HARVARD UNIVERSITY.

LIBRARY
OF THE
MUSEUM OF COMPARATIVE ZOÖLOGY 40,060

Museum

September 25,1913.

$$
40,060
$$

MEMOIRS

MUSEUS OF COMIPARATIVE ZOÖL.OGY

HARVARD COLLEGE.

VOL. XXXVI.

TROPICAL PACIFIO.

The following Publications of the Museum contain Reports on the Dredging Operations in charge of Alerunder Agussiz, of the U.S. Fish Commission Stcamer "Albatross," during 1899 and 1900, Commander Jefferson F. Moser, U. S. N., Commanding.
I. A. Agassiz. Preliminary Report and List of Stations. With Remarks on the DeepSea Depnsits by Sir John Murray. Mem. M. C. Z., VoI. XXVI. No. I. January, 1902. 114 pp. 21 Charts.
II. A. G. Mayer. Some Species of Partula from Tahiti. A Sturly in Variation. Mem. MI. C. Z., Vol. XXVI. No. 2. January, 1902. 22 pp. I Plate.
III. A. Agassiz and A. G. Mayer. Medusae. Mem. M. C. Z., Vol. XXVI. No. 3. January, 1902. 40 pp. 13 Plates, 1 Chart.
IV. A. Agassiz, The Coral Reefs of the Tropical Paeific. Mem. M. C. Z., Vol. XXVIII. February, 1903. 33, 410 pp .235 Plates.
V. C. R. Eastaan. Shark's Tceth and Cetacean Bones from the Red Clay of the Tropical Pacifir. Mem. M. C. //., Vol. XXVI. No. 4. June, 1903. 14 pp. 3 Plates.
VI. IV. E. IIoylf. Cephalopoda. Bull. M. C: Z., Vol. XLIII. No. 1. March, 1904. 71 pp. 12 Plates.
VII. H. Ludwig. Asteroidea. Mem. M. C. Z., Vol. XXXII. July, 1905. 12, 292 pp. 35) Plates, 1 Chart.

Vill. IV. E. Ritter and' Emeth S. Brxbee. The Pelagie Tunicata. Mem. M. C. Z., Vol. XXYI. No. 5. August, 1905. 22 pp. 2 Plates.

1. Mary .I. Rathbun. The Brachyura. Mem. M. C. Z., Vol. XXXV. No. 2. August, 1907. ist pp. 9 Plates.
X. C. H. (illbert. The Lantern lishes. Mem. M. C. Z., Vol. XXVI. No. 6. July, 1905. 24 1יp. 6 Plates.
XI. A. Agassiz. Echini: The (ienns Colobocentrotus. Mem. M. C. Z., Vol. XXXIX, No. 1. Nowember, $1908.8,33$ pl). 49 Plates.

Xll. J. Mhrar and (3. V. Lef. The Depth and Marine Deposits of the Paeifie. Mem. M. C. \%., Vol. XXX̌Vill. No. 1. June, 1909.170 pp. 5 Plates, :3 Maps.

Xlif. IV. ('. Kendal, and E. I. Gotdsmomong. The Shore Fishes. Mem. M. C. Z., Vol. XXVt. No. 7. Pobrary, 19H. $10 \% \mathrm{pp} .7$ Plates
XIV. H. IIeath. The Solenogastres. Mem. M. C. Z., Vol. XLY. No. 1. Junc, 1911. 150 pp . J I 0 I'lates.
XV. A. M. Westbriren. Eehini: Erhinonëns and Micropetaton. Mem. M. C. Z., Tol. XXXIX. No. 2. August, 1915. 34 pp .31 Plates.

MEMOIRS

OF THE

MUSEUS OF COMPARATIVE ZOÖLOGY

AT

HARVARD COLLEGE.

VOL. XXXVI.

SDemotrs of the SDusemn of Comparative Zoëlogy A'T IIARVARD COLLEGE.
 YOL. XXXYI

TIIE PLAGIOSTOMLA.

(SHARKS, SKATES, AND RAYS).

SADItEL GARMAN

```
WITH sEVENTY-SEVEN PLATES.
```

PLATES

CAMBRIDGE, U.S.A.:
Drinted for the IDuselum. September, 1913.

CONTENTS.

THE PLAGiostomita (SHARKS, SKATES, AND RAYS). By Samel Garman. 52 pages. 77 plates. September, 1913.
-

List of Abrreviations.

ag.	angular.	1.	labials.
a.	antorbital.	1^{\prime}.	lateral expansion of rostrat.
aqv.	aqueducts of the vestibulc.	1 s .	lateral'stay.
ar.	angular.	mk .	lower jaws. Meckelian.
bhy.	basihyal.	msp.	mesopterygium (nsp. pl. 67).
bra.	outer branchial stay.	mtp.	metapterygium.
bre.	inner branchial stay.	mx.	maxillaries, quadratopterygoids.
brr.	branchial rays.	not.	prenarial cartilages.
bstr.	basitrabeculae.	nv.	nasal valves.
chr.	ceratolranchials.	op.	opercular cartilages.
chy.	ceratohyals.	plor.	epibranchials.
co.	copula.	plos.	posterior branchial support.
ср.	partial copula.	pet.	peetoral areh, shoulder girdle.
c.	eye or orbit.	po.	post orbital process.
ehy.	epilhyal.	prp.	propterygium.
ebr.	epibranchial.	psp.	postspiracular eartilage.
evs.	epitropeals, supra. \& subtropeals.	qpg.	¢uadratopterygoid.
cxbr.	extrabranchials.	r. or rl.	rostral cartilage.
ebs.	ceratobranchials.	sbr.	suprabranchials.
fo.	foramen.	se.	scapular.
g.	gill lamellae.	so.	supraorbital.
hbr.	hyobranchials.	sp.	spiracular.
hin.	hyomandibular.	x.	basal element of eighth arch.
int.	intestine.		

PLATE 1.

CESTRACIONTIDAE.

Fig. 1-3. Cestracion zygaena (l'age 157). Fig. 4-6. Cestracion tiburo (lage 160).

1. Lateral view of a specimen $27^{\frac{1}{2}}$ inches long.
2. Head from below.
3. Teeth from the side of the jaxs.
4. Lateral view of a spopimen $21 \frac{1}{2}$ inches long.
5. Heat from below.
6. Teeth from the side of the jaw.

PLATE 2

CARCHARINIDAE

Fig. 1-4. Scoliodon terrae novaf (Page 115). Fig. 5-8. Carcharinus limbatus (1’age 127)

1. Lateral view of a specimen 213 inches long.
2. Itead from below.
3. Teeth from the front and from the side of the jaw.
4. Seales from near the midlle of the ftank.
5. Lateral view of a specimen 34 inches long
6. Head from below.
7. Teath from the front and from the side of the jaw.
S. Neales from near the midhle of the flank.

PLATE 3.

PLATE 3.

CARCHARINIDAE

Fig. 1-3. (ialems glautus (1age 145). Fig. 4-6. Carcharinus platyodon (Page 126).

1. Lateral virw.
2. 'Teeth from the forward end of the jaw.
3. Heal from below.
4. Lateral view.
5. Teeth from the forward end of the jaw.
6. Head from below.

PLATE 4.

PLATE 4

CARCIIARINIDAE and G.ALEORIIINID.AE.

Fig. 1-5. Hemgaleus pectoralis (Page 150). Fig. 6-9. Galeorifinus laevis (Page 176).

1. Lateral viow of a specimen $25 \frac{1}{2}$ inches long.
2. Teeth from the inner side.
3. Forward teeth from the outer side.
4. Head from below.
5. Seales from the middle of the flank.
6. Lateral view of a specimen 27 inches long.
7. Hearl from below.
8. Teeth from near the front end of the jaw.
9. Feales from near the middle of the flank.

PLATE 5.

PLATE $Б$.

CALEORHINIDAE and LIURIDAE

Fig. 1-1. Triakis henlel (Page 165). Fig. 5-9. Carcilarodon carcearias (Page 32).

