46. The Marine Fauna of British East Africa and Zanzibar, from Collections made by Cyril Crossland, M.A., B.Sc., F.Z.S., in the Years 1901-1902. BryozoaCyclostomata, Ctenostomata, and Endoprocta. By Arthur Wh. Waters, F.L.S., F.G.S.*

$$
\text { [Received May 19, } 1914 \text { : Read June 9, 1914.] }
$$

(Plates I.-IV.†\& Text-figure 1.)
Index.

	P
Geographical Distribution.	832
Systematic:	
Crisia inflata, sp. n .	839
Crisia circinata, sp. n .	81
Entalophora wasinensis, nom. nov.	840
Mimosella bigeminata, sp. 1.	85
Zoobotryon pellucidum, rosette-plates	848

The present paper continues the series on the collections made by Mr. Crossland in the tropics. The first was on Tubucellaria, published in the Journal of the Limnean Society, vol. xxx. 1907 ; then two parts in the 'Reports of the Sudanese Red Sea,' ibid. vol. xxxi. 1909, and vol. xxxi. 1910 ; and the Cheilostomata from British East Africa and Zanzibar in the 'Proceedings' of the Zoological Society, 1913.

The bibliographical references are pretty full in order that, so far as the tropics are concerned, they may be used as a continuation of Miss Jelly's Catalogue.

It should not be forgotten that all the specimens dealt with in this paper are from but a very slight depth (up to 10 faths.), so that but few Cyclostomata would be expected, since they mostly occur at considerable depths.

Points of Special Interest.

The ovicells of Entalophora, and of Idmonea radians Lam., have been studied full of embryos, and the oœciostome has been cut through. In Idmonea radians the ovicells form lobes between each series of zoœcia. The ovicells must be more used in classification, and the primary zoœcia and the early stages must be examined.

The rosette-plates of Reichert in Zoobotryon, instead of having a number of pores round a central pore, as described, have a central pore and $8-9$ cells round the pore. The mass of cells in the neighbourhood of the pore are dealt with.

27 species or varieties are mentioned in this communication,

[^0]+ For explanation of the l'lates see 1.857 .
and 76 were dencribed in the previons one, making 103 in all: of these $3 \bar{i}$ are known from the Atlantic, 22 are British, 31 Merliteravean, 37 are known from the Indian Ocean, 14 from S. Africa, and 51 from Australia.

Table of Distribution.

Levinsen * , pootes Norman with regard to zowial and zoøecial characters, who says: "Why also in all instances is the ultimate growth and form of the zoarium to be excluded from generic characters among certain families of the C'heilostomata, and at the same time to he recognised among the Cyclostomata and Ctenostomata, and even some other groups of Cheilostomata?"

Few characters have been available in the Cyclostomata, and those mostly zoarial ones, so that the classification of the group is still in a somewhat hopeless condition, whereas in the Cheilostomata very many characters are now used, and the classification is gradually becoming more natmal. It is therefore to the more

[^1]highly differentiated Cheilostomata that we must at present look for guidance, rather than to the simpler Cyclostomata.

There are, however, some characters in the Cyclostomata, which when more used will help to show which forms are nearly related. Smitt showed that the ovicells furnisher important characters, and on several occasions 1 have pointed out the importance of the ovicells, and of what I called the peristome of the ovicellular opening, saying in 1888* that "the position and nature of the opening is most important, often more so than the shape of the ovicell." Harmer has confirmed what I said, and in several rery valuable papers has gone into detail in some genera, and has named the pasage by which the larva escapes the oceciostome, while the extermal orifice is the oreciopore, which terms are generally accepted, though muless new terms me absolutely necessary they are always to be regretted, as every hranch of science is now ovelloaded with names. Also the size of the embryo, and of the zocecial aperture, as well as the position and nature of the closmes, give specitic or generic chanacters.

The primary zoocium and the growth of the younger part of the zoarium must receive much more attention, in fact up to the present in recent forms it has received hardly any: for example, in Entalophora proboscidea, E. deflexa Conch, and Filisparsa tubulosa there is a Stomatopora-like growth often spreading for a consiflerable distance over the supporting material, before the zoarium becomes erect, whereas in what has been considered to he Entalophora ragosa d'Orb., from Naples, there is a Diastoporagrowth often covering a considerable piece of the stone or shell npon which it grows before the erect cylindrical zoarium is formed. It is elsewhere shown that other characters, namely the lamina and ovicells, prove that it belongs to the Diastoporidae.

To return to the more highly differentiated Cheilostomata: in rarions genera the zoarimm may be either adnate, erect, uni- or hilaminate, or even articulated. For example, Lepralia, Schizoporella, Celleporidæ, all occur ahate, erect, uni-and bilaminate, while Thalamoporella may be milaminate, hilaminate, adnate or erect and articulated; Cellaridæ in recent forms are usually articnlate, except in the younger branches, but in fossils frequently there is no articulation. Now in none of these cases is there any material difference in the zoocimm according to the way in which the zoarimm grows.

It is sometimes forgotten that all this only deals with the position of the zocecia, or, as Levinsen would say, the "antozooids," and this has proved of quite secondary value in classification ; hat this does not mean that characters fmomshed ly the other "zooids" such as avicularia, stalks, stolons, madicles etc., which also canse differences in the form of the zoarimm, may not furnish valuable characters.

No doubt the Catenicellide are derived fiom unarticulaterl

[^2] wh. xx. p. 276 .
forms, but evidently this is a long way back, so that now articulation is apparently a generic character; but there must have been a time when closely related forms were in some cases continuous, in others articulated, but now both zoarial and zoœcial characters indicate a group of Catenicellidæ. In Cellaridæ and Thalamoporella the articnlation is more recent, and should not be made a generic character.

Examining the Cyclostomata in the same way, we find to a certain extent parallels with the Cheilostomata : Diastopora, or perhaps we should say Diastoporide, occurs adnate, but also bilaminate in such forms as D. intricaria, Mesenteripora; and some forms now placed with E'ntalophora, such as E. regularis MacG., belong to this family. Even the D. obelia division, which it has been proposed to raise to a genus Diplopora*, has adnate forms, as well as the erect fossil Hiastopora brendolensis Waters \dagger, with tubules between the zorecia. A Stomatoporct-like growth may become erect, and too much importance has been attached to whether a form is ahate or erect. There are adnate forms with Heteroporidan structure, and some bilaminate as Farospira.

The ovicells together with the oreciostomes etc. are, as stated, going to assist us to trace relationship, but to what extent we camnot yet say, as on knowlerlge is in most families very incomplete, often fragmentary or absent. However, although only snfficient to show the direction in which work is wanted, it may be useful to put together what 1 have gatherell from my own collection and from published accounts of recent forms.

In Crisiał the ovicells of most species are known, and they with the oreciostomes fumish most useful characters in determination. In the species examined there are 89 tentacles.

In Idmonea, as at present monderstoorl, there are some important and rather puzzling differences in the ovicells. There is, Finst, the I. readians, mentioned in this paper, also I. cutlantica Forbes, I. concava Reuss, and I. parasitica Busk, in which the owciostome occurs on one side, usnally on the second of the series enveloperl by the ovicell, and by the first or second zocecimm counting from the median line; the tube curves over and turns downwards (Pl. II. fig. 6, \mathscr{e}_{0}). In these the ovicell sprearls across the anterior surface.

Second. There may he merely an anterior inflation, nsually near to a bifurcation, with a central oceciostome, as I. interjuncta MacG.

Third. I have a fragment of an Idmouea, probably australis

[^3]Mack., in which the ovicell spreads over three or four series on one side only of the median line.

Fourth. There is the very curious ovicell standing erect and embracing the zoœcia of a series, which I described * as occurring in I. meneghini Hell., but from an examination of more material I came to the conclusion that it was I. triforis Hell., and a co-type has confirmed this conclusion. As described, there was little to distinguish 1 . meneghini Hell. from I. triforis Hell. except size, so that without a fair amount of material they were not readily distinguished.

The zoocial aperture of $I d m o n e a$ varies from $0.06-0.2 \mathrm{~mm}$.
The so-called 1 . irregularis Meneghini has the ovicell dorsal, and must be removed to Tervia. It has 13 tentacles.

In Tubulipora there is an anterior ovicell spreading among many zoœcia, with the oceciostome usually close up to a zocecial tube. Zoœcial aperture $0.07-0.18 \mathrm{~mm}$. Tentacles $11-12$. The colony is, where attached, often provided with small projections or even long multitubular radicles, so that the attachment is but slight, whereas in Stomatopora it seems to be very close.

In Filisparsa there is an anterior ovicell. 14 tentacles.
In Entalophora few ovicells have been seen. In the p roboscidera group they are not very large, and are near to several zoœcial tubes without enclosing them. In uasinensis, the species described in this paper, the ovicell is very long and contains a considerable number of embryos. Howerer, under Entalophora many species have been included which have a distinct lamina, and in these the ovicells found are of the Diastopora type, and suggest that they are erect cylindrical Diastopora. Entalophora regularis MacG., and what I called E. rugosa d'Orb., from the Mediterranean, must be removed on this account from Entalophora.

The zoœecial aperture of Entalophora is $0.07-0.19 \mathrm{~mm}$. The number of tentacles is 12-16.

Diastopora. The ovicell is vesicular, as an irregular or subglobular elevation, often involving many zocecia, and sometimes situated tangentially to the colony. The ovicell may spread internally with many arms, as in D. intricaria Smitt†. So far as seen, the oœciostome of Diastopora is a small plain tube, usually rlirected proximally. The zonecial aperture is $0.06-0.11 \mathrm{~mm}$. \ddagger The number of tentacles counted is $10-12$. The ovicells of a very considerable number of fossil Diastoporce have been figured, and the genus was abundant in the Jurassic and Cretaceous periorls, and occurs as Berenicea consimilis Lonsdale, in the Silurian (see fig. in Bassler, "Bry.-Fauna of the Rochester Shale," p. 16, pl. v. figs. 1-5, 1906).

