möller，M．\＆Qi，Y．D．MMO

Wei，Y．G．07－702
ex HB München－
Nymphenburg；M．Kiehn
［Cult．HBV GS－96－02］ Möller M \＆Wei，YG Möller，M．\＆Wei，Y．G．
MMO 05－753 Voucher from Cult．RBGE
20000897
Rafidah，A．R．FRI 64328
Wei，Y．G． 709
Kew／Edinburgh Lysionotus chingii Chun ex
W．T．Wang
Lysionotus forrestii W．W．Sm．
Lysionotus pauciflorus Maxim．
Lysionotus petelotii Pellegr．
Metapetrocosmea peltata（Merr．
sue M ： \mathcal{M}（unчつ \mathcal{P} Microchirita caliginosa
（C．B．Clarke）Yin Z．Wang
Microchirita aff．hamosa（R．Br．）
Yin Z．Wang
Microchirita lavandulacea
（Stapf）Yin Z．Wang Microchirita sericea（Ridl．）
A．Weber \＆Rafidah

E	Thailand, Nakhon Sawan, Wat Thep Satha Phon	JF912531	JF912558
KEP	Malaysia, Kedah, P. Langkawi	JF912533	JF912560
E, IBK	China, Guangxi, Wuming county	HQ632919	HQ633015
E, KUN	China, Yunnan, Jing Dong county	HQ632929	HQ633025
E, KUN	China, Guangdong, Zhao Qin county	JF697584	JF697572
E	China, Guangxi, Dayaoshan, Jinxiu county	HQ632914	HQ633010
E, KUN	China, Hainan, Sichuan, Pan Zhi Hua county	HQ632921	HQ633017
KUN	China, Yunnan, Jingdong county	HQ632934	HQ633030
China, Yunnan, Shilin	HQ632928	HQ633024	
E, IBK	China, Guangxi, Rong An county	HQ632927	HQ633023
E, IBK	China, Guangxi,Shanjiang county	HQ632926	HQ633022
E, IBK	China, Guangxi, Yangshuo county	HQ632943	HQ633040
China, Guangdong,	FJ501537	FJ501358	

Middleton, D.J. et al. 4809 icrochirita tubulosa (Craib)
A.Weber \& D.J.Middleton A.Weber \& D.J.Middleton Microchirita viola (Ridl.) A.Weber \& Rafidah

Oreocharis argyreia Chun ex
K.Y.Pan

Oreocharis begoniifolia (H.W.Li) Mich.Möller \& A.Weber

Oreocharis benthamii C.B.Clarke
Oreocharis cotinifolia
(W.T.Wang) Mich.Möller \&
A.Weber

Oreocharis craibii Mich.Möller
\& A.Weber
Möller, M. et al. MMO 08-
1221
Möller, M. et al. MMO 08-
1317
Chuan, Q.M. 01
Möller, M. \& Gao, L.M.
\quad MMO 07-1072
Wei, Y.G. 07-700
Möller, M. et al. MMO 081239

Shui, Y.M. 65214
Möller, M. \& Wei, Y.G.
Möller, M. \& Wei, Y.G.
Möller, M. \& Wei, Y.G.
MMO 06-913

Möller, M. \& Wei, Y.G.
MMO 06-784
Möller, M. \& Wei, Y.G.
MMO 08-1342
Möller, M. \& Wei, Y.G.
MMO 07-1077
Möller, M. \& Wei, Y.G.
MMO 06-865
Fang, W. 2010-02
Shui, Y.M. et al. 82661
Voucher from Cult. RBGE
19715592
Sino-Amer. Bot.
Expedition, no. 1574
(US 56119)
Smithsonian Institute 78-057
[Cult. RBGE 19933232]
Gu, Z.J. 99-1104
Godfrey, T.C. 369 [Cult.
RBGE 19791050]
B. Pan, B. s.n.
L.Averyanov, L. 1987 [Cult.
RBGE 19941913]
Petrocodon ferrugineus Y.G.Wei
Petrocodon hancei (Hemsl.)
A.Weber \& Mich.Möller
Petrocodon hechiensis (Y.G.Wei,
Yan Liu \& F.Wen) Y.G.Wei \&
Mich.Möller
Petrocodon integrifolius (D.Fang
\& L.Zeng) A.Weber \& Mich.
Möller
Petrocodon scopulorum (Chun)
Yin Z.Wang
Petrocodon viridescens
W.H.Chen, Mich.Möller \&
Y.M.Shui
Petrocosmea kerrii Craib
Petrocosmea minor Hemsl.