1. Lateral virw of a specimen $25 \frac{1}{2}$ inches long.
2. Teeth from near the front end of the jaw.
3. Ifead from below.
4. Neales from near the middle of the flank
5. Lateral viow.
ti. Teeth from near the front end of the jatw.
6. Nostril.
S. Hearl from below.
7. Scales from near the middle of the flank.

PLATE 6

CARCHARIDDAE and ISURIDAE.

Fig. 1-3. Carcharlaś taurus (Page 25). Fig. 4-6. Iscurus punctatus (Page 36).

1. Lateral view of a specimen 42 inches long.
2. Teeth from the front end of the jaw
3. Hearl from below.
4. 1,ateral view.
\therefore. Teeth from near the front end of the jaw
i. Itead from below.

PLATE 7.

VULPECULIDAE and ORECTOLOBIDAE.

Fig. 1-3 Yolpectla marina (1’age 30). Fig. 4-6. Ginglymostoma cirratum (Page 54).

1. Lateral view of a sperimen 53 inchos long.
2. Teeth from near the front end of the jaw.
3. Hearl from below.
4. Lateral view of a specimen 14_{8}^{3} inches long.
a. 'Teeth from near the front end of the jaw.
5. Head from below.

PLATE 8.

CATULIDAE and ORECTOLOBlDAE.

Fig. 1-6. Parmaturus pllosus (Page 89). Fig. 7-10. Nebrgdes macrurus (Iage 5s).

1. Lateral view of a specimen 17 inches long.
2. Head from below.
3. Teeth from near the front end of the jaw.
4. Seales from near the middte of the flank.
5. Lateral view of scales.
6. Ventral fins.
7. Lateral view of a specimen $31 \frac{1}{2}$ inches long.
s. Teeth from near the front end of the jaw.

9 . Srales from near the mildle of the flank.
10. Lateral view of scales.

y) bs

Q

$$
\begin{aligned}
& \sqrt{2}+1 \\
& 2
\end{aligned}
$$

PLATE 9

MLATE 9.

CATULIDAE.

Fig. 1-5. Parmaturus xanlurus (Page 90). Fig. 6-9. Cephaloscyllium ventriosum (Page S0) .

1. Lateral view of a specimen $21^{\frac{3}{4}}$ inches long.
2. Head from below.
3. Teeth from near the front end of the jaw.
4. Seales from near the midille of the flank.
5. Egg-case.
6. Lateral viow.
7. Heall from brow.
8. Treth from front and sile of jaw.
9. Scales from different parts of the body.

PLATE 10.

PLATE 10.

SQUALIDAE.

Fig. 1-4. Etmopterts hillianus (Iage 224). Fig. 5-S. Centroscyllhum fabricii (Page 231).

1. Lateral view of a specimen $9 \frac{3}{4}$ inches long.
2. Teeth from the front end of the jaw.
3. Head from below.
4. Seales from near the middle of the flank.
5. Lateral view.
6. Teeth from near the front end of the jaw.
7. Head from below.
8. Seales from near the midule of the flank.

$$
11
$$

PLATE 11

PLATE 11.

GQUILIDAE.

Fig. 1-4. Acanthidium rostratum (Page 218). Fig. 5-8. Icanthidium hystricostm (Page 220).

1. Lateral view of a specimen $3 \pm$ inches long.
2. Heal from below.
3. Teeth from the front end of the jaw.
4. Scales from near the mildlle of the flank.
5. Lateral view of a specimen 30_{4}^{1} inches long.
6. Head from below.
7. Teeth from the front end of the jaw.
S. Scales from near the midde of the flank.

PLATE 12.

SQUALIDAE.

Fig. 1-1. Acanthidim aciculatum (1'age 217). Fig. 5-S. Centrophorus acus (Page 199).

1. Lateral view of a specimen $34 \frac{1}{8}$ inches long.
2. Tceth from the front end and from the side of the jaw
3. Heal from below.
4. Scates from the middle of the flank.
5. Latcral view of a specimen $32 \frac{1}{4}$ inches long.
6. Teeth from the front end of the jaw.
7. Head from below.
8. Scales from near the middle of the flank.

PLATE 13.

SQUALIDAE.

Fig. 1-1. Centrophorus atmomarginatuts (Page 200). Fig. 5-S. Centroscymnes owstoni (Page 205).

1. Lateral view of a specimen 31 inches long.
2. Tecth from the front end of the jaw.
3. Head from below.
4. Seales from near the middle of the flank
5. Lateral view of a specimen $30 \frac{3}{4}$ inches long.
6. Teeth from the front end of the jaw.
7. Head from below.
8. Sicales from near the middle of the flank.

PLATE 14.

SQUALIDAE.

Fig. I-4. Squalus acanthas (Page 192). Fig. 5-8. Centroscymus coelolepis (Page 204).

1. Lateral view of a specimen 27 inches long.
2. Teeth from the front end of the jaw.
3. Head from below.
4. Scales from near the middle of the flank.
5. Lateral view of a specimen 44 inches long.
6. Teeth from near the front end of the jaw.
7. Head from below.
S. Scales from the middle of the flank.

PLATE 15.

PLATE 15.

SCYMNORHINID.AE.

Fig. 1-3. Somniosts brevipinna (Page 240). Fig. 4-6. Somniosus microcephalus (Page 241).

1. Lateral view of a specimen 75 inches long.
2. Teeth from side near the front ent of the jaw.
3. Seales from the midile of the Itank.
4. Lateral view of a specimen 10 b inches long.
5. Teeth from near the front end of the jaw.
6. seales from the middle of the flank.

18

PLATE 16.

RHHNIDAE and PRISTIDAE.

Fig. 1-4. Rhina californira (Page 253). Fig. 5-7. Pristis clavata (Page 263).

1. Dorsal view of a sperimen $12 \frac{1}{8}$ inches long.
2. Frontal view of the head.
3. Teeth.
4. Sicales from the middle of the body.
5. Dorsal view of a specimen $24 \frac{3}{6}$ inches long.
6. Forward teeth.
7. Scales from near the middle of the body.

PLATE 17

PLATE 17

RHINOBATIDAE

Fig. 1-2. Rhinobatus lentiginosus (Page 279).

1. Dorsal view of a specimen 223^{3} inches long.
2. Ventral view.

PLATE $17{ }^{\text {a }}$.

PLATE 17a

RHINOBATIDAE.

Fig. 1-2. Rhinobatus rasus (Page 270). Fig. 3-1. Rhinobatus planiceps (Page 283).

1. Dorsal view of a specimen $14 \frac{7}{8}$ inches long.
2. Head from below.
3. Dorsal view of a specimen $17 \frac{7}{8}$ inches long.
4. Head from below.

EL OTYPE C:

I'LATE 17b

PLATE 17°

RHINOBATIDAE and RAIIDAE.

Fig. 1-2. Rhinobatus acutus (Page 273). Fig. 3. Raia kincaidi (Page 343).

1. Dorsal view of a specimen $13 \frac{7}{\frac{7}{6}}$ inches long.
2. Head from below.
3. Dorsal view of a specimen 12 inches long.

PLATE 18

PLATE 18.

RAIIDAE.

Fig. 1. Raia plttonia (Page 335). Fig. 2. Raia ornata (Page 336).

1. Dorsal view of a specimen $9 \frac{5}{8}$ inches long.
2. Dorsal view of a specimen $6 \frac{1}{2}$ inches long.

PLATE 19

PLATE 19.

RAIIDAE.

Fig. 1-2. Rala ackleyl (Page 336).

1. Dorsal view.
2. Head from below.

PLATE 20.

Plate 20.

RAIIDAE.
Fig. 1-2. Rala erinacea (l'age 337).

1. Dorsal view of a specimen $19 \frac{1}{2}$ inches long.
2. Head from below.

PLATE 21.

RAIIDAE.

Fig. 1-2. Raia scabrata (Page 340).

1. Dorsal view of a specimen $14 \frac{1}{9}$ inches long. M1. C. Z. 365.
2. Dorsal view of a specimen $31_{4}^{\frac{1}{4}}$ inches long. M. C. Z. 1139.

PLATE 22.

PLATE 22.