[^4]Diastopora with tubules has been called Diplopora, a name already used for a calcareons alga. Maccilliviay made a genus Diplopora, but finding the name occupied changed it to Diploporella; the name Diplopora has also been given for two or three other things. The group, howerer, occurs incrusting and bilaminate. The family Diastoporidre will probably be found to be more distinctly separated than any of the others.

Hornera. The oricell is a large subglobular, dorsal or somewhat lateral chamber with large pits and a lateral oœciostome, Tentacles, 9 in species examined. The "Hornerce eburnere" Jull. \& Calv. has a most curions anterior ovicell, but I do not see why it is placed with Hormera ; also the Hormera grarieri* Calv. seems to have a somewhat similar ovicell. Zocecial aperture of Hornera $10 \cdot 04-0 \cdot 1: 2 \mathrm{~mm}$.

Discotubigeru (I)efruncia). Tangential ovicell with oneciostome near the distal horder. One specimen has the ovicell the whole way round the periphery. No doubt many species have been placed under Lichenopora.

Stomatopora. Although many stomatoporce have been figmrer and described, but rery few oricells have been seen, and Smitt \dagger waid no species were known with ovicells. In S. dirergens Waters \ddagger, the ovicell is a small round elevation on the anterior surface. In S. (?) sp. from Plymouth the ovicell is at the end of an erect branch as in Supercytis. In S. mrijor Johns., the anterior ovicell has a small plain tube for the oceciostome.

The S. compacta Norm. is Dicustopora, and has the ovicells raised in between the openings of a small number of zoocia, or is tangential, with the oœciostome as in Diastopora. Norman's specimens examinel are now in the British Musemm.

Lichenopora. Ovicell central and spreading between the rays. Oœciostome erect, plain or fumel-shaper ; or a plain horizontal tube low down near the erlge of the ovicell. There may he many oneciostomes, probably indicating several oricells, just as a colony of Diastopora may have a number of ovicells. Smitt mentions eight oœciostomes in L. cerrucaria, and this must have heen a fine specimen, as I have never seen more than six. The zoocial apertures in all recent species measmerl are abont the same size (fiom about $0.06-0.09 \mathrm{~mm}$.).

Defrancia lucernaria Sas and Homopora stellata lave the oricells in between the rays.

Frondipora has the ovicell across the anterior surface of a branch, not much raiser, and the oœeciostome, abont (0.12 mm. wide with the lower edge straight, also is but little raised, and is not attacher to a group of zocecia.

Flosculipora has the ovicell-wall miting from neighboming zorecial bundles.

[^5]Heteropora. The ovicell is maknown in recent species, but Norak* figmes one in a Cretaceous fossil. It is sac-like with a small opening at one end. Tentacles 14 in M. pelliculata Waters.

Supercytis has the ovicell at the end of the erect colony spreading over the whole width. 'The S'upercytis tubigera Busk, of the 'Challenger,' is not related to Supercytis, nor is it correctly fescriber, as the series are not miserial but biserial. It looks more like a T'ubulipora.

Grisulipora. Ocecinstome tube narower than the zonecial tube, without any terminal expansion, There are 10 tentacles.

Crisia dexticulata (Lamaick). (Pl. TV. fig. 5.)
Crisia denticulata Wraters, "Rep. Mar. Biol. of the Sudanese Red Sea, Bry. pt. ii. Cyckost. etc.," Jomrn. Limm. Soc., Zool. vol. xxxi. p. 232, pl. xxir. figs. 1-3, pl. xxy. fig. 11 (1910); and adrd: -

Oshurn, "Bry. of the Woorls Hole Region," Bull. Bur. of Fisheries, vol. xxx. p. 216, pl. xviii. fig. 8 (19]2); "Bry. from Labrador, etc.," Proc. Un. St. Nat. Mus. vol. xliii. p. 276 (1912) ; Guerin-Ganivet, "Bry. de la Région rle Concarneau, etc.," Trav. Sc. du Lab. de Zool, et de Phys. Mar. de Concarneau, vol. iv. p. 19 (1912) ; "Mission Arctiques: Bryozoaires," Soc. d'Océan. dı Golfe de Gascoigne, p. 39 (1913) ; Osbmn, "Bry. of the Tortugas Islands, Florida," Pub. 182, Carnegie Inst. of Washington, p. 185 (1914).

We see that the comections from the stolons to the zorecia, or through the septa of the stolon, in Zoobotryon pellucidum Elur. (p. 849) and other Ctenostomata are much more elaborate than any description had indicated, a number of cells on each side meeting those on the other, and to these groups of cells reach the plasma network, which spreads throngh the stolon and the zonecia. However, in Crisia and other Cyclostomata, I have not fomm a plasma network spreading all throngh the zoæcium, as we know it in Cheilostomata and Ctenostomata, but near the base helow the ceecum there is a small number of threads. The polypide so nearly fills up the zoœcial tube, that there does not seem to be room for much network of plasma.

In Crisia and other Cyclostomata, the mmber of comnecting pores is very considerable, being sitnated generally all along the surfaces, and, as a rule, the zocecium at its proximal end is connected with the zonecia on the two sides, in such a way that it seems impossible to speak of a new zonecium having arisen from any one older zonecium (Pl. 1V. fig. 6). There are but few rells in contact with the pore, in this case apparently two on each side (Pl. IV. fig. 5).

Loc. Add : Arctic; Atlantic, Cape Verde Islands. Wasin, Brit. E. Africa, 10 fath. $(501,516)$.

[^6]Crisia elongata Milne-Edwards. (Pl. I. figs. 3, 4; Pl. IV. fig. 6.)

Crisia elongata Milne-Edwards, " Mém. sur les Crisies, les Hornères," Ann. des Sciences Nat. ser. 2, vol. ix. p. 10, pl. vii. fig. 2 (1838) ; ? Busk, Brit. Mus. Cat. Cyclost. p. 5, pl. iv. figs. 5, 6 (1875) ; ? Busk, Chall. Exp. Zool. vol. xvii. p. 5, pl. i. fig. 3 (1886).

The specimens fiom Wasin are without any doubt the species described by Milne-Edwards, even though he says " plus grèle" than C. denticulata Lamk., which is not the case. Busk, in his Museum Catalogue, speaks of the zorecia bsing much prodnced, whereas this is never the case in my specimens, nor does MineEdwards show it, or even Busk himself in his figures.

The lateral branch, of which there is one, and only one, to each joint starts from near the end of a joint, after about the 6th-10th zoœcia on the one side. The last zowecial tube is continued free, as is the case to a certain extent with the last zorecium on the other side. 'The number of zorecia is uneven, and in some of the terminal norles as many as 13 pairs of zorecia have been counted. There is the small mark below the oral aperture, as in C.denticulata, showing its relationship. The older chitinous joints are black, the younger ones are light. No ovicells are known.

The surface has numerous pores, and I do not understand Busk speaking of it as granular. The closure is slightly raised in the centre, and near this there are one or two pores.

The zoarium is about 0.3 mm . wide ; the distance from zoœecium to zoocium, on the same side, is about 0.25 mm ., and the aperture of the zorecia is about 0.07 mm .

Since I wrote my Naples paper, I have been able to examine better specimens of what I took to be C. elongata, which correspond most nearly with C. cribraria Stimpson, as re-rlescribed by Osburn*.

In the Naples specimens, the fresh internorle arises after the $2 \mathrm{nd}, 3 \mathrm{rd}$, or 4 th zocecium of the one side, and another branch arises from after about the 6 th zorecium on the other side; no ovicells were found, though some are forming at the very end of the branch, and the zorecia are about 0.45 mm . apart, which is about the same as in C'. ramosa H., with which it is allied, but the chitinous joints are light. What I called var. angustata, I now consider is C. ramosa Harm.

The Algoa Bay specimen, so described in the British Museum Catalogue, is probably elongata, and in this specimen the fresh branches are always high in the internode. The 'Challenger' specimen named elongata I do not think is this species, and it has branches both high and low in the intemodes, more as in C. ramosa. The specimens called elongata by Norman from Madeira are more like C'. ramosa.

Loc. Red Sea? (M.-Ed.) ; Algoa Bay? Wasin, Brit. E. Africa, 10 fath. (501), collected by Crossland.

[^7]Crisia sertularohdes (Autouin \& Savigny)*。 (Pl. I. figs. 5, 6.)
Proboscina sertularoides Aurl., "Descrip. de l'Égypte," Hist. nat. p. 236 ; Savigny, pl. vi. fig. 6.

Crisia recurva Heller, "Bry. des Adriat. Meeres," Verh. d. K.-K. zool.-bot. Gesellsch. Wien, vol. xvii. p. 118, pl. vi. figs. 3, 4 (1867).

Zoaria of rather straggling growth, apparently about 20 mm . high; internodes short, with 7-15 zoocia, though usually $7-9$, with light joints, and the branches grow from above the first zoœcium on that side, with sometimes another branch on the other side, near the distal end of the node. Branches not very wide (about 0.15 mm .) ; zocecia directed forwards with only a short part free, the distance from zoœcinm to zoocium is about $0 \cdot 21 \mathrm{~mm}$, the zocecial aperture is 0.06 mm .

The ovicells are very wide and large, irregular globular, placed to one side, and the oreciostome is fumnel-shaped.

The growth is like that of C. eburnea L., but the branches arise higher up after the first or second zoœcium, and in nodes where there is a branch the number of zocecia is meven. It is also much like C. acropora Busk, though the denticle by the aperture occurs but very rarely; from C. ramosa Harm., it differs in having shorter internodes and in having the zoœcia much nearer together. Although Heller's figures and description are unsatisfactory, it does not seem that there can be any doubt as to the identity of the species.

