

PROCEEDINGS

UNITED STATES NATIONAL MUSEUM.

$$
\begin{gathered}
\text { Volume XVII. } \\
1894 .
\end{gathered}
$$

PUBLISHED UNDER THE DIRECTION OF THE SMITHSONIAN INSTITUTION.

WASHINGTON:
GOVERNMENT PRINTING OFFICE.
1895.

ADVERTISEMENT.

The extension of the scope of the National Museum during the past few years and the activity of the collectors employed in its interest have caused a great increase in the amount of material in its possession. Many of the objects gathered are of a novel and important character, and serve to throw a new light upon the study of nature and of man.

The importance to science of prompt publication of descriptions of this material led to the establishment, in 1878, of the present series of publications, entitled "Proceedings of the United States National Museum," the distinguishing peculiarity of which is that the articles are published in pamphlet form as fast as completed and in advance of the bound volume. The present volume constitutes the seventeenth of the series.

The articles in this series consist: First, of papers prepared by the scientific corps of the National Museum; secondly, of papers by others, founded upon the collections in the National Museum; and, finally, of facts and memoranda from the correspondence of the Smithsonian Institution.

The Bulletin of the National Museum, the publication of which was commenced in 1875, consists of elaborate papers based upon the collections of the Museum, reports of expeditions, etc., while the Proceedings facilitate the prompt publication of freshly-acquired facts relating to biology, anthropology and geology, descriptions of restricted groups of animals aud plants, the discussion of particular questions relative to the synonymy of species, and the diaries of minor expeditions.

Other papers of more general popular interest are printed in the Appendix to the Annual Report.

Papers intended for publication in the Proceedings and Bulletin of the National Museum are referred to the Advisory Committee on Publications, composed as follows: Frederick W. True (chairman), R. Edward Earll (editor), Tarleton H. Bean, Otis T. Mason, Leonhard Stejneger, and Lester F. Ward.

S. P. Langley,

Secretary of the Smithsonian Institution.

TABLE OF CONTENTS．

Page．
$345-3.51$
Baur，G．The Relationship）of the Latertilian（ienus Ammi－ ellu，Gray．－No．1005．November 15， 1894 相
Bean，Barton A．（Scientitic Results of Explorations by theU．S．Fish Commission Steamer＂Albatross．＂No．Ixxim）．Descriptions of two new Flounders，Gastropsette jrontalisand Cyclopsetta chittendeni．－No．1030．May 11， 1895633－636
New genera：Gastropsetta，Cyclopsetta．New species：Gastropsetta frontalis，Cyclopsetta chittendeni．
（See also under Bean，Tarleton H．，and Bean，Barton A．）
Bean，Tarleton H．Description of a new Species of Rock－
fish，Sebustichthys lrerispinis，from Alaska．－No．10ご．May 11， 1895 $6 こ 5-6 i 25$
New species：Sebastichthys brevispinis．
Description of a new Species of Fish，Bleekeria gilli．－No．1028．May 11， 1895629－630
Ner species：Bleekeria gilli．
（See also under Goode，G．Brown and Bean，Tarleton H．）
Bean，Tarleton H．，and Bean，Barton A．Mescription of
Gobioines bronssoneti，a Fish new to North America，from theGulf of Mexico．－No．1029．May 11， 1895631－632
Beeson，Charles H．（See under Eigemmamn，Carl H．，andBeeson，Charles H．）Bendire，Charles E．Description of Nests and Eggs of somenew Birds，collected on the Island of Aldabra，northwest ofMadagascar，by Dr．W．L．Abbott．－No．983．July 19， 1894.39－41New species：Buchanga aldabrana，Foudia aldabrana，Rougetius ald－abranus．
New subspecies：Ixocincla madagascariensis rostrata．
Benbider, James E. (Scientific Results of Explorations by the Z^{*}. S. Fish ('ommission Steamer "Albatross." No. NXXI.) Descriptions of new (ienera and Species of Crabs of the Family Lithodidre, with Notes on the Young of Lithorles cometschetieus and Jithodes breripes.-No. 1016. Jannary 29 , 1895

New genera: Leptolithodes, Pristopus, (Edignathus, Lepeopus.
New species: Lithodes goodei, L. diomedert, L. "qquispinus, L. coucsi, L. rathbuni, L. californiensis, Leptolithodes multispinus, L. papillatns, Pristopus vervilli, Eidignathus gilli, Lepeopus forcipatus.
Bigelow, Robert P'Ayne. (Scientific Results of Explorations by the U. S. Fish Commission Steamer "Albatross." No. Xxxir.) Report on the Crustarea of the Order Stomutopodn collected by the Steamer "Albatross" hetween $1 \mathrm{~s}^{\circ}$ " and 1891. and on other Sperimens in the I'. S. National Museum (with Plates Xx-x̃if).-No. 1017. February 5, 1895. 489-550New genus: Odontorlactylus.
Clark, Hubert Lyman. The Pterylography of certain American Goatsuckers and Owls.-No. 1018. Nay 11, 1895. 501-572
Cocherel, T. 1). A. Notes on the (ieographical I)istribution of Scale Insects.-No. 1026. May 11, 1895 615-625
Dall, Williail Healif. Monograph of the Gems (imatho- don, (iray (Ran!in, Desmoulins), (with Plate Vir).-No. 985. July 23, 1894 89-106(Scientifie Results of Explorations by the IV. S. FishCommission Steamer "Albatross." No. xixiv.) Teport onMolluscu ank Prachiopoda Dredged in Meep Water, chieflynear the Hawaian Islands, with Illustrations of Hithertounfigured Speries from Northwest America (with PlatesXxUI-NXXII).-No. 1032
New sulogenus: spergo.
New species: Scaphander alatus, Sabatia pustulosu, Pleurotoma (lrillia) microscelida, I'leurotomella gypsina, P '. hawaiiana, P '. climacella, Spergo glandiniformis, S. daphelloides, Lunatia sauduichensis, Solariella reticulina, Emarginula hawaiiensis, Dentalium phaneum, D. complexum, Euciroa pacificit, Lyonsiella alaskana, P'cetunculus arcodentiens, Buccinum aleuticum, B. orulum, Chrysodomus insularis, C. (Ancistrolepis) magnus, Beringius frielei, 13. aleuticus, Irieleia halli, Ilemithyris beecheri, H. craneana, Liothyrina clarkeana, Macandrevia americana, M. cramiella, M. diamantina.

Elgenmana, Carl II., and Beeson, Charles H. A Revision of the Fishes of the Subfamily Schostime of the I'acific coast of America.-No. 1009. November 15, 1894.
Farrington, Oliver C. An Analysis of Jadeite from
Mogoung, Burma.-No. 981. July 19, 1894. 29-31
Gill, Theodore. On the Nomenclature and Characteristics of the Lampreys.-No. 989. July 23, 1894 107-110

- The Nomenclature of the Myliobatide or Aëtobatide.- No. 990. July 23,1894 111-114
—_The Nomenclature of the Family Pociliider or Cyprino- dontide.-No. 991. July 19, 1894 115-116
The Differential Characters of the Salmonide and Thymallide.-No. 992. July 19, 1894. 117-122
On the Relations and Nomenclature of Stizostedion or Lucioperca.-No. 993. July 21, 1894 123-128
Goode, G. Brown, and Bean, Tarleton H. (Scientific lie- sults of Explorations by the C.S. Fish Commission Steaner "Albatross." No. xxviri.) On C'etomimider and Rondeletiider, two new Families of Bathybial Fishes from the Northwest- ern Atlantic(with Plate xViI).-No. 1012. January 26, 1895. $4.51-454$
Neir families: Cetomimidx, Rondeletiide.
New genera: Cetomimus, Rondeletia.
New species: Cetomimus gillii, C. storeri, Rondeletia bicolor.
(Scientific Results of Explorations by the U. S. Fish Commission Steamer "Albatross." No. Xxix.) A re vision of the order Heteromi, Deep-sea Fishes, with a I escrip tion of the new Generic Types, Mracdonaldia and Lipogenys (with Plate xvini).-No. 1013. January 26, 1895 $455-40$
New genera: Gigliolia, Macdonaldia, Lipogenys.
New species: Gigliolia moseleyi, Lipogenys gillii.
(Scientific Results of Explorations by the U. S. Fish Commission Steamer "Albatross." No. xxx.) On Harriotta, a new Type of Chimieroid Fish from the Deeper Waters of the Northwestern Atlantic (with Plate xic).- No. 1014. January 26, 1895 471-473
New genus: Harriotta.
New species: Harriotta raleighana.
Howard, L. O. On the Bothriothoracine Insects of the United States.-No. 1025. May 11, 1895 60э̃-613
New tribe: Bothriothoracini.
New genera: Chalcaspis, Pentelicus.New species: Chatcaspis pergandei, Bothriothorax noveboracensis, B.californcus, B. nigripes, B. rotundiformis, B, planiformis, Pentelicusaldrichi.
Knowlton, F. H. A Review of the Fossil Flora of Alaska,with bescriptions of New Species (with Plate IX).-No. 998.August 2, 1894$207-240$New species: Salix minuta, Juglans townsendi, Fraximus herendeenensis,R'hus frigida, Zizyphus townsendi, Phyllites arcica.
Lamabertiokinar. Notes on Reptiles and Batrachians col- lected in Florida in 1892 and 1893.-No. 1003. November 15, 1894 317-339
Lucas, Frederick A. Notes on the Anatomy and Affinities of the Corebide and other American Birds.-No. 1001. No- vember 15,1894 299-312
Mason, Otis I. Overlaying with. Copper by the American Aborigines.-No. 1015. January 26, 1895 $475-477$
Mearns, Edgar A. Description of a new Species of Cottou Rat (Sigmodon minima) from New Mexico.-No. 99t. July 19, 1894 129-130
New species: Sigmodon minima.
Merrill, (ieorge P. ()n the Formation of Stalactites and Gypsum Incrustations in Caves (with Plates II-V).-No. 985. July 23, 189t 77-81
The Formation of Sandstone Concretions (with Plate vif.-No. 987. July ? ? ? , 189.t 8i-S5
__ Notes on some Eruptive Rocks from Gallatin, Jeffer- sou, and Madison Counties, Montana.-No. 1031. May 11, 189% (337-633
Packard, R. L. Note on a Blue Mineral, supposed to be Ultra-marine, from Silver City, New Mexico.-No. 978. May t, 1894 19-20
Ristrbin, Mary J. Descriptions of two new Species of ('rabs from the Western Indian Ocean, wresented to the National Museum by Dr. W. L. Abbott.-No. 979. May 4, 1894 $21-24$
New species: Irypoccelus abbotti, Deckenia cristata.
Descriptions of a new Genus and two new Species of African Fresh-water Crabs.-No. 980. May 4, 1894 25-27
New genus: Erimetopus.
New species: Parathelphusu campi, Erimetopus spinosus.

Rathbun, Mary J. Notes on the Crabs of the Family Inachicle in the Cnited States National Musemm (with Plate I).-No. 984. July 21, 1894
lage.
$4: 3-75$
New genera: Holoplites, Echinocus.
New species: Acheus trituberculatus, Podochela spinifrons, Collodes leptocheles, Batrachonotus brasiliensis, B. nicholsi, Inachoides intermedius, Auasimus latus, Echinocus pentagonus.
New subspecies: Euprognatha rastellifert spinosu.
i:3-86
New geuns: Thyrolambrus.
New species: Thyrolambrus astroides, Solenolambrus decemspinosus, Actar palmeri, Pilumnus diomedere.

Ricimond, Charles W. Diagnosis of a new Geuus of Trogons (Heterotrogon), based on Mupulorlermu rittutum of shelley; with a Description of the Female of that Species.-No. 1024. May 11, 1895

New genus: Heterotrogon.
Ridgway, Robert. Descriptions of twenty-two new Species of Birds from the Galapagos Islands.-No. 1007. November 15,1894
$3.7-3.0$
New species: Nesomimus bauri, N. bindloci, N. adtamsi, Certhilea salvini, C. bifasciata, C. mentalis, C. albemarlei, C. Lutcola, Geospiza barringtoni, G. propinqua, G. bauri, G. albemarlei, G. fratercula, G. debilirostris, G. aculirostris, Camarhynchus rostratus, C. productus, C. salvini, C. affinis, Pyrocephalus carolensis, P. intercedens, P. abingdoni.

Descriptions of some new Birds from Aldabra, Assump)tion, aud Gloriosa Islands, collected by Dr. W. L. Abbott.No. 1008. November 15,1894

Ners species: Zosterops aldabrensis, Cinnyris aldabrensis, C. abbotti; Centropus insularis, Caprimulgus aldabrensis.
New subspecies: Zosterops madugascariensis gloriosu.

- Additional notes on the Native Trees of the Lower Wabash Valley (with Plates $\mathrm{X}-\mathrm{xV}$).-No. 1010. January 24, 1895
$109-421$

Simpson, Charles Tohley. Distribution of the Land and Fresh-mater Mollusks of the West Indian Region, and their Evidence with regard to past changes of Land and Sea (with Plate XIV).-No. 1011. January 26, 1895
$423-450$

New species: Sagda maxima, Teocyclotus (I'ytchocochlis) bakeri, Lucidella costata, Plenrodonte bowdeniana.
Ste.trans, Robert E. C. The Shells of the Tres Marias andOther Localities along the Shores of Lower C'alifornia andthe Gulf of Califormia.-No. 996 . July 19, 1894139-204
STE,ANEGER, LEONHARD. Deseription of a new Lizard (Terti. celrial beldingi). fiom California.-No. 977. May 4, 1s9.t $17-18$
New species: Verticaria beldingi.

- Notes on a Japanese species of Reed Warbler.-No. 997. July 21, 1894 $205-206$
- Description of Uta mearnsi, a new Lizard from Califor- nia.-No. 1020. May 11, 1895. (Advance sheets, November 30,1894) 58!-591
New species: Uta mearnsi.
_- Notes on Butler's Garter Snake.-No. 1021. May 11, 180.5
$59: 3-594$
On the Specific Name of the Coachwhip Snake.-No. 1022. May 11, 1895 $595-596$
Description of a new Salamander from Arkansas with notes on Ambystom, "mmulatum.-No. 102:3. May 11, 1895. 597-599New species: Desmognathus brimleyoram.
Taylot, W. E. The Box Tortoises of North America.-No. 1019. May 11, 1895 573-588
New species: Terrapene bauri.
Thue, Freneric' W. Notes on Mammals of Balistan and the Vale of Kashmir, presented to the National Museum by Dr. W. L. Abbott.—No. 976. May S, 1894 1-16
New species: Arvicola fertilis, A. montosa, A. albicauda.
New subspecies: Macacus thesus villosus, Mus arianus griseus.
__ Notes on some Skeletons and Skulls of Porpoises of the Genus Prodelphinus, collected by Dr. W. L. Abbott in the Indian Ocean.-No. 982. July 19, 1894. 33-37
Diagnosis of new North American Mammals.-No. 999. November 15, 1894. (Advance sheets, April 26.1894) $241-243$
New genera: P'arascalops, Jictomys.
New species: Scapanus dilatus, Myodes nigripes, Mictomys immitus. New subspecies: Sciurus aberti concolor.
On the Rodents of the genus Sminthus in Kashmir.- No. 100t. November 15,1894 341-343
New species: Sminthus tlavus.
True, Frederick W. Diagnosis of some undescribed W̌ood Page.
liats (Genus Neotoma) in the National Museum.-No. 1006. November 15, 1894. (Advance sheets, June 27, 1894) $353-355$
New species: Neotoma splendens, N. venusta.
New subspecies: Neotome macrotis simplex, N. occidentalis fusca.
Verrill, A. E. Descriptions of new Species of Starfishes and Ophiurans, with a lievision of certain Species formerly describerl; mostly from the Collections made by the Uniterl States Commission of Fish aud Fisheries.-No.1000. Novem- ber 15,1894 $245-297$
New subfamilies: Benthopectinince, Pontasterince.
New genera: Isaster, Acantharchaster.New species: Pseudarchaster concinnus, Pentagonaster eximius, Neo-morphaster forcipatus, Solaster syrtensis, S. benedicti, Crossasier heli-anthus, Pteraster (Temnaster) hexactis, Cribrella pectinata, Brisingamulticostata, Freyella aspera, F. microspina, Ophioglyphe sturura, O,tessellata, O. yrandis, Astroschema clavigera.
Walcott, Charles D. Discovery of the Genus Oldhumia in America.-No. 1002. November 15, 1894 313-315New species: Oldhamia (Murchisonites) occidens.White, Charles A. Notes on the Invertebrate Fama ofthe Dakota Formation, with descriptions of new Mollnscanforms (with Plate VIII).-No. 995. July 19, 1894131-138
New species: Unio barbouri, Corbula hieksii, Goniobasis jeffersonensis, Pyrgutifera meekii, Tiviparus hicksii.

LIST OE゙ PLATES.

1. Orbital Variations of Anamathia 62
2. Irregular Stalactites, Wyandotte Cave, Indiana 78
3. Irregular Stalactites, Luray Caves, Page Counts, Virginia 78
4. Gypsum Incrustations, Mammoth Cave, Kentucky 80
5. Gypsum Incrustations, Wyandotte Cave, Indiana 80
6. Concretions of Marcasite and Siliceous Sand 88
7. Gnathodons of North America 106
8. Fresh-water Mollusks of the Dakota Formation 138
9. Fossil Plants from Herendeen Lay, Alaska. 240
10. - large Tulip Tree (Liriodendron tulipifera), Knox County, Indiana 421
11. Giant Sycamores (I'latcmus occidentalis), Gibson County, Indiana 421
12. Giant Sycamores (Platanus occidentalis), Gibson County, Indiana 421
13. A tall Sycamore (Platanus occidentalis), Richland County, Illinois 421
14. Typical Upland Forest, Lower Wabash Valley 421
15. Typical Bottom-land Forest, Lower Wabash Valley 421
16. New Species of Mollusks from Jamaica 450
17. New Species of Bathybial Fishes 454
18. Generic types of Macdonaldia and Lipogenys 470
19. New Species of Harriotta 472
20. Odontodactylus havanensis 498
21. Siquilla biformis 532
22. Squilla alba 540
23. Anatomy of Halicardia and Euciroa 733
24. Pacific Shells and Brachiopods 733
25. Pelecypods from the Pacific Coast 733
26. Shells from the Pacific Coast. 733
27. Shells from the Pacific Coast 733
28. Alaskan Speries of Strombella 733
29. Alaskim Species of Chrysollomus 733
30. Pacific Shells and Brachiopods 733
31. Pacific Shells and Brachiopods 733
32. Pacific Brachiopods 733

UNITED states NATIONAL MUSEUM.

Voluale XVII. 1894.

NOTES ON MAMMALS OF BALTLATAN AND THE VALE OF KASHMER, PRESENTEI TO THE NATIONAL MUSEUM BY DR. W. L. ABBOTT.

By Frederick W. True, Chirator of the Department of Mammals.

Or. W. L. AbBott has very generonsly presented to the Masemm the skins and skulls of a number of species of Kashmir mammals, the majority of which were unrepresented in the collection.

Among them are three species of Voles (Arvicola), which appear to be undescriber, and also a new geographical race of Mus arionus. The specimens of the Rhesus monkey also seem to me to be worthy of a separate subspecific name. The discovery of the recently-described Sminthus concolor in Kashmir extends the range of that species a thousand miles.

The collection was made between 1891 and 1893 .

SEMNOPITHECUS SCHISTACEUS, Hodison.

1)r. Abbott obtained two specimens of this fine monkey at Kaj Nag. He states that in both specimens the face, ears, palms, and soles were black, and the callosities dusky. The iris is clear brown. He gives the following dimensions:

Proceedings National Museum, Vol. XVII-No. 976.

Measurements and weight.	$\begin{gathered} 21842, \delta^{\prime}, \\ \mathrm{jr}_{\ddot{\prime}} \mathrm{Ka} a \mathrm{j} \\ \text { Nay. } \end{gathered}$	$21843,9$ Kaj Nag.
Length of head and body in straight line Length of tail vertebre. Girth	Inches. 25 26.5 21	Inches. $\begin{aligned} & 23.5 \\ & 26 \\ & 2 * \end{aligned}$
Weight. .	Pounds. 30	Pounds. 32

21842. Male, young. Kaj Nag, April 16, 1892. 8,000 feet.
21843. Female. Kaj Nag, April 16, 1892. 8,000 feet.

MACACUS RHESUS VILLOSUS, new subspecies.
Dr. Abbott obtained in Lolab the skins of five monkeys, which appear to represent a variety of the common M. Thesus. I at tirst supposed them to represent M. assamensis, but after a careful comparison with Anderson's description of the type of that species I became convinced that they were not the same. They present the following characters: Fur long and dense, and moderately wavy; ears hairy; hair of the crown directed backward, not radiating; upper surfaces, from the crown to the rump, nearly uniform rusty-brown, but brightest and purest posteriorly. Outside of fore limbs dull gray, overlaid proximally by the brown color of the shoulders. Thighs rust colored; hind feet pale, sooty; chin, neck, breast and inside of fore limbs gray, with a slight yellowish admixture; belly and inside of the hind limbs yel-low-brown, paler than the back. Face dusky; cheeks grayish yellowbrown. At the postero-external base of the ears is a tuft of rather long gray hairs, with reduced rust colored tips; ears clothed with grayish hairs, but with a blackish fringe about the upper margin. Callosities pale in color and closely surrounded by fur. Tail thick, dark gray above. Iris pale brown.

Dr. Abbott gives the following measurements of the fresh sjecimens:

Measurements and weight.	$\begin{aligned} & 20123, \text { 子, } \\ & \text { Lolab, } \\ & \text { Sept. } 8, \\ & 1891 . \end{aligned}$	$\begin{gathered} 20120, \sigma^{7}, \\ \text { Lolab, } \\ \text { Sopt. } 8, \\ 1891 . \end{gathered}$	$\begin{gathered} 20124, \sigma^{\prime}, \\ \text { Lolab, } \\ \text { Sept. } 9, \\ 1891 . \end{gathered}$	$\begin{gathered} 20121, ~ \delta, \\ \text { jr., Lolab, } \\ \text { Sept. } 9, \\ 1891 . \end{gathered}$	$\begin{gathered} 20122,0, \\ \text { jr., Lolab, } \\ \text { Sept. } 9, \\ 1891 . \end{gathered}$
Le	Inches. 23 혼	Inches. 22	Inches. 23	Inches. 19	Inches. 14
Length of tail, with hairs	$9{ }^{1}$	11	11	$10 \frac{1}{3}$	$7 \frac{1}{2}$
Length from between shoulders to end of longest tiuger	$23 \frac{1}{2}$	$22 \frac{18}{2}$	22	$18 \frac{1}{2}$	$13 \frac{1}{2}$
Length from middle of rump to end of middle toe	245	23	23	1918	14
Girth of chest	193	$20 \frac{1}{2}$	191	$15 \frac{1}{2}$	112
Girth of belly	$23 \frac{1}{2}$	$22 \frac{1}{2}$	24	181	$12 \frac{1}{2}$
Weight	'ounds. 34	Pounds. 31	Pounds. 24	$\begin{gathered} \text { Younds. } \\ 15 \end{gathered}$	Pounds.

It will be observed from the foregoing table that the length of the hind limb, measured from the middle of the rump, is almost exactly equal to the length of the heard and body. The fore limb is only slightly
shorter. The average length of the tail in the four adult specimens is slightly less than half that of the head and body, or about 48 per cent.

The skuli of one of the males is of the following dimensions:

Measurements.	35488, ס8, Lolab, Kashmir.
Total length from anterior margin of premaxillæ to occipital crest.	${ }_{136}$
Basilar length from anterior margin of foramen magum to auterior margin of premaxilla.	97
Length of palate...	5
Length of upuer molar series	
Zygmatic breadth	97.5
Height of orlit.	23.5
Breadth of orhit	30
Length of anterior nares	22
Brealth of anterior nares	14
Depth of mandible at coronoid process, verticatly	55

All the specimens were taken in the pine forests at Lolab, in the Vale of Kashmir, in September, 1891, at an elevation of $\overline{7}, \boldsymbol{5} 00$ feet.

```
30120
3012\frac{1}{3}. Male, young. Lolab, Kashmir, September 9, 1891.
2nl22%. Male, young. Lolab, Kashmir, September 9, }1891
\frac{2}{3}\frac{1}{5}\frac{12}{8}\frac{3}{8}. Male. Lolab, Kashmir, Neptember 8, 1891.
201灵手. Male. Lolab, Kashmir, September 9, }1891
```


FELIS TORQUATA, F. Cuvier.

Dr. Abbott assigus to this species, with hesitancy, a skull (No. 36396) which he obtained in the Lolab Valley, Kashmir. He remarks: "This cat was shot in a jungle close to a village and was thought to be a tame specimen. I am not now sure that it was not a wild one. The tame cats in Kashmir resemble the wild ones almost exactly. 'This one's skin (not preserved) agreed with the deseription of F. torquatu."

CANIS AUREUS, Linuæus.
A single skull (No. 36395) from the Vale of Kashmir has been labeled by Dr. Abbott as belonging to this species.

VULPES MONTANUS, (Pearson).

There are two specimens of this handsome fox in the collection, one from the Shigar Valley, Baltistan, and a second from the Vale of Kashmir. They agree well with the description given by Mr. Blanford,* except that the ears are white within, and there is no black spot in front of the eye. The fur is very thick and long in the winter specimen.

* Blanford, Fauna of British India, Mammalia, 1888, p. 153.

Dr. Abbott gives the following dimensions (and the weight) of the specimen taken in May:

Measurements and weight.	21693 8" Vale of Kashmir
Length of head and body (straight)	Inches. 27.75
Length of tail, with hairs	20.50
Height at the shoulder...	16.50
Wrimht	Pounds. 13

20410. Male. Shigar Valley, Baltistan, January 10, 1892. 8,000 feet.
20411.

36394 Male. Vale of Kashmir, May 20, 1893.

PUTORIUS CANIGULA, (Hodgson).

A normal specimen of this weasel, which is in the collertion, confirms Mr. Blanford's conjecture regarding the occurence of the species in Kashmir. It is from Sonamarg in that State.
20100. Male. Sonamarg, Kashmir, March 31, 1892. 8,600 feet.

> URSUS THIBETANUS, F. Cuvier.

Dr. Abbott gives dimensions of three Himalayan black hears which he obtained, as follows:

Measurements and weight.	$\begin{gathered} 20119,9, \\ \text { Lolab. } \end{gathered}$	21844, ${ }^{\circ}$, Lolab.	$\begin{aligned} & 21845 . \sigma^{\circ} \\ & \text { jr. Lolab. } \end{aligned}$
Lencth of head and body	Inches. 60	Inches. 62	Inches.
Length of tail, with hairs	4	5	4
Length of fore leg from top of scapula.	35		
Chest girth.	34	37	39
Weight		P'ounds. 175	Pounds. 160

$\frac{2011}{35} \frac{1}{4} 4$ Female. Lolab, Vale of Kashmir, June 23, 1891.
21844. Male. Lolab, Vale of Kashmir, June 25, 1891.
21845. Male, young. Lolab, Vale of Kashmir, June 26, 1891.

URSUS ISABELLINUS, Horsfield.

I am mable to follow Blanford in miting this species with C'rsus arcfos. It appearss to me to present differences in the shape of the skill, and also in the length of the intervals between the teeth and in the shape of the last upper molar. This tooth is reey long and has the posterior moiety directed obliquely outward.

[^0]Dr. Abbott obtained skins of two Isabelline bears. Both bears were taken in spring, were very thin, and hat two cubs with them. He gives the following dimensions (and the weight):

Measurements and weight.	$\begin{aligned} & 21631,8, \\ & \text { Nag } \\ & \text { Marg. } a \end{aligned}$	$\begin{gathered} 21692, q, \\ \text { Krishna- } \\ \text { gunga } \\ \text { range. } b \end{gathered}$
Length of head and body in straight line.	Inches.	Tnches. 50.05
Length of head and body along the curves.	61	
Length of tail vertebre.........	4	4.5
Lenoth of tail, with hairs		6.5
Girth of chest	42	37
Girth of belly.	45	
Height at shoulder		$\because 9$
Weight.	Pounds. 175	l'ounds. 130-140

\footnotetext{
a The measurements of this specimen are from the skinned carcass. The following from the unskinned animal are too small, as it was in rigor mortis when measured and could not be properly stretched out:

Total length along curver	59.0 inches.
Length of tail with hair	4.5 inches.
Girth of chest	49.0 inches.
Height at shoulder	28.5 inches.
Height at rump.	27.5 inches.
Dr. Abbott remarks that gth is too short and the h	ont and that

$\frac{21699}{36} 9 \frac{1}{2}^{-}$Female. Nag Marg, Kashmir. May 16, 1893.
$\frac{21642}{36} 63^{-}$Male. Krishnagunga range, Käshmir, April 26, 1893.
26397. Male, jr. Krishnagunga Valley, Kashmir, April 26, 1893 (skull).

OVIS VIGNEI, Blyth.

The skins of three male sheep were obtained. So far as regards the horns, they agree perfectly with the descriptions of O. vignei. In coloration, however, they seem to approach O.cycloceros. The general color is rufous brown, the short beard is made up of very dark brown and white hairs mingled, the legs below the knees and hooks are entirely white (thongh more or less stained from the soil), and the muzzle is also white. There is a distinct dark lateral line in the adults, terminating anteriorly in one case in a rather broad blotch. It will be seen that in mary of these particulars the coloration of these skins differs from the original description by Blyth,* who, however, as Dr. Sclater has remarked, apparently had Oris cycloceros also in mind. Blyth's description was taken from a painting (by Vigne). He states among other things that the muzzle is not white and that the limbs are brown. In repeating this description, however, in the Amals and Magazine of Natural IIistory \dagger he adds a footnote. in which he gives the characters of some specimens from the Hindu Kush Mountains, "identified by Mr. Vigue as, without doubt, the same as O. rignei." In this description he emphasizes the fact that the muzzle is white, and states in addition that the limbs are covered with short white hair and that the belly is also white.

The deseription contaned in this footnote is much more fully applicable to Inr. Abbott's specimens than the original one, and it seems probable that Vigne's sketch, on which the latter was foumber, was either incorrect in many particulars,* or represented a young male in summer pelage.

Dr. Abbott gives the following dimensions of fresh speeimens:

Measurements.	20407, ${ }^{\circ}$	20408, 8 .	$21847{ }^{*}$
Length of head and body ${ }^{2}$.	Inches. 56	ruches. 53	Inches. 57
Length of tail to end of hairs	6.5	6	6
Girth of chest.	42.5	35	38
dirth of belly	43		
Depth of chest in straight lime.	16		15.5

a Note loy Dr. Abbott: "Theso animals were shot in very difticult Erouml, so that measurements are only approximate, particularly the length and height."

The specimens obtained are as follows:
20407. Male. Shigar Valley, Baltistan, January 1892. 10,000 feet. 20108. Male, young. Shigar Valley, Baltistau, Jamary 1892. 10,000 feet. 21817. Male. Shigar, Baltistan. 9,000 feet.

CAPRA SIBIRICA, Meyer.

Two skins of makes from Baltistan represent this species. They are in winter pelage and very dark. The colors of the two skins are almost identical, and the markings are very sharply detined, in which latter feature they appear (as well as may be learned from the deseriptions of varions anthors) to differ from ordinary sperimens of (C . sibiricu. The following is a description of one of these skins, No. 20409: Face, neck, breast, fore legs, shoulders, the lower part of the flanks, the thighs, a line along the spine and the tail, strong umber-brown. The hind legs are also brown, but have a shanpy-defined, large, oblong, white (or cream-colored) mark on the postero-external part of the metatarsus, extending from the hock to the outer false hoof, and prolonged between the latter and the true hoof.

A white mane (tinged with brown at the extremities of the hairs) extends along the spine from the middle of the nape to the shoulder. The brown of the shoulders follows, and behind this the whole back is orcupied by a large elliptical white mark, or saddle (somewhat washed with brown), which is bisected longitudinally by a dark-hrown spinal line, as already stated. Belly whitish. Ears white at the base anteriorly, brown elsewhere. The beard is blackish brown, with a few soiled-white hairs at its base. A narow white area sumpouds the anal region. All the hairs are white or whitish at the base-purest where the extremities are merely tinged with brown, and less so where they are dark.

[^1]This description tallies in all essential points with that for male specimens in winter pelage from the Sajan Mountains identified with Capra sibiricu by Radde,* but searcely with Blanford's diagnosis of the species in the Fanna of British India, where it is remarked (p. 504), "In winter the general color is yellowish white, tinged with brown, or greyish." Not less unsatisfactory is the phrase in Sterndale's diagnosis, "dirty yellowish white in winter" \dagger Under the heading of varieties of Capra sibirica, however, Blanford remarks: \ddagger

A rery dark-colored ibex is said to oucur in Baltistan, but is, according to Scully, merely the old male in winter vesture. Ibex from siberia and from the Thian shan Mountains north of Kashgar have the abdomen and the back of the carpus and tarsus white, contrasting sharply with the front of the legs, which is very dark brown. Col. Biddulph, to whom I am indebted for calling my attention to this character, is of opinion that the Thian Shan animal is true C. sibirica and the Himalayan one distinct, in which case the latter would take the name of C. sukin. I have only been able to examine one modoubted Himalayan skin, and cannot say if the difierence is constant.

Dr. Abbott gives the following dimensions of the fresh specimens:

Measurements and weight.	20409 ® $^{\circ}$. Braldu Valley	$\begin{aligned} & 21846 \sigma^{\circ} \\ & \text { Bralduu } \\ & \text { Valley. } \end{aligned}$
Length of head and bods.	Inches. 67	Incher. 65
Tail to end of hairs.	11	10.5
Height at shoulder (curved)	39	39
Height at rump (curved)	42	42
Girtl of chest	48	48
Girth of belly	58	
Depth of chest in a straight line	20	$20 a$
Weight (about)	$\underset{250}{\text { Pounds. }}$	Pounds. 250

a The horns of No. 21846 measure $34 \frac{1}{2}$ inches around the curve.
20409. Male. Braldu Valley, Baltistan, December 19, 1891. 14,000 feet.
21846. Male. Braldu Valley, Baltistan, December 21, 1891. 21,000 feet.

PTEROMYS ALBIVENTER, Gray
There are three normal specimens of this flying-squirrel in the collection, and also two specimens of the melanistic variety.
$\frac{2}{3} \frac{2129}{4} \frac{1}{1}$. Male. Central Kashmir, September 15, 1891.
8ij128. Male. Lashkok Nullah, September 16, 1891.
20135. Female. Western Kashmir, July 3, 1891.
20134. Male, young. Western Kashmir, July 3, 1891 (melanistic).
$\frac{20123}{3} \frac{13}{49}$. Female. Central Kashmir, September 17, 1891 (melanistic).
SCIUROPTERUS FIMIbRIATUS, Gray.
Of this species there are four specimens, as follows:
$\frac{20125}{35+95}$. Male. Central Kashmir, September 15, 1891.
$\frac{20127}{3} \frac{1}{4} \frac{7}{2}$. Male. Lashkok Nullah, September 16, 1891.
$\frac{2025}{35} \frac{2}{9} \frac{9}{4}$. Female. Lashkok Nullah, September 16, 1891.
$\frac{2013}{35794}$. Male. Central Kashmir, September 20, 1891.

[^2]ARCTOMYS CAUDATUS, J a cquemont.
Two specimens of this fine mamot were collected, as follows:

20137
36501 Male. Vigh Nullah, Augrst 1, 1891.
MUS ARIANUS GRISEUS, new subspecies.
Similar to typical Mus arianus, Blanford, in size and proportions, hat having the upper surfaces ochraceous gray, instead of rufous.

The Long-tailed Field-mouse has already been recorded by Dr. Scully as oceuring in Gilgit. There are three skins in Dr. Abbott's collection which are referable to this species, but appear to represent a distinct color-variation. Mr. Blanford describes M. (tsiamus as being "rufous brown above," and Mr. Thomas as "dark red."* Ir. Abbott's specimens are grayish, ochraceous brown above, which color is produced by the mingling of hairs having ocher-colored dips, with others which are black. No. 20151, which is immature, is especially gray above, and coincides in color almost exactly with ordinary specimens of Mus musculus.

The three specimens on which this subspecies is founded were obtained by Dr. Abbott in pine forests at high elevations-two of them in Central Kashmir and the thind in the Pir Panjal Pass. He gives the following dimensions of the fresh specimens:

As Mr. Blanford and Mr. Thomas have remarked, Mus ariomus is very closely related to the Mus syluations of Emope, if not identical with it specifically. Mr. Thomas has brought forward the greater length of the hind foot as a distinguishing chamacter of M. syluaticus. Dr. Abbott's specimens, being dry skins, are not entirely available for critical comparisons of this kind. The length of the hind feet in two of them, measwed after soaking the feet in water, are as follows: No. 20144 , male, 0.833 in ; No. 20139 , female, 0.875 in.

The larger of these two dimensions is still a little less than an aver. age of measurements of M. syleuticus given hy Mr. Thomas, which is 0.88 in.

I may here remark incidentally that a specimen of M. sylvuticus, from Switzerland (No. 2995), in the National Museum, is of exactly the same color as is shown in the figure of the type of M. arianus in Mr. Blanford's Zoology of Persia.* If this figure is correctly colored, it seems

[^3]to me that M. (uriumus may scarcely be called "dark red." None of the specimens of M. syluticus, in the National Museum, from different parts of Lurope, show a strong rufous tint, except one from England.

The types of M. arianus griseus are as follows:
$\frac{2}{3} \frac{215151}{5} 1+$. Male. Monntains of Central Kashmir, September 13, 1891. 10,000 feet.
$\frac{2}{3} 5 \frac{13}{3} 34$. Female. Central Kashmir, October 8, 1891. 8,500 feet.
$\frac{201+1}{25057 . ~ M a l e . ~ P i r ~ P a n j a l ~ P a s s, ~ A u g u s t ~ 31, ~ 1891 . ~ 8,500 ~ f e e t . ~}$
MUS BACTRIANUS, Blyth.
There are five small mice in Dr. Abbott's collection which so closely resemble the common house-mouse, hus musculus, that I have had some doubts as to whether they should not be referred to that species. As the tail, however, is shorter in every instance than the head and body, and the belly is white, or only slightly tinged with buff, I presume they really represent Mus buctrimus. Two specimens are from Srinagar and the remaining three from other localities in Kashmir. Dr. Abbott remarks that the species lives in the houses of the Gujar herdsmen.

The following dimensions are from the fresh specimens:

The localities, etc., are as follows:
20397. Female. Srinagar, Kashmir, April 5, 1892.
${ }_{3}^{20155} 5$. Male. Central Kashmir, October 17, 1891. 9,000 feet.
$\frac{29142}{35505 . ~ F e m a l e . ~ V a l e ~ o f ~ K a s h m i r, ~ A u g u s t ~ 10, ~} 1891$.
$\frac{20143}{35506}$. Female. Vale of Kashmir, August 11, 1891
$\frac{20144}{3251 \%}$. Male. Srinagar, August 8, 1891.

MUS RATTUS, Linnieus

Four specimens, as follows:
21688. Vale of Kashmir, June 5, 1893. 5,200 feet.
21689. Nale. Vale of Kashmir, June 6, 1893.
20395. Young. Vale of Kashmir, winter, 1891-92.
20399. Male. Srinager, Kashmir, Aprıl 4, 1892.

SMINTHUS CONCOLOR, Biichuer.
It is a matter of surprise to find specimens of this recently, described species in the collection. The types, the only known specimens, so far as I am aware, came from Kansu, China, a thousand miles eastward. Dr. Abbutt's discovery of the species in Kashmir adds greatly to its known range. His two specimens agree perfectly with the original
${ }^{*}$ Persian Boundary Commission, II, Zoology and Geology, 1876, pl. v, fig. 3.
description of the species. They are both from Central Kashmir, and wereobtained at an elevation of 11,000 feet. Dr. Abbott gives the following measurements of one specimen, No. 20140: Length of head and body, 23 inches; length of tail, $4 \frac{1}{4}$ inches.

```
20140. Male. ('entral Kashmir, July 21, 1891.
30141. Male. Central Kaslmmir, July 24, 1891.
```


ARVICOLA FERTLLIS, new species.

Size medium. Length of head about one-fonth that of the head and body together. Tail-vertebre one fourth to one-sixth the length of the head and body together. Ears moderate (as long as the fore feet, without the claws), overtopping the fur by about 4 millimeters.

Color above, dull grayish brown; below, pale isabelline brown. All the hairs plumbeous at the base. Those of the under surfaces are miformly tipped with pale brown (white, tinged with burnt siemal). The hains of the bark have a subterminal ring of the same pale brown color, and blackish tips; numerous momer-brown hairs are intermingled. Ears, nose, and backs of feet umber-brown. Tail bicolored, umber-brown above and very pale siema-brown below, corresponding with the coloration of the body. The long hairs at its extremity are chiefly from the under side and therefore light-colored. A nearly pure-white spot on the under side of the wrist in most specimens.

Dentition that of the subgenus Alticola, Blanford. Anterion upper molar with three onter and three inner angles. Posterior molar with two outer and two inuer angles and a terminal oval lobe. (In one sperimen there is an additional rudimentary angle on each side behind the other two.) Anterior lower molar with three onter and four inner angles, and an anterior oblique oval lobe, which may develope a rudimentary angle on each side.

Dimensions of the body.					
Measurements	$\frac{20146}{35509}, \text { ㅇ, }$ Central Kashmir.	$\frac{20147}{35510}, ?$ Pir Panjal Monntains.	$\frac{20148}{35511}, \sigma^{\pi}$ Pir Panjal Mountains.	$59293,6$ Kaj Nag Momntains.	21690, 0^{7}, Krishnag. unga Valley.
Head and borly*.	Inches. 4.59	Inches. 4.50 1.05	Inches. 3.375 1.87	Inches. 4.25 $.70$	Inches. 4. 125 1. 185
Tail, with terminal nencil*	1. 00	1.25	1.87	1.00	1.150
Ear from the orifice........	. 35	. 40	. 35	.33	. 58
Hind foot, without claw .	. 61	. 61	. 57	. 63	

[^4]Dimensions of the skull.

Localities.-Central Kashmir, the Pir Panjal range, and the Kaj Nag Mountains.

This species appears to closely resemble Arvicola wynnci, Blanford, and may, perhaps, be only a geographical race of the same. It has, however, considerable longer ears and shorter tail. It also differs in color, being yellowish-brown, rather than "dark rich brown," or "dark chestnut," which are the colors given by Mr. Blanforl for A. wymei. The trpe of the latter species is from Murree (Marri), which is in Rawnl Pindee, about one hundred miles west of the I'ir Panjal pass and across the Jhelum River.

Dr. Abbott remarks that the surface of the ground in many of the alpine valleys of the Pir Panjal range is completely honeycombed by the burrows of this speries. The elevations at which the species were obtained are indicated in the following list of specimens:

$\frac{2}{2} \frac{1}{5} 5046$. Female. Central Kashmir, August 2, 1891. 12,000 feet.
${ }_{2}^{20} \frac{1}{5} \frac{1}{1} \mathrm{~b}$. Female. Pir Panjal range, August 30, 1891. 8,500 feet. Trp\&.
20148 3 5 511 . Male. Pir Panjal range, August 30, 1891. 8,500 feet.
59293. Male. Ka,j Nag Mountains, April 23, 1891. 8,000 feet.
21690. Male. Krishnagunga Valley, May 10, 1893. 7,000 feet.

ARVICOLA MONTOSA, new species.

Size of the single specimen, small. Tail vertebre about one-third the length of the head and body together. Ears as long as the fore foot from the wrist (without the claws), but not orertopping the quite long fur. Soles with six tubercles; the hindermost in the middle of the sole. Behind this point the sole is hairy.

Color above, dull grayish brown, as in A. fertilis, but considerably paler than in that species. Under surfaces white, very lightly tinged with brown, and the gray of the base of the hairs plainly seen. Feet white. Tail bicolored, corresponding with the coloration of the body. The long hairs at the extremity are mostly from the upper side of the tail and therefore dark. Ears clothed within with short yellowishbrown hairs. The anterior outer margin, except at the tip, with long hairs like those of the body. A tuft of long, nearly pure-white hairs behind the ears. Nose dusky brown. Claws pale, overhing with long white hairs.

Dentition that of the subgenus Alticola, and similar to that of A. blanfordi, but with four external angles on the posterior upper molar. Internal angles of the same tooth, three in number. Anterior lower
molar with four external and four internal angles. The first external angle as long as the others-not shorter, as in A. blanfordi. In the posterior lower molar the middle external and internal angles alternate, and the space between them is, therefore, not lozenge-shaped.

Dimensions of the body.

* These measurements were made on the fresh specimen by Dr. Abboth.

Dimensions of the skull.

Measurements.	$\begin{aligned} & 35508 \\ & 201+15^{\circ}, \\ & \text { Central } \\ & \text { Kashmir. } \end{aligned}$
Total length	$m m$.
Zygomatic breadth	14
Length of nasals...	7
Length of superior molar crowns	6

Locality.-Central Kashmir, 11,000 feet.

This species resembles Arvicola roylei, hut differs in the form of the teeth. The color is paler than in A. roylei, and the ears are longer, though not overtopping the fur.

Dr. Abbott notes that the single sperimen obtained was ranght in a tent on October 4, snow being on the ground at the time.
$\frac{20145}{35508^{\circ}}$ Male. Central Kashmir, October 4, 1891. TyיE.

> ARVICOLA ALBICAUDA, new species.

Similar to A. blanfordi in size and color, but with ashorter, entirelywhite tail. Dentition like that of A. roylei.

Ears visible in the fur. Thumb with a rudimentary claw. Tail twofifths the length of the head and body, densely elothed with rather long hairs. Posterior portion of soles densely hairy. Fur on the hack, 15 mm. long.

Color above, pale reddish gray, the hairs dark phombeous at the base, with a subterminal ring of pale yellow, and brown tips. The peculiar pale tint of the back is produced by the mingling of these three colors. Ears clothed with long hairs; those of the margin pale orange-brown. Tpuer lip and all under surfaces pure white; the hairs gray in the lower half. Fore and hind feet and tail pure white, the hairs white to the hase.

Dimensions of the body.

Measurements.	$\begin{aligned} & \text { No. 20393, } \\ & \text { Braldu Valley, } \\ & \text { Baltistan. } \end{aligned}$	
	Inches.	mm.
Head and body.	4. 25	107
Tail......	1.75	44.5
Ear, from base of oritice, fromithe dry skin	. 56	14

The teeth closely resemble those of A. roylei, and have the same number of angles throughout, but the anterior loop of the first upper molar is transverse, and the first inner angle of the anterior lower molar is not longer or more curved than the succeeding ones.

Dimensinns of the skull.

Measurements.	$\frac{36816}{26} 34 . f$ Braldu Valiey.
Basilar length, from outer margin of foramen magnum to end of premaxille	${ }_{25}$
Zygomatic breadth.......................-- .-.	15

$\frac{20393}{36216 . ~ F e m a l e . ~ B r a l d u ~ V a l l e y, ~ B a l t i s t a n, ~ D e c e m b e r ~ 19, ~ 1891 . ~ T y p e . ~}$
LEPUS TIBETANUS, Waterhouse.
Dr. Abbott gives measurements of six fresh specimens of this hare, four of which are in the collection. All of them were obtained in the Shigar Valley, Baltistan, January 9 and 10, 1892.

Measurements and lists of specimens.

Cat. number.	Locality.	Sex.	Length of head and body.	Length of tail.	Weight.
20403	Shigar valley	σ	Inches. 17.5	Inches. 4.25	Pounds. 3. 25
20404do do .-.	\bigcirc	18.5	- 4.50	4.00
20405-. do	\%	17.5	4.50	3. 50
20406	do	¢	10.0	5.00	4.00
21840	do	\%	17.5	4.00	3.25
21811	do	σ	17.25	4.50	3.50

LAGOMYS ROYLEI, Ogilby
There is one specimen in the collection from Nagmarg, Central Kashmir, taken at an elevation of 9,000 feet. It is a fall specimen and has the middle of the back black in color, produced by the massing together of the long black tips of the hairs. The entire sides of the head and body are rust-colored. The breast is also rust-colored and a broad line of a paler tint extends thence backward above the middle of the belly. Elsewhere the under surfaces are whitish.

Dr. Abbott gives the length of the one specimen obtained as 8 inches, but I think he has included in this the hind feet. The length of the head and body in the dry skin is $6 \frac{7}{8}$ inches (173 mm .).

The dimensions of the skinll are as follows:

32138 . Female. Nagmarg, Central Kashmir, October 2:2, 1891. 9,000 feet.

LAGOMYS GRISEUS, Blanford.

Blanford does not recognize this species as belonging to the fana of India, but Dr. Abbott's two specimens agree perfectly with the deseription and figmes of it in the Zoology of the Second Yarkard Mission, and I conclude that they should be assigned here rather than to the closely allied 1. . macrotis. The adult, No. 20390, measured 5. 1 inches when fresh, and the younger individual, 7 inches. Dr. Abbott notes the following regarding the species: By no means common at this season at any rate (December); probably hibernates. The Baltis say they are very common, living among the rocks and glacial moraines.

The dimensions of the skull of the adult are as follows:

* From lower margin of foramen magnum to posterior edge of alveolns of latge incisor.
 feet.
$\frac{2}{36} 0919$. Female, young. Dras Valley, Kaslimir, November 12, 1891. 9,000 feet.

CROCIDURA MURINA, (Linnieus).

Of the five sperimeus of this species collected in Srinagar and the Vale of Kashmir, thee were obtained in summer and two in winter. The former are brownish on the back (the tips of the hairs being of that color) while the later are slate-gray. This difference in color, therefore, appears to be seasonal.

In one of the largest specimens, No. 216 st , the fifth minute upper tooth is roncealed by the fourth and sixth from without, while in others it is visible to a greater or less extent.

Dimensions of three specimens.

Measurements.	$\begin{aligned} & 2015 \ddagger, 7 . \\ & \text { Srinagar. } \end{aligned}$	21686, 8 , Srinagar.	$21687,9$ Tale of Kaslmir.
Length of head and body.	Tinches. $\begin{aligned} & 5 \frac{1}{8} \\ & 27 \end{aligned}$	Inches. $\begin{aligned} & 53 \\ & 31 \\ & 31 \end{aligned}$	Inches. $\begin{aligned} & 47 \\ & 27 \\ & 27 \end{aligned}$

$\frac{2}{3} 5 \frac{15}{5} 56^{\circ}$ Male. Vale of Kashmir. June 29, 1891.
21678. Female. Vale of Kashmir. June 2, 1893.
20398. Male (?). Vale of Kashmir. Winter, 1891-92.

$\frac{21686}{36} 391$. Male. Srinagar. May 25, 1893.
CROCIDURA ARANEA, (Linniens).
One specimen:
$\frac{2}{3} \frac{1}{5} \frac{1}{5} \frac{2}{5}$. Female. Mountains of Central Kashmir: September 13, 1891; in pine forest, 10,000 feet.

VESPERUGO (ADELONYCTERIS) SEROTINUS (Schreber).

The specimens of this species differ very much in color from the American form which has been assigned to the same. The tips of the hairs above are pale ashy yellow, giving a hoary appearance. The forearm is much longer, reaching 2.2 inches.
21685. Female (\%). Vale of Kashmir, May 29, 1893.
21681. Male. Vale of Kashmir, April 10, 1893.

VESPERUGO PIPISTRELLUS, (Schreber).
Two specimens fiom the Vale of Kashmir are in the collection.
VESPERTILIO MURINUS, Linuzus.
One alchoholic specimen, No. '21809, female, fiom the Vale of Kashmir.

In comnection with the foregoing catalogne I have thought it desirable to compile a list of all the species of mammals which have been definitely recorded by Blanford, Sterndale, Jerdon, Anderson, Sclater, Scully, Hiigel, Lydekker, and other writers, as occurring in the northwestern portion of Kashmir, that is, in the Vale of Kiashmir, Baltistan and Gilgit. The list is as follows: *

Mammals of Northuestern Kashmir.

Macacus rhesus.	Herpestes auropunctatus.
Macucus rhesus villosus.	Herpestes thysanurus.
Semnopithecus schistaceus.	Herpestes mungo (?).
Felis uncia.	Canis lupus.
Felis torquata.	Canis aureus.
Lynx isabellinus.	Cyon dukhunensis.

* The names of species included in Dr. Abbott's collection are in italics.

Tulpes montanus.
Mustela flavigula.
Mustela foina.
Putorius erminea.
Putorius subhemachalatus.
Putorius canigula.
Putorins alpinus.
Lutra vulgaris.
LV:sus isabellimus.
Ersus thibetanns.
Talpa micrura (?)
Crocidura aramen.
Crocidura murina.
Rhinolophus hipposideros.
Rhinolophus ferrum- oquinum.
Megaderma lyra.
Plecotus auritus.
Synotus darjelingensis.
Otonyeteris hemprichi.
Vesperugo serotinus.
Vesperugo discolor.
Vesperugo borealis.
Tesperugo pipistrcllus.
Harpioceplalus tubinaris.
Vespertilio longipes.
Vespertilio megalopus.
Vespertilio murinus.
Eupetanrus cinerens.
Pleromys albiventer.
Sciuropterus fimbriatus.

Aretomys caudutus.
Sminthus concolor.
Mus ratius.
Mus bactriamus.
Mus sublimis.
Mus arianus.
Mus arianues grisens.
Nesolia liengalensis.
Arvicola roylei.
Arvicola hlanfordi.
Arvicola fertilis.
Arvicola montosa.
Arricolu albicauda.
Cricetus phacus.
Cricetus fulvus.
Cricetus isabellinus.
Hystrix lencura.
Lepus tibetanus.
Lagomys roylei.
Lagomys griseus.
Lagomys macrotis.
Ocis vignei.
Capra sibirica.
Capra falconeri.
Hemitragus jemlaiens.
Nemorhedus bubalimus.
Nemorhedus goral.
Cervus cashmerianus.
Moschus moschiferus.

DESCRIPTION OF A NEW LIZARD (VERTICARIA BELDINGI), FROM CALIFORNIA.

By Leonhard Stejneger,
Curator of the Department of Reptiles and Batrachians.

A RECENT examination of certain specimens of Verticaria sent to the Museum for identification made it clear that the specimens from localities north of the Cape St. Lucas region, Lower California, differ in several points, which makes it necessary to regard them as a separate form.

VERTICARIA BELDINGI, new species.
Diagmosis.-Scales bordering gular fold smaller than those on chest between fore legs; frontal usually entirely separated from second supraocular by a row of granules.

Habitat.-Southern California and Lower California, except Cape region.

Type.-U. S. Nat. Museum, No. 11980; Cerros Island, Lower California; L. Belding, collector.

After a careful comparison of three specimens of the present form, viz: the type and two specimens from San Jacinto, San Diego County, Cal., belonging to the museum of the Leland Stanford Jr. University, with 40 specimens from the Cape St. Lucas region, including the types of Terticariu hyperythra, I have concluded that the specimens from Cerros Island and Southern California differ in having the scales forming the border of the gular fold considerably smaller than the corresponding scales in V. hyperythra, being in the latter of the same size, at least, as the scales covering the chest between the fore legs, while in the new form here described they are perceptibly smaller. I find, moreover, that in 37 out of the 40 specimens of V. hyperythra from Cape St.Lucas the frontal shield is in contact with the second supraocular and often with the third as well, while in V.beldingi the frontal is separated from all the supranculars by a complete series of granules. This character is not quite exclusive of V. beldingi, since in in a lot of specimens collected by Mr. Belding at La Paz, Lower California (Nat. Mus. No. 12613), there are 3 specimens which in this respect agree with V. beld-
ingi, though otherwise they are typical I. hyperythra. The character is of considerable importance, however, as it appears to hold in more than 90 per cent. of the specimens.

I am under great obligations to the authorities of the Leland stanford Jr. University, particularly Dr. Charles II. (iilbert, for the opportunity to examine the two specimens from San Jacinto, as with only one specimen in our own collection I should have been unable to appreciate the difference between the two forms.

I take great pleasure in naming this new species after Mr. L. Belding, whose extensive and excellent herpetological collecting in Lower California as well as in Upper California has never been adequately recog. nized.

NOTE ON A BLUE MINERAL, SUPPOSEI TO BE ULTRAMARINE, FROM SILVER CITY, NEW MEXICO.

By R. L. Packard.

Some thme ago the newspapers* mentioned the discovery of ultramarine in New Mexico, and Mr. G. I' Merrill, curator of geology in the U.S. National Museum, who was in Silver City, New Mexico, in the early part of 1892 , risited the locality where the bhe mineral referred to is found, and noted its ocemrence. He states that the mineral occurs in irregular reins and streaks in the limestone carrying the silver ore (chloride) which is mined at Chloride Flat near Silver City. The specimens he procured for the Museum exhibit the earthy blue substance (which, on casual inspection, does somewhat resemble ultramarine) intimately associated with caleite, chalcedonic quartz, and a decomposed ferruginous siliceous material which is permeated with ealcite, as is also the blue miucral itself; and grains of calcite can be seen mixed with particles of the latter on crushing and examining it with a microscope.

It was found impossible to free the mineral completely from its associated gangue by the Thoulet's solution, and to obtain as pure material as possible for analysis small particles which were free from visible impurities were carefully picked ont, larger ones were crushed and gangue and mineral separated by picking over, the blue fragments being again crushed and picked over. The material so obtained was powdered in an agate mortar, treated with hot dilute hydrochloric acid to dissolve out the calcite and other impurities; the powder was filtered off, washed, and then boiled with a strong solution of carbonate of soda, washed thoroughly, dried at 110°, and ground fine for analysis. With every precaution, however, a few scattered grans of a mineral more strongly refracting than the bhe one under investigation were observed under the microscope, showing that perfect separation had not been effected. These grains of foreign matter (quartz) are doubtless the cause of the slight differences in the analyses.

[^5]The material obtained for analysis as above described is dull, earthy, and of a blue color, resembling vivianite in these respects, but is in the form of a powder. Its grains act feebly on polarized light, but present no crystalline forms. It does not lose its color in hot acids although it is partly decomposed, yielding magnesia. Before the blowpipe it does not color the cold borax bead, becomes white on ignition but does not fuse, and then gives a pink color with cobalt solution. After treatment with HCl it gives no reaction for manganese on fusing with soda. It contains no phosphoric acid or sulphur.

The analyses of different samples varied somewhat for the reasons which have been given above. Three which accord well are as follows:

These analyses show a chemical resemblance to talc, although the physical properties of the twominerals are different. Oneof the analyses (No. XLVII) given in Hintze's Handbuch, under tale, is almost identical with the above. It runs as follows: $\mathrm{SiO}_{2} 63.95$, $\mathrm{FeO} 0.60, \mathrm{MgO} 28.25$, $\mathrm{H}_{2} \mathrm{O} 6.65$, with $0.78 \mathrm{Al}_{2} \mathrm{O}_{3}$.

The carbonate accompanying the mineral is rich in magnesia which, with the abundant silica and iron oxide, would supply the materials for its composition.

DESCRIPTIONS OF TWO NEW SPECIES OF CRABS FROM THE WESTERN INIIAN OCEAN, PRESENTED TO THE NATIONAL MUSEUM BY DR. W. L. ABBOTT.

By Mary J. Rathbun,
Aid, Department of Marine Imrertebrates.

A LARGE number of crabs were recently collected by Dr. W. L. Abbott at the islands north of Madagascar. Among them are two new species, both of which represent rare and peculiar genera. The genus Hypocolus of the Cancridie can be distinguished by the oblong or oval cavity beneath the antero-lateral border of the carapace. Three species have already been described: H. gromulatus, (De Haan), from Japan, H. diverticulatus, (Strahl) $[=$ Cancer seulptus, Milne-Edwards, not Herbst], found sparingly from Japan to the Red Sea and Mauritius, and H. punctutus, Miers, of which a single specimen is known, from Torres Straits.

The other new form in the Abbott collection is a member of the Thel. phusan genus Deckenia, the type of which was described by Hilgendorf from the adjacent African continent. This genus difters from other Thelphusidse in having the efferent branchial channel prolonged to the front, a character in which it approaches the Oxystomata.

HYPOCGELJS ABBOTTI, new species.

Carapace shaped much as in H. punctatus* and strongly lobulated as in that species; but the second lobule near the antero-lateral margin is longer than wide, and the posterior margin of the cardiae region is transverse and is distinctly separated from a small median lobule. The suirface is rough with blunt spiniform tubercles, which also border the somewhat truncate frontal lobes and the prominent preorbital protuberances. There is a spine at the inner suborbital angle. The pterygostomian cavity is suboval, wider at its inner than its outer end. The anterior margin is straight for nearly its whole length and is formed by the antero-lateral margin of the carapace. The cavity is crossed by two ridges nearly parallel to the anterior margin, the ante-

[^6]rior ridge stoppings shor't of the inner margin, the posterior ridge shorter and not reaching the outer margin. The surface of the abdomen and stermm is covared with bead-like tubereles except for irregular eroded (chamels or pits. The right cheliped (the left one is missing) is massive and tuberculons or spinons. The merus is short and thick, margins tuberculons, imer and outer surfaces smooth, lower surface finely tuberculous. Carpus with lower half of outer surface spinous. Manus with upper surface subtriangular, half as broad as long; outer surface with longitudinal spinous ridges, two of which are continued on the pollex and terminate in two of the five strong teeth (one is terminal) of the prehensile edge. The dactylus bears four spinous ridges on its outer and upper surface and seven teeth on the prehensile edge which are smaller than the propodal teeth and fit closely into the spaces between them. The inner surface of the manus is tuberculous on its proximal lower portion. The ambulatory legs are short and broad; the last two pairs when drawn up, fit into the cavity adjoining the postero-lateral border of the carapace. The meral joints are very broad (in the first pair the width is one-half the length), and are hollowed beneath to receive the two following joints; their anterior distal angles are produced and rounded. The distal end of the propodus is much broader than the adjacent portion of the rather slender and slightly tapering dactylus.

Unfortunately it is impossible to give an accurate description of the matural color of the specimen, as with other crabs it was placed when collected in contact with murlibranch mollusks, which have given it a dark blackish-blue color. The eutire surface is coated with a membramous covering apparently epidermie which tends to obscome the tubereles. Where this has been removed with muriatice acid the carapace appears to be blotehed with bright red and white. The tips of the spines are white. The carapace is sparingly hairy, the legs are margined with hair, and the subbranchial resions are very hairy.

Mersurements.-Length of carapace (of male), 55.5 mm.; width, 76 ; jength of manus, lower margin, 44 ; depth, 21 ; width of upper surface, 10; length of merus of last ambulatory leg, upper margin, 16.5; length of carpal joint, 11 ; length of propodal joint, 6 ; length of dactylus, 10 ; width of merns, (i.5; proximal width of propodal joint, 6 ; distal width, + ; greatest or tramsverse diameter of pterggostomian cavity, 25 ; opposite dimension, 11.

Loculity.-Aldabra Island. (One male, No. 17753).
A. Milne-Edwards in describing the genus* says that the pterygostomian cavity is concealed by the anterior feet when the latter are folded against the carapace. This is mot the case in this species. In no position does the eheliped fit tighty over the cavity. When the cheliped is folded, the upper surface of the manns is contimons with

[^7]the imner distal portion of the outer face of the carpus. The inner border of this area corresponds in position very nearly with the posterior margin of the perygostomian carity; the ravity itself is therefore left uncovered. The only other representative of this genus in the National Musenm is a single specimen of H. diverticulatus, from Mauritius, in which the cavity is longitudinal, its margin formed by two confluent circles. When the cheliped is folded against the body, the concave npper margin of the manus and anterior carpus crosses the cavity at its middle, concealing the posterior half, and exposing the anterior half.
H. abbotti differs from other species in the double ridge in the pterygostomian cavity, and in the carapace marked with tubereles instead of granulations, rugose lines, or puncte.

DECKENIA CRIS'ATA, new species.
Carapace a little more than four-fifths as long as broad, very thick, slightly convex transversely, very convex longitudinally, antero-lateral margins strongly arcuate. There is a prominent tuberculous postfrontal crest, extending across the carapace, sinuous, interrupted at the median line and at the cervical suture, and slightly interrupted behind the base of the eye. The median groove extends backward from the frontal margin to the postfrontal 'rest, where it divides into two grooves outlining the narrow anterior portion of the mesogastric region. The cardiacal grooves are shallow; the cervical groove is almost longitudinal for a portion of its length, then curves outward and ends at the post frontal rest. The dorsal surface is punctate, the anterior half is covered with squamiform granules, which, on the anterior branchial regions, become tuberculous and tend to form short ridges. The front is about one-third the width of the carapace, deflexed, tuberculons, three-lobed, median lobe more advanced and much narrower than the lateral, its margin bent towards the horizontal. The margin of the front and orbit is raised, shining and indistinctly granulous. The orbital margin is sinnous, its general direction being outward and forward. The postorbital tooth is acute aud more advanced than in In. imitatrix. The epibranchial tooth is smaller and not far behind the postorbital; it is followed by a row of about twenty small tuberculons teeth, forming an antero-lateral marginal line which posteriorly curves upward and inward on the carapace. The postero-lateral branchial regions are marked by transverse broken raised lines, which are continned on the subbranchial area. The posterior of these lines is the strougest and is continued further inward on the dorsal surface. The suborbital margin is nearly straight, inclined inward and slightly formard, and is finely toothed, its imer angle thickened and adjoining the end of the efferent branchial chamel, which is in advance of the lateral frontal lobe and is visible from above. On the subhepatic region are two tubereulous lines concentric to the orbit. The abdomen of the
female has the first two segments short, the third to the sixth increasing successively in length, the terminal segment large, subtriangular, onehalf as long as wide. Eggs very large, $3 \frac{1}{2} \mathrm{~mm}$. in diameter. The disposition of the antemal region is similar to that of D. imitutrix. The autennee are minute, smaller than in that speries, and smaller than the antennular. Maxillipeds similar in shape to those of I). imitatrix: margin of merus and anterior margin of ischium tuberculous.

The chelipeds are very unequal and rough with transverse squamose lines. The lower and inner margins of isehium and merus are armed with triangular spines; the upper margin of the merus, with teeth which are prolongations of the rugosities of the outer surface. The carpus has a stout inner spine, with a smaller one at its base. The larger hand is deep and swollen; both hands are curved inward and very rough, especially above. Digits with impressed longitudinal lines; very stout in the large cheliped; prehensile edges irregularly toothed and almost touching. The ambulatory legs are longer than in D. imitutrix. Joints margined, and with transverse rugose lines which form shallow teeth at the upper margin. Carpal and propodal joints with a double margin above, and two more or less rough longitudinal ridges on the outer surface. Propodal joints with two rows of small appressed spines below. Dactyli flattened, longer and narrower than in I). imitutrix, with two rows of sharp spines above and below.

Measurements.-Length of carapace (of female), 29 mm . ; width, 34 ; thickness, 18 ; widith of front, 12 ; width between postorbital spines, 22.5 ; width between epibranchial spines, 27 ; length of propodal joint of cheliped, lower margin, 27; depth, 13.5; thickness, 8.8.

Loculity.-Seychelles. (Two females, one with egrs; one young, No. 18064).

This species differs from Decheniu imitutrix from Zanzibar in the postfrontal crest, narrower front, rough surface, fewer spines on the carpus, and in so many other respects that the species are not likely to be confounded.

DESCRIPTIONS OF A NEW GENUS AND TWO NEW SPECIES OF AFRICAN FRESH-WATER CRABS.

By Mary J. Rathbun.
Aid, Department of Marine Invertebrates.

The crabs described below were found in mud under boards and timbers by Mr. J. H. Camp at Stanley Pool, Congo, West Central Africa.

Family Thelphuside.
PARATHELPHUSA CAMPI, new species.
Carapace subquadrilateral, conspicuously punctate. Depression between the gastric and cardiac regions deep. Protogastric lobes prominent, separated by a median groove which extends backward from the froutal margin. The postfrontal crest begins behind the base of the eyestalk and is continued to the lateral margin; it is finely denticulate and is almost straight, sloping backward and outward. Front a little more than one-third the width of the carapace, deflexed, divided by a very shallow sinus into two lobes, with a raised margin, which is continued to the postfrontal crest. Superior orbital margin sinuous, advanced in its middle portion. Postorbital tooth acute, prominent. Lateral branchial spines three. In one of the two specimens there is a spinule between the first and second spines, and a short fourth spine on the left side. Between the first spine and the postfrontal crest there are two or three spinules forming a short ridge in the same line with the postfrontal crest. From the last spine a raised line extends backward upon the carapace, and is followed by several broken parallel lines. The inferior margin of the orbit is rather deeply rounded below the outer angle; from that point the margin is directed inward and forward; the inner angle is obtuse; the margin is set with a row of bead-like granules. The terminal segment of the abdomen of the female is subtriangular, and the length is nearly half the width. The merus of the maxillipeds is very transverse, the antero-external angle rounded, the antero-internal angle not deeply cut.

Chelipeds of female unequal; merus rugose above, immer margin tuberculons, with a sharp spine just below the margin; carpus with two
spines on the inner margin. Fand slighty inflated: upper margin straight, lower slighty convex. Fingers irregularly toothed and almost touching. Ambulatory legs rather slender, flattened; propodal joints indistinctly spinulons on the margins.

Me木surements.-(No. 1806in, two females). Length of larger specimen, 21.5 mm. ; witth, :3!.5. Length of smaller specimen, 19 ; width, 27.

This species, in its three lateral teeth, resembles I. peceitei, A. Milne-Edwards, lout differs from that speries in its namower and more quadrate carapace and interrupted postfrontal crest.

ERIDETOPUS, new genus.

Carapace aroute anteriorly, quadrate posteriorly, moderately convex. Front advanced beyond the antemmar cavities, composed of two distinct romded lobes. Orbits narrow; eyestalks tapering to the extremity. Postfrontal crest short and fuconspichons, or wanting. Lateral margins spinous. The merus of the maxillipeds is transverse, the anteroextermal angle rominded, the palpus articulating at the internal angle, which is very slightly notched. Chelipeds with a sow of spines on the anterior margin of the carpus. Ambulatory legs with margins spinous.

ERIMETOPUS SPINOSUS, new species.

Carapace about fourfifths as long as broad, convex longitudinally, postero-lateral margins long, sloping slighty inward and backward, antero-lateral margins arenate. The cardiae region and the posterior portion of the gastric region are outlined by shallow depressions. Front about one-thiril the width of the carapace advanced, two-lobed, lobes separated by a broad V-shaped sinns. Margin of front and orbits gramulous. Orbits well-defined, the outer angle at shap incurved spine. There are two protogastric lobes, little elevated and often not discernible, except by two transverse lines of a lighter color. A very shallow median groove extends backward from the frontal margin and forks directly behind the protogastric lobes. The postfrontal crest, when present, is short, arenate, tuberoulous, and indistinct. It begins back of the cornea and for a short distance is noarly straight, directed outward and slightly forward, then coures almost parallel to the antero. lateral margin. In most specimens, however, the rest is obsolete. indicated only by the smoothly-rounded elevation behind the orbit, Antero-lateral margin with a row of from \bar{j} to $\begin{gathered}\text { s spines next the orbit, }\end{gathered}$ of which the orbital spine is the largest. The spines are irregular in size and position. On the anterior branchial region are ${ }^{\text {a }}$ or more marginal spines separated by a space from the hepatie spines; the anterior is by far the larger, and is sometimes bifid. The others decrease in length posteriorly. The suborbital margin is grambous except at the noteh beneath the postorbital spine. The abolomen of the female covers the stermum.

Chelipeds in the female mental. The margins of the merns are spinulous, the upper margin with a sharp spine near the carpus, the imer surface tuberculons at its base, the lower surface with a transverse tuberculous ridge at its distal end. The carpus has two strong spines on its inner margin, and a row of about 7 smaller spines on the anterior margin, two of which are close to the condyle of the manns and are separated by a wide interval from the remaining spines. Sometimes one of the spines is bificl, and oceasionally additional spinules oceur on the upper surface behind the marginal spines. The manus is slightly swollen, with a convex lower margin and almost straight upper margin, which sometimes in the smaller cheliped has a small sharp spine at the distal end; in a few specimens there are one or two spines at the proximal end. Fingers irregularly dentate on their prehensile edges and slightly gaping. The ambulatory legs are rather broad, flattened; meral joints with two spines at the distal end; carpal and propodal joints strongly spined above; carpal joints with distal spines in the first pair and often in the second and third pairs; propodal joints with a few spines below; dactyli with four rows of spines.

Mersurements.-(No. 18066, female.) Length, 30.5 mm.; greatest width, 38 ; width between postorbital spines, 19.

The male is unknown.
This speries can be distinguished from other Thelphusida by its produced, round-lobed front, narrow orbits, and numerons spines.

AN ANALYSIS OF JADEITE FROM MOGOUNG, BURMA.

By Oliver C. Farrington.

The specinen of Jadeite here described (No. 81306), was obtained from Mr. James Wickersham, of Tacoma, Washington, he having forwarded it to Major J. W. Powell, Director of the U. S. Geological Survey, for examination. The material sent consisted of fragments taken from a jade bowlder procured in Burma loy Rev. J. A. Friday, who was for ten years a missionary in the vicinity of Mogoung. As these fragments seemed to be typical specimens of the unworked Burmese jadeite, and came from a source which could leave no doubt as to their genuineness, it was thought desirable by Prof. F. W. Clarke, Chief Chemist of the Survey, that a somewhat extended examination should be made of them, and they were accordingly placed in the hands of the writer for this purpose.

Concerning the mode of occurrence of the jade, the information which Mr. Friday obtained is largely corroborative of the previously published statements of Dr. Auderson*, and since these give an excellent description of the Mogoung "diggings," we quote them here:

> A stone known in commerce as jade is extensively worked in the Mogoung district of Úpper Burma.
> The mines, or rather pits, are in a valley 25 miles southeast of Meiukhoom, as many as 1,000 men heing engaged in digging, during certain seasons of the year. The stone is found in the form of more or less rounded bowlders, associated with others of fuartz, etc., embedded in a reddish yellow clay. The pits are not after any particular plau and none exceed 20 feet in depth. They occur all over the valley and at the base of the hill. The masses which are removed are of considerable size, and I saw some in agodown of a merchant at Rangoon so large that it required three men to turn them. * * * The greater portion of the Mogoungstone was formerly exported to Momien, in Vunan, and a considerable amount still goes there. It is possible therefore that the specimens of jadeite from China, of which analyses have heen published, were originally obtained in Burma. it appears however that there are jade mines in Yuuan also, as well as in other provinces of China.

In regard to the methods employed by the natives in working the jade, Mr. Friday states that they break, by heating, the bowlders which

[^8]contain it, until a suitable piece is fomm. This is then laid aside to be sold to the caravans which come to the mines for this purpose from China and other combtries, or it is worked by the native artisans.