RAIIDAE.

Fig. 1. Paia diaphanes (Page 339). Fig. 2. Raia stabuliforis (Page 341)

1. Dorsal view of a specimen $36 \frac{1}{4}$ inches long. M. C. 7. 1136.
2. Dorsal view of a specimen $47 \frac{1}{2}$ inches long. M. C. 7. 1138.

E m. f.sener, de

PLATE 23.

PIJATE 23.

RAIIDAE.

Fig. 1-2. Raia eglanteria (Pige 3:1).

1. Dorsal view of a specimen 21 inches long. M. C. Z. 57 s .
2. Head from below.

1'LATE 24.

RAIIDAE and NARCACIONTIDAE.

Fig. 1-2. Rata kenojel (Page 351). Fig. 3. Narke japonica (Page 314). Fig 4-5. Rala FUSCA (Page 349).

1. Dorsal view of a specimen $17 \frac{3}{8}$ inches long. M. C. Z. 1125.
2. Mouth and nostrils.
3. Dorsal view of a specimen 10_{8}^{3} inches long. M. C. Z. 1121.
4. Dursal view of a sperimen $4 \frac{3}{4}$ inches long. M. C. Z. 1240
5. Ventral view.

PLATE 25.

RAIIDAE and NARCACIONTIDAE.

Fig. 1. Raia senta (Page 338). Fig. 2. Nabcacion nobilianus (Page 310).

1. Dorsal view of a specimen $22 \frac{1}{2}$ inches long. M. C. Z. 250.
2. Dorsal view.

PLATE 26.

NARCACIONTIDAE.

Fig. 1. Narcine brasiliexsis (Page 297). Fig. 2. Narcine brasiliensis bavcrofti (Page 298). Fig. 3 Narcine brasiliensis coralliva (Page 295).

1. Dorsal view of a specimen $1 \frac{1}{3}_{5}^{3}$ inches long. M. C. Z. 655
2. Dorsal view of a specimen $9 \frac{1}{3}$ inches long. M. C. Z. 752 .
3. Dorsal view of a specimen $7 \frac{\bar{\sigma}}{\delta}$ inches long. M. C. Z. 44.

PLATE 27.

PLATE 27.

RAIIDAE.

Fig. 1-2. Sympterygia acuta (Page 370). Fig. 3-5, Malarorhina mira (Page 372).

1. Dursal view of a specimen $13 \frac{1}{1}$ inches long. M. C. Z. 632 .
2. Ventral view of the anterior hatf of disk.
3. Dorsal view of a specimen $14 \frac{3}{4}$ inehes long. M. C. \%. 226.
4. Ventral view of the anterior part of disk.
5. Dorsal and lateral views of the produced end of the snout.

PLATE 28.

PLATE 28.

DASYBATIDAE.

Fig. 1-3. Urobatis sloani. (lage 402).

1. Dorsal viow.
2. Lateral view of young from oviduct.
3. Ventral view of young from oviduct.

PLATE 29.

PLATE 29.

DASYBATIDAE.

Fig. 1-2. Unobatis vermiculatus (Page 402).

1. Dorsal view. M. C. Z. 1055.
2. Ventral fins and tail from below.

PLATE 30.

DASYBATIDAE.
Fig. 1-2. Urotrygon mundus (Page 406).

1. Dorsal view of a specimen $8 \frac{1}{1}$ inches long. M. C. Z. 831.
2. Ventral view.

нE. YRE

PLATE 31.

POTAMOTRYGUNIDAE.

Fig. 1-2. Potamotrygon circularis (Pige 119). Fig. 3-4. Potamotrygon laticeps (Page 417).

1. Dorsal view. Disk $15 \frac{1}{x}$ inches long. M. C. Z. 291.
2. Mouth and nostrils.
3. Dorsal view. Disk 16 inches long. M. C. Z. 605.
4. Mouth and nostrils.

PLATE 32.

PLATE 32.

DASYBATIDAE.

Fig. 1-2. Dasybatus latus (Page 383). Fig. 3-4. Dasybatus longus (Page 390). Fig. 5-6. Dasybatus brevis (Page 396).

1. Dorsal view of a specimen 51 inches long. M. C. Z. 129.
2. Mouth and nostrils.
3. Dorsal view of a specimen $39^{\frac{1}{4}}$ inches long. M. C. 7. 126.
4. Mouth and nostrils.
5. Dorsal view of a specimen $30 \frac{7}{8}$ inches long. M. C. Z. 371.
6. Mouth and nostrils.

PLATE 33.

DASYBATIDAE.

Fig. 1-2. Dasybatus malrints (Page 382). Fig. 3-4. Pteroplatea morura (Page 414)

1. Dorsal view of a specimen 106 inches long. M. C. Z. 990.
2. Mouth and nostrils.
3. Dorsal view of a specimen $11 \frac{1}{2}$ inches long. M. C. Z. 95 .
4. Head from below.

PLATE 34.

POTAMOTRYGONIDAE.

Fig. 1-3. Disceus thayeri (Page 426).

1. Dorsal view. Disk $12 \frac{7}{8}$ inches long. M. C. Z. 563.
2. Mouth and nostrils.
3. Teeth from near the front end of the jaw

PLATE 35.

MYLIOBATIDAE

Fig. 1-4. Myliobatis freminvillif (Page 432).

1. Dorsal view of a specimen $46 \frac{1}{8}$ inches long. M. C. Z. 992.
2. Frontal view.
3. Ventral view.
4. Teeth from upper and lower jaws.

,

PLATE 36.

PLATE 36.

MYLIOBATIDAE.

Fig. 1-3. Aetomylaeus maculatus (Page 435). Fig. 4-6. Mylobatis peruvianus (Page 430).

1. Dorsal view of a speeimen $28 \frac{1}{2}$ inches long. M. C. Z. 106 .
2. Head from below.
3. Teeth from upper and lower jaws.
4. Dorsal view of a specimen $23 \frac{5}{8}$ inehes long. M. C. Z. (636.
5. Head from below.
6. Teeth from upper and lower jaws.

PLATE 37.

PLATE 37.

RIIINOPTERIDAE.

Fig. 1-3. Rhinortera quadriloba (Page 444).

1. Dorsal view of a specimen $35^{\frac{1}{2}}$ inches long. M. C. Z. 746 .
2. Lateral view.
3. Frontal view.

PLATE 38.

PLATE 38.

MOBULIDAE.

Fig. 1-6. Mobula hypostoma (Page 453).

1. Dorsal view of a specinen 39 inches long. M. C. Z. 683.
2. Frontal view.
3. Lateral view.
4. Head and gill openings from below.
5. Teeth from upper jaw.
6. Teeth from lower jaw.

PLATE 39.

PLATE 39.

CARCHARIDAE and MYLIOBATIDAE.

Fig. 1. Carchartas taurus (Page 25). Fig. 2. Myliobatis freminvilli (Page 432).
These longitutinal sections of the head and anterior part of the boly contrast the conditions in one of the lower of the dntacea with those in one of the most specialized of the Platosomia. The sections show the cartilages of the skull, those of the forward portion of the vertebral rolumn, and in part those of the branchial apparatus; they show the brain, its chamber, the celular eavities of the heat, the mouth cavitie's from the lips to the stomach, the jaws, the teeth, the pats protecting the roof of the mouth, and the arrangement of the muscles.

PLATE 40.

CARCHARIDAE

Fig. 1-3. Scapanorhynchus owstoni. M. C. Z. 1048 (1age 28).

1. Brain from above.
2. Brain from the side.
3. Brain from below.

Comparison of the brain of this species with that of Carcharias tames, Plate 41, proves that Seapanorhynchus is the more primitive of the two gencra and eonversely that Carcharias is much the more arlvanced.

PIATE 41.

PLATE 41

CARCHARIDAE

Fig. 1-3. Carcifarias taurus (Page 25).

1. Upper surfaces of the brain.
2. Brain from the side.
3. Brain from below.

Though not of as high a type as that of Vulpeeula, Plate 42, and greatly outranked by the brains of the Carcharinilae and Cestraciontidae, Plate 43, fig. 1-4, the brain of Carcharias taurus makes a eonsiderable advance from that of Scapanorhynchus, Plate 40.