A specimen from Ras Osowamembe (504) has the zocecia less spread out, the joints black in the older parts, and toe zoœcia about 0.28 mm . apart; the ovicells are large and irregular over the whole width of the zoarium. The difference may only be local, and it seems advisable to consider it a variety.

Loc. Adriatic (Heller). Wasin, Brit. E. Africa, 10 fath, (500); Chuaka, Zanzibar', 3 fath. (506), collected by Crossland.

Crisia inflata, sp. n. (Pl. I. figs. 1, 2.)
This is one of the most delicate species of Crisia, and is somewhat like C. geniculata M.-Ed., but there are two alternate zocecia in a joint, the new node rising from the end of the last. The nodes of C. geniculatu are twice to three times as long, and the zocecial apertures of geniculata are about 0.075 mm ., whereas in inflata they are only about $0.04-0.05 \mathrm{~mm}$. The very light corneous tubes of the joint are, when examined with a high power, found to be marked with fine longitudinal lines.

The ovicell is suberect and is only an inflation of the zoccial tube, being the simplest ovicell known. From this character the specific name is chosen. The oreciostome is dorsal, so that it cannot be seen from the front, and is a small plain tube curver over, with a circular aperture $0.02-0.03 \mathrm{~mm}$. The ovicell is not

[^8]elongate like the ovicell of geniculata, as figured by Busk and Harmer, and also as a specimen in my collection. Harmer considers that C. geniculata and C. cornuta must be separated, chiefly on account of differences in the ovicell, and although the present species is also allied there seem to be sufficient reasons for its separation. The C. crisidiodes Or't. has 2-3 zoœcia to each internode, with three-jointed setæ.

Lo:. Wasin, Brit. E. Africa, 13 fath. (500), only one colony.

Crisid circinata, sp. n. (Pl. I. figs. 7 9.)

The zoarium divides into two main branches, and on each of these the fresh brancher ate mostly given off from the one side. and in the lower part of the zoarimm the fiesh branch arises at about the seconl zocecimm, while in the younger part the banches start from about the fourth. The joints are light. 'The distance from zorecium to zorecium is ahout ()$\cdot 27 \mathrm{~mm}$., and the round zonecial apertmre is abont $0 \cdot 08 \mathrm{mmm}$. There are fewer pores on the zoocia than in most risice, and the zorecia extend free for a considerable distance.

The ovicells, occurving just after a bifurcation, are large and erect, with the curved oceciostome on the distal or dorsal surface of the ovicell, with the oreciopore only $0 \cdot(05 \mathrm{~mm}$. dinmeter.

The ovicell of Crisia may appear to be central as in C' ramosa Harm., Cl. fistulose Hell., etc., and is then long and pear-shaperl, or it may appear to be at one sirle, anm may he shorter, when we call it pomiform. There are others in which the ovicell is free, not heing attached ly its surface, and with the oceciostome on its dowal surface instead of heing directed forwards. Free ovicells occur in r. eduodrdsiana d'Orb., C. biciliata MacG., C. loowensis Maplestone.

I have felt much hesitation as to whether the form described is the Crisic coneata Minplestone *, and it also has many points. of resemblauce with (r.cylindrica Busk, but a different ovicell is figured. The Musemu specimens (528, 853) of cylindrice have no ovicells.

Loc. Ras Osowamembe, Zanzibar Channel, 10 fath., only one specimen (504) ; Prison Island, Zanzibar Channel, 8 fath. (505)) Brit. E. Africa, 10 fath. (520): collected by Crossland.

Estalophora wasinensis, nom. nov. (Pl. II. figs. 1-4, 9 : Text-fig. 1.)

Entalophora deflexa Smitt, "Floridan Bryozoa," pt. i. p. 11, pl. v. figs. 28-30 (1872).

As this does not seem to be the same as the small delicate British species known as deflexa Conch, I have given it another name.

The specimens from Zanzibar are buriel in sponge, which has

[^9]grown over them. The zoarium is about 25 mm . high, diriding into many new branches at rather an acute angle. There are many zorecia, with long tubes all round the zoarium, with the oral aperture $0.09 \mathrm{~mm} .-0.1 \mathrm{~mm}$. There are 12 tentacles, and transverse sections show about 15-16 zoœcia.

The base of this species has not been seen, but E. proboscidea grows from a multiserial Stomatopora-like base, which often spreads for some distance before the erect growth commences.
E. defleca also starts from a Stomatopora base which is

$$
\text { Text-figure } 1 .
$$

Entulophora wasinensis. \times about 1.
principally uniserial, though in places it may be biserial. The zoœcia of this species, E. elegrans Norm., and E. defleaxa Conch, have the aperture about the same size and are allied ; and as the zoarial growth of E. elegans Norman * is similar, it is donbtful * "Polyzoa of Madeira," Joum. Limi. Soc., Zool. vol. vxx. p. 281, pl. xxxr. figs. 4, \% (1909).
whether the greater projection of the zorecial tubes may not depend on local conditions.

Only few ovicells have been found: one is small at the side just above a bifurcation, and has an onciostome with a narrow opening and a somewhat triangular plate in front of it. The other ovicells have the onciostomes like those in the first, and spread round several zoœcia without including any-that is, none pass through it. This structure was shown by Smitt (fig. 30).

Very few ovicells of recent Entalophora have been describerl. Busk says of E. delicatula B. "oœecium tumid," but it has never" been figmerl. In the 'Challenger' Report Busk, on pl. is. fig. $1 b$, figures an irregular zoccium as an "ovicell dilation," but from an examination of the specimen I think this is a mistake, as there is no sign of more numerous perforations, which we seem always to find on the ovicells of these groups of Cyclostomata.

In my collection there are ovicells on E. regularis MacG. and E. intricariu Busk*, but these and some other species, among which what I considered was E. ruyosa d'Orb., from Naples, will probably have to be removerl fiom Fintulophora, as sections show a distinct lamina, and the ovicells are wide with the zonecial tubes passing through, reminding us of the ovicells of Diastopora, with which they are closely allied, hut whether they must be called Diastopora or Bidiastopora need not now be consirlererl. Among fossils also, no doubt many must be removed from Entalophora to Diastoporidee. D'Orbigny and others have also placed under Entalophora many species now removed to Meliceritites.

The ovicells of fossil Entalophora (Śpiropora) ammlosa Mich. are figured by Cam \dagger, and are fairly similar to the ovicells of the present species. Canu does not figure the zoœcia spiral or regular, therefore why does he call it s'piropona?

Loc. Florida (Smitt). Wasin, Brit. E. Africa, 10 fath. (501) (507): Ras Osowamembe, Zanzibar Channel, 10 fath. (504): collected by Crossland.

Fulisparsa tubulosa (Busk).

Hornera violacea var. tubulosa Busk, Cat. Mar. Poly. pt. iii. p. 19, pl. xviii, fig. 4: for synonyms see Waters, "Austral. Bry.", Ann. Mag. Nat. Hist. ser. 5, vol. xx. p. 257 (1887); and "Rep. Mar. Biol, of Sudanese Red Sea, Bryozoa," Journ. Linn. Soc., Zool. vol. xxxi. p. 235, pl. xxv. figs. 16, 17 (1910) ; and add : Seguenza, Form. 'Terz. pp. 297, 372 (1879) ; De Stefani, "Jejo Montalto e

[^10]Capo Vat.", Mem. R. Accad. d. Lincei, vol. xviii. p. 208 (1882), Neviani, "Bri. Neog. delle Calabrie," Pal. Ital. vol. vi. p. 234 (1900).

As Busk made a mistake about numbering his figures, it is difficult to understand what he meant, but in spite of this it seems advisable to retain his name. Apparently the type violacea also should be Filisparsa, and in the Norman collection specimens so named, from Florö, have none of the appearance of Hornera, but look like Filisparsa, having anterior ovicells which are broken down. There is among these specimens one piece of Hornera, perhaps lichenoides, evidently misplaced.

The specimens from Wasin have the oral aperture about 0.15 mm ., colresponding in this respect with specimens from Naples and Australia, and here also the closure of the zocecial tube has a number of perforations similar in appearance to those of the zoocia. There are 14 tentacles. The ovicell sureads over the front, and the oceciostome, directed somewhat backwards, is about the width of the zoœcial aperture, but in the longitudinal axis is only about 0.07 mm . There can scarcely be said to be a funnel, although there is an irregular expansion which fiequently curves over.

The expansion and fummels of the oceciostomes of the Cyclostomata are often very variable, so that too much weight must not be attached to their measurements; also some ovicells may be found with and others without fumnels.

There are some specimens from Zanzibar, apparently of this species, which in younger parts just touch the support at intervals, though there are no definite rows of dorsal projections as in Tubulipora pulchra MacG.; in the older parts there are strong calcareous radicles, sometimes formed of only one tube, but more frequently of two or three, which may divide at the end to form claspers. Idmonea pedata Norman has still larger radicles the width of the zoarium, often formed by five or six tubes.

A species from Naples, which I have considered to be the Tubulipora incrassata d'Orb. as more fully described and figured by Smitt, has zoocia much about the same size, and standing up in the same way; but the zoarium spreads out fan-shaped, instead of being unattached for a considerable distance, and is continuous about the same width. The ovicell is sitmated as in T'. tubulosa, with the oreciostome about the same size as the zoœcial tubes, sometimes ending off straight, at other times with a funnel.

Loc. Naples (W.) ; Victoria (MacG.) ; Holborn Island, Queensland, 20 fath.; North Atlantic (B.). Ras Osowamembe, Zanzibar Channel, 10 fath. (504), collected by Chossland.