These latter cut the bowlders with a saw made of a bow of bamboo, strung withasteel wire composed of fincr wires twisted together. Keeping the stone wret by water dripping from abore, they sit down before it and with this primitive tool saw away day after day till they have reduced it to the desired shape. This process seems painful and laborious enough, but before the use of steel was known, its difficulties must have been far greater.

The specimens examined had in general a pure white color, but contained oceasional spots of light green. For the purpose of analysis, only the white portions were used.
The analysis gave the following results:

	I.	II.	Mean.	Ratio.	$\begin{aligned} & \text { Theory for } \\ & \mathrm{NaAl} \\ & \left(\mathrm{SiO}_{3}\right)_{2} \end{aligned}$
SiO_{2}	58.94	59.45	59. 22	. 987	59.4
$\mathrm{Al}_{2} \mathrm{O}_{3}$	24.77	24.32	24.55	. 24130.98	25.2
$\mathrm{Fe}_{2} \mathrm{O}_{3}$. 32	. 36	. 34	. 00230.18	
Cal).	. 14	. 22	. 18	. 003)	
3 gO	tr.	tr.		0.96	
$\mathrm{Na}_{2} \mathrm{O}$	14.51	14.42	14.46	. 233	15.4
Ign..	J. 14	1.15	1.14		
	99.87	99.92	99.89	100.0
$\mathrm{G} .=$	3.330				

The state of oxidation of the iron was not determined. Manganese was probably present in minute quantity, as iudicated by the color of the sorlium carbonate fusion, but it was impossible to precipitate a weighable amome. The analysis shows no essential differences from those made of similar material by Schoetensack* and Damour, t except in the fact that the perentages of CaO and Mg O are very small. As neither of these molecules would be present in a typioal jadeite, the material amalyzed may therefore be considered as unsually pure, and the close approximation of the ratios to those required by the formula tends to confirm the correctness of the latter.

Marroscopically the jadeite is subtranslucent, exhibits a homogeneous, fine-graned texture, and is very tongh. Ituder the microscope it is seen to be marle up of small irregular granules and that, parallel fibers (losely interwoven. The granules rarely exceed 0.06 mm . in diameter and the fibers have an average width of only 0.05 mm . with a varying length of from 0.15 mm . to 0.6 mm . In this fineness of gram the material diflers from the Monghomeng jadeite lescribed by Schoetensack, as he states that to consist of "grobkionigen und auch langgezogenen Lamellen." The absence of distinct crystal forms renders optical orienta-

[^9]tion difficult, but occasional sections show parallel cleavage lines giving an extinction angle of 35°. Others showing cleavage lines nearly at right angles give an angle of extinction $=\mathrm{O}^{\circ}$. A form with cleavage cracks making an angle of 63°, evidently from the orthodiagonal zone, shows the emergence of an optic axis with finely colored rings. Indications of an alteration process appear in some portions of the section in a clouding and opacity extending inward from the cleavage cracks. These portions under a higher power exhibit a finely fibrous structure which is developed in the individual granules and which suggests that alteration to amphibole is taking place. As compared with the American jadeites described by Clarke and Merrill* the Mogomg specimen shows chemical and optical differences which correspond to those aheady mentioned, as distinguishing it from the jadeites described by Schoetensack and Damour (loc. (it.), viz: smaller percentages of the elements replacing Na and Λl and microscopically a finer texture.

[^10]NOTES ON SOME SKELETONS AND SKULLN OF PORIOISES OF THE GENCS PRODELPIINUN, COLLECTED BY DR. W. L. ABBOTT IN THE INDIAN OCEAN.

By Frederick W. True, Curator of the Department of Mammals.

I) URING his recent cruise among the islands north of Madagascar, Dr. Abbott collected three complete skeletons and two skulls of porpoises. These, with notes and measurements, he has very kindly presented to the National Maseum. The notes include a description of the coloration of each specimen captured, and thus it is possible to correlate the external characters with those of the skeleton. This is a most important matter, and especially so m this instance, as the specimens all belong to the genus Prodelphimus, than which there is no more difficult group among the Delphinidx.

It is with considerable diffidence that I attempt to identify I Dr. Abbott's specimens with any of the deseribed species of Prodelphimus. The practice of establishing species on single skulls was formerly followed in comnection with this genus as elsewhere in the Delphinide. But it has been pointed out, especially by Sir William Flower, that in a seriess of slaulls of Prodelphimus, while those at the extremes may show differences which would entitle them to be regarded as specifically distinct, these differences blend together in the middle of the series. Hence, in considering the identity of any particnlar skull, it is often rloubtful to which one of several nominal species it should be referred.

Much new light has bern thrown on the relationships of the species of Prodelphimus by Dr. Liitken in his most valuable work upon this and other genera of Delphinidre, published in 1s89. Having in his possession an excellent collertion of skeletons of various species of Prodelpimus, accompanied by color-notes, measurements, ete., he was able to furnish much fuller information than any previous writer. For several :ifecies he has given the number of vertebra, the position in the ver-

Bidrag til Kumdskal, om de tre pelagiske Tandhral-slaegter Steno, Nelphimus og I'rodelphimus. Vidensk. Selsk. Skr., 6. Raokke, naturvid. og math. Afd., V, 1, 1889. At the time a copy of this paper reached we, my own work on the Delphinide (A Review of the Family Delphinide. Bulletin of the U. S. National Museum, No. 36, 188:) was passing through the press, and I was mahble, therefore, to make as good use of it as I should have desired to do.
tebral colum in which the rarions processes and foramina originate and disappear, the number of phalanges, the absolute and relative dimensions of the skull, and many other important details. In treating of Dr. Abbott's specimens I shall follow the method originated by Dr. Litken, thereoy sumplying the means for further comparisons.

In spite of certain differences in coloration, ete., I regard all of Dr. Abbott's specimens as belonging to the same species. They seem to me identical with the specimens (Nos. 8 and :3) which In. Liitken identified (rightly I believe) with Gray's speries attenutus. The question of their relationship to other species I shall pass over for the present, and shall proced to describe them in detail. The material is as follows:
a. Complete skeleton of a male, 6 feet 2 inches long, from off the Amirantes Islands; obtained February 12, 1893. No. 36049.
b. Skull of a femaie, 7 feet long, from off the Amirantes Islands; obtained February 15, 1893. No, 36050.
c. Skull of a female, 6 feet 1 inch long, from off Alphonse Isiand. No. 36131.
d. Complete skeleton of a female, 6 feet 2 inches loug, from off Providence Island; obtained August 12, 1892. No. 36051.
e. Completo skeleton of a male, 5 feet $6 \frac{1}{2}$ iuches long, from off Johannat Island; obtained January 15, 1893. No. 36048.

The external coloration is given by Dr. Abbott as follows:
No. 36049, §, Amirautes Islands. - Ahove, hlackish ; below, light gray or ashy, with a sharply-defined line of division between the two colors. Belly speckled with black spots of the size of barley grains. "Black portion saddle-shaped, narrowing in front, passing to' the base of the rostrum, and 4 inches ahove the ere. I darkish line passes through the eye. Rostrum black above, gray beneath, with black spots the size of barley grains."

No. 36050, female, Amirantes Islands.-Above, dark gray, speckled with white; beneath, light gray. (Whether the colors are sharply separated is not specified in this instance.)

No. 36131, female, Alphonse Island.-Color dark gray or ashy; above, uearly black; beneath, light, with a sharply defined line of demarkation. Belly not speckled.

No. 36051 , female, Providence Island.-Dark gray or ashy; darkest on the back, speckled with white below.

No. 36018, male, Johanua Island.-Back, dark ashy ; beneath, pale ashy, speckled with irregularly-shaped dark ashy spots the size of maizo grains. Line betrreen dark and light parts sharply defined, especially on the head, where it passes 3 inches above the eye to the base of the rostrum.

It will be observed that the gromol-color in all these sipecimens is quite uniform, and that the chief difference is in the spotting. It is also worthy of remark that the spots of the females are white, while those of the males are black or dark gray. This may be areidental, but the idea that the difference in the color of the spots is a sexual character derives some support from the fact that the type of Gray's D. punctatus (considered by me as identical with P^{\prime}. (uttenumtus), which was a female, had white spots. Inr. Liitken , does not refer to the presence of spots in

[^11]this species. The color of his No. 8 , however, was "very dark above and ashy gray below," in which it agrees, so far as the gromed-color is concerned, with Dr. Abbott's specimens.

Bringing together in tabular form the measurements of the exterior given by Dr. Abbott and those of Dr. Liitken's No. 8 , we have:

Table measurements.

Catalogue number.	Sex.	Total length.							
		Ft. In.	Inches.	Inches.	Inches.	Inclies.	Inches.	Inches.	Tuches.
36050. 36049.	${ }_{6}$	$\begin{array}{ll} 7 & 0 \\ 6 & 2 \end{array}$	33	$5 \frac{2}{2}$	17	10	312		
360.51.	+	03		$6 i \frac{1}{4}$					
36031.	O	61		$6 \frac{3}{3}$				38	$31{ }_{2}^{1}$
36048	σ	$5 \quad 6 \frac{1}{2}$			15	9			
Lütken's No. 8.	¢	$57 \frac{1}{2}$	$31 \frac{1}{3}$					35	

The number of teeth in the different skulls is as follows: No. 36059, female, ${ }_{36-38}^{38-38}$; No. 36049, male, ${ }_{38-37}^{38-38}$; No. 36051, female, ${ }_{39-39}^{39-39}$; No. 36031 , female, $\frac{41-43}{40-41}$; No. 36048 , male, $\frac{41-39}{39-40^{\circ}}$. The total number, therefore, varies from 150 to 168 . The number in Dr..Liitken's two specimens was 147 and 163 , respectively.

In the three skeletons collected by Dr. Abbott and the two of Dr. Liitken, the number and the divisions of the vertebred are as follows:

The amount of variation here shown is very slight for members of this family. In the first and third of Dr. Abbott's specimens, the last pair of ribs is rudimentary, while in the second (No. 36051) there are two rudimentary ribs on the left side and one on the right. Each of Dr. Liitken's specimens possessed a single pair.

The characters comected with to the relative position of the processes and foramina of the vertebre next claim our attention, and here again the amount of variation is small:

- --..--				-	- --
Characters.	36049,	$36^{\circ} 051$, ¢	36048, 0°.	Liitken's $8, f .$	Liitken's 3.
First vertical arterial foramen is in vertebra number \qquad	55	56	57	58	57 or 58
Last distinct transverse process is on vertebra number. .	59	60	60	62	51
Last distinct neural spine is on vertebra number	66	67	66	67	67 or 68
Vertebre without metapophy ses	31st to 46 th	33 ll to 42d	33 d to 45 th	33 l to 44 th	29th to 44th

The last relationship, that of the number and portion of the metapo. phyes is, perhaps, of little importance, as these processes die away very gradually and different observers might disagree as to the real number.

In the number of phalanges, Dr. Liitken's two specimens show a considerable difference, while those of Dr. Abbott agree well among themselves. The formule (the metacarpals being excluded) are as follows:*

The five skulls agree well in proportions, the rostrum being 60 to 61 per cent., of the total length in all. The breadth of the rostrum at its base, compared with its length, varies from 37.5 per cent. in the largest skull to 40.5 per cent. in the smallest. Other proportions may be learned from the following table of measurements :

Moasurement.	$\begin{gathered} 36050, q, \\ \text { Amiran- } \\ \text { tes Is- } \\ \text { lands. } \end{gathered}$	$\begin{aligned} & 36049, \text { त, } \\ & \text { Amiran- } \\ & \text { tes Is- } \\ & \text { lauds. } \end{aligned}$	$\begin{aligned} & 36051,9 \\ & \text { 1'rovi- } \\ & \text { lemer Is. } \\ & \text { land. } \end{aligned}$	36031, ㄱ, Alphonse Island.	$36048, \sigma^{7}$, Johanna Islitud.	Liitken's No. 8, $\%$.	Luitken's No. 3.	Type of P. attenuatus, Brit. Мим. 347 b
Total lencrth from								
tip of rostrum to surface of oceip-	mm.	mm_{40}	mm.	mm. 397	mm.	$m m$.	mm.	mm.
Length of rostrum.	$\stackrel{4}{25}$	251	244	$\stackrel{3}{2+1}$	228	245	243	229
Breadth of rostrum at its base	95	95	91	96	90	90	84	87
Length of temporal fossa.	60	65	64	65	63			65
Vertical height of temporal fossa...	47	56	53	56	51			50

The species P. uttemuutus, (Gray), with which Dr. Abbott's specimens are here identified, is one of a group of nominal species, thirteen or more in number, which I regarded in my Revision of the Delphinidae \dagger as probably reducible to three. With P. attenuctus I associated Delphimus pseudodelphis, Wiegmann; \ddagger Steno ćapensis, Gray; § and Clymene punctata, Gray. || The first of these names, I). pseudodelphis, appeared originally as the legend of a plate in Schreber's Sïngethiere, representing a skull of the same general characteristies as those described herein. No description of the type-skull has been published, so far as I am

[^12]aware, thongh Wagner, on the authority of Troschel* gives the number of teeth as 40 above and 37 below. The name will, therefore, remain as a nomen mudum, except for those who regard a name attached to a plate as having a status in systematic nomenclature. The plate must have appeared before 1811 , and had it been accompanied hy a description, the name would have priority over Gray's attemuatus. \dagger

The skull upon which Gray based his Steno capensis has been considered by Sir William Flower and myself as specifically identical with his uttenuatus, and as the description was not published until 186j0, the former name, of course, becomes a synonym of the latter.

Gray's Clymene punctuta, \ddagger the type-skull of which I examined in the Liverpool public museum, appears to me to be also a synonym of P. attenuatus. I did not have an opportunity to count the vertebre, however, or to note the relative positions of the foramina, and it is possible that differences will be found here which are not correlated in the skull. It is also to be noted that in the figure of the exterior published by Gray, § a band of light color passes obliquely across the back near the base of the caudal fins. No such color-marking is mentioned in Dr. Abbott's notes or elsewhere, and it may constitute a distinction of important, thongh I am disposed to regard it as an individual variation.

[^13]
I)ESCRIPTION OF NESTS AND EGGS OF SOME NEW BIRDS, COLLECTED ON THE ISLANI OF ALDABRA, NORTHWEST OF MADAGASCAR, BY DR. W. L. ABBOTT'

By Cifarles Bendire,
Honorary Curator of the Oological Department.

Among the interesting and varied collections of matural-history specimens lately received from I)r. W. L. Abbott, were a few nests and eggs, and the following are believed to be still undescribed and new to science:

IXOCINCLA MADAGASCARIENSIS ROSTRATA, Ridgway.

Two nests and eggs of this new subspecies were taken on December 22 and 31,1892 , respectively. The nests are rather slight structures and are composed externally of fine rootlets, small twigs, dry leaves, and plant fibers, and lined with finer materials of the same kinds and dry grasses. Both nests were placed in crotehes of thorny shrubs in the jungle and about S feet from the ground. One of them, the type-specimen, No. 26200, U. S. National Museum collection, measures $3 \frac{3}{t}$ inches in depth by 4 inches in outer diameter. The inner diameter is 3 inches by $1 \frac{3}{4}$ inches deep.

The eggs, No. 26199, U. S. National Museum collection, set $\frac{1}{2}$, measure .99 by .70 and .95 by .71 inch , and No. 26000 , a single egg measmes .99 by .68 inch. They are ovate in shape, the shell is close-graned and rather glossy. The ground color is vinaceous pink and is profusely spotted and blotehed with different shades of claret brown, vinaceous rufus and lavender, and the markings are heariest about the larger ends of the eggs where they form a wreath.

BUCHANGA ALDABRANA, Ridgway.

The collection made by Dr. Abbott contains 3 sets of eggs and 2 nests of this species. The nests are very neatly and firmly constructed of small fine twigs well interlaced with each other and are lined with finer materials of the same kind. They are rather shallow for their size and are usually placed on a horizontal branch of a casuarina tree at no very great height, varying from is to 10 feet from the ground.

The typespecimen No. 26191 , [. S. National Musenm collection, taken November $18,189 \%$, measures externally 521 diameter by $2 \frac{1}{2}$ inches in depth. Inner diameter 3 inches by $1 \frac{1}{4}$ in depth.

The shell of these egiss is closely grambated, feels smooth to the tourh, and is without luster. Tine ground color is a rich eream with a pinkish tint, and this is sparingly marked with a few seattered spots of cimnamon rufous and brick-red, and one or two sperimens show also a few lavender dots. The makings, few as they are, are generally heaviest about the larger end of the egg. The measurements of the eggs are as follows:

No. 26189 , U. S. National Musemm collection, set $\frac{1}{3}$, taken December 4,1892 , is 1.05 by $.76,1.04$ by .75 , and 1.03 by .75 inches.

No. 26190, set $\frac{2}{3}$, takell November 18,1892 , is 1.04 by .74, 1.03 by .74, and 1.02 by .74 inches.

No. 26191, set, $\frac{3}{2}$ taken on the same date, is 1.05 by .is and $1.0: 3$ by .78. In shape they vary from ovate to short ovate.

FOUDIA ALDABRANA, Ridgway゙.

This new species is represented by two nests and four sets of eggs. The uests, considering the size of this bird, are large and well constructed; open on the side and partially domed. They are externally composed of small twigs, some with leaves still attached, weed stems and coarse grasses, and lined with finer grasses. The entrance is on the side. The outer diameter of the type specimen, No. 26193, U. S. National Museum collection, taken Iecember 10,1892, is 9 by 7 inches, inner diameter, 3 by 23 inches. This nest was placed in a mangrove. The eggs of this new species are pale glatuons green in color, unspotted and elongate ovate in shape. The shell is rather thin and glossy.

No. 26192 , U. S. National Museum collection, set : , taken November 27,1892 , measures . 83 by . 58 , . 52 by . 59 and .79 by . 58 inches.

No. 26193, set $\frac{2}{2}$, taken December 10, 1802, measmes .79 loy . 58 and .75 by .59 inches.

No. 26194, set $\frac{3}{3}$, taken November 13, 1892, measures .so by . $56, \mathrm{~s} 1$ by .56 and .81 by . 57 inches.

No. 26195, set $\frac{1}{2}$, taken December 10,1892 , measures . 81 by .05 and .81 by . 55.

ROUGETIUS ALDABRANUS, Gunther.

This rail is represented by 2 nests and several probably incomplete sets of eggs. Nest No. 26180, U. S. National Musemu collection, the type taken on December 17,1892 , is very loosely constructed of small twigs and plant stems, and was placed in a dense chmp of long grass and serub 1 sinches from the gromul. The nest measured 10 inches in outer diameter by 7 inches in depth, and the cavity $4 \frac{2}{2}$ by 33 inches in depth, so that only the head of the female protruded from the nest as she sat upou the eggs.

Nest No. 26179, U. S. National Musemm collection, taken December 20,1892 , is composed of finer materials, principally dry grasses. It was placed on the ground in a cavity of coral rock, which, according to Dr. Abbott, appears to be the firorite nesting site for this species, the remaining sets of eggs having all been taken in such situations, these cavities being usually nearly filled with small twigs and dry grasses, and the nests were usually concealed by long. tangled bunches of giowing grass.

The shell of these egss is strong, finely gramulated, and moderately glossy, and in shape they vary from ovate to elongate ovate. The gromid color is creamy white, sparingly dotted with fine spots of liverbrown, vinaceous and lavender, which are usually heaviest about the larger end of the egg.

The measurements of these eggs are as follows:
No. 26178, U. S. National Museum collection, set $\frac{1}{4}$, taken December $22,1892,1.60$ by $1.19,1.69$ by $1.22,1.73$ by $1.20,1.69$ by 1.23 inches.

No. 26179, set $\frac{2}{2}$, taken December 20, 1892, 1.67 by 1.15 and 1.70 by 1.11 inches.

No. 26180, set $\frac{3}{2}$, taken December 17, 1892, 1.6 by 1.19 and 1.69 by 1.15 inches.

No. 26181 , set $\frac{1}{2}$, taken December $13,189 \cdot$, is 1.75 by 1.17 and 1.57 by 1.15 inches.

No. $261 \mathrm{~s}^{2}$, set $\frac{5}{3}$, taken December 18,1892 , is 1.67 by $1.17,1.65$ by 1.05 . and 1.68 by 1.16 inches.

NOTES ON THE CRABS OF THE FAMILY INACHIDE IN THE UNITED STATES NATIONAL MUSEUM.

By Mary J. Rathbun, Aid, Department of Marine Invertebrates.

In тHIs paper two new genera and eight new species are deseribed. No attempt has been made to give a complete list of the specimens in the Museum. Only those described species are noticed for which it was possible to record new localities or add notes to supplement original descriptions and aid in identification. The repetition of matter which has already appeared in the proceedings of the Museum and the bulletins and reports of the U. S. Fish Commission has been avoided. The following is a list of species which appear in this paper. Those marked with a* are species described by Stimpson, the types of which were destroyed in the Chicago fire, and which were unknown from that time until rediscovered by the Albatross:

List of species.

Leptopodia sagittaria, (Fabricius). debilis, Smith.
Metoporhaphis calcaratus, (Say). Achæus tuberculatus, Miers. trituberculatus, new species. Podochela riisei, Stimpson. spatulifrons, A. Milne-Edwards.

* hypoglypha, (Stimpson).
* lamelligera, (Stimpson). macrodera, Stimpson. gracilipes, Stimpson. spinifrons, new species.
Collodes depressus, A. Milne-Eilwards. robustus, Smith.
leptocheles, new species. (dloubtfulspecies.) *Batrachonotus fragosus, Stimpson. brasiliensis, new species. nicholsi, new species.
Euprognatha rastellifera, Stimpson. rastellifera spinosa, new subspecies. gracilipes, A. Milne-Edwards.
Arachnopsis filipes, Stimpson.
A pocremnus septemspinosus, A. Milne-Efwards. Inachoides intermedius, new species.
Anasimus latus, new species.
Eurypodius latreillei. Guérin:
Oregonia gracilis, Dana.

Anamathia crassa, A. Milne-Eitwarils. hystrix, (Stimpson). umbonata, (Stimpson).
Trachymaia cornuta, A. Milne-Edwards.
Lispognathus thomsoni, (Norman).
Holoplites armatus, (A. Milne-Edwards).
Chorinus heros, (Herbst).
Trichoplatus hattoni, A. Milne-Edwarils.
A nomalothir furcillatus, (Stimpsou).

* Mocosoa crebripunctata, Stimpson.

Sphenocarcinus corrosus, A. Milne-Edwards.
Simocarcinus simplex, (Dana).
Echingecus pentagonus, new geuus and species.
Epialtus bituberculatus, Milne-Edwards.
productus, Randall.
(Antilibinia) dentatus, (Milne-Elwards). marginatus, (Bell). nuttallii, (Randall).
Pugettia gracilis, Dana. richii, Dana. quadridens, (De Haan). foliata, (Stimpson).
Acanthonyx petiverii, Milne-Edwards.
Neorhynchus depressus, Bell.
Pyromaia cuspidata, Stimpson.
Loxorhynchus grandis, Stimpson.
crispatus, Stimpson

Family InAcilid Ae.
 Subfamily Leptopodḯns.

 LEPTOPODIA SAGITTARIA, (Fabricius).Cancer sutfitlarius, F'Abizicius, (Entom. Syst., 11, p. 442, 1793).
Leptopodia saffittaria, Leacif, Zool. Misc., M, p. 16, pl. Livif, 1815.-A. MineEdwaliss, Crust. du Mexique, p. 172, 1878 (partim), and synonymy, except L. sugitturia, Mline-Enwaikds and Lucas, and L. debilis, Smith.

Localities.
From off Cape Hatteras to the Caribuean Sea; U. S. Fish Commission steamer Albatross:

						Bottom.	
No.	Station.			Fath.	Temp.	Materials.	
		\bigcirc, "	-		${ }^{\circ} \mathrm{F}$.		1884.
6934	2142	93015	762030	42		¢и. M. S.	$\text { Mar. } 23$
17524	2311	325500	775400	79	59.1	crs. S. bk. Sp	Jaı. 5
9459	2315	242600	814815	37		Co	15
9464	2316	242530	814745	50	74		15
9467	2317	242545	814645	45	75	Co	15
9475	2318	24.554	814600	45	75	Co	15
14975	2354	205930	862345	130		Co	$\because 2$
17401	2362	220830	865330	25		Co. S	30
17405	2363	220730	870600	21		wh. R. Co	30
17374	2365	221800	870400	24		wh. 12. Co	30
9602	2370	291815	853200	25		crs. g y. S.	Feh. 7
9613	2372	291530	852930	27		G	7
14976	2373	291400	859915	25		Co	7
17525	2374	291130	852900	26		S. Gr. brk. Sh	t
9689	2387	292400	880400	32		S. G. brk. Sh	Mar. 4
17402	2390	292730	874830	30		crs. S. bk. Sp. Sl	4
17403	2405	284500	850300	30		gy. S. brk. Co	15
17375	2406	284600	844900	26		ers. S. Co	15
17404	2411	263330	831530	27		fne. wh. S. bk. Sp	18
11303	2413	260000	825730	24		fne. S. bk. Sp. brk	19
9862	2417	3318 35 35 18	$\begin{array}{r}77 \\ 75 \\ 70 \\ \hline 10\end{array}$	95	65.8	fne. gy. S	$\text { Apr. } 2$
17373	2596	350830	751000	49		gy.	Oct. 17
11219	2604	348380	7.53945	$3+$		y1. S. brk. Sh	18
17526	2616	334245	773100	17		S. P.......	20
11227	2617	33 3 3 3710	77 -7630	14 9		crs. Yl. S. brk. S	20
11232	2621	332400	774200	9		gry. S. brk. Co	1886.
11379	2640	250500	801500	56		Co.	Apr. 9

St. Thomas; steamer Albatross (7653).
Brazil; Hartt Explorations:
Maranhão, 2 fathoms, pebbly; Derby and Wilmot, 1870.
Mar Grande, Bay of Bahia; Richard Rathbun, 1875-77.
Periperi, Bay of Bahia; R. Kathbun.
Bay of Rio de Janeiro, dredged, shallow water; R. Rathbun.

LEPTOPODIA DEBHLIS, Sm ith.

Leptopodia debilis, simph, Rept. Feabody Aead. Sei. for 1869 and 1870, 1, 87, 1871.
Twenty specimens were collected by the steamer Albatrose on the coast of Lowel California.

These specimens agree in having the hand shorter and broader than in east coast specimens of L. sugittoria, and the fingers proportionally longer. The proporlus is usmally about twice the length of the dactylus and varies to 2,1 times that of the dactylus in the largest specimen; in L. sugittaria the proporlus is usually about $2 \begin{gathered}3 \\ \text { times the length of the }\end{gathered}$ dacotylus, but varies from 29 to 3.12 times. The ambulatory legs are
shorter in the west coast forms. Those of the first pair are from 6 to $7 \frac{1}{2}$ times the length of the carapace, while in the Atlantie speeces they are from S to $8_{\overline{3}}^{2}$ times the length of the carapace. The rostrum is shorter in the specimens of L. debilis in this collection than in most of those of L. sagittaria. The rostrum is usually about the same length as the carapace or exceeds it but little, in two instances reaching a length of $1 \frac{1}{2}$ times the carapace. Prof. Smith, however, describes the rostrum of I. debilis as about twice as loug as the posterior portion of the carapace.

In our specimens the surface is more pubescent than in $I_{\text {. suffitaria, }}$ especially the chelipeds of adult forms, and the carapace is usually more swollen at the branchial regions and the rostrum more upturned.
A. Milne-Elwards comsider's the Leptopodier from the west coast of Mexico and Central America as the same species as those from the east coast, setting aside as distinct the Chilean form, the I. sagitterio of Milne-Edwards and Lucas, and calling it L. modesta : conserpently his insertion on the same page of the L. sugitturin of Milne-Edwards and Lucas in the synonymy of Leptoporlia sutgittarin is erroncous. Some of the specimens from the Gulf of California so resemble the figure given in d'Orbigny's "Voyage" that it may be proved that a single species inhabits the west coast of America, which, in the present state of our knowledge, it seems best to consider distinct firm L. sagittaria.

The following are the dredging stations at which this speries was obtained:

Cat. No.	Station.	Lat. N.	Long. W.	Bottom.			Date.
				Fath.	Temp.	Materials.	
		- 11	- ' "		${ }^{\circ} \mathrm{F}$.		1889.
17322	3002	250215	1104330	17		S. Sh.	Mar. 17
16024	3005	250245	1104330	21		S. Sh. Coralline.	17
18067	3014	282800	1120430	29	62. 9	gy. S.	23
15544	3026	312200	1140745	17	65.2	Cr. brk. Sh.	
17323	3041	2 ± 3530	1120500	27	64.5	fue. g5. $\mathrm{S}^{\text {. }}$	Apr. 9

METOPORHAPHIS CALCARA'US, (Say).

Leptopodia calcerrata, Say, Jour. Acad. Nat. Sci. Phila., I, p. 455, 1817.
Metoporhaphis calcarata, Stimpson, Amn. Lyc. Nat. Hist. N. Y., vir, p. 198, 1860.Smith, Rept. U. S. Commr. of Fish and Fisheries for 1885 (1887), p. 620 (Metoporhapis calcaratus).-A. Milne-Edwards, op. cit., p. 17.4, 1878 (calca-ratus).-Miers, Challenger Rept., xvir, p. 4, 1886 (Metoporaphis).
The specimens of Metoporhoh is examined represent eleven localities and agree in the characters given below.

Besides the four gastric tubercles and the large tuberele on the cardiac region, there is a postorbital tubercle remote from the orbit and slightly in adrance of the gastric tubereles; two hepatic tubercles, one of which is marginal; three branchial tubercles, one marginal and the other two nearly longitudinal; a subbranchial tubercle in advance of the margiual tuberele; the pterygostomian ridge is provided with a
thberele and there is atamule in front of the atole of the buedal (avite. The rastrum hears lom or live slemder spines, which project ontwardly in all alternate series fom the opposite sides of the lower surfare : they are not always apparent in small speremens; two of these spines are near together chose to the oxtremity, and sometimes give the rostrum the appearame of heing tritid at the extremity. The basal antemal joint has a spime below midway of its lensth and another at its outer distal amgle. The two last sements of the abdomen in the male are coalesced; on the sternum, in front of the abdomen, are f wo or three spines on either side, which form .onterging lines parallel to the terminal serment of the abolomen. The seromb, thisd, and fometh segments in the lemale abdomen are very shont and about equal in length; the last three segments are coalesced. The merus of the masilliped is longer and less deeply ent than in . Milne- Edwards's tigume of . Y. dinficulatus: the tirst joint of the patpus is also much longer.

Chelipeds in the mate stomt. The ischimm and merts have shate spines on the buter matrgin which become obsolete near the earpus: they hate small spines on the imer hower matrin, amb the merns has one longs spine at the ehd of its npper surtate. The carpus has a series of shatp spines on its imer and outer margins, and one near eath extremity of its upper suftae. The mamus is broad and intated, with longs sphes above amd short ones below interspersed with long hatis. Fingers about as long as the palm: the prehensile edges are formished with truncate dentienlate terth exerpt at the extremities. where they berome elosely fitting triangular teeth. The cheliperds of the female are much teebler, the fingers muth longer and mare guping, with shat spines on the prehensile edges.

Mixasurements (of adult male):-Lensth of carapace and rostrom,

Lacalities.

Oll ('aper Matteras, N. C., lat. $35^{\circ} 08^{\prime} 30^{\prime \prime}$ N., loug. $75^{\circ} 10^{\prime} \mathrm{W}$. . f! fathoms, eray s:mb, station 2isi6; U. S. Fish Commission steamer Albutross, 1885; 1 female with egess (18068).
Ofi Cape Fear, N. C., lat. $33^{\prime \prime} 37^{\prime} 30^{\prime \prime} \mathrm{N} ., \mathrm{long}$. $77^{\circ} 36^{\prime} 30^{\prime \prime} \mathrm{W} ., 14$ tithoms, coarse yellow samt, broken shells, station 2(617; 1 malo (18069).
Jiddlo Sound, near Wilmingtoni, N. C.; U. S. Fish Commission, R. E. Varll, April 18, 1880; 1 male (4384).
Koy West, lla. ; U. S. Fish Commission steamer Albatross, Mar. 2̄, 1886; 1 malo (11385).
 with oggs (1532:3); 11. Hemphill, 1885 ; 1 female with eggs (18070).
Charlotto Harbor, Fla ; Union Collego collection (767) 1 female.
Sarasota Bay, Fla.; Union Collego collection (fi87) 4 males, 3 females.

 sand, hlack specks, station 2388; U. S. Fish Commission steamer Alhafross, 1885; 1 malo (9695).

ACHLEUS TUBERCULATLS, Miers.

Ache'ns tuberculatus, Miers, Proc. Zool. Soc. London, p. 25, 1879.-(0xmmann, Zool. Jahrb., vil, 1, p. 31, 189\%.
To this species I have refered a single, impertect, dried specimen (No.
 gastric tubereles are granulate at the summit ; there is a small low tubercle on the branchial region near the inner angle, and another near the posterior margin. The hepatie region is swollen; its projection is brom, grambate on the margin, and somewhat bilobate; from it a gramulate ridge rums diagonally to the posterior extremity of the superior orbital border. The inferior surface of the catapace beats seweral tubereles and gramules near the margin. The rostral teeth are gramulate and curved inwards, so that the interspace is almost oval; rostral erooves deep. Secoad joint of antema not quite equaling the rostram. Eye stallis stout, bearing a small tubere above near the extemity. Ablomen of male very broad; terminal segment narowing towath the proximal end, distal angle bearing a smooth prominence; distal margin arenate in its middle half.

Chelipeds very large. Merus much larger than the palm, spimulous on the margins and with a large lobe at the distal end of the outer surface. Capus spinulous on inner margin, a few tubereles on proximal half of onter surface, and a tuberculous lobe at the articulation with the manus. Manus intlated, spimulous above: palmat portion exeede ing the pollex but little; digits with a longitidinal sulens on the outer surface, prehemsile edges toothed and fitting together. The ambulatory legs are for the most part missing. The dactyl of the last pair is long and slightly curved.

Menswements.-Length of canapace, 1: mm. ; width, 10.i; length of dactyl of fourth ambulatory leg, 6 .

This individual eorresponds to Miersis hrief description taken from impertert specimens, exepting that he defines the eye-pedmeles as smooth. In the specimen at hamd, the tuberele at the tip is so inconspicuous that it might have been overlooked.

ACHEUS TRITUBERCULATUS, new specios.

Carapace narrower thath in 1 . juponicus, not constricted hehind the orbital area; regions well maked but not protuberant; wastrie and branchial regions smooth; cardiac region with thee low tubereles, the posterior one on the median line; hepatie region with a broad obtuse prominence. Rostral lobes spimulous on the margin, separated by a V-shaped simus which is natower than either lobe. Rostral grooves deep. Eye-peduncle with atharpointed tuberele on the upper side near the cormea. The peduncle widens toward the cornea, which is very oblique, directed downward and inward. Second joint of the antemat equaling the rostrum. The abobmen of the male is natrower than in the specimen I have named A. tuberoulutus, and does not widen at the
terminal segment as in that speceses. The cheliped is of moderate size, spimulons. The palm is mutilated. The fingers have thin outer margins, concave surfaces, and dentienlate inner edges. 'The first pair of ambulatory lens is nealy fome times the length of the carapace, the second pair but little shorter than the first, thind and fourth pairs nearly ernal in length, the last pair a little more than twice as long as the carapace. The dactyli of the last two pairs are falciform.

Measurements.-Length, 10.5 ; width, 7.5 mm .
Locelity.-Kanada Bay. Japan; dredged in 10 fathoms, mud; 1 male (14463).

This species approaches L. Incertosus, Stimpson, in having no spines on the carapace and in the form of the ambulatory legs, but that species is narower, without tubereles on the gastrice region, or a tuberele on the eye.

PODOCHELA RIISEI, Stimpson.

Podochela riisei, Sthmpson, Ann. Lyc. Nat. Hist. N. Y., vir, p. 196, pl. H, fig. 6, 1860.- A. Milne-Edwaids, Crust. du Mexique, p. 193, pl. Xxxv, fig. 1, 1879 (reisei).-Mers, Challen!!er Rept., Zool., Xvir, 1. 11, 1886.
Podmeme riisei, Stmpson, Bull. Mus. Comp. Zool., ir, p. 126, 1870.-MnElis, Jome. Linn. Soc. London, XIV, 1. 643, 1879.
Coryrhynches riisei, KingSLey, Amer. Nat., N111, 1. 585, 1879; Proc. Acad. Nat. Sci. Phila., Xxxi, p. 381, 1879.
The basal antemal joint is much more dilated at the postero-external angle than is represented in A. Milue-Edwards's figure.

Measurements.-Length (of mate), 14.6 mm.: width, 11.2. Length fof female), $17 . \mathrm{s}$; width, 13.5.

Localities.

Pensacola, Fla, 3 to 4 fathoms; James E. Benedict, July, 1893.
Gulf of Mexico and Caribbean Sea at the following stations of the steamer Alhatross:

1 Calf. No.	Station.	Lat. N.			L.0n¢. W.			Fathoms.	Nathire of bottom.	Inate.
		2	1	"		1	"			1885.
18147	2336		07	30		06		21	wh. İ, Co.	Jath. 30
15163	2395		27	30		48	30	30	ers.s. bk. Sp. Sh.	Star. 4
12073	2405		45	00		02		30	gr. S. brk. Co.	15
9794	2400°		40			49		26	crs. S. Co.	15

On acemut of the diversity of form presented by the rostra of the varions speries of this semus, it seems best not to retaln the name Coryrhynchus as a subgeneric designation.

PODOCHELA SPATULIFRONS, A. Milne-Ed wards.
Potlochele spatulifrons, A. Milne-EDwards, op. cit., p. 192, pl. Nxixi, lig. 2, 1879.
The "pper surfate of the eatapate resembles that of P. riisei; the prominemees are thberenliform and not spiniform, as in adnlt speromens of I°. riesei. 'The basal antemnal joint is rectangular at its anterion extremity and is of meatly equal width throughont its lenseth, while in I^{\prime}. riesei it is marowed and rommded anterionly and expanded at the
postero-lateral margin. I tubercle in I. sputntifrons takes the place of the pterygostonian ridge in P. riisei. In the mate the manns is swollen, and the fingers are slightly gaping. The stermum and abdomen are much like those of P. riisei.

Mersurements.-Length (of male), $1: 3 \mathrm{mmm}$. width, !. Length (of female), 20 ; width, 16.

Localities.

Harbor Key, Florida; Union College Collection (813), Laheled I^{\prime}. riisci.
Marco; H. Hemphill, (15161).
Sarasota Bay, Florida; Union Colleqe Collectıon (646, 708). Labeled I'. riisei.

PODOCHELA IHYPOGLYPHA, (Stimpson).
Podonema hypoglypha, Stimpson, Bull. Mns. Comp. Kool, ir, p. 127, 1870. Podochela hypoglypha, A. Milne Edwards, op. cit., p. 194, 1879.
Meusurements.-Length (of male), 20 ; width, 14 mm .

Localities.

Key West, Florida; 1. S. Jordan, Dec., 1883 (1516²).
Cedar Keys, Florida; Lieut. J. F. Moser, U. S. N., U. S. Coast Survey steamer Buche, Feb. 1887 (18074).
West Coast of Florida; Henderson and Simpson (18075).
PODOCHELA LAMELLIGERA, (Stimpson). Podonema lamelligera, Stimpson, Bull. Mus. Comp. Zool., if, p. 126, 1870. Podochela lamelligera, A. Milne-Edwards, op. cit., p. 193, 1879.
This species is readily distinguished from the foregoing. The rostrum is narrower and pointed, thongh hollow underneath. The basal antenmal joint has a small acute tooth projecting forward from its anteroexternal angle; the laminiform margins are very prominent, especially the imer one, which is deepest at about the middle of its length, at which point there is a transverse crest on the joint. The partition between the antemular fossar is prolonged downward at the middle in a sharp tooth. The two small tubereles present in the preceding species at the extremity of the epistome are in I^{\prime}. lamelligera much enlarged, forming large triangular laminiform projections, the anterior one not far behind the orbit, the posterior one lower down. The hepatic projection forms a slender spine. The angle of the bureal cavity is cristate and the pterygostomian crest bears a large tooth in the middle of its length. It the base of each cheliped there are two thin plates projecting downward and inwarl, and two on the sternm at the extremity of the male abdumen. The sternal phates are brod, thin, bearing spinules, their fosterion margins turned downwad and overlapping the next plate. The coxal joint of each ambulatory leg is furmished on the lower side with a cup-shaped expansion.

Mersurements.-Length (of male), is mm.; width, 12.5; length of cheliper, about 18 . Length (of female), 20 ; width, 16 ; length of cheliped, 23 ; length of first ambulatory leg, 60 ; length of merus, 20 ;

Proc. N. M. 91——4
carpus, 7 ; propodus, 只; dactylus, 6 ; length of second ambulatory leg, 42; length of merus, 17 ; carpus, $\overline{7}$; propodus, 1:3; dactylus, 3.5 ; length of third ambulatory leg, 3.5; length of merns, 13.2; carpus, 6.5; propodus, 10 ; dactylus, 3 ; length of fourth ambulatory leg, 32 ; length of merus, 11.3 ; carpus, 6 ; propodus, 9 ; dactylus, 2.7.

This species was collected in the fiulf of Mexico and straits of Florida by the steamer Albatross, 1885, as follows:

PODOCHELA MACRODERA, Stimpson.
 Milne-Edwards, op. cit., p. 191, pl. xxxiv, fig. 3, 1879.
In this species the rostrum is thick, obtuse, short, and not hollow beneatl. There is a white tubercle on the median line at the end of the first abdominal segment in the male; also two on the sternum in front of the abdomen. The hands are much inflated and the fingers gaping. The basal antemal joint in these specimens is narrower distally than in A. Milne-Edwards's tigure, the lateral ridges are smooth and rounded and coalesced for their anterior thirch. There is a small tubercle on each side of the epistome.

Meusurements.-Length (of male), 15.2 mm.; wilth, 11.

Localities.

Key West, Florida; D. S. Jordan; 1 male (6368).
St. Thomas, West Indies; U. S. Fish Commission steamer Albutross, 1884; 1 male (18078)

PODOCHELA GRACILIPES, Stimpson.

Podochelu gracilipes, Stimpson, Bull. Mus. Comp. Zool., If, p. 126, 1870.-A. Milne:Edwards, op. cit., p. 192, pl. XxXv, fig. 1, 1879.
In the larger specimens the two small tubereles at either end of the epistome, and also the projecting angle of the buccal cavity are visible in a dorsal view.

Measurements.-Length of largest specimen, 12.5; wilth, 8 mm .

Localities.

Off South Carolina to the Gulf of Mexico aud Caribbean Sea, U. S. Fish Commission steamer Albatross, 1884-1886, at the following stations:

PODOCHELA SPINIFRONS, new species.
Carapare spinuliferous. Cardiac region with an rect spine; eastric region with a spine directed formarl and a spiny tubercle in front of the latter. The rostrum is long and sharp, arched, with a median spiniferous crest. Orbits with an erect spinuliferous crest, bearing two slender spines. The antennal joint is largely visible from above and carries a spine at its anterior angle. There is an oblong laminiform postorbital tooth and behind and below it a flat triangular tooth; these two teeth eorrespond in position to the small tubereles present in I. gracilipes and other species. The hepatic spine is narrow, flattened and obtuse, and the pterygostomian region has a similar spine. The buceal cavity is conspicuonsly crester at its anterior angle. The antenual joint has a cristiform inner margin and an angular ridge on its posterior half. The sternal crests in the male are flat, tuberenlous, and separated by deep sulci. The coxal joints of the legs bear crests similar to those in P. lamelligera, but less prominent. The anterior part of the sternum in the male is pubescent, and has two stout spines in front of the abdomen, which project downward and forward. The first segment of the abolomen bors a spinform tuberele at its distal extremity. The chelipeds in both sexes are slender, hirsute and spinuliferous; fingers with prehensile edges in contart. Ambulatory legs very hairy, except the slender yellow horny tips of the dactyli. Propodal joints slender, dactyli slightly curved.

Mersurements.-Length (of male), 2.2 mm. width, 15; length of cheliped, 26 ; length of merus of first ambulatory leg, $2 . .5$; catpus, S.5; propodus, 34 ; dactylus, 11.5 ; leugth of merus of second ambulatory leg, 23 ; carpus, 10 ; propodus, 21 ; datylus, 5.7 ; length of merus of third ambulatory leg, 20 ; carpus, $10 . s$; propodus, 15 ; dactylus, 4.5; length of
mernsof fourth ambulatory leg, 18; carpus, 10; propodus, 13 ; dactylus, 4 ; length (of female), 24 ; width, 16.5 . Leugth (of female), 21 ; width, 13.5 ; length of rostrum, 5 .

Localities.

West Indies and Caribbean Sea; U. S. Fish Commission stoamer Albatross, 1884, 1885, as follows:

Cat. No.	Station.	Lat. N .	Loug. W.	Fathoms.	Nature of bottom.	Sex.	Date.
		- ' 1	- 11				
6945	2167	231040	822030	201	Co	19	May 1
9510	2337	231039	822021	199	Co	$1{ }^{1}$	Jan. 19
18094	2354	205930	862345	130		19	22

Subfamily Inachine.

COLLODES DEPRESSUS, A. Milne-Edwards.
Collodes depressus, A. Milne-Edwarns, Crust. du Mexique, p. 176, pl. xxin, fig. 4, 1878.-Smin, Proc. U. S. Nat. Mus., Vi, pp. 5, 8, 1883; Rept. U. S. Fish Commr. for 1885 (1887), p. 621.
Measurements.-Length (of largest male), 14; width, 11.5. Length (of largest female), 12 ; width, 9.7 mm .

Localities.

Off Cape Hatteras, N. C., to the Gulf of Mexico; U.S. Fish Commission steamer Albatross, as follows:

Cat.No.	Station.	Lat. N.	Long. W.	Bottom.			Date.
	Station.			Fathoms.	Temp.	Materials.	
		- : ${ }^{\prime}$	- ' 1		${ }^{\circ} \mathrm{F}$		1885.
18095	23.1	325500	775400	79	59.1	crs. S. lok. Sp.	Jan. 3
18096	2370	291815	853200	25		crs. gy. S. brk. Sh	Feb. 7
18097	2372	291530	852930	27			Fels. 7
18098	2374	291130	85.2900	26		S. G, brk. Sh.	$\text { Feb. } 7$
9783	2405	284500	850200	30		\%y. S. brk. Co.......	$\text { Mar. } 15$
18099	2413	260000	825730	24		fue. S. bk. Sp. brk. Sh.	Mar. 19
18100	2596	350830	751000	49		gy. S......................	Oct. 17

This species is probably identical with ('. trispinosus, Stimpson.
COLLODES ROBUSTUS, Smith.
Collodes depressus, Saiti, Proc. U. S. Nat. Mus., 111, 1. 414, 1881. (Not A. MilneEDWARDs).
Collodes robushes, smitil, op. cit., vi, p. 5, 1883.

Loculitics.

Off Chesapeake Bay at the following stations of the U. S. Fish Commission steamer Albatross:

Cat. No.	Station.	Lat. N.	Longr. W.	Bottom.			Date.
				Fathoms.	'Temp.	Materials.	
		- , "	- , "		${ }^{\circ}$		1885.
9868	2420	370300	$74 \quad 3140$	104	47.7°	bk. S. M. G	April 5
10085	2191	27 0700	7t 34 30	64		fne.gy S. ${ }^{\text {P }}$.	June 3
15152	2422	觡 $08: 0$	if 33 30	85	52.5	crs. gy. S. bk. Sp. brk. Sh.	June 3

COLLODES LEPTOCHELES, new species.

Collorles robustus, Smith, of the Atlantic coast of North America, is replaced in the Gulf of Mexico by a closely allied speries. The carapace is similar in shape to that of C. mbustus. Surface tubereulous, without spines. Rostrum divided by a V-shaped notch into two acute teeth shorter than in C. robustus, their outer margin convex. Postorbital tooth broad and long, much exceeding the eyes. The abdomen of the male is broader than in C. robustus, constricted at the fifth segment; a small spine or tubercle on the first segment, aud a long spine on the fifth directed downward and backward. The appendages of the first segment are more divergent than in C.robustus, and more slender at the tips. There is a small spine on the fifth segment in the female. The chelipeds are weak in both sexes, about as long as the carapace; manus slender, fingers as long as the palm. Ambulatory legs stouter than in C.robustus, the first and second pairs nearly equal in length, the second often exceeding the first, about twice as long as the carapace; dactylus of last two pairs longer than the propodus. The color in alcohol is a pale écru, while C. vobustus is yellowish.

Mensurements.-Length of carapace (of male), 16.5 mm ; width, 12.7; length of cheliped, 17 ; length of first ambulatory leg, 34.7 ; second, 35 ; third, 31.5 ; fourth, 30.7 ; length of propodus of third ambulatory leg, 6.5 ; dactylus, 7.2 ; length of propodus of fourth ambulatory leg, 6.7; dactylus, 7.7. Length of carapace (of female), 17.5; width, 13.2; length of cheliped, 17 ; length of first ambulatory leg, 31.5 ; second, 35 ; thind, 32.5 ; fourth, 30 .

Localities.

Five stations in the Gulf of Mexico, as follows:

Cat. No.	Station.	Lat. N .			Loug. W.			Fathoms.	Nature of bottom.	Date.
		2	1	"		1	"			1885.
18101	2378	29	14	30		09	30	68	gy. M	Feb. 11
9748	2400	28	41	00		07	00	169	gy. M	Mar. 14
9751	2401	28	38	30		52	30	142	gn. M. brk. St	Mar. 1t
18102	2402	28	36	00		33	30	111	gy. M	Mar. 1t
18103	2403	28	42	30		29	00	88	gy. II	Mar. 15

COLLODES, doubtful species.
Four small dried specimens from the Gulf of California are intermediate between C. tenuirostris and C'. granosus. They have a rostrum intermdiate in length between the two, not fissured, but minutely bilid at the tip. There are two cylindrical spines on the gastric and cardiac regions, and a smaller more acute spine on the first abdominal segment. There are a few gramules on the branchial and hepatic regions. The eyes are large, exceeding the postocular tooth. The carapace is proportionally wider at the hepatic regions than in C. tenuirostris.

Mensmbements.-hength (of male), 6.5: width at branchial regions, 4.5; width at hepatic regions, 3.6 mm .

Loculity.-Lat. 29030^{\prime} N., long. 11:30 $40^{\prime} W^{\prime}$., 45 fathoms; Lient.

BATRACHONOTUS FRAGOSUS, Stimpson.

Batrachonotus fragosus, Smmpson, Bull. Mus. Comp. Kool., if, 1. 122, 1870.- . Mineme-Edwabds, op. cit., p. 180, 1879.
Stimpson's deseription was made from a single specimen. The hasal joint proves to have a terminal spine. The four protuberances of the carapace and also the first abdominal segment are each terminated by a spine in the males, and there are two large tubercles just above the posterior margin. Th the females, of which there are two of smatler size than the males, but bearing egse, the cardiat prominence is conspicmously romblerl, gramulons, without a spine; the first ambulatory leg is but very little longer than the second and about one and a half times the length of the carapace, while in the male it is more than twice as loug as the carapace.

Mésurements.-Length (of make), 7.s; width, 7. Length (of female), 5.3 ; width, 4.2 mm .

This speries was collected by tine Albutross at two stations in the Gulf of Mexico, as follows:

Cat. No.	Station.	Lat. N .	Long. W.	Fathoms.	Nature of bottom.	Date.
		- 1 11	- , 11			1885.
18105	2370	291815	853300	25	crs.gy. S. lirk. Sh..	lieb. 7
18106	2405	284500	850200	30		Mar. 15

BATRACHONOTUS BRASILIENSIS, new species.
This species is montmately represented by a single female specimen with only three ambulatory legs present and those detached. The speeimen resembles much the female of lo.fragosus ; the depressions of the carapace are more shallow; the raised portions are covered with granules, but are without spines. The postocular spine is very small, as in B. firegosus, and the hepatid region projects well heyoud it, and has an arote marginal tuberele. The rostral teeth are short and romaded, not extenting beyomb the antemmar fosser, and separated by a rombled simus as wifle as carlo lobe. The inferion surface of the carapate and the abolomen are set with tubereles. The three ambulatory legs are very neally the same length, hess than one and a hall times the length of the canapace: dactyli long and slember, as in the preceding species.

Measurements.-Length, 7 mm . width, 6.
Locrality.-Dredsed off Rio Jameiro by Mr. Richard Rathbun during the Hartt explorations in 1875-77; 1 female with eges.

BATRACHONOTUS NICHOLSI, new species.
Female: Regions of carapace deeply marked, elevated portions with coarse tubercles mequal in size; a tubercle on the summit of each branchial region is larger than all others, resembling a short, stont spine. The depressions of the carapace are smooth. The short rostral teeth are slightly longer than in the preceding species and the interspace equals the tooth in width. Postorbital tooth shorter than the ocular peduncle, as in the gemus. Itepatic region adranced, subrectangular, the anterior margin almost at right angles to the median line. On the margin there is a tubercle at the hepatie augle, one on the pterygostomian region and two or three on the hranchial region. Ridges of the basal antennal segment tuberculous, the terminal spine blunt, curved, and more produced than in other species, in this respect approaching the geuns Euprognatho. Inferior surface tuberculous. Chelipeds tuberculons, the tubercles becoming spiniform on the inner margin of the merus. The first ambulatory leg (the only one attached) is a little more than one and a half times the length of the carapace; the dactylus is long, nearly equaling the propodus.

Measurements.-Length, 5.3 mm .; width, 4.4.
This species is represented by two small dried sperimens, females, from the Grulf of California, lat. $29^{\circ} 30^{\prime} \mathrm{N} .$, long. $112040^{\prime} \mathrm{W} ., 45$ fathoms, collected by Lieut. Commander II. E. Nichols, T'. S. Nary. (18107).

EUPROGNATHA RASTELLIFERA, Stimpson.

Euprognatha rastelliferce, Sthapson, Bull. Mus. C'omp. Zonl., H. p. 123, 1870.-A. MilneEdwards, op. cit., p. 183, p1. xxxim, fig. 2, 1879.-Smitif, Proc. U. S. Nat. Mus., III, p. 415 , 1881, and vi, p. 9, 1883 ; Rept. U. S. Fish Comr. for 1882, p. 347, 11. 1, figs. 3, 3a, 1884; op. cit. for 1885, p. 621, 1887.
Collected by the Albatross at the following stations not before recorded:

EUPROGNATHA RASTELLIFERA SPINOSA, new subspecies.
(See Smitif, Proc. U. S. Nat. Mus., vi, p. 11, 1883.)
Southern specimens of E. rastellifera are characterized by longer and more sleuder spines, noticeably the orbital spines, by the sharper and more prominent tubercles of the carapace, and by the unequal slender spines of the merus and carpus of the chelipeds. The spine on the eye is larger and more prominent than in typical E. rostellifera, and the
frontal region is more constrieted behime the suprandital spine. The meral joints of the ambulatory legs bear small spines.
sperimens from several stations off llatana aree in the above variations; also a small specimen from station 2313 , off south Carolina. On the other hamd, a male from station 26f?, off' 'arysort Reef', is typieal in form, the donsal prominences being reduced to tubereles. In a speeimen from station $21-2,2!2$ miles northwest of I Lavana Light, the orbital spines are hroad and triangulaio, as in trpical E. irastellifere, but the remaining spines are long and slenter, and the legs are spinons.

Heqsurements.-Length (of male), $9 \mathrm{mm}$. ; wilth, 6.s; length of (heliped, about 14.5; of dirst ambulatory leg abont 22. Length (of second male) .9.7; width, 7.6 : length of cheliperl about 16.2 ; length of second ambulatory leg about 19 ; third, 17 ; fourth, 10.

Localities.

Cat. No.	Station.	Lat. N .	Long. W.	Buttom.			Date.
				Fathoms.	''emp.	Materials	
		'"	- ' $\quad 1$		${ }^{\circ} \mathrm{F}$.		1884.
- 7784	2164	231039	822029	192		(\%).	$\text { May }_{1885} 1$
9441	2313	325300	$7753 \mathrm{C0}$	99	57.2	crs. S. bk. Sp. brk. Sh	Jan. 5
18108	2342	231039	822021	201			Jan, 19
18109	2345	231040	822015	184		fue. my. wh. Co	Jan. 20
9881	2346	231039	822021	200		Co....	Jan. 2)
9528	2347	231039	8: 2021	216		Co.	Jan. ${ }^{0}$
9529	2348	231039	822021	211		Co	Janı, 20
9531	2349	231040	822015	182		Co.	Jan, 20

EUPROGNATHA GRACICIPEN, A. Milne-E dwards.
Euprognatha gracilipes, A. Mrane-Edwards, op, cit., p. 18t, pl. xxxv, fig. 3, 1879.
This spectes has a deep median furow on the rostrum. The praror: bital teeth are directed upward and forward and are separated by deep grooves from the rostrum. The hepatio spine is larger and much more produced than the postorbital spine. The median and branchial spines are eylindrical and more prominent than in F. Fostelliferd. There are five thbercles in a transverse line on the gastric region, the onter and middle ons being most prominent. There are a spine and sereral tubercles on the margin of the branchial region; there is also a short perygostomian spine, the tip of which is visible fiom above behind the hepatie spine.
 10.2: longth of tirst ambulatory leg, about $\because 2$; second 17: fouth, $1 \because$.

Lncalities.

Off Ilavana, Cuba; U. S. Fish Commission steamer Albatross at the following stations:

Cat. No.	Station.	Lat. N.	Lomg. IV.	Fathoms.	Nature of bottom.	Date.
		- 11	211			1885.
91833	2320	231039	821848	130	fne. Co	Jas. 17
18111	2329	231054	8317 45	115		Janı. 17
9504	23311	231031	821955	111	Co	„ан. 17
9509	23336	231048	S2 185	157	Co	Jaın. 19
18112	2342	$2: 31039$	823021	201	Co	Jan. 19

ARACHNOPSIS FILIPES, Stimpson.
Aruchnopsis filipes, Stmpson, Bull. Mus. Comp. Zool., if, p. 121, 1870.-A. MilneEDWARDs, op. cit., p. 181, pl. xxxim, ig. 1, 1879.

Localities

Straits of Florida and Gulf of Mexico: U. S. Fish Commission steamer Albatross, as follows:

Cat. No.	Station.	Lat. N.	Long. W.	liottom.			bate.
				Fathoms.	'Temp.	Materials.	
		- , "1	- ' 11				1885.
18113	2315	242600	814815	37		Co	J aı1. 15
1811t	2317	242545	814645	45	75	Co	Jal1. 15
18115	2:318	242545	814600	45	75	Co	Jan. 15
18116	2370	291815	853200	25		crs. gy. S. brk.	Feb. 7
18117	2405	284500	850200	30		gy. S. brk. Co	Mar. 15

APOCREMNUS SEPTEMSPINOSUS, A, Milne-Edwards.
Apocremmus septemspinosus, A. Milne-EDwards, op. cit., p. 185, pl. Nxxv, fig. 5, 1879.
in the female the fingers are in contact throughout their length. The abdomen has a prominent median carina; the lateral portion is irregularly dotted with round pits, some of which tonch each other; the terminal portion is tuberculous.

Localities.

Gulf of Mexico; 1. S. Fish Commission steamer Albatross, as follows:

Cat. No.	Station.	Lat. N .	Long. W.	Fathoms.	Nature of bottom.	Date.
		$\bigcirc 11$	- ' 11			188.7.
15165	2372	291530	852930	27	Cr	Fels. 7
15164	2373	291400	852915	25	Co	Felb. 7
18118	2405	284500	850200	30	gy. S. brk. Co	Mar. 15

INACHOIDES INTERMEDIUS, new species

Carapace entirely smooth above, punctate, regions well marked, cardiac, branchial, and gastric regions protuherant. Rostrum tipped with a spine, somerhat longer than in I. obtusus; base triangular, thick, with two ridges from which the sides are inclined downwad, much as in I. obtusus. The postorbital tooth is very small. There is a tubercle on the margin of the hepatic region, and one also on the pterygostomian and the subbranchial region. Surface of abdomen of female smooth, punctate, with a median carina. Basal antemal joint unarmed except for a blunt tonth at the antero-external angle. Merus of maxillipeds deeply notched at the inner angle; inner lobe triangular, obtuse. Chelipeds in the female a little longer than the carapace. Merns somewhat angled, with a shallow tooth below near the carpal end. Manms swollen, unarmed. Fingers as long as palm, widely gaping. The first ambulatory leg is missing; the remaning legs decrease regulaly in length; dactyli almost straight.

Measurements.-Length of carapace, 5.8 mm ; width, 4.2 ; approximate length of cheliped. 6.5; of secomd ambulatory, 10.7; thist, 9.5; fourth 8 .

Locolity-Dredged oft Rio Janeino by Mr. Riehard Rathbun in the Hartt explorations of 1875-77.

This speries resembles I. obtusus and I. lervis in its thick rostrum, but it differs fiom all deseribed species in its smooth dorsal surface, even the cardiac region being without a tuberele.

ANASLMUS LATUS, new species.

('arapace almost as broad as long, elevated on the median line, the posterion half semicirenar in outline, the anterior half broadly triangular. Surface covered with tubercles mequal in size. There are five median spines; two gastric, the posterior the larger, one large on the (atrdiat region, one very small and pointing backward on the intestinal region, and one long acuminate spine directed backward at the distal end of the first ablominal segment. The anterior gastric median spine is one of a thansrerse row of five. In front of the extreme spines of this row are two longer and shanper. On the branchial region there are three small spines forming a triangle. There are three antero-lateral spines, one on the hepatic region and two on the bramchial region alowe the base of the chelipet. The rostrum is short, sharp, triansular, and upturned. The supraorbital spines are prominent, separaterl by a deep depression. The postorbital spines are long, exreeding the eye in large specimens, much less eonspicuous in small specimens. The basal antemal segment is long and narow, terminating in aspine, and with a stont spine in front of the eye pointing downward and forward. The flagellum is short, its second joint not attaining the end of the rostrum. The pterygostomian region has a row of spines and spimules which is continned to the antennal segment and inclutes a long spine at the angle of the buecal eavity. The merus of the maxillipeds is strongly cordiform as in A. fugor. Stermum and abdoment tuberculous. Abdomen of female with median tubereles on the third and fourth segments.

The chelipeds in the male are a little more than twice the length of the canapaer; ischinm, merns, and capus tuberenlous; merus cylindricall propodus swollen, palm shorter than the pollex, with fine scattered tubereles. Digits slemder, curved inwad, gaping at base only, their fine regular teeth in contact. In the female the chelipeds are a little longer than the carapace, are much smaller than in the male, and the fingers toncin thronghont their length. Ambulatory legs all very long, slender, eylindrieal, amed exeept the dactyli with mumerous small appressed spines; propodi and dactyli with a donble fringe of hatir.
lomog individuals are natower, with proportionally lonser domal spines and rostrum and shorter postorbital spines.

Teasurements.-Length (of large male), 25.5 mm ; breadth, "4; length of cheliped, 58 ; length of first ambulatory leg, 10t; length (of young male), 11; breadtī, S.

Localities.

Off Sonth Carolina to the Gulf of Mexico and Caribbean Sea, as follows:

This species can be distimguished from A. fuyax by its greater breadth of carapace, shorter rostrom and epistome, and different arrangement of spines.

EURYpODIUS LATREILLEI, Guérin.

Eurypodius latreillei, Guérin, (Mém. đu Muséum, xvi, p. 35ұ, pl. xiv, 1828); Icon. Crust. R. A., ii, pl. xi, fig. 1, 1829-44.-Miers, Proc, Zool. Soc. London, 1881, p. 64, and synonymy.

Loculity.-Laredo Bay, Straits of Magellan, January 22, 188s; IT. S. Fish Commission steamer Albutross.

OREGONIA GRACILIS, D ana.

Oreyonia gracilis, Dana, Crust. U. S. Expl. Exped., i, p. 106, pl. i11, fig. 2, 1852.
Oregomia hirta, DANA, op. cit., p. 107, pl. ini, fig. 3.
Oregonia longimana, Bate, in Lord's Nat. in Brit. Col., nf, p. 267, 1866.
This species is one of the most abundant of the North Pacific brachyurans. It was collected by the Albutross at St stations, fiom Bristol Bay, Bering Sea, to Oregon, and in depths ranging fiom 5 to 135 fathoms; and by Mr. Willian II. Dall and others as follows:

Localifies.
Alaska; Dall collection:

Cat. No.	Locality	Fathoms.	Nature of bothom.
1470.7	Anchorage, Cape Etolin, Numivak Island	8	St.
14707	Kyska larbor	7-14	11.s.
14710	Bay of Islands, Adakh.	9-16	11.s.
14770	Nazan Bay, Atka	10-16	S.
12510	Oft Imayna P'innacle, Captain's Bay, Unalaska	8-20	
-12496	BeMkollsky 3ay.	15-25	Sh. G
14713	Port İevasheft		
17703	Oif Rommd Island, Coal Harloor, Ungat.	8-9	s.st.
14769	Popotr Strait		
-14702	Sanborn Harlor, Nayai	low water.	
14709	Anchorave, Bier Koninshi Island, Shumagins.	6-20	s. 1 l
17768	Pont Miollar	1.5	
13133	Semidi Islands	12×28	
14706	Chajatka Cove, Kadiak	12-14	11.s.
12501	Chajatka Cove, Karliak	15-20	
12195	Chiniak Ibay, Kadiak........		
14711		$2 n-60$	sdy. 11.
$1+704$ 14768	Port Etches ${ }^{\text {West }}$ sido of Midaleton Island	$\begin{array}{r} 5-18 \\ 10-12 \end{array}$	
14768 14712	West sido of Mitaleton 1sland	(10-12	G. S.
12.517	Granite Cove, Port Althorp.		
1.151	Sithat llarhmr	15	(i. M.
11714	Silhat		

liering lslaml: L. Stejneger: young sperimens (13: 10) ; N. (irehnitski (1476).
Menzies Bay, Discovery Passage, B. C., 6 fathoms, soft bottom; Lient. Comdr.
II. E. Nichols, U. S. N., U. S. C. S. S. Hassler (j̄78).

Port Orehard, Puget Sound; O. B. Johnson (14971).

ANAMATLIA CRASSA, (A. Milne-lidwards).
 Plate I, fig. 4.

Amathia crassa, A. MLne-EDwhisds, op. cit., p. 203, Pl. X̌xvif, iig. 2, 1879.
Amathia agussizii, Sulti, Bull. Mus. Comp. Zool., X, p. 1, pl. 11, tigs. 2, 3, 1882; Proc. U. S. Nat. Mus., VI, p.3, 1883; Rept. U. S. Fish Commissioner for $\mathbf{1 8 8 2}$, p. $316,1881$.

Anamathia ayassizii, Smitm, Proc. U. S. Nat. Mis., Vn, p. 493, 188:\% ; liept. U. S. Fish Commissioner for 1885, p. 624, 1887.
Sereral large specimens wero dredged at station 2bibat. A female gives the following measurements in millimeters: Length of carapace, including rostral spines. 77 ; length of carapace, excluding rostral spines, 70 ; width, including spines, j)! width, exelnding spines, 57 : length of cheliped, 107; length of finst ambulatory leg, 199; second, 164 ; third, 140 ; fourth, 132.

Localities.

Off the coast ot Sonth Carolina and Florida her the U.S. Fish Commission steamer Albatross as fotlows:

Cat. No.	Station.	Lat. N.	Long W.	Butiom.			
				V'atlomis.	Temp.	Materials.	Date.
		- "	- 11		${ }^{\circ} \mathrm{F}$		1885.
11213	2024	823600	$77 \quad 2915$	258		my. S. bk. Sp..	Oet. 21 1886
11392	9642	25×30	795800	217	$42 \cdot 6$	gy. S	Apr. 9
11358	2665	29.4710	804545	263	$45 \cdots$	frue. 59.5	May 4
1138:3		$33047: 0$	794900	271	$48: 3$		May 5
11:397	2067	30. $5: 300$	79 +2: 0	273	48.7	gy. S. bk. Sp	May 5

ANAMATHLA HYS'TRIX, (Stimpson).
Amathia hystrix, Stmpson, Bull. Mus. Comp. Zool., II, p. 121, 1870.-A. MilneEdwalds, op. cit., pp. 134, 200, pl. xxviif, fig. 1, 1879; Bull. Mus. Comp. Zool., VIII, p. 2, 1880.
Anamathia hystrix, Smuth, Rept. U. S. Fish Commr. for 1885, p. 626 (1887)
Briefly characterized by Stimpson as bearing a close resemblance to A. rissoon, but differing in having four instead of three spines on the gastric region. The specimen at hand is the same species as that figured by A. Milne-Edwards, hut differs in having much longer spines and in the greater divergence of the rostral horns.

Locality.-Two and a half miles northwest of Havalat light, :387 fathoms, coral, temperature 49 , 1 pril 30,1851 , station 2152 , steamer Albatross; one immature female (6940).

Measurements.-Length, measured from between rostral horns, 16 mm.; length of horus, 17.5 ; width without spines, Jこ; width with spines, 27 : distance between tips of horns, 13 .

> ANAMATHIA UMBONATA, (Stimpson).
> Plate I, Figs. 1-3.

Scyra umbonata, Stimpson, Bull. Mus, Comp. Zool., 11, p. 115, 1870.-A. MilneEdwalds, Crust. du Mexique, p. 87, 1875, pl. Nxxi A, fig. 5, 1880; Bull. Mus. Comp. Zool., vini, p. 2, 1880.
Seyramathia umbonata, A. Milne-Edwards, Comptes Rondus, xcr, p. 356, 1880. (See Sars, Den Norsko Nordhavs-Expedition, xiv, Crustacea, 1, p. 7, 1885 ; also Smitir, Rept. U. S. Fish Commr. for 188iv, p. 625, 1887).
At Station 2415, off Georgia, were found four specimens of Stimpson's Scyra umbonata. The protuberances of the carapace are as described by him. The rostrm is composed of two slender divergent horns. The basal antemal joint is concave beneath, rather narow and marmed, except for the blunt tooth at the antero-extermal angle. The surface is covered with a deuse coat of broad seter similar to those deseribed by Sars as oceuring on Scyramuthice capenteri. The legs are bordered by longer club-shaped setie, while the gastric region and the margins of the rostrum and branchial regions are furnished with longs shender hairs curved at the tips. There is a prominent praborbital spine and a postorbital lobe.

The four specimens in the hat are alike in all essential particulars. Three are females, two of them bearing eggs, and the fourth is a s.mall male. In the latter the rostral horns are more divergent. The largest female has a total length of 29 mm .

Three other specimens oceur at station 2668 , of Fernandina, Florida. The ambulatory legs of all are longer and more eylindrical than in the individuals from station 241\%. One (which I will call Λ) is a male, 26.5 mm . long. This also is a typical mmbonate as resurds the orbits and ornanentation of the carapace, and is apparently mature, the chelipeds being elongate, about $1 \frac{1}{2}$ times the length of the carapace, the propedus much longer than the merus and strong, its margins thin and sub)parallel; fingers gaping for their basal half, dactylus with a basal tooth. Ambulatory legs with the club-shaped sete reduced in size.

The largest specimen (C) from this station is an oviserous female, 31 mm . Inng. The carapace is much swollen and smoother than in those above described. There are but thee flat-topped protuberances, the ("ardiar and anterior branchial; their flattened tops are smaller than their bases. The other prominences are simply tubereles, the gastric one being elongate and smoothly rombled. The marginal spines are tapering, and mot loroad and flat as in the specimens form station 2415, the hepatie spine not erece lout directed ontwarl and slightly forward and upward, and the branchial spine directed not forward but ontward and slighty upwati. The ambulatory legs are conspicmonsly clothed with long slender bristles among the short sete.

These chamacters are sufficient to make this sperimen specifically distinct from those described abore, were it not that the third sperimen (B) from this dredge hanl is intermediate in character. It is a male, as mm. long, but with the chelipeds not strongly developed. The protuberances of the dorsal surfare are as in (', excepting that the flattened tops of the three prominences overhang their bases. The marginal spines are as in d . The ambulatory legs are as in (', and the faratace has more long fine bristles than in any other specimens.

In ($($ (fig. 3) the orbits are widely open, more so than in A. crossue (fig. 4); there is in fact no upper surface to the orbit. The onter surfare of the postorbital lobe is flat, and it is directed formard or in a line almost parallel to the median line. The prambital spine is directed well ontwarl ; its posterior or outer margin is concave, directed strongly inward fiom the tip and then slightly outward. In A (fig. 1) the outer margin of the postorbital lobe is inclined strongly inward; the outer margin of the prombital spine is directed slighty inward from the tip and is convex posteriorly. This disposition of the orbital spines neeessarily makes the opening of the orbit narower as seen from above, especially at the posterior end where the narrow sims gives it an appearance similar to that seen in A. curpentori, which Prof. Sars considered to be allied to the genus Myastemis (see fig. \quad, H. lonfipes). In the orbits of I ($\mathrm{fig} . \stackrel{\circ}{-}$) the intermerliate character is again seen, the postorbital lobes resembling those of Λ, the preorbital spines those of \mathbf{C}.
A. curpenteri (Norman) is more pyriform than A. umbomutn, narower anteriorly, and the preorbital spine is reduced to a lobule.

Heasurements in millimeters.

Sex..... Station	$\begin{aligned} & 7(\mathrm{~A}) \\ & 26688 \end{aligned}$	$\begin{aligned} & q(\text { (}) \\ & 2668 \end{aligned}$	${ }_{24}^{+15}$
Total length of carapare	25.6	31	29
length of rostral spine, inside measure.	7.3	7	6.8
Total witht of carapace	19		
Width without spines.	15	17.5	17.5
Length of cheliped	41.5	30	26
Length of first ambulatory leg	42	49	38
Length of second ambulatory leg	33	40	31
Length of third ambulatory leg.	27.5	34	27
Length of fourth anbulatory leg	26	32	26

Orbital Variations of Anamathia.

Figs. 1-3. Orbit and rostrum of Anamethia umbonata $\times 32$.
Fig. 4. Same of Anamathia crassa $\times 1 \frac{3}{5}$.
Fig. 5. Same of Hyastenus longipes $\times 1 \frac{3}{5}$.