2

PLATE 42.

PLATE 42.

VULPECULIDAE.

Fig. 1-5. Vulpecula marina (Page 30).

1. Brain after removal of the eartilage above it.
2. Brain after partial removal of the vessels and envelopes.
3. Lower surface of the brain removed from its chamber.
4. Brain from ahove.
5. Brain from the side.

PLATE 43.

CESTRACIONTID.AE, CARCH.ARINIDAE, and SQUALIDAE.

Pig. I. Cesthacion thburg (Page 160). Fig. 2-3. Cestrachon zygaena (Page 157). Fig. 4-5. Carcharinus platyodon (Page 126). Fig. 6-S. Galeocerdo abcticus (Page IIs). Fig. 9-10. Gqualus aranthias (I'ge 192).

1. Dorsal view of brain. N. C. Z. 1292
2. 1)orsal view of brain. M. C. Z. I291.
3. Ventral view of brain.
4. Dorsal view of brain.
5. Nasal sac, bisected.
6. Dorsal view of brain. M. C. \%. 12s8.
7. Ventral view of brain.
8. Lateral view of brain.
9. Dorsal view of brain. M. C. Z. 1298.
10. Ventral view of brain.

From the brain of the Carcharidar, Plates 40 ind 41 , there was in the Vulpeculidae, l'fate 42, a markel increase in the plication of the hind brim with a less considerabte one in the size of the fore brain. In Plate 43, the much greater alvanee of the Cestraciontidae is seen both in the volume of the fore brain and the complexity of the hind brain; these are more advanced in the Cestraciontidae than in the Carcharindae, the nearest allies, for instances see fig. 4, Carcharimus platyodon, and figs. 6-8, Galeocerdo areticus. That the archaic family siquatidae is much lower in rank is indicated by the smooth hind brain and the smaller amount of the fore brain.

PLATE 44.

PLATE 44.

R.AIID.AE and D.ASVB.ITID.AE.

Fig. 1-3. Raiascabrata (Page3.30). Fig. 1-6. Ralastauulforis (Page 341). Fig. 7. Dasybatus marines (Page 382),

1. Brain from above. M. C. Z. 1289.
2. Brain from the side
3. Brain from below.
4. Mrain from above. M. C. Z. 1291.
5. Lar from the side.
f. Brain from below.
6. Brain from above. M. C. Z. 1257.

The comparative amount of the brain is much the same in these families but the higlrer rank of the Dasybatidae is plainly indicated in the greater complexity of the hind brain.

PLATE 45.

PLATE 45.

CENTRACIONTIDAE.

Fig. 1-6. Centracion francisci (Page 186).

1. Teeth and jaws of a very young specimen.
2. Upper jaws and teeth of the same.
3. Lower jaws and teeth of the same.
4. Jaws and teeth of a larrer specimen.
5. Upper jaws and teeth of the same.
6. Lower jaws and teeth of the same.

The teeth of the very young Centracion are all raptorial; they attest a soft-loolied food at this stage, and a probable aneestry in forms with cuspidate teeth. The larger specimen shows the widening of the hindmost teeth in preparation for the development of the grinders.

PLATE 46.

CENTRACIONTIDAE.

Fig. 1-6. Centracion francisci (Page 186).

1. Jaws of a speeimen of medium size.
2. Upper jaws and teeth of the same.
3. Lower jaws and teeth of the same.
4. Jaws of an old individual.
5. Upper jaws and teeth of the same.
6. Lower jaws and teeth of the same.

These figures are from older specimens than those shown on Plate 45. They indieate the depided change that takes place in the feeching habits. The hinder teeth are all molars, with a low ridge instead of eusps, and are much witer and more swollen than the front teeth, some of the hindmost of which apparently have been succeeded, when renewed, by molars in their particular rows.

PLATE 47.

CENTRACIONTIDAE.

Fig. 1-3. Centracion quoy (Page 187). Fig. 4-6. Centracion philippi (Page 182).

1. Jateral view of jaws and teeth.
2. Wpper teeth and jaws from below.
3. Lower tecth and jaws from above.
4. Jateral view of jaws and teeth.
5. Tpper teeth and jaws from below.
6. Lower teeth and jaws from above.

The ridges on the molars of younger specimens become less prominent with age and use. The harder the food in particular localities the more faint the ritges appear.

PLATE 48.

PLATE 48.

RHINOP $\Gamma E R I D A E$.

Fig. 1-3. Rhinoptera jussieui (Page 447). Fig. 4. Rhinoptera marginata (Page 445). Fig. 5-6. Rimnortera lalandil (Page 445).

1. Teeth from a very young speeimen. 11. C. Z/. 311 .
2. Teeth from a larger specimen. M. C. Z. 3 I6.
3. Teeth from a large specimen. N. C. Z. 535.
4. Jaws and primary dentition. M. C. Z. 631.
5. Teeth from a medium sized specimen. M. C. Z. 5:34.
6. Teeth from a large specimen. M. C. Z. 534.

Figures 1, 2, and 4 illustrate the changes in dentition during the period of rapid growth from very young stages. 'The small round primary teeth in front of the pavements suggest derivation from ancestral forms with dentition resembling that of some Dasybatidae. In fig. 3 and 6 are shown the teeth of large specimens. Figures and 5 show dentition that have heen much affected by individual variation.

2

PLATE 49.

PLATE 49.

MYLIOBATIDAE.

Fig. 1-3. Aëtobatus narinarl (Page 441). Fig. 4-6. Myliobatis californicus (Page 429).

1. Dentition of a very young specimen. M. C. Z. 1079.
2. Dentition of a young specimen, latger than that shown in fig. 1. M. C. Z. 1070.
3. Tecth of a large specimen. M. C. Z. 865.
4. Dentition of a very young specimen. M. C. Z. 348.
5. Dentition of a larger specimen. M. C. Z. 395.
6. Dentition of a specimen beyond the age of rapid growth. MI. C. Z. 424.

In the youngest specimens of Aëtobatus examined there are two rows of upper and two rows of lower tecth, fig. 1 and 2, each two quickly broatening and being suceected by the broad teeth of the single row retaned through life. I'ossibly a still earlier stage may show a dentition more like that of Rhinoptera in its primary features. The earliest stage of Myliobatis figured has six rounded teeth in front of the pavement, another has seven, thus accounting for all the rows of later stages, the median one only beeuming broad. It is to be expeeted that younger specimens wh show dentitions more in accord with that of fig. 1, Plate 48, in Rhinoptera.

PLATE 50.

PLATE 50.

ANTACEA

Fig. 1, 6, 8. Galeorhinus laevis (Page 176). Fig. 2. Parmaturus pllosus (Page S9). Fig. 3. Triaerodun obesus (Page 163). Fig. 4. Carcharines mliberti (Page 133). Fig.5, 11, 12. Triakls semifasciata (Page 165). Fig. 7. Triakis henlei (Page 16s). Fig. 9. Hemgaleces per"toralis (1'ige 150). Fig. 10. Eugaleus galeus (Page 153). Fig. 13-16. Scoliodon longurio (1'ige 114).

The nietitating membranc in its early stages is merely a longitudinal fold in the lower eyclid, not reaching the edges of the lirl, fig. 1 and 2. This is the ease in the very young of Gulorhinus laceis, fig. 1; in older specimens of this species the fold reaches the edge of the lid at one end, as in fig. 6 , but in large ones the fold reaches the eelge of the lid at both ends, fig. S , and in transverse section its outlines resemble those of Triakis, fig. 12. The mombrane attains its greatest perfertion and more nearly covers the eyeball in the Cestraciontidae (Hammer Ifeads) and in the Careharinidae, fig. 4, 13-16. In the Galeorlinidae it is better described as a fold insteal of as a membrane. lutll cases it is likely that only with some aid by muscular retraction of the ball can it be mate to cotirely cover the eye. Plate 50 indicates some of the variations in the pupil of the eye. The oblique pupil of the Centraciontilac (Port Jackson Sharks) is shown on Plate 45, fig. 1.