Fossil. Tertiary: Rhorles, Sicily, etc.
'Tervia irregularis (Meneghini). (Pl. IV. fig. 8.)
Idmonea irrernularis Meneghini, " Polipi della fam. dei Tubul. finora osserv. nell’ Arlriatico," Nuovi Saggi del Accach. di S'cienze,

Proc. Kool. Soc.-1914, No. LVII.

Padova, vol. vi. p. 12 (1844). For synonyms see Miss Jelly's Catalogue and add :-

Filisparsa inregularis Waters, "Ovicells of Cyclost. Bry.," Journ. Limn. Soc., Zool. vol. xx. p. 279, pl. xiv. figs. 5, 6 (1888); Norman, "Poly. of Madeira," Journ, Linn. Soc., Zool. vol. xxx. p. 279, pl. xxxiv. figs. 1-3 (1909).

Tervia folini Calvet, "Rech. de la Camp. du 'Cautlan," Ann. de l'Univ. de Lyon, p. 265, pl. vii. figs. 1-3 (1896).

Tervia irregukeris, Jull. \& Calv. "Bry. de l'Hirondelle," p. 114, dt p. 157 , pl. xiv. fig. 7 (1903).

The proximal part of the zoarimn has the zocecia irregularly placed as in Filispurscr; then later, nsually after the finst hranching, there are distinct series on each sile, of ten with isolated zocecia in the median line. The rery earlicst part, namely the primary, is like that of Stomatopora, being alont the sime size as ordinary zocecia and but very slightly expanted at the proximal end, whereas in Tubulipora and many other Cyclostomata there is a large disk. This disk 1 have fignred in T'ubolipora pulchra, and it has also been figured by Barrois, Rohertson and others.

Inside the zorecial tube, about the porition where it becomes erect, there is on the proximal side a shallow comb-like process (Pl. IV. fig. 8). This is where the closure takes place. There are combs in some Membaniporidie, and spinons processes in many Cyclostomata, but I have not foumd a similar coml) in any other Cyclostomata aud it does not occur in Filispursa tubulosa.

Loc. Allriatic; Niples, 40 fath.; Genoar: Bay of Biscay: : Azores, 450 fath. (.J.\&.C.) ; Marleina (N_{C}) ; off Cape Blanco, West Africa, 235 met. (. . \& © C.) : Australia. Wasin, Brit. E. Africa, 10 fath. (507), collected by Crosslind.

Jdmonea mleneava d'Orligny.
For synonyms and localities, see Waters, "Bry. from near Cape Horn," Journ. Linn. Soc., Zool. vol. xxix. p. 249 (1904).

From Ras Osowamembe, Zanzibar Channel, 10 fath. (504), collected by Crossland.

Idmonea radians (Lamarek). (Pl. II. figs. 6, 7, 8, 10.)
For synonyms see Miss Jelly's Catalngue and ard :-
Dollman, W. P., Jomrn. Roy. Micr. Soc. pl. riii. 1906, photograph only; Philipps, E. G., "Polyzoa collected by Dr. Willey," Willey's Zool. Results, pt. iv. p. 449 (1899); MacGillivray, "Monog. of the Tert. Polyzoa of Victoria," Trans. Roy. Soc. Vict. vol. iv. p. 121, pl. xvi. fig. 18 (1895).

Besides the more usual form with short branches (fig. 8α) there are from both localities specimens with long ones (fig. 8) having similar subparallel branches. MacGillivray has referred to a larger form, and Busk called it var. erectu. In the smaller
form as a rule there are two zoocia to a series, though there may be three, especially near the growing ends, while the larger form has three zoœecia or occasionally four. A range of intermediate sizes have been met with.

The ovicells are anterior, near a bifurcation, or in other positions, even often half-way between two bifurcations; large pores or pits oceur on the surface. The oceciostome is on one side, most frequently by the first zocecium of the second series involved (fig. 6), though sometimes it occurs by the third series, but never more than one oceciostome has been seen on an ovicell, and the tubular oœciostome turns over and downwards, resembling in position and form the oneciostomes of I. atlantica F., I. concava Rss., and I. parasitica Busk.

The large lateral plates on the ovicell described by me* as occurring in Torres Straits and Australian specimens, are not seen in those from Zanzibar, though from the localities previously mentioned they are very distinct, and are also seen in the 'Challenger' specimens from Tongatabu, and in the British Museum specimens from Cape Capricorn, where however they are elongate rather than round. There are no frontal ridges on the ovicell as described by MacGillivray. The series are about 0.26 mm . apart, which is much closer together than in any other species measured. I. athentica F . is $0.6-1 \mathrm{~mm}$. ; I. australis MacG. 0.75 mm . ; I. concava Reuss 0.5 mm . ; I. pedata Norm. 0.45 mm .; I. tumida $S \mathrm{Sm} .0 .7 \mathrm{~mm}$. The zoœecial aperture is about 0.06 mm ., whereas in I. atlantica it is 0.15 mm .; in I. milneana $0 \cdot 16-0 \cdot 2 \mathrm{~mm}$. There are 8 tentacles.

The ovicell consists of several lobes, there being on both sides one between each two series of zoncia, so that in a mature ovicell there are usually six such lobes. The embryos are small; the mature ones may be 0.1 mm . across or even a trifle larger, but the majority are smaller. There is not much difference from the embryos of Entalophora wasinensis nov., though a little larger, but they are smaller than those of Diastopora intricaria Sm., 0.12 mm .

Ostroumoff \dagger says the larve of the Cyclostomata vary in size downwards from Hornera which is 0.48 mm ., through Tubulipora, Frondipora, Lichenopora, to Crisia, which last is only 0.07 mm . In sections I have found Hornera lichenoides 0.4 mm . and various species of Crisia from $0.07-0 \cdot 1$. The range in the Cheilostomata is somewhat similar, as Diplodymoides is 0.08, and Systenopora 0.37 mm .

This is no doubt Crisina hochstetteriana Stoliczka \ddagger, but the

[^11]1. hochstetteriana of MacGillivray * is clearly Morneru $\stackrel{+}{+}$ fissurota, Busk.

The name $I d m o n e a \ddagger$ is used in the sense it has been used for a long time, although recognising that in some cases it is difticult to find distinctions between Idmonea and I'ubuliposa, and that it is possible they may have to be merged.

But Tubulipora spreads out continuonsly, whereas Idmonea continues of the same width; also Tubutiport has a more or less central ovicell with a central oœeciostome, while Idmonea usually has the oœciostome near to the series at one side. Perhaps further study of the primaries and early growth, as well as the ovicells, may establish the position, but for the present no harm is done by waiting until the whole of the group is better moderstood.

Loc. New Zealand, Wanganui, ete.; Tongatahu, 18 fath. ; Honolulu, 20-40 fath.; Victoria ; Port Jackson (H.), Arlelaide (A. $\|^{r}$.), Sydney ; Port Stephens, ${ }^{5}-6$ fath. ; Green Point, 8 fath.; Darmley Island, Torres Straits, 10-30 fath. ; Cape Capricorn, B.M. coll.; Lifu (Ph.) ; Port Elizaheth (in Miss Jelly's collection). Both the small and the rar. erecte forms from Ras Osowamembe, Zauzibar Channel, 10 fath. (504), and Prison Island, Zanzihar Channel, 8 fath. (505), collected by Ciossland.

Fossił. Orakei Bay, N. Z.; MLount Gambier, S. Aust. ; Bairnsdale, Gippsland.

Idmonea interuvecta MacGillivray. (Pl. II. fig. 5.)

Idmonea interjuncta MacG. Trans. Roy. Soc. Vict. rol. xxii. p. 137,10 (sep.) (1886) ; Waters, "Arstral. Bry." Amn. Mag. Nat. Hist. ser. 5. vol. xx. p. 256 , pl. vi. fig. 29 (1887).

Idmonea pedleyi Haswell, "Cyclos. Polyzoa of Port Jackson," Proc. Linn Soc. N. S. W'ales, vol. is. 1, 351 (1880).

Idmonea pulcherrima Kirkpataick, "Hydl. and Poly. from the China Sea," Ann. Mag. Nat. Hist. ser. 6, vol. v. p. 22, pl. iv. fig. 6 (1890).

The zocecial aperture is about 0.12 mm ., and the oreciostome is the same size.

Some specimens from Ras Osowamembe have faint ridges on the dorsal surface, and by the side of these vilges are vows of pores, transverse to the zoariun. Lines of pores, though not as marked, are also fonnd on Idmonea milneana d'Orb.: a species in many respects similar, but miluecuna is a larger species having the zorecial aperture larger.

Loc. Port Phillip Heads (MacG.) ; Green Point, Port Jackson, 8 fath. (Waters). Ras Osowamembe, Zanzibar Channel, 10 fath.

[^12](504); Prison Island, Zanzibar Channel, 8 fath. (505), collected by Crossland.

Amathia lendigera (Linneus). (Pl. IV. figs. 3, 4.)
For synonyms see Miss Jelly's Catalogue and add:-
Amathia lendigera (L.), MacGilliviay, "On the Australian Species of Amathia," Proc. Roy. Soc. Vict. vol. vii. p. 135 , pl. B. fig. 1 (1894) : Calvet, "Bry. Ectoproctes," pl. viii. figs. 19, 20, pl. xiii. figs. 13, 21 (1900) ; "Bry. Mar. des Cotes de Corse," p. 46 (1902); "Bry. Mar. de la Région de Cette," p. 90 (1902); Jullien \& Calvet, "Bry. de l'Hirondelle," p. 31 (1903) ; Guerin-Ganivet, "Bry. de la Rég. de Concarneau," Tr. Sc. du Lab. de Zool. et de Phys. Mar. de Concarneau, vol. iv. p. 23 (1912).

The stems of the specimens from Chuaka are about 0.07 mm . in diameter. This species differs from A. vidovci Hell. in not having the zocecia spiral, also in the branching being more or less at right angles to the main branch (fig. 4), whereas in most A mathice the branches divide equally in both directions. Hincks has figured the branching of lendigera.