TRACHYMAIA CORNUTA, A. Milne-Edwards

Trachymaia comutn, A. Mllafe-Enwards, Crust. du Mexique, I, p. 35シ, pl. xixi A, fig. 2, 1880.
The single specimen collected by the Albatross is larger than that figured by A. Milne-Edwards. The carapace is rongh with spinules, and covered with soft bristles. The four spines on the gastric region form a transverse diamond; there are two median spines close together on the cardiac region; five spines on the branchial region, three near the inmer margin and two near the onter; one hepatic and one subhepatic spine. On the posterior margin of the carapace is a line of twenty-five small spines terminating above the first ambulatory leg; of this row the median spine and two near the middle are larger than the others. On the margin of the branchial region there is a line of four spines extending forward from above the first ambulatory leg. On the pterygostomian region there is a cluster of four spines. The rostral spines are longer, more slender, and more divergent than in Λ. Milne-Edwards's figure. The prarorbital spine is acuminate; the postorbital is long, projecting laterally much beyond the eye. The eyes are large and flattened almost in a horizontal direction. There is a large suborbital spine, and a spine at the angle of the buccal cavity. The basal antemal segment bears a terminal and one lateral spine; the second joint of the flagellum reaches half way to the end of the rostral spines, while the remainiug portion of the flagellum exceeds the rostrum by half its length. In the abrlomen of the male the first segment has three spinules transversely arranged; the second has two median and one lateral; the thind and fourth have a median tuberele. Sternum with four spinules in front of the abdomen.
The chelipeds are nearly twice the length of the carapace; ischium, merus, and carpus spiny. Manus broad; upher margin with a small spine near the carpus and at a little distance a minute spinule visible with the glass; lower margin with a tooth near the articulation. Fingers flattened laterally, broad, toothed on the prehensile edges, acute, narrowly gaping for half their length. Ambulatory legs slemder, with seattered bristles, the first nearly three times the length of carapace, the fourth about one half the length of the first. Other legs missing.

Measurements.-Length, 18 mm . width, without spines, 13 ; length of rostral horns, 3.2; length of cheliped 3:3.); length of first ambulatory leg, 52 ; length of fourth, to articulation of dactylus, 21 .

Locality.-Little Bahama Bank, lat. 27022^{\prime} N., long. $7800 \sigma^{\prime} 30^{\prime \prime}$ W., 338 fathoms, gray sand, temp. 47.50, May $\because, 1886$, station 2695; one male (11400).

I have examined three small specimens from the Blate collection in the Museum of Comparative Zoillogy and find that they agree with the one above described in the rery slender rostral spines and the relative length of the antemal joints, and also possess spinules on the upper margin of the manus.

LISPOGNATHUS＇THOMSONI，（Norman）．

Dorynchus thomsoni，Normax，in Thomson，Depths of the Sea，p．174，cut， 1873.
Lispognathus thomsoni，A．Milne－Edwards，（Arch．Miss．Sci．Litt．，ix，pp．16，39， 1882）．Mers，C＇hullenger Rept．，Zool．，Xvir，p．‘28，I＇l．v，fig． 2 （variety）， 1886，and synonymy．－Smitif，Rept．U．S．Commr．of Fisheries for 1885，p． 629， 1887 ，and synonymy．
 coral，coarse sand，shells and foraminifera．temperature 4．）． 6 ．April 1 ， 1sis．，station 2415，I．S．Fish（＇ommission steamer Albutross： 1 male， 1 female（1S119）．

These speremens have heen compared with a female firom station 20．6．，off Mathas Vineyarl（smith，loce cito）．They are about the same size and apparently the same species．

HOLOPLITES，new genus．

（＇arapace priform，covered with sharp spines of megnal length． Rostrum composed of two long，slender，divergent horns．I＇aborbital spines long．Orbits open，spinous．Basal antembl sedment rery mar－ row，spinous．Antero－intermal amgle of the merus of the maxiliperds oblique．not notehed fur the articulation of the palpus．Abdomen of female with the formoth，fifth，amb sisth segments coalesced．Cheliperds aud meral joints of ambulatory legs spinous．

This gemas resembles Échinoplar，Miers，in many respects，but does not possess aceessory spimes on the rostrum．It differs fiom Xihilin in the very incomplete orbits，the namow hasal antemmal serment，the number of ablominal segments in the female as well as in the form of the maxillipeds．

HOLOPLITES ARMATUS，（A．Milne－Edwards）．

Nibiliu armata，A．Mhne－Emwalids，Crnst．du Mexique，p．348，pl．xxxi A，fig．3； 1880.
 a half miles northwest of Havana Light． 357 fathoms，coral．tempera－ ture 49° ．

The spine above the orbit is nearer the postorbital than the pre－ orbital，amd is longer than represented in A．Milne－Edwards＇s figure． There is also a subhepatie spine．The matrmof of the dhatross spece men is longer proportionally than the one figured and is not divided to its base．The first thee segments of the abolomen in the female are very natow and have each a median spine，diminishing in length from the first to the thind ：the secomd and thime segments late lateral spin－ ules，which are almost imperepptible on the third；fourth segment rery large and smooth：terminal sement hoadly rombled at the extremity． The abdomen has soattered hairs like the rest of the surface．

Mensurements．－Length，inchuling rostrum，2：3．5 mm．；length of ros－ tral spines，s：width，without spines，11；width，including spines， 16.

CHORINUS HEROS, (Herbst).
Cancer heros, Herisst, Natur. Krabben und Krebse, if, p. 165, pl. xlii, fig. 1, pl. xviil, fig. 102, 1796.
Chorinus heros, Leacif (Latreille, Encyc., t. 10, p, 139).-A. Milne-Edwards, op. cit., p. 86, aud synonymy.
Localities.—San Domingo, W. M. Gabb, 1878 (4176). Rio Vermelho, Bahia, Brazil, February 6; Richard Rathbun, Hartt Explorations, 1875-77.

TRICHOPLATUS HUTTONI, (A. Milne-Edwards).
Trichoplatus huttoni, A. Milne-Edwards, (Anu. Sci. Nat. (6), iv, art. 9, pp. 1-3, pl. x, 1876 ${ }^{\text {y }}$, fide Zool. Rec., 1877.-Miers, Jour. Linn. Soc. London, xiy, p. 647, 1879, (Erichoplatus).
Halimus heetori, Miers, Ann. N. H. (4), xvii, p. 219, 1876; Cat. Crust. New Zealand, p. 4, 1876.
In a male from New Zealand, presented by the Otago University Museum (16224), the chelipeds are very robust; in another from Bluff Harbor, New Zealand (18127), the right cheliped is short and slender, the left long and robust.

Subfamily Acanthonychine.

ANOMALOTHIR FURCILLATUS, (Stimpson).
Anomalopus furcillatus, Strapson, Bull. Mus. Comp. Zool., ir, p. 125, 1870.-A.
Milne-Edwards, Crust. du Mexique, p. 188, pl. xxxv, fig. 4, 1879.
Anomalothir furcillatus, Miers, Jour. Linn. Soc., London, xiv, p. 648, 1879.
Localities.
Collected by the Albatross at the following stations:

Cat. No.	Station.	Lat. N.	Long. W.	Fathoms.	Nature of Bottom.	Date.
		- 111	- ' 11			1885.
15166	2346	231039	822021	200	Co.	Jan. 20
18127	2401	283830	855230	142	gn. M. brk. Sls.	Mar. 14
18128	2601	343915	753330	107	gy. S.	Oct. 18
15156	2319-50	Off Hava	a, Cula.	$33-279$	Co.	Jan. 17-20

MOCOSOA CREBRIPUNC'TATA, (Stimpsou).
Mocosoa crebripunctata, Stimpson, Bull, Mus. Comp. Zool., if, p. 128, 1870.-A. Milne-Edwards, op. cit., p. 137, 1878.
The large immovable eyes completely fill the circular orbits which are provided with a small, inconspicuous tooth on the outer side. The area above the orbit is thickened and protuberant, but without a prieocular spine. The third, fourth, and fifth segments of the abrlomen in the male are coalesced. The cheliperls are stont, elongate; merus cylindrical; manus slightly compressed, widening distally; fingers very short and stout, little gaping, dentate. The surface of the crab is everywhere punctate.

Measurements.-Length, 7; width, $6.2 \mathrm{mm}$.
Locality.-Gulf of Mexico, lat. $29^{\circ} 15^{\prime} 30^{\prime \prime}$ N., long. $85^{\circ} 29^{\prime} 30^{\prime \prime}$ W., 27 fathoms, gravel, station 2372 , steamer Albutross, Feb. 7, 1885; one male (18129).

Proc. N. M. $94-5$

SPIIENOCARCINUS CORROSUS, A. Milue-Edwards.

Sphenocarcinus corrosus, A. Milak-EDWhlids, op. cit., l. 136, pl. Nvif, fig. 5, 1878.
One female with egos, fiom off Cape Fear, North C'arolina, lat. 33° 20^{\prime} N., long. $75^{\circ} 05^{\prime} \mathrm{W} ., 90$ fithoms, gray sand, temperature 65.5°, April 2, 1885 (15183).

In this specimen the rostrum is longer than in A. Milne- Edwards's figwe and the homs are divergent for their terminal half. The supnarbital margin terminates anteriory in a romded lobe more prominent than is indicated in the figure. The protogastric lobes are larger and more broally joined to the mesogastric. The middle portion of the cardiace lobe is also deeper than represented in the figure.

SHMOCARCINUS SMPLEX, (Data).

Huenia simplex, Dava, Crust. U. S. Expl. Exped., I, p. 133, pl. 6, fig. 3, 1852, male.
Huenia brevirostrata, DANA, op. cit., p. 134, pl. 6, tig. 4, female.
Simocurcimus simplex, Miers, Amn. Mag. Nat. Hist. (5), Iv, p. 6, 1879.
Locality.-Western Indian Ocean; W. L. Abbott, 1 male (1s1:30).
The rostrum is much longer and namower than in the example fig. ured by Dana.

ECHINCECUS, now gemus.

Carapace subpentagonal, rery convex in the antero-posterion direction. Rostrum triangular, hattened horizontally, strongly deflexed. Eyes small, in circular orbits, concealed by the carapace and situated at the indentation formed by the meeting of the antero-lateral and rostral margins. Antennar very small, covered by the rostrm, the basal seg. ment narow. Maxillipeds with the merus notehed at its antero-internal angle. Abdomen of female with 7 segments. Legs short.

ECHINEEUS PENTAGONUS, new species.
Carapace almost smooth, convex in both directions, especially so in the antero-posterion directions; posterior margin straight, forming obligue angles with the postero lateral margins, which are directed forward and outwand. Antero-lateral angles rombled. Surface punctate. Thereare a few round shallow depressions between the areas, and seven or eight small low tubercles on the cardiac region. The rostrum is nealy as long as its breadth at base, thinedged, obtuse and slightly indented at the tip. The eyes are withdatwn into small nearly circular orbits which are bordered below hy the small narow basal antennal segment. The flagellum is short, not rearhing to the middle of the rostrum and is entirely concealed by it. The antemule are neary longitudinal. Epistome short. The lower surtace of the carapace is conspicuonsly punctate. Maxillipeds punctate; inner margin of merus conver, antero-internal angle with a slight motels. Abdomen of female much longer than wide.

Cheliperls shont and stout, punctate; ischium with a low tooth on inner margin; merns trigonal, widening distally, with a stout tooth on earh margin near the canpus: carpus with two teeth on imner margin.

When the chelipeds are folded close to the carapace, one carpal tooth is just in front of the antero-lateral angle, the other just behind it. Propodus deep, especially toward the fingers, where the upper margin is produced much above the dactyl. Fingers short, irregularly and feebly toothed along their prehensile edges which are in contact, the tips crossing. Ambulatory legs marmed, somewhat flattened; meral joints rectangular; propodal joints tapering towards the dactyli which are stout, and hairy beneath, with curved homy tips.

Measurements.-Length of carapate, 15 mm . ; width at antero-lateral angles, 14.3 ; posterior width, s; width at orbits, 5.5 ; length of rostrum, 4.8 ; length of cheliped, 14 ; lower margin of propodus, 7 ; greatest depth of propodus, 3.7 ; length of first and second ambulatory legs, 15; third, 13.2; fourth, 12.5.

Locality.-Port Lloyd, Bonin Islands; fiom the anal end of the intestinal canal of Echinothrix culumuriu; one adult female (1;3s 9).

This species with its smooth broad carapace and short legs is adapted for commensalism, and resembles superficially certain of the Pinnotheridx of similar habit.

EPLALTUS BITUBERCULATUS, Milne-Edwards.
Epialtus bituberculatus, Minee-Edwarins, Hist. Nat. Crust., i, p. 315, pl. xv, fig. 11, 1834.-A. Milne-Edwards, op. cit., p. 139, pl. xivii, figs. 1, 2, and 3, 1878, and synonymy.
Epialtus dilatatus, A. Minne-Edwards, op. cit., p. 140, pl. xivii, fig. 4.
Represented in the collection by 10 specimens from 9 localities. A larger series would probably show that E.sulcirostris and E. longirostris Stimpson and E. minimus Lockington are variations of the same species.

Sabanilla, United States of Colombia; U. S. Fish Commission; 1 male (18131) of the form shown by A. Milue Edwards, op, cit., pl. xxvir fig. 3.

Pernambuco (?), Brazil; Richard Rathbun, Hartt Explorations, 1875-77; 1 male, 1 female, also of the brasiliensis form, and the male with the heavy chelipeds figured by Dana.

Bird Key, Florida; U. S. Fish Comminsion schooner (rirempus, April, 8,1889 ; one female with eggs (15204) of the dilatutus form, the anterior lateral lobes being more rounded than in A . Milne-Edwards's figure, and the rostrum narrower at base and less tapering.

Dry Tortugas, Florida; Dr. Edward Palmer; one immature female (18132) of the dilatatus form, with lobes like the last.

Florida (?); one small make, (1446.5) with lobes intermediate between typical bitubereulatus and dilatatus.

West coast of Florida; Henderson and Simpson; one immature female (18133), with elongate, emarginate rostrum and rather prominent lateral lobes, the anterior rounded, with its anterior margin sloping backward and outward, the posterior lobe with a prominent tuberele on its anterior margin.

Key West, Florida; D. S. Jordan, December, 18s3; one mate (1s134), with rostrum similar to the last, and with acute somewhat spiniform lateral lobes.

Pamama (?) ; one small femalle (18135) with (rigs, with entire rostrm, and prominent lateral lobes, the anterion being rounded and its anterior margin shoping backward and outward, the posterior lobe smaller and acute.

Southern California; W. H. Dall; one male (1s136); this specimen shows a greater divergence from typical forms than any of those hitherto deseribed; the rostrum is broad amd diat, witening toward the extremity which is broadly emarginate; the preorbital lobes are small but acute; the hepatic lobes are enomonsly developed, their anterior margins directed forward, outward and upward, their extremities being more advanced than the eyes. The postero-lateral projections are stont, acute teeth. The palms of the chelipeds are very long and terminate in a strong prominence behind the dactyl. Length 11.3 mm ., width 9 mm .

EPIALTUS PRODUCTUS, Randall.

Epiallus produches, Randall, Jour. Acad. Nat. Sci. Phila., Vin, p. 110, 1839.Grbbes, Proc. Amer. Assoc. Adv. Sci., im, p. 173, 1850.-D.DNa, op. cit., 1, p. 133, pl. 6, fig. 2, 1852.—Stimison, Proc. Acad. Nat. Sci. Phiaia., ix, p. 219, 1857; Bost. Jomr. Nat. Hist., Vi, p.457, 1857.-Ricmard Ratmbun, Fisheries Industries of U.S., Sec. 1, p. 778, 11. 268, 1884.

Localitics.

Alaska:
Kyska Harbor, ! to 12 fathoms, samdy 1atul; W. II. Dall (14797).
British Columbia:
Barclay Sound; U. S. Fish Commission (15521).
Beäver Harbor; U. S. Fish Commission (15519).
Victoria; C. F. Newcombe (15796).
Washington:
Straits of Fuca; D. S Jordan (3064).
Port Ludlow; W. H. Dall (14796).
Port Orchard; O. B. Johnson (14974); U. S. Fish Commission (15518).

California:

'Tomales Bay (14853).
San Francisco; D. S. Jordan (3095).
San I'rancisco (\%); U. S. Exploring Expedition (2366).
I'oint Loma; U. S. Fish Commission (15522).
Monterey; A.S. Taylor (2051) ; D. S. Jordan (3129) ; H. Hemphill (2289, 3292).
Monterey Bay; U.S. Fish Commission (15520).
Santa Barbara; Shoemaker (2316); D. S. Jordan (3048).
San Pedro; D. S. Jordan (3088).
Catalina Harbor, beach; W. H. Dall (14793).
San Diego; D. S. Jordan (3560); Rosa Smith (7633); Rosa S. Eigenmanu (14652); 1I. Hemphill (18137).

Southern California; W. II. Dall (14794).
West coast North America; North Pacific Railroad Survey (2139).

EPIALTUS (ANTILIBINIA) DENTATUS, (Milne-Edwards).
Epialtus dentatus, Milne-Edwards, Hist. Nat. Crust. 1, p. 345, 1834.-Bell, Trans. Zool. Soc. London, II, p. 62, 1835.
Epialtus (Antilibinia) dentatus, Miers, Jour. Limn. Soe. Loudon, XIV, p. 650, 1879.

Localities.

Panama (?) ; J. M. Dow; 1 female (2402).
West Coast of South America; Dr. H. E. Ames, U. S. N.; 1 female (18138). Callao, Peru; U. S. Exploring Expedition; 1 femalo (2365).
Valparaiso, Chili; U. S. Exploring Expedition; male and female (2367).
The specimens collected by the United States Exploring Expedition, although labeled by Dana, were omitter from his report.

EPIALTUS (ANTILIBINIA) MARGINATUS, (Bell)
Epialtus marginatus, Bell, op. cit., p. 62, pl, Xi, fig. \& (f), pl. Xifi (ठ).-A. Milne-Edwards, op. cit., p. 138, 1878.
Epialtus (Antilibinial marginatus, Mers, loc. cit.
Locality.-Valparaiso; U.S. Exploring Expedition; male and female (2372). Labeled but not recorded by Dana.

EPIALTUS (ANTILIBINIA) NUTTALLII, (Randall).
Epialtus mutlallii, Randali, Jour, Acad. Nat. Sci. Phila., Vini, p. 109, pl. 111, 1839.

Localities.

Santa Barbara, Cal.; D. S. Jordan, 1880 (3108).
San Diego, Cal.; H. Hemphill; 7 young females (18139).
Southern California; W. I. Dall; 1 young female (14798).
PUGETTLA GRACILIS, Dana.
Pugettia gracilis, Dana, op. cit., I, p. 117, pl.4, fig. 3.-Stimpson, op, cit., p. 456. Loceington, Proc. Cal. Acad. Sci., vir, p. 76, 1876.-Miers, Jour. Linn. Soc. London, xiv, p. 650, 1879 ; Challenger Rept., Zool., Xvir, p. 40, 1886.
Pugettia lordii, Spence Bate, in Lord's Nat. in Brit. Col., I, p. 265, 1866.
P'ugettia quadridens var. gracilis, Ortmann, Zool. Jahrb., Vif, 1, p. 43, 1893.
In many specimens the wing-like lateral expansion is strongly upturned, and there are four tubereles on each branchial region, one in line with the cardiac tubercle, one further loack but nearer the median line, while the other two are further forward on the branchial region. The upper surface and margins of the rostral horns and the imner margin of the preorbital teeth are marked with lines of curled seta. The carpus of the cheliped, besides the two carine above, has a strong carina on the inner margin, and is irregularly ridged on the outer surface. In large males, the hands are very wide, compressed, with the upper carina very thin and prominent; fingers gaping at hase, with a short, stout tooth on the dactyl.

The color of dred specimens recently received from 1)r. Neweombe is red and green above, and red beneath.

Meusurements.-Length of largest specimen, 53 mm . ; hranchial width, including spines, 40 ; length of cheliped, about 86 ; width of hand, 18.

There is nothing in the deswiption or figure of P. lordii Spence Bate to indicate that it diflers from P^{\prime}. aracilis. It is sad to range sonthward to San Francisco.

This species differs from I^{\prime}. gfadridens in its greater proportionate width at the hepatie regions. In I'. qumdridens the carapace is obviously triangular, being much wider posterioly than anterionly, while in P. fracilis the carapace is rery little wider at the branchial regions than at the hepatic. The anterion lateral expansion has its posterior lobe produced much further forward than in P^{\prime}. quadridens; its outer or posterior margin is rery convex, while in l. quadridens it is concave except near the end of the lobe. The prambital lobes are wider and the orbital sinns narower in P. gracilis than in P^{\prime}. quadritens. In P^{\prime}. gracilis the four gastrie tubereles (the anterior one is obsolete in old specimens) form a Latin aross; in $P_{\text {。 }}$ quadiadens they form arectangle. The ambulatory legs are more slender in P. quadridens.

Lecalities.

Alaska; William II. Dall:
Chichagoff llarbor, Atta, 5 to 7 fath., gravel, sand (14756).
Kyska Harbor, in pass, 10 fath. (14759).
Nazan Bay, Atka, low water (14797).
Off Imagna P'innacle, Captain's Bay, Unalaska, 8 to 20 fath. (12538).
Amaknak Island, shores (13131).
Belkofisky Bay, 15 to 25 fath. (14754).
Popofi Strait, Shumagins, 6 fath. (14753).
Chinikof lsland, beach (15375).
Middleton Island, west side, 10 to 12 fath., gravel, stones (14758).
Port Mulgrave, Yakutat Bay, 6 to 40 fath. (14763).
Lituya Bay, 6 to 9 fath. (14764).
Alaska; other collectors:
Unalaskat ; S. Applegate (12050).
Kadiak; W. J. Fisher (5747) ; U. S. Fish Commission (15571).
Sitka; Commander L. A. Beardslee, U. S. N. (3171); F. Bischoff (2178).
Ward Cove, Revilla Gigedo Island; Dr. T. II. Streets, U. S. N. (14761).
Alert Bay, Cormorant Island, beach; Dr. W. H. Jones, U. S. N. (5815).
British Colmmbia:
Tledoo Village, near Susk, northwest coast of Graham Island, Queen Charlotte group; James G. Swan (6611).
Barelay Sound; U. S. Fish Commission (15:50).
Vietoria; Dr. C. F. Newcombe (15795).
Washington:
straits of Fuca (3100); D. S. Jordan (3077).
Neah Bay; J. G. Swan (2396, 5771).
Port Angeles; U. S. Fish Commission (18140).
Port Townsend; U. S. Fish Commission (16033).
Port Ludlow ; S. Bailey (14762) ; W. H. Dall (14753).
P'uget Sound; 1). S. Jordan (3097).
Port Orchard; O. 13. Johnson (14967).

PUGETLIA RICHII, Dana.
Prgetlia richii, Dana, op. cit., I, p. 118, pl. 4, fig. 4.-Stimpson, op. cit., p. 457.Locinngton, loc. cit.-Miers, loc. cit.
This species is not larger than P. gracilis, and in adult specimens the hands and fingers do not differ in the two species. $\quad P$. richii is, however, readily distinguished by the bilobate lateral expansion, the posterior lobe of which is slemder and almost transverse, and the anterior lobe more transverse than in l^{\prime}. gracilis. The merushas a few irregular teeth above instead of the prominent carina of P '.gracilis. Carpus with a single carina above and one on the imer margin, and between them but a slight trace of the diagonal ridge so prominent in l^{\prime}. gracilis. Ambulatory legs more sleuder and eylindrical than in P. gracilis.

Localities.

British Columbia
Barelay Sound; U. S. Fish Commission (15572).
Victoria; Dr. C. F'. Neтrombe.
Califomia:
Monterey Bay ; U. S. Fish Commission (15573).
Monterey; II. Hemphill (2276) ; D. S. Jordan (3058).
San Diego; Rosa Smith (14765).

PUGETTIA QUADRIDENS, (de II a an)
Pist (Menothius) quadridens, De HaAn, Fanna Japon., Crust., p.97, pl. xxiv, fig. 2, male, and pl. G, 1850.
I'ise (Mencethius) incisus, De HAAN, op. cit., p. 98, pl. xxiv, fig. 3, fomale, and 11. (i.

Menothius quadridens, ADAMs and White, Voy. Samarang, Crust., p 20, 1818.
Menothius incisus, Adans and White, loc, cit.
P'ugettic quadridens, Stmipon, Proc. Acad. Nat. Sci. Phila., IX, p. 219, 18:37.Miers, Proc. Zool. Soc. London, p. 23, 1879; Challenger Rept., Zool., xvir, p. $40,1886$.

Pugettia incisa, Stimpson, loc. cit.-Miers, loc. cil.
After careful study of a large series of specimens of this genus from Japan I find it necessary to unite De Maan's two species. There are specimens in the collection as distinct as those figured by De Maan. In a lot of four examples from Yokohama Bay three represent the typical I^{\prime}. incisc, while one has the hepatic expansion more projecting and more concave on the margin. Rev. II. Loomis has recently presented to the Museum 60 dried specimens from Japan, exact locality not given. Of these about 25 have the strongly produced lateral expansion with a deep sinus separating the postorbital tooth from the sharp posterior tooth. About 10 specimens have the narrower carapace, almost truncate lateral expansion with a rounded posterior angle. The remainder of the specimens are intermediate in width, with the hepatic margin more or less concave and its posterior angle subacute. The prominence of the median tubercles varies with the individual.

In male specimens of both varieties 25 mm . long the chelipeds are identical; the palms are slightly constricted behind the fingers, which are evenly dentate and in contact for nearly their whole length. There
are no larger examples of the P. incisus type in the collection, but specimens of the P. quudridens type and of the intermediate grade, about 35 mm. lons, have chelipeds proportionally much larger, hands of nearly equal width throughout, fingers dentate for nearly their entire length, in contace for their terminal half, gaping at base, and withont the two prominent isolated teeth at the base of the dactyl represented in De Haan's figure of P. quadridens.

Aside from the characters on which De Ifaan's two species were fomberl-the shape of the carapace and the development of the cheli-peds-there seem to be no specific differences.

Localities.

Yokohama Bay, Japan, 7 fathoms, kelp (13918).
Japan; II. A. Ward (18141); II. Loomis (18142); Dr. F. C. Dale, U. S. S. Palos (13720, 13726).
Fusan, Corea; P. I. Jony (12400).

PUGETTIA FOLIATA, (Stimpson).

Mimulus foliatus, Stimpson, Ann. Lyc. Nat. Hist. N. Y., Vir, p. 200, 1860.
'There seems to be no good reason for placing this in a genus distinct from P'ugetfo. The antemat have the basal joint as in that genus and the flagellum flattened and exposed at the sides of the rostrum. The lateral expansion is bilobate, but the carapace is wider than in other species of Pugettic. The breadth of the carapace does not always exceed the length, as, for instance, in the specimen from Barclay Sound, where the dimensions are: Length, 12.5 mm ; width, 12 mm . The ehelipeds present nothing distinctive; the manus is very broad and has thin upper and lower margins. The maxillipeds, abdomen, stermm, and ambulatory legs are almost exactly as in P. gracilis.

Localities.

Off Imagna Pinnacle, Captain's Bay, Unalaska, 8 to 20 fathoms; W. H. Dall (14894).

Barchay Sound, B. C.; U. S. Fish Commission (10248).
Monterey, Cal. ; H. Hemphill (3291).

ACANTHONYX PETIVERII, Milne-Edwards.
Acauthonyx petiverii, Milne-Edwards; Hist. Nat. Crust., 1, p. 343, 1834.-A. Milve-EDwalids, op. cit., p. 143, pl. xxvif, fig. 7, and synonymy.

Localities.

Mar Grande, Bay of Bahia, Brazil, Richard Rathban, Hartt explorations 1875-77; one female.
l'ernambuco (1), same collector; male and female.

Subfamily Microrhynchins.

NEORHYNCHUS DEPRESSUS, (Bell).

> Microrhynchus depressus, Bell, Trans. Zool. Soc. Lond., if, p. 42, p1. 8, fig. 2, 1835.
> Neorhynchus depressus, A. Milne-Edwards, op. cit., p. 187, 1879.

Hitherto only the female of this species has been known. The abdomen of the male has a long, acute, horizontal spine on the first segment as in the female; the outer margins of the fifth and following segments are nearly parallel; terminalsegment rounded; sixth and seventh anchylosed. The abdomen figured by Bell is that of in immature female; in mature females the fifth or anchylosed segment is much wider than long, the distal margin slightly concave. The chelipeds of the male are weak as in the female. Of the ambulatory legs the second pair is the longest and the first the shortest, fringed with long hairs; second pair less hairy, third and fourth pairs slightly hairy. Last pair shorter than the third. The basal antemal joint has the inner margin irregularly dentate, the antero-internal tooth blunt, not so far advanced as the antero-external, which is slightly incurved, rounded.

Meusurements.-Length of carapace (of largest specimen, a female), 18 ; width, 17 ; length to tip of abdominal spine, 23 mm . Length of carapace (of male), 12.5 ; width, 11.5 mm .

Locality.-Gulf of California, lat. $24^{\circ} 16^{\prime}$ N., long. $1100^{\prime 2}$ W., 21 fathoms, gray sand, broken shells, April 30, 18si; station 2s:2, U. S. Fish Commission steamer Albatross (18143).

PYROMAIA CUSPIDATA, Stimpson.

J!yromaia cuspidata, Stimeson, Bull. Mus. Comp. Zool., If, p. 110, 1870.-A. Milene Edwards, op. cit., p. 177, pl. xxxvi, fig. 2, 1879.
Apiomaia euspidata, von Martens, Zool. Rec., 1871, p. 182.-Miers, Jour. Linn. Soc. Lonton, xiv, p. 651, 1879.
The Albutross specimens of this species are much larger than those described by Stimpson and A. Milne-Edwards. The dorsal spines are not short and tuberculous, but slender and prominent; of those on the median line, the posterior gastric, the anterior cardiac, the posterior, and the abdominal spine are longer than the others. There is an acute triangular interantemular spine, pointing forward. The chelipeds of the adult male are stouter than those figured by A. Milne-Edwards and are spinulous. Merus with longitudinal rows of short spines with one longer and very slender spine at its distal upper extremity. All the spinules or spines of the carpus are short. The basal portion of the propolus is tumid, longer than the fingers, which touch almost to their base where there is a slight opening. The ambulatory legs are spinulous; the meral joints have an erect spine near the ischial joint, and short spines on the condyles articulating with the carpal joints.

In females and young the ambnlatory legs are almost smooth to the touch, but the spinules can be seen with the lens. I female, 27 mm . long, bearing eggs, from station 2601, is unique m having no spine at
the base of the merns of the ambulatory legs, a character which is present in all other specimens of all sizos, more than thirty of which have been examined.

Mersurements.- Entire lemgth of earapace (of male), 45; width, without spunes. 35; length of cheliped, i: ; propodus, is3.5; pollex, 15; depth of propodus, S.5; length of tirst ambulatory leg, lis; secoud, 144 ; third, 136.5 ; fourth, 123.

Localities.

Oif Cape Lookout, N. C., to the Gulf of Mexico; U. S. Fish Commission steamer Allatross, as follows:

Cat. No.	Station.	Lat. N.	Long. W .	Bottom,			Date.
				Fathoms.	Temp.	Materials.	
		1-1/	$\bigcirc{ }^{\circ} 1$.		\bigcirc		1885.
9649	2377	290730	880800	210	67	gs. M	Feb. 11
9745	2399	284400	861800	196	51.6	gy. M	Mar. 14
18144	2400	584100	860700	169		$\underline{25}$ M	Mar. 14
9750	2401	283830	855230	143		gn, M. brk, Sl	Mar. 14
9758	2402	283600	853330	111		gy. M	Mar. 14
18145	2601	343915	$\begin{array}{r}75 \\ -53 \\ \hline\end{array}$	107		gy, S.	Oet. 18
18146	2602	343830	753330	124		S. 12	Oct. 18

LOXORHYNCHUS GRANDIS, Stimpson.

Loxorkynchus grandis, Stimpson, Jour. Boston Soc. Nat. Hist., vi, p. 452, 11 l. XIN, fig. 1, pl. XXIf, fig. 1, 1857.

Localitics.

California:
Near San Francisco; Trowbridge (15376).
Off Santa Barbara, lat. $34^{\circ} 19^{\prime} 30^{\prime \prime}$ N., long. $119^{\circ} 44^{\prime} 15^{\prime \prime} \mathrm{W}$., 68 fathoms, green mud, temperature 54°, February 11, 1889, station 2973; U. S. Fish Commission steamer Albatross (17379).
San Diego; Dr. Kennerly (17572).

LOXORHYNCHUS CRISPATUS, Stimpson.

Loxorhynchus crispatus, Stimpson, Jour. Boston Soc. Nat. Hist., vi, p. 453, pl. xxif, figs. 2, 3, and 4, 1857.
In a large male the nine most prominent spines or tubereles are corered, exenpting at the top, with very thick short hair, which makes them appear hemispherieal in shape with small shining points emerging from the hair. There are three less proninent spines arranged transersely on the post frontal region, and a number of smaller spines scattered on the carapace. Rostrm covered above with stout curied hair, which extends hack from each horn across the gastrie region; the line is then boken and reappears lower down, and is contimed along the branchial rexion. Chelipeds covered with short hair, except the fingers and plates where the hair has been worn off; merns midway hetween the joints, almost rectangular; upper margin armed with two stont spimes widely separated and a smaller one near the ischium; upper surfare with a latse tuberele at the distal end between the condyles; earpus with five or six spiny tubercles above; hand with two
spines above, one near the carpus on the upper margin, and the other at a little distance just below the margin on the inside of the hand; oceasionally there are one or two additional spines on the margin; fingers gaping at base with a large tooth on the dactyl in the gape and about 15 small even teeth on each finger along their prehensile edges.

Smaller males have the spines of the chelipeds much less marked.
In the female the carapace shows twelve tubereles of about equal size, those corresponding to the nine largest ones of the male, being smaller in the female. Chelipeds small and weak; fingers slightly gaping at base, with about 20 small teeth, the proximal one on the dactyl being slightly enlarged. The female is much more hairy on the legs and underneath the abdomen and margins of the legs being thickly set with long clublike setæ.

Specimens in the National Museum collection show the following measurements: Length of largest specimen, a male, from end of rostrum to overhanging posterior protuberance, 122 mm . ; width, 84 ; length of cheliped, about 272 ; of first ambulatory leg, abont 20\%. Length of largest female measured to posterior margin, the intestinal spine not overhanging, 90 ; width, 57: length of cheliped, 9 ; ; of first ambulatory leg, 80.

Localities.

California :
Monterey; D. S. Jordan (5876).
Santa Barbara; D. S. Jordan (3050).
Island of San Miguel; Trowbridge (2083).
Off southern California, 26 to 53 fathoms, at nine stations of the U. S. Fish Commission steamer Albatross.

ON THE FORMATION OF STALACTITES AND GYPSUM IN. CRUSTATIONS IN CAVES.

By George P. Merrill, Curator of the Department of Geology.

During the season of 1893 work in comection with the World's Columbian Exposition took the writer into a considerable number of the limestone caverns of the eastern United States and afforded him opportunity for observations regarding the methods of formation of the interesting deposits noted in the title. The results of these observations are given herewith, it having seemed to me that, while no new principle is involved, the subject as a whole has not received all the attention it deserves.

Stalactites.-The manner in which the carbonate of lime in the form known as stalactite and stalagmite is deposited is, in brief, as below: Water filtering through the roof of a limestone cavern, is, in virtue of the carbonic acid it contains, enabled to dissolve a small amonnt of the lime carbonate, which is again deposited when the excess of carbonic acid escapes either through relief from pressure or the evaporation of the water. Conditions favorable to either process are furnished by the water filtering through the roof and dripping slowly to the floor beneath. In cases where the water filters sufficiently slowly, or evapooration is correspondingly rapid, the deposit of lime carbonate from the roof takes at first the form of a ring around the outer portion of the drop, a natural consequence of the evaporation of a suspended drop of liquid, as may readily be shown by laboratory experiments. This process may go on until the ring becomes prolonged into an elongated cylinder, or tube, the diameter of which may not exceed five millimeters, though usually ranging from five to ten, and of all leugths up to 50 cm . In exceptional cases this length may be exceeded, but owing to the delicacy of the material, the stalactite usually breaks of its own weight and falls to the floor before a length of even 100 or 150 mm . is reached, to become imberded in the stalagmitic material there forming. Lengths of even these dimensions are comparatively rare for the reasou that the tube becomes shortly closed, either at its
upper or lower end, usually the upper, and all growth from the extremity alone ceases, subsequent deposition being wholly exterior, and taking place in the form of concentric coatings of the carbonate on the outer surface and at the same time fiom the top. There is thus formed around the original tube a compact cylindrical mass, in its typical form constricted at point of attachment but thickening rapidly, and then tapering wralually into an elongated cone. The material of the stalactite is not always wholly carbonate of lime, but in some cases thin intervening coats of iron dismphide are met with; these are rarely more than a millimeter or so in thickness. Such forms have been found in the caverns of Luray, in Virginia. The presence of a magnesian carbonate in these deposits has not been detected in any anomnt. Through a crystallization which must be nearly contemporaneons with deposition, or at least while the stalactite is still saturated with the carbonated waters, the mass of the material undergoes an arrangement which is sometimes distinetly fibrous (aragonite), the fibers radiating from the center outward, and not infrequently being curved downward -that is, curved in such a manner that when the stalactite is broken across it shows a concave and convex fracture, the concavity being uppermost-toward the top of the stalactite. In other cases the structure is granular throughont, through the development of calcite rhombs. In the stalactites from Weyer's Cave, Shendun, Virginia, the entire center is sometimes oceupied by large (10 mm .) rhombs of clear calcite, from which radiate horizontally elongated forms of the same mineral. It is safe to assume that such crystallizations are wholly secondary.

It is a natural consequence of their method of deposition that stalactites of the type described above are as a rule nearly straight, and hang approximately perpendicularly from the roof. Exceptions to this rule will be noted below.

In the Wyandotte Cave, and to a less extent in some others, a peculiar remiform stalactite is fomel which is quite at variance with those described above. They oceur in clusters or groups both on the walls aud ceiling and are remarkable for their peculiar fantastice twistings and tumings, which in extreme cases are almost Medusa-like. Their appearance can best be moderstood by reference to I'l. I, the scale being in inches. This shows a number of detached stalactites both simple and branching. The point of attachment is uppermost in the figures, with but one exception. In order that there be no misunderstanding I have placed the numbers always at the broken end. It will be observed that the processes of deposition already deseribed fail to satisfactorily account for these forms, in which the law of gravity seems to have been set at defiance. In fig. $\because \quad$, it will be moticed, the stalactite after growing inregularly downward for about 4 inches turned upward and grew in this direction for half its length. No. 3 grew downward for an inch or so, and then in a nearly horizontal and upward direction for three or four inches. Number t is a singularly contorted

Irregular Stalactites, Wyandotte Cave, Indiana.

$$
I
$$

form, having turned on itself and grown irregularly upward till its free, growing end, was within an inch and a half of the starting point, or point of attachment. This stalactite weighs, entire, only some 21 grms Number 5, after growing downward a short distance turned to the left for about the same distance and then threw out three branches, which, when the specimen was collected, had grown upwards until they nearly touched the roof. (Cat. No. 68140.)

In the caverns of Luray, Virginia, are likewise oceasionaliy fomm peculiar distorted forms, though of a nature quite different from those of W yandotte, as may be observed ly reference to Pl. int. These lack eutirely the vermicular forms characteristic of the last mamed, and may be best compared with the peculiar wart-like exeresences and knurly branches which sometimes appear on trees, as a result of injury from insects. Such have heen called helictites (from the (ireek हैı心 a spiral.)
The cause of these singular distortions of form has not, so far as I am aware, been satisfactorily determined. Dr. Hovey, in his Celebrated American Caverns (1). 185) ascribes the Luray forms to "lateral outgrowths, having fungi for starting points," or, in other cases to crystals shooting from the side of a growing stalactite thus transforming it into some grotesque shape. In his later writings he has seemed to incline more to the view of considering them as "tricks of crystallization." Dr. C. S. Dolley* was inclined to regard these horizontal off-shoots as due to spider webs. He says:
After some time spent in a vain search for an explanation of this anomalous structure, we happened to notice two specimens, the incipient branches of which were directed toward one another; stretched tightly between the branches, and entering the hollow tip of each, was a delicate thread, bearing a string of dew-like drops glisteniug brightly in the candlelight. Further search revealed numerous specinens in which the lime water trickling down the stalactite met a similar filament, and being partially diverted had formed a drop at point of junction; about this drop beautiful aragonite spicules were forming the hollow horizontal hranch, the drop of water in the end being retained in prsition by the filanent piercing it and upon which it gradually prished along as evaproation deposi ts, the lime hehind it."

Dr. Brezina in his "Wie Warlhsen die Steme" describes distorted forms as due to currents of air, but inasmuch as those of Wyandote Cave radiate in every direction, it is obvious that they can not be thus accomed for. Prof. Collett in describing these last, in 1878 , speaks of their growing from the bottom outward, \dagger an error which can, I think, be accounted for ouly on the supposition that at the time of writing his thoughts were fixed upon the peculiar gipsum efflorescences (io be described later) and which are thus formed.

[^14]It is probable that the varions forms of distortion and departure from the straight tubular forms are to be accounted for in several ways. An examination of the Medusa-like forms of Wyandotte reveals the fact that they oceur not as dependents from the naked limestone of the roof, but are offshoots from a stalactitic crust which forms first, and which varies from a mere film to several inches in thickness. They occur sometimes singly, but more commonly in groups, or clusters of several, ranging in sizes from 3 to 10 mm . in diameter. Closer inspection reveals the fact that while in most cases tubular, the tube itself is of almost microscopic proportions, being as a rule less than half a millimeter in diameter. So small is it, in fact, that capillarity, not gravity, is the controlling principle in giving direction to the lime-carrying solution. A small spicule of calcite crystalizing on the extremity is as likely to point any other direction as downward: the direction of the next drop is controlled in part by the first, where the same procesis is repeated. Or on the assumption that the stalactite increases in length by constant additions to the tube, on all sides, it is casy to inagine that the deposit takes place, for a time, more rapidly on one side than on the other, perhaps partially closing the orifice or giving it a different elirection. The essential fact is, however, that it is to capillarity, and not to gravity, that is due the peculiar vermicular forms. Why, at the outset, the stalactite should begin to form through many small capillary tubes rather than through one larger, as is ordinarily the case, I will not pretend to say. It is to be noterl, however, that in Wyandotte, the roof forming limestones are nearly horizontal, while in Luray and many other caves they are highly tilted. This results in a more even percolation of the water in the first instance, the roof being more homogeneons. It is possible, therefore, that the water gathers in drops of smaller size, aud very likely in smaller amounts. I have no other than hypothetical data for this last assumption, howerer.

The peenliar warty and distorted forms shown on pl. in, from Luray, I believe to be also due to the action of capillarity. In this case, however, the side excrescences are of secondary growth, the stalactite having first formed, in part at least, in the ordinary way. Throngh a closing of the tube at the lower extremity, the water either oozed through the wall or perhaps ran down over the outer side until some slight irregularity being met, it pansed long enough for the necessary precipitation to take place. Such forms are, in brief, but "tricks of crystallization" due to capillarity.

G!yssum incrustutions cend rosettes.-As is well known, Wyandotte and Mammoth Caves yeld in their older, dry, chambers, not stalactites of carbonate of lime, but incrustations of gypsum in botryoidal masses, acicular. crystals, and sometimes in the form of beantiful snow-white rosettes composed either of thin blarles or acieular erystals of gypsum grouped around a common center and curving outward. The appearance dind structure of chanacteristic forms may be best understood by

Gypsum Incrustations, Wyandotte Cave, Indiana.
促
reference to Pls. IV and V. The individual blades are rarely more than a few inches in length, six and eight inches being the maximum of the single curved blades such as are shown in Pl. iv. (Cat. No. 68142.) In fig. 2, Pl. v, the longer blades are 90 mm ., by about 24 mm . breadth and 5 mm . thickness. This is in many respects the most remarkable specimen of its kind I have ever seen. The method of growth of these forms is plainly by additions to the bottom, or more properly, to the end attached to the wall. They seem to have grown outward precisely as does the hoar frost in loose soil, where the moisture, rising by capillarity, freezes as soon as a certain level is reached, so that the older and first formed portions are ever pushed upward so long as the supply below is continued. As in the formation of hoar frost, particles of earth are lifted upon the tops of the ice spicules, so here the groming gypsum having begun forming in a crevice not infiequently forces off pieces of the limestone of considerable size. In fig. 2, Pl. v, the force of the growing crystals has even ruptured the stone in three directions. In fig. 1 of the same plate we have proof of two stages of growth. The last formed crystals having pushed the first formed nearly an inch out of place, the line of separation between old aud new being indicated by the smaller size of the later formed spicules. As the crystals form and are pushed outward they are in most cases in a condition of strain, which causes them to curl and twist in a remarkable manner, as shown. The individual blades or spicules are but slightly attached to the walls of the cave, and except under very favorable circumstances it is nearly impossible to remove a rosette in a condition at all satisfactory.

Proc. N. M. 94-6

DESCRIPTIONS OF A NEW (GENUS ANI) FOUR NEW SPECLES OF CRABS FROM THE ANTILLEAN REGION.

By Mary J. Rathbun, Aid, Iepartment of Marine Imertebrates.

The crabs described below were, with one exception, obtaned in the extended cruise of the United States Fish Commission steamer Albatross to the Gulf of Mexico and Garibbean Sea in 1885. The species of Acter formed a part of the large collection of invertebrates brought from Florida by Dr. Edward Palmer in 1884.

> Family Parthenopidae.
> THYROLAMBRUS, new genus.

Carapace broader than long, deeply eroded. Froutal and anterolateral region strongly deflexed. Entire surface covered with stellar granules, which mite to form ridges outlining irregular pits. Maxillipeds broad, fitting closely together and filling the buccal ravity; ischium subrectangular posteriorly, slightly oblique anteriorly; merus broader than long, with a slight noteh at the antero-internal angle, in which the first joint of the palpus is fitted in a transverse direction; the remainder of the palpus is concealed beneath the merus. Chelipeds of moderate length; manus much more slender than the merus and armed on the inner or anterior side with 2 rows of long, sharl, eurved spines, which are continned on the fingers.

THYROLAMBRUS ASTROIDES, new species.

Carapace about two thirds as long as wide, thick, slightly wider at the postero-lateral than at the lateral angles; froutal and antero-lateral regions almost perpeudicular. Posterior margin directed slightly forward and ontward. Besides the small pits everywhere present on the surface there are other larger depressions. A deep hollow between the orbits is continued backward by a shallow suleus to the post-medial region. Two deep depressions oceur at the inner branchial angles. The cardiac area is well detined and is bounded posteriorly by a trans

[^15]verse linear sulens. The hepatic region is outlined by a series of depressions. The ridges of the surface are elevated at intervals into rough acute tubereles. Rostrum very broad, arcuate as seen from above, produced downwards at the middle in a small, triangular, dentienlate tooth which extends backward to the antemmar cavities. Orbits small, circular; eye-pedumeles covered with stellar gramules, and with a row of 3 or 4 spimules next the comea on the uper side. Hepatic region with a triangular marginal tooth. Lateral margin of the branchial region with about 7 small gramulate teetin. Teeth of posterior margin very shallow. Antero-internal angle of the basal antennal joint barely touching the front. Exognath of maxilliped slender; endognath with a longitudinal row of 3 spinules. The pterygostomian groove is continued on the subbranchial regions. The sternum in the male has 3 prominent ridges on either side of the abdomen, and is deeply hollowed at the anterior end.

Merus of cheliped thick, with short spines on the anterior and upper surfaces. Carpus with 3 spimules on imner margin. The spines of the proporlus and dactylus number 5 or 6 in the lower series and 6 or 7 in the upper. They are curved inward and directed toward the extremity of the fingers. The fingers are slender, curved inward, their tips prolonged in sharp spines; the stellar granules are arranged longitudinally; prehensile edges armed with fine sharp irregular teeth or spines. The ambulatory legs are very rough. The meral joints have 1 crest above and 2 below. Dactyli short and slender, armed with. sharp spines, and terminating in an acuminate horny tip.

Meusurements.-Length of female, 16 mm .; width, $23 \cdot 5$; thickness at epistome, 6 ; length of cheliped, about 32 ; length of merns, below, 11 ; leugth of propodus, 14. Length of male, 14; width, 20; leugth of cheliped, about 34 ; of merus, 12 ; of propodus, 15.

Loculity.—Off Havana, Cuba, in lat. $23^{\circ} 10^{\prime} 42^{\prime \prime}$ N., long. $82^{\circ} 18^{\prime} 24^{\prime \prime}$ W., 67 fathoms, white coral, 2 females (No. 9507,U.S. N. M.) ; and in lat. $23^{\circ} 10^{\prime} 40^{\prime \prime} \mathrm{N}$., long. $822^{\circ} 20^{\prime} 15^{\prime \prime} \mathrm{W}$., 189 fathoms, coral, 1 male (N o. 9515, U. S. N. M.).

SOLENOLAMBRUS DECEMSPINOSUS, new species.

Closely allied to S. typicus, Stimpson. Antero-lateral margin convex, area between the gastric ridges narrower than in S. typicus, gastric and cardiae prominences slender spines. There are 8 additional dorsal spines: 2 on each branchial ridge, of which the marginal is the longer, 1 at each posterior angle, and 1 on the postero-lateral margin midway between the last and the branchial spine. The punctures of the carapace are very fine and scattered; in s. typicus they are coarse and anteriorly crowded. The sternum (in the male) is smooth in front of the abdomen. The terminal segment of the abdomen is much longer and narrower distally than in s. typicus, its sides deeply concave. The merus of the maxillipeds is narower and more produced at the anteroexternal angle than in S. typicus.

The cheliperls are similar in ornamentation to those of s. typicus; the upper margin of the outer surface of the manus is furnished with 10 granulated teeth, the lower margin with about 12; as in S. typicus, the surfaces of the palm have bunches of granules arranged in 2 longitudinal rows. The immovable finger is shorter and more detlexed than in S. typicus, and in consequence the dactylus is also more deffexed, being, when closed, nearly at a right angle with the outer or upper surface of the palm. Color of fingers in alcohol, red.

Measurcments - Length of rarapace of male, 6 mm . ; width, 7 .
Locality.-Gulf of Mexico, in lat. 28044^{\prime} N., long. $85^{\circ} 16^{\prime}$ W., 60 fathoms, gray sand, station 2404, one male (No. 18157, U. S. N. M.).

Family CANCRIDA.

ACTEA PALMERI, new species.
Carapace covered with 36 large, nodose prominences separated by deep sinuses filled with long silky hair, which also conceals the posterior portion of the carapace as well as the entire lower surface of the crab. The nodules of the surface are very convex and are each composed of a number of smooth, shining, bead-like sranules crowded close together. The frontal lobes or nodules are thick, with convex, entire margins, and are separated by a deep sulcus. There are 6 orbital norlules, one very small imerorbital, followed by 1 large and 2 small, and 2 suborbital nodules. The basal antemal joint is also at thick, shining, compound nodule. The carapace has 4 nodules on the lateral margin which project upmard and not outward, the margin itself being entire. A small median lobule is visible near the posterior margin.

Chelipeds with merus smooth and hairy, carpus with 6 nodules, and manus with 5 , the remainder of the surface silky-hairy. Immovable finger and distal half of dactylus smooth and shining, horn-colored, with white tips. The fingers are broad, compressed and sharp-pointed. The ambulatory legs have 2 small norlules on the carpal joints, 1 or "2 on the propodal joints, and $\breve{2}$ on the meral joints of the last pair.

Measurements.-Length of male, 16 mm . ; width, 21 . Length of female, 14; width, 19.

Locality.-Rodriguez Creek, Florida, Dr. Edward Pahmer; 1 male, 1 female carrying a large quantity of minute eggs, and 2 yomms sperimens, male and female (No. 13927, U. S. N. M.).

PILUMNUS DIOMEDEE, new species.

Carapace of moderate width, beset with long yellow hairs arising from low spinules. Front with 2 prodnced lobes, each bearing 4 slender spines; a longer incurved spine is placed near the antenna. Orbital spines 9,2 on the upper margin, 1 at the outer angle, and 6 below. Of the suborbital spines, the 2 outermost are separated by a deep fissure. There are 4 strong antero-lateral spines, including the orbital; between the first and second there is a small spine, and the second
spine has 1 or'o accessory spimules. The subhepatic and pterygostomian regions are spimulons. There are 2 small spines forming a longitudinal line with the imer suborbital spine.
('helipeds moqual, spinoms and long-hairy. Herus with surface minutely spinulous, margins spinons, the upper margin furnished distally with $2-$ spines longer than the others. Carpus with outer surface spinous and spimulous, a strong spine at the inner angle. Manus with 4 slender spines on upper margin, lower margin spinulous, spines of outer surface arranged in longitudinal rows, inner surface minutely gramulous. Finger's spinulous and hairy proximally, horncolored, with teeth and tips almost white. Ambulatory legs very long, sleuder and hairy; marmins of meral joints and upper margin of carpal and propodal joints spinous.

The type specimen has the posterior portion of the carapace and sternum broken off and is without the last 3 pairs of legs. The only other individual is a soft-shell female, very imperfect.

Measurements.-Width of carapace, 16 mm . ; width of front, 6 ; length of longest hairs of carapace, about 6 .

Loculities.-Off Havana, Cuba, in lat. $23^{\circ} 10^{\prime} 40^{\prime \prime}$ N., long. $82^{\circ} 20^{\prime}$ $15{ }^{\prime \prime}$ W., 184 fathoms, fine gray and white coral, station 2345 , type (No. 9526 , U. S. N. M.). (off Yucatan, lat. $20^{\circ} 59^{\prime} 30^{\prime \prime}$ N., long. $86^{\circ} 23^{\prime}$ $45^{\prime \prime}$ W., 130 fathoms, coral, station 2354 (No. 18158 , U. S. N. M.).

This species in its long ambulatory legs resembles I. gracilipes, Λ. Milne-Edwards, which differs, acoording to that writer, in its unarmed superior orbital margin and short hair.

THE FORMATION OF SANDSTONE (ONORETIONS.

By George P. Merrill, Curator of the Department of Geology.

Many an interesting and instructive lesson in geological processes is frequently to be gained by observation of what is going on almost at our doors, but which is overlooked by the amateur because his attention has never been properly directed to it, and perhaps by the professional as well, because, as is so frequently the case, he is more interested in larger problems at a distance.

Such a lesson may be learned from the study of the globular and irregular rounded masses or concretions of ferruginous sand, sometimes quite hollow, or again partially filled with loose sand which falls out when the concretion is broken, leaving but the empty, deeply convex shells. As to what these are and what their method of formation may be, one may consult his geology long and in vain for a satisfactory solution.

The ahandoned reservoir for the waterworks extension near Howard University, in Washington, D. U., furnishes in all its details so plain and interesting an explanation that he who runs may read, and I am tempted to describe it in detail even at the risk of wearying those to whom the illustration is neither new or needed.

The excavation above noted was made in the so-called Potomac division of the Cretaceous, consisting here of rather loose beds of sand and gravel, containing not infrepuently fossilized logs of considerable size, both silicified and in the partially carbonized state known as lignite. It is with the last, ouly, that we have to do here.

In close contart with these lignites, either in the form of rounded and irregular nodular masses or as veins in the mass itself, are numerous globular aggregates of siliceous sand and iron disulphide in the form known as marcasite. (See ligs. 1, 2, 3, and 4 of Pl. vi). So long as protected from atmospheric influences, such seem to have preserved their mineralogical ideutity fairly well. When disturbed, howerer, either in the work of excavation or through other means, so as
to be attacked ly atmospheric agencies, they have undergone rapid decomposition. When lying on the immediate surface this decomposition (so far as the sulphide is concerned) consists mainly in the production of sulphates which are rapidly removed in solution, or which during the dry part of the year accumulate in the form of a thin, sul-phur-yellow coating on the surounding surface. When, however, buried in the loose siliceons sand the result is noticeably different. Here, owing presumably to an insufficient supply of sulphuric acid, a considerable portion of the sulphide passes into the condition of sesquioxide, which segregates in a narrow zone about the nucleal pyrite, cementing together the granules of siliceous sand and forming a crust or shell-like coating which is often quite dense and hard. All stages of the process are to be found, from those in which there is merely a thin crust of oxide (figs. 5 and 6) to those in whiel the sulphide has nearly disappeared (fig. 7). As the original concretionary mass rarely consisted of pure pyrite, but inclosed more or less sandy material, this last becomes liberated and not infrequently remains as loose sand partially filling the geode-like cavity.

The chemical processes involved in this change are presumably simple, though as we do not know for a certainy the exact conditions attending either solution or precipitation we can not be expected to describe them in detail. On the assumption that the iron was originally in solution as a ferrons sulphate, we can readily account for the presence of the pyrite concretions through the reducing action of gases given off by the decomposing wood. If, however, the iron existed, as at first seemed more probable, as a ferrous carbonate, the precipitation is less readily accomed for, since it seems doubtful if the small amount of sulphuretted liydrogen liberated would be sufficient for the production of so large a quantity of pyrite as is here found.

EXPLANATION OF PLATE VI.

Figs. 1, 2, 3 and 4. ('haracteristic forms of concretions formed of gramles of siliceons sand cemented by marcasite. In fig. 4 , there has been internal shrinkage, cansing cracks suggestive of an intermediate stage in the formation of septaria.

Figs, 5, 6 and 7. Nodules showing stages of oxidation. In fig. 5 , the oxidation has barely commenced, siving a red brown coating perhaps one-eighth inch thick on the outer surface. This coating has been removed from the lower eud, exposing the marcasite. In fig. 6, the mucleal mass carries so much sand as to be distinctly gramular, but the line of demarkation between the oxidized and unoxidized portion is plainly evident. In fig. T, the loose sand fell away in process of cutting, leaving the unoxidized portion as shown.

Concretions of Marcasite and Siliceous Sand.

MONOGRAPH OF THE GENUS GNATHODON, GRAY (RANGLA, DESMOULINS).

[With plate VII.]

By Wm. H. Dall, Honorary Curator of the Department of Molluskis.

The genus Guathodon is one of those in regard to which much interest attaches, on account of its disputed place in the systems, its uncertain nomenclature, and its zoological peculiarities. In working up the Tertiary species it became necessary to review the whole group and investigate its relations afresh with newly collected material. Out of these researches, among other results, has grown the present mono. graph, which is believed to settle the systematic position and nomenclature of the genus.

Genus GNathodon, Gray.

(imathodon (Gray MS.), Sowerby, Gen. Sh. No. 36, Dec. 1831 (Type G.cuncatus Gray).-Grax, P. Z. S. 1836, p. 101.-Gray, Loudon's Mag. Nat. Hist. I, n. s., p. 376, 1838.-Conrad, Medial Tert. No. 1, p. 23, 1838.-Anton, Verz. Conch., p. 10, 1839.-Sby, Man. Conch., fig. 83, 1839.-Conrad, Medial Tert., No. 2, p. 69, 1840.-Swainson, Malac., p. 370, 1840.-Conrad, Am. Journ. Sci., xxxviII, p. 92, 1840.-Reeve, Conch. Syst. 1, p. 62, pl. 43, 1841.-Conrad, 2d Bull. Nat. Inst., pp. 190, 192, 1842.-Dekay, Moll. N. York, p. 233, 1813.-Hanley, Descr. Cat. Rec. Sh., p. 35, pl. 10, fig. 22, 1843.-Potiez \& Micir., Gal. de Douai, il, p. 194, 1844.-Gray, Gen. Moll. P. Z. S., 1847, p. 186.-Philippi, Handbuch Conch., p. 317, 1853.-Woodward, Man., ed. I, p. 308, 185̈.-Dall, Bull. 37, U. S. Nat. Mus., p. 62, 1889.
Rangir, Desmoulins, Actes Soc. Lin. de Bordeanx, v, No. 25, p. 50, Feb. 15, 1832 ('Type R. cyrenoides Desm.).-Conrad, Am. Mar. Conch., p. 56, 1833.H. \& A. Adans, Gen. Rec. Moll. il, p. 380, 1856.-Conrad, Proc. Acad. Nat. Sci., Phila., 1860, p. 232, 1861.-Conisad, Medial Tert. Index, p. 88, 1861.Prine, Proc. Bost. Soc. Nat. Hist. vii, p. 347, 1861.-Conrad, Am. Journ. Conch. III, suppl., p. 30, 1868.-Fisciler, Man. de Conchyl., p. 1095, 1887.
Gnatodon, Rang, Nouv. Anu. du Mnséum, ini, p. 217, 1834.
Columbia (Blainville MS.), Rang, op. cit., p. 217, 1834. Grayi, Conrad=Mactra clathrodonta, Conrad, 1833).
Rangianella, Conrad, Am. Journ. Conch. Jif, suppl., p. 30, 1867 (Type G. trigonum, Petit, Mazatlan, Mexico).
Shell trigonal, equivalve, closing completely; umbones prominent, not adjacent, smooth at the point of origin, erect or twisted forward; lunule and escutcheon obseure or absent; shell-substance porcelain-white internally; externally chalky, with a thin epidermis; anterior shorter than the posterior end; the latter produced or rostrate; hinge comprising a bifid triangular cardinal tooth in one valve over which fit two lamellar divergent teeth of the opposite valve, an accessory lamella sometimes rising from the auterior edge of the cartilage pit next the cardinals; an anterior lateral tooth in one valve received between two less prominent lamint of the opposite valye, of which pair the dorsal lamina approathes nearer the cardinal tooth than the rentral one, leaving a gap into which the proximal end of the anterior lateral, when adult, is more or less distinctly hooked; a longer posterior lateral in the sane valve as the anterior tooth, received between two subequal less prominent lamine in the opposite valve; teeth crenulated or granulose on their opposed surfaces; cartilage pit deep, persistent; intermal border of the valves smooth or faintly radiately striated; adductor scars distinct, the anterior smaller; pallial line distinct, distant from the margin; pallial sinus small, rather irregular; cartilage large, inserted on the rentral surface of the pit, persistent in its entirety, so that its distal ends sometimes project from the eroded umbones; ligament wholly internal, small, inserted on the dorso-posterior surface of the pit and separated by a shelly ridge on each side from the cartilage below it; mantle-edge smooth, simple, the lohes marginated, the inner edge of the margin thicker and elevated, the lobes free edged from below the anterior arductor nearly to the siphons; antesiphonal channel of the incurrent siphon longitudinally divided by an elevated raphe arising from the inner surface of the mantle; siphons moderate, united to their tips, their distal orifices sparsely papillose; the proximal orifice of the incurent siphon with an imperfect arched valve; gills two on earh side, the inner larger, suspended by its base; the outer smaller, its line of attachment crossing the gill obliquely and forming of the upper portion an "appendix" which is soldered to the mantle by most of its dorsal surface; all four gills mited behind the foot, their proximal portion forming a septum which is anchored to the anterior portion of the siphonal septum, thus completely separating the anal and peripedal chambers; palpi, four in mumber, narrow, long, internally striated, externally smooth, the lower pair contimums medially in front of the foot; foot small, compressed, short, angular in front, pointed behind, ventral edge sharp, entire; byssus and hyssal gland atrophied or absent in the adnlt.

Distribution.-Subtropical America, the Gulfs of California and Mexico in shoal quiet water varying from salt to fresh, but preferably somewhat brackish, as in the case of oysters; range in time from the newer miocene to recent seas.

The geuns falls natmally into three sections, the typical group best illustrated by G. cuncatus; a second, Mioranyia, Dall, represented by the miocene Gr. Johnsoni, a very small, extremely inequilateral type with obsolete pallial sinus and the cardinals reversed, the superior pair being in the left valve; the other, named Rangianella by Comrad, being characterized by subequal faintly rugose lateral teeth, an obsolete pallial sinus, and a more equilateral elongate and smaller shell.

The subgenus Rangianella forms the transition toward Muliniu, aud some of its species can only be distinguished from species of líulinia by the smaller pallial simus and the inconspicuous "hook" on the proximal end of the anterior lateral tooth. A number of small species of Mulinit have been described under the name of Rangin or Gmathorlon, so close is the relation between them. Several species of Mulinit, if not all of them, are denizens of brackish water, and to errors based on these facts are due the statements which have represented Gunthorlom as being extra-American in distribution.

As far as I have beeu able to judge from the specimens I have seen, the species described will be assorted as follows:

A: Guathorlon; typical group; G. muentus Cray, G. cluthorlon ('onrad, G. Grayi Conrad, G. Lecontei Conrad, G. minor Conrad.

B: Miorangia; G. Johnsoni Dall.
C: Rangiunella; G. flermosus Conrad, (i. rostrutus P'etit, (i. trigonus Petit, G. mendicus Gould.

The other species hitherto described may be referred to Mulinir, Isocardic, and other groups external to the genus as properly restrieted.

This genus has had singular nomenclatorial vicissitudes. The type species was well known to the early conchologists of the I'nited States, and was regarded by them as identical with the problematical fossil named by Lamarek Cyrent truncutu. (iray, from a ballast heap left in Canada by a vessel from the Gulf of Mexico, received two valves, which he described under the name of ('lathrodom, and sent the mannseript to the editors of the American Jommal of science, to be published in America, about 1830. Believing it to be the same as Lamarek's species, the editors suppressed Gray's deseription. Later Gray substituted Guathodon for the ill-constructed name Clathrodon, and the former was published by Sowerby in his "Genera of Mollusca," Part xxxvi. This was the first publication of the name Gnathodon, and appears to have been made in the last quarter of the year 1831,* the number containing

[^16]it having references in it to the number of the Zoological Journal pub. lished September, 1831. In December, 18:31, Desmoulins read to the Limnean Society of Bordeaux a paper published by that Society February 15, 18, $\mathbf{3}^{2}$, contaning an exeellent figure and account of the species under the name of Rongia cyrenoides, which name was adopted by Conrad in !his American Marine Conchology, who at the same time mentioned the earlier unpublished ('luthrodon of Gray. The "Genera" of Sowerby and Conad's Marine Conchology were both rather obscure publications, the dates of several parts of which are difficult to diseover, and both the authors, Gray and Conrad, appear to have forgotten about these early publications. The former in 1817 gives the date of his Gruthodon as "1837," which is possibly a misprint for 1831. Courad in 1832 adopted Rangia; in 1833 he was disposed to revive Gray's manuscript name of Clathrodon on the ground of courtesy; in 1834 Rang seems to have no doubt that the name finathodon had been published before Desmoulins's Ranyia, and adopts the former. In 1838 Conrad adopts Ginathodon, and uses it again in 1840. In 1860 he reverts to Rangia, and continues to use it in 1863 , when he proposes a subgeneric name, Perissodon, for the fossil R. Gromi, and in 1868 another subgeneric name, Rangionella, for a Pacific species. The latter of these names was defined. It may be noted that cinuthordon was employed by Jardine for a genus of birds in 1845, and Rengia by Agassiz, in 1860, for a genus of Culenterates. The name Ginuthorlon is masculine, and the specific names should take a masculine termination. Monographic lists of the genus have been printed by Comad (Proc. Acad. Nat. Sci. Phila. for 1860, p. 232); Prime (Proc. Roston Soc. N. Hist., vir, p. 347, 1861) ; Fischer (.Journ. de Conch., ix, p.212, 1s61); Comrad (Am. Journ. Conch., iII, suppl. ('at. of Mactrider, 1. 30, 1868); and Reeve (Conelh. Iem., xix, 1sia). Singularly mongh, meither of these anthors has given the synonymy of the generic name correctly. The date of 1831, when Desmonlins's paper was read, is assigned to Rungiu, which, however, was not published mutil February, 18:32. The date of 1831 is assigned to Comrad's mention of the gemus in his American Marine Conchology, thongh he adopts liongie, which was not published until 18:3'2, and it is highly probable that the part of Comrad's work coutaining Rungin did not appear until 18333 , since it was contaned in the fith fasciculus, and the third fasciculus is dated May, 1832. At all events it can mot be carlier than the latter part of 1832. Cray's manuseript name of c'luthrodon was never formally proposed in print, and Conrad's earliest mention of it is in 1833.
Gray and Desmoulins both referred the genus to the Mactride, while pointing out that in certain features it recalled Cyrenide. This view has generally prevailed, thongh lately Dr. Paul Fiseher concluded (Mannal, p. 1095) that it is more nearly related to ('yrena. Rang's notes on the anatomy were probably made on defective material; at all events, they contain several errors which tend to obscure the mactroid affini-
ties of the shell. Dr. Fischer also raised the group to family rank, which, if it be compared solely with Cryrenide, is reasonable, but, if the comparison is with the Mactridre, and suiticiently full material is consulted, it will be seen that there are really no characters which remain after the characters common to Mactras and Mulinias are excluded, upon which even a subfamily can be based. The distinctive characters of the genera of the Mactrida merge so gradually from one form into another that we are forced to the opinion that Gray and Desmonlins were right, and that the group can only be ranked as a genus, next to Mulinia, in the Mactroid series.

In the endeavor to come to a well-founded conclusion in regard to the affinities of Guathodon, a careful examination was made of the soit parts of G. cuncutus from Mobile and Texas; Mactic (Sppisula) similis, Say, Florida; M. (S.) polynyma Stm., Alaska; M. (Muliniu) luteratis Say, Massachnsetts; Cyrent carolinensis and Cyrent floridanu Conrad, from Florida. I received half a dozen Guathodons from Mobile Bay alive, by mail, through the kind intervention of Mr. (i. D. Harris ; and others, in alcohol, from Port Lavara, Texas, from Mr. J. D. Mitchell. Several errors were found in Rang's account of the macroscopic anatomy, leading to the suspicion that he dealt with specimens which had already been removed from the shell when he received them. The following notes were made from the specimens:

The foot of Guathodon cuncatus is like that of Mactro, but shorter and more compressed. There is no external indication of a byssal gland. The retractor muscle of the foot on each side is attached to the underside of the cardinal border above and near the adductor.

The siphons of Guatmifon are short, but united to the ends, as in Mactro. The incurrent siphon is papillose at its orifice, the excurent siphon smooth-edged, or very finely papiliose, differing in different specimens. The external surface of the siphons is of a dark olive color, nearly black where most intense, with a lighter line conforming to the intersection of the vertical plane between the valves with the siphonal commissure. The mautle:margin is wide and smooth, the distal edge thin, blending with the papery epidermis, the inner edge thick, smooth, and somewhat elevated. The anterior commissure is in front of the adductor, thence backward the lobes are separated three-fourths of the way to the siphons, much as in Muctro. A short distance within the margin, beginning in the posterior half of the shell and exteuding backwards to a point under the shade of the valve of the incurrent siphon is an elevated raphe of tissue which divides the incurrent channel. A similar arrangement is found in Mactro, but not in Cyrena. This ridge is probably the seat of sensory tissue analogous to the osphradium of Gastropods.

The palps are triangular, slender, rather long, the lower ones extending to the posterior fourth of the foot on each side, continuous below the mouth, where they are soldered to the risceral mass, and joined
above with the immer anterior edges of the somewhat shorter upper pair. The immer surfaces of both are striated, the outer surfaces smooth. Ramg indicates the month below the lower palps, which is obviously erroneous.

The gills are of modrate size, fwo on each side, the inner pair larger, and humg by their upper edges from the visceral mass. The attachment of the outer pair is about a millimeter higher, separated from the suture of the imner gills by a fine very tender membrane; the line of attachment divides the outer gill at its upper third, the upper portion is more or less fixed upon the mantle by slender adhesions toward its middle thind, and bent downward, but is more free before and behind. This reflected portion of the outer gill is what is often referred to as the "appendix." Both gills are joined by a delicate membrane bebind the retractor pedis (where the width of the two gills is approximately equal) to each other, to the pair of the opposite side and to the siphonal septum, forming a complete partition between the anal and peripedal chambers. This is also found in the various forms of Mactra examined and in Cyrenu floridam, though in the latter the attachments are extremely delicate. Below the septum in Ginuthodon a thin arched membrane forms an imperfect valve at the base of the incurrent siphon, as in Mrectra, but in Cyrenu this was hardly perceptible. The whole surface of the gills is finely striated, of a dull cream color, vertically barred with abont twenty dark brown transverse lines. In all the other species examined the gills were colorless. In Rang's figure the anal and peripedal chambers are wrongly represented as communicating behind the gills, which error was doubtless due to rupture of the membranes.

So far as the soft parts are concerned, it will be seen from the preceding notes that Grmathorlon, Mactra, and Cyrena agree essentially in the general structure and attachments of the gills, in haviug a separate anal chamber, in the general form of the foot (shortest in Cyrence and longest in Muctra), in the separation of the mantle lobes (somewhat greater in Cyrena), and in the absence of a byssus.

Guathodon agrees with Ihactra in having the siphons united to their ends and the incurent one furnished with an imperfect basal valve and with an elevated raphe behind it. It agrees with the Mactrider in having an intemal cartilage and with Mulinin in having both the (ordinarily extemal) ligament and cartilage internal and contaned in the same socket. In all these features Muctro and Gmathodon differ from C'yrena and its allies, all of which have only an external ligament set in a groove and separated by an elongated fulcrum, or nympha, from the cardinal border.

In considering the evidence of the harder parts all the species of Gunthodon must be examined, the typical species being more extreme in its characters than any of the others. It is also necessary to examine very young specimens, which are extremely difficult to get hold of, notwithstanding the abundance of the species on the Gulf coast.

My much regretted friend, the late Dr. Paul Fischer, in his Manual has compared Rungia to a Cyrena with an internal cartilage, and has regarded the cardinal teeth of the former as alternating, or Heterodont, and those of Mactra as of the type which has been called Desmodont by Neumayr. For these reasons he placed his family Rangiider immediately after Cyrenide in the Manmal. If he had been able to study the series which has been available for me I can not doubt he would have changed this opinion. A study of the young shows that the hinge of Guathodon in its early stages is as typically Desmodont as that of Wactra and that the truncation of the Λ-shaped teeth is a dynamic feature due to the exigencies of growth, which may be observed in Mulinia as well as Gmathodon. As a matter of fact neither Mactranor Gnathodon has geuuine Desmodont dentition. The hinges of both are really Heterodont.

In the young Guathodon cuncatus 10 mm . long, the hinge possesses the following armature:

Left valve: Anterior lateral tooth slemder, slightly arched, cremulate above, behind without the characteristie hook from which Gray derived his name for the genus; cardinal tooth thick, Λ-shaped, with a pronounced depression on each side of it; anterior border of the cartilagepit with a small accessory lamella; the upper part of the anterior border showing a small blunt projection corresponding to the hiatus between the cartilage and the ligament above; this is probably a relic of the shelly bridge which roofed the pit before the ligament descended into it; pit deep, its ventral border projecting as in Nactra; the insertion scars of ligament above and cartilage below eutirely separate, with a small shelly ridge rising between them; posterior lateral long, thiu, slender, arched, crenulate above.