1

8

9

0

15

13

3

6

11

$+$

4

12

PLATE 51.

PLATE 51

CARCHARIDAE.

Fig. 1-6. Scapanorhivehus uwstovi. M. C. Z. 1048 (Page 28). Fig. 7. Carcharias taurus. M. C. Z. 210 (Page 25)

1. Skull in longitudinal section.
2. Branchial skeleton from below.
3. Branchial skeleton from above.
4. Pelvis and radials.
5. Heart, eonus, and arteries.
6. Intestine with spiral folds.
7. Intestine.

In most features the structure of Scapanorhynehus is closely allied to that of Carcharias. This is very evident in the parts of the anatomy given on this plate but not previously figured. It first sight the snont appears to present most divergence but most of this disappears on closer comparison of the long snout with the short one. The large cartilage in lig. 3 behind the eopula, glossohyal, between it and the first ceratobranchial, is the first hypobranchial; it is present atso in Carcharias, see Fübringer, 1903, Morph. jahrh., 31, pl. 17, f. $20 x$. Three extrabranchials are shown in fig. 2 of Plate 51, a skender rudiment of a fourth was present. As in most other items, the intestines of these genera, fig. 6,7 , have much in common.

PLATE 52.

Petvis of ANTACEA and DIPNOI.

Fig. 1. Scoliodon longurio. M. C. Z. 694 (Page 114). Fig, 2. Hemigaleus pectoralis M. C. Z. 847 (lage 150). Fig. 3. Pristiophorus japonicus. M. C. Z. 1045 (Page 246). Fig. 4. Protolterus annectens. M. C. Z. 8964 . Fig. j-7. Ceratodus forsteri. M. C. Z. 9827.

1-5. Lower view.
6. Upper view.
7. Lateral view.

The pelvis of the Antacea, fig. 1-3, is radically different from that of the Dipnoi, fig. $1-7$. The differences are of such characters that no evidenees of close relationships are evident. The structure in the sharks, the Antacea, is farther than that in rertain of the more speciadized of the Platosomia, the Potamotrygons, for instance, Plate 54, fig. 1-2, from that in these Dipnoi; yet undoubtedty such resemblances as exist between the pelvis of the Lung Fishes and that of the River Trygons, in the median propelvie cartilage, is due to similarity of conditions and habits and not to inheritance from common ancestors. The pelvis of Polypterus is still more remote, nearer to that of bony fishes.

Plate 63.

PLATE 63

Pelvis of PLATOSOMIA.

Upper and lower surface.
Fig. 1. Uraptera Agassizil. M. C. Z. 549 (Page 367).
Fig. 2. Narcacion californicus. M. C. Z. 43 (Page 311).
Fig. 3. Urobatis sloani. M. C. Z. 35) (Page 402).
Fig. 4. Taeniula limad. M. C. Z. 23 (Page 399).
Fig. 5. Dasybatus marintis. M. C. Z. $6 \not 11$ (Page 382).
Fig. 6. Pteroblatea altavela. M. C. Z. 386 (Page 415).
The pelvis of the Raiilae, fig. 1, with the lateral prepelvir processes, recalls that of Cyrlobatis, a fossil genus. The pelvis of Narearion, fig. 2, is raioid, hut is more arehed barkward in the middle. Figures 3 - 6 represent the Dasybatidae, in whieh family the organ is more like that of the Antarea, which have neither lateral nor median processes in front of the pelvis.

PLATE 64.

Pelvis of PLATOSOMIA.

Fig. 1. Potamotrygon circularis. M. C. Z. 296 (Page 419).
Fig. 2. Disceus thayeri. M. C. Z. 606 (Page 426).
Fig. 3. Myliubatis freminyllal. M. C. Z. 1160 (Page 432).
Fig. 4. Aëtobatus narinarı. M. C. Z. 359 (Page 441).
Fig. 5. Rhinoptera jetssieut. M. C. Z. 563 (Page 447).
Fig. 6. Mobula hypostoma. M. C. 7. 683 (Page 453).
The figures on this plate are from a group of the Platosomia characterized by a median process in front of the pelvis, among other features. The process is shortest in the Myliobatidae, fig. 3-4, longer in the Mobulidie, fig. 6 and longest in the Potamotrygonidae. Its prespme has no bearing on a question of affinity with Dipnoi, Plate 52, fig. 4-7.

ANTERIOR VERTEBRAE.

Fig. 1. Callorhynchus tritoris. M.C.Z. 173. Fig.2. Chimaera monstrosa. M. C. Z. 326. Fig. 3. Pristis microdon. M. C. Z. 302 (Page 265). Fig. 4. Runobatus percellens. M. C. Z. 430 (Page 278). Fig. 5. Raia ehinacea. M. C. Z. 358 (Page 337). Fig. 6. Potamotrygon laticeps. M. C. Z. 290 (Page 417). Fig. 7. Taeniura lymma. M. C. Z. 620 (Page 399). Fig. S. Myliobatis californious. M. C. Z. 636 (Page 429). Fig. 9. AËtobatus nabinari. M. C. Z. 677 (Page 441). Fig. 10. Rhinoptera jussieur. M. C. Z. 863 (Page 447).

Figures 1 and 2 show the condition of the vertebrae in the Chismopnea, how few of them are included in the consolidation, the artieulation of the ercetile spine, and the condition of the notoehord, without rings in Callorhynchus, fig. 1, with rings in Chimaera, fig. 2. Figures $3-10$ are from among the lowest to the lighest of the Platosomia. They inclicate the gradually increasing number of the vertebrae taking part in the anchylosis, with the decrease in size and withdrawal backward of the lateral wings or stays so prominent in the Pristidae, fig. 3, the scapulary attachment of the shoulder girdle superior in Pristidae and Rhinobatidae, fig. 3-4, inferior in the Raiae, fig. 5, and a lateral articulation in Dasybatidae, fig. 7, Potamotrygonidae, fig. 6, Myliobatidae, fig. S, Rhinopterilae, fig. 10 and the Mobulidae. The different styles of attachment of the shoulder girdle apparently divide the Platosomia into groups. A considerable increase in irregularity of vertebrae and processes obtains as the most specialized genera are approached.

PLATE 66.

HEART.

Fig. I. IIeptranchias perlo. M. C. Z. 945 (Iage 2I). Fig. 2. Scaphanorhynches owstoni. M. C. Z. 1048 (Page 28). Fig. 3. Orectolobus Japonicus. M. C. Z. 1038 (Page 50). Fig. 4. Cephaloscylhum umbratile. M. C. 7. $10 \not 11$ (Page 80). Fig. 5. Isurus punctatus. M. C. Z. 1249 (Page 36). Fig. 6. Pristiophorus japonicus. M. C. Z. 1045 (Page 246). Fig. 7. Rhinobatus percellens. M. C. Z. 430 (Page 278). Fig. S. Discobatus sinensis. M. C. Z. 1120 (Page 259). Fig. 9. Narcacion marmoratus. M. C. Z. 42 (I'age 305). Fig. 10. Narke japonica. M. C. Z. 1114 (Page 314).

Rather generally the number of rows of valves in the conus of the Antacea decreases with advance in rank, with increase in specialization. For proof of this compare Heptranchias, fig. I, Scaphanorlynehus, fig. 2, Isurus, fig. 5, and Pristiophorus, fig. 6, with Orectotobus, fig. 3, and Cephaloseyllium, fig. 4. In the Platosomia the rule does not hold so well, as is shown by comparing Rhinobatus, fig. 7 , of this I'late with greatly specialized types, Plate 57 , fig. 1-6.

$$
\left.\begin{array}{l}
a \\
A
\end{array}\right)
$$

PLATE 67.

IIEART.

Fig. 1. Sympterygha acuta. M. C. Z. 632 (Page 370). Fig. 2. Disceus thayeri. M. C. Z. 207 (I'age 426). lig. 3. I'reroplatea altavela. M. C. Z. 336 (Page 415). Fig. 4. Aëtubatits narinari. M. C. Z. 677 (Page 441). Fig.5. Rhinoptera jussiedi. M.C.Z. S63 (Page 447). Fig. 6. Mobula hypostoma. M.C.Z. 683 (l'age 453). Fig.7-10. Ceratonus forsteri. M. C. Z. 9827.