Some sections of material from Swanage cut across the rosetteplate show the semicircle of cells, with nuclei at the end of the cell, directed to the pore; also the round mesenchym-cells with round nuclei are separated from the wall of the stolon, and are seen to pass over the mound of cells; up to this mound come the funicular threads with their, elongate nuclei (fig. 3). The structure of the cells near the rosette is very similar to that described in Zoobotryon (see page 850).

Loc. British, French and Belgian coasts, Mediterranean, Adriatic ; Corsica (40-60 met.) (Calvet); Azores ($J . \& C$.); Western Port, Victoria (MacG.). Chuaka, Zanzibar shore (521, 523), collected by Crossland.

Amathia semiconvoluta (Lamomronx).

Amathia semiconvoluta Lamx. Encycl. Méth., Zoophytes, p. 44 (1824) ; Heller, "Bry. Adriat.," Verh. der K.K. zool.-bot. Ges. Wien, vol. xvii. p. 127, pl. v. figs. 1, 2 (1867); Calvet, Bry. Ectoproctes, pl. vii. figs. 8, 9, pl. viii. figs. 16. 18 (1900); "Bry. Mar. de la Région de Cette," Tr. Inst. de Zool. de l'Univ, de Montpellier, ser. 2, mém. 11, p. 89 (1902); Waters, Journ. Linn. Soc., Zool. vol. xxxi. pl. xxiv. fig. 6 (1910).

Serinlaria semiconvoluta Lamk. Hist. Nat. d'Anim. sans vert., ed. ii. vol. ii. p. 171 (1836) ; d'Orbigny, Pal. Franç. vol. v. p. 595 (1850-52).

The yellowish thick chitin-stem is about 0.25 mm . diameter. Near the proximal end of each internole there is a clear oval spot, which is for the attachment of a radicle, yet although this mark for the attachment occurs in all internodes, radicles have only been seen in a very few cases. A similar mark for radicles orcurs in A. obligue MacG., and also in A. brasiliensis Busk, of
the 'Challenger', which no donbt is really A. semiconvolutce, but the character has not been found in any other species examinerl.

Loc. Mediterranean; Naples (A. W. Π^{r}. coll.) ; Adriatic (Heller). Wasin, Brit. E. Africa, 10 fath. (501), collected by Crossland.

Amathia distans Busk

Amathia distans Busk, Chall. Exp., Zool. vol. xvii. pt. 50. p. 33, pl. vii. fig. 1 (1886) : MacGillivray, "On some S. Australian Polyzoa," Trans. Roy. Sue. S. Australia, vol. xii. p. 30 (188!); "On the Anstral. Sp. of Amathia," Proc. Roy. Soc. Victoria, rul. vii. p. 134, pl. C. fig. 3 (1894); Waters, "Mar". Biol. of the Sudanese Red Sea, Bryozoa," Jomı. Linn. Soc., Zool. vol. xxxi. p. 243, pl. xxiv. fig. 7 (1910).

The A. distans B., A. tortuosa B., A. semicomooluta Lamx., and A. vidovici Hell. form an incomplete spiral romid the stem, only occupying part of the intermode. The stem of A. distans is thin, measuring 0.07 mm . diameter in most of the present specimens. The 'Challenger' specimens which I measured have the diameter' about $0 \cdot 1 \mathrm{~mm}$. I seem to have measured some abnomal picce from Zanzihar which was stonter. From bifucation to bifuration is about 2 mm . long. There are 8 tentacles.

Loc. Off Bahia, 10-20 fath. (B.) ; South Anstralia (MacG.); New South Wrales (A. W'. W. coll.). Zanzibar town, shore, marked "pink Polyzoum" (527), collected by Ciossland.

Amathia vidovici (Heller). (Pl. IV. figs. 1, 2.)
Tralkeria vidocici Heller, "Die Bry. des Adriat. Meeres," Verh. der K.K. zool.-bot. Ges. Wien, vol. xvii. p. 128, pl. v. figs. 3, 4 (1867).

Vesicularia dichotoma Verrill, "Invert. animals of Vineyand Sound," Rep. Comm. of Fish and Fisheries for 1871-2, p. 874.

A mathia lendigera Busk, Chall. Exp., Zool. vol. xvii. p. 33 (188(i).
A mathia dichotoma Osburn (Verrill), "Bry. of the Woods Hole Region," Bull. Bur. of Fish. vol. xxx. p. 2⿹勹4, pl. xxix. figs. 81,81 a (1912).

The zoœcia at a bifurcation are in short biserial clusters, spirally arranged, encirching the stolon. There is sometimes a small cluster between a bifuration as shown by Heller, whose figure was evidently from a dried specimen and is not entirely satisfactory.

The branches are about 0.2 mm . in diameter. There are 8 tentacles, which is the same as in A. lendigera L., A. semiconvoluta Lamx., A. brongniartii Kirkp., and A. distans B. The gizzard is about $0.05-0.06 \mathrm{~mm}$. dianeter.

The connecting cells on the two sides of the rosette-plates are fairly similar to those of Zoobotryou pellucidum Ehr., radiating on both sides from the pore, and the cells near this pore stain more darkly than the others (fig. 2).

Loc. Adriatic (Heller); Genoa (Waters coll.) ; Roscoff, sent to
me by Jullien as A. semiconvoluta; Bermuda, 30 fath. (Chall.) ; Great Egg Harbour, N. J.; Long Island Sound (Terrill); Vineyard Haven, Edgartown, Woods Hole, Nautucket (Osburn). Wasin, Brit. E. Africa, 10 fath. (500) (501), collected by Crossland.

Zoobotryon pellucidum Ehrenberg. (Pl. III. figs. 4-12; Pl. IV. fig. 12.)

For synonyms see Waters, "Mar. Biol. of the Sudanese Red Sea, Bryozoa," Journ. Linn. Soc., Zool. vol. xxxi. p. 243, pl. iv. figs. 12, 15 (1910), and add:-Osbunn, "Bry of the Tortugas Islands, Florida," Pub. 182, Carnegie Inst. of Washington, p. 218 (1914).

The appearance of the specimens from Chuaka Bay, at first sight, suggest specific separation from Z. pellucidrm, as on the whole length of the long internodes there are two distinct, wide series of zoœcia closely crowded, but with vacant longitudinal spaces between the series. In the Naples specimens the existence of series of zoœcia is obscured, as the zoœcia in many cases seem to be scattered over the stem and the whole length is not usually covered; but an examination of the stolon of these Naples specimens after the zocecia have been removed, shows two groups of about four longitudinal rows of rosette-plates, so that the differences between the Naples and Zanzibar specimens are but slight, although the conditions of luxuriance are very different. Hincks's name of biserialis and MacGillivray's bilateralis would have been very suitable for this form. There are frequently more than three branches at the end of the internode, sometimes as many as six.

The zoœcia are about 0.3 mm . long, and in the sections made the ova are usually single, or in some cases there are two in an ovarium.

The embryo is sumrounded by an ovicell sac, much the same as in Adeonellee * and in Diplodidymia *, the growth of the embryo and of the sac going on simultaneously, and in many cases they are so close together that at first it is difficult to distinguish the sac from the embryo. In these cases the ovum must pass to the distal end under the operculum, from where it is developed.

On the other hand, in most of the Cheilostomata and in the Cyclostomata, the ovicell is formed before the embryo is ready for it. In the Cyclostomata the walls may be seen starting at various points \dagger to ultimately unite to form the ovicell.

The rosette-plates were first described by Reichert \ddagger in this species, and it does not seem that anyone, except Smitt, had previously described anything of the kind, but what Smitt figured

[^13]as a communication pore was evidently the entire plate, it not being realised that there were not large pores, but only minute perforations. Reichert described and figured the plate as with a central perforation with $8-10$ pores round it * (pl. iii. fig. 7), but this is not the case, as there is only one ψ perforation, and what Reichert took to be pores surrounding a central pore are really a circle of cells, on the older side of the rosette-plate, with a relatively large round nuclens and a thin prolongation. The disk is thimer than the surrounding walls, as figured by Reichert (loc. cit. pl. iii. fig. 7). Sections and preparations of Zoobotryon from Naples, the Soulan and Wrasin, enable me to add slightly to our knowledge of this species.

By the rosette-plates of the zorecia the cells just mentioned often stain very darkly, so that no structure can be seen, hut in other cases the plate is seen with all these cells in a semicircle \ddagger (Pl. MII. figs. 7, 8, 9, 12) pointing their thinner edge to the centre, or with them even raised to the one minute opening. Above, that is on the younger side of the rosette-plate, there are a number of cells, probably usually the same number as below, and these also have long thread-like projections which pass to the opening to touch the projections of the under circle of cells, that is as if eight fingers from below were raisel to tonch eight fingers from above. From both sets of cells spreat other cells in : more or less madiating manner, and to these mounds of cells the funicular or plasma-threads reach, distinguishable from the other's by their elongated nuclei. These plasma-cords spread to all the organs of the zoarium.

The layer of mesenchym-cells lining the zooceial walls (Pl. III. fig. 10 ; Pl. IV. figs. 2, 3) spread to this mound of cells, and can be distinguished by the round cells and romd nuclei from the funicular threads with their long cells and elongate nuclei. There is sometimes on one side a more or less semicircular cover over the circle of radiating cells, which it is difficult to understand, and they nerer occur in the early stages, and certainly they cannot be continuous all over or there would be no connection from the two sides.

An ovim is often seen pretty near to the rosette-plate, so that it must move up to the distal end to be enclosed in the ovisac. When there is an ovum, and usually in the older zonecia, these is a considerable change in the funiculus near to the rosette-plate, as it has become granular (Pl. III. figs. 10, 11), so that from this appearance the condition of the zoccium can be surmised.