Right valve: Furrow for the anterior lateral tooth narow, cremulate ou both sides, the lamina below it not much thickened; cardinal teeth two simple lamelle closely approximated (but not joined) at their upper ends, with a Λ-shaped pit below them, into which is received the cardinal tooth of the opposite valve; (this arrangement is exactly paralleled in Mulinia iateralis); posterior groove for the lateral of the left valve narrow, crenulate on both sides; the lower lamina slightly more prominent than the upper one; other features as in the left valve.

At this stage the pallial sinus is proportionally larger and rounded anteriorly as in Mactra, in short all the distinctive characters of the young shell, in which it differs from the adult, are Mactroid.

Looked at from the standpoint of dynamic evolution, the hinge of this group and the other Mactridee in its development offers much that is of interest. The various stages of immersion of the ligament in the different genera and subgenera illustrate well the manner in which it has been ingulferl. So too the changes between the juvenile hinge and that of the full-grown adult when regarded from a dynamie standpoint are more easy of explanation than from any other point of view.

Ginathodon serms to be indifferent as to the salinity of the water in which it lives, as it is found both in the sea outside of the lagoons and in the brackish water of the lagoons, while the living specimens received by me from Mobile Bay seemed to maintain perfect health for some four or five days in perfectly pure fresh water. But there is no doubt that it is, by preference, like the oyster, an inhabitant of waters the salinity of which has heen diluted by their proximity to the mouths of rivers or creeks. In common with the majority of pelecypods iuhabiting fresh or brackish water, it has acquired the habit of secreting a very heavy shell which is almost always eroded agood deal by the free carbon dioxide of such locations.

The peculiar hooked or jaw-shaped anterior lateral, which, in connection with the longer posterior lateral, is the most marked characteristic of the genus, results from the inequality of the two lamine between which it is inserted in the opposite valve. In Mulinia (from which Gnathodon seems to be an off-shoot.) the lamine and teeth are alike short and somewhat removed from the vicinity of the cardinal teeth. In Gmuthodon, however, the lamine are prolonged matil they are very close to the cartilage pit behind and to the cardinal teeth in front. The lower anterior lamina, for some unknown reason, did not attain the same length and there is a gap between the cardinal tooth and the end of the lower lamina. In Gnathodon, as in other pelecypods, the surface of the mantle is produced in such a way as to secrete aud deposit the shelly matter demanded by the growth of the hinge. The rentral exposures of the hinge and its lamine are those upon which deposition is most profuse and direct, consequently the gap referred to was rapidly filled by deposition from below on the ventral face of the projecting part of the upper lamina. The process may be seen in its successive stages in any good series of Guathodon cunertus. Once the "hook" is formed, it molds to a greater or less extent the form of the tooth impinging upon it, and is preserved, among other reasons, becanse the triangular buttress which it finally becomes is the most efficient obstacle which the hinge possesses to the rotation of the valves on the cartilage as a center. The tendency to this rotation, potentially very iujurious, has been promoted by the degeneration and immersion of the ligament. Consequently it is not at all improbable that the "hook" is a character which would he enlarged and preserved by natural selection. The oldest species (cluthrodom) has it least developed, the most abuudant recent species (cuneatus) most so. It is distinctly present in all the known species, but not always conspicuous. In the adult the efficient action of the hinge is promoted by distinct, usually transverse, crenulations on opposed surfaces. Where the surfaces are flat the crenulations are usually parallel grooves, but on rounded surfaces, such as the point of the lower anterior lamina in the right valve, they may be wavy, granular, or irregular. The end they serve is that of decreasing the tendency to any wobbling of the hinge, and these crenula are
merely the result of the same processes which developed the original hinge teeth in the prionodont saction of the Paleopelecypoda. Where the motion is purely to and fro, giving rectilinear friction of the opposed surfaces, the rugie must be parallel and regular, corresponding to the direction of the movement. Where the motion may be slightly irregular, corresponding irregularities will appear in the rugosities. The tendency of the development of rugie is to confine and limit the range of motion in the interest of the safety of the mollusk, a tendency which culminates in the interlocking rigid hinge of Plicatula and Spondylus. Contrary to the supposition of Neumayr, I believe there is no fundamental distinction between the groups possessing Desmodont and Heterodont hinge teeth, but that both are developed according to the particular circumstances of the case; the immersion of the ligament and development of a cartilage may occur in some genera of any natural group.

Typical species.

GNATHODON CUNEATUS, Gray.

$$
\text { Plate VII, figs. } 1 \text { and } 10 .
$$

Gnathodon cuneatus, Gray, Soweriby, Genera of Sh., Part xxxvi, figs. 1-3,1831.Gray, P. Z.S. 1836, p. 10t; Loudon's Mag. N. H., n. s., 1, p. 376, fig. 34, 1838.Conrad, Medial Tertiary, No. 1, p. 23,1838.-Anton, Verz.Conch., p. 10,1839.Sowerby, Man. Conch., 1st ed., fig. 83, 1839; 2nd ed., p. 154. fig. 83, 1842.Swainson, Malac., p.370, 1840.-Reeve, Conch. Sjst., i, p. 62, pl. 43, 1841.Conrad, 2nd Bull. Nat. Inst., pp. 190, 192, 1842.-De Kay, Zool. N. York, Moll., p. 233, pl. 25, fig. 267, 1843.-Hanley, Descr. Cat. Rec. Sh., p. 35, pl. 10, fig. 22, 1843.-Gray, Gen. Moll. P. Z. S. 1847, p. 186.-Philippi, Handb. Conch., p. 317, 1853.-Holmes, Post Pl. Fos. S. Car., p. 41, Pl. vii, fig. 10, 1860.Dall, Bull. 37, U. S. Nat. Mus., p. 62, 1889.
Rangia cyrenoides, Desmoulins, Actes Soc. Lin. de Bordeaux, v., p. 57, tigs. 1-3, Feb. 15, 1832.-Conrait, Am. Marine Conch. pp. 56, 57, Pl. xili, 1832.-H. \& A. Adams. Gen. Rec. Moll., II, p. 380, Pl. 100, figs. 4, 4a, 1856.-Conran, Proc. Acad. N. Sci. Phila. 1860, p. 232, 1861 ; Medial Tert. U. S., Index, p. 88, 1861.Prime, Proc. Bost. Soc. N. H., vii, p. 347, 1861.-Conrad, Am. Journ. Conch., III, app., p. 30, Cat. Mactrida, 1868.-Fischer, Man. de Conchyl., p. 1096, Pl. XXI,fig. 2, 1887.
Gnathodon Grayi, Tuomey \& Holmes, Pleioc. Fos. S. Car.. p. 99, pl. 23, fig. 11, 1857 ; not of Conrad; Ibid., Post Pl. Fos., p. 41, 1860.
Gnathodon minor, Holmes, Post Pl. Fos. S. Car., p. 41, 1860 ; in synonymy.
Clathradon cuneata, (Gray Ms.) Conrad, Am. Marine Conch., 1 . 57, 1833; Am. Journ. Sci., 1st ser., Xxili, p. 340,1833.

Pliocene of the Carolinas and of Florida (Caloosahatchee beds). Pleistocene of Cornfield Harbor, Chesapeake Bay, and Wailes' Bluff. Potomac River; of South Carolina; of Florida; of the whole north coast of the Gulf of Mexico and on the north coast of South America (?), Lea; Pleistoceue (?) of Matamoras, Mexico, Dugés; Living in Mobile Bay, Alabama, and westward on the north shore of the Gulf to Vera Cruz, Mexico, in shallow water, either brackish or perfectly salt. I have re-

Proc, N, M. $94-7$
eeived from Mr. I. I). Mitehell, of Texas, a living specimen upon which an oyster, at least two years old, and several specimens of Mytilus hamutus were firmly attached.

Details in reegard to this species will be fomm under the discossion of the genas. I am informed that on the Texas eoast it has been extensively preserved for food in cans under the name of "Little Neck Clams," and has met with some favor, gastronomically.

The dimensions of an alult specimen are as follows: Length 75, height 60 , diameter 50 mm . ; but the proportions vary somewhat with the amount of rostration of the individual.

The epidermis of (i. c'uncutus is normally of an ashy gray color, sometimes with a tinge of greenish or brownish, and of a papery consistency. When worn it has a more brownish tint, and some specimens display streaks of a light feruginous brown when the epidermis is thick and worn. There is sometimes shown a smoother and more translucent area of epidermis in the region where the lunule and escutcheon of bivalves usually oeeur, though these areas are not set off by any groove; but they are chiefly visible in adolescent specimens and often absent entirely. Toward the posterior end of the shell the epidermis is often raised in fine wrinkles, and it is usually more or less eroded on the beaks. The sculpture of the exterior of the valves is chiefly incremental and irregular, but many specimens show traces of radiating raised threads, especially in the rostral region. A wide obscure depression extending from the beaks to the margin and, with the valves closed, circumscribing a cordate area, is visible on the anterior end of many specimens. It corresponds nearly to the lower part of the anterior adductor scars within the valves. No umbonal sculpture like that of many mios can be observed on the meroded beaks. They are always smooth, as in Mactra.

In common with most brackish water shells this species has a considerable range of variability in form. In this case it chiefly arises from a difterence in the height of the umbones, and esperially from the shape of the posterior extreme of the shell, which normally is somewhat produced and evenly rounded at the margin, but in other cases is somewhat rostrated, with the basal margin somewhat concavely flexnous. This is carried to an extreme in a variety which may be called

GNATHODON CUNEATUS var. NASUTUS, Dall.

$$
\text { Plate VII, lig. } 8 .
$$

In salt water at Port Lavaca, Texas, Mitchell.
Length 3.5 , height 27 , diameter 24 mm ., in the typical specimen. This form was found by Mr. Mitchell, with others of the typical character, in pure salt water on the Texas coast. The specimen is small compared with the adult of the type form, but seems mature and is quite thick. It has nearly the form of G. flexusus, but can at once be
diseriminated from the latter by the presence of a deep thongh small pallial siuus and a long, arched, posterior lateral tooth.

GNATHODON CLATHRODON, Conrad (emended).
Plate VII, fig. 9.
Mactrat clathrodontu, Conrad, Am. Journ. Sci., 1st ser., Nxim, p. 340, 1832.
Gnathodon grayi, Conbad, Medial Tert., p. 23, pl. 13, fig. 1, 1838; Ibid., second ed. by Dall, 1893.-Emmons, Geol. Rep. N. Car., p. 298, tig. 226a, 1858.
Gnathodon minor, Conbad, Medial Tert., p. 69, pl. 39, fig. 6, May, 1840 (Testa junior). Am. Journ. Sci., 1st ser., Xli, p. 347, pl. 2, fig. 14, Oct., 1841. Not of Whitield.
Rangia minor, Conrad, Proc. Acad. Nat. Sci. Phila., Xif, p. 232, 1861.
Rangia clathodonta, Conrad, op. cit., xif, p. 232, 1861.-Prime, Proc. Bost. Soc. N. Hist., vii, p. 347, 1861.

Rangia (Perissodon) clathrodonta, Conrad, Proc. Acad. Nat. Sci. for 1862, p. 573, 1863.-Mefk, Smithsonian Misc. Coll. 183, Checkl. Inv. Fos. Mioc. N. Am., p. 11, 1864.

Kangia (Perissodon) minor, Conrad, Proc. Acad. Nat. Sci., Phila. for 1862, p. 573 , 1863.-Mék, Checklist, p. 11, 1864.

Chesapeake Miocene of James and York rivers, Virginia and North Carolina, Comad, Ruffin, and Yanow; Pliocene of the Croatan beds in North Carolina, Johnson.

The dimensions of an adult specimen are: Length, 70 ; height, 54.5 ; diameter, 40 mm .

This is the oldest species of the genus, and appears in the Chesapeake Niocene of Virginia, but seems to be very limited in its distribution. I have seeu no specimens from south of North Carolina. It may be discriminated from G. cuncutus by its thinner and more compressed shell, its slender and straighter lateral teeth, its more shallow and open cartilage pit, its less prominent and more adjacent beaks. The pallial sims is small but angular. The lateral teeth are crenulate, especially above; the posterior end of the shell, though not rostrate, is rather pointed.

A subgenus Perissodon proposed for this species by Comad, but never defined, seems to have been based on the specifie differences above referred to. There are certainly no features of more than specific value separating this form from (i. cuneatus. I am quite confident that Conrad's G. minor, described from the same beds as G. clutlorodon, is merely a young stage of the latter. Comrad's figure agrees with such young shells very well, and his description aftords no differential characters.

GNATHODON LECONTEI, Conrad.

Plate VII, fig. 4.
Gnathodon Lecontei, Conrad, Journ. Acad. Nat. Sci. Phila., 2d Ser., 11, p. 273, pl. 24, figs. 1-3, Jan., 1853; Proc. Acad. Nat. Sci., Vif, p. 31-Gould, in Pac. R. R. Rep., v.; appendix, p. 230, 1855.

Rangia Lecontci, Conrad., Proc. Acad. Nat. Sci. Phila. for 1860, p. 232, 1861.Mekk, S. I. Checkl. foss. N. Am., Miocene, p. 11, 1864.
Fossil in the upper Tertiary (Pliocene?) rocks on Carisco Creek, Colorado desert, Arizona, Dr. Leconte. Type in the National Museum, Reg. No. 6833.

Length, 22 mm . ; height, 20 ; diameter, 16 .
This species, which is said to oceur in great abundance at the locality mentioned, most nearly resembles G. cuncatus but is a more trigonal sliell than specimens of cuncutus of the same length, has a smaller pullial sinus, and is a considerably smaller and less heavy species. There are also differences in the arrangement of teeth on the hinge line. It differs from G. trigonus Petit in having long lateral teeth and in being proportionately more elevated. The beaks are high and more closely adjacent than in G. cuneutus. Carpenter (Rep. Brit. Assoc. Moll. W. C. N. Am., 1863, 1). 592) correctly distinguishes this species from G. mendicus or trigomus, and recognized its greater resemblance to the G. coneatus. No specimens seem to have been collected by any one since Dr. Leconte, who described them as found in a layer of rock two feet thick in the bank of the creck, where they occurred in the greatest profusion. The small pallial sinus in this species is a step in the direction of Rangianella.

Section MIORANGIA, Dall.
 GNATHODON JOHNSONI, Dall.
 Plate VII, fig. 7.

Gnathodoi Johnsomi, Walı, Science, Vol. xx, No. 502, p. 165, September 16, 1892 (name only) ; Trans. Wagner Inst. III, p. 337, pl, 22, fig. 18, December, 1892. Venus mobiliana, Johnson, Science, Vol. xx, No. 501, p. 151, September 9, 1892 (name only).
Fossil in the Miocene of the Pascagoula clays at Shell Bluff, Paseagoula River, Greene County, Miss.; also at a depth of 700 feet in the artesian well at Biloxi, Miss., and of 735 feet in the artesian well at Mobile, Ala.; L. C. Johnson.

Shell small, rather compressed, ovate-triangular to submytiliform in outline, rather thin for the genus, externally smooth or marked only with lines of growth when perfertly normal, but frequently concentrically thetuate owing to irregularities of growth; beaks prominent, compressed, anterior, close to the hinge line; margin of the shell entire, with no circumscribed lunule or escutcheon; interior smooth, muscular impressions small, distinct; pallial line with a shallow incurvation behind, hinge very asymmetrical, the anterior lateral tooth in the left
valve, short, Λ-shaped, received in the right valve into a corresponding sulcus, below which a triangular pustule represents the anterior lateral of that valve; cardinal teeth of the left valve diverging, lamellar, the anterior lamella situated above the anterior lateral tooth, fitting above a triangular cardinal tooth grooved or partly split at the apex, in the right valve; posterior lateral tooth in the left valve long, arched, finely crenate above, received in the right valve between two slender lamint, of which the lower one is most prominent; pit for the ligament and cartilage narrow, oblique, roofed over by a very thin shelly layer generally worn off in rubbed specimens. Length of shell 17.5 ; height 1.15 ; double diameter of valve, 10 mm . Fragments indicate that the species reaches a length of at least 25 mm .

This species differs from the young of G. cumeatus in the fact that the Λ-shaped cardinal tooth is in the right valve when the valves are closed, while in G. cumentus it is in the left valve, as well as in clathrodon, Lecontei, mendicus and Hexuosus. In G. Johnsomi the anterior lateral tooth is shorter, relatively, than in any other species, and the shell is more drawn out behind the beaks.

The geological age of this species is somewhat in doubt. It is associated with Hydrobia mobilian D all, and with a large oyster and Mulinia lateralis var. corbuloides Reeve. The latter is a liviug species and is not otherwise known below the newer zones of the Chesapeake Miocene. The Pascagoula clays were referred to the Grand Gulf beds by Hilgard, and overlie them. There is uo doubt that the typical Grand Gulf beds are included between the Hawthorne beds, at the base of the older Miocene, and certain beds of the Chipola series; at present it seems improbable that the Pascagoula clays can be correlated with anything older than the Chesapeake. I am disposed to consider them as corresponding to the aluminons clay above the Chesapeake clay-marl in the Alum Bluff series.

Subgenus Rangianella, Conrad.
Rangianella, Conrad, Am. Journ. Conch., iH, Supp1. p. 30, 1867.
Rangia, Carpenter, Mazatlan Shells, p. $53,1857$.
Lateral teeth short, subequal, about equidistant from the beaks, feebly striated or smooth; shell of morlerate size, subelongate or rostrate, long־a than high; pallial sinus inconspicuous or obsolete.

Type: Gnathodon trigonus, Petit $=G$. mendicus, Gould.
The hook of the anterior lateral tooth is almost obsolete in this species, especially in the young, and it was chiefly upon this character that Conrad separated it, leaving G. flexuosus with the typical species; but the sum of all the characters, if taken into account, would modify this view. Carpenter saw the differeuce ten years earlier, and would have utilized the name Rangiu for the short-toothed species; but this proceeding would be contrary to the accepted rules of nomenclature, since Rangiu was based solely upon the same species as Gnathodon, and must stand or fall with the priority of application to that special type.

GNATHODON (RANGIANELLA) MENDICUS, Gould. Plate VII, fig. 2.

Mactra mendica, Gould., Proe, Bost. Soc. Nat. Hist., iv, p. 88, Nov., 1851; Journ. B. S. N. H., vi, 1. 393, Pl. Xv, fig. 4, Oct., 1853.

Gmathodon mendicus, Cabrenter, P. Z. S. 1856, p. 200; Mazatlan Sh., p. 549, 1857; Rep. Br. Assoc. 1863, pp. 535, 543, 592.
Gnathodon trigonum, Petit, Journ. de Conchyl. v, P1. 84, 166, Pl. vi, figs. 13-15, 1853.-Carpenter, P. Z. S. 1856, p. 200; Rep. Br. Assoc. 1857, p. 227; Rep. Br. Assoc. 1863,1 р. $535,543,576,592,633$.
Gnathodon trigona, Cabpenter, Mazatlan Sh., p. 52, 1857.
Gnathodon truncatrm, PETit, Journ. de Conchyl. iv, p. ii, of expl. pl., 1853.
Gnathodon Lecontei, Conrad. Proc. Acad. Nat. Sci., vir, 1. 31, 1854; not of Conrad, Journ. Acad. 1853.
Rangia trigona, Adams, Gen. Rec. Moll. II, p. 380, 1858.
Rangia mendica. Prime, Proc. B. S. N. H. vir, p. 347, 1861.
Rangianella trigona, Conrad. Am. Jour. Conch., int, suppl., p. 30, 1868.
Mazatlan, Mexico, Lieut. (ireen, Rolland de Roquan, Reigen, etc.; living in brackish water.

Ihaveexamined anthentiospecimensofboth G.mendicus and G.trigonus and there seems to be no doubt of their identity.

The epidermis of this species is of a straw color, varying to greenish yellow, darker on the posterior slope, where it often becomes fibrous, and having a paler lozenge-shaped area over the hinge, which, however, is not circumscribed by any groove. Internally the shell is polished outside of the area inclosed by the pallial line. The latter is feebly waved, but hardly indented. The lateral teeth are nearly equal, feehly grambose, the anterior with the "hook" abmost obsolete. Although the shell usually has a simooth internal margin it is sometimes radiately striated, esperially above the hinge, and the lines of growth are often beaded here and there with short radiating theads much more regular and distinct than those sometimes notable on G. cuneatus. A faint wrinkled sculpture is constantly present on the posterior slope and seems characteristic of the species. The umbones are quite smooth. The specimens I have seen average about 25 mm . (1 inch) in length, 18 mm . in height, and 12.5 mm . in diameter.

GNATHODON (RANGIANELLA) FLEXUOSUS, Conrad.
Plate VII, figs. 3, 6.
Gnathodon flexuosus, Conrad, Am. Journ. Sci., 1st ser., xxxyiir, p. 92, tig. 1839; Proc. Acad. Nat. Sci. Phila., vir, p. 31, 1855.
finathodon rostratum, PEitt, Journ. de Conchyl. w, Pl. Xt, 164, Pl. v., figs. 1-3, 1853.
Rangia flexuoba, Conraib, Proc. Acad. Nat. Sci. Phila. for 1860, p. 232; Am. Journ. Conch., ini, supplem., p. 30, 1868.
Rangia rostrata, Prime, Proc. Bost. Soc. N. Hist., vil, p 348, 1861.-Adams, Gen. Rec. Moll., ir, p. 380, 18j8.-Conizay, Am. Journ. Conch., ur, suppl., p. $30,1868$.

Living on the coast of the Gulf of Mexico from northern Floridat to Vera ('mz, Mexico, in suitable places. Apparently a denizen of pure salt water.

Length, 43 ; height, 30 ; diameter, 26 mm . in the adult.
This is apparently a rare species. I have never seen a perfectly fresh specimen. It can be distinguished from any other Atlantic species by its short, subequal, lateral teeth, rostrate shape, and obsolete pallial simus. The crenulations of the teeth are very feeble and, in worn specimens, sometimes invisible; but this is a character which varies much in individuals, as can be observed in any good series of G. cuneatus. The shell is much heavier than G. menticus, and has the lateral teeth more unequal, the anterion lateral being strongly hooked. The pallial line has no reientrant angle, but a recess is formed by the base of the adductor scar and the vertical extension of the pallial impression. The epidermis is straw yellow. I have observed no bead ing along the lines of growth, and mo sculpture, on the posterior slope, except incremental lines, on any of the specimens I have examined. The shell varies a good deal in height relative to its length, and the posterior end may be flexed upward or downward or produced horizontally. It is perceptibly rostrate. I have called attention to the fact that G. cuneutus has a rostrate variety, of which the outline simulates that of G. Alexuosus, and must now add a peculiar variety of F_{r}. flexuosus which tends in the opposite direction.

GNATHODON FLEXUOSUS var. PETITIANUS, D a 11.
Plate VII, fig. 5.
In this variety the shell has a height of 30 and a length of $36 \cdot \mathrm{~mm}$. compared with a height of 29 and a length of 43 mm . for the typical flexuosus; the posterior slope is convex and the rostrum short, rounded, and bent downward, the pallialline has a faint simation, and the "hook" on the anterior lateral is obsolete. The diameter of the shell would be about 21 mm . The valve is lighter than any specimens of G. flexuosus which have come to my notice and considerably more swollen. It is possible that it may represent a distinct species, but this can not be determined without a good series of fresh specimens. A single somewhat worn left valve was obtained by the Mexican geographical commission at Vera Cruz, and is now in the National Museum (No. $57668 a$).

I have referred it to G. flexuosus on account of the shor't lateral teeth and feeble pallial sims; if alditional material should prove it to be distinct, the varietal name now given may be taken as specific. No indication of external sculpture except incremental lines is visible; the epidermis is absent from the specimen.
G. Alexuosus possesses more constantly than any other species a character occasionally found in each of them, namely, the presence at the anterior border of the cartilage pit of a thin accessory lamella between the pit and the deltoid cardinal tooth of the left valve. This lamella, when perfect, looks like an additional cardinal tooth, and is always best developed in the left valve, but it is usually more or less absorbed or even absent. It is common to all the Hactride. The mar-
gin of the valves, especially near the hinge, sometimes shows faint radiating striation, as already noticed in G. mendicus.

Spurious or Doubtful Species.
MULINLA GUADELUPENSIS, Reclu\%.
Mactra guadelupensis, Recluz, Journ. de Conchyl., 111, p. 249, pl. 10, figs. 4, 4', 1852 ; Journ. de Conchy1., IV, p. 414, 1853.—Beau, Cat. Sh. Guad., p. 26, 1858.Krebs, W. I. Marine Sh., p. 105, 1864.
Guathodon guadalupensis, Reeve, Conch. Icon., XIX, No. 2, 1873.
Mactra donaciformis, Krebs, WF. I. Mar. Nhells, p. 105, 1864; not of Gray or Reeve. Gnathodon Cantrainei (Recluz ms.), Reeve., Conch. Icon., XIX, Gnathodon, fig. 3, Oet., 1873.-Gundlach, Aun. Soc. Esp. de Hist. Nat., xif, pp. 280, 322, 1883.
Beach at Aguadilla, Porto Rico, dead shells east up on the shores of the creek, Gundlach; Nevis, Sowerby; Guadelupe, Recluz, Beau; Guaivea on the coast of Venezuela, Blume in Swift Coll.

Gray described a shell in 1837 under the name of donaciformis, but his reseription was inadequate. It was later figured by Sowerby in the zoology of the voyage of the Blossom, Capt. Beechey, and ou this figure the name must rest, as there is no other means of identifying the shell. It represents a species found on the west coast of middle America from Panama to the Colorado River. It is quite a variable shell but normal specimens agree well with Sowerby's figure. It was stated by Gray to come from the "South Seas" (then a term including most of the Pacific); Sowerby gave the locality as "Nevis," an island in the West Indies where Beechey did not touch; later Reeve ligured a shell, probably young, said to be from New Zealand, under Gray's name. The reference to "Nevis" led Krebs and others to identify a rather similar but smaller species named grudelupensis by Recluz with the donaciformis of Sowerby and Gray. Recluz' species was subsequently figured by Sowerby (1873) in his contimation of Reere's Iconica as a Guthodon, a not mmatural mistake, since these Mulinias and Rangiunelle can barely be separated generically. At the same time another Muliniu, probably a mere variety of guadelupensis, is figured by Sowerby under the (ms.?) name of Cantrainei Recluz, and also referred to Gmuthodon. From an examination of authentic specimens there seems to be no question of the identity of G. C'mentrainei with G. guadelupensis, while it is absolutely certain that both belong to the genus Mulinia of Gray.

This, however, is not the final disposition of the matter. The small Mulinia, named lateralis by Say, is well known, chiefly from northern specimens. It extends from Massachusetts Bay to the Antilles. The northern sipecimens are rather rude, but a series showing the geographical range also shows that, as we follow the species sonth, it becomes more delicate, lighter, and develops several varieties, one of which was named Mactra rostrutu by Philippi (not of Spengler) and Muctra corbuloides, hy Deshayes. This rostrate form is connected with the type by insensible gradations. The species under farorable circum-
stances attains the length of an inch and is quite variable in form, as are all these small Mulinias. It is my opinion that a complete geographical series will show that M. guadelupensis is merely a wellgrown local race of the M.lateralis. Both have a preference for brackish water.

GNATHODON? VALDENSIS, Dunker.

(inathodon raldensis, Dunker, Monog. Norddeutsch. Wealdenbild., p. 57, taf. xint, Figs. 5 a-e, 1846.-Sandberger, Land und Siisswasser conchyl. der Vorwelt, p. 54, Pl. if, Figs. 10, 10a, 1870.

Wälderthon des Gravinghagener stolleus bei Bielefeld, Germany; Wealden formation of North Germany.

This species has the aspect of a Cyrena. The interior and hinge are unknown. It was referred to Gnathorlon by Dunker because the specimens give no evidence of an external ligament. It is highly improbable that the shell will finally prove to belong to Gmathodon, both on account of its age and its locality, but it will certainly be a matter of interest to determine its proper place and it is to be hoped that this will soon be accomplished.

SPISULA? QUADRICENTENNIALIS, Harris.

Gnathodon, new sp., Harris, Fourth Anu. Rep. Texas Geol. Survey, Table of species Galveston well, 1893.
Gnathodon quadricentennialis, Harris, Fifth Ann. Rep. Texas Geol. Survey. [In press].
From the upper Miocene, 2100 to 2250 feet, in the Galveston artesian well, Galveston, Texas; State Geological Survey.

After a careful examination of specimens of this species kindly furnished by Prof. Harris, I am inclined to refer this to Spisula, notwithstanding the inequality of the lateral teeth. The ligament appears to have been partly external, which would remove the species from Gnuthodon, unless this feature is due to wear, which seems unlikely. The shell is nearly smooth externally, rather elongated, evenly rounded at each end, quite inequilateral, the longer posterior part having long curved laterals, transversely striated. The hinge seems otherwise like that of Spisuld; the pallial sinus is well marked, the beaks adjacent, low, and inconspicuons, 1.5 mm . from the anterior end. Lon. 8.5, alt. 5.0 , diam. 4.0 mm .

MULINIA MINOR, Whitfield?

Rangia? (Perissodon) minor, Whitfield, Moll. and Crust. of the Miocene form of N. J., p. 84, pl. 15, figs. 4-6 [in press] ; not of Conrad.
Miocene marl of Shiloh, N. J., Burns.
This species doubtfully referred to Conrad's R. minor $[=G$. clathrodon, jr.], and well figured by Prof. Whittield, is a young MFulinia allied to M. lateralis, but too young to identify. The type is in the collection of the National Museum. Only one specimen was obtained by Mr. Burns.

SPISULA? PARVA, Petit.

Gnathodon parvum, Petit, Journ. de Conchyl., IV, p. 358, pl. 13, figs. 9-10, 1853.Reeve, Conch. Icon., XIX, Guathodon, fig. 6, 1873.
Rangia para, Adams, Gen. Rec. Moll., 11, p. 380, 1858.-Conrad, Proc. Acad. Nat. Sci. Phila. for 1860, p. 232; Am. Journ. Couch., III, Suppl., p. 30, 1868.
Mactra rostrata, Reeve, Conch. Icon., viii, Mon. Mactra, Pl. xix, tig. 104, 1854; not of Philippi, Zeitschr. Mal., 1818, p. 152, nor of Spengler, 1802.
Brisbane River, Moreton Bay, Australia, Petit.
Specimens of Petit's shell in the National Museum received from H. Coming were named by the latter Muctra rostratu, Spengler. Spengler cites for a figure of his species the Conchylien Cabinet, vol. 12, tab. 242, fig. 4197 , but there is no such plate or figure in the volume referred to, though he may have had proofs of a plate which never was published. His species is quite distinct, but Reeve has figured our shell, as identified by Cuming, under Spengler's name. The shell is a Spisula, the ligament being externally visible, though partly inserted in the cartilase pit. The laterals are very sharply striated. In the specimen received from Uuming the lateral teeth proper are in the left valve.

ISOCARDIA? TENUIDENS, Whitfield.

Gnathodon? tenuidens, Whitfield, Lam. Raritan Clays, p. 27, pl. 11, figs. 7-10, 1885.

This species is only known as an internal cast from the Cretaceons beds known as the Plastic Clays of New Jersey. It is a thin-shelled salt water bivalve, having much the appearance of an Isocardiu. It was but doubtfully referred to the genus Gmathodon by Whitfield, and I believe it should be referred to the Isocurdiddr. It has nothing but the prominent and distant beaks to comect it with Gnathodon.

EXPLANATION OF PLATE VII.

Fig. 1. Gnathodon cumeatus, Gras, exterior of alnlt specimen 60 mm . long. Mus. Reg. No. 60793, p. 93.
Fig. 2. Guathodon mendicus, (iotlod, interior of specimen 23.5 mm. long. Mus. Reg. No. 103899, p. 98.
Fig. 3. Guathodon flexuosus, Coxbad, exterior of an adult specimen 43 mm . long. Mus. Reg. No. 6134, p. 98.
Fig. 4. Gnathodon Lecontei, Conran, one of the typical specimens, the hinge somewhat weatherworn, length 22 mm . Mns. Reg. No. 6833, p. 96.
Fig. 5. Gnathodon flexuosus var. Pefitiamus, Dall, from the typical specimen 36.5 mm . long. Mus. Reg. No. 57668 a, p. 99.
Fig. 6. (imathodon flcounsus, Conkad, interior, the shell a little worn, the same specimen is figured at fig. $3 ; \mathrm{p} 98$.
Fig. 7. Gnathodon Johnsoni. Dall, type specimen 17.5 mm . long. Mus. Reg. No. 107033, p. 96.
Fig. X. Gimuthodou cuneutus var. nasutus, Dadi, interior of type specimen 34 mm . long, Mus. Reg. No. 106988, p. 94.
Fig. 9. (inuthodon clathodon, Conian (em.), interior of specimen 40 mm . long, from the Croatan berls, Pliocene of North Carolina. Mus. Reg. No. 112296, p. 95.
Figr 10 (imuthodon cuneutus, (iray, interior of valve 60 mm . long. Mus. Reg. No. 60793 , p. 93.

Gnathodons of North America.

ON TIUE NOMENOLATURE ANO (OHARACTERISTICN OH" THE LAMPREVS.

By Timeonore Gill, m. in., 1u. D.

In 1 sion, 1)r. (iiinther took up the name I'fromyzon branchinlis for what was before generally called I. planori. In 1 sse, assmming the correctness of that determination and that there were good reasons for the identifeation, I aceepted it and also the name 1 momocotes, haserl on the P^{\prime}. branchintis, for the gemus called Lampetra by (iray. It was with much reluctance that I took such a step, and only in deference to the rules of nomenclature regulating such cases, common among the arat lephs, esperially the hydroids, but rare amongerebebates. The relue. tance to adopt the name Ammocres with this new range has, I am sure, been shared by many others, and expression has lately been given to it by Prof. (iage in his valuable memoir on "The Lake alme Brook Lampreys of New York" (Wilder book, p. 4:it). Drof. (iages own researches appar to fimmish a perfectly legitimate way out of the dilemma.

According to Prof. (iage (op. cit., p. fisi), "up) to the present time there has been no way diseovered of distinguishing the laria of the lake and of the brook lamprey. As the two spereies ocrupy the same spawning ground amd sometimes spawn in the same nest great care is necessary in order not to confuse the two. Alter the larvar leave the nest they apparently go to the same sand bed." *

[^17]As Prof. Gage had unusual opportunities for investigation, and "since 1875 lost $n 0$ opportunity of studying the lampreys at all stages of life" (op. cit., p. 42:3), his conclusions are especially valuable, and may be safely used in a reconsideration of the question of nomenclature.

Why has Ammocates branchialis, then, been identified specifically with Petromyzom plameri, thus necessitating the restoration of the former name?

AMM(ECETES COMMON TO ALL AROTO(i.EAN LAMPRETS.

The memorable researches of Dr. August Miiller, resulting in the discovery that an Ammocoetes was simply a larva of a lamprey, happened to be conducted where the Petromyzon pleneri was the species at hand, and, inasmuch as the larve in his possession developed into Petromyzon planeri, the identification was correct. The mistake (if it can be considered as such) was in assuming that every Ammocotes was a larval Petromyzon planeri, and that the Ammocotes or P. Uramehiatis of Linné was specificully identical with P. planeri and with that alone.

It now appears that what would be determinable as an A mmocoetes brenchiulis may be the larva of any arctogean lamprey, inasmuch as the lake lamprey (Petromyzon marimus var.) and brook lamprey (Lampetra sp.*) are most (listinct from each other. Inasmuch also as the sea lamprey (Petromyzon marimus) ascends fresh-water streams to breed, there was no reason for identifying P. bronchialis with one rather than another species, the definition applying to one as well as to another, and doubtless the larvir of the three European species (P. marinus, P. fuviatilis, and P. planeri) have been frequently, if not habitnally, confused. It follows, therefore, that P. branchialis (Linné) and Ammocotes are generic rather than specific synonyms and should be so treated. The name Lampetra may be, consequently, revived for the fresh-water lampreys of Europe aud eastern America and the synonymy digested as follows.

SYNONYMY.

Genus PETROMYZON.

[^18][^19]

FAMILIES.

In 1870 Dr. Giinther united the genera Caragola and Mordacia of Gray, the former of which was based on specimens with the lateral corneous lamelle preserved, while the latter was founded on a specimen in which they were lost and only exhibiting a single papillary prominence for each. For the combination he prefered the second name of Gray (Morducia), based on a mutilated individual. In 1882 I used in preference the first name (('arayola), based on a perfect individual. I have since been led to believe that the precedence of one name by such a little margin as Curagolu has over Mordacia has no value, and that aptness of diagnosis, however desirable, is not necessary to secure priority, and I have therefore followed Dr. Giinther in accepting the name Mordacia instead of Caragola. I have also deemed it proper to elevate the subfamily Caragolinat to family rank, and named it Mordaciide. References follow.

Family Mordaciide.

$$
\begin{aligned}
& =\text { Caragoline, Gill, Proc. U. S. Nat. Mus., v. 5, p. } 524,1882 . \\
& =\text { Mordaciida, Gill, Mem. Nat. Acad. Sc., v. 6, p. 129, } 1893 . \\
& \text { Petronyyzontide pt., auct. pl. }
\end{aligned}
$$

Hyperoartia with two distant lateral tuberculigerous lamina developed from the upper arch of the aunular cartilage.

The only known genus is Mordacia.
With this is to be contrasted the family letromyzonide as thus restricted, viz:

Family Petromyzonide.

> <Petromyzontida, Gill, Proc. U. S. Nat. Mus., v. 5, p. $521,1882$. (Full syn. given.) = Petromyzontida, Gill, Mem. Nat. Acad. Sc., v. 6, p. 129, 1893.

Hyperoartia with a single median tuberculigerous suproral lamina developed from the upper arch of the ammular cartilage.

It behooves those who may object to these families to consider why
the character used to distinguish them is not of equal value with the mion or separation of lower pharyngeal bones and like modifications generally used.

OR'LHOGRAPHY.

In common with almost all other zoologists, I have used the name Petromyzontide for the lampreys. It only lately occurred to me that the form was a suspicions one at least, and, on investigation, I have been obliged to beliere that it was due to a false analogy. Certainly the
 responding Latin equivalents are myxon and myxomis. The first to use the form I'etromyzontide appears to have Deen Prof. Agassiz, in 18.5), in Lake Superior (p. 249), and the Edinburg New Philosophical Journal (v. 49, p. '242). It is probable that he was led to this form, without sufficient reflection, by being misled by analogy with words ending in -orlon (Tetreodon, Diodlon, ete.). Bonaparte had long before given the better form, Petromy:onida, and this should be revived.

EXOMEGAS.

The genus Exomegus, proposed in 185: (Proc. U. s. Nat. Mus., v. 5, p. 5a4) for the Petromyzon macrostomus of Burmeister, has been justified by the recent publication of a memoir on the species by Dr. C. Berg,* who has, however, referred it to the genus Geotria. I have recently called attention in Science for January 19, 1894 (v. 23, 1). 30, "A South American lamprey"), to certain discrepancies between the description and figure and the advisability of reexamining the animal.

A detailed comparison of the contrastiug skeletal peculiarities of Petromyzon and Lampetro is very much needed. It may be hoped that Prof. Gage will extend his investigations and give us the requisite information.

[^20]
THE NOMENCLATURE OF THE MYLIOBATIDE OR AËTO BATID A.

By Theodore Gill, m. D., PH. D.

In 1888 , President Jordan proposed, for very plausible reasons, to revive Blainville's name Aetobatus (used in the form Aetobatis) for the genus long known as Myliobatis.* I hastily followed him and have repented at leisure. My reasons for now dissenting are as follows:

A $\mathrm{E} T O B A T U S$.

Blainville, in 1816, published a new scheme for the classification of the "Selaca" or Plagiostomes (which he had studied with Mr. Prevost) and divided them into three genera or families: "I. Gen. ant Fam. Raia;" "II. Genus aut Fam. Squatina," and "III. Genus aut Fam. Squalus." The rays were subdivided into 7 groups bearing generic names: Dasybatus $\lceil=$ Raiidal, Trygonobatus $\mid=$ Dasybatida without Urolophus |, A ëtobatus |=Myliobutidel, Dicerobutus $\mid=$ Mantide \mid, Leiobatus \dagger [$=$ Urolophus $]$, Narcobatus $\mid=$ Torpedinidre \mid, Rhinobatus $\lceil=$ Rhinobatide], and Pristobatus [= Pristido + Pristiophorido].

Blainville gave a full and excellent diagnosis of Actobutus, and included " 11 nominal species of Myliobatids in the genus. They were as follows: \ddagger Vulgaris (11. uquilu?); Obtusus (?); Flagellum (Ae. Alugellum); Lobatus (Rhinopter(t?); Sinensis (?) ; Nichotii (M. Vieuhofii); Fili-

[^21]caudatus (?); Hamatus (?); Ocellatus (Ae. narinari?); Narinari (Ae. narinari); Forsteri(?)

The only species of this list that can be certainly identified by name is the marinari, the type of the Miillerian genus Aetobatis. By assuming that Nichofii is a misprint for Nieuhofii, we are led to another probable identification. The other specific names are new and can only be guessed at ; the results of such guesses are given in brackets after the several names, when there are good grounds for guessing. But the genus must be determined by the known species named and those belong only to the genus Aetobatis, M. \& H.

MYLIOBATIS.

Cuvier in 1817, adopted from manuscript of Duméril the name Myliobatis for the same group called by Blainville Aëtobatus. In this course he was followed by almost all succeeding naturalists.

GENERA OF MYLIOBATIDES.

Miiller and Henle in 1838 distributed the species combined under the names Aëtobatus or Myliobatis into three genera, Myliobatis, Aetobatis, and Rhinoptera (Cuv., 1829). They ascribed to themselves the name Aetobatis. This arrangement was generally adopted by later writers.

AGASSIZ'S VIEWS.

Agassiz in 1843 (Poiss. Fos., iri, p. 325), took the correct view of nomenclature in the following passage:

$$
\text { Do, Du genre Aetobatis M. et } H \text {. }
$$

M. de Blainville désigna sous le nom générique, d'Aetobatis l'ensemble des Mourines connues a l'époque où il publiait son ouvrage. ('e genre n'était donc alors qu'un simple synonyme du genre Myliobates de M. Duméril. * Plus tard MM. Miiller et Henle subdiviserent ce groupe en plusieurs genres, il conserverent lo nom Myliobates an genre dont le liaja aquila des auteurs peut être considéré comme le type, et ils restreignirent le nom de Letohatis an genre dont le Narinari de Margraf est l'espèce la plus anciennement connue.
This, it seems to me, is a perfectly legitimate view and use of the two names. Both names, Aëtobatus and Myliobatis, might have been retained for different sections of the old gemus, if no other considerations had forbidden. Both of those names, however, as President Jordan has reminded me, were anticipated by a name given by Ratinesque in 1810.

CEPHALEUTHERUS.

Rafinesque, in his "Indice d'Ittiologia Siciliana," has a genus Cephaleutherus interposed between his Mobula (=Cephaloptera Dum.) and Uroxis (Trygon auct.), which, according to Dr. Jordan, is a Myliobatis.

[^22]It is not, however, mentioned hy Doderlein in his very full synonyms of the Myliobutids of the Merliterranean, and the book in question cannot be found. While I have little doubt that Dr. Jordan is correct in his identification and that the name Cephaleutherus should be taken for Myliobatis, I defer doing so mutil I am able to consult the Indice or a copy of it. Meauwhile I retain the name Alyliobatis, but adopt for the family Aëtobatide.

SYNONYMY.

The principal symonyms of the family and its primary divisions are as follows:

$=$ Myliobatides, Müller de Henle, Syst. Beschreib. Plagiostomen, p. 176, 1841.
=Myliobatida, Adams, Man. Nat. Hist., p. 87, 1854.
$=$ Myliobatide, Richardson, Encycl. Brit., 8. ed., v. 12, p. 328, 1856.
$=$ Myliobatoidei, Bleeker, Enum. Sp. Piscium Archipel. Indico, p. xiii, 1859.
$=$ Myliobatoide, Gill, Cat. Fishes L. Coast N. America, p. 62, 1860.
$=$ Myliobatides, A. Duméril, Hist. Nat. Poiss., v. 1, pp. 469, 631, 1865.
<Myliobatide, Güxtifer, Cat. Fishes Brit. Mus., v. 8, pp. 435, 488, 1870.
$=$ Myliobate, Fitzinger, Sitzungsber. K. Akad. der Wissensch. (Wien), B. 67, 1. Abth., p. 57, 1873.
$=$ Aetobatide, Jordan, Man. Vert. An. N. U. S., 5. ed., p. 22, 1888.
=Rajide gen. or subf. early authors.

Subfamily MYLIOBATINA.

<Myliobatini, Bunaparte, Nuovi Ammali alle Sci. Nat., t. 2, p, 130, 1838; t. 4, p. $182,1840$.
<Myliobatina, Gray, List Fish B. M., part 1, p. 12i, 1851.
$=$ Myliobatine, Agassiz, Proc. Boston Soc. Nat. Hist., v. 6, 1'. 385, 1861.

<Myliobatina, Günther, Cat. Fishes Brit. Mus., v. 8, pp. 435, 488, 1870.
=Cephaleutherina, Jordan, Mss.

Gemis MYLIOBATIS.

$=$ Cephaleutherus, Rafinesque, Ind. Ittiol. Sic., 1. -, 1810. (Fide Jordan Mss.)
<Myliobutis, (Duméril) Cuvier, Règne Animal, v. 2, 1. 137, 1817.
$=$ Myliobatis, Müleer \& Henle, Mag. Nat. Hist., v. 2, p. 90, 1838.
$=$ Myliohutis, Mïldel \& Menle, System. Beschreib. Plagiostomen, P. 176, 1841.
<Holorhinus, Gill, Proc. Acad. Nat. Sci. Phila., v. 14, p. 331, 1862. [Holorhinus mav hereafter be restored to generic rank, and is at least a grood subgenus.]
$=$ Myliobatis, Gill, Ann. Lyc. Nat. Hist. New York, v. 8, pp. 136, 137, 1865.
$=$ Aclobatis, Jordan, Man. Vert. An. N. U. S., 5 ed., p. 23, 1888.
Aëtobatus sp., Blainville.

Subfamily AETOBATINA.

$=$ Aëtobatine, Agassiz, Proc. Boston Soc. Nat. Hist., v. 6, p. 385, 1861.
=Actobatina, Gill, Ann. Lyc. Nat. Hist. New York, v. 8, pp. 135, 136, 1865.
Myliobatina gen. Suct. pl.
Proc. N. M. $94-\mathrm{S}$

Gemms AÉTOBATIS.
<Aëtobatus, Braivillefe, Journal de Physique, t. 83, w. 262, 1816.
$=$ Aetobatis, Müllei de Henle, Mag. Nat. Hist., v. 2, 1, 90, 1838.
<Zygobates, Agassiz, Rech. Poiss. Foss., v. 3, p. 328, 1843.
$=$ Stoasodon, Cantor, Cat. Malayan Fish., p. 434, 1850.
<Goriobatis, AGAssiz, J'roc. Boston Soc. Nat. Hist., v. 6, 1. 385, 1861.
Myliobatis sp., Duméril, etc.

ORIGINAL DIAGNOSIS OF AËTOBATUS.

As the works in which Blainville published his descriptions of Lëto batns are inaccessible to many investigators, the deseription published in the Journal de Physique (vol. 83,1 . $26.3,1 \mathrm{Sl6}$) is here reproduced.

> 3, Ac̈tobatus ant R. Aquile.

Car. Corp. cum P. P. aquile formi ; Capite crasso non rostrato, appendice simplici antice instructo; Oculis lateralibus; Dentibus latis, lovibus, polygonis, coalitis, palatinis; P. P. acutis, margine antico convexo, postico concavo; P. V. ut in precedente [Trygomobatus]; P. S. unica ad radicem caud. srepe longissime, llagelliformis, aculeo serrato armatie, extremitate impennis.

Npec. Vulgaris; Ohtusus: Flagellum; Lohatus; Sinensis; Nichotii; Filicaudatus; Hamatus; Ocellatus, Narinari, Forsteri.

THE NOMEN(LATURE OF THE FAMIL P(EOHLID), OR

 CYPRINODONTIDA.By Theodore (ille, m. D., PH. D.

In my "Families and Subfamiles of Fishes" (1s:3), No. 1:3:3) I have adopted Peciliide instead of C'yprinodontider for the family at present generally known by the latter name.

It is quite true that Prof. Agassiz was the first to recognize the family so called, but he simply gave the plural form of ('yprinodon, and not a name with the patronymic suffix now almost miversally used to denote families, and he did not define it, but simply gave it to the residuum left after defining the Cyprini. Little later Bonaparte gave a regular family name (Pccilidx) derived from the earliest established name of a genus of the family and that name was several times employed by him and others while the name Cyprinorlontes remained in abeyauce; he also regularly defined it. The first regular use of the latter name with a patronymic suffix (Cyprinodontide) was by Sir John Richatdson in 1856.

Another objection to the name Cyprinodontide which may reconcile us to its abondomment is that it expresses a taxonomic falsehood and is even now coustantly misleading persons. In the part of the great "New English Dictionary," lately published (v.2., p. 1306), a " ('yprimodont" is defined as "a malacopterygions fish of the family Cyprinodontidce, of which the typical genus is Cyprinodon; they differ fiom the Cyprinids in having the jaws more projecting and toothed." In the recent manual of Morean (1892, p. 479), the "('Yprinodontides" and "Cyprinides" are approximated in an analytical table and simply contrasted on account of the presence of jaw teeth ("mathoires dentées") in the former and the absence (mathoires "non dentées") in the latter. It certainly is time for trained ichthyologists to have learned that there is no affinity between the two types, and that they differ so radically in all essential features of organization that they should be referced to different orders. Yet Valenciennes, in the penultimate volume of his great work (Hist. Nat. Poiss., Xxi, p. 455), attempted to justify the
retention of the Cyprinodonts in the same fomily with the Cyprinids and their natural allies! The Cyminodonts or Poediods are really related to the Esocids amd I'mbrids, amd to them they should be approximated in the suborder Haplomi.

The ehicefsyonymy of the family and the type eontaning subfamily is given in the following summary, from which the usage of varions naturalists may be learned:

Family P(ECILIIDA.

$=$ Cyprinodontes, Agassiz, Mem. Soc. d’Hist. Nat. de Neuchatel, t. 1, p. 35, 1834; Poiss. Foss., V. 5, pt. 1, p. 12, pt. 2, p. 47.
$=I^{\prime}$ ecilide, Bonaparte, Nuovi Annali delle Sci. Nat., t. 2, p. 132, 1838; t. 4, p. 194, 1810.
$=I^{\prime}$ 'ecilide, Bonaparte, Trams. Lim. Soc., v. 18, p. 299, 1840-'41.
$=$ Pecilide, Bonaparte, Cat. Met. I'esci Europei, p. 5, 1846.
$=$ Cyprinodontes, Mülleh, Archiv Naturgesch., 9. Jahrg., B. 1, p. 320, 1843.
$>$ Anablepide, Arams, Man. Nat. Hist., p. 107, 185.
$>$ Peciliiddr, ADAMs, Man. Nat. Mist., pr. 107, 1 Nīt.
<Cyprinodontide, Richardson, Encyl. Brit., v. 12, p. 25², 1856. (Includes also Diplopterus (=Luciocephalus) and Vandelliu.)
$=$ Cyprinodontide, Giraisd, Expl. and Surv. for R. R. Route to Pacific Oc., v. 10, Fishes, p. 302, 1858.
<Cyprinodontoidei, Blefker, Enum. Sp. Piscium Archipel. Inclico, p. xix, 1859.
= Cyprinodontide, Güntuer, Cat Fishes, Brit. Mus., v. 6, p. 299, 1866.
$=$ Cyprinodontide, Cope, Proc. Am. Assoc. Adv. Sci., v. 20, p. 333, 1872.
$=$ Cyprinodontes, listzinger, Sitzb. K. Akad. der Wissensch., (Wien), B. 67. 1. Abth., p. 38, 1873.
$=I^{\prime} \nprec c i l i i d e$, Gill, Mem. Nat. Acad. Sc., v. 6, No. 133, 1893.
Cyprinoides gen., Cuvier, Duméril (18j̈6), et al.

Subfamily PazidiIINA.

$<$ Pocilini, Bonaparte, Nhovi Amali delle Sci. Nat., t. 2, 1. 132, 1838; t. 4, p. 195, 1840.
< Pacilini, Bonaparte, 'Trans. Limu. Soc., v. 18, p. 299, 1810-'41.
<Peciline, Swanson, Nat. Hist. and Class. Fishes, ete., v. 2, pp. 190, 311, 1839.
< Pocilini, Bonaparte, Cat. Met. Pesci Eur., p. 5, 1816.
=Cyprinodontide limnophoge, Günther, Cat. F'ishes B. M., v. 6, pp. 300, 339, 1866.
$=P$ Peciliine, Jordan $\&$ Gilibert, Syn. Fishes N. Am., p. 327, 1882.

THE DHFFERENTLAL CHARACTERS OF THE SALAONID.E AND THYMALLID F.

By Theodore Gill, M. J., Ph. D.

In 1885 the name Thymallidre was published, lut without definition. I have on several occasions been requested to give the distinc tive charaders of the family, and have dons so orally. A detailed exposition has been postponed in the hope that I might be able to study the anatomy of the related forms. As no immediate prospert of doing so is offered, however, I submit diagnoses of the Shlmonifle as now restricted and the Thymallide.

In 1871 Prof. Cope, in his system of teleostomous fishes, named as families of his order of Isospondyli, among others, the families Shlmonider and (oregonidre. The Isospondyli with a diphycercal tail and "hasis cranii domble" are divided among those with "(r) parietals miterl," and "(rtu) parietals sequrated by supratoceipital." The former (1) include the Hyodontide, Alhmlide, Elopidre, Aulopider, Conetionide, Lutodivide, Sumridre, and Gomorhynchide; the latter (ote) compose the Alepocephalide, Silanonid se, ('hirocentrider, and ('hupeide.

I at first adopted the Sulmonide and Coregonider in my Arangement of families, but, on examination of a skull of Coregonus shortly before receiving proofs of that article, fomul that it did not have the "parietals mited," but "separated by supraoceipital," and thus agreed with the salmonids. I consequently replaced the name Coregonide by Microstomidre, but the printers retained the reference to Coregonille of Cope.

As thus intimated, the trne Coregoni have the same relations of the supranccipital, parictals and frontals to each other as the typical salmonids, but there is a genus which manifests the character erroneonsly attributed to Coregonida by Cope, and that genus is Thymullus.

Thymullus is not only distinguished from the true Salmonine and Coregonine fishes by the junction of the parietals at the middle; it has, in addition, supracostal spines entirely wanting in the others; furthermore, the dorsal is distinguished by its greater development, both in extension and the number of rays, as well as its structure; instead of only one or two simple anterior rays, as in the Salmonines and Corego-
nines, there are in Thymullus many ($7-11$) mondanched rays and the rays in the posterion half are mostly simply hitid. The view generally prevalent (that Thymallus is intermediate between the Salmonines and Coregonines, or that it is a member of the latter group), is thus negatived hy both the osteological peraliarities and external characteristics. The family Thymallide is well distinguished.

The diagnostic characters which sejarate the two families, samonider and Thymallide, and the two subfamilies of the former are now presented. The genera and their prineipal synonyms are also added. The desirability of exhibits of exact references to the first introduction and uses of the varions symonyms will be evident to those who are conversant with recent works in which the genera have been treated, and will show why the varions names here used are employed.

Family SALMONIDA.

<Dermoptères, Duméril, Zool. Analytique, p. 146, 1806.
<Salmonidi, RaFinesque, Indice d'Ittiolog. Siciliana, p. 32, 1810.
<Dermopteria, Rafinesque, Analyse de la Natire, p. 87, 1815.
<Sulmonoides, Risso, Hist. Nat. de l'Europe Mérid., t. 3.
<Salmones, Cuvier, Règne Animal [1e éd.], t. 2, p. 159, 1817; 2e éd., t. 2, p. 301, 1829.
<Salmonides, Latreille, Fam. Nat. Règue Animal, 1. 119, 1825.
<Salmones, AGAssiz, Sel. Gen. et Sp. Piscium q. coll. Spix., p. 56, 1829.
<Salmonacei, Nilsson, Prod. Ich. Scand., p. 1, 1832.
<Salmonide, Bonafarte, Giorn. Acead. di Scienze, v. 52 (Saggio Distrib. Metod. Animal. Vertebr. a Saugue Freddo, p. 37,) 1832.
<Salmonide, Swainson, Nat. Hist. and Class. Nishes, etc., v. 2, pp. 184, 283, 1839.
<Salmonida, Bonaparte, Nnovi Annali delle Sci. Nat., t. 2, p. 132, 1838; t. 4. p. 272, 1840.
<Salmones, Müller, Archiv Naturgesch., 9. Jg., 1. B., p. 323, 1843.
<Salmonöides, Valenciennes, Hist. Nat. des Poissons, t. 21, p. 153, 1848.
<Salmonide, Adams, Man. Nat. Hist., p. 109, 1854.
<Salmonide, Ricialrdson, Encyel. Brit., 8th ed., v. 12, 1. 245, 1856.
<Salmonoidei, BleEEER, Enum. Sp. Piscium Archipel. Indico, p. xxxi, 1859.
<Salmonider, Güntheri, Cat. Fishes Brit. Mus., v. 6, p. 1, 1866.
<Salmonide, Core, Proc. Am. Assoc. Adv. Science, 1871, 1. 333, 1872.
<Salmonide, Gile, Arrang. Fam. Fishes, p. 16, 1872.
<Salmones, Fithinger, Sitzungsber. K. Akad. der Wissensch. (Wien), B, 67, 1. Abth., p. 37, 1873.
$=$ Salmonidre, Gllu, Rep. Smiths. Inst. 1884, p. 619, 1885.
Diugmosis.-Salmonoideans with a short dorsal fin of normal strueture, epiplemal appendages not developed, and parietal bones separated at middle hy the intervention of the supmoceipital which connects with the frontals, and ripeova first discharged within abdominal cavity.

Subfamily SALHONINAE.

$<$ Thuites (Timtiformes), Lathenle, Fiam. Nat. du Rène Animal, p, 119 (tribe). $18: 5$.
<Salmomini, Bonaparte, Giom. Acead. di Scienze, v. 52 (Saggio Distrib. Metod, Animal. Vertebr. a Sangue Freddo, p. 37,) 1832.
<Salmoninc, Swainson, Nat. Hist. and Class. Fishes, ete., v. 2, pp. 5, 283, 1839.
<Salmonini, Boneparte, Nuovi Anuali delle Sci. Nat., t. „巳, p. 132, 1838; t. 4, p. 273, 1840.
<Salmonim, Bonaparte, Conspectus Syst. Piscium, 1850.
<Salmoniformes, Bleeker, Enum. Sp. Piscium Archipel. Indico, p. xxxi, 1859.
<Salmonina, Günther, Cat. Fishes Brit. Mus., v. 6, p. 2, 1866.
<Salmonince, Gill, Canadian Naturalist, u. s., v. 3, p. 258, 1865.
<Salmoninke, Jordan and Gilbert, Syn. Fishes N. Am., p. 289, 188².
$=$ Salmonine, Gill, Mem. Nat. Acad. Sc., v. 6, p. 131, 1893.
Salmonids with a deeply cleft mouth, long lower jaw articulating with the quadrates behind the eyes, and rather natrow supramaxillaries with incurved adoral margins.

The subfamily thus limited includes the genera Salvelinus, C'ristivomer, Hucho, Salmo, Oncorhynchus, and Brachymystax.

Genus SALVELINUS.

$=$ Salvelini, Nilsson, Prodr. Ich. Scand., p. 7, 1832. (Group of Salmo.)
$=$ Salvelinus, Richardson, Fauna Bor.-Am., v. 3, p. 169, 1836. (Subg. of Salmo.)
=Baione, Dekay, Nat. Hist. N. Y., part 4, p. 244, 1842.
$=$ Rödingar (Salvelini), Nilsison, Öfvers. K. Vet. Akad. Förhandl., 1848, p. 64, 1849.
\times Salmo, Valenclennes, Hist. Nat. Poiss., V. 21, pp. 163, 165, 1818.
\times Fario, Valenciennes, Hist. Nat. Poiss., v. 21, pp. 163, 277, 1848.
\times Salar, Valenciennes, Hist. Nat. Poiss., v. 21, pp. 163, 314, 1848.
$=$ Salmo, Rapp, Jahreshefte Ver. vaterl. Naturk. Wuirttemberg, 10. Jahry., p. 162; Fische des Bodensee, p. 32, 1854.
=Salmo, Siebold, Siisswasserfische von Mitteleuropa, p. 280, 1863.
$=$ Salvelinus, Gill and Jordan, Jordan's Man. Verteb. N. U. S., 2. ed., p. 356, 1878.
Salmo; sp, auct.

Gemus CRISTIVOMER.

$=$ Cristivomer, Gill and Jordan in Jordan, Man. Vertebr. N. U. S., 2 ed., pp. 356, 359, 1878.
Salmo, sp., auct. pl.

Genus HUCHO.

[^23]
Genus SALMO.

<Salmo [§]* Trutte, Linné, Syst. Nat., ed. 10, v. 1, p. 308, 1758.
<Salmo, Lacḱpède, Hist. Nat. Poiss., v. 5, p. 152, 1803.
<Salmo, Cuvier, Règne Animal, v. 2, p. 160, 1817.
<Salmo ($\$$ Trutte), Nilsson, Prod. Ich. Scand,, p. 70, 1832.
<Salmo, Richardson, Fahua Bor.-Am., v. 3, p. 169, 1836. (Subg. of Salmo.)
<Salmo, Nilsson, Ofvers. K. Vet. Akal. Forhaudl., 1848, p. 64, 1849.
\times Salmo, Valenciennes, Hist. Nat. Poiss., v. 21, pp. 163, 165̈, 18.18.
\times Fario, Valenciennes, Hist. Nat. Poiss., v. 21, pp. 163, 277.
\times Salar, Valenciennes, Hist. Nat. Poiss., v. 21, pp. 163, 314.
 162. (Fische des Boden see, p. 27,) 1854.
$=$ Trutta, Sremobid, Siisswasserfische Mitteleuropa, p. 280, 1863.
<Salmo, GÖntiler, Cat. Fishes B. M., v. 6, p. 2, 1866.

Genus ONCORHYNCHUS.
<Oncorhynchus, Suckley, Amals Lye. Nat. Hist. N. Y., v. 7, p. 312, 1862.
=Oncorhymcher, Gienther, Cat. Fishes B. M., v. 6, 1. 165, 1866.
Salmo sp. Pallas, Richarilson et al.
Genus 1 R R C II YMYSTAX.
$=$ Brachymystax, Günthen, Cat. Fishes I3. M., v. 6, 1. 172, 1866.
Salmo sp.; auct. pl.
This gemis appears to be represented in Europe ly the Salmo obtusirostris of Heekel or Thymullus microlepis of'steindachmer (Sit\% K. Akad. Wissensch., 1. Abth., v. 70, p. 367, 1574),* which must therefore be called Irrechymystux obtusirostris. That species, at least, does not appear to belong to the genns valmo or Thymallus as generally defined, and no generic differences hetween it and Brachymystas are evident from the excellent figure and description.

Subfamily Coregoninde.

(Synonyms as subfamily.)
$=$ Coregonini, Bonapalete, Conspeetus Syst. Piscium, 1850.
=Coregonime, Gile, Johnson's Now Universal Cyclopedia, v. 4, p. 1651, 1878.
=Coreqonine, Jordan if Ghibert, Syn. Fishes N. Am., p. 289, 188.2.
(Synonym as family.)
?? Coregonidr, Core, Proc. Am. Assoc. Adv. Sci., v. 20, p. 333, 1872. (Nime; not (liagnosis.)
Salmonids with a small month, short lower jaw articulating with the quadrates under the eyes, and broad supmamaxillaries with convex adoral margins.

The subfamily, besides the type genus, Coregonus, is generally made to include Stenodus or Luciotrutta, but I have not been able to examine a skeleton of the latter. It probably represents another subfamily.

Genus COREGONUS.

$$
\begin{aligned}
& <\text { Salmo [§] *** Coregoni, Linnaeus, Syst. Nat., ed. 10, r. 1, p. 310, } 1758 . \\
& \text { Tripteronotus, Lacépiede, Hist. Nat. Poiss., v. 5, p. 47, 1803. } \\
& \text { <Coregomus, Lấciede, Hist. Nat. Poiss., r. 5, p. 239, 1803. } \\
& \text { <Les Ombres, Coregomus, Cuvier, Regne Animal, v. 2, p. 162, } 1817 . \\
& =\text { Les Lavarets (Coregonus), Cuvier, Regne Animal, 2. ed., v. 2, p. } 306,1829 . \\
& =\text { Coregonus, Valenciennes, Hist. Nat. des Poissons, t. 20, p. 454, } 1848 .
\end{aligned}
$$

[^24][^25]Salmo sp., auct. vet.

Subfamily Stenodontine.

Salmonids, with a deeply-cleft month, long lower jatr, articulating with the quadrates belom the eyes, broad suma-maxillaries with convex adoral margins, and bands of teeth on the broad head of vomer and on the palatines.

Genus STENODUS.

```
=Stenodus, Richardson, Narrative, Artie Land Exp., p. 521, 1836.
=Stenodus, Riciardoson, Encyel. Brit., 8. ed., v. 12, p. 245, 185%6.
= Luciotrutta, Güntmer, Cat. Fishes J. M., v. 6, p. 164, 1866.
```

Sulmo sp., Ricifardson olim.

The gemms stenodus was originally proposed by I)r. (afterwards Sir Johnf Richardson in an appendix to Back's "Narrative of the Aretic Land Expedition to the Mouth of the Great Fish Liver," etc., pulblished in 1s36. In his remarks on the "Fish," allusion is made (p. 5201) to "the Sulmo Mackenzii, which ascends from the Aretie Sea, and does not existin the more southern waters. This fish [he continued], thonght agreeing with the trouts in the structure of the jaws, differs from all the subgenera established by Cuvier in the Rème Animal in having the terth disposed in velvet-like bands, and broalder on the vomer and palatine bones. From the crowded minute teeth, the name of Stemodus. may be given to the subgenus, of which the incomm, or Salmo Mac. Tenzii, is the only ascertamed species." In 18.6 an elaborate description of the gemus was published by the same author. The name Lueiotrutta was proposed for the same type thirty years after stenodus by Dr. Giinther, who was apparently matequainted with Richardson's propositions.

Family THYMALLID※。

```
=Coregonida, Cope, Proc. Am. Assoc. Adv. Science, 1871, p. 333, 1872. (Diagno-
    sis only.)
=Thymallide, Gill, Rep. Smithson. Inst., 1884, p. 619, 1885.
=Thymallidr, COPE, Syl. Lect. Geol. Pal., p. 23, 1891.
Salmonida gen., Auct.pl.
```

Diugnosis.-Salmonoideans with a rather long dorsal fin whose anterior half is composed of graduated simple rays and posterior half of bifureate or little branched rays, epipleural spines to anterior ribs, the parietal bones meeting at middle and excluding frontals from supraoccipital, and ripe ova first discharged within abdominal cavity.

Gemus 'JIIYMALIUS.

```
<Le's Ombnes (Coregomus), Cuvier, Rège Animal, v. 2, p. 162, 1817.
\(=\) Les Ombres (Thymallus), Cuvier, Règue Animal, 2. ed., v. 2, p. 306, 1829.
\(=\) Thymallus, Nilsson, Prodr. Ich. Scand., p. 12, 1832.
\(=\) Aesche, Choregon, Minding, Lehrb. Naturgesch. Fische. p. 119, 1832.
```

The history of Thymullus is somewhat complicated with that of Coregomes.

In 1s16, ('uvier gave the name "Les Ombres (Coregonus. Art.)" to a group composed of the graylings and whitefishes.

In $18 \geq 9$, ("uvier divided the "Ombre" into two gencra (or subgenera), naming the "Ombres" or graylings, Thymullus, and the whitefishes Coregonus.

In 1832 , Minding gave the name "Aesche, Choregon," * to a genus of which the only species mentioned was the "Thymus-Aesche, (1. Thymallus." The name was evidently given as a substitute for Coregonus of Artedi and Cuvier (1817).

Inasmuch as ('uvier, Fleming, and others simply adopted Coregonus from Artedi and Linnexs, I do not think that the fact that they bronght into such prominence the Thymullus is sufticient to insure the acceptance of that species as the type of Coregomus.

Thymallus was preceded by Thymalus, a Coleopterous genus named by Latreille in 1802. Those who think that the two contlict may take the name Choregon in place of Thymallus. \dagger

[^26]
ON THE RELATIONS AND NOMEN(LATY TRE OF S'TTZOSTEDION OR LUCIOPERCA.

By Theodore Gill, M.D., Pif. D.

In a valuable article on Lucioperca marina, C. © V'., Mr. Boulenlenger has raised two questions of interest, viz:

1. The point to which I now wish to draw special attention is the close affinity Which the Black Sea and Caspian speciesbears to the North American, andespecially to L. canadensis.
2. Lucioperca should date from the first edition of the 'Regne Animal', 1817, where Cuvier (p.295) does use the Latin name ("ce qui leur a fait donner le nom de luciopercu"), although indirectly and without a capital.

The former involves an important question of zoogeography. Is the form in question really related more nearly to the American than to the other European species?

The secoud involves a question of nomenclatire affecting important economical species. is the passage of Cuvier cited the expression of a historical fact or a nomenclatural proposition?

The great and deserved reputation of Mr. Bonlenger calls for an extended consideration of the questions involved, and this I have ventured to attempt.

CLASSIFICAIION。

In 1875 I was led to investigate, in company with Dr. Jordan, the interrelationships of the species of Stizostertion, and both of us were struck by the contrast between the European and American species, and jointly elaborated the characteristics which we observed, in an analytical synopsis published in the secoud number of Dr. Jordan's "Contributions to American Ichthyology." \dagger

I have lately reviewed the specimens of the four species in the National Museum in comection with the description and figure of Luciopercu marina given by Mr. Boulenger, and the condusions to which I have

[^27]come are emborlied in the following antlytical synopsis, slighty motified and extended from our early one.
*. Dorsal fins well separated, the interspace between them more than the diameter of eye; anal fin 11, 11-14, longer than high; second dorsal I, 17, to I, 21; spines of the second dorsal and anal closely attached to the soft rays; last dorsal spine scarcely erectile, more or less firmly bound down by the membrane; ventrals senarated by in interspace equal to width of their base; canine teeth strong (American species):
t. Soft dorsal comparatively short (its hase one-fomrth shorter than that of spinous dorsal) and with about 17 soft rays; cheeks, opercles, and top of head more or less closely scaled; body scarcely compressed; size small; pyloric coca forming two groups, the primary one of four, unequal, moderate, much shorter than the stomach; the secondary of few (1-3) rudimentary ones....... Canadense.
$t+$. Soft dorsal rather long (one-sixth shorter than spinons dursal, with about 20 soft rays; cheeks and upper surface of head sparsely scaled; body more compressed; size large; pyloric coca three, subequal, all long (about as long as stomach)

Vitreum.
**. Dorsal fins apmoximated, almost commerted by membrane, the interspace being much less than the diameter of the eye; spines of second dorsal and anal loosely connected with succeeding rays; last dorsal spine erectile; ventrals separated by an interzpace ahout two-thirds the width of their hase; second dorsal I (II, 16) 22 or 23 ; anal tin at least as high as long; body compressed; (European species with the body more or less distinctly transversely barred):
\ddagger. Soft dorsal considerably (one-fifth) shorter than spinous dorsal; anal fin II, 11-12, as long as high; canine teeth strong; "pyloric ceca 4 to 6 "..... Luciorerca.
$\ddagger \ddagger$. Soft dorsal somewhat longer than spinons dorsal; anal fin short and high; its length two thirds its height; its rays II, $9-10$; canine teeth weak, not much differentiated; body strongly compressed as in the genns lerca; "pyloric coeca three" (Gïuther)

Woliense.
执. Second dorsal shorter than spinous dorsal (First D). XII-XIII; Second D. I-II 16-17) ; anal fin II, 11-12, about as short as high; canine teeth developed; body compressed and banded like a perch; pyloric ewea 5 ; the longest as long as stomach, the shortest only half as long (Boulenger).

Marinua.
The relations of stizosterlion to other genera appear to me to have been much misunderstood. In. (iiinther and Prof. Seeley have arranged the fresh-water European senem of pereiform acanthopterygians in the following manner:

Günther, 1859 (1886*).

1. Perca.
2. Labrax.
3. Acerina.
4. Percarina.
5. Lucioperca.
6. Aspro.

Seeley, 1886

1. Perca.
2. Labrax.
3. Percarina.
4. Acerina.
5. Lucioperca.
6. Aspro.

Most of these genera are undoubtedly related, and belong to the family Percidte, but Labrux (including Dicentrorchus, Roccus, and
"The same essential sequence was adopted in the Handhuch der Ichthyologie, but without numbers.

Morone) is probably a member of a different family. The European Percids seem naturally to fall into the followiug group:

Percarina.
$\left.\begin{array}{ll}\text { Perca. } & \{ \\ \text { Stizostedion. } & \\ \text { Acerina. } & \} \\ \text { Gymnocephalus. } \\ \text { Cingla. } & \} \\ \text { Aspro. }\end{array}\right\}$

The relationship of Perce and Stizostedion is especially close.
The order of the differentiation of the genera from a primitive type may be expressed by the following genealogical tree.

Percarina.

Aspro appears to be the nearest Emropean relation to the American Ethenstomines; at least it resembles them most in appearance and the form of the ventrals.

It will be notired that the character first appreciated by Mrr, Boulenger (the relative width of the interspace between the ventral fins as compared with the width of the bases of these fins) is coordinate with the characters previously recognized by Dr. Jordan and myself and therefore comoborates the approximation of the European species and their segregation from the American forms. The evidence therefore appears to be strong in lavor of the differentiation of the genus into two primary sections, one including the European fishes and the other the American. The Inciopera marina or Stizostedion marinum conse-

[^28]quently is associated with the representatives of the gemus belonging to its own famm rather than to those of the American fauna.

THE PROPER NAME OF THE PIKE-PERCHES.
The seientife name generally given to the pike-perches by the American maturalists is stizostedion, or some orthographie modification thereof. Under any form, it is so objectionable to me that I would like to see it displaced, esperially by so euphonious and appropriate a name as Luciopera. I therefore long ago sought to find a date for the latter which would anticipate Ntizostedion, and called attention to the publication of the French name (Les Sandres) in 1817.* I was, howerer, mable to find any but the French name and between that and the formal bestowal of the latin Luciopera two or thee others intervened, Stizostedion, Soudut, and perhapss Sondrus. Although I had come to such a conclusion I was nevertheless disposed to welcome Mr. Boulenger's recent interpretation of Cuvier's words in proposing a subgeneric isolation of the pike-perches, in the hope that Lucioperco might be legitimately revived. But another review of the case compels me to adhere (most reluctantly) to my former conviction. That the strain of the interpretation proposed by Mr. Boulenger is too great is rendered evident by the consideration of Cuvier's language, and the action of two of his compatriots and others with regard to it.