The majority of the more differentialed of the families of the Platosomia have a larger number of rows of valves in the conus than others commonly aceeptel as much lower in rank; that is, with increase in specialization decrease in the number of valves does not obtain as regularly as in the Antacea. This is substantiated by contrast of Rhinobatus, Plate 56, fig. 6, with Aëtobatus, fig. 4, Rhinoptera, fig. 5, and Mobula, fig. 6, of Plate 57.

Figures 7-10 represent the heart of Ceratodus.
For fig. 7 the pericardinm was slit longitudinally and turned to the sides; for fig. 8 both conus and ventricle were openct, showing the upper end of the so-called spiral valve in the passage from the ventriele into the conus, the lower end of the passage with the end of the hinder one of a series of large thiskwalled valves of the aditus, and the chamber of the ventricle with the basal, posterior, fibrous pad. The conus is thrown open in fig. 9 disclosing the transverse series of large valves immediately behind the arteries, and behind that series another transverse series of smaller vatyos; this figure also shows the somewhat spiral course of the opening from the ventricle, in doted lines, with the end of a large valve at its origin, and the fibrous pad :t the side of which is a large opening controlled by muscles into the ventrifle. The inner two of the dotted lines roughly indicate the position of a longitudinal series of large valves laid bare in fig. 10 which shows one of the transverse series of large valves in front ent open to prove that this series originated from one of the hinder of several transverse series, the smaller valves of the anterior series loeing included by the larger valves; this figure also shows a longitudinal series in the aditus of large valves one of which was formed from each of the transverse series of small valves, at its left in the figure.
$0 \quad 00$
DAD

PlATE 58.

Intestines of ANTACEA and CERATODUS

Fig. 1. Heptranchlas perlo. M. C. Z. 945 (1age 21). Jig. 2. Cephalosctllium umbratule M. C. Z. 1044 (Page 80). Fig. 3. Isurus iounctatus. N. C. Z. [219 (1’ige 36). Fig. 4. Hemigaleus pectoralis. M. C. Z. St7 (Pige 150). Fig. 5. I'ristiophorús japunicus. M. C. Z. 1045 (Page 246). líg. 6. Ceritodus fostert. M. C. Z. 9527.

There are marked differences between the intestine of the Plagiostomia and that of Cerutodus. The stomach of the fomer is distinetly separated from the spiral intestine, while that of the latter is a continuation forward of the spiral itself. The stomach and intestine of Ceratodus, fig. fi, form a continnous spiral the characters of the inner surfaces of which change from the villous of the stomach [roper to the absobent of the intestine in a single turn of the winding course. The number of turns in Ceratorlus is nine or ten; the axis of the spiral is firm and muscular. The number of turns in the intestinal spiral of the Plagiostomia varies in those disseeted here from four in Hemigaleus, fig. 4 , to thirty-nine in 1 surus, fig. 3.

PLATE 59.

1'LATE 59

Fig. 1-2. Soutalus acanthlas. M. C. Z. 35 (l'age 192). Fig. 3. Ginglymostoma cirratum. M. C. Z. SI9 (1’ige 54). Fig. 4-6. Chlamyoselachus anguneus. M. C. Z. 1247, I2S5 (Page 14). Fig. 7-S. Mobila hypostoma. M. C. Z. 683 (Page 453). Fig. 9-10. Rhinoptera jussieui. M. C. Z. S6.3 (Puge 447).

Figure I, $\frac{4}{7}$ natural size, and fig. 2, natural size, exhibit the outer and the internal yolk-sac, the heart with arteries, the liver, the stomach, and the intestine. Figure 3, 'To natural length, is the egg of Ginglymostoma, the embryo showing through the shell. Figure $4-5, \frac{5}{7}$ nat., show the egg with the embryo of Chlanydoselachus. Fig. $7-8$ show the appearance of the gill plates of Mobuk, and fig. $9-10$ those of Rhinoptera. There is in the latter a longitudinal division of the plates into upper and lower parts, in fig. 9 there are also seen modifications to some extent intermediate in character between the plates in fig. 10 and those of Mobula.

Figure 6, of Chlamydoselachus, was made for comparison with the type and with figures in more reecut articles by Furbringer and Goodey. In a mumber of points it is at variance with the figures mentioned and agrees mor nearly with the type. There is no point behind the middle of the first basihyal, as in Fürbringer, 1903, Morph. jahrh. 31, pl. 27, f. IS or in Goodey, 19t0, Proc. Zool. soe. Lond., pl. 43 , f. 6 "hbr. 1 (?)." The basibranchials are more numerous and regular than in either of the mentioned figures. The bypobranchials are present in five pairs, the himbost pair being displaced and resting below the junction of the sixth ceratobranchial and the basibranchial; these cartilages are those figured as the vestigial seventh arrh, Guodey, luc. cit., pl. 43, fig. 6, "b a 7 (?)." The seventh arch was discovered and figured by Fürbringer, I903, as an "eventuel Rudiment einer siebenten liemenbogens"; it is of much greater development in this Plate than in cither of the other figures.

PLATE 60.

ANTACEA.

Fig. I-4. Galeorhinus laevis (Page 176). Fig. 5-9. Squalus acanthas (Page 192).

1. Nearly natural length. M. C. K. 130I.

2-3. Nearly natural length. M. C. Z. 1304.
4. Nearly natural lengtlı. M. C. Z. I30:3.
5. Two thirds natural length.
6. Twice natural length.

7-9. Natural size.
5-9. M. C. Z. 130~.
Figure 1 represents the egg in its membranous envelope before the appearance of the enbryo Figures 2-4 show the embryo with the egg near the time the latter attaches itself to the wall of the oviduct, the attachment being a consequence of active development of the blood vessels and rapid depletion of the nutriment of the egg. D'artially attiched eggs, before entire disappearance, are considerahly morlified on the side in contant with the wall to which after the egg is absorbed the embryo remains attached by the corll. The egg of squalus, fig. 5 and 7 , is one that carries a sufficient amount of nutriment for the development and growth of the embryo without attachment to the surrounding walls. The distribution of the blood vessels over the yolk differs much from that in fig. 2-4.

Plate 61.

- PLATE 61.

PLATOSOMIA and ANTACEA.

Fig, 1-3. Narcacion marmoratus (Page 305). Fig. 4-5. Narcacion nobllianus (Page 310). Fig. 6. Narche thalet (Page 300). Fig, 7-8. Chlamyoselachus anguineus (Page 14). Fig. $9-11$. Rhina californica (Page 253).

1-3. Various stages from De Sanctis, 1872.
4-5. Four fifths and natural length. M. C. Z. 1016.
6. One and two thirds natural length

7-8. One and three fourths natural length. M. C. Z. 1285.
9-10. Five sixths natural length. M. C. Z. 916.
11. Two and two thirds natural length. M. C. Z. 916.

The first three figures ithustrate the squaliform raiiform and torpertiform stages socalled by De Sanctis (1872, Itti Reale acearl., 5, pl. 1, fig. 3, 6,9.) In fig. 3 the forwart extension of the pecturils, at the sides of the hatteries, is strongly marked while the lateral growth of the antorbital process ultimately forming the front of the disk has hardly begun; at this stage the latter merely forms a pad in front of the head. Figures 4 and 5 from a specimen off the coast of New England illustrate the lateral growth of the antorbital portions of the disk to meet the forward extensions of the pectorals and, with the obliteration of the noteh opposite arch eye, complete the disk. See the skeleton of N. marmoratus on Plats 67 , ao. The batteries are well developed ant the disk completely outlined at a very small stage of Narcine timbei, fig. 6. In connection with fig. $7-8$, showing the young Chlamydosehachus with well differentiated fins and external gills, see also fig. $4-5$,]'late 59 . 'The embryo of Rhina californica, fig. 9, was attarbed to an enormots mass of yolk, longer and many times the weight of the little shark. Fighres 10 and 11 show the intestimes and their connection with this yolk, the doted lines indiealing the entrance in front of the spiral folds.