Nitsche § spoke of the accumulation of cells over the rosetteplate as a "Pfropf" (plug or stopper), and Reichert mentioned

[^14]the thickening of the "Commmale Bewegungsorgan" above ant below the septa, whereas F. Miiller had called it a ganglion, maintaining that there was a common nervous system throngh the colony; also Smitt *, in Bugula, called them colonial nervous ganglia. We have seen that to these mounds of cells the network of plasma threads reaches, and this is what has been called the colonial nervons system and the colonial organ of movement, and it was figured by Muiller, Reichert, and Nitsche as a stout, solid or tubular body, but instead there are a number of anastomosing and reticulate threarls, though with very low power's it may look like a band: neither alive nor in stained sections is any such solid or tubular band seen. Nitsche's figures must be looked upon as diagrammatic, and Reichert's, as I have previously staterl, as though he had Zoobotryon in a pathological condition, and it is to be regretted that Hincks copied his figures. Vigelius, Freese, and others have correctly understood these plasma threads.

It is strange that no histological work has been done on Zoobotryon, as it is eminently suitable for elucidating many interesting and important points of cell-structure, etc.

The name rosette-plate was given supposing that there was a rosette of pores, whereas there is really a rosette of cells.

Loc. Add: Florida (Osb.) ; Chuaka Bay, Zanzibar, 2 fath. (509), collected by Crossland.

Bowerbankia pustulosa (Ellis \& Solander).
Sertularia pustulosa Ellis \& Solander, "Nat. Hist. of many curious and uncommon Zoophytes," p. 54 (1786).

Bowerbankia pustulosa Hincks, Brit. Mar. Poly. p. 522, pl. lxxvi. figs. 1, 5 (1880) ; Calvet, "Bry. Ectoproctes," pl. vi. fig. 13, pl. vii. figs. 4-8, pl. viii. fig. 21, pl. x. fig. 13, pl. xi. figs. 18, 19, pl. xii. figs. $15-17$, pl. xiii. figs. 11,14 (1900).

The descriptions and determinations of Bowerbankia are so uncertain that there seems little object in giring a full list of synonyms. This species has been mistaken \uparrow for Valkeria uva L. and B. imbricata Arlams.

Loc. British ; Merliterranean ; Chnaka, Zanzibar Channel, shore (523), collected by Crossland.

Mimosella bigeminata, sp. n. (Pl. III. figs. 1-3.)

The zoarium consists of unbranched stems (about 0.3 mm . diameter) rising from a spreading stolon (about 0.15 mm .). The first intermode of the stem is long (say about 1.65 mm .) followed by one about 0.4 mm ., and then the remaining ones are shorter, say 0.35 mm . There may be as many as 50 internodes in a stem. In the lower internodes there is only a pair of opposite zoocia close to the distal end, but after the second or third internode there is a second pair placed rather to the side and lower down but

[^15]close to the other pair. There are several cases where there has apparently been an injury, and a new branch grows from the side of the broken one, and then, althongh the original stem has had the donble pairs of zoncia, yet the new growth may have more than two internodes with only a pair of zorecia, but subsequently there are two pairs to each, thongh special causes may occasion irregularities. The diaphragm at the bose of a zoocium has one pore. Near the base of the zoœcium there are strong muscles for moving the zoœcium, and similar muscles occur in M. gracilis H., although Hincks said there were none. The new species diflers from M. gracilis H. in the stems not branching, and in having four zonecia grouped at the distal end of the internode.

Triticella armata Verrill has the zoarial growth very similar to that of Mimosella, but, accorrling to Osburn *, it has a gizzard, and evidently does not belong to the present gronp.

The name bigeminata was suggested by In. Harmer, who, when I told him that I had found and fismed this Jimosella, thought that he had also fonnd it in the 'Siboga' material. When he showed me his specimens, which are from hetter material than mine, the identity seemed to me quite clear, and, on seeing mine, Dr. Harmer agreed that this was the case, so that, with his permission, the name originally proposed has heen changed.

Loc. Ras Osowamembe, Zanzibar Channel, 10 fath. (504), collected by Crossland.

There is a small fragment of another Mimosella from Chuaka, which I hesitate to name as it is incomplete. Just below the diaphragm of the main stem there is a lateral stem on each side, and each of these has two or three single zocecia growing direct from the stem and directed distally, with this free moceupied stem continuing beyond the zocecia. On the lateral stem there is a diaphagm before and after each zoœcium. In one lateral stem there are two plates of attachment, as if there had been two pairs of zoocia, though on all the others the zomeia are miserial. The zonecia are about $0.25 \mathrm{~mm} .-0.3 \mathrm{~mm}$. long. The stem is about 0.02 mm . diam. The growth of this species somewhat reminds us of Farrella atlantica B., which, however', has the zoocia more or less stalked, whereas in this Mimosella the base of the zocecinm is rounded like that of Bowerbankia. In Talkeria uva L. there is a diaphragm above and below the group of zocecia, whereas in Mimosella gracilis H., F. atlantica, and this species there is only the one diaphragm just beyond the branches.

Farrella atlantica Busk. (Pl. 1V. fig. 9.)
Farrella atlantica Busk, 'Challenger' Exper., Zool. vol. xvii. p. 37, pl. vii. fig. 3 (1886) ; Thornely, "Rep. Pearl-Oyster Fisheries of the Gulf of Manaar," p. 128 (1905) ; "Mar. Poly. Ind. Ocean," Trans. Limn. Soc. vol. xv. p. 157 (1912).

[^16]Hippararia verticillata Mincks (non Heller), Ann. Mag. Nat. Hist. ser. 5, vol. xix. p. 311, pl. ix. fig. 8 (1887).

I have only found a small piece from the Red Sea, but it is evidently widely distributed, as I have it from Naples, the Red Sea, and Zanzibar.

The rhizome of the Zanzibar specimens is 0.01 mm . in diameter; the zocecia are 0.4 mm . long and 0.1 mm . wide, about the size given by Busk. At intervals on the stalk there is a pair of zoœcia growing from an expanded part, and there is often from the same expansious a pair of radicles growing at right angles to the stalk; also frequently there are lateral branches near to the expansions, and these sometimes have pairs of zoccia near to the main brauch.

A zoæcium from which a polypide has disappeared usually assumes a swollen* barrel-shape (Pl. IV. fig. 9, b), as the muscles which kept them in shape have now disappeared, and the same kind of thing occurs in many Ctenostomata.

I am unable to follow Hincks when he identifies his Hippuvaria verticillata \dagger with Heller's species; also I have shown that the geuus Hippuraria was founded upon a mistake, and is only a synonym of Triticella. Although Hincks speaks of a group of cells at the joint, the figure shows a pair, and perhaps other nearly adjacent pairs have given the appearance of a group, so that, althongh I have scarcely any doubt as to Hincks's verticillata being a synonym of Busk's atlantica, there is just the possibility of this not being the case.

The peduncle is attached to the zoœcium excentrically, and there is a muscle from the side of the wall to the projecting base of the zoæcium by which it is moved as a whole.

There is a somewhat similar muscle in Mimosella gracilis Hincks. Joliet mentions this also in his Valkeria mutans \ddagger, and Hincks was apparently unaware of Joliet's later description when describing H. verticillata. Heller's figure of Valkeria verticillata, and Hincks's figure of Valkeria uva in the 'British Marine Polyzoa' are very similar.

Loc. Bahia, 10-20 fath. (Chall.); Naples (A. IV. W. coll.); Arlriatic ; Suez; Ceylon (Th.); Indian Ocean (Th.); Amirante, 25 fath. (Th.) ; Providence, 50-78 fath. (Th.). Ras Osowamembe, Zanzibar Channel, 10 fath. (504); Wasin, Brit. E. Africa, 10 fath. (500), collected by Crossland.

Valkeria uva (Linnæus).

For synonyms see Waters, "Mar. Biol. of the Sudanese Rerl Sea, Cyclostomata, Ctenostomata, and Endoprocta," Journ. Linn. Soc., Zool. vol. xxxi. p. 250, pl. xxiv. fig. 13, pl. xxv. figs. 4, 12, 13 (1910) ; Osburn, "Biol. Survey of Woods Hole and

[^17]Vicinity," Bull. Bureau of Fisheries, vol. xxxi. pt. 2, p. 606 (1911).

The specimens from Chuaka have groups of zoæcia at distant intervals, and there are fully formed embryos in the zoocia.

Loc. See above and add: Vineyard Sound, 6-8 fath. etc. Chuaka, Zanzibar, 2 fath., on seaweed with Stirparia deudrograpta Waters (508) ; aud Chuaka shore, on Amathia lendiyera (521): collected by Crossland.

Cylindrecium giganteum (Busk).
Farrella gigantea Busk, Quart. Journ. Micr. Sc. vol. iv. p. 93, pl. v. figs. 1, 2 (1856).

Cylindrocium giganterm Hincks, Brit. Mar. Poly. p. 535, pl. Ixavii. figs. 3, 4 (1880).

The largest zoacia from Cluaka are abont $0 \cdot 25 \mathrm{~mm}$. long. There is no dilation at the base, and the contents of the wall are mostly calcareons, giving it a white appearance, so that at first I was inclined to call it vas, album. When placed in acid it becomes transparent. The determination of Cylindropcium is always very unsatisfactory, and mobably C. yiganteum and C. dilatatum have not always been correctly distingnished.

The stolons branch in varions directions.
Loc. British; Mediterranean : Red Sea: off Portugal; Ceylon; Cargados; Farquhar Reef (Th.) ; Queen Charlotte Island; Tortugas. Clmaka, Zanzibar, 2 fath. (508); Prison 1sland, Zanzibar, collected by Crossland.

Buskia nitens Alder.