In 1817, Cuvier distinguished from the "Centropomes" (including Centropomus and Lates) a new division in the following terms:

Je distingue des Centropomes.
Les Sandies. Cuv.
Qui ont anssi des dentelures an propereule, sans piquans it loperente, mais dont le toto entire est depourve d'écalles, et la guenle arme de dents pointues et ceartées, ce qui leur a fait donner le nom de lucio perca. (Brochet perche.)

I had always interpreted this statement to mean that the pointed distant teeth had procured (from others) for the species the name of pike-perch and that the name Lucioperce was not formally given to the genus, and in fact that the geuus was not really scientifically named. Thus had most others also interpreted the paragraph. An analogous paragraph in the work of Cuvier and Valenciennes (vol. 2, p. 110) seems likewise to support such an interpretation.

Both passages taken together clearly show that Cuvier simply stated a historical fact and did not formulate a nomenclatural proposition.

In 1800, Rafinesque described a pike perch as Percu sulmonea and proposed a subgenus for it in the following terms:

The I'era Salmomea misy also form a peenliar subgents, or section distingrished hy the cylindrical shape of the hody, long head aud jaws, large teeth, and a seeond spine outside of the operenle over the base of the pectoral dins. It may be called Stizostedion, which means pungent throat.

[^29]No good objection can be offered against this differentiation as it is pertinent and diagnostic, sare as to the second spine, which is simply the extension of the proseapula and is no more evident in the pikeperches than in the typical perches. Ratinesque's diagnosis is, in fact, better than Cuvier's.

In 1819, Bosc* defined the names šandut and Nendre in the following worls, neither name being used as a scientific or Latin designation of an accepted genus.

Sandat. Synonyme do Sandre. (B.)
Sandre. Poisson de nos rivires que Limnar asoit place parmi les Perches (perca lucioperca), et que Lacépède a portó dans son genre Centropome. Cuvier vient de le faire servir a l'etahlissement d'un sons-genre. Ses caracteres sont: tiote dipourvue d'écailles; gueule armée de dents pointues et écartées; des dentelures alu préopercule; des piquans it l'opercule.

La Sciène coro et de l'Ile-de-France paroit devoir faire part de ce sous-genre. (B).
In 1827, Cloquett defined the genus under the head of "siandre;" gave, as a pseudoscientitic equivalent, the name "Sandat," and defined it as follows:

Sandre, Sandat. (Ichthyol.) M. Cuvier a distingué sous ce nom un genre de poissons qu'il a séparé de celui des ('entropomes de Lacépeide, et de celui des Prerches de Linneus.

This was defined in the following terms:
Corps oblong, épais, comprimé, écailleux; opercules dentelées sans piquans; tête alépidote; deux nageoires, dents pointues et écartées.

Two species were recognized:
(1) "Le Sandat, Sandat luciopercu, N. [i. e. Cloquet]; Perca lucioperca Linnæus," \equiv Stizostedion lucioperca.
(2) Le "Sandre coro, Sandat coro"=Conodon nobile.

In 1828 and 1829 , Bory de Saint Vincent, in the Dictionnaire Classique d'Histoire Naturelle, adopted as a sulogeneric name sumdat. Under the head Perche (vol. 13, p. 20t) he detined the subgenns:
$\dagger+\dagger \dagger+$ Sandre, Sandat. Les Poissons de ce sous-genre, formés aux dépens des Centropomes de Lacépède, ont des dentclures au préopercule, mais point de piquans à l'opercule; leur tete est eutiorement dépourvne d'écailles, et la gueule est armée de dents pointues et écartées.

Under the heads of Sandat and Sandre. simple cross-references were given, viz:

Sandat. Pois. V.Sandre et Perche, sous-genre Centropome (vol. 15 p. 97.)

Sandre. Śandrat. Pois. Sous-gemre de Perche. I. ce mot. (B.) (vol. 15, p. 98.)

In 1828, Stark \ddagger defined the genus as follows:

[^30]Gen 75. * Sandrus: Cuv.
Head entirely destitute of scales; jaws armed with pointed and distant teeth; preoperculi dentated, hut operculi without spines.

S. lucioperca and S. coro were the admitted species.

In 18:S ('uvier and Valenciennest for the first time formally devolved on the pike-perehes, the nane Luciopera. This they did in the following manner:

Des Sandres (Lucioperca, nols.).
Ce sons-genre se distingue des antres par la rémion qu'il présente des nageoires et des properoules de la perche, avec des dents pointues qui rappellant eches du brochet, et c'est qui a fait donner, par Conrad Gesner, ì l'espèce d'Europe le nom compose de lucioperca (brochet-perche). \ddagger

The history thus detailed is summarized in the following synonymy:

Stizostedion.

Synonymy.

=Les Sandres, Cuvier, Règne Animal, vol. 2, p. 294, 1817.
$=$ Stizostedion, Rafinesque, West. Mag. and Misc. Mag., vol. 1, p. 371, Jan. 1820; Ich. Oh., p. 23, 1820.
$=$ Lucioperca, Fleming, Phil. of Zool., p. 394, 1822.
$=$ Sandat, Cloquet, Dict. S'c. Nat., vol. 47, p. 173, 1827.
$=$ Sandrus, Stark, Elem. Nat. Hist., vol. 1, p. 465, 1828.
$=$ Lucioperca, Cuvier and Valenciennes, Hist. Nat. Poissons, vol. 2, p. 110, 1828.
三Schilus, Krynicki, Nouv. Mém. Soc. Nat. Moscou, vol. 2, p. 441, 1832.
$=$ Centropomus, BleEkEr, Arch. Néerland. Sc., vol. 11, p. 260̈, 1876. (Vix Centroротия Lacépède, 1801.)
$=$ Stizostethium, Jordan, Cont. to N. Am. Ich., If, p. 43, 1877.
$=$ Stizostedium, Jordan and Gilbert, Syn. Fishes N. Am., p. 52 2 , 1882.

Subgenera.

<Cynoperca, Gili, aud Jolidan, Jordan's Cont. to N. Am. Ich., If, 1.45, 1877.
<Stizostethium, Gilis and Jordan, Jordan's Cont. to N. Am. Ich., iI, p. 15, 1877.
<Lucioperca, Gill and Joridan, Jordan's Cont. to N. Am. Ich., II, 1. 45, 1877.
<Mimoperca, Gill and Jordan, Jordan's Cont. to N. Am. Ich., II, p, 45, 1877.
*Gen. 75 of Acanthopterygii.
† Histoire Naturelle des P'oisson, vol. „2, p. 110.
\ddagger Gesı., Paralip., 1. 28 et 29.

DESCRIPTION OF A NEW SPECIES OF COTTON RAT (SIMMODON MINLMA) FROM NEW MEXICO.

By Edgar A. Mearns, M. D., Surgeon, United States Army.

Among the small mammals collected by Mr. F. N. Holzner and myself on the Mexican border, in connection with the operations of the International Boundary Commission, are two specimens of a species of cotton rat, which, in my opinion, is distinct from any heretofore described.

In the grassy hollows and flats between the most southern spurs of the Apache Mountains, in an arid, treeless region, having an altitude of 1,500 metres (exactly 1,496 at the monument), it was a surprise to find any species of Sidmodon. Many of their old runways were seen, however, in the dry and dusty grass; but nearly all of the holes were abandoned. Industrious trapping, persisted in for several weeks, resulted in the capture of but two adult male specimens. Mexican miners in the vicinity told us that only a few months before the species had been abmdant, but seemed to have died off; indeed, we frequently saw their remains in the grass and picked up parts of skeletons and one or two additional skulls.

This new species has many points in common with sigmodon fiulviventer, recently described by Dr. J. A. Allen, from Zacatecas, Mexico.* It is still smaller than that species, being about the size of De Saussure's "Hesperomy.s toltecus" (=Nigmodon hispidus toltecus).t On capturing these specimens I was at once struck by their resemblance to S. fulvicenter, the type of which I had closely examined in the American Musem of Natural History in New York, the resemblance consisting not only in the fulvous tone of coloring, especially of the under parts, but in the distinctly bristly character of the hairy coat and the dense hairiness of the ears and tail, in all of which particulars it differs

[^31]* Proceedings National Musemm, Vol, XVII-No. 994.
radically from its geographically nearest neighbors—Sigmodon hispidus texiants, (Aud. and Bach.) and No. hispidus arizome, (Mearns).

SIGMODON MINIMA, new species.
Type.-No. $\because 1187$, LT. S. N. M. (C'oll. International Boundary Commission). Adult male, from Lpper Corner Monnment, New Mexico, on the Mexican bonndary line, 100 miles west of the initial monument on the west bank of the Rio Grande. Collected by Edgar A. Mearns and Frank X. Holzner, April 26, 1892.

Deseription of type. - Coat bushy and hispid; under-fur darker plumbeous than in s. hispidus teximus or s. hispidus arizone; coarse outer coat more bristly, especially on sides of head and neck; ears, feet, and tail densely hairy; tail not distinctly bicolor. Color above grayish, the individual hairs being ringed with gray and brown, the brown annuli being blackish in their middle portion, fading to light-yellowish brown on their edges; under surface of body clayey buff; feet yellowish gray; ears densely clothed with grayish hairs on inner surface, with their convex surface black anteriorly and buff posteriorly; tail brownish black, somewhat lighter below, the hairs almost concealing the anmuli.

Another specimen (No. 1760, male adult, from the same locality, collected by Mearns and Holzner, May 13, 1892) differs only in being ochraceous buff below, with a little more of the fulvous tinge on rump) and flanks, thus approaching more closely to the coloration of Sigmodon fulviventer.

Itmensions.-Measurements (in millimeters) of No. 21187, adult male: Length, ineasured from nose to end of vertebre of tail, 2.23 ; tail, measured from root to end of vertebrie, 94 ; to end of hairs, 104 ; height of ear above crown, 14 ; distance between eyes, 12 ; diameter of eye, 5 ; length of longest whisker, :30; from tip of nose to eve, 16 ; to center of pupil, 18.5 ; to ear, 30 ; to tip of ($: 12,46$; to ocriput, 37 ; to emb of outstretched hind limb, 183 ; fore limb, measured from olecranon to end of longest elaw, 33 ; length of fore-foot, 15; longest claw of fore-foot (chord), 3.9 ; hind limb, measured from knee joint to end of longest claw, 33 ; length of hind-foot, 28 ; longest claw of hind-foot, 3 mm . Measurements of No. 1760 , adult male: Length, 2 ± 3; tail to end of vetebrae, 91 ; to end of hairs, 97 ; height of ear above crown, 12; above notch, 16 ; distance between eyes, 12; diameter of eye, δ; longest whisker, $\because(6$; from top of nose to eye, 16 ; to center of pupil, 19 ; to ear, 30 ; to tip of ear, 46 ; to occiput, 34 ; to end of hinder extremity, 180 ; fore limb from olecranon, 33 ; length of fore-foot, 14 ; longest claw of fore-foot, : ; hind limb from knee-joint, 53 ; length of hind-foot, 27 ; longest claw of hind-foot, 4.2 mm .

Cramial and dental cheracters.-As compared with s. hispidus texianus, the only species before me for comparison, the brain-case is higher and narrower, the skull more constricted between the orbits, with shorter nasals, their bases being nearly even with the posterior border of the incisive foramen instead of well behind it. The dentition is very much heavier.

NOTES ON THE INVERTEBRATE FAUNA OF TUE JAKOTA FORMATION, WITH DESCRIPTIONS OF NEW MOLLUS(AN FORMS.

[With plate VIII.]

By Charles A. White, Honorary Cirator of Mesozoic Invertebrate Vossils.

Although the Dakota formation is of great geographical extent, and, stratigraphically, one of the most clearly defined of the divisions of the North American ©pper Cretaceous, comparatively little is known of its contemporary tama. Of its flora, however, which is a great and varied one, much more is known, and remains of its numerous sperific forms are generally used in the paleontological characterization of the formation. Those remains consist largely of angiospermons leaves, and a greater or less number of species have been found in all the districts where the formation has been recognized.*

The discovery of vertebrate remains in Dakota strata was, some years ago, publically amonnced, but it has since been ascertained that they came from the underlying Jurassic strata. It is, therefore, not yet certain that remains of land animals of any kind have been found within the proper limits of this formation, which fact, in view of the evidence we have of the contemporaneons prevalence of a grat and varied land flora, is quite remarkable.

Notwithstanding the great geographical extent of the Dakota formation, only three discoveries of invertebrate remains have, so far as am aware, been made in its strata. The first of these discoveries was made by Dr. F. V. Hayden in the valley of the Missouri River, at a few localities within a small district which embraces the mouth of the Big Sioux River. The second discovery was made by Prof. B. F. Mudge in Saline County, Kausas, and the third by Prof. I. E. Hicks in Jefferson County, Nebraska.

Those which were discovered by 1)r. Hayden are described and figured by Mr. F. B. Meek in Volume ix of the IT. S. Geological Survey

[^32]of the Teritories. A pat of those diseovered hy Prof. Mudge are described and digured by Mr. Meek in the volume just mentioned, and a part of them by myself in volume it of the I'roceedings of the U. S. National Thsemm. Those whieh were diseovered by Prof. Hicks are described and figured in this article.

Prof. Hicks marde his collection about ten years ago and deposited it in the cabinet of the Nebraska Ntate University in 1ss 5 . In that year he referved to it in a paper which he read before the American Assoriation for the dolancoment of Science as representing a marine fana, * but further study showed it to have been of nommarine origin. The following description of the locality at which Prof. Hieks discovered these fossils has been given me by him:

Jefferson County, Nebraska, 5 miles west of north from Fairbury, about 1 mile from the Little Blue River. The exposure is a comparatively slight one and occurs upon the north side of a deep ravine, about half way up the slope. This ravine opens into Whiskey Run, and the latter empties into Little Blue River.

The Dakota strata at this locality, as is usually the case in all that district, consists of ferruginoms sandstone, the fossiliferous layers consisting largely of impure, partly oolitic, limonite. Fragments and masses of these layer's constitute the collection made by Prof. Hicks. These specimens contain an abondance of fossil remains, all of which are either vegetal or molluscan, and all are in the condition of natmal casts, molds, or imprints. All the molluscan forms which have been recognized are deseribed and tigured on following pases. The plant remains embrace well-known Daknta species. The following have been identified by I'rof. F. II. Knowlton, the editor of Lescuereux's work on the Dakota dona, already referred to: Nulix mectiii, Newberry, Diospyrus primure, Heer, Supindus dicersifolius, Lessuereux, Au!nolia ——? (probably new), Platames primuva, Lesquereux.

All the sperimens of the collection being in the condition of natural casts, imprints, and molds, the greater part of the studies recorded on the following pages, and all the figmes on the acompanying pates, have been made from artificial casts taken from the natmal molds. Becanse of this condition of the sperimens the studies of all the species which they represent have been far fiom complete. So much interest, howerer, naturally attaches to the division of the Dakota fana which they represent that, notwithstanding their imperfection, I have thought it desirable to publish them. I have also thought it desirable to give a specife name to cach form for purposes of convenience in geological studies, rather than as indicating a satisfactory biological classitication.

I am indebted to the authorities of the Nebraska State University, throngh Prof. Erwin II. Barbour, for the opportunity to study and publish this small but interesting collection. All the specimens used in this study are retumed to the rabinet of the University at Lincoln,
together with the artificial "asts used in the preparation of the deswiptions and figures. A duplicate set of these casts, however, is deposited in the U. S. National Museum at Washington.

Class CONCHIFERA.

Family UNIONIDE.

IJNIO BARBOURI, neIr species.

$$
\text { Plate VILI, Figs. 1, 2, } 3 .
$$

Shell elongate-subelliptical, as viewed laterally, uarrowly subelliptical, as viewed vertically, and ovoid as viewed in front. Dorsal margin gently convex, abruptly rounded to the front margiis; the latter margin gradually rounded to the broadly convex basal margin; posterior margin abruptly rounded or subangular, its most prominent part being above the midheight of the shell; beaks not prominent, sitnated near the front, but they are not so nearly terminal as is often the case with Cretaceous species of Unio. Cardinal teeth moderately small; lateral teeth slender; postero-dorsal ridge of each valve slightly prominent and ending, as usual, at the most prominent part of the pesterior margin. Surface marked by the ordinary lines and imbrications of growth.

Length, when perfect, of the principal specimen from which the foregoing description is drawn, about in mm; height, 3.5 mm; convexity, 25 mm .

All the known specimens of this species being in the condition of natural molds of the exterior and casts of the interior, the foregoing description, and also the figures illustrating it, have been made from the natural casts and from artificial casts taken from the natural molds.
One of the artificial casts shows that the beaks had become considerably eroded, a condition extremely common in the case of living species of Unio in the waters of the Mississippi drainage system, but quite uncommon among North American fossil species of C'nio.

This species has the general shape and aspect of the living Unio anodontoides Lea, of the Mississippi drainage system, and it is in all respects a modern type of Unio. Indeed, it so nearly resembles some individual varieties of the species just mentioned that it is difficult to choose words which shall diagnose it as sipecitically different. Still, I think it inexperdient, even from a biological point of riew, to apply the name of any living species to a Cretaceons form and, that from a geological point of view, it is especially undesirable to do so.

I have chosen the specific name of this form in honor of Prof. Erwin H. Barbour. of the Nebraska State University.

UNIO, doubtful species.
Plate VIIl, figs. 4, 5.
The collection made s Prof. Hicks contains an internal cast of a small specimen of Unio, probably a young example, which differs too much
in form and proportions from the one just deseribed to allow its referencer to that speries. Indeed, it differs somuch from the other that it seems to belong to the type of lmo alatus, Say. Still, the specimen is too imperfect to allow of a satisfactory specifie description, but it is figured on plate Vou for the purpose of giving as complete a representation as possible of the meager fama of the Dakota formation, as it is now known.

> Family CORBULIDE.

CORBULA HICKSII, new species.

$$
\text { Plate VIII, figs. 6, 7, } 8 .
$$

Shell of medium size, elongate-subtrihedral in marginal outline; posterior end prominent and narrow; valves of moderate convexity, not strongly unequal; beaks high and narrow and turning formard; basal margin broatly convex; posterior margin narrowly rounded; posterodomsal margin slightly convex and sloping downward from between the beaks to the narwo posterior end; front margin regularly rounded firom the basal margin to the inter-umbonal space; surface marked by the usual distinct lines of growth; hinge having the typical characteristics of Corbula.

Length of the largest example in the collection, which is a left valve, 26 mm ; height from hase to $\mathrm{mmbo}, .16 \mathrm{~mm}$; convexity of the single valve, 6 mm .

The collection contains an abundance of specimens of this speries, all of which are in the condition of naturat molds and casts. The foregoing description has been made from those molds and casts and from artificial casts taken from some of the natural molds. The figures on plate viul are drawn from artificial casts.

This form is of the same general type as that of the Laramie Corbula to which Mr. Meek gave the name ('. crassitelliformis, but it is someWhat more gibbous and also broaler in front. The speceife name is given in honor of Prof. L. E. Hicks, its discoverer.

Class GASTEROPODA.

Family Ceripmasidde.

GONIOBASIS JEFFERSONENSIS, new species.

$$
\text { Plate VIII, fig. } 9 .
$$

Shell small, slender, sides of the spire approximately straight; volutions apparently about 10 in number, gradually increasing in size from the apex to the front: sides of the volutions nearly straight or flat, thus forming the nearly straight sides of the spire; suture linear; surface nearly or quite smooth.

Length of the only specimen discovered, 13 mm ; breadth of the last volution, 5 mm .

This species is represented by only a single, somewhat imperfect, natural mold of the exterior of the shell, and which does not show the character of the aperture. It is therefore referred to Goniobasis because of its external form and features. It bears a general resemblance to G. macilenta White, of the Bear River formation, but it differs in lacking certain of the surface markings of that species.

GONIOBASIS, doubtful species.
Plate VIII, fig. 10.
Another specimen, evidently referable to Goniobasis, was found associated with the foregoing. It resembles that species in certain respects, but the apical angle is considerably greater and the shell is therefore less slender. It possibly belongs to the same species with the foregoing, but I am inclined to regard it as representing another form.

> Family Melanifde.
pyrgulifera meekili, new species.
Plate, VIII, fig. 13.
The collection contains a single specimen, in the condition of a natural mold, which I have little, if any, doubt represents a specres of Pyrgulifera. The form and character of the aperture are not shown, but the surface features agree well with those of typical species of that genus, aud they are much like those of some individual varieties of P. humerosa which were found by Mr. T. W. Stanton in western Wyoming. The volutions, however, are more regularly convex, aud the revolving lines fuer and more numerous than I have found them to be on any specimens of P. humerosa. I therefore give it a new specific name, selecting that of the founder of the geuts.

The discovery of Pyrgulifera in the Dakota formation is of special interest, not only becanse that genus has not hitherto been found in any other North Americau formation than the Bear River, but because that formation is believed to be of nearly, if not quite, the same age as the Dakota.

> Family VivipARidA.
> VIVIPARUS HICKSII, new species.
> Plate ViIf, figs. 11, 12.

The collection contains three or four imperfect natural molds of a small species of Tiripurus, artificial casts of two of which are figured on plate vin. The species is a little more elongate, and the spire more acute, than is usual with Viviparus, but a portion of the aperture shown by one of the specimens indicates that it was like that of typical forms of that genus.

Conchuding remarlis.-It is true that the collection of invertebrate fossils described in this article does notadd materially to our knowledge of biological forms, but in several resperts it possesses unsual interest. It is, as has already been mentioned, one of only three collections of invertebrateremains that have been made from the Dakota formation, the strata of which we have abundant evidence to believe originally oceupied many thousinds of sipure miles. It indicates more distinctly than any previously discovered facts have done, the nommarine character of that formation. It embraces fom genera which have never before been recognized in collections from its strata. Although that formation lies at the base of the Upper Cretaceons series, a majority of the species which this collection contains belong to genera representatives of which are among the characteristie members of the mollusean fanna now living in the waters of the Mississippi drainage system.

Of the few species that were discovered by Inr. Hayden a part belong to genera which are generally regarded as indicating a marine habitat, a part are such forms as usually inhabit estuarine or other brackish waters, and one was refered by Mr. Meek, whodescribed these fossils,* to the gemus Margaritamu. I have no reason to doubt that this speries belongs to the Unionidie, but the type specimens do not satisfactorily show the hinge structure and other features upon the modification of which the different genera of that family are established.

Dr. Hayden did not find the forms which have just been meutioned as indicating a marine habitat in immerlate association with the shell which Mr. Meek referred to Murgurituna, its only associate having been a form which he referred to Cyrent. According to our present knowledge of the habitat of the different mollusean genera the association of Marguritana and Cyrena is incongroous, because the former genus is never found living in saline waters, and the latter never in fresh. I think, however, that the shell referred to Cyrena by Mr. Meek may be properly referred to Corbicult, the shell characteristics of which gemus are so nearly like those of Cyrena that it is often difficult or impossible to diagnose them as different in the fossil condition. Species of Corbiculd are not unfrequently found living in fresh waters, and we have abundant evidence that fossil, if not living, forms of Unio and Corbicula lived and thrived together. I therefore regard it as reasonable to infer that the Dakota strata in which the two species referred to were discovered were deposited in fresh, or at most, in brackish waters. The discovery of remains of a couple of speciesof chatacteristic Dakota plants commingled with these fossil molluscan forms leaves little or no room for question as to the Dakota age of those strata. I have also little cloubt that the layers from which eame the other mollusean forms discovered by Dr. Hayden in the district just mentioned are near the

[^33]top of the formation, and that they lived in waters which were then changing to the marine condition which prevailed during the succeeding Colorado epoch.*

The invertebrate species collected by Prof. Mudge in Saline Comenty, Kaus., consist wholly of forms which are regarded as indicating a marine habitat, but they are all such as are generally understood to indicate a littoral, or at least a shallow water, condition. They were described by Mr. Meek and myself, respectively.t I have never personally examined the stratigraphy of Saline County, Kans., but I accepted Prof. Mndge's identification of the Dakota formation there when I published the description of the species referred to, and I have since expressed the opinion that the formation changes from a nommarine to a marine condition in its southward and southeastward extension. \ddagger
Althongh the generie characteristics of all the forms contained in the collection of Prof., Hicks are not well shown by the specimens, I have no reason to donbt the generic identity of any of them as indicated by the names applied to them respectively in the foregoing descriptions. I therefore regard the collection as ummistakably indicating a nommarine origin for the strata from which it was made. Indeed, I think the character of the collection as a whole indicates a purely freshwater origin. This opinion is supported by the following facts: Of the five genera represented iar the collection, representatives of three of them, namely, Unio, Goniobasis, and Viviparus, have never been found living in any other than fresh waters. It is true that species of Corbula are usually found in saline waters, and often in those of full marine saltness; but it is also true that living species of that genus sometimes range into fresh waters, and the fossil species have frequently been found associated with Unio, Goniobasis, and Viriparus. The fossil faumal associates of Pyrgulifera usually indicate a brackish-water condition, but the type species of the gemus, while sometimes found commingled with shells of Ostrea, is oftener found associated with such fresh-water forms as I'nio, Viciparus, Campeloma, etc. Moreover, the only known living species of the gemus inhabit fresh waters.

The general prevalence of lame plants in the strata of the Dakota formation is also an indication of its nommarine origin, as is the general absence of marine remains. Indeed, the only diseoveries of fossil remains in Dakota strata which indicate a saline condition of the waters in which they were deposited were made along a part of, or near, the eastern border of the formation.

I do not think it is fully proved that the bulk of that portion of the formation which oceurs in the Missouri River valley in the vicinity of

[^34]the month of the Bigs Sioux River was deposited in saline waters, but there is no reason for questioning the mane origin of the collections made by Prof. Mudge in Saline County, Kans. I have no reason to doubt that the Kansas deposit holds the same stratigraphical position in the Cretaceous series as does the Dakota formation, nor do I know of any reason to cloubt that it merges horizontally into the Dakota. Still, I am disposed to exclude those Kansas deposits and their southern and southeastern marine equivalents, when discussing the fanna of the Dakota formation proper. Indeed, I think it is to be expected that should any invertebrate remains be found in any of the Dakota strata which are known to prevail in the great region westward and northwestwand from eastern Kansas and Nebraska, they will be such as indicate a fresh-water habitat.

EXPLANATION OF PLATE VIII.

Unio barbouri, p. 133.
lig. 1. Side view of an artificial cast from a natural mold.
Fig. 2. Dorsal view of the same specimen.
Fig. 3. Side view of an artificial mold of a natural cast of a right valve of another specimen of the same species.

Unio (doubtful species), p. 133.
Fig. 4. Side view of a natural cast of the interior of the shell.
Fig. 5. Dorsal view of the same specimen.
Corbula hicksii, p. 134.
Fig. 6. Side view of the left valve; an artificial cast from a natural mold.
Fig. 7. Dorsal view of the same specimen.
Fig. 8. Front viow of another specimen; also an artificial cast of a natural mold.

$$
\text { Goniobasis jeffersonensis, p. } 134 .
$$

Fig. 9. Side view of an artificial cast of a natural mold.
Goniohasis (doubtful species), p. 13\%.
Fig 10. Side view of an artiticial cast of a matural mold.
Fiviparus hicksii, p. 13\%.
Fig. 11. Side view of an artificial cast of a natural mold.
Fig. 12. Side view of another similar cast.
I'yrgulifera meekii, p. 135.
Fig. 13. Side view of an artificial east of a matural mold.
All the figures on this plate are of natural size except fig. 9, which is slightly enlarged.

THE SHELLS OF THE TRES MARIAS AND OTHER LUCAL. ITIES ALONG THE SHORES OF LOWVER CALIFORNIA AND THE GULF OF CALIFORNIA.

By Robert E. C. Stearns, Ph. D., Adjunct Curator of the Department of Mollusks.

In the spring of 1876 , Mr. W. J. Fisher, of San Francisco, who had prevously, in 1873, been connected as Naturalist with the U. S. S. Tuscuror" Telegraph Sounding Expedition, under Commander Ceorge E. Belknap, conceived the idea of chartering or purchasing a small vessel and making an investigation of the shores and islands of Lower California and the Gulf of California in the interest of natural history. Through the generosity of Mr. Fisher, the greater part of the mollusks collected by him were given to me, and hecame a part of the Stearns Collection, now incorporated into the greater collection of the T. S. National Museum.

Mr. Fisher's collertion, though made, as it will be seen, many years ago, has not heretofore heen brought to notice. Notwithstanding this lapse of time, its value, through the importance of the information it furnishes on the geographical distribution of most of the species enumeraterl, has not been impaired by delay in publication, as no subsequent collector has touched at or visited so many localities around the shores of the Gulf and of Lower California, or if any such collection has been made it has not been made known. Many of the localities have not previously been mentioned, either by collectors or anthors. The importance of Mr. Fisher's collection, in its bearing upon the Mollusca of the Tres Marias, is worthy of special mention; it would of itself justify the publication of the list, for it exhibits more fully the mollusk-fanma of this interesting and little-known group of islands, and includes a greater number of species than any and all previons publications. Aside from the few new species that he collected, much light was obtained as to others that may be regarded as rare or little known, and again, the detection of so many familiar forms, heretofore associated in our minds with Indo-Pacific or rather Polynesian waters, is almost a revelation and of exceeding interest. There are no currents setting eastward from
the I'arific that misht possibly tramsont drift material from the regions where these serefes are known tolive, and thas romper and enable them to make a lorlsment on gain a foothond on the western coast of the continent. In the gulf region the rurents sweep in the opposite direction, that is, to the westward. It is possible that these exotie forms have been introduced as an incident of commerce.

For many years vessels seeking a retmon eargo from various places in Indo-l'adife waters have visited the grulf region, esperially the Tres Manias islands, for the dyewoods that are found there, and which at Varions periorls have fumished duite a large business to vessels seeking retmon freights. Vessels bound to the gulf ports in such cases wonld be in hallast, and if from Lndo-Parifie resions the ballast would, it is probable, consist in the main of comal blocks or fragments of reffrock, the chinks of which ordinarly fumish a hiding place for mollus. can species, and other small forms of marine life. Upon arriving at the port or embareadero before loading, the ballast would be dumped overboard, and with it such amimals, living on dead, as were secreted among, attarhed to, or contained in it. The Tres Marias and Altata are well known loading places for the dyewoods trade; the latter being an embarcarlaro for interior regions, where the dyewoods are eut. In one instance I collected several specimens of Orthalicus umblutus and a species of Ianlimulus that had ronnealed themselves among the dyewood and were transported with it to san Francisco. Tpon discharging the 'argo, in throwing the freight ashore, the snails were jared out. Some of them were picked up on the wharf and others in the hold of the vessel after the cargo was discharged.

Besides the dyewoods, salt from the C'armen Island works and orchilla furnish export cargoes in whole or in part. The extent of the traftic in these Mrexican exports varies very much one year or period compared with another. At the time of the Franco-Mexican war, or rather the invasion of Mexico by the French, the commerce of the gulf was greatly increased. It was during this period that large and important arditions were made to the Stearns Collection, through arrangements made with parties employed in the coastwise trade between California and west Mexican ports. No such opportunity for ohtaining the shells of the gulf region has oceured since, nor is likely to for many years. In addition to the collection made by Mr. Fisher, I have, in a fers instances, added to the list localities visited by other friends and the speecies collected by them. In this connection, the names of Capt. A. Forter, of D1. William M. (iabb, whose colleretions, made at San Juanieo and Loreto, Lower California, in February. 1s6it, were published by me in 1873, *and the late Henry Edwards, well known as an excellent actor and in scientifie circles as an accomplished entomologist and writer on entomological subjects, who contributed a few species that were fomd by him at Mazatlan and vicinity in 1873, appear occasion-

[^35]ally, and the names of other firends-Mr. J. W. Towne, of San Francisco, Namuel Pillsbury, Heury W. Henshaw, and Hemry Hemphili oceur. The latter, as well as Mr. L. Belding, of California, and Dr. Edward I'almer, have added many species and examples of interest and importance to the national collection.

All of the species credited to San Juanico, on the onter coast of the peninsula, and Loreto were collected by Dr. (xabl). All of those referred to Altatar were presented by Mr. A. d. Gove, of San Francisco, who received them directly from the parties who collected them at the locality stated. With a few exceptions, all of the species herein listed are contained in the National Museum, having formed a part of the Stearus Collection. This list is, however, not quite complete. There are several species, notably of 'hitons, not yet determined, that should be added, and dombtless a feey small species may ultimately be found in the general collection that were collected by Mr. Fisher and have been overlooked, for the department of mollusks in the National Musemm has reached such vast proportions, the registered numbers already exceeding 126,000 trays, that omissions are likely to occur in a paper of this character, through want of time to make a critical examination and revision.

The latitude aud longitude of the varions localities referred to are given below, commencing at the Coronado Islauds, the most northerly on the ocean side, off the peninsula of Lower California, and proceeding southerly to Cape St. Lucas; thence northerly along the western shore of the Gulf of California, including the islands; thence along the eastern shore of the gulf, following the same and the mainland along the Mexican coast to the last or most southerly locality, Acapulco, in latitude $16^{\circ} 5 \tilde{s}^{\prime}$.

In my lists of the shells collected at San Juauico and Loreto by Dr. Gabb, heretofore mentioned, I referred to San Juanico as being "on the east side of the peninsula of Lower California in latitude $27 \circ$ north." This was an error oceasioned loy my following the localities as given in Prof. C. B. Adams' list of the "Shells of Panama ;" and dute no doubt to the fact of there being twoplaces, one on each side of the peninsula of the same name. To prevent mistakes, I have listed the San Juanico of the eastern side as Point San Juanico (see San Juanico Cove). In connection with Boca de los Piedras, frequently referred to, see Estera de los Piedras in the list of localities.

Delays due to various causes have euabled me to add the collections made by the Albutross naturalists, Prof. Leslie A. Lee and his assistants, in 1887-'s8 at Ballenas aud Pichilinque bays, etc., so far as the same have been worked up at this date.

Several species of land shells inhabiting the Gulf region are included in this paper; for further information, relating to those of Lower California more particularly, attention is called to I)r. Cooper's three papers "On Land and Fresh-water Mollusca of Lower California," in Vol. ini of
the I'roc. Calif. Acad. Fciences, also an article in Zoc, April, 1s9\%, amb to the more recent paper by Mr. Dall on the "Land Shells of the Gents Bulimulus in Lower California," etc.

In this comection see the titles of varions publications at the close of this paper.

Loculities.

Lower California, western or ocean shore from vicinity of San Diego to Cape St. Lueas:

Locality.	Lat. N.	Long. W'
Coronado Islands	3225	11715
Todos Santos Bay	3150	116.40
San Tomas	3133	11649
San Quentin Bay	3024	11555
Guadeloupe Island	2900	11820
Cerros or Cedros Island	2810	11515
Assuncion Island	2706	11418
Balleuas Bay	2645	11325
San Juanico.	2604	11217
Santa Maria Bay	2445	11213
Magdalena Bay.	2435	11200
Margarita Bay	2425	11140
Cape St. Lucas	2252	10955

Lower California, grulf side of peninsula and islands, from Cape St. Lncas northerly.

Gulf of California, eastern or main shore, and islamds southerly to Acapulco on the Pacific Ocean.

Locality. Lat. N. Long. Wr		
	.	
Gruaymas	2755	11053
River Yaqui, mouth	27.37	11940
Estero de los Piedras	25.50	10925
Altatiz	2438	10757
Mazatlan	3311	10626
San l3las.	92. 50	10530
Tres Marias	218	10625
Manzanilln	19100	10430
Socorro Island	1848	11100
Acapulco..	16 5\%	10000

The islands constituting the Tres Marias group are known as the Maria Madre, the San Juanita, the Maria Magdalene, and the Maria Cleofas, the Maria Madre being the largest. They are situated due west of San Blas, and "consist of stratified rocks," separated from the mainlaud " by a flat of not more than * thirty fathoms" in depth.

All or nearly all of the forms (redited to this group are from Maria Madre; or if collected mon the others, the fact has not been stated by Fisher, or the other collectors as far as I am aware.

Of Socorro, the principal islaud of the more distant Revilla-Gigedo group, we know but little or nothing. It was visited several years ago by Grayson, the ornithologist. The few marine shells that have been brought from there, are as would be supposed, familiar gulf forms. Of the land shells nothing is known. These islands are situated in comparatively deep water, according to the Albatross, soundings from 1,500 to 1,800 fathoms.

Class PELECYPODA.

Family Ostreide.

OSTREA PALMULA, Carpenter.
Rare (No. 74809 , U. S. N. M.). Pond's Island southern point of Angeles Island, Gulf of California, Fisher; La Paz 1. Forrer.

This species is number 357 in Carpenter's Check-list of the simithsonian Institution, and in the "Mazatlan Mollusca," number "21.1 b: Ostrea?? conchaphila, var. palmula."

Tudging from Carpenter's description in his Mazatlan shells, the Fisher and Forrer examples belong to his species. The specimen before me is much larger than the measurement given by Carpenter, and the proportions are not the same; as oysters vary so much in this respect, the individuals of one colony compared with the individuals of another, this discrepancy may be allowed to pass withont further comment.

The chief example (Fisher's) measures $3 \cdot 56$ by $3 \cdot 4$ inches, a fine specimen.

The Forrer specimen which is a thick, solid shell shows 2 inches in greatest length by $1 \frac{1}{4}$ inches in width.

Carpenter gives the proportions and size of his type, as "long. ".33, lat. $1 \cdot 6$ [height!?." He says "remarkable for the palmated foliations on the outer margin, * * * and for the row of denticles within this limb and within the nacreous border, fitting into corresponding depressions in the other valve." The palmated foliations radiate from just beneath the cartilage in the moler or lower valve to the margin. In the upper valve these radiating ribs commence at a point about onethird of the distance from the umbo; perhaps in a large number of examples, some might exhibit this character as extending to the umbos.

[^36]In the sperimen before me, whith resembles a large Plectult, there are fom 19 to 20 of these ribs; these are shaply angulated and interlock closely at the margin of the valves. For an oyster this is a well marked species; it suggests Hanley's Ostrea megadon.

Family Anomitde.
PLACUNANOMIA CUMINGH, Broderip.
One perfect example.
Off Lower California, at Station 2 Sa 2; shelly bottom, in 10 fathoms; Albatross.

Fanily Spondylide. SPONDYLUS PRINCEPS, Broderip.
Several examples, and odd valves.
Pichilinque Bay; also at Station 2sess, off Lower California, in 10 fathoms; Albetross. The varions colors exhibited by the shells of this beatiful species are included in the collections at above places.

Family Pectenide.

PECTEN SUBNODOSUS, Sow erby .
Loreto; Scammon's Lagoon (No. 10 2625, U. S. N. M.), Ifemphill; Carmen Island (No. 63647, U. S. N. M.), Towne. Examples of this fine, though not very rare species, frequently oceur, that are neither nodose or subnodose. Hemphill found it living on mud flats.

Pichilinque Bay (two odd valves), Albatross ; also at Station 2s22 (No. 102091, U. S. N. M.) and Station 2s:6, 10 fathoms (No. 102088. U.S. N. M.); in $9 \frac{1}{2}$ fathoms, off Lower California.

PECTEN VENTRICOSUS, Sow erby.
Several examples.
Pichilinque Bay, one good specimen, beach; Sta. Margarita Island (one valve); Station 28.2 , 10 fathoms, off Lower Califomia; all Llbutross.

> PECTEN (JANIRA) DENTATA, So worl y.

Several examples.
Salı Juanico; St. Luis Bay; (imaymas, P'almer (No. 1250s, U. S. N. M.), Ballenas Bay (concave valve), and one good specimen at Station 2828, off Lower California, in 10 fathoms; Albatross.

> Family A VICULIDA.
> AVICULA PERUVIANA, Reevo.

One pair valves; beach. Sta. Margarita Island.

MARGARITIPHORA FIMBRIATA, D unker.
Valves only.
Pichilinque Bay; Station 2828, 10 fathoms, off' Lower California; Albatross.

> PERNA JANUS. C arpenter.

Several examples.
La Paz, both Fisher and Forrer (No. 73560, U. S. N. M.).
I have three well-marked specimens before me, which agree with Dr. Carpenter's description in the Mazatlan catalogue, pp. 151,152. The description says: "The sculpture of the valves, of which the under is smooth, the upper ornamented with fine, radiating strix, etc.;" two of the specimens, however, show the radiating strie on both valves. Carpenter gives the measurement of his "the largest, long. (the diagonal of the lozenge) 1.12 ; lat. 0.68 , etc." inch.

My largest example (Fisher's) measured in the same way, gives the following: Length, 2.25 ; breadth, 1.20 inch.

PERNA JANUS, C arpenter; variety.

Two examples. La Paz (No. 73561, U. S. N. M.), Forrer.
This is an interesting intermediate form, which mites in the individ: ual before me the characters of Dr. Carpenter's Jomus and Orbigny's Chemnitziamum. The greater portion of the exterior, exhibits the coarse, laminated growth of the latter generally exhibited in the species, and is posteriorly produced and elongated as is common in said form. The later grow th, however, shows on the edge of the posterior side near the dorsal line, as well as on the anterior side, towards and extending to the ventral margin, the radiating strice, which Carpenter refers to as a characteristic of P. Jamus. The specimen is foot or hatchetshaped, and measures 1.1 ? inches in length, 1.61 inches in breadth.

PERNA CHEMNITZIANA, Orbigny.

Several specimens.
Pichilinque Bay (one good example); Station 2s:3, off Lower (${ }^{2}$ alifornia, in 10 fathoms (No. 102098, U. S. N. M.); Albatross.

Family Mytilide.
MYTILUS MULTIFORMIS, Carpenter.
Several specimens. Tres Marias (No. $416 \geq 3$, U. ふ. N. M.),
SEPTIFER CUMINGIANUS, Dunker.
Station 2827, 10 fathoms shelly bottom off Lower California, AlbaProc. N. M. $94-10$
tross (No. 102104, U. S. N. M.). The specimen was attached to a Placииапотia valve.

MODIOLA CAPAX, Conrad.

One example.
La P'az, Forrer. Sta. Marsarita Island (fragment), Albatross.
The late J. A. MeNeil, so well known for the archeological material collected by him in Chiriqui, etc., obtained the above species in the Bay of Fonseca.

MODIOLA BRAZILIENSIS, Chemnitz.

'T'wo examples.
Lal Paz, Forrer (No. 63706, U, N. N. M.); Hemphill has carried the distribution much farther to the north, having collected it in San Igna(io) Lagoon (No. 105̃t01, U.s. N. M.). Dr. Edward Palmer found it quite abuudant near Guaymas, and the late J. A. MeNeil obtaned beantiful clean examples at the more southerly locality of the Bay of Fonseca (No. 63705, U. S. N. M.). It is a well marked species.

LITHOPHAGUS? ARISTATUS, Solander.

Two examples.
Burrowing in Spondylus princeps, Station 2828,10 fathoms off Lower California, also fragments Sta. Margarita Island; Albetross.

Family Arcid 在.
AlaCA PACIFICA, Sowerby.
One specimen. San Juanico.

> ARCA (SCAPHARCA) LABIATA, Sowerloy.

Several specimens. Animas Bay (No. 41604, U. ふ. N. M.).
This pretty species is represented in the Fisher collection by numerous examples, all fresh and perfect; its geographical range extends from l'eru to the above locality, the most northerly thins far reported. Gabb collected it at Loreto (No. 74836 , U. S. N. M.), and Bridges deterted it at San Juan del Sur, in Nicaragua (No. 74837, U. S. N. M.).

> ARCA (SCAPHARCA) TUBERCULOSA, Sowerly

Two specimens. Magdalena Bay (No. 7481:, U. S. N. M.) ; San Juanico, Gabb; Guaymas, E. Palmer (No. 23617, U. S. N. M.).

ARCA (SCAPHARCA) MULTICOSTATA, Sowerby.
Numerous examples.
Scammon's Lagoon on mud llats (No. 105596, U. S. N. M.), Hemphill;

Sau Quentin Bay, Belding; San Juanico, Gabb; Guaymas (No. 23616, U.S. N. M.), Dr. Palmer.

ARCA (NOETIA) GRANDIS, Broderip and Sowerby.
A few examples. Guaymas (No. 23616, I. S. N. M.), I)r. Palmer; San Juanico.

> ARCA (BYSSOARCA) GRADATA, Broderip and Sowerby.

Abundant. Point Escondido; St. Josef Island; Lat Paz. Ranges southerly to Ecuador.

> ARCA (BYSSOARCA) SOLIDA, Sowerby.

Common. Point Escondido (No. T5012, U. S. N. M.); St. Josef Island; La Paz; found nearly everywhere in the Gulf, and in South America on the coast of Pern. The Albatross collection contained one valve from Sta. Margarita Island.

ARCA (BYSSOARCA) REEVIANA, Orbigny.
Several specimens. Mulege Bay (No. 74825, U. S. N. M.); La Paz (No. 34100, U. S. N. M.), Belding; San Ignacio Lagoon (No. 105612, U. S. N. M.), H. Hemphill, "underside of stones."

> ARCA (BISSOARCA) MUTABILIS, Sowerby.

One living example. Tres Marias (No. 102184, U. S. N. M.).

PECTUNCULUS (AXINAE) MACULATA, Brollerip.
Three examples. La Paz (No. 63782, U. S. N. M.), S. Pillsbuy.

PECTUNCULUS (AXINEA) TENUISCULPTUS, C'arpenter.
Several specimens. Carmen Island (No. 63776, U. S. N. M.), Towne.
1PCTUNCULUS (AXINÆA) GIGAN'IEUS, Reeve.

Numerous examples. La Paz and San Josef Island; Guaymas (No. 23547, U. S. N. M.), Palmer; Carmen Island (No. 63777, U. S. N. M.), Towne. An adolescent example at the first named locality was collected by Capt. Forrer (No. 63781, U. S. N. M.), and Fisher's, from St. Josef Island, were all young shells. Towne's Carmen Island specimens were very fine.

Family LEDIDA.
LEDA (YOLDIA) LANCEOLATA, Lamarek.
Numerous valves. Gulf of California (No. 73667, U. S. N. M.).

This form is exceedingly rate; odd values are occasionally mer with in beach rubbish.

> Family UARDI'IDA.
> CARDITA PECTUNCULUS, Bruguiere.

+ C. affinis, Sowerby.
+ C. Califormica, Deshayes.
Two specimens.
La Pa\% (No. 73610, U. S. N. M.); Loreto (No. 73611, U. S. N. M.), Dr. (iabb. Sta. Margarita Island (two good examples), Albutross.

$$
\text { CARDITA (VENERICARDIA) FLAMMEA, Michelin, } 1830 .
$$

+ C. varia, Broderip, 1832.
+ C. tumida of the same anthor.
Several specimens. Tres Marias (No. 73619, U. S. N. M.) ; Mulege Bay (No. 73618 , U. S. N. M.).

Magnificent examples of this fine species have been dredged by the U. S. Fish Commission steamer Albatioss. These are of a pinkish color with whitish and darker markings, and measure 69 millimeters fiom beak to ventral margin (about $2 \frac{3}{4}$ inches).

CARDITA (VENERICARDIA) CRASSA, Gray
One specimen. Tres Marias (No. 73625, U. S. N. M.).
The single example of this well-maked form obtained is about twothirds the size of the figure in Reeve's monograph, species 34.

> Family Crassatellid e.
> CRASSATELLA GIBBOSA, Sowerby.

One adolescent specimen.
San Lucas Cove (No. 75033, U. S. N. M.). The example, though small, is quite characteristic; it was obtained by dredging. This species is exceedingly rare. Dr. Jones collected four odd valves at Payta, Peru, in 1854, and Gabb detected it at Loreto in 1867 (No. 73522 , U. S. N. M.) ; (xaymas, Dr. Dalmer (No. 23545 , U. S. N. M.).

. Family Lucinid x.

LUCINA (DIVARICELLA) DENTATA, Wood.

Examples. San Juanico and Loreto; Dr. Gabb.
An interesting form occorring in the Atlantic Dall gives the range from (ieorges Bank off Hatteras, to the West Indies, thence southerly to Brazil, in from six to fifty-two fathoms. The above is the Oyclas dentate of the older authors.

LUCINA BELLA, Conrad,
Fresh specimen. Gulf of California.

A single example in perfect condition. Precise locality not stated. Not uncommon amoug Gulf material.

LUCINA CALIFORNICA, Conrad.

One specimen. La Paz (No. 41626, U. S. N. M.), A. Forrer.
LuCINA NUTTALLI, Conrad.
Numerous examples.
La Paz (No. 101750, U. S. N. M.) ; also at various places on the ocean sideof Lower ('alifornia to California proper, san Diego, san Pedro, ote:

```
LUCINA (CODAKIA) TIGRINA, Linntug.
```

Several examples.
Pichilinque Bay (3 fresh valves); Albatross. Carmen Island (No.
 La Paz (No. 34094, U. S. N. M.), L. Belding. This is another widely distributed species, credited to rarious remotely separated regions. Garrett * gives the Viti and Samoan islands as localities in the TndoPacitic province. Dall t gives the Atlantic range as St. Augustine, Fla., Florida Keys, West Florida, Texas, Bermuda, to Aspinwall, and it occurs fossil as far back as the Pliocene.

Family Diplodontid
 DIPLODONTA ORBELLA, Gould.

Two examples.
Point San Quentin (No. 73632 , U. S. N. M.) ; also, San Jnanien, (eollected by Dr. Gabl); Gulf of California (No. 41603, U. S. N. M.) .

DIPLODONTA (FELANIA) SERRICATA, Reeve.
Several examples.
Mazatlan (No. 73635\%, U. S. N. M) ; San Ignacio Lagoon (No. 105̃621, U. S. N. M.), Hemphill; Gulf' of ' 'alifornia, at head of the ('ulf, I)r. Palmer (No. 58335, U. S. N. M.).

Family Galeommide.

```
NCINTILLA CUMINGII, Deshayes.
```

Two examples.
Gulf of California (No. 736セN゙, IT. S. N. M.) ; Cape St. Lucas (No. 41613, U. S. N. M). A very rare form. From Todos Santos Bay (No. 102187, U. S. N. M), the Musemm contains what may prove to be another species of this gemus.

> Family LASEIDE.

LASEA RUBRA, Mont.; var, SUBVIRLDIS, C'arpenter.

Several examples.
Cape St. Lucas (No. $7401 \mathrm{~s}^{\prime}$, U. S. N. MI.) ; San Quentin Bay (No. 7503",

[^37]U.s. N. M.), "found among Mytilus on rocks |Fisher|, April 27, 1876;" also at Monterey, (al., two specimens. The foregoing was Dr. Carpenter's determination, copied from his label.
liamily CHAMIDAE.
Chama Panamensis, Reove.
One example; La Paz, Oapt. Forrer.
CIAAMA? FRONDOSA, Broderip.
Three specimens.
Gulf of Californial (No. 7480.5 , U. S. N. M.), attached to valve of Meleagrina fimbriata. Altogether a fine series.

At Station $2 \times \pm 8$, off Lower California, in 10 fathoms (probably this species), Albatross.

Family (OARDIIDE.

CARDIUM SENTICOSUM, Sowerby.
Several examples.
Sin Juanico; also foumd un the Gulf of California at the head of the Gulf (No. 36085, U. S. N. M.) ; Dr. E. Palmer (No. 6375:2, U. S. N. M.). Very close to the more northern "quadrigenarium" of Comrad, and may prove to be the same.

CARDIUM PROCERUM, Sowerby.

One specimen.
Magdalena Bay (No. (6:37t0, U. S. N. M) ; Guaymas (No. 23499, U. S. N. M.), Inr. Palmer. Ballenas Bay (valres), and on good example at Pichilinque Bay, Albatross.

CARDIUM MACULOSUM, Wood.

One valve.
(iulf of California (No. 6374t, U. N. N. M.), Stearns collection: an exceedingly rare and characteristic species.

CARDIUM CONSORS, Broderip and Sowerby.
Several examples; common.
Lat Pa\% (Nos. 34091,63748, U. N. N. M.) ; Mazatlan (No. 63747, U. S. N. M.) ; Acapuleo (No. 137N:3, U. S. N. M.) ; Camen Islaud (No. 63746, I. S. N. M.), Towne. This last is rather varietal than typical, being not quite chameteristic. The Albutross dredged two dead valves at Station 2825, 10 fathoms off Lower California.

> CARDIUM (PAPYRIDEA) ASPERSUM, Sow orby.

One example.
Lat Paz, Forrer (No. 63769, D. A. N. M.). The National collection has the same species from Camen Island (No. 6:376s, U. S. N. M.) ; La I'az
(valve), L. Belding (No. 34092, L. S. N. M.) ; Gulf of Californian several (No. 63767, U. N. N. M.) ; San Juanico, Gabb.

A rare species and closely approaching the Antillean P'. lullutum. Cuming collecterl it at St. Elena, on the coast of (inayaquil, in latitude about 2° south.

CARDIUM (LIOCARDIUM) APICINUM, Carpenter.

$=$? Elenense, Carpenter's Ma\%. Cat.
Numerous examples.
Boca de los Piedras (No. 6:37.59, I. S. N. M.), tine examples. A valriety of this species was obtained at MIulege Bay (No. 63760, 「. S. N. M.), two specimens; Mazatlan (No. 637.58, U. S. N. M.) ; Cape St. Lucas (No. 63761, U. S.N. M.), Xantus.

CARDIUM (LIOCARDIUM) ELATUM, Sowerbs.
Numerous examples.
Guaymas; Pinecate Bay (No. 23515, U.N. N. M.), Dr. E. F'almer; (iulf of California (Nos. 63737, 34093, U. S. N. M.) ; San Ignario Lagoon (No. 105398, U. S. N. M.), and Sau Diego (No. 63738, L. S. N. M.), Heury Hemphill. A magnificent species. Our largest example, a single valve measures $6 \frac{5}{5}$ by 5 inches. Santa Margarita Island (one valve), Albatross.

Family Venerlid \&.

VENUS MULTICOSTATA, Sow erby.

Several examples.
Escondido Bay (No. 6:367, U. S. N. M.), Fisher; La Paz, Forrer.
The largest of Mr. Fisher's specimens measured, length t.is, height 3.57 , breadth 2.63 inches. The young of the above might easily be mistaken for adolescent shells of V^{r}. reticulutu or V. puerpern, Indo-Pacifie species. Notwithstanding the very great quantity of West coast materialt hat has passed under my examination, Mr. Fisher's were the first specimens that I had seen from the Gulf region.

YENUS CRENIFERA, So wexby.

Several examples. Carmen Island (No. 63598, U. S. N. M.), Towne; Cape St. Lucas (No. 23594, U. S. N. M.), Dr. Palmer; also same locality (No.13732, U. S. N. M.). A rare and beautiful species.

VENUS (ANOMALOCARDIA) SUBRUGOSA, Sowerby.

$$
=\text { No. 112. Carpenter's Maz. Cat, }
$$

Abundant.

Mulege Bay: (tulf of California; (imatmas (No. 23is!), (1. A. N. M.), Dr. Palmer; a single specimen, the smallest I have seen, only . 36 inch long by .29 inch in height, having every aspect of maturity; it would lead a person, without a large series of all ages for comparison, to regard
it ats a ditherent species. Adults measure from . 97 inch to 1.50 inches long, hy . 80 inch to 1.2. inches high, respectively. Thongh a strongly chatacterized species, several imdividuals are requisite to poperly represent it. The National collertion contains a beantifnl variety of the above (No. (Biant, U. S. N. M.) from Nicaragua, in which the rounded concentrie ridges are quite regular, amb extend over the entire surface of the valves to the ventral edge.

> VENUS (ANOMALOCARDIA) SUBIMBRICATA, Sowerly y.

One perfect example, several valves. Santa Margatita Island, Albatross.

VENUS (ANOMALOCARDIA) KELLETTII, Hinds.
Numerous examples.
Mulege Bay (No. 41617, U.S. N. M.), one junior, less than half an inch (transverse) length; (inaymas (No. 叉3507, U. S. N. M.), IMr. Edward Palmer; also numerous valves from the latter place (No. 1032So, U. S. N. M.).

VENUS (CHIONE) UNDATLLLA, Sowe rly

A single example. Tres Marias (No. 63605, U. S. N. M.).
A single specimen of this beantiful species, distinguished by its fine, closely approximating concentric costie crossing rather broad, fat or slightly rommed radiating ribs, more or less marked with light brown, in zigzag waves, and sooted or blotehed on the surface of the valves. Lumule rounded cordate and dark brown. Ligamental area deeply excavated and marked with brown bars on the left valve. Hinge line very heavy. Muscular and pallial suars strongly impressed. Color inside, light orange and purple.

The various forms of this genus are so profusely abundant on the West eoast, and exhibit so much variation through the intluence of station, character of the sea bed, etco, that no doubt too many species have been made. The West American group requires careful revision.

> VENUS (CHIONE) FLUCTIFRAGA, Sowerby.

Two examples.
San Juanico (No. 74264, I. S. N. M.) ; Scammon's lagoon; Colorado River, Fort Yuma (No. 36409, U. S. N. M.) ; Guaymas (No. こ3595, U. S. N. M.), Ir. Palmer. Extends northerly along the coast to San Diego and San Pedro.

VENUS (CHIONE) SUCCINCTA, Valenciennes.
Not uncommon. San Juanico; Loreto (doubtful). (xuaymas (No. 23592, U.s. N. M.), Palmer; La Paz (No. 34084, V.s. N. M.), L. Belding.

> VENUS (CHIONE) SIMILIIMA, Sow erby.

Several specimens.
San Quentin Bay (No. 34.00: U. S. N. M.), Belding; Sin Juanico; Todos Santos Bay (No. 7t2(is, U. S. N. M.), Hemphill. ('. succincta and
C. simillimf, are common species as far north as san Diego and San Pedro. Pichilinque Island, numerous examples, living; Albatross.

```
VENUS (CHIONE) NEGLECTA, Carpenter.
```

Not uncommon.
Boca de los Piedras (No. 73917, U. S. N. M.): Magdalena Bay (No. 63604, U. S. N. M.); Cape St. Lacas (No. 2355s, (T. N. N. M.), Dr. Palmer (?) Cerros Island (No. 13656, U. S. N. M.).

Eight, all juniors at the first place, mumerons examples at the others.
VENUS (CHIONE) COLUMBIENSIS, Sowerby.

Several examples.
Mazatlan (No. 63594, U. S. N. M.), H. Edwards (No. 24;31, U. S. N. M.). Rich collection. Upon a revision of this group, the position of the above species may have to be changed.

VENUS (CHIONE) GNiDIA, Broderip and Sowerby.
Numerous examples.
Guaymas (No. 2:398, U. S. N. Mr.), Palmer; Mulege Bay (No. 2501, U. S. N. M.) ; La Paz (No. 34083, U. S. N. M.), Belding; San Ignacio Lagoon (No. 105597, U. S. N. M.), Hemphill. A fine species and comparatively abundant.

CYTHEREA (CALLISTA) CHIONAA, Menke.

Two adolescent examples.
La Paz (No. 63524, U. S. N. M.) ; Scammon's Lagoon; San Juanico; Loreto; Pichilinque Bay (common), and Sta. Margarita Island (Valves); Station 2828 , two fiesh specimens in 10 fathoms, Albatross.

This common species is found at a great many places in the Gulf and on the outer shore of the penimsula of Lower California. Gabb collected it at San Juanico, also at Loreto on the Gulf side (No. 63525, U.S. N. M.). It is frequently found in large numbers on Carmen Island, cast $u p$ on the beach after a storm. A rare and beautiful variety, resembles in its color markings the Asiatic ('ytherea petichialis, which has led to said species being credited to the west coast of America.

CYTHEREA (CALLIS'IA) AURANTIA, Hanley.
Three valves in good condition. Pichilinque Bay, Albutrows.

CY'THEREA (CALLISTA) POLLICARIS, Carpenter.

One specimen. Mulege Bay (No. 63538, U. S. N. M.).
The example collected at the above place by Mr. Fisher I refer to Carpenter's species, on the basis of form and scolpture. Carpenter's type was collected by Nantus at Cape St. Lucas (No. 12721, U. S. N. M.); it is a large, white, smooth-smfaced shell, measuring Jaterally 63 mm . by 57 mm . from umbos to the vential margin of the valves; while

Fisher's shell is correspondingly but 20 and 15 mm . Fisher's shell is painted with light yellowish-hown markings, while the Xantus- Carpenter shell has but a few slight indications of color. Another example agreeing dosely with the Mulege shell is in the National collection, also a junior. A very rare species.

CYTHEREA (CALLIS'IA) VULNERATA. Broderip.
Two good specimens.
Station 282s, 10 fathoms, off Lower California; Albatross.
This is a beantiful species, but not uncommon at many places around the shores of the Gulf and peninsula.
(Y'THEREA (CALLISTA) NEWCOMBIANA, Gabb.
One specimen.
Boca de los Piedras (No. 416:8, (T. S'. N. M.). Ranges to Catalina Island and northward on the coast of California.
('YTHEREA (TIVELA) RADIATA, Sowerby.
One example. San Juanico. Common in the Gulf.
CYTHEREA (TIVELA) CRASSATELLOLDES, Conrad.
One junior only $2 \geq 2 m m$ long. Ballenas Bay, Albutross. Abundant farther north.

> dOSINIA PONDEROSA, Gray.

Three specimens.
Gulf of California (No. (i3511, U. S. N. M.) ; San Juanico. The above is fully as common in the (iulf region and at varions places on the ocean side of the peninsula as D. Dunkeri, Philippi is in the neighborhood of Panama. Carpenter's species D. Auna seems to be of rather rare occurrence. I. pouderost is also reported from Scammon's Lagoon.

One valve (the left); beach. (iulf of California (No. $74235, \mathrm{U} . \mathrm{S}$. N. M.).

Among the miscellaneons material in the Fisher collection was a simgle valve, the left, of a species of Mosinin malike either of the species heretofore credited to this province or region. I sent it to the late Mr. Tryon for comparison with the various forms of Dosinia in the collection of the Philadelphia Academy; he returned it with the comment that it "exartly corresponds with I. prostruta from ('oromandel (Chemnitz)."

The shell certainly differs from Anme, Dunkeri and ponderosu. I should regard the occurence of the above at any point in the Gulf
region as in some way fortnitons were it not for the other forms herein mentioned, such as ('assis ribex, Murex palma-rosce Mexicana, Purpura hippocastancum, ete., some of which hase been verified as to locality by other collectors, etc.

Subfamily Tapesine.
TAPES GRATA, Say.

Numerous specimens.
Los Auimas Bay (No. 635̈87, U. S. N. M.); Loreto (No. 6:3586, U. 太. N. M.). This well known and pretty species is quite widely distributed on the West coast; the National collection contains examples from a great number of localities collected by Hemphill, Bridges, and others. Several fresh valves were obtained at Sta. Margarita Island by the Albatross.

> Family D ONACID E.
> DONAX CARINATA, Hanley.

Three specimens. Altata, A. J. Gove (No. 6:3671, U. S. N. M.). A rare and beautiful form.

74. DONAX TRANSVERSUS, Sowerly.

One specimen. Altata, Gove (No. 6367:, U. S. N. M.). This is another rare species.

donax punctatostriatus, Hanley.

Three examples. Altata (No. 63673, U. S. N. M.).
DONAX FLEXUOSUS, Gould.
One specimen. San Juanico.
HETERODONAX BLMACULATUS, Orbigny.

$$
=\text { Tellina vicina, C. B. Adams. }
$$

Numerous large, fine specimens.
Angeles Bay (No. 73535, U. S. N. M.), and all around the Gulf of California, nearly everywhere up to northern California; southerly to Panama; also in the Antillean waters. The (iulf shells exhibit in many instances very beautiful coloration.

> Family PSA M MobiId A.
> Psammobia REGULARIS, Carpenter.

Valves, beach. Tres Marias (No. 73516, U. S. N. M).
This form, described by the late Philip Carpenter in the Ann. and Mag. of Natural History (third series) Vol. xim, 1864, is quite rare in collections and ouly occasionally met with in fragments or odd valves
in beach rubhish from the Gulf of California. It is barely possible that it is only an extra limital, dwarfor, delicate aspect or southem form, of l. rubroradinte of Comrad of the Northern Californian and Vancouver province, where rubroradiate attains a large size.

Two examples of regularis give the following dimensions from anterior to posterior margins: largest, 1.44 , smallest, 1.21 inches.
'TAGELUS CALIFORNIANUS. Conr a d.
$=$ Solecurtus Californianus, Conrad.
$=S$. affinis, C. B. Adams.
Four examples. San Lucas Cove (No. 73474, U. S. N. M.); San Juanico.

The individuals examined, are small compared with the average of examples from Northern California localities; the largest measurng only 2.10 inches from anterior to posterior extremities, but unquestionably of this species.

SOLETELLINA RUFESCENS, C hemnit\%.
Three specimens. Altata (No. 73547, U. S. N. M.), Gove.
SANGUINOLARIA KINDERMANNI, Philip pi.
Several Examples. San Juanico.
Family Tellinide.
TELLINA, doubtful species.
One example. La Paz, Capt. Forrer (No. 1021s:2, IT. S. N. M.). TELLINA (TELLINIDES) PURPUREUS, Broderip .
$=T$. Broderipii, Deshayes.
Valves beach. Altata, Gove (No. 73545, U. S. N. M.); Acapuco, Jewett (No. 15994, U. S. N. M). A rare species.
MACOMA VIRIDITINCTA, Carpenter.

One specimen. La Paz, Capt. Forre; (inlf of California, various localities; rather rare.

Family SEMELIDA.
SEMELE BICOLOR, C. B. Adams.
One example. Loreto, Gabb.
SEMELE CORRUGATA, Broderip.
Valves and fragments. Sta. Margarita Island; Albutross.

Family M A C T R I D E.
 MACTRA (STANDELLA) PLANULATA, Conrad.

Specimens. San Juanico. Station 2828, 10 fathoms off Lower California; Albatross.

LABIOSA UNDULATA, Gould.
=Raeta undulata, Gray.
Valves only; rare. Loreto, Gabb. Occurs elsewhere in the Gulf and up the coast northward to San Pedro.

Family Anatinide.
thracia plicata, deshayes.
$=T$. tiuncata, Mighels.
Very rare; valves only. La Paz (No. 73602, U. S. N. M.).

periplona planiuscula, sowerby.

+ F. lenticularis, Sowerby.
$=P$. argentaria, Conrad.
$=P$. alta, С. B. Adams.
$=P$. excurva + excurvata, Carpenter.
Numerous examples.
San Juanico (No. 73518, U. S. N. M.); Loreto (No. 73517, U.S.N. M.), Gabb. Common at many places on the ocean coast of the peuinsula; northward to San Pedro; common in the "fossil bank" at Spanish Bight, Coronado peninsula, San Diego; perhaps northerly to Point Concepcion.

Family Corbuldd d.

corbula bicarinata, sowerby.
Numerous specimens.
Gulf of California (No. 73500, U. S. N. M.); Boca de los Piedras (No. 73641, U. S. N. M.); Mulege Bay (No. 73645, U. S. N. M.).

Class SCAPHOPODA.

Family DentaliId. .
DENTALIUM FISHERI, provisional name.
One example. Los Animas Bay (No. 46204, U. S. N. M.).

DENTALIUM SEMHPOLITUM, C arpenter.
Numerous specimens.
Mulege Bay (Nos. 46201,46202 , U. S. N. M.); Boca de los Piedras (No. 46203, U. S. N. M.). Hemphill has collected this species at San Ignacio Lagoon, Lower ('alifornia (No. 105517, U. S. N. M.).

Class GASTROPODA.

Family Bullide.
BULLA ADAMSI, Menke.
Several specimens.
Bocas de los Piedras and Loreto, Gulf of California.
Less globose and inclined to be heavier and more solid than B. nebulosa Could. The latter averages much larger than B. adumsi.

Family APLYSIIDA.
DOLABELLA CALIFORNICA, Stearns.
Dolabella califormica, Stearns, Proc. Phila. Aead. Nat. Sci., 1878, p. 395, Pl. vir, figs. 1, 2; Proc. U. S. Nat. Museum, Vol. xvi, pp. 341-342, 1892.
Several examples (No. Fotoo1, U.S. N. M.). Mulege Bay, (xulf of California.

Superfarnily MONOYRFIMA'IA.
Family Helicide.
HELIX (ARIONTA) AREOLATA, Forbes.
$=$ Euparypha* areolata, Binnex.
Abundant (No. istio, U. S. N. M.). Santa Maria Island, Lower California.

[^38]Mr. Fisher found this species common on the shores of Santa Maria Bay, which is a small bay indenting an island of the same name outside of Magdalena Bay. The ample quantity he collected includes numerous solid shells of a pure opaque white with a somewhat glazed surface; others spotted here and there with sienna yellow and brown. Many examples are striped and ornamented with more or less conspicmous bands broken into squarish spots of the same color. Colmmella generally showing a single blunt tubercle, sometimes not.

From the U.S. Fish Commission, collected by the Albatross naturalists, a magnificent series has been received fiom Margarita Island (No. 10248 , I. S. N. M). These are of exceeding interest as related to the examples collected by Mr. Fisher, as the two lots illustrate how very considerable is the variation in color, size, aud elevation within a comparatively limited area. The Albutross shells are, as a whole, much the largest that I have seen of this species.

HELIX (ARION'IA) AREOLATA, Forbes.

Var. = Veatchii, Newcomb.
Numerous examples.
Helix Teutchii (No. 58504 , U. S. N. M.), a form generally regarderl as a variety of I. areolatu, oceurs on Cerros Island. It was a specimen of this that furnished an interesting illustration of the extraordinary vitality of these insignificant animals. Dr. Teatch collected numerous specimens on the island in 1859, and gave some of them to Thomas Bridges. These ultimately passed into my hands. Oneday, uponexamining them, I noticed that one was alive. I placed it in a box of moist earth, and in a short time it commenced crawling about, apparently as well as ever. After a fortnight's furlongh firom its long imprisomment in a small box, I put it back again. It hed lived sixy yerers without food.* The famous British Museum example of Helix desertorum lived nearly four years. This last species is from a region in which the physical characteristics are in many respects like those of Cerros Istand and Lower California.
expect to find a wide range of modification within a territory so peculiar, practically a long and narow helt extending through some 1,000 or 1,200 miles of latitude, from a region of 'ample, not to say excessive, moisture or lumidity to one of extreme aridity, to say nothing of other diverse characteristics which play their part in influencing or iuducing variation.

Whatever may be the value of the characters of the soft parts in the land snails as a basis for grouping or generic segregation, Binney has found in Tryoni, which he has placed in Eupurypha, certain characters in common with Arionta (Stearmsiana), in others it is different. Whether this difference is of greater than specific weight or anything more than varietal, remains to be investigated, for it is yet to be proved whether the soft parts are out and ont, less variable or more constant in their characters than the hard parts, that is to say, the external inclosing shell.
*Proc. California Acad. Nat. Sciences, March 4, 1867.

Besides the specimens of the ahove, received in the Stearns collection the National Museum contains three of the original lot collected by Dr. Veatch on ('erros Island (Nos. 8715, s716, U. N. N. M.), two collected by Lient. Pond (No. 103610, U. S. N. M.), five received from Mr. Belding, collected by him near San Quentin Bay (No. 34525, U. S. N. M.), one example fom an island in said bay (No. 73:33, U'S. N. M.), numerous examples from Cerros Island (U.S. Fish Commission, No. 102421, U. S. N. M.), and two examples collected by Hemry W. Henshaw on Cerros Island (No. 63986, U. S. N. M.).

HELIX (ARIONTA) LAEVIS, Pfeiffer.

$=$ Euparypha lavis, Binney.

+ Polymita lavis, Tryon.

Abundant; dead. Ascumsion Island, Lower California (No. 58527, U. S. N. M.).

This island is of small area; it is situated south of Cerlros, or Cerros, in latitude 27°. The above, as well as H. pamdora Fbs., are probably dwarfed varieties of areolutu. A large number, all dead, were obtained by Mr. Fisher. They exhibit a rather wide range of variation, particularly in elevation, and the tubercle on the columella is shown to be an inconstant character; the color markings are variable, as in areolata. From Fisher's notes I learn that he found the foregoing "on plateaus from 50 to 300 feet above the sea level, in great numbers, emberlded in sand mixed with guano. Found only four plants, small shmbs (individuals), on the island, otherwise utterly destitute of vegetation." In conversation Mr. Fisher informed me that the specimens he obtained had been scratched out of the sand and guano by the sea-fowls in excavating or making a hollow for nesting purposes. It is quite evident that the famal and floral character of the island has undergone a great change within quite recent times. Not many years ago when these snails were living, aud before the seabirds took possession of it, the surface of the island, which quite likely was never very densely clothed with vegetation, exhibited, we may presume, about the same floral aspect as others in the same general region. The birds, disturbed elsewhere, or from some other cause, invaded the territory of H. lewis, and in destroying the vegetation also extinguished the suails and such other forms of animal life as were dependent upon it for food. Fisher told me that he failed absolutely to detect a single living individual of H. luvis. Here we have an instance where the extension of the specific area of one form or class of amimal life, obliterated or diminished the territory or sperific area of another. It would be interesting to know of similar instauces, for doubtless such have been observed and noted. Mr. Oreutt collected numerous examples of this species, living and in fine condition, near El Rosario Mission, in latitude $290^{\circ} 50^{\prime}$. Lie fomm them "abundant under A!gave shani, on highe
mesa lands." The Musem is indebted to him for an exeellent series (Nos. 98930, 98931, U. S. N. M.), which inchudes also a dark-colored variety (No. 98932, U. S. N. M.).

HELIX (POLYGYRA) BEHRI, G a b b.

Several examples. Near (iuaymas (No. 58.) 14 , U.S.N. M.); banks of Yaqui River (No. 23766, U. S. N. M.), Gabb.

A few specimens (seven or eight), all dead and bleached, though otherwise perfect, were detected as above by Mr. Fisher. The species was described by the late Prof. Gabb, in volume 1 of the American Journal of Conchology, 1865, p. 20 s, from specimens collected by the lamented Auguste Remond, near Ginaymas, on the easterly side of the Gulf of California. The specimens collected by Rémond were also dead, as implied by Gabb's description, wherein he says "colore albo (?)". When living they are probably of a pate horn color, like others of this group found in the same general region. The Fisher shells, though haviug the same number of whorls and agreeing with Gabb's description, vary in diameter from 0.49 to 0.67 of an inch. To verify my determination, specimens were submitted to my estcemed friend, the late Thomas Bland, of New Kork, whose kind services in comection with the above and other critical West American forms, are gratefully remembered and acknowledged.

HELIX (POLYGYRA) BICRURIS, P feiffer.