Petrocosmea nervosa Craib
Petrocosmea sericea C.Y.Wu ex
H.W.Li
Primulina dryas (Dunn) Mich.
Möller \& A.Weber
Primulina fimbrisepala (Hand.-
Mazz.) Yin Z.Wang
Primulina gemella (D.Wood) Yin
Z.Wang

PE	China, Guangxi	DQ872804	DQ872841
E, IBK	China, Guangxi, Yang Shuo county	HQ632948	HQ633045
IBK	China, Guangxi	JX506795	JX506903
IBK	China, Guangxi	JX506804	JX506912
PE	China, Guangxi	DQ872810	DQ872834
E	Vietnam, unknown locality	AJ492290	FJ501347
IBK	China, Guangxi, Luocheng county, Xiaochangan town	HQ632949	HQ633046
PE	China, Guangxi	DQ872815	DQ872828
PE	China, Guangxi	DQ872814	DQ872829
US	China, Guangxi, Rongshui Xian	FJ501526	FJ501349
E, IBK	China, Guangxi, Duan county	KU985103	KU985107

Pan, B. s.n.
Primulina hochiensis (C.C.Huang $\& ~ X . X . C h e n) ~ M i c h . M o ̈ l l e r ~ \& ~$
A.Weber

Primulina liguliformis
(W.T.Wang) Mich.Möller \&
A.Weber
(W.T.Wang) Mich.Möller
A.Weber

Primulina glandulosa (D.Fang
et al.) Yin Z.Wang var.
yangshuoensis (F.Wen,
Q.X.Zhang \& Yue Wang)
Mich.Möller \& A.Weber

Primulina hochiensis (C.C.H
s.n.

Pan, B. s.n.
Li, J.M. 11121

A.Takhtajan, A. \& Aruzytov,
N. 1975 [Cult. RBGE
19941915]
Wei, Y.G. MMO 07-1163
Wei, Y.G. MMO 07-1163
Li, J.M. 067134
Wang, Y.Z. 067134
Expedition Beijing 896526 (US 294374)

Möller, M. \& Wei, Y.G.
Primulina glandulosa (D.Fang et al.) Yin Z.Wang

Primulina linearifolia
(W.T.Wang) Yin Z.Wang

Primulina longgangensis
(W.T.Wang) Yin Z.Wang

Primulina luochengensis (Yan Liu \& W.B.Xu) Mich.Möller
\& A. Weber
\& A. Weber
Primulina minutinacaculata
(D.Fang et W.T.Wang) Yin
Z.Wang

Primulina ophiopogoides
(D.Fang et W.T.Wang) Yin
Z. Wang

Primulina pinnata (W.T.Wang)
Yin Z.Wang
Primulina renifolia (D.Fang \& D.H.Qin) Yin Z.Wang
FJ501352
DQ872831
HQ633003
HQ633004
HQ632973
HQ633032
HQ633031
HQ633033
AJ492300
DQ872812
HQ632908
HQ632909
HQ632877
HQ632935
FJ501520
HQ632936

China, Guangdong, Lian
River

China, Guangxi
China, Guangxi, Mashan
county
China, Guangxi, Jingxi
county
China, Guangxi, Shangsi
county
Malaysia, Kedah, Gunung
Inas
Malaysia, Pahang, side
ridge of Gunung
Bunga Buah
Malaysia, Perak,
Maxwell's Hill

Xie, Q.J. \& Ye, C.X. s.n.
[Cult. RBGE 19951540]
Li, J.M. 11630

Möller, M. \& Wei, Y.G.
MMO 06-798
Möller, M. \& Wei, Y.G.
MMO 05-751
Möller, M. \& Wei, Y.G.
MMO 07-1141
Mohd.Hairul, M.A. FRI
60092
Weber, A. 870420-2/4
Yao, T.L. FRI 65405
Primulina tabacum Hance
Primulina wentsaii (D.Fang, et
L.Zeng0 Yin Z. Wang
Pseudochirita guangxiensis
(S.Z.Huang) W.T.Wang
Pseudochirita guangxiensis
(S.Z.Huang) W.T.Wang var.
glauca Y.G.Wei \& Yan Liu
Raphiocarpus sinicus Chun
Ridleyandra petiolata (Ridl.)
A.Weber
Ridleyandra porphyrantha
(A.Weber \& Kiew) A.Weber
Ridleyandra quercifolia (Ridl.)
A.Weber