PLATE 62.

IsURIDAE.

Fig. 1-3. Isurus punctatus (Page 36).

1. Dorsal view of the skull, vertebrae, branchial cartilages, and shouder girdle.
2. Lateral view of the skull, jaws, teeth, branchiad eartilages, and shoulder girdle.
3. Ventral view of the skull, jaws, teeth, brauchial eartilages, vertebrae, and shoulder girdle.

PLATE 63.

PLATE 63.

ISURIDAE.

Fig. 1-6. Isurus punctatus (Page 36).

1. Pectoral fin.
2. Pelvis and ventral or pelvic fins.
3. Verteliral column, second dorsal fin, and the anal fin.
4. First dorsal fin.
5. Cautal fins and vertebrae.
fi. Scales from near the midtle of the flank.

PLATE 64.

PLATE 64.

PRISTIOPHORIDAE and I'RISTIDAE.

Fig. 1. Pristiophorus japonicus (Page 246). Fig. 2-3. Pristis microdon (Page 265).

1. Dorsal view. M. C. 7. 1045.
2. Dorsal view. M. C. 7. 302.
3. Ventral view. M. C. Z. 302.

A species of the Antacea is placed by the side of one of the Platosomia to give prominenee to differences between the two groups, which appear esperially, among others, in the jaws, the branehial skeleton, the shoukter girdle and the pertoral fins. Tho girdle of tho shark, fig. 1 , is remotely attached to the vertebrae in its acapulary extensions; it is consilerably areherl and the fins are placed rather behind its transverse axis. In the ray, fig. 2, the girdle is firmly and superiorty attached to the vertebrae by means of a scapular element and the fins are lateral and forward of the artieulations as woll as behind them. The ropula, bhy, is divided into sertions, segmented, and distinet from the cartilages behind it ; in the ray it is unsegmented and iss attached to the ceratohyals, chy (ehy in l'late). Strong cartilages appear in the gill covers of the ray, sp. The postbranchial stay, phe, has its greatest development in Pristis and, as shown in the following plates, lwindles in approaching the rays of highest rank.

RHINOBATIDAE

Fig. 1. Rhynchobatus diddensis. M. C. Z. S06 (Page 268). Fig. 2. Rhinobatus percellens. M. C. Z. 435 (Page 278). Fig. 3. Syrrhini brevirostris (Page 285).

The skeleton of the Rhinobatidae is elosely allied to that of the Pristidac. The ropula, hbr 1 , is unsegmented, the other basibranchials are broarlened fused and contorted, the antorbital, ao, is extended farther outward from the skull and the shoulder girdle is much widened. The basibranchials are sketched from young individuals and must of course differ considerably from those of larger or adult specimens.

PLATE 66.

PLATE 66.

DISCOBATIDAE.

Fig. 1-3. Discobatus sinensis (l'age 289).
The figures are taken from a female twenty-five and one fourth inehes in length. The lower surface, fig. 2, has been dissereted out so as to show the skeleton and the visecra. The mouth, fig. 3, was drawn as it appeared before disection. Attention is directed to several features in which Diseobatus to some extent approaches the Nareaciontilae. The rostral cartilage, r, ends abruptly al short distanec in front of the skull and is supplemented by soft flexihle branched extensions somewhat like those of Narcine. The antorbital, an, has greatly extented forward and outward. The bremchial rays are expanded at their outer extremities. Thero is a triangular group of ampullae, an imeipient hattery, opposite the cud of each lower jaw. The eopulta, h br', is unsegmented. The pelvis is very wide; it is provided with a slight anterior process at cach end. The propterygium of the ventrals is considerably branched at its distal end. With the exception of the liver, which is imdicated by dotted lines, the viscera are shown in position.

PLATE 67.

PLATE 67.

NARCACIONTIDAE.

Shoulder girdle to snout.
Fig. 1-2. Narcacion marmoratus. M. C. Z. 42 (Page 305). Fig. 3-1. Narke japonica. M. C. Z. 1114 (l'age 3I4).

1,3. Ventral view.
2, •. Dorsal view.
The Torpecloes form the most distinet group of the Platosomia. Aside from the eleetric apparatus their skeletons would serve to place the family at a distance from the other families. The thoulder girdle, the antorbital and its function in the furward part of the disk, the peculiar rostral cartilages, the spiracular cartilages and their supplementals, and the slender branchial rays with their rounded platelike extremities are very different from the same parts in the framework of the nearest allies. The incomplete copula, co, cp, and the arrangement of the joints of the propterygial hasalia of the pectoral fins also illustrate this; and at the same time the genera of the Nareaciontidae differ widely from one another: - compare the clongate skull, long rostral cartilages, the anterionly much dissected antorbitals, the wide postbranchial stays, pos, the arrangement of the propterygial joints of the peetoral basalia, and the regularly articulated branchihyals of Varcacion marmoratus with the short skull, short rostral eartiluge, the slightly dissected antorbitals, the narrow extent of the postbranchial stays, the labial eartilages, and the consolidated branchihyals of Narkc japomica.

PLATE 68.

PLATE 68.

RAIIDAE.

Fig. 1. Rala erinacea. M. C. Z. $35 s$ (Page 337). Fig. 2. Uraptera Agassizil. M. C. Z. 549, (Page 367). Fig. 3-4. Simpterygia acuta. N. C. Z. 632 (Page 370).

The proterygith basatia of the pectoral fins of the Narcaciontidae have numerons joints between the antorbital, ao, and the pectoral arch, pet; the Raiidac have comparatively few, most often but a single one, that is two segments in the pectoral base opposite the gills, an arrangement gaining in firmmess of the disk along the sides of the brachial chamber. Marked variations occur anong the genera of Raidae. In Sympterygit, fig. 3 asemicartilaginous mass in front of the skull chisplaces the rostral cartilage; in Malacortina the rostral cartilage is lacking and the forward part of the skull is murla like that of the Dasybatidac. In gencral the hyobranchials are reducel, but the eopula, hbr ${ }^{\prime}$, is eomplete and not segmented as in Dasybatidae nor divided as in Nareaciontidac. The seapular, sc, overlaps the girdle. The prominent lateral prepelvic processes recall similar ones on the fossil genus Cyclobatis.

brr.

气
*

Semememaumanile

PLATE 69

PLATE 69.

RAIIDAE and DASYBATIDAE.

Fig. 1-2. Malacorhina mira. M. C. 2. 226 (Page 372). Fig. 3. Urotrygon aspidurus. M. C. Z. 555 (Page 405). Fig. 4-5. Urobatis sloani (Page 402).

A peeuliarity of Malacorhina is the absenee of a rostral eartilage, the front of the skull in consequener rosembling that of Dasybatus. The seapular attachment overlaps the girlle as in the other Raiitae. A feature not noticed in the others is a small movable cartilage, x, resting above the base of the suspensorium, a rudiment perhaps of a sometime complete arch which ineluded the spiracular earilages and the pterygoqualrates, the upper jaws. The eopula is unsegmented and the joints in the bases of the peetorals opposite the gills are like those of the family in general.

Urotrygon, fig. 3, and Urobatis, fig. 4-5, agree in most respets with other Dasybatidae; they have no rostral cartilage, there is no joint in the pectoral base opposite the gills and the scapular articulations are against the ends of the scapula, se. not above the girdle as in the Raidae. Urotrygon, fig. 3, apparently larks the median segment of the eopula, as in the Torpedoes. In Urobatis there is a slender elongate supraspiracular cartilage.

苍
ミ 言 ミ

$\stackrel{\text { 玄 }}{\text { 立 }}$

PLATE 70.

POTAMOTRYGONIDAE.