Ten examples.
Gulf of California region (No. 569.57, U.S. N. M.) ; Monterey, Mexico (No. 121028, U. S. N. M.) ; Texas, at Brownsville; also at mouth of the Rio Grante (Nos. 123168, 123594, U. S. N. M.), William Lloyd.

HELIX (POLYGYRA) HINDSII, Pfeiffer.
One specimen. Near Griaymas (No. 97974, U. S. N. M.).
HELIX (POLYGYRA) ACUTEDENTATA, W G. Binney.
Three examples. Mazatlan (Nos. m6942, n6943, U. S. N. M), Henry Edwards.

> HELIX (POLYGYRA) VENTROSULA, P fe iffer.

Several specimens. Mazatlan (Nos. 56944, 60614, U. N. N. M.), Henry Edwards.

> HELIX (POLYGYRA) PLATYGLOSSA, Pfeiffer.

Five examples.
Mazatlan (No. 56958 , U. S. N. M.) ; City of Mexico (No. 56931, U. S. N. M.) Puebla, Puebla (No. 56930, U. S. N. M.). The latter were presented Proc. N. M. $94-11$
to the Musemm several years ago by the Mexican (ieographical Commission.

> HELIX (STENOTREMA) HIRSUTUM, Say.

Examples. Banks of Yaqui River near Guaymas (No. :30こ8こ, I. S. N. M.). *

Of this form Mr. WV. G. Binney remarks, in his "Manual of American Lamd Shells," page 279, a "postpliocene species now found over the northern and interior regions as far as Kansas and Virginia, and even into Alabama." Mr. Pilsbry, in his recent Check List of N. A. Land Shells, credits it to the "Eastern United States."

Upon examining some shells collected on the west coast several years ago by Dr. Edward Palmer, I found that he had obtained this form on the banks of the Yaqui River. It is noteworthy how frequently of late years species heretofore regarded as exclusively eastern or northeastern turn up somewhere on the West coast. A few years ago Dr. Cooper sent specimens of what proved to be, on Dr. Dall's identification, Hyalina Binneyana Morse, from Vancover Island, B. C., previously credited to the "Southern part of Maine, Michigan, Massachusetts, Vermont," and Mr. Hemphill found Helicodiscus lineatus, another of Say's species, several years ago in Oakland, on the castern side of San Francisco bay. This had previously been reported as far to the west as the Rio Chama, New Mexico.

Dr. Cooper, in his recent paper before referred to, describes a varietal form of the last named species, to which he has given the name of Helocodiscus lincatus Sonorensis detected near San Miguel, in the State of Sonora.

Family Orthalicide.

ORTHALICUS UNDATUS, Bruguiere.
One specimen. Tres Marias (No. 56975, U. S. N. M.).
The above example was collected living; the color pattern is of the usual irregularly mululating zigzag wave, and clouds, with rather a darker hue than the average of Florida specimens, and the aperture, or around the aperture, exhibits more or less of the darker tint that prevails over the general surface of the shell. The museum contains several examples of this species from Altata (No. 56973 , U.S. N. M.) , and I presume it is found at mamy pointson the mainland in the timbered regions of the Mexican States of Sonora and Cinaloa, from whence it is brought in the dyewoods to the embareaderos along the gulf shore. The Altata shells are on the whole somewhat lighter in general tone, though exhibiting the usual color pattern. The individuals of this form vary greatly in proportions as well as in eolor markings; in the former

* Vide "Nautilus," November, 1889.
respect they are like the Bulimuli of Texas on the one side and Lower California on the other.

ORTHALICUS UNDATUS, Bruguiere.
var.? =0. melanochilus, Valenciennes.
One specimen. Tres Marias (No. 56974, U. S. N. M.).
A living example nearly white, upper whorl pinkish white; without color markings save two narrow dark brown oblique carical lines on the penultimate and final whorl. The parietal wall and the edge of the outer lip blackish-brown as usual in the common dark colored specimens from Central America. Length 2.20 inches.

I regard this as simply a variety of the previous form, and both the same with the Central American and Florida shells so far as species are considered. The albinoism of the foregoing specimen is of interest when considered in relation to the enviromment and general character of the region wherein it is indigenous.

Family Buliaulide.

BULIMULUS (SCUTALUS) BAILEYI, 1)all.
$=$ B. Xantusi, vir. Stearns, not Binney. Proc. U. S. Nat. Mus., vol. xvi, 1893, pp.
$\quad 640-641$, pl. Lxxi, fig. 1.

Several examples.

Cape St. Lucas (No. 5s649, U. S. N. M.) ; Guaymas, E. Palmer (No. 1017.56, U. S. N. M.) ; Ortiz, V. Bailey (No. 10600t, L.. S. N. M.). Five specimens of what I regarded as a variety of Mr. Binney's species were given to me by Mr. Fisher. The precise locality not stated, or else the label was mislaid. The smallest of the five is larger than Binney's figure in his Land and Fresh Water Shells of North America, part 1, p. 210. The incremental lines are well marked, but the revolving lines, an inconstant and quite uncertain character in West American Land Shells, I have barely detected in some of the specimens, of which all but one are deaul. The largest measures 1.05 in length and .55 inch in breadth. They vary in solidity and opacity. This form is not confined to the peninsula. The National collection has received examples from the Department of Agriculture (No. 106004, I. S. N. M.), collected by Mr. Vernon Bailey "among rocks on the top of a hill 200 feet high," at Ortiz in the interior, a few miles back of Guaymas, in the fall of $\mathbf{1 8 8 9}$; this fact as to locality is of some importance, as heretofore our knowledge of the distribution of these Mexican forms has been confined almost exclusively to the peninsula.

The discovery of Mr. Binney's type of 1 . Kantusi shows that the shells collected by Mr. Bailey are not referable to said species even in a varietal relation.

Mr. Gustav Eisen, of the California Academy of Sciences, has col-
lected l3. Batileyi at Cape St. Luras, thins verifying Fisher's notes as to habitat.

> BULIMULUS (SCU'PALUS) PALLIDIOR, Sowerby.

Five specimens. (armen Island (No. 56591, U. S. N. M.), also Santa Margarita Island (No. 101036, U. S. N. M.).

The above exampless are of the typical form, and I believe that these are the first of the species that have been reported from the islands or as having leen fomd at a locality mot on the peninsula. The last were collected hy Mr. Townsend, of the U.S. Fish Commission steamer Albafross, and it will be noticed that these islands (Carmen and Margarita, are on opposite sides of the peninsula. The Santa Margarita specimens are of the rather robust variety deseribed by Dr. Gould as B. vegetus.

An interesting example from Carmen Island, which is registered as B. pallidion Sby. (No. $5865^{2}, \mathrm{U} . \mathrm{S} . \mathrm{N} . \mathrm{M}$), exhibits such characters as make it a connecting link with Gould's vegetus and the protens of Broderip, so-called, in the tendency to that sculptural texture of the surface which is called shagreened, or covered with fime granulation. This aspect of sculpture is not uncommon in the land shells that inhabit insular stations, or saline, sterile, and alkaline sandy regions. Many species could be named which occasionally furnish individuals which exhibit this peculiar facies. Examples of this species collected by Prof. George Davidson at Sian Jose del Cabo (No. iss651, U. S. N. M.) in March, 1873, were kept by me undisturbed in a box until June 23, 1875, when they were taken out for examination. I placed them in a glass jar with some chickweed and other tender vegetable food, and a little tepid water so as to make a warm humid atmosphere. This hospitable treatment induced them to wake up and move about after their long fast and sleep of two years, two months, and sixteen days. Subsequently all died but one, which was exhibited at ar meeting of the Cal. Acad. of Sciences, October 18,1875 . This latter example, it will be noticed, lived longer than his fellows, viz, two years and nearly seven months. These San Jose del C'abo specimens are now in the National Collection. The above has been referred to as an introduced form, which I regard as altogether improbable. The same aspects of variation that are scen in the shells of the alternutus, schicdecmus, and putriarchus bulimoids of Texas, Louisiana, ete., are exhibited in a greater or less degree by their relatives of the diulf of California region, more particularly by the pallidion. form, which often exhibits great difference in the size of examples from one colony as compared with specimens fiom another locality. The roughened surface forms of pullidior have been named by Dall var. striatula.

BULIMULUS (ORTHOTOMIUM) SUFFLATUS, G ould.

+ B. vesicalis, Gould.

Numerous examples.

Point San Quentin (Nos. 944, 9442, I. S. N. M.) Fisher, and La Paz, Belding (Nos. 34116, 34118, U. S. N. M.), and same locality Capt. Forrer. The National Collection has other examples from "Lower

California" (Nos. 56945,56946, l. S. N. M.). Some individuals are murh more globose than others; the juniors of the latter form suggest "pilula;" but this last is probably distinct. To the slenderer form of sufflatus Dr. Cooper has given the varietal name of insuluris, resting on on eximples collected by Mr. W. E. Bryant on Espiritu Santo Island. Belding collected the same at La Paz, and a large series from various localities show a regular graduation from one extreme to the other as in many other species of Bulimulus.

BULIMULUS (DRYMÆUS) ZIEGLERI, Pfeiffer.

Three examples, living. Altata (No. 57227, U. S. N. M.).
The above bears a very close relationship to B. serpercestrus Say, and may prove to be a local variety of that species. The specimens were carried to San Francisco in a cargo of dyewrod; their actual habitat is no doubt some distance back from the shore, as Altata is simply a landing and loading place for vessels in the Gulf trade. Mr. Lloyd, of the biological division of the U. S. Agricultural Department, collected three examples of serperastrus (No. 123.95, U. S. N. M.) at Hidalgo, Mexico, in 1889.

BULIMULUS (DRYMEUS) CALIFORNICUS, Reeve.

```
\(=\) Bulimus Californicus, Reeve, Icon. No. 378, Dec. 1848.-Pferffer, Mon. Hel. Viv., III, 422.
```

One example (No. 56955, U. S. N.M.).
This species credited to Ualifornia by Reeve has always, so far as habitat is considered, been regarded with doubt by west-coast collectors and authors, for two reasons; tirst, the occurrence of any form of the group resembling Reeve's figure and compatible with his description has never been verified either from California proper or the peninsula of Lower California; second, the California of the older authors seems to have been a sort of geographical waste-basket, more convenient than authentic in matters pertaining to distribution.

That excellent conchologist, Dr. Gould, regarded the above species as identical with Say's B. serperastris; * it may prove to be the same. Mr. W. G. Binney dissents from Dr. Gould. Having had oceasion to examine and determine several unlabeled specimens from the Gulf region (Stearus collection) I detected a single example of Californicus. The specimen exhibits less color marking than is shown in Reeve's figure, but otherwise agrees satisfactorily. On the testimony of this solitary example, I am of the same opinion as Mr. Binney.

Superfannily DI'LRFIMA'LA.
Family Onchididde.
ONCHIDELLA BINNEYI, Stearns.
Proc. U. S. Nat. Museum, Vol. xvi, 1893, pp. 342, 343.
Several examples (No. $585^{\circ} 4$, U. S. N. M.). San Francisquita Bay, Los Animas Bay, and Angeles Bay, in the Gulf of California.

Family LimNeide.
 PLANORBIS BICARINATUS, Say.

Many examples.
Mouth of Yaqui River (No. 53677, U. S. N. M.), Dr. Edward Palmer; Portland, Oreg. (No. 47600, IT. S. N. M.), and Autioch, Cal., Hemry Hemphill.

It is interesting to note the wide distribution of this comparatively well-marked form, to which I have heretofore and at greater length called attention.*

Commencing at Cape Elizabeth, Maine; thence westerly through Lake Simcoe, Canada; thence to Manitoba (Miller Cluristy), and Winnepeg Lakes (teste Bell), still westerly to Portland, Oreg.; thence southerly to the Yanui River locality near Guaymas, Mexico; thence easterly through Kansas, Alabama, and Georgia nearly to the Atlantic seaboard by the way of Virginia, the District of Columbia, Pennsylvania, New York, and Massachusetts, to the starting point as above given in Maine.

The west-coast localities are as yet "few and far between," and the number of examples limited. It will be observed that there is a great stretch of territory between the Yaqui River locality and the Kansas region, as well as between the Oregon locality and Manitoba. It is not unreasonable to predict or anticipate the detection of P. bicarinatus sooner or later at localities intermediate and connecting, when these vast and sparsely-settled areas are more thoroughly explored or more generally inhabited.

The occurrence of Helix (Stenotremu hirsuta) near Guaymas is elsewhere referred to in this paper.

PLANORBIS CORPULENTUS, S:
Several examples.
Cape St. Lucas, Prof. George Davidson, March, 1873. This species is widely distributed and inhabits an extensive geographical area on the western side of the continent, from the Columbia River in the north, thence easterly to Lake Winnipeg. Binney says " P. corpulentus is catalogued from Guatemala by Mr. Tristram."

Family Siphonarifide.

SIPHONARIA LECANIUM, Philippi.

+var. palmata, Callenter; + S. requilirata, Carpenter $;+$ iS. pica, Sowerby. Abundant. Tres Marias (No. 60386, U. S. N. M.).
The typical form in all stages from adolescence to maturity. It is

[^39]evidently very abundant at these islands. In the younger or smaller specimens there is a tendency to a serial or alternate armangement of prominent ribs with finer intermediate ones or riblets, as Carpenter terms them in his reference to this species in the Mazatlan catalogue, page 132, species 139.* The synonymy as above given is not complete; it should include other specific and varietal names; as the literature is not accessible by which I can verify the references and allusions to many species made by Carpenter and other authors whose comments I have read, I prefer to submit the above with my own notes and observations.
The variety palmutu (No. 6039%, T. S. N. M.) is simply a flattened form of leconium occasionally met with. I regard requilirutu as a less strongly sculptured and a closely ribbed variety of lecanium minus intermediate riblets, or with smooth interspaces where riblets oceur in typical lecanium.
The number of species and varieties which have been made is owing apparently to the excessive variability in the number of riblets as well as to the varying prominence of the same, also to variation in elevation or depression. Some individuals have 50 or more closely set nearly equal ribs, as do some of my largest specimens which measure 1.03 greatest leugth with an elevation of . 5 . inch; examples of these would be regarded as C'arpenter's aquilirata (No. 60395, U. S. N. M.). Sometimes as many as 60 nearly equal ribs are exhibited in specimens only. 69 inch in length, and .29 inch elevation. In these closely and equally ribbed individuals nearly or quite all of the ribs commence or start at the apex, are present in the adolescent shell, and are developed and maintained or continued with the growth of the shell through to maturity.

There is also a rather rare flattened intermediate form between those just described and the common coarsely ribbed ones, which connects the two, that is to say, the requilirate variety with the typical lecanium, which has 30 to 40 nearly or quite equal ribs with only occasional inconspicuous inter-ribs or lirre; this variety probably Carpenter was not familiar with, as it is not common.

In the typical lecanium which is, so far as my observation goes, the most abundant in individuals, the prominent ribs vary in number from as few as 11 in young shells to 23 or more in adults, the interspaces being filled with fine strie; it is often the case that the number of the coarse ribs in the same individual, in its earlier stages of growth, is less than the adult shell exhibits, as the coarse ribs often bifurate at some incremental stage and continue, each part being of equal prominence with the main rib from which they forked or branched. Such instances of lecanium as exhibit the fewest ribs, when flattened make

[^40]the variety pulmatu,* of which six examples now before me display from 24 coarse ribs in the largest sperimen 1.03 inch in length to only le ribs in the smallest which measmes only 47 of an inch in length; the exceeding prominence of the ribs in this specimen, projecting greatly beyond the margin, give the edge a digitated appearance, suggesting in miniature some of the Indo-Pacifie limpets; for illustration Patella saccharina Linnens.

The various aspects presented by lecomimm in its mumerous varieties and intermediate forms are such, that to quote Carpenter, \ddagger. I have found it impossible to separate them," hence my inclusion of his "rquilirata in the synonymy herein given.

If, as Carpenter says, \ddagger " S . manra sby., is one of the varieties of this species," and "s'. ferrugine" Rve., is probably deseribed from the intermediate forms" between S. mumiol and s. prlmutn, then these should be added to the synonymy. Carpenter regarded the form requiliruta as a Lower Californian rather than a Gulf species.s. He credits it to the northerly stations of ('erros lsland (Ayres and Veatch's collections), also to Margarita Bay (Pease shells) where he gives " levinseula Sby., teste Cuming," as a synonym of it, and he also reports it as firom Cape St. Lucas in the Nautus collection.

The Ayres, Veatch, Pease shells may be regarded as imhabiting exterion or ocean stations, heing the outer or western coast of the peninsula, while the latter place, Cape St. Lucas as well as the Tres Marias, where both the typical lecunium and crquilirutu variety are found, may be regarded geographically as well as biologically as intermediate middle or common ground, hence the occurrence or presence of both of these forms; or, again, if the erpuilirate form should be by some persons viewed as an extra limital aspect of lecanium, then perhaps we should include in the group as varieties and therefore synonyms of the southern N. costate, a rather small, delicate, closely ribbed atquilirate shell, the ribs fine rather than coase; this form is reported from Guacomayo (Cuming) Sowerby, and Panama (C. B. Adams); also in the Stearns collection from Panama (Bridges), and Valparaiso (Brannan); Dr. Jones obtained specimens at Payta. Some of the examples of costutu, the more coarsely ribbed specimens, are so close to the selected delicate examples of requilirata from the Tres Marias as to make it difficult if not impossible to satisfactorily segregate the two, were they mingled withont previous marking, many individuals of each run so closely together. The southern s. costuta is, aside fiom its inferior size and more delicate scupture and structure, more helcion-shaped, with the apex more or less recurved and nearer the margin.

[^41]In connection with the foregoing on the relations and variations of the west American forms of siphonaria, it will be found on examination that the species or forms of other famal regions, more or less remote, exhibit the same characters of variation, if not as extreme, nevertheless in a greater or less degree. For this purpose among numbers of specimens compare S.brumed Lanley from Bermuda, etc. (Jones); make a similar comparison with siolencopleura Gmelin from the Viti Islands.

Family Terebride.

TEREBRA (MYURELLA) VARIEGATA, Gray.
Many examples. San Jose Island (No. 56a97, U. 太. N. M.), La Paz (No. 101719, U. S. N. M.).

The specimens from the first locality are all young shells. Capt. Forrer also reported the above species from La Paz, where Fisher collected a varietal form (No. 101720, U. S. N. M.).

TEREBRA (SUBULA) STRIGATA, Sowerby.
= Buccinum elongatum, Woon. + T. zebra, Kiener. + T. Hammea, Lesson.
Oue specimen, beach; Tres Marias.
Rarely known to oceur so far to the north; "common at Panama."* Dr. Jones collected two examples at Paytat, Peru, and Cuming collected it at the Galapagos.

Family Conid
CONUS DALLI, Stearus.
Seven examples.
Tres Marias, Maria Madre (Nos. 37417,37418 , U. S. N. M.). Since describing this form in April, 1873, \dagger numerous specimens have passed under my examination, and confirm the couviction which led me at the time to regard this embroidered cone of the Mazatlan province as a new species. I see no necessity for modifying the diagnosis or the comments published at that time other than to add what is herein written.

In the collection of Mr. Fred. L. Button, of Oakland, Cal., is a remarkably fine series of young shells which are even more characteristic and distinct from any other of the embroidered cones than are the average adults of C. Dalli from C. textile, ete., which it occasionally somewhat resembles in pattern and color of markings. Mr. Fisher collected two living and several beach examples at the island of Maria Madre, the principal of the Tres Marias group. The largest, though somewhat rubbed and worn at each extremity, measures long. 2.35, lat. 1.29 inches; if perfect the length would be not less 2.65 inches.

Prof. Verrill refers, probably, to this shell in his "Contributions to

[^42]Zoology, etc.," No. vi, in Am. Jour. Sri. and Arts, Vol. Xlix, Mareh, 1870, p. 227.

CONUS VITTATUS, Lamarek.

Five sperimens, Tres Marias (No. 88312, U. S. N. M.).
The National collection contains further examples of this beautiful species. Mr. Fisher's are of the beautiful pink variety, and his shells range from juniors to adults.

Fine large sperimens of the purple colored shells fiom Panama are in the collection (No. 37435, IT. S. N. M.). These were collected by Bridges.

> CONUS PURPURASCENS, Broderip.

Numerous specimens.
San Josef Island; Port Escondido (No. 37410 , U. S. N. M.) ; Los Animas Bay (No. 37416, U. S. N. M) ; Angeles Bay; Tres Marias (No. 37415, U. S. N. M.); also from Sta. Margarita Island (No. 10239, U. S. N. M.). The Albatross collectors obtained numerous examples on the beach at the latter place.

CONUS PURPURASCENS, Broderip.

Var.? = scalptus, Reeve.
One example (No. 37407 , U. S. N. M.).
The above single specimen was in the Stearns collection from Acapulco. Reeve's species is apparently a vamety of purpurascens.

CONUS GLADIATOR, Broderip.
Three examples, living. Tres Marias (No. 37438 , U. S. N. M.).
In no respect varying from I'anama specimens collected by the late Thomas Bridges.
CONUS BRUNNEUS, Wood.

Two examples.
Tres Marias (No. 3744), U. S. N. M.). Nltata (No. 37447, U. S. N. M.). Mr. Fisher's specimens of this species were in fine condition and (haracteristic. The Musem also contains three other examples from latter place.

CONUS BRUNNEUS, W ood.
Var. = tiaratus, Brodemip.
Two specimens.
Tres Marias (No. 37449, U. S. N. M.). Found with the typical brunmens at the same time and in the same place. Agrees with Reeve's figure, ('onch. Icon., 143. Reeve regarded it as a varrety of the IndoPacific (! minimus which is found at the Navigator Islands (Upolu) and in the Viti group still further to the sonthwest, which imples that the suite of C. brummens examined by Reeve was rather limited in number of individuals. See remarks in this connection in my paper on "The

Mollusk fauna of the (ialapagos Islands, ete.," Proc. I. S. Nat. Mus., Vol. xvi, pp. 384-385.

CONUS NUX, broderip.
Five specimens.
Port Escondido and Tres Marias (No. 374is, U. N. N. M.). s'uta Margarita Island (1 specimen), Albatross.

CONUS PRINCEPS, Linnteus.
A few specimens, Port Escondido (No. 37402, U. S. N. M.); Tres Marias (No. 37401, U. S. N. M.).
Mr. Fisher obtained a few examples of this beautiful shell at the foregoing places. He found them "attached to coral blocks," at Port Escondido; several examples from Carmen Island were received from the Stearns collection (No. 37403, U. S. N. M.), and a rare variety without the usual linear markings, from the same collection, detected at Panama by the well-known collector, Thomas Bridges (No. 37404, U. S. N. M.).

> CONUS REGULARIS, Sowerby.

Var. = C. monilifer, Broderip.
A few examples.
Port Escondido (No. 37391, U. S. N. M.) ; this form is found also at Carmen Island (No. 37394, U. S. N. M.); and a variety at Pichilinque Islaud (No. 37392, U. S. N. M.).

CONUS DISPAR, Sowerby.
Var. = C. monilifer, Broderip, var.
Two examples, Boca de los Piedras (No. 37437, U. S. N. M.). CONUS ARCHON, Broderip.
Three examples (No. 37397, U. S. N. M.) ; Manzanillo.
CONUS LUCIDUS, Mawe.
Two specimens; beach. Sta. Margarita Island; Albatross. Ranges southerly to the Galapagos Islands.

CONUS INTERRUPTUS, Broderip.
Three specimens, San Lucas Cove; Angeles Bay (No. $3742: 3$, U.S.N.M.). CONUS CALIFORNICUS, Hinds.

One fresh example, Ballenas Bay; Albatross.

> Family Pleur otomid e. PLEUROTOMA PICTA, Beck.

Four specimens; dredged. San Lucas Cove (No. 万in241, U. S. N. M.). The above vary in leugth from 17 to $2 \frac{9}{16}$ inches; this is a keeled
form, the peripheral (arinal being the most prominent; between the keels the surface is finely spirally threaded.

PLEUROTOMA (SURCULA) FUNICULATA, Vilenciennes.

One specimen at each place.
 chocolate-colored living example, こ. 49 inches in length by . 84 inch in breadth, was found, with many other pleurotomids, as above. Though not a rare form, it is appaxently less common than its near relative, P. olicucer Sby. I' funiculatu, though a less robust shell and not as coarsely seulptured as oliwaco, exhibits in a striking degree the characteristic sculpture of olicacea; it is generally darker colored, though frequently of an olive green or greenish clay color, sometimes yellowish brown and again dark chocolate. The color in many of the species is so exceedingly variable as to be of little value as a specific distinction.

PI.EUROTOMA (SURCULA) OLIVACEA, Sowerby.
One specimen (No. 55233, U. S. N. M.). Boca de los Piedras.
An adolescentexample, dredged at the above place, 94 inch length, of a clear white, withont epidermis.

PLEUROTOMA (SURCULA) J'UBERCLLIFERA, Brod. and Sby.
One specimen. San Lucas Cove (No. 52228, U. S. N. M.).
An exceedingly fine example of this strongly chatraterized species Was obtained with the dredge. It is a rare form and seldom met with in collections.

PLEUROTOMA (SURCULA) MACULOSA, Sowe rby.

Five examples dredged (No. 55059, U. S. N. M.). Sin Lucas Cove. One of these was a fresh, perfect shell.

PLEUROTOMA (DRILLIA) UNIMACULATA, So we rby.

One specimen. San Lucas Cove (No. 55239, U.S. N. M.).
One example of the above was collected at this place, which seems to be rather the metropolis of pleurotomid forms in this general region. It closely resembles echinatus Lam., said to come from New Guinea. I. umimaculata is a narower shell, and has heretofore been credited to the west coast of Central America. They both secm to be very close to the l '. gibhost of Kiener. 'The specimen under review is much nearer to echimuta Lam. than to Kiener's gibbosa, as these two species are represented in the figures given by Chenu, Manual, Kol. I, figures 6 ± 6 and (65). Inimuculutu is an monformate name, as names based ou color markings frequently prove to be; for in the instance before me, there is not only a large brownish spot on the basal whorl, but all of the numer-
ous nodes are spotted above and below, and there are revolving bands of the same color, especially seen on the basal volution.

PLEUROTOMA (DRILLIA) INCRASSATA, Sowerby.
=D. Botta, Val., Tryon.
One example from each locality.
Mazatlan, Hemry Edwards; San Lucas Cove, Fisher (No. 5is̃5:, 1. . . N. M.).

The Mazatlan example was collected and presented to the writer by his esteemed friend, the late Henry Edwards, so well known as an excellent entomologist and actor.
(His magnificent collection of insects has recently become the property of the American Museum of Natural History, New York.)

> PLEUROTOMA (DRILLIA) MAURA, Sowerby.

Several specimens.
San Lucas Cove, dredged off San Maroos Island (No. 55ะ37, U. S. N. M.).

Five examples, imperfect and dead, were obtained by dredging at this place. The largest measures 2.50 long., lat., . 63 , aperture 1.16 inches; the others, without making allowance for the erosion of the apex, measure, respectively, $2.09,2.06,1.94$, and $1.8 \pm$ long. inches. A comparison of the specimens shows that they rum quite closely in sculpture, varying but little; in color they range, as do several of the related forms, from dark chocolate to a yellowish or sienna-brown. The late Mr. Tryon kindly compared the above with the specimens in the Philadelphia Academy's collection, and returned the following note:
"Pl. maura, Sowb. Reeve, sp. 47, 'Isle of La Plata;' and exactly like a specimen in our museum received from Sowerby."

Worn specimens sometimes exhibit a whitish line following the suture, on the upper whorls and just below the knobs on the body whorl. Reeve gives a figure of this species in his Conchologif Systemuticn, but the fine sculpture shown in said tigure is not so clearly exhibited in heavy adult specimens.

Family Cancellaridde.

CANCELLARIA (APHERA) TESSELLATA, sowerby.
Sereral examples. La Daz Harbor, on a small island (No. friz73, U. S. N. M.).

Many specimens of this rare and pechliar form were obtained as above indicated by Mr. Fisher. The figure No. 1841 in Chenu's Manmal, Vol. I, is apparently drawn from a young specimen.

Family OLIVID E.

OLIVA VENULATA, Lamarck.
Numerous examples.
(Nos. 32401, 32402, 32416, 3:4:31, U. S. N. M.) La Paz; Los Animas

Bay: Mulege Bay and Thes Marias. ('apt. Former collected the above at La Paz; Loreto, Gabb.

This species exhibits extreme variation. In fact, the olives liom the Gulf region with the exception of two or three speries are not easy to determine. Reeve makes the above as well as O. oromosa Lam., 0. Timored, (). obesina, and O. pindarina as synonyms of O.reticnlaris, the well-known Antillean species. I have never met with an example from the West coast that so closely resembled reticularis as to suggest such a conmection. (Garpenter makes O. Melchersi Mke., 1851, include O. anyulute junior; O. subangulate, O. Cumingii, and 0 . polpastry. II is O. intertinctu is nothing but a variety of Melehersi and three suecimens recorded hy him as "? intertincta" were found upon examination to be, (1) elegons, and (2) irisans, both Indo-Pacific forms. I am quite sure, however, that this must have heen in some way a blunder on the part of an assistant. The La Paz examples (No. 32402, U.S. N. MI.) are typical. (). remulatu rums all the way from closely reticulated ziǧag waves or Vs on a lightish warm ground with a purple or brownish-purple stain on the terminal part of the columella, to shells that are a warm cream-yellow, sometimes without any of the V-shaped pencilings and sometimes with the same, but subordinated more on less to the gemeral yellowish tome of the surface. A gain the Vs are absolutely wanting and the markings are longitudinal, having somewhat of a ligneous aspect, resembling the graining of wood, with darker umber-eolored zones blending and softening down to the lighter tint of the ground work or general color. Examples thus colored are the ligmeola of Reeve (Mus. Steere), and the same author's O. Cumingii is still another aspect. 'The opposite extreme of coloration is seen in the beautiful dark, nearly black variety which has received the name of oriole. In these the Vs can generally be seen under the rich glaze that characterizes the numerous forms and varieties of this so-called speries. Oftell in the point of the VVs, there is a nebulous roundish spot, such as would ocem in painting, by the paint or color ruming off of the brush and filling up the sharp angle on the imner side of the point of the V. This gives a beantiful spotted effect in some examples, and oceus as a feature more or less conspicuous in many of the West ('oast olives. The examples from Los Animas Bay (No. $3: 343$, U. S. N. MI.) suggest Iflictta by their dotted flames. At Boca de los Piedras, Fisher obtained mumerous examples (No. 32416, U.S. N. M.) of the short, rather stumpy, light-colored variety, with rather obscure siema-yellow markings, (VVs) on a rich creamy yellow ground. Carpenter has compared this variety to the reticularis of the Caribbean region, but the two are readily separable by any moderately intelligent expert. Fisher's Boca shells vary in size from . 36 minimum to 1.12 maximum in length. The purplish chocolate stain at the base of the columella is quite a
permanent chameter and is present in the smallest as well as the largest individuals.

> OLIVA ANGULATA, Lamarck.

Two specimens.
La Paz (No. 32420, U. S. N. M). Nita. Margarita Lsland (2 beach), Albatross. Small examples sometimes exhibit a facies suggestive of O. polpaster Duclos, or it may be said on the other side that orcasional heavy examples of O. polpaster resemble young individuals of O. angulata.

OLIVA SPLENDIDULA, Sowerby.

Two specimens. Tres Marias.
One of Mr. Fisher's specimens measured \because inches in length. This is an exceedingly beautiful as well as a rave species, and easily distinguishable from any other of the genus. Of the large and beautiful Olixa porphyrea, so highly prized by amateurs, and frequently used as a mantel ornament, Mr. Fisher did not obtain any examples. It is quite common, compared with splendidulu.

OLIVA SUBANGULATA, Plıilippi.
Three specimens. La Paz; Mulege Bay.
OLIVANCHLLARIA (AGARONIA) TESTACEA, Lamarek.
Two examples, Gulf of California (No. 32452 , U. S. N. M.).
OLIVELLA GRACILIS, Gray.
Three young specimens. Mulege Bay (No. 4ãat, Li. s. N. M.).
OLIVELLA UNDATELIA, Lamarek.
Five specimens. Altata (No. 47222, U. S. N. M.).
OLIVELLA DAMA, Ma we.
Numerous cxamples.
Mulege Bay (No. 47230, U. S. N. M.); Los Animas Bay; Loreto; Angeles Bay; San Lucas Cove; La Pa\%.

OLIVELLA CYANEA, Reeve.
$=$ O. puclchant, Orbigny, Reeve's Monos., Pl. xxiv, figs $70^{a}, 70^{\prime \prime}, 70^{\circ}$.
Abundant, living. Tres Marias (No. 47254, U. S. N. M.).
Family Harpidad.
HARPA CRENATA, S w a inson.
[uot B. crenata Gray or H. crenata, Reeve, of authors.]
$=$ H. seriba, VaL. + H.gracilis, B. \& S. + H.rosea crenata, Gray. + Buccinum roseum, Wood. + Buccinum minus, Wood; [not Harpa minor, Mart.] $+H$. Riviolina, Lesson. + H. rosea, var. Kiener. + H. Mexicama? Jay's Cat. $+H$. testudinalis? Id.

Numerous specimens. Tres Marias.

Collected hereby Fisher; previously received by me from the islands in all stages of growth. Horpu rosen, with which this Gulf shell is sometimes confomoded, is an dfrican species, which in maturity nearly always exhibits the rose-pink color which is generally contined to the earlier stages of H. crenuta; in young shells of the latter it is apparently a constant character. The ribs in cenatu are much less developed than in the other Harps; fresh living shells are frequently met with of a dull reddish-ashen surface, but very slightly enameled, while the delicate waved markings are nearly obsolete. Highly colored and glossy individuals are rery beautiful, though even in such examples the enamel is less brilliant than in most of the species. Carpenter (in B. A. Report, 1563, p. 122), referring to the prices of certain West American shells as noted in the British Museum copy of the "Tankerville catalogne," $18^{2} 5$, quotes H. crenata $45 s .=\$ 11.25$, and Comus regius $(=$ C.princeps) is given at $£ 55 s .=\$ 26.25$. The peculiar Lucinu (Miltha) Childreni Gray, a form that is rare even to this day, is quoted at $£ 1010 \mathrm{~s} .=\$ 52.50$.

Family Marginellide.
VOLVARINA VARIA, Sowerbs.
One example. Mulege Bay (No. 12260, U. S. N. M.).
Although Fisher's collection contained only one, a dead shell, it is not an uncommon form from the Gulf region. It it credited by Carpenter to Cape St. Lucas and to the West Indies.

Family Volutide.
VOLUTA (ENATA) CUMINGII, Broderip.

+ E. Pederseni, Verrild.
Several specimens. San Lucas Cove (No. 46380 , I. S. N. M.).
Mr. Fisher collected many examples of this interesting form at the above place, which well illustrate the differentiation between the mature and adolescent stages of growth. Numerous specimens collected by various parties or procured from sailors employed in the Gulf trade especially during the Framco-Mexican war, when the commerce between San Francisco and west Mexican Gulf ports was at its height, have passed muder my examination. Prof. Verrill many years ago described E. Pederseni from specimens collected by Capt. Pedersen, but I am inclined to regard it as only a variety of c'umingii. Toluta f'umingii has since been detected as far morth as Magdalena Bay (No. 102.th, U. A. N. M.) by Mr. C. H. Townsend, of the U. S. Fish Commission.

Family 'IURBINELLid $\begin{gathered}\text { E. }\end{gathered}$

 MELONGENA (SOLENOSTEIRA) MODIFICATA, Reeve.$=$ Siphonalia modificata, Reeve, and of anthors.
Many specimens.
La Paz; San Lucas Cove; Los Animas Bay; Angeles Island; Boca de los Piedras; Tres Marias (No. 46754, U. S. N. M.).

As to the relationship of the above form see Dall's remarks in the Transactions of the Wagner Institute, Philadelphia, volume 3, part 1, p. 122, August, 1890, and my paper on Dr. Jones' collection of South American shells in Vol. xiv, Proc. U. S. National Museum, 1). 323.

Family Mitride.
MITRA LENS, Wood.
Common, between tide marks. La Paz; Tres Marias.

MITRA EFFUSA, Swainson.

Rare. A solitary specimen.
Mulege Bay (No. 46409, U. S. N. M.) ; Dr. Gabb also collected an example somewhere on the Gulf side of the peninsula.

> MITRA (CANCILLA) SULCATA, Swainson.
= M. gigamtea, Swainson. + M. Hindsii, Reeve. + M. attemata, Swainson. + M. funiculata, Reeve.

Several specimens. San Lucas Cove (Nos. 46405,46406, U. S. N. M.).
The synonymy as above is given by Tryon. (Manual, Monograph of Mitride, p. 139.)

MITRA (STRIGATELLA) TRISTIS, Brodorip.
Numerous fine specimens.
Mulege Bay (No. 46393, U. S. N. M.) ; Los Animas Bay (No. 46:390, U. S. N. M.).

Fisher's specimens were for the most part small or immature; his. largest example measured long. 1.17, lat. . 45 inch.

Family FAsciolaride.
LATIRUS (LEUCOZONLA) CINGULATA, Lamarek.
One example, Tres Marias (No. 47124, U. S. N. M.).
Occurs also at Mazatlan in the Gulf, thence southward to Panama where it has been collected by Cuming, C. B. Adams, Bridges, and others. This form varies considerably in height of the spire as well as in the length of the horn. It has been erroneously placed in the genus Monoceros, Lam. (=Acanthina, Fischer, in Adams genera), also by C. B. Adams in his "Shells of Panama," and by Chenu (Manual, tome 1, p. 169, fig. 832). Calkins in his Catalogue of the Marine Shells of Florida, etc., Proc. Davemport Acad. Nat. Sci., Mach 29, 1878, has erroneously included this species, confounding it quite likely through general similarity of name with the very different Caribbean Latirus cingulifere, Lam., and further added to the confusion by including the Proc. N. M. $94-12$
"genns Monocerds, Lam.," in his catalogue and placing Lencozonia as a subgenus theremmer. He remarks that 6 it is a Panama species found by me at the southern extremity of Florida."

The neressity for calling attention to this unfortunate "muddle" again at this late day, is apparent to any student who has observed how persistently errors of this class find a lodgment in the literature, long after they have been pointed out or exposed. It is well known that neither Leucozonia cingulatu nor any representative of the group, Monoceros have up, to this time been detected on the Itlantic side of the continents, and it is particularly remarkable so far as regards the latter genus.

LATIRUS CERATUS, Wood.

Numerons specimens, living. Tres Marias (No. 4712., U. S. N. Mr.).
Many fine examples were deterted by Mr. Fisher living in the crevices of the lerges and dead on the beaches. The average dimensions of the Fisher shells is, long. 2.69, lat. 1.44 inches.

> FUSUS DUPETITHOUARSII, Kiener.

Many specimens.
La Paz and Nan Lucas ('ove; Loreto (No. 32:336, U. S. N. M.); Carmen Island (No. 32334 , U. S. N. M.). Of this fine species the examples range from 1.76 to 7.50 inches in length. Compared with specimens of F. multicarinatus. from Yokohama, a form regarded by the late Mr. Tryon as the same as F. Recvirnus Phil, and which he further suggests as the same as F. Yorn-Hollondice live., I find the seulpture rather finer and the canal (not a fixed character in the spindle shells) proportionally longer in the Japanese species. Though rmming very close, the two may be regarded as valid species. In some individuals of the Gulf form the longitudinal ribs which extend from suture to suture on the upper whorls become reduced to mere tubercles on the periphery of the two last or larger whorls.

> FUSUS AMBUSTUS, Gould.

Six examples.
San Lucas Cove (No. 32340, U. S. N. M.).
Since the publication of Mr. Dall's paper* "On the Californian spe"ies of Fusus" and Mr. Tryon's Monograph, † I have carefully examined the varions species included therein that inhabit the region referred to in this paper. Mr. Fisher collected eleven specimens of the form now regarled as ambustus. In the various related material before me, I found lont little difficulty in segregating these. The two largest meas-

[^43]ure respectively 2 and 2.05 inches in length; placed side by side with examples of F. Dupethithouarsio of same length it will be seen that the former is generally of slenderer habit and a more graceful form, as Tryon remarks. Fine mature specimens are often bluish-white inside of the aperture.
fUSUS CINEREUS, Re日Ve.
Several specimens. La Pa\% (No. 3235t, U. S. N. M.) ; San Lucas Cove (No. 32353, U. S. N. M.).

The three La Paz shells are small, of the four Cove specimens, two are adult and two juniors. Rather a rare shell in collections. The National Collection contains examples received from other somrees. From Panama, collected by Bridges, several examples are registered nuder the numbers $3=3.36$ and 32357 . It is found at other places in the Gulf region.

PISANIA (TRITONIDEA) INSIGNIS, Reeve.

$=$ Pisania insignis, Reeve, in S. I. Check List 1860, and Carpenter's Mazatlan Catalogue.

Not common; onespecimen. San Lucas Cove (No. 46736, U.S. N. M.).
The Fisher example from the above loeality is destitute of the longitudinal ribs. Sta. Margatita Island (two beach shells), Albatross.

PISANIA. ('TRI'TONIDEA) GEMLMA'TA, Reeve.
Three examples. Mazatlan (No. 46746 , U.S. N. M.), Henry Edwards. This species appears to be of infrequent occurrence.

ENGINA CARBONARIA, Re日ve.
Three juniors, live shells. Mulege Bay (No. 4668s, U. A. N. MI.). A rare species.

ENGINA CARBONARIA, Reeve; var. FUSIFORMIS, Stearns.
 N. M.).

An elongated rather coarsely scuptured shell, quite deceptive at first sight. Onter lip simple, as if immature; in strong contrast with the ordinary chunky, solid, heavy-lipped type of the species.

MACRON ETHIOPS, Reeve.

+ M. Kellettii, Hinds; Stearns, Proc. Phil. Acad. Nat. Sciences, pp. 397, 398, PI. vif, tigs. 3, 4, 5.
Common; fine specimens. San Quentin Bay (Nos. 60074, 60075, 60076, U. S. N. M.).

Numerous living examples of this variable shell were collected by Mr. Fisher on "mud Hats" in said bay, which indisputably connect the above forms. Reeve's description and figure indicate an example in
which the entire surface was broadly and deeply chameled or grooved, agreeing perfectly with sperimens in the National collection (60074) Which measure 2.9 inches in length hy 1.92 inch in width; from this size younger examples as small as 1 inch in length by 0.08 inch in width (the outer lip, thin at this age), show the same characters. In Kellettio (60076) Hinds" form, the shell exhibits only three of these channels, near the base of the body whorl. Mr. Fisher's specimens prove that the grooving is an unertain eharacter. The number of individuals collected by him was fortunately ample enough to settle all doubts and prove that the two forms as above should be united under one specific name; as Mr. Reeve's appears to be the first in order of time, it must be adopted. The National Museum series exhibits all of the intermediate forms or varieties; the connecting links (60075) were received not only with the Fisher shells but from Hemphill and other sources.

The shells of the foregoing when living or fresh are covered with a thick blackish epidermis, which is apt to peel or thake off when very dry. The epidermis has the same character in the rare Mitra Beleheri, in common with other West American related forms, and we may presume it lives in similar muddy stations.

Examples of M. Wthiops of the form that is erooved throughout lave been collected at Cerros or Cedros Island, on the ocean side of Lower California; it was collected years ago by Capt. Scammon, in Scammon's lagoon. The late Prof. W. M. (dabb found it at San Juauico, on the ocean side of the penimsula, in 1867, and Henry ITemphill has contributed specimens to the National Musemm, collected by him at San Ignacio lagoon (No. $105+32$, U. S. N. M.) ; Manuel lagoon (No. 105433, U.S. N. M.) ; Point Abreogos "aromud rocks" (No. 10.5434, U. S. N. M.) also at Scammon's lagoon (No. 10542s, U. S. N. M.). Ballenas Bay (No. 102256, U. S. N. M.), U. S. Fish Commission, Albatross.

Family Nasside.

Nassa tegula, reeve.
$=N$. tiarula, Kiener.
Abundant.
La Paz; Mulege Bay (No. 4(6616, U. S. N. M.). Los Animas Bay (No. 46615, J. S. N. M.) ; Loreto. This variable species is exceedingly mumerons at many places in the Gulf region and elsewhere on the shores of Lower California; it exhibits many interesting and suggestive varieties. The usual Gulf form is of a pale, dingy yellow or yellowishwhite color, in some specimens rumning into an ashen-blue on the last half of the final whorl, with sometimes two, more rarely, three dark color bands, the upper one intermpted by the sculpture, which latter consists of $\&$ or 9 strong longiturlinal ribs, interrupted and broken into nodules by a transverse grove, just below the suture; the ribs evanesce on the last thind of the basal whorl, showing three or four strong nodules
only, with a nearly smooth area below. Otherwise sculptured with ten or more sharp, revolving strix; the varying prominence of the longitudinal and transverse seulpture, combined with variableness in formsome shells being robust or "chunky," others elongated-produces, as may be supposed, many varieties. A dwarfed form is often met with. A variety occasionally noticed resembles one aspect of the (inlf of Mexico Nasse vibex; specimens of these occur at La Paz.

In the more northerly examples from San Diego and thereabout the longitudinal and trausverse scupture is less variable, being more nearly equal in prominence; the shells are darker colored, with usually a conspicuous dark spot over the month. Some of the San Diego specimens closely resemble certain occasional individuals of Netse lirate Dkir., from Japan. In an interesting paper by F. P. Marat (May, 1876), "On the variation of seulpture exhibited in the shells of the Genus Nassa," the author remarks:
N. tegula (Reeve pl. 15, fig. 99, a and b), is simply coronated at the sutures, but when the ribs are completed it becomes the N. coronula, A. Ad. Some of my varieties are only halt ribbed, and others are scarcely ribbed beyond the tubercles.

NASSA CORPULENTA, C. B. Adams.
Several sperimens. Tres Marias (No. H6606, U.S. N. M.). I rather rare shell.

NASSA LUTEOSTOMA, Broderip and Sowerby.
Several examples.
La Paz; St. Josef Istand; Los Animas Bay (No. 4660s, UT. S. N. M.); Francisquita Bay; Angeles Bay; Boca de los Piedras; Tres Marias.

NASSA COMPLANATA, Po w is.
$=$ N. scabriuscula, C. B. Adams.
Numerons (Nos. 4664, 46646, U. S. N. M.). Los Animas Bay; Mulege Bay.

NASSA COMPLANA'TA; var. MAJOR, Stearns.

Abundant (No. 75155, U. S. N. M.). Los Animas Bay.
The above is a much larger form than the average of typical complanate and much coarser in sculpture, and some of the examples are as large as small specimeus of tegulu; it suggests on a casual glance N. vibex, of Floridan waters.

NASSA BRUNNEOSTOMA, Stoarus.
Nassa brunneostoma, Stearsis, Nantilus, May, 1893; Proc. U. N. Nat. Museum, Vol. xVI, 1893, pp. 344, 345.

Abundant.

Gulf of California near the mouth of the Colorado River (No. 37239, U. S. N. M.) ; Guaymas (Nos. 23721, 55951, U. S. N. M.).

Gollected by Dr. Edward Palmer. An exeedingly pretty and eharacteristic speceies, allied in a genemal way to Reeve's tegula and Powis's complanuta.

COLUMBELLA HAMASTOMA, s owerby.
Not common; beach. San Lucas Cove.

> COLUMBELLA FUSCA'A, so worby.

Common, living. Tres Marias; Loreto.
COLUMBELLA MAJOR, Sowerby.
('ommon, living. Port Escondido; Tres Marias and elsewhere. Fisher's shells fiom the first locality are of the small variety.

COLUMBELLA (ANACHIS) CORONATA, Sowerle y
A few examples. Mulege Bay; Tres Marias.
Compared with related forms this species is apparently rather rare, not only at the above place, but throughout the (xulf region.

COLUMBELLA (ANACHIS) GASKOINII, Carpeuter.
A. taniata, Puilipri.

Examples (No. 45:56, U. S. N. M.). Mazatlan, Henry Edwards, Januuary, 1873. A rare and very pretty species.
(COLUMBELLA (ANACHIS : PARVA, Sowerby.
Two sperimens. Mazatlan, Hy. Edwards (No. 4s:270, I. S. N. M.).
COLUMBELLA (ANACHIS) LYRATA, Soworby.
Examples, beach. Loreto.

> COLUMBELLA (ANACHIS) NIGRICANS, sowerby.

Examples. Loreto.
COLUMBELLA (ANACHIS) SERRATA, Carponter.
Beach specimens. Loreto.
COLUMBELLA (NITIDELLA) CRIBRARIA, Lamarek.
Common.
La Paz; Nan Lucas Cove; Los Animas Bay, Angeles Island; Tres Marias (Nos. 48:3:3, 48334, U. S. N. M.) ; Boca de los Piedras.

Two well-marked varieties, one of a dark chocolate-red, with light spots; the other siema yellow, with light spots; the latter appear to be more truncated than the first ; both of them are on an average rather larger than the usual run of Nicaraguan examples. Occurs also at

Panama, the Calapagos Islands, on the Florida Kers, in the Antilles, and was found to be common at Porto (irande (No. 1ense? , U. S. N. M.), Cape de Verde Islands by the Eelipse Expedition to West Africa, in 1859.

```
COLUMBELLA (ME'TA) CEDONULLI, Reeve.
```

=Conella cedomulli, of tuthors.
Numerous examples.
Port Escondido (No. 48:318, U. S. N. M.) ; San Josef Island; Loreto; San Lueas Cove; Los Animas Bay; Mulege Bay; Tres Marias, also at Carmen Island. This form is conspicuons from its numerous and frequently beautiful color varietien. A portion of the Fisher specmens came from the first locality, a single colouy. They were all of the same general color, being blotched and spotted with dark brown and yellowish white in varying proportions. In fresh specimens the epidermis around the spire has sometimes a plated and tufted aspect coincident with the incremental lines.

COLUMBELLA (STROMBINA) MACULOSA, Sowerls y.

Seven specimens.
Tres Marias (No. 4s306, U. S. N. M.) ; Loreto; Carmen Island (No. 48303, U. S. N. M.); fine examples of this graceful shell were collected by Mr. Fisher, in some instances measuring $1.3 \overline{5}$ inches in length. It is the commonest species of the geuus on the West coast.

> Family M URICID E.
> Subfamily Muricin e.
> MUREX PLICATUS, So werby.

Three examples.
La Paz (No. 46757, U. S. N. M.) ; San Lucas Cove; Loreto; Mulege Bay (No. 46758, U. S. N. M.).

Capt. Forrer obtained this species at La Paz.

MUREX (CHICOREUS) PALMA-ROSA MEXICANA, Stearis.

Chicoreus palma-rosa Mexicana, Stearns, Proc. U. S. Nat. Museum, Vol. Xvi, 1893, pp. 345-346.
$?=$ M. palma-rose, Lamarck, var.
?= M. affinis, Reeve.
$q=$ M. Steerice, Reeve.
A single example (No. $46803, \mathrm{U} . \mathrm{S} . \mathrm{N} . \mathrm{M}$.$) ; in fair condition. Tres$ Marias.

MUREX (PHYLLONOTUS) BICOLOR, Valencienues.
Young shells; several examples. La Paz and elsewhere.
The specimens submitted to me by Mr. Fisher were young iresh
examples only from 1.14 to 1.23 inches in length. At this early stage it is nearly impossible to determine under which of the following specific names to place them. While I am inclined to regard them as the junions of bicolor, first, from the general aspect leaning toward said species, and, second, because bicolor is the more abundant of the three, there is, nevertheless, a reasonable doubt. We have as closely related forms, P^{\prime}. licolor Val., P^{\prime}. Irassica Lam., and P^{\prime}. erythrostoma Swains.
The latter is apparently a pale variety of P^{\prime}. bicolor, of which mumerous examples were in my collection and many more have passed through my hands.

In paragraph 60, on page 059 of Carpenter"s "Report (1863) to the British Association," he refer's to Sowerby's monograph with comments thus "? = bicolor, var." which it may be. 1 am ince ined to regard it as a variety of M. (Phyllonotus) brassica.

MUREX (PHYLLONOTUS) PRINCEPS, Broderip.

Single example. La Paz (No. 47172, U. S. N. M.).
The solitary specimen before me is only 1.10 inches in length. The sharpness of sculpture and the elaborate arborescent fringing of the varices in adolescent specimens produce a general effect, which, when compared with heavy adult individuas, is quite likely to mislead those who are not familiar with the West American species in their various stages, and the character of their variation. It is not unlikely that many of the species made by the older anthors are really immature varietal forms or geographical varieties. Murex nitidus, Brod. (Conch. Ills., fig. 4), Sowerby remarks as being "probably a variety of the last [M. princeps] in a young state."

The late Thomas Bridges collected numerous specimens of princeps on the coast of Nicaragua at San Juan del Sur, or in that immediate neighborhood. Prof. (., B. Adams did not report it from Panama in the catalogue of his collection from that place. The Nicaraguan examples, so far as I have observed, differ from those of the Gulf region in the same general way as do the adult specimens of P. radix from Panama from the Gulf forms of the same which the late Dr. Carpenter catalogued in his "Mazatlan Mollusea" as "P'. nigritus, Meusch.," and in the S. I. check list as " P. nigritus, Phil." The southern shells of both princeps and radix are generally more stumpy and solid. Though some of Prof. Adams's specimens of P. radix, Carpenter says in his review * of Adams's catalogue, "are remarkably fine, more nearly resembling the (iulf nigritus than the heavy stumpy shells usually seen, * * * Phyllonotus radix and nigritus graduate into each other almost as freely as the latter does into ambiguns." The last is one of Mr. Reeve's species based on a variety of rudix, which, being the older name, must stand, and includes also as synonyms P. nigritus, Phil, of

[^44]Mensch., and P. ambigurs, Reeve. The number of varices, thongh constant within certain limits, is not so persistent and rigid a character as to be of speeific value as between the forms referred to by the anthors above quoted, some of whom seem to have held rather arbitrary notions as to what constitute a species.

MUREX (PHYLLONOTUS) BRASSICA, Lamarek.
A few examples. Magdalena Bay; La Paz (No. 47172, U. S. N. M.). Mulege Bay.

MUREX (PHYLLONOTUs) RADLX, Gmelin.

```
Var.= nitidas Bromerip.
+ nigritus Meusch.
+ ambiguus Reeve.
```

Two beach shells. Sta. Margarita Island, Albatross.

OCINEBRA LUGUBRIS, S owerby.

Proc. Zool. Soc., London, 1832, p. 175.-Conch. Ill., fig. 26, Reeve, Ieon. sp. 143. Murex erinaceoides, Val., Recueil d'observations, etc., 11, 302, 1833. = Murex Californicus, Hinds, Proc. Zoöl: Soc., London, p. 128, 1843, Voyage Sulphur t. 3,f. 9, 10. = Murex Californicus, Reeve, Conch. Icon. sp. 144. = Murex (Ocinebra) erinaceoides, Val. '(=M. Californicus, Hinds), Stealins, Proc. Phil. Acad., 1878, pp. 395-396.
La Paz, Fisher (No. 46767, U. S. N. M.). Atteution is called to my remarks on the foregoing in the Proc. U. S. National Museum, Vol. xvi, 1893, pp. $346,347$.

OCINEBRA (MURICIDEA) SQUAMULIFER, Carpenter.
$?=$ Mr. fimbriata, A. Adams, var.
Several fine examples (No. 46779, U. S. N. M.). Port Escondido; San Lucas Cove.

Very close to M. hexugonus Lam. Tryon remarks it is undoubtedly the same species. I have not seen a sufticient number of the Antillean form to hazard an opinion.

EUPLEURA MURICIFORMIS, Broderip.

Common.
San Lucas Cove, opposite Marcos Island (No. 3:310, U. S. N. M.).
One example measures 1.64 inches in length.*

Subfamily Purpurine.

PURPURA PATULA, Linnæus.
Two examples. Tres Marias (No. 32141, U. S. N. M.); also) Socorro Island (No. 32140, U. S. N. M.).

[^45]This hast was collerted by the late A. J. Cirayson, the well known ornithologist.

PURPURA COLUMELLARIS, Lamarck.

Many examples. Tres Marias (No. 32142, U. S. N. M.).
Very heary solid specimens, of a dwarfed habit and rather elevated spire, of a total length of from only 1.03 to 1.0 . inches, were collected at these islands, being about one-half of the size of usual adult examples, which measure long, . 2 inches or over.

A variety intermediate between columellaris and patula is sometimes met with (No. 32143 , U. S. N. M.). It is not so heavy or solid as the former and heavier than putula, with the protuberance on the columella less conspicuous than is usual in columellaris.

PURPURA KIOSQUIFORMIS, Duclos.

=Cuma kiosquiformis, DUCLos and of authors.
One excetdingly tine specimen. Boca de los Piedras (No. (i00065, U S. N. M.).

The shells from the Gulf region compared with Panama examples appear to have a more regular growth; the pointed knobs are less produced, and the adults, average, of larger size. Henry Edwards collected some very fine specimens at Mazatlan, while at that place several years ago collecting insects; examples of these he kindly contributed to my collection.

PURPURA HIPPOCASTANEUM, Linneus.
One specimen living.* Mulege Bay (No. S9G55, I'. S. N. M.).
Thie black-monthed variety generally known as l '. bitubercularis Lamarck.

An Indo-Pacific species. How came it here?
The occurrence of C'assis vibex on the Tres Marias, beach, and subsequent detection at La Paz (crab shells), has led me to include the abore Polynesian purpuroid in Fisher's list. Its occurence here may be accidental.

PURPURA BISERIALIS, Blainville.
Numerous examples. Loreto, Gabb. Ballenas Bay; Sta. Margarita Island, Albatross.

The Santa Margarita specimens include both the coarsely-sculptured form and the variety, wherein the principal transverse ridges are hardly broken into knobs. This species seems to be very abundant at this place, and exhibits all the varieties to which Carpenter has referred in his Mazatlan Mollusea.

PURPURA TRISERIALIS, 131 it inville.
Four examples.

[^46] U.S. N. M.) ; also at Sta, Margarita Island (beach) Albutross.

PURPURA TRIANGULARIS, IBlainville.

Examples. Loreto.
MONOCERAS 'TUBERCULATUM, Gray.

+ Purpura muricata, Gray.
One example from each of the following places:
Tres Marias, Fisher (No. 60012, U. S. N. M.) , and La Paz, Capt. Forrer. Sta. Margarita Island, Albatross, three beach shells. This species ranges southerly as far as Peru aud extends also to the Galapagos Islands. Two remarkable varietal specimens of this species have been brought to my notice by Miss Cooke, of San Diego. One of these is $4 \frac{1}{2}$ inches long, the other nearly as large, and suggests a still greater range of variation approaching the species known as M. grande. The variability exhibited by different specimens in the prominence of the horn has been previously mentioned.

A young individual which I have examined, measuring only . 76 inch in length shows the horn; in another over 2 inches in length it is barely perceptible. Gabb collected this at San Brmo, and two examples from this locality are contained in the U. S. Nat. Musemm; (No. 32154.)

MONOCERAS LUGUBRIS, Sowerby.

Several specimens.
Tres Marias (No. 60017, U. S. N. M.). Ballenas Bay, Albatross, abundant; it oceurs also at Sta. Margarita Island. Many examples of a rather elougated, less solid and ${ }^{\text {robobst form than those usually seen from }}$ other localities in the general region. These have a rich purple mouth merging into dark chocolate. The largest measured long., 1.05; lat., 58 ; long., 0.97 ; lat., 0.61 ; the latter the smallest. The above is rather a variable species.

SISTRUM FERRUGINEUM, Reeve.
Common. Point Escondido; St. Josef Island; Los Animas Bay; Loreto.

Subfamily Coralliophiline.

CORALLIOPMILA (RHIZOCHILUS) NUX, Reeve, ex Carpeuter.
$=$ Murex nux, Reeve, Couch. Icon. pl. 38, sp., 181. + R. aspera, Reeve. $=$ M.
(Ocinebra) nux, H. and A. Adans. Genera Vol. i, p. 75. = Purpura costata,
Blainville. Corralliophila costata, Blainville; Cakpenter, Mazatlan shells, p. 484 . = Cuma costata, Auct.

Four examples (No. 32167, U. S. N. M.). St. Josef Island; Sin Lucas Cove; Tres Marias.

The spire which in young specimens is short becomes elevated

In adults, and shows thee revolving keels or ribs on the basal whorl, varying in prominthee in different individuals, and traversed and more or less interrupted by 11 to $12^{\prime 2}$ longitudinal ribs, which, at the points of intersertion with the transverse keds, produce moderately rongh spinose processes; in fine and old specimens these are 'quite shar'p, otherwise sculptured with narow, close, scabrous revolving ribs. A rather rare form, undoubtedly pupuroid. Compare with P'urpura yallea from Cuba. Large specimens look very much like some of the so-called Cumas. Tryon's figures do not represent such fine examples as these collected by Fisher, though the national collection contains specimens that agree with the figures referred to, that have been received from other sources.

Superfamily Pirw NOGIOSAA.
Family SCALIDA.
OPALIA CRENATOIDES, var. INSCULP'TA, (Iarpenter.
One example. Angeles Bay (No. 46260, U. S. N. M.).
Superfamily ${ }^{\text {r }}$ ALNIOGLOSSA.
Family Tritonide.
TRITON (LAMPUSIA) VESTITUM, Hinds.
One specimen, dead. Tres Marias (No. 32329, U. S. N. M.); also Panama, T. Bridges (No. 32320, U. S. N. M.). Two examples.

Likely to be confonnded with the Indo-Pacific pilerre, which it much resembles. A rare species.

RANELLA NANA, Broderip and Sowerliy.
Reeve, Conch. Icon; Monog. Ranella, Pl. vi, figs. 29a, 296.
One specimen; San Lucas Cove (No. 32315, U. S. N. M.).
A rare species, heretofore reported from San Blas, Hinds; Mazatlan, Melchers; Pamama Cuming; also at the latter place by C. B. Adams, who found two examples, both crab shells; one specimen in the Stearns collection was collected at Panama by the late Thomas Bridges (No. 32314, U. S. N. M.).

Family CASSIDID $※$ 。
CASSIS (CASMARIA) VIBEX-MEXICANA, Stoarns.
Casmaria vibex-mexicana, Stearns, Proc. U. S. Nat. Museum, Vol. x vi, 1893, p. 348.
One example, a crab shell (No. sss31, U.S. N. M.); Maria Madre, Tres Marias; La Paz, Belding.

> CASSIS (LEVENIA) COARCTATA, Sowerby.

Numerous specimens.
Tres Marias (No. 47146, U.S. N. M.). Sta. Margirita Island (common),

Albatross. This form is rather common in the Gulf of California region, but really fine examples are rare.

ONISCIDIA TUBERCULOSA, Reeve.
One example. Tres Marias (No. 47143, U. S. N. M.).
A common form in the Gulf region. Occurs also in the Galapagos Islands.

> Family DOLIDA.
> DOLIUM (MALEA) RINGENS, Swainson.

One perfect example; many fragments.
Sta. Margarita Island, Albutross. The above example, though only $1 \frac{3}{4}$ inches long, is mature. This speries is apparently common at this place. It has been reported from the Galapagos Islands.

Family Cypreide
CYPRÆA (LUPONIA) ISABELLA-MEXICANA, Stearns.
Luponia Isabella-Mexicana, Stearns, Proc. U. S. Nat. Mus. 1893, pp. 348-349, fig. 5, pl. 50. = C controversa, Gray, Stealins, in Proc. Phila. Acad. Nat. Sci. 1878, p. 399.
Several specimens. Tres Marias (Nos. 465s1, 4658², ('. S. N. M.). CYPRAA (LUPONIA) ALBUGINOSA, M aw e .

Several examples. Tres Marias, Fisher (No. 46587, U. S. N. M.). La Paz, Forrer. Fisher collected many fine living specimens at the former place.

> CYPRÆA (LUPONIA) SOWERBYI, Kiener.
=C. zomata, Lamarce.
Several specimens.
Port Escondido; Loreto; Los Animas Bay (No. 46593, U. S. N. M.). Sauta Margarita Island (beach), Albatross.

Many fine examples were collected at the above places by Mr. Fisher. Adults vary in size from long .91 to 1.81 inches.

CYPRÆA (ARICLA) ARABICULA, Lamarck.

A few living specimens.
Port Escondido; and Maria Madre, Tres Marias. Extends southward to Acapulco, thence to Payta, South America.

CYPRÆA (TRIVIA) SANGUINEA, Gray.
Not common, beach. Tres Marias (No. 46307, U. S. N. M.).
This species has a southerly range as far as Panama and the (ralapagos Islands.

CYPREA (TRIVIA) SOLANDRI, Gray.
A few examples.

Magdalena Bay; Loreto. Sta. Margarita Island, living, Ilbutross. Ranges from Santa Barbara Islands to A capuleo and Panama.?
(YPREA (TRIVIA) RADIANS, Lamarek.
A few specimens.
Tres Marias (No. 463:0, U.S. N. M.) ; also from Altata, on the Gulf' (No. $463 \geq 1$, L. S. N. M.), A. J. Gove. Reported fiom Cinacomayo and said to extend to "Echador and Peru."

CYPRAA (TRIVIA) PULLA, Giakoine.
Rare, beach, three examples.
Tres Marias (No. 46312, U.S. N. M.) ; Mazatlan (No. 46313, U. S. N. M.).
The single specimen from Mazatlan was collected by the late Henry Edwards. A rare species. Also credited to the Galápagos Islands.

CYPREA (PUSTULARIA) PUSTULATA, Lamarek.
Six examples,
Tres Marias (No. 46334, U. S. N. M.) ; also Altata (No. 46:335, U. S. N. M.), A. J. (rove. Ranges southerly to Acapulco and Panama.

ERATO COLUMBELLA, Menko.
Rare, living, two examples. Mulege Bay (No. 46346, U.S.N. M.).
This locality carries the above further wo the Gulf than before reported. Its northerly limit appears to be Monterey, Cal. Occurs also at Acapulco, to the south.

Family Strombrde.

STROMBUS GALEATUS, W ood.
Three examples, immatme, beach, fiesh. Tres Marias (No. E564t, U.S. N. M.).

In the adolescent stage the above, like other strombs, resembles the cones. The young of this species, as seen in the foregoing example, is beautifully mottled with white, on a warm yellowish-brown ground. In point of suze this is the west coast analogue of the Antillean S. gigas; the largest specimen of guleatus that I have spen is much smaller than the average of the West Indian form; they are entirely unlike in specific characters, such as sculpture, color, etc.. the Antillean species far surpassing its west coast relative in beanty of coloring as well as in size. S. galeatus is less numerous in the region where it occurs than is S. gigas in Antillean waters.

[^47]Several specimens.

Pichilingue Bay; also one fossil example, Santa Margarita Islamd, Albatross.

> STROMBUS (iRACILIOR, Sowerby.

Three beach shells. Pichilinque Bay, Albutross.

Family Oerithidde.

CERITHIUM MACULOSUM, Kiener.

Common.

Tres Marias (No. 32265, U.S. N. M.) ; La Paz, Fisher, Forrer. I'ichilinque Bay, Ballenas Bay, and Santa Margarita Island, Albatross. Many fine examples with the sculpture prominent, and the knobs sharply pointed. Has a wide geographical range, extending mortherly on the outer shore of the peninsula of Lower California, midway to the boundary line of Califonia; thence southerly to Eenador and the Galápagos Islands. Altata is another locality; (No. 32254, L. S. N. M.)

CERITHIUM STERCUS-MUSCARUM, V alenciennes.
Abundant (No. 32276, U. S. N. M.).
San Lucas Cove and Los Animas, Fisher; La Paz, Forrer. Pichilinque Bay, Albatross.

CLAVA GEMMATUS, Hinds.

$=$ Fertagus gemmatus, Hinds, Carpenter's check list, etc., and authors.
Not infrequent.
Tres Marias (No. 32294 , U. S. N. M.), Cape St. Lucats, and La P:a\%. This form is quite common at Acapuleo, where I obtained mumerous examples in 1868.

CLAVA.(LIOCERITHIUM) INCISUM, S ow orby.

Numerous specimens.
La Paz; San Lucas Cove; Los Animas Bay; Loreto; Angeles Island; Mulege Bay; San Francisquita Bay (No. 32e91, U.S. N. M.) ; Boca de los Piedras, and the Tres Marias; the latter locality somewhat doubtful.

Fisher collected many fine, large specimens of this. When full grown it is a rather rare form. Immature examples are not uncommon in collections, and do not exhibit the special character which indicates Pyrazus. Fig. 1895 in Chenu's Manual, Vol. I, is a poor representation of this species. Individuals vary in measurement as follows: Long., .94, lat., . 25 inch, with 10 whorls; long., .69, lat., .26 inch, with 8 whorls; long., . 50 , lat., 20 inch, with 8 whorls.

The short, stumpy fellows suggest another or different species. These have been named C. curtum Sby., or C. curos Bayle.

Common.

La P'az and elsewhere in the (rulf region. Ballenas Bay, abundant, Albatross.

CERITHIDEA ALBONODOSA, Carpenter.
Several examples.
Sun Juanico, and other points on the outer coast of Lower California. Both this and mazutlanica may be varieties of the more northern form sacrata Gould.

Family Modulide.

MODULUS CERODES, A. A 1 ams.
Numerous examples. Tres Marias (No. 46953, U. S. N. M.).
This pretty and not very common form is apparently rather numerous at these islauds, and at a few other points on the shores of the Gulf; obtained at Pichilinque Bay by the Albatross collectors. It occurs at the Galapagos Islands.

MODULUS DISCULUS, Philippi.

A few specimens.
Tres Marias (No. 46957 , U. S. N. M.), not numerons; the foregoing species appear to be distinct, without connecting varieties. M. disculus is by far the more restricted in distribution. It is found also at Mazatlan, Acapulco, and Panama.

MODULUS CATENULATUS, Philippi.

A few examples. Tres Marias. Less common than the others. Occurs at Mazatlan, Guaymas, etc.

> Family Vermetide.

VERMETUS (PETALOCONCHUS) MACROPHRAGMA, Carpentor.

Two specimens. Tres Marias; Los Animas (No. 9502, U. S. N. M.).

VERMETUS (SERPULORBIS) SQUAMIGERUS, C arpenter.
Two specimens.
Sta. Margarita Island (No. 10239s, U. S. N. M.), and at Pichilinque Island (No. 117971, U. S. N. M.), Albatross.

VERMETUS (SERPULORBIS) PELLUCDDUS, Broderip and Sowerby.
One example. P'chilinque Bay, Albatross, on Pecten subnodosus.
VERMETUTA (SERPULORBIS) PELLUCLDUS, Broderip and Sowerby, Var. = eburncus, Reeve.

Station $2 \mathrm{~S}_{2} \mathrm{~S}, 10$ fathoms, off Lower California, attached to Nopodylus princeps; Albatross.

> BIVONIA COMPACTA, Carpenter. (?)

Examples. Sta. Margarita Island, Albatross.
Family 'IURRITELLIDA. TURRITELLA GONIOSTOMA, Valonciennes.

Several examples.
San Josef Island (No. 9485, U. S. N. M.) ; S'an Juanico; also at La Paz, Capt. Forrer.

TURRITELLA TIGRINA, Kiener.
Two examples. San Juanico; Altata (No. 9472, U. S. N. M.).
Family Littorinide.
LIT"TORINA ASPERA, Philippi.
Abundant. Santa Maria Bay (No. 46963, U. S. N. M.).
The specimens from this locality are mumerous, typical, and fine; many of them strong, heavy shells.

> LITTORINA CONSPERSA, Philippi.

Numerous examples.
Santa MĨaria Bay; Tres Marias (No. 47001, U. S. N. M.). Not common at the first place, but abundant at the latter. A variety, apparently of this species, occurs at Payta, South America.

Family Solarifde.

SOLARIUM GRANULATUM, Lamarek.
Three examples.
La Paz (Nos. 46293,42694 U. S. N. M.) : also at Loreto and Magdalena Bay (No. 46307, U. S. N. M.).

TORINIA VARIEGATA, Lamarck.
A few specimens.
Port Escondido; Boca de los Piedras; Tres Marias (No. 46299, U. S. N. M.). La Paz, Forrer.

Family CALYPTRAEIDA.
CRUCIBULUM MMBRICATUM, sowerby
Not uncommon.
Tres Marias (Nos. 60241, 60こ45, U. S. N. M.); Santa Margarita Proc. N. M. $94-13$

Island, common on beach, Albutross; San Juanico; Galapagos Islands, and coasts of Ecuador and Peru.

A dark brown specimen of this fine species, $0 . s 0$ inch in leu th from the first locality. The collection contains examples which measure ".39 inches long. In such large specimeus the sculpture is very strong and the somewhat irregular radiating ribs are proportionately more conspicuous than in small specimens; in the latter, however, the details of the finer, wrinkled sculpture are more distinct. A great number of synonyms have been made that I will not here repeat, but refer to Carpenter's Mazatlan ('atalogue, p. 287 , and to my paper on the Galapagos (.1lbatross) shells, in the Proceedings, U. S. National Museum, 1893, Vol. xvi, 398 et seq.

> CRUCIBULUM SPINOSUM, Sow orby.

Common (No. 60229, U. S. N. M.).
Tres Marias; Loreto; common everywhere. Santa Margarita Island, common on beach, Albutross. From Monterey, Cal., to Pern, and in the Galapagos Islands this species is found; it is a generally and widely distributed form.

OREPIDULA UNGUIFORMIS, Lamarek.

Common.
Tres Marias (No. 1ٌ245i, U. S. N. M.) ; La P'az (No. 12497, U. S. N. M.); Captain Forrer.

Particularly fine examples from the inside of the month of olica venulata.

CREPIDULA DORSATA, Brod.; var. LIGULATA, Gould.
One example. Tres Marias (No. 60259, U.S. N. M.); frequent in the Gulf at many places.

CREPIDULA RUGOSA, Nuttall-Reeve.

Two specimens. Altata (No. 12496, U. S. N. M.). The above is obably a varietal aspect of Sowerby's Crepidula onyx.

Galerus mamillaris, Broderip.
One example from each place.
Tres Marias (No. 60253, U. S. N. M.) ; Altata (No. 6025.5, U. S. N. M.). Recently detected at Long Beach, on the coast of Los Angeles County, Cal.

Family AmALTHEIDA.
AMALTHEA BARBATA, Sow erby.
Two specimens.

Tres Marias (No. 32j66, U. S. N. M.). Occurs also at the Galapagos Islands and on the coast of Ecuador.

AMALTHEA SERRATA, C arpenter.

Four examples. Tres Marias (No. 32575, U. S. N. M.).
Ranges northerly along the coast of Califormia proper, and southerly to (?) Panama.

> Family NATICIDA. NATICA CATENATA, Philippi.