Buskia witens Alder, Q.J. Micr. Sc. vol. v. p. 24, pl. xiii. figs. 1, 2 (1857) ; Hincks, Brit. Mar. Poly. p. 532, pl. lxxii. figs. 6, 7, woodcut, fig. 28 (1880) : Ann. Mag. Nat. Hist. ser. 5, rol. xiii. p. (37); Levinsen, "Zool. Danica, Mosdyr," p. 83, ph. viii. figs. 12, 13 (1894).

From Ras Osowamembe, growing on the stalk of Mimosella bigeminata, nov. Levinsen says that there are 8 tentacles.

Loc. Arctic; Davis Strait, 100 fath. ; British; Danish; Queen Charlotte Island (H.). Ras Osowamembe, Zanzibar Channel, 10 fath. (504), collected by Crossland.

Pedicellina spinosa (Robertson). (Pl. IV. figs. 10, 11.)
Myosoma spinosa Robertson, "Studies in Pacific Coast Eutoprocta," Proc. Calif. Acad. of Sciences, ser. 3, vol. ii. p. 324, pl. xri. figs. 1-12 (1900).

There are two specimens from Wrasin, which well show most of the characters mentioned by Dr. Alice Robertson. The spines on both the stalk and calyx are stout and long, whereas those on P. cernua may be called almost hains, and the spines are abunciant on the one side and absent on the other, the obliquity of the tentheular region also occurs. The number of tentarles is about 14.

The stalk is broal, especially at the base, and is also wide where the calyx is attached, though not so wide as figured by Robertson in many of the figures, but she shows a distinct separation in fig. 4. In the stolon there is a septum pretty near to the stalk on each side of it, and there is a considerable space from stalk to stalk.

The preparation was stained and mounted for some other more transparent species, and it is not suitable for following any inuscle from the stalk up the calyx, nor an I able to see anything suggesting it.

While umable to accept the genus $M_{y \text { yosoma }}$ at present, of which I have been unable to make sections, it may turn out that it is advisable to retain the genus.

I now think that the Pedicellina from Naples with numerous stout recurved spines, to which I referred ${ }^{*}$, is P. hirsuta Jull.

Loc. Tomales Bay, California, beach; Fort Point and San Perlro, California. Wasin, Brit. E. Africa, 10 fath., with Corallina et.c. (500), collected by Crossland.

Barentsia gracilis (Sars).
For synonyms see Waters, "Rep. Mar. Biol. of the Sudanese Rell Sea, pt. ii.," Journ. Linn. Soc., Zool. vol. xxxi. p. 251 (1910) and add:-

Pedicellina gracilis Föttinger, "Anat. des Pédicellines de la Côte d'Ostende," Arch. de Biol. vol. vii. p. 300, etc. (1886).

Ascopoduria gracilis Norman, "The Polyzoa of Madeira and neigh. Isl.," Journ. Linn. Soc., Zool. vol. xxx. p. 277 (1909).

Some of the stalks have the swelling in the middle, which have been found from many places, and in consequence of which the species nodosa was made. James Ritchie \dagger has confirmed what I have said \ddagger as to the genus Gonopodaria being superfluous.

Loc. Arctic ; European coast, generally ; Mediterranean ; Red Sea; Madeira; Australasia. Ras Osowamembe, Zanzibar Chamel, 10 fath. (504); Wasin, Brit. E. Africa, 10 fath. (500); Chuaka, Zanzibar; "from growth on elytron of Aphroditid"; Chuaka, Zanzibar, 2 fath. (508), (509), (519): collected by Crossland.

Loxosoma singulare Keferstein.
Loxosoma singulare Kef. Zeit. wiss. Zool. vol. xii. p. 13, pl. xi. fig. 29 (1862) ; and add to Miss Jelly's Catalogue:-

Loxosoma singulare Jull. \& Calvet, "Bry. prov. de l'Hirondelle," p. 28, pl. ii. fig. 5 (1903) ; Harmer, "Struct. and Devel. of Loxosoma," Q. J. Micr. Sc. 1885, p. 4.

There are a number of specimens growing on Schizoporella

[^18]nivea B., and they are mostly, or at any rate exceerling frequently, attached to the operculum, indicating that the morement gained in this way is favourable to the Loxosoma.

Loc. Holland (Kef.) ; Shetland (Hincks); Naples (Hormer, etc.) ; Newfoundland ($J . \& C$.). Prison Island, Zanzibar Chamel, 8 fath. (505), collected by Crossland.

Addendum.

Since I wrote about Lagenipora socialis H. in the description of the Cheilostomata from Zanzibar, pt. i. p. 510 (1913), I have examined the Norman Collection, recently sent to the British Museum, and there is a specimen from Hastings, sent by Mr. Hincks to Camon Norman as Layemipora socialis, which has a pore at each corner of the ridge, as I described in the Guernsey spiecimens.
'This entirely confirms the riew that Lagenipora socialis is the type of the group which I have several times maintained was Lagenipora, but which Levinsen has called simiopelta. By this specimen it is now definitely settlerl, and does not almit of further question, but the examination has brought out another interesting point. The C'elleporelle Norman belongs to the same genns, which, however, Norman at some time recognised, for he wrote on Hincks's co-type of Lagenipora socialis, "Celleporella lepralioides." However, under C. lepralinides he had two species, finst the L. sociclis, and then from Guchsey and fiom Hardanger Fiord specimens with several pores by the rirlge of the ovicell, which are probably L. lucida, as well as L. socialis, both of which he had identified with Celleporella lepralioides. Of course, Celleporella has to disappear, as it was not recognisable from the description and figure.

I might have mentioned in the same paper, when speaking of Actea, p. 464 , that what I call the limging out of the zocecial wall, for the ovum, before the oricell has been formed, has been figured by Pronho in Cylindrecium *.

In looking over seaweed for Pedicellinu a few zoocia of Lepralia poissonii Aud. have been met with from Wasin, Brit. E. Africa, 10 fathoms. The primary zonecium has two or three more spines than Levinsen's figures. The species is known from the Atlantic, Australasia, Indian Ocean, and Japan (A. W. W. coll.), and is a common species in many localities. It also occurs fossil.

From Chuaka, 3 fathoms (523), a few zonecia of Beania intermedia Hincks were found. There are no frontal spines, and near the proximal end there is a large plate for the attachment of the radicle, and at each side of this, near the border of the zoocinm either at the same level as the radicle or higher up, there is a

[^19]tubular projection, and from one of these a new zocecium may grow. Close up to the distal border on the dorsal surface there is on each side a small pore, which, however, is not seen in the Chatham Island specimens. Now I have previously remarked that most "Bermice have six tubular connections, whereas this has only four," so that there is reasonable ground for considering these as vestigial, thus representing six connections. Two pores are found in this position in several Cheilostomata, as Brettic, C'utenicella, etc., and we may, perhaps, now see the significance of these spots or disks.

The zoocia are about a third larger than those from the Chatham Islands and twice as large as those from New Zealand.

The B. intermedict has been found in New Zealand, Tasmania (H.), Chatham Islands (W.), Red Sea (W.), Australia, Indian Ocean.

EXPLANATION OF THE PLATES.

Plate I.

Fig. 1. Crisia inflata, sp. n. $\times 2$. From Wracin.
2. Do. do. $\times 85$. Showing ovicell. 3. Crisia elongata M.Ed. $\times 12$. From Wasin.
4. Do. do. Natural size.
5. Crisia sertularoides Aud. $\times 25$. From Wasin.
6. No. do. $\times 3$.
7. Crisia circinata, sp. n. $\times 12$. From Ras Osowamembe.
8. Do. do. \times about 2 .
9. Do. do. $\times 25$. Ovicell seen from the side.

Plate II.

Fig. 1. Entalophora wasinensis, nom. n. $\times 25$. Showing ovicell. From Wasin. 2. Do. do. \times 万. Section of ovicells containing embryos.
3. Do. do. $\times 330$. Embryo.
4. Do. do. $\times 85$. Section of ovicell containing embryos.
5. Idmonea interjuncta MacG. \times 12. Showing ovicell with oceciostome (oe.). From Ras Osowamembe.
6. Idmonea radians, var. erecta Busk. X 25 . Showing ovicells with oœciostome (oe.). From Ras Osowamembe.
7. Do. do. do. $\times 25$. Longitudinal section of the ovicell. Cut parallel to the anterior and dorsal surfaces.
8. Do. do. do. Natural size, showing the position of the ovicells

Fig. a. Idmonea radians Lam. typica, Natural size.
9. Entalophora wasinensis, nom. n. $\times 330$. Section of the surface pore-tubes; (m.) exterior membrane.
10. Idmonea radians, var. erecta Busk. $\times 85$. Section from the anterior to the dorsal surface of the zoarium, showing the lobes of the ovicell and the onciostome (ne.) as well as the polypides (p.). The structure of the wall of the ovicell is seen at the left (st.) with one or two rosette-plates at the base of the broad pore-tube. There is an outer membrane (m.).

Plate III.

Fig. 1. Mimosella bigeminata, sp. n. $\times 85$. Showing the lower internode with only a pair of zocecia, while the upper one has two pairs. From Ras Osowamembe.
2. Do. do. $\times 6$. Showing several stems growing from the creeping stolon.
3. Do. do. $\times 85$. Showing a new stem growing from the side of an old one rfter mutilation.