Fig. 1-2. Potamotrygon circularis, M. C. Z. 295 (Page 419). Fig. 3-4. Disceus thayeri. M. C. Z. 606 (Page 426),

1,3. Dorsal view.
2, 4. Ventral view.
The River Trygons are elose allies of the Dasybatidae. They have no rostral rartilage from the skull forwart, the copulit, hbr', is segmented, the propterygial basalia of the pectoral fins, pup, are strong and in a single piece between the antorbital and the shoulder girdles, ant the posthranchial stay, phes, is reducel. Discens, fig. 3, has a smatl hartly distinct antorbital ratilage, ro, a bow postspiracular psp, a wide bar in the shoulder girdle and short orhital prowsses; Potamotrygon, fig. 1, has a larger antorbital, a narrow and clongate postspiracular, a narower bar in the girelle and longer whital proresses. In both genera the ceratobranchials are more or less soldly anchylosed. Disceus has elongate narrow opercular cartilages, op $I-5$.

mitre.

PLATE 71.

PLATE 71

DASYBATIDAE.

Fig. 1-2. Dasybatus guttatus. M. C. Z. 639 (Page 391). Fig. 3. Dasybatus zugei. M. C. Z. 23 (Page 398). Fig. 4-5. Taeniura lymma. M. C. Z. G20 (Page 399).

1, 3, 4. Dorsal view.
2,5. Ventral view.
Rigidity of the disk around the head and the hranebial chamber is secured by the elongation and firmness of the propterygial segment of the pectoral hase. 'The copula, $h h_{r}$, unlike that of the Rairlae, is segmented; anteriorly, in the basibranchial portion, it hroadens toward the suspensorimm, hyomandibular, $h \mathrm{~m}$. The ceratobranchials ate more or less consolitatod and enlarged, as also the basilyyals. The branchial ray, or rays, at the outer ends of the reratolyals and ceratobranchials are attached to the bases of the pectoral at their outer ends but are not modified.

PLATE 72

PLATE 72.

Fig. 1-2. Pterorlatea altavela. (Page 415).
Except in what is more directly affected by the broadening of the body and the pectorats this genus exhibits no great departure from the other Dasybatidae. The copula is segmented, the propterygial segment of the pectoral base is strong and clongate and reaches slightly beyond the antorbital, the ceratobranchials, cbr, are fused at their inward ends, and the basihyals form a large broad shield-like plate. The shoulder girdle has been modified in several particulars; the pectoral bar, pet, has widened and the scapular braces to the pro-meso-and metapterygia have elongated, though the scapula, se, from which they oxtend outward, is comparatively little changed.

PLATE 73

PLATE 73

M LIOBATIDAE

Fig. 1. Myliobatis agulla. M. C. Z. 623 (Page 13I). Jig. 2. Myliobatis peruvianus. 1I. C. Z. 636 (Page 430), Fig. 3. Aetonylaeus maculatus. M. C. Z. 106 (Page 435). Fig. 4. AËtobatus narinari. M. C. Z. 677 (Page 141).

Three of the genera of the Myliobatidac are figured here. The fourth, Pteromylacus, stands between Aetomylaeus and Aëtobatus; it has the narrowed head and the separation of the pectorals as in the latter, but has a different dentition. Myliolatis, fig. 1, differs from the rest of the family in possessing a continuous pectoral along the side of the head, and in absence of the modification of the pectoral rays opposite the lower jaw. In all the genera the propterygial segment of the base of the pectoral extends beyond the antorbital, that is beyond the head. In the very young this section of the base appears to be somewhat irregularly segmented, but these indications are transitory, probably ancestral tokens. The branchial ray at the outer end of the ceratobranchial is slightly morlified at its point of attachment to the pectoral base. The extraserics of cartilages, evs, in front of the branchial rays along the ceratobranchials and cpibranchials are more developed than in preceding families. The extrabranchials, sbr, above and below, are well developed; they are modified branchial rays. The opercular cartilages, op 1-5, are fringed. Extra cartilages, evs, appear upon or along the bands of the gill lamellae; these may be called epitropeal, the upper ones being supratropeals, the lower subtropeals.

-

Plate 74.

PLATE 74.

RHINOPTERIDAE

Fig. 1-2. Rhinoptera jussiett. M. C. Z. 863 (Page 447).
The skull of the Rhinopteridac is short, broat, and somewhat indented in front. The cephalie fins are quite distinet from the pectorals, are situatefl at a lower level, and are not widely separated from one inother in front of the mouth. The mouth is widened and the jaws are broadened, the narial eartilages are long and broatl. The propterygial bases of the pectorals are unscgmented at the sides of the gill chambers, unless it be in very young stages, they are enlarged and strengthened, and to further conduce to stability and firmmess the lateral stays, $l s$, bra, bre, are so greatly modified as to be hardly recognizable as gill rays; the interior, $l s$, is directed forward over the antorbital, ao, as a single elongate cartilage; the second, hrr, fig. 1, is clirected ontward, segmented and turned back in its outer segment; the third, bra, and the following show the outer segment firmly attached to the base of the peetoral while the inner segment of the ray, the is broadened and enlarged into a sort of hammer-shape, solitly attacherl to the reratobranchial and the epilmanchial at their jumetion, and atso to the outer stay or segment, bra. The epitropeal cortibages, supratropeal and subtropeal, evs, form regular series above the arches, and irregular ones below them. The extrabanchials, sbr, supril and sub are large. The nesopterygia are much reduced or fused with the girdle, pet. The anterior hm, in fig. 1 , should be sp. Changes in the structure of the gills leading towards Mobula are seen in the Thinopteridae; the inward section of each lamina takes on more of the functions of protection and of propelling the food toward the stonitel while the outer section is inore concerned in purifying the blood, see l'late 59, fig. 9-10.

PLATE 75.

PLATE 75.

MOBULIDAE.

Fig. 1-2. Mobula iypostoma (Page 453).
A course of evolution resmbling the aetual course traversed by Mobula from an ancestral form like the Dasybati may be traced throngh Myliobatis, Aetomylaeus, and Rhinoptera by means of the pectoral and the ecphalic fins - connected and meeting in front of the heul amb lacking the mothfied radials opposite the gills in Mytiobatis, thiseonnerted at the sides but still meeting in front and possessed of the modified radials in Aetomylacus and Rhinoptera - or by means of the propterygial bases of the pectorals, or even by means of the outcr branchial rays their attachments and their transormations quite as reatily as by means of the dentition, the narial cartilages, or the skull itself. The eranium of Dobula is broader and more indented in the forehead than that of Rhinoptera. The ecphalic fins are distant from one another in front of the heal; they are radically scparated from the pectorals, the anterior rays of which latter have undergone eonsidrable changes of form. The mouth is widenct; the jaws are elongate. The outer leranchial rays are transformed into loraces or stays, $l s$, bra, bre, in a more firm attachment of the gill arches. The extrabranchials, sho, are highly developed; originally they were branchal rays, and they do not closely correspond with the extrabranchials seen, on l'late 51, fig. 2, or on Plate 62, exbr and sbr, in the shark. The stays ls, bre, bre originated as noted under Plate 74 for those in Rhinoptera. The second ray from the outer stay is lengthened, wider outwarl, and has a slender curved extremity; it also serves as a lmace. Nearly all of the rays on the matolyals, chy, are segmented and more or less changed in form. The long strips of cartilage, evs, first appearing ass small Iumps and later fusing, upon the bends in the gill lamellae, parallel with the gill arehes, are adventitious and are first noted in Myhbbatidae, Plate 73; they are named cpitropeal cartilages, the upper supratropeal, the lower subtropeal. The opercular cartilages, op $1-5$ attain their maximum development in this family.

PUBLICATIONS

or the

MUSEUMOFOUMPARATIVE ZOÖLOGY AT HARVARD COLLEGE.

There have been published of the Bulletin Vols. I. to LII.; of the Memoirs, Vols. I. to XXIV., and also Vols. XXVI. to XXIX., XXXI. to XXXIV., XXXVI., XXXVII., XXXVIII., and XLI.

Vols. LIII. to LVII. of the Bulletin, and Vols. XXV., XXX., XXXV., XXXIX., XL., XLII. to XLVIII., of the Memorrs, are now in course of publication.

A price list of the publications of the Museum will be sent on applicution to the Dircetor of the Museum of Comparative Zoölogy, Cambridge, Mass.