Five specimens. Gulf of California (No. 46435 , U. S. N. M.). Natica Chemnitzil, Pfeiffer.

Eight specimens. Mazatlan, common in many places.

NATICA EXCAVATA, Carpenter.

One specimen, beach. Tres Marias (No. 46346, U.S. N.M.). This is a decidedly rare species.

NATICA ZONARIA, Recluz.
Several examples living. Tres Marias (No. 46443, U. S. N. M.) ; Carmen Island (No. 46441, U. S. N. M.).

> NATICA PRITCHARDI, Forbes.

Numerous specimens.
La Paz; San Lucas Cove; Los Animas; Angeles Island; Boca de los Piedras; Tres Marias; Loreto, etc. A widely distributed form. Uarpenter has included under the name of "maroccona Chemnitz," the above, as well as N. unifasciuta Lamarck and zonuriu Recluz. It is probably true that these are all varieties of one and the same species, but it is it matter of uncertainty as to which of these specific names was first applied to West American shells. N. maroccama is credited to the Galapagos Islands.

POLYNICES BIFASCIATA, Gray

Numerous specimens.
La Paz; San Lucas Core, opposite Marcos Island (Nos. 46453, 46454, U. S. N. M.); Pichilinque Bay, Albatross.

Mr. Fisher reported the above as common at La Paz. A fine species, not always bifasciate. Occasionally the space between the usual bands ou the latter part of the body whorl is filled in with white, thus uniting and forming a single broad band.

POLXNICES UBER, Valenciennes
Common, living and on the beaches.
Mulege Bay (No. 46436, U. S. N. M.); La Paz (No. 46461, U. S. N. M.);

Boea de los P'iedras (No. 46459, U.s. N. M.); Loreto; P'anama; P'ayta; Manta; (ialapagos Islands. It has a more northerly distribution than herein given.

```
POLYNICES (LUNATIA) OTIS, Broderip and Sowerby.
```

Several examples.
Boca de los Piedras (No. 46546, U. S. N. M.) ; La Paz; Tres Marias; l'ayta, Peru; Galapagos Islands. At the latter a variety is found which has received the name of gulapogosa, Recluz, it is pretty close to if not absolutely the same as the following.

POLYNICES (LUNATIA) OTIS, var. $=$ FUSCA, Carpenter.
One specimen at each place Tres Marias (No. 46547, U. S. N. M.); Acapulco (No. 46545, U. S. N. M.). The first example somewhat the worse for the rubbing it got in the surf', resembles the Indo-Pacitic form "V. somire: Chemnitz, New Zealand and Viti Islands," ete., so closely that Tryou thought it was that species. It does not approach very closely to somire, but the importance of an exteusive geographical and varietal series was seen in this case, as well as hundreds of others, for it enabled us to connect it without trouble with its geographical congeners. It is with barely a doubt the variety to which Dr. Carpenter gave the name of "fusca."

POLYNICES (NEVERITA) RECLUZIANA, Reeve.

Two examples from each of the following places:
La Paz (No. 46533, U. S. N. M.) ; Tres Marias (No. 46535 , U. S. N. M) ; Bora de los Piedras (No. 7o000, U. S. N. M.) ; San Juanico; Loreto; and elsewhere northerly and to the south. Pichilinque Bay, also fossil on Cerros Island, Albatross.

SIGARETUS DEBILIS, Gould

.nfrequent.
La Paz, living (No. 465555, U. N. N. M.) ; Altata (No. 4655:3, U. N. N. M.). The nucleus, nuclear whorls, and general aspect of this species is very much like S. perspectiva Say of the Florida region.

Superfermily DOCOGLOSSA.
Family A C m 玉ID 正.

ACMEA DALLIANA, Pilsbry

Manuel Conch., Vol. XiII, p. 13, Pl. VII, figs. 57-60.
Several examples (No. 32614, U. S. N. M.).
Angel Island, P't. Refugio; also at (?) San Francisquita Bay and (?) Los Animas Bay. Chief examples measured 2.15 long, 1.05 lat. milli-
meters. Sculpture cosely resembling that of A. secthon Nutt.-Iive., which also occurs in the Gulf region. The above is much longer in proportion to breadth, more ovate and fatter than scubro of same size, and the apex is less central than in the latter species.

It may prove to be an extreme varietal aspect of scabra.

ACMLA PATINA, Eschscholtz.

Two jumiors.
These are the young of a common varietal aspect of putina and were detected at Santa Margarita Islan d (No. 1025:3, U. S. N. M.), Albatross

ACMEA ASMI, Middendorff.

Common living. Balleuas Bay, Albatross.
The above three species may be regarded as northeru forms and their southerly limit is probably in this vicinity. So too with Lottia gigantea, referred to below.

The following species of the group may on the other hand be considered as more southerly forms and their northerly limit, in a general way in this region.

ACMEA PEDICULUS, Philippi.

One example. Tres Marias (No. 32612, U. S. N. M.).

ACMEA FASCICULARIS, Menke.
Several specimens. Tres Marias (No. 3266t, U. S. N. M.); Loreto. ACMEA DISCORS, Philippi.

Abundant. Tres Marias (No. 32628, I. S. N. M.) ; San Brumo, (xabb (No. 32645, U. S. N. M.).

ACMEA ATRATA, Carpenter.

Two specimens.
Tres Marias (No. 32649, U. S. N. M.) ; one adult and one junior.
 U. S. N. M.).

> LOTTIA GIGANTEA, Gray

One beach shell. Ballenas Bay, Albatross. sCurria mesoleuca, Menke.

Three specimens. Tres Marias (No. 32664, U. S. N. M.).
SCIRRIA MEsOLEUCA, Monke; var.?= ACMAA VESPERTINA, Reevo.
Two examples.
Tres Marias (No. 326e9, U. S. N. M.); Ventosa Bay, Tehuantepee
(No. 60443, I'. S. N. M.), Simmichast. (ommon in many places, and more highly colored than is usual with mesolenea.

Family P ATELLIDA.
Patella mexicana, Broderip and Sowerby.
One example at each phace. Altata (No. 4i18!), I. S. N. M.), Tres Marias (No. 75002, U. S. N. M.).

Superfamily RHIPIDOGLOSSA.
Family I'HASIANELLIDA. PHASIANELLA PERFORA'TA, l'hilippi.

One specimen. Tres Marias (No. 55440, U. S. N. M.).
Family TURBINIDは.
TURBO (SENECTUS) SQUAMIGER, Reeve.
Two specimens. Tres Marias (No. 59908, U. S. N. M.).
The geographical range of the above extends southerly to Ecuador and Peru, and it is said to oceur at the Galapagos Islands. It is a rare species.

TURBO (CALLOPOMA) FLUC'TUOSUS, W ood.
$=$ T. fluctuatus, Reeve; + T. Moltkianus ; =T. Fokkesi, Jonas; =T. assimilis, Kiener, + T. tessellatus, Kiener; $q=T \cdot$ depressus, Carpenter; $q=T$. funiculosus, Kiener, Carpenter.
Numerous young specimens.
Tres Marias (No. 59905 , U. S. N. M.), Point Escondido and St. Josef Island. This species was collected by the Albatross naturalists at I'ichilinque Bay (beach), at Santa Margarita Island, where it was found to be aboudant, both the simple corded form as well as the strongly sculptured and nodose variety; also at Ballenas Bay.

Dr. Jones collected the above speries on the coasts of Lemador and Peru.

> ASTRALIUM (UVANILLA) INERMIS, G melin.

One example.
Point Sin Quentin (No. 59910, U. S. N. M.). The most northerly point at which this form has been detected.

> AS'TRALIUM (UVANILLA) REGINA, Stoarus.

One specimen, living.
(iuadalupe Island (No. 135314, IT. S. N. M.), Capt. (ieorge I). Vorter. A beautiful and characteristic species.*

> POMAULAX UNDOSUS, W ood.

Not uncommon.
Preliminary description in "The Nantilus," 189 ". Deseribed and figured in the Proc. U. S. Nat. Mus., Vol. Xvi, 1893, p. 350.

Ballenas Bay (one junior) and Cerros Island 2 fossil examples Albotross. Common in the vicinity of San Diego and San Pedro, as well as on Catalina Island.

\section*{Family Trochid | © |
| :---: |}

```
CHLOROSTOMA GALLINA, Forbes.
```

Three examples. Tres Marias (No. 60040, U. S. N. M.). The above are young specimens, about one-third mature size.
Also detected at Santa Margarita Island and Ballenas Bay, Albatross. An abundant form on Catalina Island and elsewhere at more northerly localities on the mainland.

CHLOROSTOMA GALLINA, var. MUL'IIFILOSA, Stearns.
One example, living.
Guadalupe Island (No. 125315, U. S. N. M.). A fine large form;* entire surface covered with close-set, rather coarse thread-like ridges, that follow the whorls spirally.

```
CHLOROSTOMA (OMPHALIUS) GLOBULUS, Carpenter.
```

Abundant. Tres Marias; Point Escondido; St. Josef Island.
Particularly numerous at the Tres Marias. Shell ratler flattish when young; transversely finely ribbed; middle portion of whorls somewhat angulated and in some instances carinated, the upper edge of angle or keel broken into roundish nodules. Umbilicus open, large, generally stained with a bright green, otherwise color variable; in this latter respect like Gibbula varions Phil., or Omphatius canaliculatus Lam., from Europe.

CHLOROSTOMA (OMPHALIUS) FUSCESCENS, Philippi.

Two examples.
San Juanico. Common at Catalina Island and elsewhere along the mainland to the north.

The above is probably the ligulutum of Menke, a varietal aspect of viridulum.

CHLOROSTOMA (OMPHALIUS) AUREOTINCTUM, Forbes.
Several specimens.
Santa Margarita Island and Ballenas Bay, Albutross. (Common on Catalina Island.

CALLIOSTOMA VERSICOLOR, Menke.
Living specimens.

[^48]Boca de los Piedras (No. 32505, U. S. N. MI.); Cape St. Lucas (No. 32506, U. S. N. M.), and elsewhere in the Gulf region.

Family Neritide.

NERI'A SCABRICOS'TA, Lamarek
Several examples.
Pichilinque Bay; Santa Margarita Island, Albatross; Common also at the Galapagos Islauds. Often of very large size; varies much in elevation.

NERITA BERNHARDI, Recluz.

Abundant.
Tres Marias; also Mulege Bay (Nos. 32702 , 60337, U. S. N. M.), where it is exceedingly numerons; also at Pichilinque Bay, Ballenas Bay, and Margarita Island, Albatross. Common at Panama.

NERITINA PICTA, Sowerby
Common.
La Paz; Loreto, and elsewhere in the Gulf; frequently exhibits very beantiful color varieties; extends up the outer coast of Lower California, and south to Pamama and beyond. Pichilinque Bay, Albatross.

> Superfamily ZYGOBRANCHIA'TA.
> Family Fissurellide.
> FISSURELLA NIGROCINCTA, Carpenter.

One example. Gulf of California (No. 59241, U. S. N. M.). FISSURELLA VOLCANO, Reere.
$=F$. ornata, Nuttali.
Abundant.
Tres Marias (No. 48166, U. S. N. M.). San Juanico, Gabb (No. 48165, U. S. N. M.); Jallenas Bay, Llbutross; Ventosa Bay, Tehuantepec, Sumichrast (No. b0440, U. S. N. M.). Though darker colored than the more northerly Monterey specimens of F. colcano, which are nearly white inside and show more or less of a reddish or pinkish color externally, I regard the suecimens from the two localities as belonging to the same species. Specimens in the collection from intermerliate points seem to connect them.

FISSURIDEA MURINA, Carpenter.
Several examples.

Tres Marias; La Paz, Forrer. Not uncommon elsewhere in and around the Gulf.
[This is the Glyphis densiclathratu of Californian conchologists, but not of Reeve; G. suturnatis of Pilsbry (Nautilns, v., p. 105), not of C'arpenter, and G. densiclathrutu var. murina of Carpenter.-W. II. I).]*

FISSURIDEA INEQUALIS, Sowerby.
$=$ Glyphis incqualis, Sowerbr.
Frequent.
Tres Marias (Maria Madre), numerous, Fisher (No. 48191, I!. S. N. M.); La Paz, Fisher, and Forrer.

FISSURIDEA INAQUALIS.
Var. $=$ PICA, Sowerby.
One example. Tres Marias (No. 48190, U. S. N. M.).
Fissuridea alta, C. B. Adams.
Ghlyphis alta, C. B. Adams.
Five specimens. Tres Marlas (No. 48195, U. S. N. M.); also Panama, Bridges (No. 48194, U. S. N. M.).

Superfamily EOPLACOPHORA.
Family Ischnochitonide.
ischnochiton clathratus, Reeve.
$=$ Lepidopleurus pectimulatus, Carpenter, Mss. and of anthors.
Numerous examples.
Assuncion Island (No. 58852, U. S. N. M.); Todos Santos Bay, Hemphill (No. 58779, U.S. N. M.); Lower California (Nos. 58805, 125596, LI. S. N. M). Besides the above the collection has been emriched by a fine series of this species from Mr. Hemphill, who collected them along the ocean shore of the peninsula.

ISCHNOCHITON MACANDREI, C arpenter.

=C. muscarius, Reeve; fide Carpenter.
One specimen, imperfect.
Mazatlan (No. 58879 , U.S. N. M.). The foregoing was determined by Carpenter; it is quite rare in collections.

ISCHNOCHITON (STENORADSIA) ACRIOR, Carpenter.
Six examples.
San Juanico (No.58710, U. S. N. M.), also same place (No. 58750 , U. S.

[^49]N. M.); the first collected by the late Dr. Gabb in 1867 , the last by Mr. Fisher, who also collected it in Magdalena Bay (No. $\operatorname{sis} 4$ ñ, ('S. S. N. M.). The National Musemm contains, in addition to the foregoing, a very fine series collected by Mr. Hemry Hemphill on the outer coast of Lower California.

PALLOCHIJON LANUGINOSUS, C arpenter.

Two examples. Loreto (No. 58863, U. S. N. M.) Gabb.

> CHETOPLEURA BEANII, Carponter.

One example.
Mazatlan (No.58874, U.S.N. M.), off of P'utella mexicana; it was determined by Dr. Carpenter.

> Family Lophyride.

> CHITON ALbOLINEATUS, Sowerby.

Several examples.
Mazatlan (No. 59230, U. S. N. M.), collected by Hemry Edwards; also three specimens Stearns collection (No. 58765, U. S. N. M.), Todos Santos Bay, Lower California.

A very distinct and beautiful species. Reported also from Acapulco. This species shows considerable variation in color markings, some plates being unicolored, others on the same individuals beautifully picked out with white.

Superfamily OPSICHITONIA.
Family Mobalidian.
ACANTHOCHITEA EXQUISITUS, Pilsbry.
Several examples.
Los Animas Bay (No. $5 \mathbf{s} 526$, U. S. N. M.) very large specimens (Nos. $58874,58 s^{29}$, and 558 ± 5, U. S. N. M.). A fine series of these extratdinary forms all from the same locality, of a delicate lightish sea-green; a beantiful rariety of a pale salmon-color or reddish-buff is illustrated by one example (No. issi30, U.S. N. M.); the branches or tufts of long fibrous spicular resemble spun glass. This remarkable form is rarely met with in collections and its exact habitat has heretofore been uncertain. Pichilinque Bay, one example on Ahargaritiphora fimbriatn, Albatross.
To facilitate reference, the species above listed as occurring at the Tres Marias Islands have heen bronght togetiner on p. 203.

MOLLUSKS OF THE TRES MARIAS ISLANDS.

1. Mytilus multiformis, Cpr.
2. Byssoarca mutabilis, Sby.
3. Venericardia flammea, Mich.
4. Cardita crassa, Gray.
5. Chione undatella, Sby.
6. Psammobia regularis, Cpr.
7. Orthalicus undatus, Brug.
8. O. undatus var. $=$? O. melanocheilus, Val.
9. Siphonaria lecanium, Phil.
10. Conus Dalli, Stearns.
11. Conus vittatus, Lam.
12. Conus purpurascens, Brod.
13. Conus gladiator, Brod.
14. Conus brunnens, Wood.
15. Conus brunneus var. =tiaratus, Brod.
16. Conus nux, Brod.
17. Oliva veunlata, Lam.
18. Oliva splendidula, Sby.
19. Olivella cyanea Reeve, var.
20. Harpa crenata, Rumph.
21. Solenosteira modificata, Rve.
22. Mitra lens, Wood.
23. Leucozonia cingulata, Lam.
24. Latirus ceratus, Wood.
25. Nassa corpulenta, C. B. Ad.
26. Nassa luteostoma, Brod and Sby.
27. Columbella fuscata, Sby.
28. Anachis coronata, Sby.
29. Nitidella cribraria, Lam.
30. Meta cedonulli, Rve.
31. Strombina maculosa, Sby.
32. Chicoreus palma-rosi mexicana, Stearns.
33. Purpura patula, Linnæus.
34. Purpura columellaris, Lam.
35. Monoceras tuberculatum, Gray.
36. Monoceras lugubris, Sby.
37. Rhizochilus, nux, Rve.
38. Triton vestitum, Hds.
39. Cassis ribex-mexicana, Stearus.
40. Levenia coaretata, Sby.
41. Oniscidia tuberculosa, Kve.
42. Cypraa isabella-mexicana, Stearns.
43. Cyprea albuginosa, Mawe.
44. Cypriea arabicula, Lam.
45. Trivia sanguinea, Gray.
46. Trivia radians, Lam.
47. Trivia pulla, Gask.
48. Pustularia pustulata, Lam.
49. Strombus galeatus, Wood.
50. Cerithium maculosum, Kien.
51. Cerithium incisum, Sby.
52. Clava gemmata, Hinds.
53. Modulus cerodes, A. Ad.
54. Modulus disculus, Phil.
55. Modulus catenulatus, Phil.
56. Petaloconchus macrophragma, Cpr.
57. Littorina conspersa, Phil.
58. Torinia variegata, Lam.
59. Crucibulum imbricatum, Sby.
60. Crucibulum spinosum, Sby.
61. Crepidula unguiformis, Lam.
62. Crepidula dorsata var. ligulata, Ged.
63. Galerus mamillaris, Brod.
64. Amalthea barbata, Sby.
65. Amalthea serrata, Cpr.
66. Natica excavata, Cpr.
67. Natica zonaria, Cpr.
68. Natica Pritchardi, Fbs.
69. Lunatia otis, Brod and Sby.
70. Lunatia otis var. fusca, Cpr.
71. Neverita Recluziana, Rve.
72. Acmæa pediculus, Phil.
73. Acmæa fascicularis, Mke.
74. Acmra discors, Phil.
75. Acmæa atrata, Cpr.
76. Scurria mesoleuca, Mke.
77. Scurria mesoleuca var.? $=$ vespertina, Rve.
78. Patella Mexicana, Brod aud Sby.
79. Phasianella perforata, Phil.
80. Senectus squamiger, Rve.
81. Callopoma fluctuosus, Wood.

8ン. Chlorostoma gallina, Flos.
83. Omphalius globulus, Cpr.
84. Nerita Bernhardi, Recluz.
85. Fissurella volcano, Rve.
86. Fissuridea murina, Cpr.
87. Fissuridea inequalis, Sby.
88. Fissuridea inzqualis var. pica, Shy.
89. Fissuridea alta, C. B. Ad.

It will be seen that the foregoing segregation includes 59 species and varieties of the 294 contained in the general catalogue. The island list is apparently small compared with the latter, and still smaller when compared with the number of species known to exist in the Mazatlan and Panama province. It should, however, be borne in mind that no special effort was made to investigate the Mollusk fauna of the Tres Marias and that the species collected in this little group of islands
were incidentally obtained, or the random collections made, during a very brief stay: Some of the forms are quite rare; these, together with the probability of obtaining other equally rare and desirable species, and the presumption that by systematic search a very large addition may be made to the number now known as oceuring, offer a promising return to whoever will make a thorough exploration of these islands.

The following papers, published chietly in the Procecdings of the U. S. National Musemm, will be found to contain more or less information relating to the distribution of the species above recorded, as well as to many others that occur on the west coast between Point Conception, California, and the south American coast as far south as $7030^{\prime} \mathrm{S}$:

BIBLIOGRAPHY.

Dall, War. II.: Preliminary report on the eollection of mollusea and brachiopida obtained in 1887-'88 by the U. S. Fish Commission steamer Albatross.

Proc. U. S. Nat. Mus., xir, pp. 219-362, pls. v-xv, 1889. (No. 773.)
On some new and interesting West American shells ohtained from the dredgings of the U. S. Fish Commission steamer Albatross in 1888, and from other sources.

Proc. U. S. Nat. Mus., xiv, pp. 173-191, pls. v-vii, 1891. (No. 849.)
Land shells of the genus Bulimulus in Lower California, with dessriptions of several new species.

Proc. U. S. Nat. Mus., xvi, pp. 639-647, 1893. (No. 958.)
Whldamson. Mrs. M. B. : An amotated list of the shells of San Pedro Bay and vicinity, with a description of two new species by Wm. H. Dall, ete.

Proc. U. S. Nat. Mus., xv, pp. 179-219, 1892. (No. 898.)
stmans, Robs. E. C.: Descriptions of new West Americau land, fresh-water, and marine shells, with notes and comments.
l'roc. U. S. Nat. Mus., xili, pp. 205-225, 1890. (No. 813.)
List of North American land and fresh-water shells received from the U. S. Department of Agriculture, etc.

Proc. U. S. Nat. Mus., xiv, pp. 95-106, 1891. (No. 844.)
List of shells collected on the west coast of South America, principally between latitudes $7^{\circ} 30^{\prime}$ S. and $8^{\circ} 49^{\prime}$ N. by Dr. W. H. Jones, surgeon U. S. Navy. Proc. U. S. Nat. Mus., Miv, pp. 307-335, 1891. (No. 85t.)
Preliminary report on the molluscan species collected by the United States expedition to West Africa in 1889-90.

Proc. U. S. Nat. Mus., xvi, pp. 317-339, 1893. (No. 940.)
On rave or little-known mollusks from the west coast of North and South America, with descriptions of new species.

Proc. U. S. Nat. Mus., xvi, pp. 341-352, 1893. (No. 911.)
Report on the mollusk fama of the Galapagos Islands, with descriptions of new species.

Proc. U. S. Nat. Mus., xyi, pp. 353-450, 1893. (No. 912.)
Report on the Land and Fresh-water shells colleeted in California and Nevada by the Death Valley Expedition, ote., by Dr. C. Hart Merriam and assistants, etc.

North American Fauna, No. 7, pp. 269-283, 1893.
Orcutt, Charles R.: "The Colorado Desert."
Tinth Anmual Report of the State Mineralogist of Catiformin, ply. 899-919, 1890.

Yates, Dr. L. G.: "The Mollusea of the Channel Islands of California."
Ninth Annual Report of the State Mineralogist of California, pp. 175-178, 1890.

NOTES ON A JAPANESE SPECIES OF REED WARBLER.

By Leonhard Stejneger.

In a recent paper on a collection of Japanese birds submitted to me for examination by the authorities of the Science College Inseum, Tokyo,* I described what I considered a new species as Locustellu homdoensis. At that time the volume for $\mathbf{1 8 5 9}$ of the Proceedings of the Zoological Society of London belonging to the Museum was at the (iovermment bindery, aud consequently inaccessible to me. Since the publication of the above description, however, I have had access to another copy and find that the naming of this species had already been anticipated by the late Dr. L. Taczanowski. Three males in greatly abraded plumage, collected near Chemulpo, Korea, on July 15, 1887, were at first recorded by him as Locustella fasciolata. \dagger The following year, however, he corrected this mistake and named the birds Locustelle pleskiei in honor of Dr. Th. Pleske, the distinguished director of the zoological museum of the St. Petersburg Academy of Sciences.

Notwithstanding the fact that his types, as stated, were adult birds in greatly abraded plumage and that mine (Sc. Coll. Mus., No. 1669) is a young bird, the deseription furnished by Dr. Taczanowski is sufficient to warrant the conclusion that the two names refer to the same species.

It will be noticed, however, that Taczanowski lays considerable stress upon the alleged larger size of L. pleskei as compared with L. ochotensis, while, on the other hand, I have regarded them as practically of the same size; but it must be remembered that my bird was a young one, while Taczanowski's types were adult males, and that on account of the abraded state of their wings and tail he allowed for their cousequent smaller dimensions.

To supplement the measurements given by me \ddagger so as to make them more comparable with the dimensions given by Taczanowski, I may state that in the type of L. hondoensis the bill from tip to angle of mouth measures 185 mm ., and from tip to nostril 105 mm ., consequently

[^50]agreeing pretty closely with Taczanowski's data, especially if we bear in mind what an unreliable measurement the former is.

It will be remembered that in my description I stated that the bird in question probably belongs to that group of the genus which has no subapical blackish bar across the tail-feathers, the specimen at my command showing no trace of it, but that I did not venture to be positive about it, as the character is less developed in young birds than 1 I the adults. As Taczanowski's description contains no mention of any subapical black bar, I take it now for granted that the species has none, and the character may be inserted in the diagnosis.
From the above it follows that the Japanese bird must stand as Locustella pleskei, Taezan., with the following synonymy:

188x. -Lochstella fasciolate, Taczanowski, Proc. Zool. Soc., London, 1888, p. 455 (not of Gray).
1889.-Locustella pleskei, Taczanowski, Proc. Zool. Soc., London, 1889, p. 620.
1893.-Locustella hondoensis, Stejneger, Proc. U. S. Nat. Mus., XV', 1893, No. 957, p. 633.

Abstract

A REVIEW OF THE FOSSLL FLORA OF ALASKA, WITH DESCRIP'IONS OF NEW SPECLES.

By F. H. Knowlton,
Assistant Curator of the Department of Fossil Plants.

I mave recently had oceasion, in studying a collection of leaves from Herendeen Bay and interglacial wood from beneath the Muir diacier, to go over all of the literature relating to the fossil flora of Alaska. As the literature is somewhat widely scattered, a list of all the species of fossil piants heretofore reported from Alaska was compiled as a matter of personal interest and convenience. This was used in determining the collections above mentioned, but after completing the identifications and descriptions of new species detected it was decided to present, in comection with them, a complete compilation of the fossil flora. It was done also with the hope that it might stimulate further in vestigation of the paleobotany, for from what we know of the distribution of the plant-bearing beds, some of which are represented by single examples, much must remain to be accomplished. This is further shown by the fact that every collection contains a good proportion of new species.

I have first prepared an historical review of works and papers relating to the fossil Hora of Alaska, which incidentally shows the geographical distribution of the plant beds. This is followed by a systematie enumeration of the fossil plants, with descriptions of the new species from Herendeen Bay, a table showing the distribution of the plants in other parts of the world, and finally a discussion of the geological age of the beds as indicated by the plants.

HISTORICAL REVIEW.

One of the first accounts of fossil plauts in Alaska is given by Dr. C. Grewingk* in his classical history of the Northwest coast of America. This, however, is in the main a compilation, but the sources from which he derived his information are obscure, and I have not been able to find them. It is hardly probable that if found they would prove of much value. He reports coniferous wood from the islands of Kadiak and Unga and the Alaskan peninsula, and dicotyledons (Almus) and conifers

[^51](Tuxodium) from Tschugatsk (Cook Inlet) and Unalaschkal. He also mentions a fern from U'inga which he supposed to have some resemblance to Deuropteris reutifoliu. It is probahly the same as Osmunde Doroschliamo of döppert, as there is no Carboniterous known from Unga.
A year later, chrewingk again referred* to fossil plants in Alaska, especially to the Cossil trunks on Unga Island, but nothing beyond this appears to have been noticed. \dagger
In 1861 (röppert reported \ddagger upon a small collection of fossil plants obtained in August, 1859, by Lient. v. Doroshinṣ from the islands of
 (lat. $57 \frac{1}{2}^{\circ}$). The last of these, Kootznahoo, is in the vicinity of or is a part of Admiralty Lsland, near Sitka. It afforded 2 species of dicotyledons and a single conifer. (ẍ̈ppert enmerated 11 species, from the combined localities, a number of which were new, but did not give descriptions of them.

In 1866 this same collection was again referrel to by Güppert, ${ }^{+\dagger}$ but, unfortunately, the descriptions were not even then supplied, and consequently most of the names of new species remain nomina mudn.

In December, 1567, Prof. Oswald Heer, of Zurich, wrote a letter relating to Alaskan plants to Prof. A. E. Nordenskiöld, in Stockholm, which was published in the following year. $\ddagger \ddagger$ It was an enumeration of the plants bromght back by Furuhijeln, and may be considered as an ontline of Heer's larger work which appeared in 186t. The plants are arranged according to localities and most of the new species briefly characterized.
In many respects the most important paper on the fossil plants of Alaska was Heer's Flor't Fossilis Alaskun, es which was published in 1869. It was based, as stated above, upon collections brought back by IIjalmar Furuhjelm, of Helsingfors, Finland, who, as governor of the

[^52]Russian-American possessions, resided for nearly ten years in Alaska. He made, it appears, a very large collection, most of which was lost on the Mexican coast by the stranding of the ship in which they were being sent home. The sperimens which timally rearhed Europe were obtained from the island of Kuin,* near Sitka, and from the east side of Cook Inlet, a part coming from English Bay, now better known as Port Graham (lat. $59 \circ 21^{\prime}$; long. $151 \circ 52^{\prime}$), and the rest from near a small stream known as the Neniltschik (lat. $600^{\circ} 9^{\prime}$). The latter place is about 50 miles north of Port Graham. This paper emmerates 56 species, of which number 19 were then new to science.

In 1871 Eichwald \dagger made a re-examination of the plants collected by Lieut. v. Doroshin that had first been studied, as above pointed out, by Göppert in 1861. Göppert, it will be remembered, did not give figures or descriptions of these plants in his paper. These were supplied by Eichwald, who also made use of Heer's Flora Fossilis Alaskana in working over the collection. He enumerated 9 species, 3 of which were newly named, although they had been recognized by Göppert or Heer. Eichwald also gave a list of the species reported from all parts of Alaska by Heer.

In 1882, Lesquereux published a paper entitled 'Contributions to the Miocene Flora of Alaska," \ddagger which was based upon material brought back by Dr. William H. Dall, then of the U. S. Coast and Geodetic Survey. The plants, which according to Lesquereux, were finely preserved, came from Coal Harbor, Unga Island; Kachemak Bay, § Cook Inlet, and Chiguik Bay, Mlaskan Peniusula (Lat. 56. ${ }^{\circ}$). It enumerated 21 species of which 7 were regarded as new to science. This paper was republished but without the illustrations, in Lesifuereux's "Cretaceous and Tertiary Floras," 1883, pp. 257-263.

In 1882, Dr. J. S. Newberry also described new species of fossil plants from Alaska in his paper entitled "Brief Descriptions of Fossil Plants, Chiefly Tertiary, from Western North America." || They were collected by Capt. Itoward, U. S. Navy, in Cook Inlet, and Admiralty Inlet, 9 and by the U. S. S. Suginure, in the Kootznahoo Archipelago (Lat. $57^{\circ} 35^{\prime}$, loug. $134^{\circ} 19^{\prime}$), the last on February 18, 1869. The tigures illustrating these plants were prepared and the plates have been engraved and printed since 1871 , but have not yet been formally issued. They were designed to form the illustrations of a monograph of the Hayden Geological Survey for which the text was never supplied. A posthumous work, which will embrace them, is being prepared by

[^53]Proc. N. M. $94-14$

Dr. Newherress suceesisor. Dr. Arthur Hollick, of 'olumbia College. They are quoted in the present paper as "Plates."
In 1857, Lesinurenx published a paper entitled "List of Recently Identified Fossil Plants belonging to the D. S. National Musemm, with descriptions of several New Species."* This comprised a large amount of material that had been aremmatang in the department of fossil plants sinee the fomding of the Smithsonian Institution. Among them were a few species recorded as having heen collected in the vicinity of Sitka, ley E. W. Nelsom, + and at Cape Lishurn by H. I). Woolfe. The specimens from the latter place appear to have been a part of the collertion that was described from the same locality in the following year, they having been accidentally separated.

In 1888, as stated above, Lespuerens published \ddagger an enumeration of plants obtained at ('ape Lisbun by II. I). Woolfe. This collection included 10 species of which mumber only one was regarded as new to science.
The last paper dealing with pre-glacial fossils is one hy Felixs in which he describes two species of silicitied wood. The one obtained by Dr. Kranse of Berlin on a basalt mountain south of Danaaka|| and the other from Copper Island, 9 at small island in the Southwestern part of the Bering Sea.
Mr. F. II. Herrick is the only one, so far as 1 now know, who has identified any of the interglacial wood. His paper, "Mieroseopical Examination of wood from the Buried Forest, Muir Inlet Alaska" is published as Supplement in to Harry Fielding Reid's paper "Studies of Muir Glacier, Alaska."** Mr. Herrick identified the wood submitted to him with the tide-land sprnee (Picen Sitchensis, ('anr.) now living about the glacier.

A number of pieces of wood from the buried forest Muir Glacier, obtained in 1892 by Mr. Reid, were submitted to me for examination. The report on them wall be published also as an appendix to Mr. Reid's paper, soon to appear in the National Geographic Magazine. The species observed are recorded in their proper systematic position in the present paper.
The latest work dealing with fossil florat of Alaska, and this only incidentally, is the V. S. Geological survey correlation paper on the

[^54]Neocene by Dr. Win. H. Dall and G. D. Harris.* These athors review at length all fossil-bearing horizons in Alaska, and on a map accompanying the work have colored earh locality geolosically. They speak of plant beds in various places.

Herendeen Bay, the locality affording the specimens that form the basis of this paper, is on the northern side of the Alaskan Peninsula and forms a branch of Port Möller (Lat. $55^{\circ} 40^{\prime}$, long. $160^{\circ}, 40^{\prime} \pm$.) The plants were collected July 28,1890 , by Mr. Charles H. Townsend, resident naturalist of the U. S. Fish Commission Steamer Albutross. Mr. Townsend has fumished the following eopy of his notes relating to their occurrence:
July $\circ 8$, 1890. -In making a tramway to the new coal mine just opened here (Herendeen Bay), one of the slaty cuttings exposed a large deposit of fossil leaves and ferns, about a mile from the heach, at the head of a little valley anong the hills and within a few hundred yards of the mine itself. We risited the place twice and succeeded in getting a considerable fuantity of specimens. Coal reins crop out in several places in the region of this bay. The first output of the new mine is now being used in the furnaces of the Albatross, but it is from near the surface and rather slaty.

Mr. Townsend fiurther adds:
The country is mountainous and treeless, but covered with bushes and smaller regetation. It is in general rolcanic and there are lofty peaks, one of which, Parloff, has been seen smoking.

The material iu which the plants are preserved is a fine argillaceous sandstone, very well fitted for retaining the impressions. The vegetable remains are in most cases very numerons, even on small fragments of matrix.

SYSTEMATIC ENUMERATION OF SPECIES.
ALGむ。
CHONDRITES FHLICIFORMIS, Lesquereux.
Lesquereux, Proc. U. S. Nat. Mis., Vol. xi, 1888, p. 32, Pl. xvi, tig. 1. \dagger

Cape Lisburn; H. D. Woolfe.

CHONDRITES HEERI, Eichwald
Erenwald, Geognost.-Palieontolog. Bemerk. ii. Halbinsel Mangischlak und Aleutischen Inseln, St. Petersb. 1871, p. 111, PI. iv, fig. 1.
Chondrites sp. Heer, El. Foss. Alask., p. 21, Pl. x, fig. 5.

Kachemak Bay; H. Furuhjelm.

The specimens at Heer's disposal were not regarded by him as of sufficient distinctness to permit of specific determination. He remarks that it appears very similar to C. liasinus of the Swiss Tertiary, and also resembles forms in the Trias and especially C. Turgionii of the older Molasse. Eichwald, however, had secured better material and took the opportunity to confer Heer's name upon it. Eichwald's specimens were preserved on the same kind of dark carbonaceous shale as Taxo-

[^55]dium Tinujorum and he hence regarded the species as belonging to the Miocene, suggesting that it may have been a transition form from the Cretaceous.

EQUISETACEA.
EQUISETUM GLOBULOSUM, Lesquereux.
Lesquemeux, Proc. U. S. Nat. Mus., Vol. v, 1882 (1883), p. 444; Cret. and Tert. Fl., p. 222, Pl. xlviil, fig. 3.

This species was obtained by 1)r. Wm. H. Dall, but the exact locality is not given. As the only localities from which he obtained fossil plants were Cook Inlet, Unga Island, and Chugachik Bay, it most probably came from one of these. It was also obtained in the Bad Lands of Dakota, from which specimens the above-mentioned figure was made.

CALAMITES AMBIGUUS, Eichwald.

Eicuwald, Geognost.-Palieontolog., Bemerk. ii. Halbinsel Mangischlak und Alentischen Inseln, St. Petersb., 1871, p. 114, Pl. Iv, fig. 9.
Northeastern coast of Alaska north of Cape Jaklök, and south of a small stream of that name; Eichwald.

This is a small fragment only 2 inches long and 1 inch wide, showing 12 longitudinal ribs. It appears to prove, if it is really a calamite, the presence of true Carboniferous strata in Alaska, but it is so very fragmentary that I can not but look upon it with question. Göppert, who first recognized its nature, also claimed to have observed leaves of Sigillaria, but this, too, requires confirmation.

FHLICES.

PECOPTLRIS DENTICULA'AA, He日er.
Lescquereyx, Proc. U. S. Nat. Mus., Vol. xi, 1888, p. 32.
Cape Lisburn; H. D. Woolfe.

P'TERIS SITKENSIS, Heer.

Heer, Fl. Fuss. Alask., p. 21, Pl. 1, fig. $7 a$; Eichwald, Geoghost.-Palieontolog., Bemerk. ii. Halbinsel Mangischlak, und Aleutischen Inseln, St. Petersb., 1871, 1). 112.
Island of Kuin, near Sitka; H. Furuhjelm.
OSMUNDA DOROSCHKIANA, Göppert.
Giopplet, Abhandl. d. Schles. Gesell. f. Vaterliind-Cnlt., 1861, Pt. ni, p. 203; EnHWarn, (feognost.-Palaontolog., Bemerk. ii. Halbinsel Mangischlak, und Aleutischen Inseln, p. 112, Pl. iv, figs. 2, 3.
Osmunda Torelli, Heer. Lesquereux, Proc. U. S. Nat. Mus., Vol. v, $188{ }^{\circ}$ (1883), p. 444, Pl. vi, figs. 3-6.

Unga Island: Lt. v. Doroshin. Coal Harbor, Unga Island; I)r. Wm. H. Dall.

This specees was named by (xioppert (1. r.) but not adequately deseribed. It must, however, be the same as the O. Torelli, of Lesquereux, from the same place, since both these anthors speak of the numer-
ous detached leaflets, occurring embedded in bowlders of carbonate of iron. Lesquereux describes it as follows:
"Most of the leaflets are simple, not lobate, obloug, or ovate-lanceolate entire or merely crenulate on the borders by the impressions of the veins. These leaflets are rarely preserved entire; the borders are often lacerated; they vary from 3.5 cm . to 6 cm . long and $1-2.5 \mathrm{~cm}$. broad. They evidently represent leatlets from Osmunda."

I hare veutured to restore (röppert's name, which until now has been a mere nomen nudum, for it is almost beyond question the plant that he gave the name to.

ASPIDIUM OERSTEDI, Heer.
Lesquereux, Proc. U. S. Nat. Mus. Vol. xi, 1888, p. 32. Cape Lisburn; H. D. Woolfe.

ASPLENIUM FOERSTERI, Debey and Ettinghausen.
Lesquereux, Proc. U. S. Nat. Mus., Vol. xi, 1888, p. 32. Cape Lisburn; H. D. Woolfe.

ASPLENIUM DICKSONIANUM, Heer.
Lesquereux, Proc. U. S. Nat. Mus., Vol. xi, 1888, p. 32.
Cape Lisburn; H. D. Woolfe.

CONIFERÆ.

PINUS! STARATSCHINI, Heer.

Lesquerevx, Proc. U. S. Nat. Mus., Vol. xi, 1888, p. 32.
Cape Lisburn; H. D. Woolfe.

> PINUS, species.

Heels, Fl. Foss. Alask., p. 23, Pl. 1, fig. 11.
Port Graham; H. Furuhjelm.
SEQUOIA LANGSDORFII, (Brongniart) Heer.
Heer, Fl. Fobs. Alask. p. 23, Pl. 1, fig. 10.
Port Graham and Neniltschik; H. Furuhjelm. Herendeen Bay; Chas. H. Townsend.

There are a considerable number of specimens in the collection from Herendeen Bay that are referred with little hesitation to this species. They are seemingly very well preserved, but when examined closely it is found to be difficult to make out the manner of attachment of the leaves. They much resemble some of the branchlets of Tuxodium distichum miocenum with which they are abundantly associated, but by a study of certain exceptioually well-preserved specimens it is found that
the leaves are decurrent, which clearly separates them from Taxodium. No cones belonging to conifers were found.

SEQUOIA SPINOSA, Newberry.
Newherry, Proc. U. S. Nat. Mus., Vol. v, 1882 (1883), p. 504 ; Plates, Pl. Lifi. figs. 4, 5, ined.
Cook Inlet, Capt. Howard, U. S. Navy.
This species is described as follows, by Dr. Newberry:
"Branches slender, foliage open, rigid; leaves narrow, acute (acicular), arched upward, appressed or spreading, spirally divergent; staminate flowers in slender terminal aments 2 inches long, two lines wide, anthers few, under peltate connective scales; cones ovate or subcylindrical, composed of rhomboidal or square peltate scales."

The manuscript name on the plates above mentioned is S. acicularis, but this is an obvious error.

'TAXODIUM DISTICHUM MIOCENUM, Heer.

Heer, Fl. Foss. Alask., p. 21, Pl. i, fig. 6; III, fig. 11c; IV, fig. 5 f.c.
Port (iraham and Neniltschik; H. Furuhjelm. Near Sitka; Lient.v. Doroshin. Herendeen Bay; Chas. H. Townsend.
'IAXODIUM TINAJORUM, Heer.
Herer, Fl. Foss. Alask., p. 22, Pl. 1, figs. 1-5.
Port Graham; H. Furuhjelm.

TAXODIUM TINAJORUM, He er; var.

Enchwald, Geornost.-Palaontolog. Bemerk. ii. Halbinsel Mangischlak nud Aleutischen Inseln. St. Petersb., 1871, p. 116, Pl. IV, fig. 4.
Port Graham (English Bay) and Neniltschik; Lieut. H. v. Doroshin.
"The needles are 6 lines long, 1 line broad, and stand 2 lines from each other. 'The thickness of the leaf-bearing twig is hardly 1 line, being scarcely the width of the leaves."

This form difters from the typical form, according to Eichwald, by the smaller leaves placed at a greater distance from each other and by the well-defined midrib.

GLYPTOSTROBUS EUROPAUS, (Bronguiat) Heer.
Heer, Fl. Foss. Alask., p. 22, Pl. 1, fig. 7 b-f; iII, figs. 10, 11.
Kuin Island, near Sitka; Lient. V. Doroshin. Neniltschik; H. Furuhjelm. Herendeen Bay; Chas. H. Townsend.

TAXITES OLRIKI, Heer.
Heer, Fl. Foss. Alask., p. 23, Pl. I, fig. 8; 11, $5 b$.
Port Graham; H. Furuhjelm.

THUITES (CHAMACYPARIS) ALASKENSIS, Les quereux.
Lesquerect, Proc. U. S. Nat. Mus., Vol. v, 1882 (1883), p. 445, Pl. vi, figs. 7-9. Coal Harbor, Ungat Island; Dr. Wm. H. Dall.

GINKGO MULTINERVIS, If eer.

Lesquereux, Proc. U. S. Nat. Mus., Vol. xi, 1888, p. 31, Pl. xvi, fig. 6.
Cape Lisburn; H. D. Woolfe.

> GINKGO ADIANTOIDES, (Unger) Heor.

Lesquereux, Proc. U. S. Nat. Mus., Vol. x, 1887, p. 35.
Sitka; E. W. Nelson (?).
A single small doubtful fragmont from Ierendeen Bay. Collected by Chas. H. Townsend.

BAIERA PALMATA, Heer.

Lesqueredx, Proc. U. S. Nat. Mus.. Vol. xi, 1888, p. 31, Pl. xvi, fige, 4, 5. Cape Lisburn; H. D. Woolfe.

PICEA SITCHENSIS, C arr.

Herrick, National Geogr. Mag., Vol. 1v, 1892, pp. 75-78, figs. 4, 5.-Knowlton, Notes on the Examination of a Collection of Interglacial Wood from Muir Glacier, Alaska, Ms.
Muir Glacier; Harry Fielding Reid.
'TSUGA MERTENSIANA, C arr.
Knowlton, Notes on the Examination of a Collection of Interglacial Wood from Muir Glacier, Alaska, Ms.
Muir Glacier; Harry Fiedding Reid.

CUPRESSINOXYLON ERRATICUM, Mereklin.

Felix, Zeitschr. d. D. geol., Gesell. Vol. xxxvir, 1886, p. 484.
Copper Island, southwestern part of Bering Sea; I)r. Krause.
PINITES PANNONICUS, (Unger) Göppert.at

Göppert, Abhandl. d. Schles. (iesell. 1861, p. 203.-Heer, Fl. Fos . Alask., p. 23. Southwestern end of Unga Island; Lient. V. Doroshin.

PITYOXYLON INAEQUALE, Felix.
Fklix, Zeitschr. d. D. geol., Gesell. Vol. xxxvif, 1886, 1. 483, Pl. xif, fig. 3.
Basalt Mountain, south of Danaíku; Dr. Krause.

('VCADACEE.

ZAMITES ALASKANA, Lesquereux.
Lesquereux, Proc. U. S. Nat. Mus., Vol. xi, 1888, p. 32, Pl. x, fig. 10.
Cape Lisburn; H. D. Woolfe.

PO]OOZAMITES LATIPENNIS, Heer.
Lesquerbey, Proc. U. S. Nat. Mus., Vol. xi, 1888, 1. 31, Pl. xvi, figs. 2, 3.
Cape Lisburu; H. D. Woolfe.

GRAMINER.

PHRAGMITES ALASKANA, Heer.
Hevir, Fl. Foss. Alask., p. 24, Pl. 1, fig. 12.
Port Grahamı H. Furuhielın.
POACITES I'ENUE-STRIATUS, Heer.
Heer, Fl. Foss. Alask., p. 24, Pl. i, fig. 14; Eichwald, Geognost.-Paleontolog. Bemerk. ii. Halbinsel Mantischak und Alentischen Inseln. St. Petersh., 1871, p. 114, Pl. IV, fig. 7.

Port Craham; IV. Furuhjelm. Herendeen Bay; Chas. H. Townseud.

(YPERACLEA.

CAREX SERVATA, Heer.
Heer, Fl. Foss. Alask., p. 24, Pl. 1, figs. 13, 13 c. d.
Port Craham; II. Furuhjelm. Herendeen Bay; Chas. H. Townsend.

> CAREX, Leaves of.

Lesquereux, Proc. U. S. Nat. Mus., Vol. x, 1887, p. 36.
Sitka; E. W. Nelson (?).
It is possible that this may be the Cervata of Heer, but as it is neither figured nor described I have retained it as probably separate.

ALISMA(EEA.

SAGITTARIA PULCHELLA, Heer.
Heer, Fl. Foss. Alask., p. 25, Pl. i, fig. 15.
Neniltschik; H. Furuhjelm.

SAGITTARIA, species.

Lesquereux, Proc. U. S. Nat. Mus., Vol. x, 1887, p. 37.
Sitka; E. W. Nelson (?).

IRIDACEA.

IRITES ALASKANA, Losquereux.
Lesquereux, Proc., U. S. Nat. Mus., Vol. x, 1887, p. 36.
Cape Lisburn; H. D. Woolfe.
"Leaves thickish, linear-lanceolate, tubulose at apex, narrowed to the base, falcate, iequi-nerved; median nerve obsolete; lateral nerve broad, equal.
"The leaves are comparatively narow; the best preserved, apparently nearly entire, is $1: 3 \mathrm{~cm}$. long, 15 cm. broad in the middle; nerves
about 1 mm . in width, not very prominent, equal, not separated by inter. mediate veinlets, very distinct; surface smooth, covered by a thin pellicle of coaly matter, some fragments showing the tubulose point and base. The median nerve is slightly marked in places."
"Comparing these leaves with those of cultivated species of Iris, the essential characters, thickness of leaves, serration, ete., are the same."-[LESQUEREUX.]

SALICACEA.

POPULUS LATIOR.Al. Brann.

Heere, Fl. Foss. Alask., p. 25, Pl. if, fig. 4.
Port Graham; H. Furuhjelm.

POPULUS GLANDULIFERA, A1. Branı.

Heer, Fl. Foss. Alask., p. 26, Pl. II, figs. 1, 2.
Port Grahan! H. Furuhjelm.
POPULUS BALSAMOIDES, G̈̈ppert.
Heer, Fl. Foss. Alask., p. 26, Pl. If, fig. 3.
Populus exima, Göppert, Tert. t1. v. Schossnitz, p. 23; Abhand. SchTes., GeseIf., 1861, p. 203.
Port Graham; II. Furuhjelm. Kntzuahoo near Sitka; Lient. V. Doroshin.

> POPULUS ZADDACHI, Heer.

Heer, Fl. Foss. Alask., p. 26, Pl. 11, fig. $5 a$.
Port Graham; H. Furuhjelm.
POPULUS LEUCOPHYLLA, Unger.
Heer, Fl. Foss, Alask., p. 26, Pl. II, fig. 6.
Populus acerifolia, Newby., Later extinct floras of North America, p. 65.
Reported by Heer, but no locality given for Alaska.
POPULUS ARC'IICA, Heer.
Lesqueredx, Proc. U. S. Nat. Mus. Vol. v, 1882 (1883), p. 447, Pl. ix, fig. 2.
Chignik Bay; Dr. Wm. H. Dall.

POPULUS RICHARDSONI, Heer.

Lesquereux, Proc. U. S. Nat. Mus., Vol. v, 1882 (1883), p. 441, Pl. ix, fig. 1.
Chignik Bay; Dr. Wm. H. Dall.
SALIX VARIANS, Güppert.
Heer, Fl. Foss. Alask., p. 27, Pl. i1. fig. 8; 1II, thgs. 1-3.
Salix Wimmeriana, Göppert, Tert. fl. v. Schlossnitz, p. 26; Abhandl. Schles.y Gesell., 1861, p. 205.
Port Graham and Neniltschik; H. Furuhielm.
SALIX MACROPHYLLA, Heer.
Heer, Fl. Foss. Alask., p. 27, Pl. ir, fig. 9.-Eichwali, Geognost.-Palrontolog. Bemerk. ii. Halbinsel Mangischlak und Aleutischen Inseln. St. Petersh., 1871, p. 113, Pl. Iv, fig. 5.

Port Graham; H. Furuhjelm.

SALIX LAVATERI. Heer.

Heer, Fl, Foss. Alask., p. 27, 1'. 11, fig. 10.
Port Graham; H. I'uruhjelm.

SALIX RAEANA, Heer.
Lesquereux, Proc. U. S. Nat. Mus., Vol. v, 1882 (1883), p. 447, Pl. vifi, fig. 6.
Cook Inlet: Dr. Wm. H. Dall.

SALIX INTEGRA, G ̈̈ppert.
Göppert, Abhandl. Schles. Gesell., 1861, p. 202; op. cit., 1867, p. 50.
Neniltschik; Lient. v. Doroshin.

SALIX MINU'TA, new species.
Plate IX, fig. 1.
Leaf small, nearly circular (11 mm . long, 9 mm . wide), slightly heartshaped at base and very slightly pointed at apex; margin entire below, with few distant teeth in the upper portion; nervation very obscure, consisting of $4-5$ pairs of secondaries emerging at a low angle (40°), thence curving along the borders.

This species is founded njon the single specimen figured, and it is with much hesitation that it is described as new. The leaf appears to have been rather thick and firm as are some of the living species found in polar lands.
It is possible that it may not belong to the genus Salix, but as it approaches most closely to some of the forms of N. polaris Wahlbg.,* from the diluvial deposits of Spitzbergen, I have decided to describe it under this genus, and wait for future discoveries to prove the truth or error of this disposition. As stated above, the nervation is nearly obsolete, and all that can be made out of the 4 or 5 pairs of secondaries.

The leaf is found associated on the same piece of matrix as specimens of T'axodiumi distichum miocemum, Paliurus Colombi, and Zizyphus Townsendi.

Nalix minuta was obtained at Herendeen Bay by Mr. Charles H. Townsend, of the U.S. Fish Commission steamer Albatross. Type, No. 3761 U. S. N. M.

CUPULIFERA.

FAGUS ANTIPOFII, He日r.

Heer, Fl. Foss. Alask., p. 30, Pl. v, fig. 4a; vir. figs. 4-8; vili, fig. 1.
Port Graham; H. Furuhjelm.

[^56]Five forms may be distinguished according to Heer, embracing F. lancifolia, Heer,* F. pristimu, Sap., \dagger and F. emarginata, Iteer.

FAGUS MACROPHYLLA, Unger.
Hefr, Fl. Foss. Alask., p. 31, Pl. viif, fig. 2.
Port Graham ; H. Furuhjelm.
FAGUS FERONLE, Unger.
Hefr, Fl. Foss. Alask., p. 31, Pl. vi, fig. 9.

Port Gralıam; H. Furuhjelm.

FAGUS DEUCALIONIS, Unger.
Lesquereux, Proc. U. S. Nat. Mus., Vol. v, 1882 (1883), p. 447.
Kachemak Bay, Cook Inlet; Dr. William H. Dall.
CASTANEA UNGERI, Heer.
Heer, Fl. Foss. Alask., p. 32, Pl. vii, figs. 1-3.
Port Graham; H. Furuhjelm; Keku Island, Indian Archipelago?
QUERCUS PSEUDOCASTANEA, GÖppert.
Heer, Fl. Foss. Alask., p. 32, Pl. vi, figs. 3-5.
Port Graham; H. Furuhjelm.
Quercus furuhjelmi, Heer.
Heer, Fl. Foss. Alask., p. 32, Pl. v, fig. 10; vi, figs. 1, 2.
Port Graham; H. Furuhjelm.
quercus Pandurata, Heer.
Heer, Fl. Foss. Alask., p. 33, Pl. vi, tig. 6.
Port Graham; H. Furuhjelm.
QUERCUS CHAMISSONIS, Heer.
Heer, Fl. Foss. Alask., p. 33, Pl. vi, figs. 7, 8.
Port Graham; H. Furuhjelm.
QUERCUS DALLII, Lesquerenx.
Lesquereux, Proc. U. S. Nat. Mus., Vol. v, 1882 (1883), p. 446, Pl. viif, figs.
2-5; Cret. and Tert. Fl., p. 259.
Cook Inlet; Dr. William H. Dall.
CORyLUS MACQUARRII, (Forbes) Heer.
Plate IX, fig. 4.
Heer, Fl. Foss. Alask., p. 29, Pl. if, fig. 9, iv, figs. 1-5., 8.-Eichwald, Geog-
nost.-Palæontolog. Bemerk. ii. Halbinsel Mangischlak und Aleutischen Inseln, St. Petersb., 1871, p. 113, Pl. Iv, fig. 6.
Port Graham and Neniltschik; H. Furuhjelm. Kuiu Island near

[^57]Sitka: Lieut. v. Doroshin. Unga Island; Dr. William II. Dall. Herendeen Bay; Charles H. Townsend.

CORYLUS MACQUARRII var. MACROPHYLLA, Heer.
ileer, Fl. Foss. Alask., p. 30, Pl. Iv, figs. 6, 7.
Port Graham: H. Furuhjelın.
CARPINUS GRANDIS, Unger.
Heer, Fl. Foss. Alask., p. 29, Pl. II, fig. 12.-Lesqulereux, Proc. U. S. Nat. Mus., Vol. v, 1882 (1883), p. 446.
Kachemak Bay, Cook Inlet; Dr. William H. Inall. Port Graham; H. Furuhjelm.

ALNUS KEFERSTEINII, (Gäppert) Unger.
Heer, Fl. Foss. Alask., p. 28, Pl. Hi, fige. 7, 8.
Neniltschik; H. F'uruhjelm.
ALNUS KEFERSTEINII, (Gioppert); var.
Heer, Fl. Foss. Alask., p. 28, Pl. v, fig. 9.
Port Graham ? H. Furuhjelm.
ALNUS ALASKANA, Newberri.
Newberry, Proc. U. S. Nat. Mus., Vol. v, 1882 (1883), p. $50{ }^{\circ}$; Plates, Pl. xlviir, fig. 8.
Kootznahoo Archipelago, latitude $55^{\circ} 35^{\prime}$, longitude $134^{\circ} 19^{\prime}$; U. S. steamer Skginaw, Feb. 18, 1869.
"Leaf large, oblong-ovoid, acuminate, rounded or slightly heartshaped at base; nervation crowded, 16 to 18 branches on each side of the midrib, margins set with very numerous, small, uniform, acute teeth."-[NEWBERRy.]

ALNUS GRANDIFOLIA, Newberry.
Newberry, Proc., U. S. Nat. Mus., Vol. v, 1882 (1883), p. 509.
Cook Inlet; Capt. Howard, U. S. Navy.
"Leaves 4 or 5 inches in length by 3 inches in width, ovate; ronnded or wedge-shaped at the base; blunt-pointed at the summit; margins coarsely dentate; nervation strong, crowded; 12 or more parallel branches on either side of the midrib, the intervals between these crossed by numerous parallel, mostly straight nervules, dividing the surface into oblong, quadraugular areolen."-[NEWBERRY.]

ALNUS CORYLIFOLIA, Losquereux.
Lesquereux, Proc. U. S. Nat. Mus., Vol v, 1882 (1883), p. 446, Pl. vif, figs. 1-4; Cret. aud Tert. Fl., p. 258.
Kachemak Bay, Cook Inlet; Dr. William H. Dall.
ALNUS RUBRA, Bongard.
A branch of this species found protruding from a gravel bank beneath an icesheet 70 feet in thickness, on the eastern morane of
the Muir Glacier. Collected by Miss E. R. Scidmore, of Washington, D. C.

BETULA PRISCA, Ettingshansen:
Heer, Fl. Foss. Alask., 1. 28, Pl. v, figs. 3-6.
Port Graham and Neniltschik; H. Furuhjelm.
BETULA GRANDIFOLIA, Et tings in ansen.
Heer, Fl. Foss. Alask., p. 29, Pl. v, tig. 8.
Port Graham; H. Furuhjelm.
BETULA ALASKANA, Les ! uereux.
Lequeneux, Proc. U. S. Nat. Mis., Vol. V, 188² (1883), p. 446, Pl. vi, fig. 14; Cret. and Tert. Fl., p. 258.
Chignik Bay, Alaska Peninsula; Dr. William H. Dall.
"Leaves small, round in outline, rounded or truncate at base, deeply, obtusely dentate all around except at the base, turned back or recurved on a short petiole; median nerve distinct, the lateral obsolete; catkins short cylindrical, oblong or slightly indated in the middle.
"Except that no glands are perceivable upon the stems, this species agrees in all its characters with Betulu glomतulosu Michx. I consider it as identical."-[LESQUEREUX.]

MYRICACE 2.

MYRICA BANKSLEFOLLA, Unger*

Heer, Fl. Foss. Alask., p. 28, Pl. if, tig. 11.
Port Graham; H. Furuhjelm.
The affinities of this species, according to Heer, are with M. ('alifornica Cham., a species living in California.

MYRICA (COMPTONLA) CUSPIDATA, (Lesquereux) D) awson.
Comptonia cuspidata, Lesquereux, Proc. U. S. Nat. Mus., Vol. v, 188: (1883), p. 445, P'l. vi, figs. 10-12; Cret. and Tert. F1., p. 258.
Myrica (Comptonia) cuspidata, Lesquereux Dawson, Trans. Roy. Soc., Canada, 1890, p. 80, tig. 9.
Coal Harbor, Unga Island; Dr. Wm. H. Dall.
"Leaves long, linear or gradually tapering upwards to a terminal narrowly elliptical lobe, pointed or apiculate by the excurrent median nerve; pinnately lobed, lobes coriaceons, convex, subalternate, free at base, irregularly trapezoidal or oblique-oblong, inclined upwards, and sharply acute or enspidate; primary nerves two, or three in the largest lobes, oblique, the upper curving in ascending to the acumen and branching outside, the lower parallel and curving along the borders, anastomosing with branches of the superior ones, generally separated by simple secondary, short nerves.
"Comparable to Comptoniu. ucutilolu. Brougt., and other European

Tertiary species of this group, but distinct from all by the large enspidate lobes turned upwards, etc."-[LESQUEREUX.] MYRICA (COMPTONIA) PRAMISSA, Lesquereux sp.

Comptonia promissa, Lesqueneex, 1'ruc. U.S. Nat. Mus., Vol. v, 1882, p. 445, pl. vi, fig. 13.
Coal Harbor, Unga Lsland; 1)r. Wm. H. Dall.
"Leaves long, linear in their whole length, $5-10 \mathrm{~cm} . \operatorname{long}, 1 \ddot{2}-15 \mathrm{~mm}$. broad; deeply equally pinnate-lobate; lobes very obtuse or half round, cut to the middle and slightly decuring in their point of connection, the terminal lobes very obtuse: nervation obsolete, substance somewhat thick but not coriaceous.
"This species has its greatest affinity with the living |,Myricuf Comptonia asplenifolia Ait."-[LESQUEREUX.]

MYRICA VINDOBONENSIS, (Ettingshausen) Heer.
Heer, Fl. Foss. Alask, p. 27, Pl. 111, figs. 4, 5.
Neniltschik: H. Furuhjelm.

JUGLANDACE \mathbb{I}.

JUGLANS ACUMINATA, A1. Braun.
Heer, Fl. Fooss. Alask., p. 38, Pl. ix, fig. 1.
Port Graham: H. Furuhjelm.

JUGLANS NIGELLA, He日r.
Heer, Fl. Fons. Alask., p. 38, Pl. 1x, figs. 2-4.
Port Graham; H. Furuhjelm.
JUGLANS PICROIDES, Heer.
Heer, Fl. Foss. Alask., p. 39, Pl. 1x, fig. 5.
Port Graham; H. Furuhjelm.
JUGLANS WOODIANA, Heor.
Lesquereidx, Proc. U. S. Nat. Mus., Vol. v, 1882 (1883), p. 449.
Chiguik Bay; Dr. Wm. H. Dall.
JUGLANS TOWNSENDI, now species.
Plate IX, Fig. 5.
Leaf thick, evidently coriaceous, oblique, margin entire; nervation prominent, consisting of a thick midrib and alternate or subopposite secondaries, those on the narower side of the leaf emerging at a right angle, or even falling below a right angle, those on the other side
emerging at an angle of abont 200 , all arching around to near the margin along which they curve until joined to the one next above, the union being affected by a series of simple loops; nervills prominent, approximately at right angle to the secondaries, except when they emerge from the midrib and join the secondary next below, producing triangular or quadrangular areas; ultimate nervation obsolete.

The fragment figured is the only one detected in the collection, and although it appears distinct, is hardly sufficient for proper characterization. It appears to differ markedly from all of the species of this.genus described by Heer, from Alaska. (See above.) It is most like J. nigella Heer, but differs absolutely in having a perfectly entire margin. J. acuminata has an entire margin, but differs widely in nervation, while the remaining species, I.picroides, differs in having the margin sharply serrate.

The only fossil species with which I an at present able to compare it is J. egregiu Lx., from the amiferous gravels of California. It much resembles a segment taken from near the base of one of these nearly entire leaves of this species. The nervation is practically the same in both. The margin of .J. egregia has sometimes a few small teeth, but there is no indication that such was the case in the form under disconssion.

Herendeen Bay; Charles H. Townsend. Type, No. 3762 , U. S. N. M.

ficus alaskana, Newherry.
Newberry, Proc. U. S. Nat. Mus. Vol. v, 1882 (1883), 1. 512 ; Plates, Pl. Lil, fig. 1 ; LV. figs. 1, 2.
Cook Inlet and Admiralty Inlet; Capt. Howard, U. S. Navy.
"Leaves large, reaching's to 10 inches in length and breadth; trilobed, generally unsymmetrical; lobes pointed, usually obtuse; margins entire or locally undulate; nervation stroug, conspicuously reticulate; principal nerves three, giving of branches which divide near the margins, sometimes connecting in festoons, sometimes craspedodrome; tertiary nervation forming a coarse network of usually oblong meshes filled with fine polygonal reticulation; upper surface of the leaf smoothe and polished, lower ronghened by the reticulation of the nerves."- [NEwBERRY.]

FICUS MEMBRANACEA, New berry.
Newberky, Proc. U. S. Nat. Mus., Vol. v, 1882 (1883), p. 512 ; Plates, Pl. lix, tig. . 2.

Cook Inlet; Capt. Howard, U. S. Navy.

"Leaves sensile, \pm to 6 inches in length by $2 \frac{1}{2}$ to $3 \frac{1}{2}$ in width; ovate, abruptly and usually blunt-pointed, narrowed to the base, generally unsymmetrical, margin entire, nervation delicate, open, camptodrome;

[^58]10 or more branches given off on either side of the midrib, curving upward, and forming a festoon near the margin."-[NEWBERRY.]

PLANERA UNGERI, Ettingshansen.
Heer, Fl. Foss. Alask., p. 34, PI. v, tig. 2.
Port Graham; H. Furuhjelm.
ULMUS PLURINERVIA, Unger.
Heer, Fl. Foss. Alask., p. 34, Pl. v, fig. 1.
Port Graham; H. Furuhielu.
ULMUS SORBIFOLIA, (iappert.
Lesquereux, Proc. U. S. Nat. Mus., Vol. v, 1882 (188:3), p. 447, Pl. ix, tig. 3; Cret. and Tert. Fl., p. 260.
Kachemak Bay, Cook Inlet; Dr. William H. Dall.
EBENACE, E.
HIOSPYROS S'TENOSEPALA, He日r.
HeEli, Fl. Foss. Alask., p. 35, Pl. vin, figs. 7, 8.
Neniltschik, H. Furuhjelm.
DIOSPYROS ALASKANA, Sehimper.
Diospyyros Alaskana, Schmper, Traité d. Pal. Vég., Vol. 11, 1. 945.
Diospyyros lancifolia, Lesquermux in Heer, Fl. Foss. Alask., p. 35, Pl. In, lig. 12.
Neuiltschik, H. Furuhjelm.
The name given this species by Lesquerenx is preacrupied by a hiving species. It has consequently been changed by Schimper to 1 . Alaskana.

> DIUSPYROS ANCEPS, Heer.

Lexquereux, Proe. U. S. Nat. Mus., Vol. v, 188° (1883), p. 448; 1'l. x, fige. 1, 2 ; Cret. and Tert. Fl., p. 261.
Cook Inlet; Dr. William H. Dall.

OLEACHEA.

FRAXINUS HERENDEENENSIS, Hew species.
Plate IX, Fig. 7.
 tical in outline, rounderl, almost truncate at base, rapidly narrowed from above the middle to an acuminate apex; margin entire below, sparingly toothed above the middle; midrib strong; secondaries 6-8 pairs, alternate or subopposite, emerging at angle of about 400 , camptodrome, each one joined to the one next above it by a series of regular loops just inside the margin; slender nerves from the outside
of these loops enter the teeth in the upper part; nervilles mostly percurent, at right angles to the secoudaries; finer nervation obsolete.

This species is represented by two fine leaflets, the one figured being in some respects the more perfect. They appear to have been membranaceous or possibly a little firmer. They are almost regularly elliptical in outline with a few distinct teeth above the middle. As both lack the complete base it is impossible to state anything as to the petiole or manner of attachment. They are very slightly if at all inequilateral at the base.

This species is undoubtedly closely related to Fraxinus denticulatas Heer,* from the Miocene of Greenland. Heer's species differ from this, however, in being clearly wedge-shaped at base, in having the margin toothed from near the base, and in having the secondaries usually opposite and at a more acute angle of divergence. It is possible that if there were a larger number of specimens of the species from Hereudeen Bay they might be shown to grade more closely into F. denticulatu, but iu absence of these I have preferred to keep them separate.

Among living species the form under discussion approaches closely to some leaflets of F. Ormus, L., especially the terminal ones. It is also somewhat like some of the broader leatlets of F. excelsior, L., from northern Europe.

Herendeen Bay; Charles H. Townsend. Type, No. 3763 , U. S. N. M.

ERICACE円.

ANDROMEDA GRAYANA, Heer
Heer, Fl. Fuss., Alask., p. 34, Pl. viit, fig. 5.
Port Graham; H. Furuhjelm.

VACCINIUM FRIESII, Heer.
Heer, Fl. Foss. Alask., p. 35, Pl. vini, fig. 4.
Port Graham; H. Furuhjelm.

VACCINIUM RETICULATUM, Al. Braun.

Lesquereux, Proc. U. S. Nat. Mis., Vol. v, 1882 (1883), p. 448, Pl. x, figs. 3-5; Cret. and Tert. Fl., p. 261.
Cook Inlet; Dr. William H. Dall.

CAPRIFOLIACE E.

VIBURNUM NORDENSKIÖLDI, Heer.
Heer, Fl. Foss. Alask., p. 36, Pl. int, fig. 13.
Neniltschik; H. Furuhjelm.
${ }^{*}$ Fl. Foss. Aret. Vol. 1, p. 118, Pl. xvr, fig. 4.
Proc. N. M. $94-15$

CORNACた．た。

NYSSA ARCTICA，Heer．
Lesquereux，Proc．U．S．Nat，Mus．，Vol．v．， 1888°（188：3），p． 447 ；Cret．and Tert． Fl．p． 261.
Unga Island；Dr．William H．Dall．

CORNUS ORBIFERA，Heor．
Lesquereux，Proc．U．S．Nat．Mus．，Vol．v， 1882 （1883），p．448，Pl．x，fig． 6 ； Cret．and Tert．Fl．，p． 262.
Cook Inlet：Dr．William H．Dall．

ARALIACEA．

HEDERA AURICULATA，Heer．

Heer，Fl．Foss．Mlask．，p．36，Pl．ix，fig． 6.
Port Graham；II．Furuhjelm．

ONAGRACER．

TlRADA BoliEALIS．Heer．

Iort Graham；II．F＇uruhjelm．

H．IMAMELIDACLEE

 LIQUIDAMBAR EURODAEM，Al．Braun．Heer，Fl．Foss．Alask．，p．25，＇＇l．it，fig． 7.
Port Graham；H．Fumuhjelm．

$$
\begin{aligned}
& \text { SPlľMA ANDERSONI, Heer }
\end{aligned}
$$

MeER，Fl．Foss．Ahask．，p．39，Pl．VHe，fig． 3.
Port（iraham；H．Furuhgelms
 Liastem United States．

FRUNIS Pilidiblis，dewhery

Oook Inlet；Capt．Hownard，Tis S．Naty：

summit, wedge shaped at hase; margins thickly set with minute, acute, appressed teeth."-[Newberry.]

SAPINDACENE.

ACER MACROPTERUM, Heer.

Heer, Fl. Foss. Alask., p. 37, Pl. ix, figs. 7-9.
Port Graham; H. Furuhjelm.
ACER TRILOBATUM PRODUCTUA, (Al. Brana) Heor.
Plate IX, fig. 3.
Herendeen Bay; Charles H. Townsend.
The single leaf figured is the only one found in the collection that can be referred to this species. It is a small leaf about 3 cm . long and 2.5 cm . wide, and agrees very closely with some of the figured European specimens referred to this form. It is, for example, especially like figs. 5 and 6 of Pl. cxiv and tig. 7 of Pl. cxv of Heer's Fl. Tert. Hele. These are small leaves with short lateral lobes and a prolonged central lobe. The margin is cut by sharp irregular teeth and the nervation, as nearly as can be made out, agrees perfectly with the European forms.

> ANACARIDACEA.

RHUS FRIGIDA, new species.

```
Plate 1N, fig. 6.
```

Leaflets firm, thickish, broadly lanceolate in outline, rounded, heartshaped at base, bluntly acuminate at apex; margin sparingly toothed above the middle, teeth pointing upward; midrib distinct, straight; secondaries $7-8$ pairs, alternate or subopposite, emerging at an angle of 50 , camptodrome, arehing in regular lows just inside the borders, and thus joining the one next above; nervills percurrent, usually appoaching a right angle to the midrib, hut some also at right angles to the secondaries in the lower part of the leaflet; finer nervation obsolete.

Herembeen Bay; Charles II. Tomnsend. Type, No. Böft, U.s. N. M.
The leatfets of this speries vary in size from 3.5 cm. to $5 \cdot 25 \mathrm{~cm}$. in length and from 1.25 cm . to $\because \mathrm{cm}$. in witth. They are all broarly lanceolate in shape. with few tweth ahove the middle and well marked camptodrome nervation.

These leaflets were at first smpusisel to belong to what has been described as Frurimus Herontcomensis, n. sp., but after careful consideration they have been separated. They differ from the above species in being much narrower, lancenlate in fact, with a heart-shaped base, and the secondaries emerging at or more acnte angle. The characters of the nervation and arrangement of teeth are precisely the same in both.

A larger series (the present species is represented by three and the Fraxinus by only two specimens) might show them to approach more closely than now appears to be the case.
The fossil species that they approach most closely is Rhus Meriani, Heer,* from the Tertiary of Switzerland, from which it is almost impossible to distinguish them. The outline, shape of the base, and nervation are the same, almost the only difference being in the teeth, and eren this is but slight. Ordinarily this would by no means be considered a character of sufficient weight to separate species, but unless they agree in every particular it seems to me that the antecedent probabilities are greatly in favor of plants so widely separated geographically being different. I have therefore assumed that the plant from Herendeen Bay is very closely allied to but specifically distinct from the one from Switzerland.

Among living species Thus frigidd is not greatly molike some of the leaflets of R. typhina, L., particularly the terminal leaftets. It is also quite like some of the leaflets of R. glabra, L., especially a form in the National Herbarium from Deer Park, Lower Arrow Lake, British Columbia. These are slightly heart-shaped at base and have the same general outline, but the teeth are larger and more irregularly placed than in the fossil. It would seem that this form of R. glabra might well be the descendent of the species that inhabited aretic countries in Eocene or Miocene time.

VITACE \ldots.

VITIS CRENATA, He日r.
Heer, Fl. Foss. Alask., p. 36, Pl. Vhif, fig. 6.
Port Graham; H. Furuhjelm.
Vitis Rotundifolia, Newberry.
Newberry, Proc. U. S. Nat. Mus., Vol. v, 188° (1883), p. 513 ; Plates, Pl. ri, fig. 2; LII, tig. 3.
Admiralty Inlet; Capt. Howard, U. S. Navy.
"Leaf broadly rounded or subtriangular in outline, cordate at the base, with an acnte point at the summit and at the extremity of each of the angles; intermediate portions of the margin coarsely and bluntly tontied; strongly three-nerved; tertiary nervation distinct and flexu-ose."-[Newberry.]