Fig. 1. Zoobotryon pellucidum Ehr. $\times 250$. Embryo in ovisac (os.). Zorecial wall (zw.). This shows the embryo hollow, which is very generally the case in embryos of this type.
5. Do. do. $\times 200$. Disk of rosette-plate showing one small pore in the centre.
6. Do. do. $\times 375$. Disk of rosette-plate witl a circle of cells round the pore.
7. Do. do. $\times 700$. Section across the rosette-plate showing cells directed to the small opening; with mesenchym cells above. Only two of the radiating cells above the rosette-p'ate are shown, as the others are only seen in a different focus, but there will he 8 or 9 .
8. Do. do. $\times 330$. Section aeross the rosette-plate in a septum of a main stolon. Showing a spreading plasma with cells seattered abont. From the sudan.
9. Do. do. $\times 700$. Section across the rosette-phate from the stolon to the zocecium.
10. Do. do. $\times 330$. Section across the rosette-plate; above it there is an irregular gramular mass. 'This is in a zoœcimu in which there is an ovarimm, and degeneration has taken place.
11. Do. do. $\times 330$. Section across the rosette-plate from a stolou to a zonecinm, showing imerular grammar masses in a zoncinm that is degenerating.
12. Do. do. $\times 330$. Section across the rosette-plate from a stolon to a zocecium.
In all cases the figures show the older part below the rosette-plate, and the younger above.

Platelv.

Fig. 1. Amathia vidovici Hell. \times 12. From Wasin.
2. Do. do. $\times 330$, Section where a new branch is formed on each side, showing the cells round the two rosette-plates. The phing of cells on the lett are not cut close to the opening of the rosette-plate, and the two inner plags have become somewhat grambar.
3. Amathia lendigera L. $\times 500$. Section through the rosette-phate of the spiptam of the stolon. Examined with $1 / 12$ inmersion. From swamage.
4. Do. do. $\times 2 \overline{5}$. Showing the brancll at a hifurcation arising almost at right angles to the main stem.
5. Crisia denticulata Lamk. $\times 330$. Section through the immer wall of a zonecinn, showing the comections from zowecinm to zowecium (c.). From Swanage.
6. Crisic elomgata M..Ed. $\times 250$. Proximal end of zorecium-(a.) showing commection to the two neighbouring zocecia, through numerons tulses in which there is a septum in the middle, zoocial walls (w.). From Wasin.
7. Stomatopora. Primary zowsium. $\times 85$.
8. Tervia irregularis Meneghini. Comb-like process in the zooctial tube near where it becomes erect. From Naples.
9. Farrella atlantica Busk. $\times 85$. From Ras Osowamembe.
10. Pedicellinu spinosa Robertson. $\times 85$. From Wasin.
11. Do. do. $\times 25$.
12. Zoobotryon pellucidum Ehr. Natural size. From Chnaka Bay.

[^0]: * Communicated by C'yril ('rosslanj, M.A., B.Sic., F.Z.S.

[^1]: * Morph. and Syst. Studies on the Cheil. Jryozoa. 1. 69 (19(9).

[^2]: * "On some Ovicells of C'yelostomatous Bryozon," Joum. Lim, Soc., Zow).

[^3]: * This name camot stand as it has already been nsed, see page 836.
 \dagger Quart. Journ. Geol. Goc. vol. xlviii, p. 155, pl. iii, fig. 1 (1892).
 \# heuss (Foss. Polyparien des Wiener Tert. p. 99) described the Cyclostomatons ovicells as Colophyma, of which C.glabrum ocenred on Crisia hörnesi (a Crisia), Retepora disticha (apparently Idmonea), and R. cancellata (do. Idm.); and Ceelophyma striatum on Hormera hippolithus.

 Hagenow (Bry. Maest. p. 10̃) described Ccelophyma lavis on Truncatula repens and T. truncata; C. constrictum on Idmonea tetrastichee (this is not Idmonea, perhaps a worn Truncatula) ; and C. granulatuin on Idm. lichenoides. Gregory does not quote Hagenow quite correctly.

[^4]: * "Ovicells of Cyclost. Bryozoa," Journ. Limn. Soc., Zool. vol. xx. p. 278, pl. xiv. fig. 2 (1888).
 + Waters, "Bryozoa from Franz Josef Land," Journ. Linn. Soc., Zool. vol, xxix. p. 173, pl. xix. fig. 12 (1901).
 \ddagger In some fossils the orifice is larger, sce Canu.

[^5]: * Calvet, "Bry. Cyclost. pror. des Camp, seient. accomp. p. S. A.S. In Prince de Monaco à hord de la Princesse-Alice," Bull. Inst. Ocean. No. 215, p. 7, fig. 5 (1911). + Krit. Fort. 1866, p. 414.
 \ddagger Exped. Antarct. Belge, p. 89, pl, ix. fig. 6 (1904).

[^6]: * "Bry. der höhmischen Kreideformation," Weuk", der Nath.-Naturw. ('l. K. A kad. Wien, vol. xaxrii. pl, vini. fics. 30, 31 (1877).

[^7]: * "Bryozoa of the Woods Hole Legion," Bull. Bur. of H"isheries, vol. xxx. p. 215, pl. xviii. fig. 7 (1910).

[^8]: * [The parentheses around the names of anthors placed after scientific names in this paper are used in accordance with Article 23 of the Intermational Rules of Nomenclature (Proc. 7th Int. Cong., Boston 1907, p. 44 (1912)).-Enitor.]

[^9]: * "Yord Howe Island Polyzoa," Proc. Roy. Soe. Vict. vol. xrii. n. ч., p. 300, pl. xxix. fig. 12 (1904).

[^10]: * E. intricaria Busk has the rars or spines on the outside of the zoocial tubes, which pass through the ovicells. The lamina is not seen in all stages, and in the section which I figured, Q. Journ. Geol. Soc. vol. xliii., pl. xviii. Hig. 5, none is seen, though in other pieces it is quite distinct.
 + "Études sur les ovicells des Brıoz. du Bathonien d’Occaignes," Bull. de la Soc. Géol. de France, $3^{\text {me }}$ sél. sol. xxvi. p. 282, figs. 19, 20 (1898).

[^11]: * "Bry. from New South Wales" etc., Ann. Mag. Nat. Hist., ser. 5, vol. xx. p. 25ă, pl. vi. figs. 27,28 (1887).
 † "Zur Entwickelungsgeschichte der Cyclost. Seebryozoen," Mitt. Zool. Stat. zu Neapel. vol. vii. p. 180 (1887).
 \ddagger "Foss. Bry. der Grakei Bay bei Aucklaud," Novara Expedition, p. 113, pl. xviii. fig. 3 (1864).,

[^12]: * "Tert. Polyzoa of Victoria," Trans. Roy. Soc. Vict. vol. iv. p. 120, pl. xvi. fige. 12-16 (1895).
 + See my re-description "On some Ovicells of Cycl. Bry.", Jorrn. Linn. Soc., Zool. vol. xx. p. 275, pl. xiv. figs. 1, 3, 4, 7 (1888).
 \pm See Harmer, "Devel. of Tubulipora," Quart. Journ. Micr. Sc. vol. xli. n. s. p. 88 (1898).

[^13]: * Waters, "Bry. from Zanzibar," Proc. Zool. Soc. 1913, p. 529, pl. lxxiii. figs. 3 \& 5, and p. 490, text-fig. 79.
 + "On the Ovicells of some Lichenopore," Journ. Liam. Soc., Zool. vol. xx. pl. xy. fig. 6 (1888) ; "Mar. Biol. Sud. Red Sea, Bry.." Journ. Linn. Soc., Zool. vol. xxxi. pl. xxf. fig. 16 (1909).
 \ddagger "Vergl. Anat. Untersuch. ü. Zoobotryon pellucidus, Ehr.," Abhand. k. Akad. der Wiss, Berlin, p. 276 (1869).

[^14]: * This figure was copied by Hincks, Brit. Mar. Poly. p. ix, fig. 4.
 + Joliet, Bry. des Côtes dẹ France, p. 31, foonnote, says that Bowerlomkia hac only one perforation. As I hare previously stated, Zoobotryon and Bowerbankia should not be generically separated.
 \pm This is the "joncturie" of Jullien, who descrihes a similar arrangement of cells to the joncturie of Schizopmella malusii Aud., 'Cap Horn,' p. 42.
 § "Peitr. \%. Kemut. der Bryozom," Zeit. f. wiss, Zool. vol. xxi. p. 9 (1871).

[^15]: * Hafs-Bry. Utreek. Öfv. Stockh. Akad. xxii. pl. vi. fig. 7 (1865).
 + See Waters, "Mar. Biol. of the Sudanese Red Sea, Bryozoa," Journ. Sinn. Soc., Zool. vol. sxxi. pp. 219, 250 (1910).

[^16]: * Osburn calls it Hippuraria, but I hare shown that the genus was founded on a mistake, as the "stem" was a seaweed upon which it grew : see "Rep. Sudanese Bry.." Jomm. Limn. Soc., Zool. vol. xxxi. p. 241.

[^17]: * Journ. Linn. Soc., Zool. vol. xxxi. p. 239, pl. xxv. fig. 6.
 \dagger Aun. Mag. Nat. Hist. ser. 5, vol. xix. p. 311, pl. ix. fig. 8 (1887).
 \& "Etudru Anat. \& Emb. sur le P!irosomu giganteum," p. 106, pl. v. fig. 4 (1888).

[^18]: * "Mar. Biol. of the Sudanese Red Sea, pt. ii.," Journ. Linn. Soc., Zool. vol. xxxi. p. 252 (1910).
 + "On an Entoproctan Polyzoon (Barentsia beneden") new to the British Isles," Trans. Roy. Soc. Edin. vol. xlvii, p. 835 (1911).
 \ddagger "Résultats rlu Yoy. du S.Y. 'Brlgica'-Bryozoa," p. 100 (1504); "Mar. Biol. Sud. Ked Sea, pt. ii.," Journ. Linn. Soc., Zool, vol. axxi. 1. 252 (1910).

[^19]: ** "Contrib. à l'hist. des Bryoz.," Arch. Zool. Expeŕr. 2 ${ }^{\text {me }}$ scr. vol. x. pl. xxiv. figs. 14-17 (1892).