CELASTRACEAE

ELAODENDRON HELVETICUM, Heer.

Lesquereitx, Proc. U. S. Nat.' Mus., Vol. v, 1882 (1883), p. 449, Pl. ix, fig. 4 ; Cret. and Tert. Fl., p. 203.
Coal Harbor, Unga Island; Dr. William H. Dall.

[^59]CELASTRUS BOREALIS, Heer.
Heer, Fl. Foss. Alask., p. 37. Pl. x, fig. 4.
Port Graham; H. Furuhjelm.

ILICINERA.

ILEX INSIGNIS, Heer.
Heer, Fl. Foss. Alask., p. 37, Pl. x, fig. 1.
Port Graham; H. Furuhjelu.
RHAMNAOEA.
ZIZYPHUS TOWNSENDI, new species.
Pl. IX, figз. 8, 9.
Leaf thin, elliptical-lanceolate in general outline, rounded or slightly heart-shaped at base, extending above into an acuminate apex; petiole slender, 9 mm . long; margin of leaf cut into mumerous sharp, usually outward-pointing teeth, which are separated by rounded sinuses; threeribbed from the base; midrib straight, lateral ones of the same size as the midrib, equally dividing the distance between it and the margin, and, curving around, enter the apex; finer nervation obsolete.

This fine species, which I take pleasure in naming in honor of the collector, is well shown in the two figures given. The leaves appear to have been thin but firm. They are narrowly elliptical in outline, with a rather slender petiole about 1 cm . long. In size they vary from $3 \cdot \% \mathrm{~cm}$. to 5 cm . in length and from 1.5 cm . to 2.2 cm . in width. They are well characterized by the teeth and the three ribs of equal size from the base. Figure 9 differs from all the others in having a very thin fourth nerve outside of the prominent ones. Unfortunately, nothing of the ultimate nervation cau be made out.

This species approaches rlosely to the living Zizyphus. Japonica, Thunbg., of Japan, which differs in being less regularly elliptical and in having only weak teeth.

Among fossil species this species has many that are seemingly closely related. It is, for example, very similar to Z. serrulatus, Ward, * from the Fort Union Group, near the month of the lellowstone River, Montana, which differs in being broader, with finer, more numerous upward-pointing teeth. Prof. Ward's species also shows a tendency to be five-nerved by the addition of slender nerves outside of the more prominent ones. Z. cimmamomoides, Lx., t from the Green River Group in Colorado is also similar, but differs in being wedge-shaped at base, with fewer, sharper teeth. Some of the forms of Z. paradisiacus, Ung., \ddagger are quite suggestive of this species, and differ in being wedge-shaped at base, with fewer, sharper teeth. Z. hyperboreus, Heer, § from the Miocene of Greenland, which might be expected in Mlaska, is not particularly

[^60]close, as it differs in being much broaler, with an acuminate apex and five nerves. \%. Meckii, Lesintereux,* from the Post-Laramie beds of Colorado has similar teeth, but differs in being much broader and in having five nerves.
The species is represented by about half a dozen specimens in a fairly goor condition, except as relates to the finer nervation.

Herendeen Bay; (has. H. Townsend, for whom it is named. Type, No. 3765, U. S. N. M.

> PALIURUS COLOMBI, Heer.
> Plate IX, fig. 2 .

Herendeen Bay; Chas.dI. Townsend.
The only specimen of this species is the one figured, which agrees closely with certain of the examples figused in the Aretic Flora.t The figure here referred to agrees almost exactly in size and nervation with our specimen. Fig. 4 of the same plate is also similar, being only much larger.

TILIACEA.
tilia Alaskana, Heer
Heer, Fl. Foss. Alask., p. 36, Pl. x, figs. 2, 3.
Port Graham; H. Furuhjelm.

MAGNOLIACEAE.

MAGNOLIA NORDENSKIÖLDI, Heer .
Lesquereux, Proc. U. S. Nat. Mus., Vol. v, 1882 (1883), p.448, Pl. x, figs. 7-9; Cret. and Tert. Fl., p. 262.
Chignik Bay; Dr. Wm. H. Dall.

> PHYLLITES ARCTICA now species.
> Plate IX, figs. 10,11 .

Leaf thickish, firm, approaching deltoid in general outline; deeply heart-shaped at base, 5-(possibly 9-) lobed, or 3 -lobed, with the terminal larger lobe again 5 - (possilly 7 -) lobed; lower lobes at rightangles to the midrib, above them being a central lobe which is provided with five (or seven) smaller lobes; margin all around provided with coarse hunt teeth; midrib straight, thick; secondaries, 4 pairs, the lower pair atright angles to the midrib or falling a little above or below a right angle; upper pairs at an angle of 45°, all entering the points of the lobes; lower bair of sccondaries provided with about 5 pairs of tertiaries, which either enter or send branches to the teeth; uper secondaries sending out as many branches on the outside as there are teeth; nervills mainly percurent, forming regular quadrangular areas between the secondaries and their branches; finer nervation mostly obsolete.
The collection contains numerons specimens of this very interesting plant, some of them being nearly perfect. The largest specimen appears

[^61]to have been 10 cm . or more long and 6 or 7 cm . wide. The smaller examples appear to have been about δ ('m. in length and nearly or quite S cm. in width, as measimed at the points of the lower lobes. As stated above, they are 7 to 9 lobed, or, with two prominent lower lobes and a central or terminal lobe, that is agan provided with or or 7 smaller lobes. The leaves are deeply heartshaped at base, with the lower lobes usually at right angles to the midrib, or in some cases falling below, but rarely rising above, a right angle. The upper secondaries, which all enter lobes, so far as can be made out, are at an angle of about 45°. They are opposite or subopposite. The margin all around is provided with coarse, rather blunt teeth, which are entered by the tertiaries or their branches.

I am unable at the present time to refer these leares generically with any degree of satisfaction. They have, it is true, a vagne resemblance to a considerable number of well-known genera, but when these are carefully investigated the fossil leaves are excluded from them for one canse or another. The leat' shown in tig. 11 is quite mulike the other more typical form, being less heart-shaped at base in having the lower lobes at an angle of about 20 , they being ako more pointed and with smaller teeth; the general character, however, is the same.

Figure 11 is very much like Leer trilobatum patens, Heer, Fl. Tert. Helv., in, pl. (xin, fig. nf, but aifters in the nervation, there being no nerve ruming up to and forking under the principal simses, a wellknown character in Acel. The teeth also differ, as also does the terminal lobe.

It has been suggested that this may represent an extreme, or anomalous form of Comblus. Mace (hurrii, a very variable species well known to be common in aretie countries, esperially Alaska. The base of the larger specimen (fig. 10) rloes have a strong likeness to some of the forms of this species, but the lobation is much more pronomed than I have ever observed and, moreover, the borders are merely toothed and not doubly sermate as are the margins of C. NacQuarrii.

It has been also suggested that it may belong to Vitis, and it has something of a Vitis like appearance, lout it does not appear to me to approach close enough to any species of this genus known to me. I have therefore adopted the nou-committal name of Ployllites, and can only express the hope that some one may be able to more satisfactorily determine it.

Herendeen Bay; Chas. H. Townsend. Type, No. 3766 i , U. S. N. M.

Distribution of the fossil Hora of Alaska.

Speries.

Chomdrites tiliciformis, Lx
Chondrites Heeri, Eichw
Equisetam globulosum, Lx
Calamites ambiguus, Eichw.
Pecopteris denticulata, Heer
Pteris Sitkensis, Heer.
Osmunda Doroschkiana, Göpp
Aspidium (Erstedi, Heer
Asplenium Foersteri, Deb. and Ett
Asplenium Dicksonianum, Heer
Pinhs Staratschini, Heer
Pinus sp
Sequoia Langstortio (Brougn.)
Sitquoia spinosa, Newby
Taxodium dist. miocenum, Heer
Taxodium Tinajorum, Heer
Taxodium Tinajorum var., Eichw
Glyptostrobus Europæus, Bronginart
Taxites Olriki, Heer
Thnites Alaskana, Lx
Ginkgo multinervis, Heer
Ginkgo adiantoides, Heer
Baiera palmata, (Unger) Heer
Picea Sitchensis, Carr
Tsuga Mertensiana, Carr
Cupressinoxylon erraticum, Merck*
Pinites pannonicus, (Ung.), Göppert
Pityoxylou insequalo, Felix t.
Zamites Alaskana, Lx
Podozamites latipennis, Heer
Phragmites Alaskana, Heer.
Poacites tenuestriatus, Heer
Carex servata, Heer.
Carex si!
Sagittaria pulchella, Heer
Nagittariasp
Itites Alaskana, Lx
Populus latior, A1. Braun
Populus glaudulifera, Heer
Populns balsamoides. Heer
Populus Zaddachi, Heer
Populus leucophylla, Ung
Populus aretica, Heer
Populns Jitchardsoni. Heer
Salix varians, (ioupp
Salix macrophylla, Heer
Salix Lavateri, Heer
Salix Ree:ma, Heer
Salix integra, Göpp
Salix minuta, n. sp.
Fagns Antipotii, Heer
Fagus matrophylla, Ung
Fagus Feronia, Ung
Fagus Iencalionis, Ung
Castanea Ungeri, Heer.
Quercus pseudocastanea, Göpp
Querens Furuhjelmi, Henr
Quercus pandurata, Heer
Guerens Chamissoni, Heer
Quercus Dallit, Lx.
Corylus Mac Quarrii, (Forbes) Meer
Corylus Mac Quarrii, var, macrophylla, Heer

[^62]Distribution of the fossil flora of Alasta.

Distribution of the fossil flora of Alaska-Continued.

Species.

C:appimus grambix, Thッ
Alnus Kefersteinii, (G̈̈pp) Unger
Alnus Kefersteini var., Heer
Almas Alaskima, Lx
Almes grandifolia, Newby
Alnus corylifolia, Newhy
Aluns rubra, liong
Betula prisca, Ett

Betula gramdifolia, Ett
Betula Alaskana, Lx
Mrica hanksiedfolis, Uny.
Myrica cuspidata (Lx.), Dn
Myrica premissa (Lx.), Kn
Myrica vindobonensis, (Ett.) Heer
Platanus nolilis, Newly ${ }^{*}$
Juglans acuminata, Al. Br

Juglans nigella, Heer
Juglans picroides, Heer
Jnglans Woodiana, Hear
Juglans Townsendi, u. sp
Ficus Alaskana, Newhy
Fiens membramacea, Newloy
Planera Uugeri, Ett

Tlmus plurinervia, I'ng
Ulmus sorbifolia, Güppert
Diospyros stenosepala, Heer
Diospyros Alaskana, Schimper
Diospyros anceps, Heer
Fraximus Ierendernensis, n. sj
A ndromeda Grayana, Heer
V:tecinium Friesii. Heer
Vaccinium reticulathon, Al. Br
V'jhmum Nordenskïhli, Heer
Nyssa arctica?, Heer
Comms orbifera, Heer
Henlera auriculata, He-er
Trapa borealis, Heer
Liquidambar Eropenm, Al. Br
Spirea Andersoni, Heer
Prums varialsilis, Newby
Acer macropterum, Hewr
Acer trilobatum productum, (Al. Br.) Heer
Raluts frigida, n. sp.
Vitis crenata, Heer
Vitis rotumlifolia, Newloy
Elieodendron Helveticum, Heer
Celastrus horvalis, Heter
Ilix insignis, Heer
Vizyphus Townseuti, in. ap
Paliurus Colombi, Heer
Tilia Alaskana, Her-
Magnolia Nordenskiohdi, Heer
Phyllites aretica, 11. sp

[^63]Distribution of the fossil flora of Alaska-Continued.
Geological distribution outside of Alaska.

A few words as to the mamer in which the table was compiled may be of assistance in molerstanding its scope. I have given in the first ten columns the distribution of the fossil plants in Alaska itself. These colnmms also show the phants that are confined in their distribution to Alaska so far as now known. The remander of the table is devoted to those having a distribution outside of Alaska, with the exception of those from ('ape Lisbum. As those belong clearly to a much older horizon (Neoromian) about which there is little or no doubt, it has been thought moneressary to increase the size of the table so as to show them.*

The next eight eolumns are devoted to the distribution of the Tertiary plants of Alaska in the United States and British Columbia. I have then selected a number of typical localities in different parts of the world at which places an abundant upperTertiary flora is developed, such as Disco Island and Atanekerdluk, (reenland, Spitzbergen, Sachalin, Sinigalia, (Eningen, cte. The last three columns are reserved for Oligorene, Miocene, and Pliocene, when the species under discussion is not fomb in any of the selected typical localities, yet occors in these horizons in other localities.

DISCUSSION OF THE TABLE.

The fossil flora of Alaskaz atsesented in this paper embraces 115 forms. Of this mumber 1 is regarded as extra-limital and 3 are interglacial, being found also living about the Muir Glacier. Of the 111 forms rematning no less than 46 are peculiar to Alaska, leaving 64 forms having an outside distribution. On removing the $\mathbf{9}$ species found at Cape Lisburn about which, as pointed ont above, there is little question of age, we have remaining only 55 species or a little less than jo per cent upon which to depend for the determination of the bearing of the plants on the question of age.

An examination of the table yields the following numerical results: The Laramie las $: 3$ species, of which 1 is doubtful; the Post Laramie beds of Colorado 10 species; the Livingston beds of Montana 6 species; the Fort Union beds 16 species, of which 1 is doubtful; the Green River Group) 9 species, of which 3 are in doubt; the Mackenzie River 11 species; British Columbia has 7 species in the Miocene and 4 in the Laramie, with $2 \mathfrak{z}$ common to both; California, represented by the auriferous gravels and allied formations, has 17 spereies, of which 3 are in doubt; the Eocene (Alum Bay, etr.) (i speries; the Greenland Miocene, as represented at Disco Island, Atanekerdhk, etc., has 29 species; the Miocene of spitzhergen 20 species; the island of Sachalin (Siberia) 23 species; Singalia (Italy) 12 species; the so-called Baltic Miocene

[^64]13 species; (Eningen 20 species; Oligocene 11 species; Miocene 33 species; Pliocene 15 species.

By combining a mumber of the above localities which may be legitimately taken together we have still more impressive results. Thus by the combining of the Post Lamamie beds of Colorado with the Livingston beds of Montana, we have 13 species common to Alaska. The union of the Mackenzie River and Fort Union deposits gives 21 species common to Alaska, while (ireenland, Spitzbergen, and Sachalin have no less than 39 species ont of the 55 species from Alaska. This last result shows, if we are to place any dependence in fossil plants, that the floras of Alaska, Greenland, Spitzbergen, and the island of Sachalin are so closely related as to lead to the unavoidable conclusion that they grew under similar conditions and were synchronously deposited. The localities enmmerated show that the circmpolar flora at that time was practically similar and continuous.
The coal-bearing beds of southeastern Alaska, to which Dall has given the name of the Kenai group, are perhaps best exhibited on the shores of Kachekmak Bay, Kenai Peninsula, and Gook Inlet. They appear, however, to be widely spread over British Columbia and over the coast of Alaska and its, neighboring islands. According to Dall* the sequence of the rocks when undisturbed appears to be in descending order, as follows:

1. Soil and Pleistocene beds.
2. Brown Miocene sandstone, with marine shells, cetacean bones, and water-worn, teredo-bored fossil wood. (Astoria group, Nulato sandstones, Crepidula bed.)
3. Beds of conglomerate, brown and iron-stained, alternating with gravelly and sandy layers, the finer beds containing fossil leaves of Secquoia and other vegetable remains. (Kenai group, Uuga beds.)
4. Bluish sandy slates and shales with a rich Miocene plant flora, iuterstratified with beds of indurated gravel, fossil wood, and lignitic coal. (Kenai group.)
5. Metamorphic quartzites and slaty rocks, illustrating the geologic series probably from the Jurassic to the Cpper Cretaceous, with perhaps part of the Lower Eoceue. (Chico-Tejon.)
6. Granite and syenite in massive beds, usually without mica and apparently in most instances forming the " barkbone" of the mountain ridges or islands, but occasionally occurring in intrusive masses. (Shumagin granite.)

The geological age of these coal-bearing rocks, from which most of the plants emumerated in this paper came, has usually been regarded as Miocene. Heer, who worked up the first considerable collection of plants, referred them whesitatingly to this horizon, and regarded them as the equivalent of the Miocene beds of Greenland, Spitzbergen, the Braunkohl of East Prussia, and the lower Molasse of Switzerland. Lesquerenx and at tirst Newberry do not appear to have seriously questioned their Miocene age. Of the 73 species enumerated by Lesquereux in his latest publication on Alaskan plants, 21 are found in Greenland and Spitztrergen and 31 in the Miocene of other parts of the world. These considerations show, as already pointed out under

* Bull. U. S. Geol. Survey, No. 85, p. 233.
the discussion of the table, that the fossil flom of Alaska is inseparably comered with that of the Disco Island and Atanekerdluk beds of (ircenland and the so-called Aretic Miocene of Spitzbergen and Sachalin. Whatever is decided, concerning them must apply with equal force to Alaska.

Mr. J. Starkie Gardner appears to have been the first to question the Miocene age of the Greenland beds,* or rather of the Aretie floras in general. The sequence of British Eocene floras is almost mbroken, and in studying them and their relations to the Miocene flora he was lead to important conclusions. He says:

There is no great break in passing from one to the other (Eocene to Miocene) when We compare them orer many latitudes, and hut little change beyond that brought about by altered temperature or migration. But if Tertiary floras of different ages are met with in one area, great changes on the contrary are seen, and these are mainly due to progressive moditications in climate and to altered distribution of laud. Impreceptibly, too, the tropical memhers of the flora disappeared; that is to say, they migrated, for most of their types, I think, actually survive at the present day, many but slightly altered. Then the subtropical members decreased, and the temperate forms, never quite absent even in the Middle Eocenes, preponderated. As decreasing temperature drove the tropical forms south, the more northern must have pressed more closely upon them. The Northern Eocene, or the temperate floras of that period, must have pushed, from their home in the fir north, more and more sonth as climates chilled, and at last, in the Miocene time, oceupied our latitudes. The relative preponterence of these elements, I helieve, will assist in determining the age of Tertiary deposits in Europe more than any mimute comparisons of species. Thus it is useless to seek in the Aretie regions for Focene hloras, as we know them in ont İatitules, for during the Tertiary period the elimatic conditions of the earth did not permit their growth there. Aretic floras of temperate, and therefore Miocene, aspect, are in all probability of Eocene ago, and what has bern recognized as a newer or Miocene facies is duo to their having leen first studied in Emope in latitudes which only became fitted for them in Miocene times.

This change of view as to the age of the so-called Aretic Miocene, as proposed by Garduer, has aheady received considerable confirmation from American paleobotanists, and while it can hardly be regarded as settled, it may be accepted as extremely probable.

Dr. J. S. Newberry, in one of his latest publications, said : \dagger

I called the Fort Union Group Miocene because I identitied it with the plantbearing heds of Mackenzie River, Diseo Islamd, (reenlamb, ete, of which the floma had been studied by Prof. Oswahd Heer and was hy him called Miocene. This flora, to which I shall again refer, has since been shown by Mr. J. Starkio Gardner to be Eocenc. The Fort Thion flow has mans species in common with the Eocene beds of the Island of Mull, Bourmemonth, ete., and holds mudoubtelly the same position.

On this same point Sir William Dawson says: \ddagger
I have, also, while writing ont the above notes for puhbication, reecived the papor of the same author (fiartner) on the Eocene bets of Ardtum, in Mull, and am fully contirmed thereby in the opinion derived from the papers of the Duke of Argyll and the late I'rof. F. Forbes that the Mnll beds vory closely correspond in age with the

[^65]Laramie. The Filicites Hebridica of Forbes is our Onoclea sensibilis. The species of Ginkgo, Taxus, Sequoia, and Clyptostrobus correspond, and we have now probably found a Podocarpus, as noted above. The I'latanites Hebridica is very near to our great Platanus nobilis. Corylus MacQuurrii is common to both formations, as well as Populus arctica and P '. Richardsoni, while many of the other exogens are generically the same, and very closely allied. These Ardtun beds are regarded by Mr. Gardner as Lower Eocene, or a little older than the Gelinden series of Saporta, and nearly of the same age with the so-called Miocene of Atanekerdluk, in Greenland. Dr. G. Dawson and the writer have, ever since 1875, maintained the Lower Eocene age of our Laramie, and of the Fort Union group of the Northwestern United States, and the identity of their flora with that of Mackenzie River and the upper beds of Greenland, and it is very satisfactory to find that Mr. Garduer has independently arrived at similar conclusions with respect to the Eocene of Great Britain.

Dr. Dall is rather more cantions in adonting the Eocene age of these

 beds. He says:*I have already pointed out the probability that, if Miocene at all, the leaf beds of Greenland referred to would be synchronous with that geological epoch during which the old Miocene warm-water invertebrate fanna of the Atlantic coast penetrated as far morth as New Jersey. since that time it is highly improbable that any temperate conditions, such as the flora would indicate for the Atane period, have obtained in the latitude of Greenland. In other words, the Greenland beds are not later than the old Miocene, though this does not prechude a reference of them to an older horizon than tho Miocene, for during the Eocene also the conditions in the extreme north might have been favorable to such a flora.
In Alaska, at Cooks Inlel, at Unga Island, at Sitka, and at Nulato, in the Yukon Valley, we find the leaf heds of the Kenai group immediately and conformably orerlain ly marine leds containing fossil shells, which are common to the Miocene of Astoria, Oregon, and to middle and sonthern Catifornia.
It is then certain that the Kenai leaf beds immediately preceded and their deposition terminated with the depression (probably moderate in vertical range), which enabled the marine Miocene farma to spread over part of the autecedently dry land. Further researches along the Alaskan coast will doubtless enable us to determine whether the leaf beds themselves are underlain by marine Eocene beds or not. We know that the Aucella beds underlie the Kenai series, but whether there are any beds representing the marine phase of the Eocene between them is yet uncertain, though very probable.
What may be considered as reasomably certain is that the period during which in the Aretic regions the last temperate flora flourished was in a general way the same for all parts of the Aretic. It would seem highly improbable that a temperate climate shonld exist in the Spitzbergen and not at the same time in Greenland and Alaska, or rice versa. If Alaska was covered ly the sea at this time, we should find a temperate marine fama; if it was dry land, a temperate flora; and so with the other Aretic localities; and these indications should, it would seem, represent an identical and syuchronic phase of geological history in the Arctic regions.
The distribution and character of this group have been somewhat fully disenssed because, up to very recently, authorities were practically unanimous in referring it to the Miocene, a view which can yet be said to bedefinitely reniter. But when we consider how the Eocene Astoria bed is immediately and conformably overlain at fistoria ly shales and sandstonies, aud that the latter omformahly and immediately in like manmer overlies the Kenai gronp, it must be conceded that the view that the latter is probably of Eocene age dows not appear mureasonable.

Bull. 1. S. Meol. Nurver. No. S5. p. 251.

Following out the argument suggested by Newberry and Dawson, that is, the relation existing between the plants of Naska and Mackenzie River, and these in turn with the Canadian Lamamie and the Fort Union group, we have important confirmatory evidence. The flora of the Mackenzie River heds, as worked out hy Heer,* Schroter, ${ }^{\dagger}$ and Dawson, \ddagger now numbers 30 species, and of these no less than 12 , or 40 per rent, are found in Alaska. The 12 species common to Alaska are not rave or porly defined in the Alaskan flora, but are in the main well marked and readily determinable forms, most of which are very abundant in individuals, as for example Nequoia Langsdorfii, Taxodium distichum miocemum, Glyptostrobus Europeus or Ungeri, Corylus MacQuarii, Populus arctica, ete. A single species, Pteris Sithensis, is confined to these two localities, and a number of other species, though known by different names, are closely allied, if not identical. There can be, therefore, little doubt as to the close relationship between the Maskan and the Mackenzie River deposits.

The Mackenzie River flora, as already suggested, is in like manner closely related with the Canadian Upper Laramie, or Fort Union group, as it is called in the United states, about 30 per cent of the Mackenzie species being common to the two.

On turning to the table we find that 16 of the \tilde{y} Alaskan species are found in the Fort Union of the United States. By combining the species common to the Mackenzie River, ('anadian Upper Laramie, and Fort Union, we have 22 or 23 of these species also found in the Alaskan beds.

Withont going further into the subject, which indeed the present state of our knowledge will hardly warrant, it is safe to say with Sir William Dawson that "There can scarcely be any doubt that the flora of the Upper Laramie, of the Atanekerdluk series in Greenland, and of the Spitzbergen and Alaskan Tertiaries corresponds with the Eocene of Etrope, and is also irlentical with Fort Union flora of the Missouri region, formerly regarded as Miocene."

> Explanation of Plate ix.

Fig. 1. Salix minuta, n. sp
Fig. 2. Paliurns Colombi, Heer.
Fig. 3. Acer trilobatum productum, (Al. Br.) Heer
Fig. 4. Corylus MacQuarrii, (Forbes) Heer
Fig. 5. Juglaus Townsendi, n. sp.
Fig. 6. Rhus frigida, n. sp
Fig. 7. Fraxinus Herendeenensis, n. sp
Figs. 8, 9. Zizyphus Townsendi, n. sp
Figs. 10, 11. Plyyllites aretiea, 11. sp.
${ }^{*}$ Fll. Foss. Aret. Vol. vi. 1 Abth., 3 d Nr . Beitraige zur Miocene Fl. v. Nord-Canada.
\dagger Op. cit. Vol. Vr. 1 Abth., 4 th Nr. Untersuchung ii. foss. Hölzer d. Arct. zone.
\ddagger Trans. Roy. Soc. Canada. 1889. Fossil plants from Mackenzie and Bow rivers.

Fossil Plants from Herendeen Bay, Alaska.

DIAGNOSES OF NEW NORTH AMEIICAN MAMMALS.

By Frederick W. True, Curator of the Department of Mammals.

In convection with certain studies of North Americau mammals which I have recently undertaken, I find it desirable to separate out a few forms under new names. A mole from Fort Klamath, Oregon, presents certain cranial and dental differences from described species which seem to me worthy of recognition, and I regard it necessary to piace Brewer's mole in a new genus. I desire in addition to publish diagnoses of au undescribed race of Abert's squirrel, a new lemming, and a lemminglike mouse, representing a new genus.

SCIURUS ABERTI CONCOLOR, new subspecies.
Similar to s. aberti, but with no rufous area on the hack, all the upper surfaces being gray throughout. Tail alike on both sides; the hair annulated with gray and white proximally, with a rather broad subterminal black ring and pure white tips. Lars gray within; externally gray and rufous, as in the typical form of S' cberti; furnished with long terminal pencils, which are black, more or less maed with gray and rufous. Under surfaces of body and limbs pure white; the hairs, however, gray in the basil third, except on the under side of the front legs, where they are white to the base. Backs of feet gray; toes white.

Dimensions (from the dry skin; type).-Head and body, 250 mm ; tail vertebrie, 215 mm ; ear from the occiput (without pencil), 2.2 mm ; hind foot (without claw), 61 mm .

Type.-No. $\frac{2}{3} 1 \frac{1}{5} \frac{2}{3} \frac{3}{1}, ~ U . S . ~ A . ~ M I, ~ f e m a l e, ~ L o v e l a n d, ~ L a r i m e r ~ C o u n t y, ~$ Colo. Collected by William S. Smith.

A male from the same locality is melanistic. All the melanistic sperimens of Abert's squirrel in the study collection of the National Museum are from Colorado.

The variety above described shows a remarkable resemblance to Sciurus fossor, but the latter is without ear-tufts.

Proceedings National Museum, Vol. XVII-No. 999. [Adrance sheets of this paper were published April 26, 1894.]
Proc. N. M. $94-16$

SCAPANUS DHLATUS, new species.

Exterior unknown.
 a posterior cusp.

Size of skull moderate. Maxillary above the first molar broad (equal in bread th to the interparietal bone), with a strong ridge separated from the root of the zygoma by an emargination. Antero-external angles of the interparietal not romaded off. Angular process of the mandible narrow, strongly uncinate.

Dimensioms of slull (ty pe).- (ireatest length, 34 mm. ; basilar length (Hensel). こ̈. 5.5 mm : greatest breadth across maxille, 10.5: greatest zygomatic breadth, 14 mm . : length of tooth-row, 15 mm.: length of parietals, 11.1 mm . ; breadth of interparietal, 10.5 mm .

Type.-No 12sis, Merriam Collection, Fort Klamath, Oreg. (Skeleton.) ('ollected by Capt. U. E. Bendire.

PARASCAI OPS, new genus.

Premolars, $\frac{4}{2}$. Molars with a trilobed internal basal projection extending across the bases of both externals cusps. 'Tympanic bulle incomplete and amular. Pelvis with no osseous bridges opposite or posterior to the acetabulum, connecting the sacral vertebre with the pelvis. Extremity of the spinous processes of the sacral rertebra commected by a contmuons band of bone, but the intervals between the spines themselves not filled in with bone.

Tail hairy. General color black.
Tigpe.-Scalops breweri, Bachman.

MYODES NIGRIPES, new species.

Trber surfaces nearly uniform cimamon-gray, without bands or spots. Sides, including the lower part of the cheeks and neck, clear tawny brown. Under smfaces paler tawny, which tint is gradually merged into the stronger color of the sides. Nose black. Fore feet black above, tawny below. Hind feet black both above and below. Tail bicolored, black above, pale tawny below.

Dimensions (fiom dry skin; type)- Head and borly, $1: 30 \mathrm{~mm}$: tail vertebræ, 13 mm ; hind foot (without claw), 17.5 mm .
 Collected by Charles H. Townsend, August 18.

MICTOMYS, new genus.

General appearance that of symeptomy.s. Lans morlerate. Tan short, hair: Thumb with a strap-shaped nail, as in Myodes. Mamme, 4 pairs.

Skull similar to that of simntptom!!s. Incisors obliquely beveled and broally sroved on the berel. Molars rootless. Lipper molars as in

Synaptomys. Lower molars resembling those of Phenacomys and Synaptomys, but with the external border of enamel merely crenulate, with no exterual reëntrant angles, or triangles of dentine, except in the middle of the last tooth, where there is a short indentation.

Type.-M. innuitus, as below.

MIC'OMYS INNUITUS, new species.

Size moderate. Ears well developed, rounded, about as long as the fur immediately in front of their base. Five tubercles on the hind feet; soles hairy. Claws well developerl, compressed. Upper surfaces grayish brown, as iu Synaptomys. Under surfaces gray. Face pale brown. Lips, end of nose, and chin, white. Feet pale brown. Tail bicolored, pale brown above, white below. Ears clothed with rather long and sparse brown hairs.

Dimensions (from alcoholic specimen; type).—Пead and body, 88 mm ; tail vertebre, 15 mm . ; terminal pencil, 5 mm .; ear, from base of orifice, 9.5 mm .; hind foot (without claw), 15 mm .

Type.-No. 14838 , U. S. N. M., nursing female, Fort Chimo, Ungava, Labrador. Collected by L. M. Turner; spring, 1884.

DESCRIPTIONS OF NEW SPECIES OF STARFISHES AND OPHIURANS, WITH A REVISION OF CERTAIN SPECIES FORMERLY DESCRIBED; MOSTLY FROM THE COLLEC. tions made by the united states commission of FISH AND FISHERIES.

By A. E. Verrill.

In the following list the serial arrangement adopted by Sladen in the Voyage of the Challenger has been followed pretty closely, partly as a matter of convenience, but also because it probably represents, in most cases, the real affinities of the genera more nearly than any other published classification. I am not prepared, however, to adopt all the families and subfamilies proposed by him.

ASTERIOIDEA.

Family Arcinsteride, (Viguier, 1875) emended, Sladen.

Benthopectinine, new subfamily.

Disk small; rays elongated, angular. Marginal plates large, spiniferous; an odd one, above and below, in the interradial angles. Dorsal surface covered with simple flattened plates usually bearing few spines; no paxillie. Papule simple, arranged on the baso-median part of the rays and on the adjacent parts of the disk. Adambulacral plates, with a salient iuner augle bearing spines. Pectiuate pedicellaris are sometimes present. No superambulacral plates. Dorsal pore very evident.

BENTHOPECTEN SPINOSUS, Verrill

Benthopecten spinosus, Verrill, American Journal of Science, xxviif, p. 218, 1884.

Pararchaster semisquamatus, var, occidentalis, Sladen, Voyage of the Challenger, xxx, p. 10, 1889.
Pararchaster armatus, Sladen, op. cit., p. 19, pl. 1, figs 5, 6; pl. 4, figs 5, 6, 1889.
A comparison of a large series of this species, of various sizes from those that are 15 mm . up to large ones 260 mm . m diameter, shows that
the two forms described by Sladen from off the American coast are probably both identical with that described by me.

This species varies considerably in several details of its structure, aceording to its age. None of Sladen's specimens were full grown (largest size given is 74 mm . in diameter). Moreover there is often considerable variation in specimens of the same size and from the same locality, in the size of the disk, number, size, and arrangement of the spires on the marginal plates, ete. Some few examples have the disk at least one-third broader than others having the same length of rays, and such specimens naturally have large inferior interradial areas, with the plates more numerous than usual, as many as twenty to twentyfive being present in some cases. The papula often extend out on the rays, in large examples, as far as the fifth par of marginal plates; they cease sooner in the median line than to either side of it. They are often present on the central area of the clisk, among the large primary spines. The artinal and adambulacral spines on the largest specimens are more mumerous and longer than Sladen's deserjptions indicate, but the half. grown specimens agree well with his examples, in most respects.

The pectinate perlicellarie described by Slarlen as characteristie of P. urmutus are commonly lacking entirely ou our specimens, or exist only in very small numbers. The dorsal plates of the rays are rounded and orate, unequal, and most commonly isolated in the integument. They usually bear ouly a single, small, slender, acute spine, rarely two. The large disk-spines are variable in number and length, but they are always restricted to the rentral area of the disk, and the largest are horne on the primary plates. The large single spines on the odd interradial marginal plates are usually long, tapered, acute, and distinctly larger and longer than those on the disk. The lower marginal plates generally bear, in large specimens, one large, primary, acute spine, and one or two, rarely three, secondary ones below it, besides several small, slender, divergent, rough spinelets scattered aromed their bases. The adambulacral plates, in such specimens, gencrally have two or three long, slender, rongh spines on the actinal side, besides several small, slender, spinclets on the onter margin; the angular and salient imer margin usually bears about seven slender spines in a V -shaped group.

I have seen a few regular four-rayed sperimens, and also one peculiar monstrosity, in which a small supplementary ray buds out from the side of the regular ray, near the base. This species oceurred at many stations in 721 to 2021 fathoms.

Pontasterina, new subfamily.
Rays long; disk of moderate size. Papulie arranged in a group at the base of each ray, and sometimes on the disk. Dorsal surface covered with spinopaxille and protopaxille. Marginal plates all paired, itsually spiniferous. Pedicellariat often present, mostly componnd, two
to four-valved, or pectinate. Superambulacral plates are lacking. Fascioles rudimentary or lacking.

PONTASTER HEBITUS, S 1 aden.
Pontaster hebitus, Sladen, Voyage of the Challenger, xxx, p. 33, pl. 8, figs. 1, 2; pl. 12, figs. 1, 2, 1889.
Archaster tenuispinus, Verrill, Proc. U. S. Nat. Mus., iI, p. 203, 1879; Rep. Com'r of Fish and Fisheries, XI [for 1883], p. 543, pl. 13, fig. 38, 1885 (probably not of Diiben and Koren).
In my former papers I considered this species identical with l '. temuispinus of northern Europe, but Mr. Sladen deseribes it as distinct. The two forms are certainly rery closely related, but, as I have not had the European species for comparison, I follow his decision.

Our specimens, however, in many ases, approach nearer to the Enropean form than does the type of P. hebitus, as described by Slaten; for in our series the marginal and adambulacral spines are often mostly long and acute (not truncate as described) and the disk is often as large as in P. tenuispinus. But the pedicellarie, characteristic of the latter, seem to be absent in the American form.

Most of the specimens have been taken by the Gloncester, Mass, fishermen from the fishing banks off Nova Scotia and Newfoundand, in 128 to 250 fathoms.

PONTASTER FORCIPATUS, Sladen.

Pontaster forcipatus, Sladen, Voyage of the Challenger, xxx, p. 43, pl. 8, tigs. 3, 4 ; pl. 12, figs. 3, 4, 1889.
Archaster tennispinus, Verrill (part), op, cit., X1, p, 543, 1885 (not Dub. and Koren).
This species was also included by me, in some of my former articles, under the name of Archaster temuspimus, of which it was at first supposed to be a variety.

It is easily distinguished fiom I. hebitus by the presence of only a single large spine on the actinal surface of the adambulacral plates. The peculiar four-valved to six-valved pedicellarie are msually present in considerable numbers on the rentral surfaces; sometimes, on the distal part of the ray, perlicelled, three-valved ones occur. The central spine of the dorsal plates is larger and longer than in P. hehitus. and so are the marginal spines of both series. The papular areas are smaller. more rommed, and have but few pores. This species was taken at many stations, in depths ranging from !506 to 1,396 fathoms.

PONTASTER SEPITUS, Verrill.

Archaster sepitus, Verrill, Amer. Journ. Science, xxix, p. 151, Feb., 1885.
This species is a true Pontaster. It is very distinct from both the preceding, and is easily distinguished by the relatively larger, broader, thicker, aud more convex marginal plates, with deeper sutures between them. The marginal spines are more conical, with eularged bases, but not so long as in the last species. The donsal spinopaxille and para-
paxilla are larger than in either of our other species; many have a slender central spine. The papular areas are small, romoded, and have few large pores. The genital openings are far apart, about opposite the distal third of the first pair of marginal plates and close to them. The upper marginal phates of the first pair are rounded and smaller than those that follow them, but the corresponding lower ones are distinetly larger and more swollen on the under side than those that sucreed them. There is only one large stout spme on the actinal side of the adambulacral plates.

This occurred in 368 to 858 fathoms.

Subfamily Plutonasterinat, Sladen. DYTASTER GRANDIS, Verrill.

Arehaster grandis, Verrill, Amer. Journ. Science, xxyiif, p. 218, 1884.
Dytaster madreporifer, Sladen, op. cit., p. 70, p1. 3, figs. 3, 4; pl. 32, figs. 5, 6, 1889.

This species is clearly identical with that so well described and figured by Sladen, but his specimens were not full grown.

Our large series includes all sizes from the young 10 mm . in diameter up to large ones 260 mm . in dimeter. The very young specimens are widely different from the adults, but specimens 50 mm . in diameter have the general characters of the adults.

This species, and probably others of the genus, have well-developed superambulactal plates, which would, perhaps, indicate special affinities with the Astropectinida were not such plates present in several other widely different genera.

A few regular four-rayed examples have been taken. This species was taken in 384 to 2,620 fathoms.

PLUTONASTER AGASSIZII, Vorrill.

Archaster agassizii, Verrill, Amer. Journ. Science, xx, p. 403, 1880.
Plutonaster vigidus, Sladen, op. cit., p. 91, pl. 14, figs. 3, 4; pl. 15, figs. 3, 4, 1889 ; also var, semiarmata, op, cit., p. 94.
Plutonaster bifrons (part), SLaden, op. cit., 1. 88, 1889 (vers young example).
This species is closely allhed to P '. biftoms of Europe and P. intermedius (Perrier sp.)* of the West Indian region. It varies greatly in respert to the armature of the marginal plates. In one large series there are among the adult specimens all gradations from those having no) marginal spines whatever to those that have a large spine on nearly every marginal plate of both series. Therefore it is useless to recognize varieties. based on this character. like the variety semiarmutu of Sladen.

[^66]This species has distinct though short superambulacral plates at the base of the rays and within the margin of the disk, but they are lacking in the distal part of the rays. The papule are confined to a starshaped area, occupying the center of the disk and the basal median part of the rays.

A few regular six-rayed specimens were taken by the Allutross.
The young, when very small, differ greatly from the adults in structure and appearance.

This is one of the most abundant of the deep-sea starfishes taken by the U.S. Fish Commission, as well as one of the most beantiful.

It occurred at many stations in 182 to 1,594 fathoms.
This and the other species of Plutomester would be included in the genus Goniopecten, as defined by Perrier, but as his first species ((i. demonstrans) appears to be a distinct generic type, perhaps allied more nearly to Psilaster, and apparently belonging to the Astropectinida, his name should be restricted to that type.

Subfamily Pseudarchasterines, Sladen.
PSEUDARCHASTER INTERMEDIUS, Sladen.
Pseudarchaster intermedius, Sladen, Voyage of the Challenger, xxx, p. 115, pl. 19, figs. 3,4 ; pl. 42, figs. 5, 6, 1889.
Archaster purelii, Verrill, Amer. Journ. Science, Vif, p. 500, 1874 (not Diiben and Koren) ; xxir, p. 140, 1882; Rep. U. S. Com'r Fish and Fisheries, xı, p. 543, pl. 13, fig. 37,188 (var. with narrow rays).

According to Sladen, this is distinct from the allied European parelii, with which I formerly identified it, but without a direct comparison of specimens.

Our numerous specimens show considerable variation, especially in the size of the marginal plates as compared with the breadth of the dorsal area of the rays. In some examples the upper marginal phates are so broad that the dorsal area is much reduced in breadth. In others the marginal plates are comparatively narrow, while the dorsal area is wider.

These differences are not correlated with any others of importance, so that they can hardly be taken as characteristic of permanent varieties.

The papule are confined to the central part of the disk and basomedian part of the rays.

Distinct fascioles are present in our specianens between the plates next to the adambulacral series, as in P. discus, but Sladen states that they are wantiug in his examples. Moreover, in all our specimens there is a median row of several enlarged spinules decidedly larger than the rest, on each of the inferior marginal plates, which was not the case in Sladeu's specimens. Similar enlarged spinules occur on most of the actinal interradial plates. In consequence of these differences our examples approach much nearer to P. discus Sladen, from the west coast
of S. America, and to P. tessellatus, from off Cape of Good Hope, than is indicated by Sladen's descriptions.

It ranges from 110 to 1,608 fathoms, off. our coast.
PSEUDARCHASTER CONCINNUS, new species.
A large, regularly stellate, five-rayed species, having a broad flat disk and a rather thick margin with the interadial border regularly incurved. Rays broad at the base tapering regularly to slender subacute tips. Lesser to greater radius as 1 to 3.5 .

Abactinal area covered with regular hexagonal and rounded paxiiliform groups, those in the center of the disk and along the middle of the rays, decidedly larger than the rest, slightly convex, with a central group) of from 20 to 30 obtuse, slightly elevated granules or papillar and a marginal series of from 20 to 30 smaller and more slender divergent papille.

Upper marginal plates are nearly vertical and slightly convex and encroach lout little on the disk. They are much higher than long on the margin of the disk, and are covered with rather large, rounded grannles. Lower marginal plates nearly horizontal, confined largely to the actinal surface, and thickly covered with acute, imbricated spines, those on the middle largest.

Actinal interradial areas large, oceupied by closely mited plates, of which the outlines are indistinct. Bark plate bears one to three or more acute finsiform spines in the middle, and a marginal series of much smaller and more sleuder spines of similar form or more clavate. The adambulacral plates project inward nearly half across the furrom, leaving deep angular notches between them. The furrow series of adambulacral spines arise from the margins of the projecting portion of the plate, and each angular group contains eight to ten rather slender, morterately long. obtuse spines, of which the middle ones are a little the longest.

The largest specimen, from station 2706 , had, when dried, the radius of the disk, 34 mm .; of the rays, 105 to 110 mm . breadth of rays at base, 40 mm . ; height or thickness of interradial margin, 12 mm .; height of largest superior, marginal, interradial plates, 11 mm . ; their length, 2.5 to $: 3 \mathrm{~mm}$.; diameter of the large paxillie of the median radial series, 3 mm .; diameter of madreporic plate, 2 mm .

The central area of the disk is occupied by rather close set, roundish parapaxilla. The anal pore is small but distinct, nearly central. The madreporic plate is small, nearer to the center than the margin (distance from the center, 12 mm . in the largest specimen). The ten radial and interradial primary plates scarcely differ in size and form from the adjacent plates. Three to five rows of large hexagonal paxillar extend along the middle radial areas of the disk and bases of the arms, becoming smaller and less regular beyond the middle of the arm. On the disk these are bordered on each side by several rows of
similar paxilliform groups, which become smaller as they approach the interradial margin; owing to this arrangement the largest and most regular paxille form a star-shaped area, in which the papule are situated. The larger hexagonal paxille often bear 50 to 60 granules and papillæ; nearly the whole of the round and slightly convex summit is occupied by the central group of somewhat elevated, blunt granules, which are not closely crowded; the extreme margin is bordered by about the same number of smaller, longer, and more slender papillare, which spread outward, so that those of adjacent paxillie are nearly or quite in contact, except at the angles, where the papule are situated. These paxilliform groups are borne upon romd, convex, columnar or somewhat clavate elevations of the plates. In the triangular interradial areas and along each side of the rays the plates are smaller and closely united, without papulary pores, and their central elevations berome smaller and lower as they approach the margin, those near the marginal plate becoming oblong or elliptical and closely crowded together side by side in rows perpendicular to the marginal plates; usually two of these rows start inward from each marginal plate along the sides of the arms, but toward the center of the interradial area three rows often correspond to a single plate. Similar plates occupy the entire breadth of the dorsal area of the arms beyond the middle, where 1 u, papulary pores exist, but those of the median row can be distinguished even to the tip of the arm by their larger size and broader form.
The papulary pores are small, and about six suround each plate; they are wanting in the triangular interradial areas and along the sides and on the distal half of the rays. In each dorsal interradial area there are two larger pores, wheh are usually quite easily distinguished in dry specimens even without removing the gramules. They are situated opposite each of the second pair of plates, comnting from the interradial angles, and are at a considerable distance from the marginal plates; they appear to be the genital pores, which are larger and much wider apart than usual.
Our largest specimen has thirty nine upper marginal plates on each radial side and a corresponding number of inferior marginal plates; the former stand nearly vertically and project but hittle upon the disk, but along the sides of the rays they adrance more and more on the abactinal surface. At first their height is more than three times the length, but the length rapidly becomes greater and the height less, until on the distal half of the ray the form is sumarish, with the height only a little greater than the breadth. All the upper plates are covered with rather large, rounded, cylindrical, rapitate, unerfual granules; the sutures are bordered by a marginal series of small, slightly elongaterl, clavate papillæ, forming distinct fascioles continnous with those between the lower marginal plates; the granules on the upper part of the plates are but little elevated, but toward the lower end become larger and
move elevated, until close to the lower end some of those on the middle of the plate are relatively larger, higher than broad, with distinctly conlaged or capitate, rounded ends. The lower marginal plates correspond to the upper ones in number and nearly in breadth, but the sutures along the sides of the rays are not always closely coincident.

The plates ocerupying the intermadial regions are nearly horizontal and somewhat wedge-shaped, with the breadth radially more thau three times the transierse length, but along the sides of the rays they rise upward more, and the length increases in proportion to the height, as in the case of the upper ones. Their outer surfare is covered with rather stont, mostly fusiform, very acute spinules, equal in size; the larger ones in length are about equal to one-half the lesser diameter of the plate, and form three or four iregular radial rows, with the smaller and more slender ones interspersed. All the spines are loosely appressed to the plates and directed upward and outward in the preserved specimens, but they are not closely crowded and are scarcely imbricated. In smaller specimens, about half grown (radius, 60 mm .), the spines on the lower marginal plates are mostly not fusiform, but slender and regularly tapered, and they form but three regular rows on the middle of the plates, while the smaller and shorter spinules are very slender and much more numerous. The edges of these plates are bordered by one or two rows of small, slender, elongated, short, curved spinules or papillie, which meet across the rather deep sutures, thus forming distinct but loose fascioles. The actinal interradial areas are large and covered with a close pavement of plates, with their outlines concealed by the integument in well-preserved specimens; when the spinules are removerl, the plates are squarish with rounded corners, strongly convex, with deep, groove-like sutures between them; they are somewhat irregularly arranged, and form a pavement-like area, in which the rows next the adambulacral plates are parallel with the latter and the outer ones are parallel to the marginal plates, and slightly imbricated; the imer ones are smaller and more numerous than the adambulacral plates, usually one, but fiequently two, corresponding to each adambulacral plate; in general they are arranged so that two rows start from each marginal plate, and each row runs to a single adambulacral plate, but an additional row is interpolated in some cases. The row of these plates next to the adambulacial extends out to about the middle of the ray, the distal plates becoming small and narrow. Each of the interradial plates, except those next to the adambulacral series, bears on the middle, one to three, or more, rather large, fusiform, acute spinnles, similar to the larger ones on the lower marginal plates, and an irregular open marginal series of much smaller and more slender spinules of nearly the same form, but the plates next the adambulacral have their lateral margins bordered by a regular close series of flattened papillie, forming distinct fascioles; and occasionally similar fascioles appear on a few of the other plates of the second row. The
adambulacral plates are narrow on the actinal surface, but their inner margin near the adoral eud projects into the groove, forming there a prominent angle and leaving deep and broad incurved notches betreen them; the actinal portion of the projection is rounded and convex, and from its margin arises the furrow-spines, which are nine or ten in number and form an angular group corresponding to the actinal outline of the plate; these spines are subequal, rather slender, elongated, often a little bent outward, and usually laterally compressed and blunt at the tip; they are more or less united at base by a web-like membrane. The small convex actinal surface of the plates bears a central group of about three or four longer, thicker, round or fus:form, usually acute and rough spines, similar to the larger ones of the adjacent interradial plates; beside these there are several much smaller, slender spumbes on the onter margin in a curved row. The jaw-plates are rather large and thick, with sharp, nearly vertical, high inner angles, and with a thick, moderately elevated, actinal keel, separated by a rather wide, elongated median suture. Each jaw-plate bears a row of mumerous (abont eight) slender spines along the edge, next the groove; these are continuous, with a row of four to six similar spines on the imer, rertical margin. Each actinal keel of the jaw bears two irregular rows of slender, excurved, rough spines, ten or tirelve in each row; these spines are similar to the larger ones of the intermadial plates, but are rather more slender. The ambulacral feet are very large, furnished with a terminal sucker, and occupy the notches between the projecting adambulacral plates.

Taken by the U. S. Fish Commission steamer Albatross in 1880 at station 2706, off George's Bank, N. lat. $41^{\circ} 28^{\prime} 30^{\prime \prime}$, W. long. $65^{\circ} 35^{\prime}$ $30^{\prime \prime}$, in 1,188 fathoms, 7 specimens (No. 14944, U. S. N. M). Also at other stations in 1883, in 123 and 1,255 fathoms.

Variations.-The variations, so far as observed, are probably all due to difference of age. The smallest specimen has the lesser radius, 12 mm . the greater, 35 mm . This has 27 margiual plates, both above and below. The gramulations on the upper marginal plates are more uniform than in the large specimens, those near the lower end of the plate not being much longer than the upper ones, but otherwise they have the same character and are pretty evenly spaced. The paxilla of the dorsal surface are much smaller and mostly circular, or nearly so; the larger ones have three to nine central granules and twelre to eighteen marginal papille. The madreporie plate is very small, about midway between the center and the margin. The spinulation of the inferior marginal plates and interradial region is similar to that of the larger examples, except that the spimules are smaller and more slender. In the furrow series each group contains seven or eight spiues, which are slender and slightly excurved, but they are arranged as in the adult; the actinal surface of the plate often bears one or two larger central spines, with fom or five smaller and more slender ones on the outer
margin. 'The faw-spines are slender, but three or fom of them, at the immer end of the imforved jaw, are murh stonter than the rest; the imber end of the jaw is prolonged inward and upward to an acute tip.

This speries is more elosely allied to I '. intermedius, Staden, than to any other species hitherto fomed off our coast. The latter has a smaller disk, with the mper marginal phates projecting farther inward, thas porducing a boado margin and a narower paxillary area along the ravs; its paxillar are smather in sperimens of the same size, more closely (rowded, and have the grambes closel; crowded together and angular, the whole set fommer a compact group, in which the marginal papillar differ but bitte form the other grambes. The upper mareinal plates arr also mach more dosely and maifomly covered with grambes, Which are so closely comoled together that they have a polygonal form, esperially on the mper portion of the plates, where they are smatler than below.

The lower marginal plates are also much more densely spimulated and
 marh harger than the rest, whate the others are small, short, appressed, mowded, and more or less dosely mbricated; those on the lower part of the phate are ovate and often sulatelete, while those at the upper end of the plate become polytonal and gramule like, and similar to those of the wper phates their matemal papille are also chamateristic, beemg short, thick, angular, and very closely armaged in a resular wow. The intertadial areas are relatively smaller, with more mumerous, closer, and smaller, shorter spmules, of which one, a little larger and longer, Hsmally oerompes the center of each plate, whate the others mostly strmoud the margin and form distinct fascooles between most of the plates in our momerous sperimens (thongh, areording to shaten, mo lasconles existed in his specimens). The adambulacral spines are more egnal and form more regular and more prominent gronps, the onter marginal ones being more mmmons and forming a more regular, divergent, curved series, whate the central ones form a group) of live to seven larem ones, about equal in longth and size to the furow series; the lafter form ain angular group of seven to bine, which are usually strongly thansversely compressed and bont. The jaw-spines are mollo more mumerons, stonter, and more combed; they form a conspichons, broallovate group on the atinal surface of each jaw, with the nammw suture in the middle.

This sperios has a striking resemblance to Isenster beirdii in lorm and in the character of the abouthal region and upper marginal plates. The disk, howerer, is somewhat smaller and the rays relatively longer. The paxilla are a lithe smaller and the grambatons somewhat finer in sperimens of the same size; moreover, their margmal gramules are finer instrat of conarse, as in the lather. Howerer, the strongs spinnation of the lower shrfere and inferion matginal plates is widely different from the exen gramblaton of I. butrdia. The angulat groups of adam-
bulacral spines also give a very different character to the inferion surface.

Family ASTROPECTINIDN (Gray, 1840) emended.

ASTROPECTEN AMDRICANUS, Verrill.

Archaster americamus, Verrill, Amer. Journ. Science, xx p. 402, 1880.
This abundant species appears to be a true Astropecten, althoush a dorsal pore is visible. It has welldeveloped superambulaceral pates. It is more nearly allied to the bast A tlantie species, A. mestelnes, than: to any other speries deseribed by sladen. It differs from that species in having longer arms and a much smaller disk; in having longer and more slember marginal spines, and of these usially but two, sometimes three, on each of the inferior row of phates, instead of four or five; in the mumeroms long, slembler spinules of the rest of the sufface of the inferior marginal plates; in the long, slender spinules of the dorsal paxillar, and in the longer and more mumerons ardambulatral spines.

LEPMOPTYCHASTER ARCTICUS, S Iaden

Leptoptychaster areticus, Sladen, op. cit., p. 189.
Astropecten arcticus, M. Sabs, Reise, Lofoden and Fimmarken, Nyt. Mag. Nat., VI, 1. 161, 1851.
Archaster arctichs, Vemmid, Amex. Journ. Science, xvi, p. 214, 1878
Leptoptychaster acticuz, var. clongatus, SLADEN, op. cit., p. 189.
Our series of specimens show varions gradations in the relative length of the rays, some of them agreemgin this and othere respects with the form deseriberl as a variety by Slarlen. His variety was takern off New Jersey, in 1 , 3 an fathoms. I am mable to make out any definite dias. nostic characters for this form.

This speres has been taken at many stations off oum coast, in 50 to 547 fathoms, but always in small numbers.

PSILASTER FLORAE, Vorrill

Archaster flowe, Vermid, Amer. Journ. Science, vol. 16, 1p. 372, 1878. Rep. U. S. Com'r Fish and Fisheries, xi, p. 542, pl. 13, fig 36, 1885

This species cleaty belongs to the gemus Psilnstor, as defined by staden. It is closely allied to P^{\prime}. cendromedn, of Nowthern Europe, and may eventually prove to be only a variety of that species.

It approaches nearest to those specomens of the later, mentioned ho shaden, having broad superion matginal plates and well developed spines in a submarginal row on the lower series. some of the larere examples have a single, enlarged, arute spinule, like those of the lower series, on some of the superior marginal plates.

This speries has been taken at mmeroms stations by the U.s. Fish Commission in 72 to 984 fathoms.

A comsiderable number hare aliso been received firom the filourenter
fishermen, taken on the fishing banks off Nova Scotia and Newfoundland, in 84 to 230 fathoms.

BATHYBLASTER ROBUSTUS, V errill.

Archaster robustus, Verrill, Amer. Journ. Science, xxix; p. 383, 1885.
Phoxaster pumilus, Sladen, op. cit., xxx, p. 236, pl. 15, figs. 3-6; pl. 40, figs. 7-11, 1889 (Young).
This species is evidently very closely related to B. pallidus, of Northern Emope, the type of the genus Buthybiaster. It is even possible that they may prove to be identical when a full series of each can be compared.

The form described as Phoxaster pumilus by Sladen, which was taken off the North American coast, in 1,240 to 1,700 fathoms, appears to be identical with the young of our species. Ilis specimens were only $6 \pm \mathrm{mm}$. in diameter. The genus Phoxaster in this case becomes a synonym of Bathybiaster.

Fiully grown examples of J . robustus are often 250 to 250 mm . in diameter.

In the young specimens, up to about 75 mm . in diameter, the central "epiproctal cone" is still visible as a low wart-like elevation, with an aperture in the tip, but in the large specimens it disappears entirely and the central area of the disk becomes flat, or even concave, and covered with crowded paxilliform plates much smaller than those on the rays, but the small central pore is persistent. The peculiar purselike or bursiform perlicellarise of the large inner adambulacral spines, characteristic of Bathybiaster, are often entirely wanting in our specimens, especially when small, and usually, when present, there are but few of them even in the large specimens. Possibly they may have been destroyed by rongh usage in the dredges and washing sieves. The squamiform spinules and pedicellaria of the actinal and marginal plates are like those of Buthybiuster pullidus. The two rows of spinules on each jaw-plate are peculiar, for the opposite spines of each pair press their tips together something like the valves of certain pedicellarie, but this seems to be the case in the European form also. These spines are subequal in length-short, with flattened blunt tips; those of the actinal series, in large specimens, are stontest, often with enlarged, trincate, bilobed, or rough ends; there may be 15 to 20 in each row. The two close parallel rows of spines on the first adambulacral plates are similar in form and arrangement. Of these there may be 10 to 12 in each row. The adambulacral plates, except the first pair, correspond in number to the marginal plates. The actinal interradial plates form short, simple rows ruming from each plate to a correspontling marginal plate; their marginal seales form narow fascioles, which become more distinet and regular in the narrow, contimons vertical grooves between both series of marginal plates. The longitudinal sutures between the upper and lower plates are very
inconspictous. The small, conical, marginal spine on the upper edge of each of the superior plates is relatively shorter and stouter in the large specimens than in the smaller ones; sometimes there are two of them side by side. Taken at many stations, in 705 to 1,467 fathoms.

Family Pentagonasteride, Perrier.*
PARAGONASTER FORMOSUS, Verrill
Archastev formosus, Verrill, Amer. Journ. Science, xxviit, p. 383, 1881.
? Paragonaster cylindratus, Sladen, op. cit., p. 314, pl.51, figs. 3, 4; pl. 53, figs. 3, 4, 1889.

Our species appears to be very closely allied to the form well described and figured by Sladen from off the Cape Verde Islands. Our species appears to have the adambulacral plates more salient and angular on the furrow-margin, and the notches between them deeper; the furrowspines appear to be more slender and form a more strongly curved or angular group, which is continued by three to five shorter ones in a fasciole-like row on the proximal and distal edges of the plates; there are about five on the furrow-edge proper; the spines on the actinal surface are more elongated and more regularly stellate, with a longer one in the middle of the group.

The spinules of the lower marginal plates have the same arrangement as in Sladeu's species, but are slightly more slender and acute than shown in his figure; of the larger median series there are usually two or three irregular, indefinite rows in the larger specimens, instead of a single definite row. These differences are, however, so slight that the two forms may eventually prove to be the same species.

Narrow, imperfect fascioles occur between the marginal and actinal plates in our species.

The distinction between Paragonaster and Pswdurchaster seems to me very slight, depending almost entirely upon the narrow abactinal area of the rays in the former.

This species was taken at several stations in 1,396 to 2,031 fathoms.
ISASTER, new genus.
It seems necessary to institute a new generic gronp for the elegant starfish formerly described by me under the name of Archaster bairdii. It cannot be placed in any of the numerons genera proposed by Sladen without changing the definitions considerably. It appears to be most nearly allied to Merliaster, Paragoncester, and Nymphuster. It might be defined as a Nymphester with broad rays having wide abactinal areas.

The form is stellate, with a rather broad disk and tapering rays, having rather wide abactinal areas. The marginal plates are well developed in both series, but the upper ones are flattened above, or bevelled, and de not form a wide margin on the disk; they are all paired, aui those of the two series are nearly opposite each other. They are everywhere

Goniasteride is an earlier and better name for this group.
I'roc. N. M. $94-17$
granulated, without spines, and have differentiated marginal grannles along the sutures, forming narrow fascioles. The abactinal ossicles are mostly parapaxillie, regularly aranged in several longitudinal rows along the middle of the lays, with the central row clearly defined; they are closely and evenly covered with angular graunles, those around the edge differentiated. The papule are restricted to the central part of the disk and the baso median part of the rays.

The actinal interradial areas are large and covered with many more or less rhombic plates closely arranged in regular rows parallel with the ambulacral grooves. The plates are covered with even gramules similar to those of the upper surface.

Some of the actinal plates usually, but not in all specimens, bear small valvate pedicellarit, usually with two or three valves, similar in size to the gramules; similar pedicellarice may oceur in small numbers on the marginal and abactinal plates.

- The armature of the adambulacral plates is in longitudinal rows. usually three rows to a plate.

The jaws are not prominent on the actinal side; they have marginal and actinal rows of spines. The ambulacral feet have terminal suckers.

This genus differs from Nymphastor chiefly in having broad abactinal areas on the rays. From Paragonaster it differs in that character and also in having the actinal plates evenly granulated, and the furow. spines in a straight row.

The pavement-like arrangement of the actinal plates, the granulation of the plates, and other characters indicate that it belongs to the family Pentagonasteridie, as limited by Sladen.

ISASTER BAIRDII, V errill.

Archaster bairdii, Verrill, Amer. Journ. Sci., xxili, p. 139, 1882.
Disk broad, Hattened, or moderately convex, with the interradial margins broadly curved, and the elge evenly rounded, owing to the faint elevation of the upper marginal plates. Rays broad at base, rapidly tapered to rather slender tips. Lesser to the larger radius about as 1 to 2.r. Lesser radius of one of the largest specimens, 23 mm . greater radins, 5 to 56 mm . Another specimen has the lesser radius 18 mm .; greater, 53 mm .

Abactinal area of the disk and rays closely covered with rather large crowded parapaxilla, which are round or polygonal according to the amount of crowding, with a median row along the rays slightly larger than the others. The parapaxilla consist of a round, convex, cylindrical or slightly clavate column, arising from the center of each of the plates. On the middle region of the basal portion of the rays, the plates are united by more or less stellate processes so as to leave large intervening pores for the papulae; but in the triangular interradial areas the plates are closely mited, withont pores between them. On these areas they become potopaxillix, and are closely crowded in rows
parallel to the marginal plates; next the marginal plates they become much smaller than elsewhere and squarish or hexagonal in form, while the central column becomes reduced to a slight elevation of the surface. These small plates, without interspaces, also exteud along the margins of the rays and fill up the entire abactinal area of the arms beyond the clistal fourth, where there are about five rows. In the central area of the disk the central and ten primary plates are larger and more rounded than those upon the rays; and the papular pores are smaller and less numerous than upon the rays, so that the areas having pores form a five-rayed star upon the disk and arms, which is conspicuous when the grauules are removed. The petal-like groups of papular pores are also often distinctly visıble in dry specimeus without the removal of the granules.

Each of the dorsal plates bears a very even and regular flat or concave group of papilliform granules; each group consists of a central cluster of from twelve to twenty-five rather small rounded granules, slightly separated from each other, and of a marginal series of fifteen to thirty or more, somewhat longer, very even, flattened, blunt papillæ, which are somewhat divergent, so that those of the adjacent groups are nearly or quite in contact, except where the papulae come forth. Owing to the somewhat greater length of the marginal papille the central area or the whole group is lower than the margin. Some of the smaller grouper towards the sides of the rays contain but six to ten granules in the central cluster, in the midst of which one, slightly the largest, is central and the others form a circle around it. Close to the marginal plate, in the interradial areas, where the plates are most crowded, the gramules become very uniform in size aud elevation, so that the separate groups are scarcely distuguishable and the granulation is nearly identical with that on the marginal plates.

On several of the largest specmens many of the dorsal plates, both of the disk and rays, bear a single, small, subcentral or marginal bivalred pedicellaria, which is a little higher than the adjacent grauules and two or three times as broad; seen from above the outline is oblong; each one appears to take the place of fiom two to four granules. Sometmes two such pedicellariee occur on the same plate, and occasionally they have three valves. Those that occur near the interradial margins are smaller than those on the central area. The valves are flat, incurved, and truncate at the end.

The madreporic plate is small, with few branched gyri, and is situated. much nearer to the center than to the margin; in a specimen having the lesser radius 22 mm . the madreporic plate is 7 mm . from the center. The central or anal pore is usually small and inconspicuous, but in some specimens it is very evident and is surrounded by a couvergent group of numerous small spiunles. In the papular areas at the bases of the arms the pores are large aud each has a single papula; usually each plate is surrounded by six pores.

The upper and lower marginal plates closely correspond in number and elevation. The superior ones are scarcely raised above the level of the disk, so that they are not conspicuous, as seen from above. In the interradial areas they are nearly twice as high as long, but beyond the middle of the arm they become squarish in form; their surface is but slightly convex; they are separated from each other and from the inferior plates by shallow and narrow grooves, which are bordered by a row of small granules or papillie a little louger than those that cover the rest of the plate, so as to form simple fascioles. In the largest specimens there are about twenty-five superior marginal plates on each side of a ray. The inferior plates are nearly the same as the superior ones in size and form and in the furrows or fascioles between them, but the sutures do not always correspond precisely with those of the upper series. The entire outer surface of the marginal plates of both series is covered with small grauules separated by intervals less than their own diameters.

The interradial areas beneath are rather large, triangular, and oceupied by groups of closely united, convex, poly goual, and squarish plates, similar in size to the larger ones of the dorsal surface and covered by even groups of grauules, much like those of the dorsal surface, but a trifle larger and higher. These plates form four or five regular rows parallel to the adambulacral plates on each side, beside a small triangular group next the center of the interradial margin; their regular arrangement and squarish form allows narrow furrows to run from between the adambulacral plates to the marginal plates in both directions. Those in the row next the adambulacral plates correspond nearly to the latter in number and breadth; this row extends to a point about opposite the eighth marginal plate of the ray, the distal plates becoming small and irregular and only filling the angles between the adambulacral and marginal plates; but within the limits of the disk the plates of.this row are nearly square, with rounded corners. The granules covering these actinal plates are somewhat elevated, with rounded and somewhat swollen tips, the marginal series on each plate being somewhat longer and more divergent than the rest, so as to form rudimentary fascioles between the plates. The number of graunles on the larger plates is usually from fifteen to twenty, of which three to six occupy the center of the group, while the others are often arranged so as to form pretty regular square or rhombic groups, giving a very even and symmetrical arrangement to the whole area. On some of these plates, near the mouth, one of the central gramules is replaced by a small bivalved pedicellaria, similar in size and form to the adjacent granules, but they do not appear to be present on all specimens. In some specimens these pedicellawie become decidedly larger and are furnished with three, four, and even five valves surxounding a central or subcentral pore in a plate; in this case they take the place of the central group of gramules and become more numerous and oceur on about one-third of all the
interradial plates. On such specimens more or less similar two-valved pedicellarix are found on the marginal plates and on the abactinal plates of both the rays and disk. The adambulacral spines consist, in the larger specimens, of an inner or furrow-group of five or six rather slender elongated spines, which arise from a curved and prominent base line and project inward in a more or less divergent group, in which the middle spines are somewhat longer than the rest; these spines are mostly flattened in a direction transverse to the rays and are subacute at the tip; external to these, on the actinal side of the plate, there is a somewhat curved longitudinal row of about six spines, which are much shorter than the inner ones, their length being less than half, while the three middle ones are also somewhat stonter than the inner or furrowspines, and considerably larger than those adjacent to them in the same row; each plate bears also an outer, incurved marginal series of short, blunt spinules, scarcely larger than and similar to the granules of the adjacent plate. They form a marginal row around the onter portion of the plate, and often form, with the median series, a more or less circular or elliptical group, external to the furrow series; but in other specimens the two sets appear rather as parallel, longitudinal rows. The furrow ends of the adambulacral plates are broadly curved and prominent and project somewhat into the furrow, leaving rather deep indentations between them, which form rudimentary fascioles.

The jaws are furnished with mumerous rather stout, flattened spines, of nearly equal size; of these, about three projecting inward from the angle of the jaw are a little the longest, and the median one is a little more prominent than the others. Distal to these, on each margin there may be eight to ten somewhat smaller, blunt, transversely compressed spines standing in a single row. The actinal surface of the jaw-plates is slightly convex and but little prominent, the two plates forming together a broad oval, upon which, proximally, there is a pair of short, rather stout, angular spines, which form the apex of an oval group of smaller and shorter spines, formed by two rows on each half of the jaw; the more distal of those of the outer row, and all those of the inner rows, are similar in size and form to the granules of the adjacent interradial plates.

This species was taken by the U. S. Fish Commission steamer Albatross in 1882 at station 1122, off Martha's Vineyard, in $3 \check{1} 1$ fathoms, and at five stations, in 1885, between N. lat. $422^{\circ} 55^{\prime} 30^{\prime \prime}$, W. long. $500^{\circ} 51^{\prime}$, and N. lat. $39^{\circ} 47^{\prime} 07^{\prime \prime}$, W. long. $70^{\circ} 35^{\prime}$, in 471 to 721 fathoms.

Most of the specimens, including all the larger ones, were taken at stations 2429 and 2552 , in 471 and 721 fathoms.

Tariations.-The essential characters of this species do not vary largely in specimens much smaller than those described. The smallest specimen seen has the radius of the disk 8 mm . and that of the rays 18 mm . This specimen agrees closely with the largest in general appearance and most of the details of structure. But the dorsal parapaxillæ
are naturally smatler and are occupied by a much smaller number of granules, there being on the median row of the rays about ten or twelve marginal and three or four central granules. The primary plates are relatively larger than in the adults. The larger ventral interradial plates have about seren to ten marginal gramules, and usually but one in the center. The spines of the adambulacral plates form three pretty regular longitudal rows; those of the inner or furrow-series are long and slender and form a divergent group, usually of four on each plate; in the second row there are mostly four, which are much stouter, on each plate; the outer row consists of from three to five on each plate, similar to the adjacent gramules. On the young specimens up to 50 mm . in diameter no pedicellarise have been observed. A few often occur on specimens 70 mm . in diameter, but they are often absent from the largest sized specimeus.

Most of the specimens from station 2429 have the arms somewhat longer and more attenuated distally than in the typical specimens. One of these, having the radius of the disk 14 mm ., that of the rays 42 mm ., has the rays 6 mm . in the breadth in the middle, measuring from the mouth.

A siugle six-rayed specimen occurred at station 2429. This is 54 mm . in diameter; radius of the disk 10.5 mm . It agrees pretty closely with the five-rayed specimens of similar size, but the granules of the actinal plates are smaller and more numerous than usual, and many two-valved pedicellarie occur upon both the dorsal and ventral plates. In this specimen the furrow-series of adambulacral spines consists of groups of six and sometimes seven on each plate.

Genus Odontaster, Verrill.

$$
\text { Odontaster, Verrill, Amer. Journ. Science, xx, p. 402, } 1880 .
$$?Gnathaster, Sladen, op. cit., p. 185, 1889.

This genus has a broad, stellate form, usually five-rayed. The abactinal surface is covered with elevated, round parapaxillie, bearing spinules. The papula occupy the center of the disk and the median part of the rays. Marginal plates convex, the two series about equally developed with an odd interradial one in each series. Imperfect fascioles occupy the sutures. Upper marginal plates covered with fine spinules; lower ones with larger spines, similar to those of the lower surface of the disk. Actinal plates numerous, pavement-like, in rows parallel to the furrows, each with a group of erect spines. The adambulacral plates are rather rectangular, with a furrow series of few large spines in a simple row, and an actinal group of similar large spines. Each jaw has on the actinal side and near its imer end a large, sharp median spine or tooth-like process, which is directed outward. The jaws have marginal and actinal rows of spines similar to those of the adjacent plates. No pedicellarix have been observed.

In most respects the genus Gmathaster of Sladen is identical with

Odontaster. The large, median, sharp, recurved spine or "keel" of the jaw is the same in both, and the same is true of the general structure of the skeleton. But Odontaster is much more spinose, both above and below, than any of Sladen's species. The latter have more evidently paxilliform plates on the actinal surface, bearing small spinules or papilliform granules, while in the type of Odontaster all the ventral plates are densely covered with long, robust, erect spines, nearly equal in length.

ODONTASTER HISPIDUS, Verrill.
Odontaster hispidur, Verrill, op. cit., p. 402, 1880.
This form is regularly stellate, with a rather broad, flat disk and tapering, subacute rays, which are usually 5 , but sometimes 6 . The dorsal surface of the disk and rays is covered with spinulated parapaxillse; over most of the surface these have a rather high, round, central column, convex at summit, and covered with a dense radiatug group of long, slender, sharp spinules, often 20 to 26 on each; the marginal spinules are smaller and mostly divergent. Toward the margins of the interradial areas and rays the central column of the plates becomes gradually smaller and shorter, becoming verruciform and quite small on the outer plates, which are closely crowded and without intervening papular pores.

The papulie, in specimens 20 to 30 mm . in diameter, are arranged in a broad ovate group at the base of each ray, and in a disconnected central group on the disk, but in large specimens the central group becomes connected with the others by a narrow median band; the papulie do not extend quite to the end of the rays in the largest examples, but reach to about the distal third. The madreporic plate is of medium size, with fine gyri, and is surrounded by a ring of about 6 paxille.

The marginal plates are all convex, with deep rounded sutures, in both directions; the upper ones rest largely on the dorsal side. There is an odd interradial marginal plate in each series, very similar to the others, but a trifle more wedge-shaped. There are usually 17 to 19 plates in each series, in the larger specimens; they are opposite each other. The apical plate is small and pear-shaped.

The upper marginal plates are densely covered with small, sleuder spinules, like those of the dorsal paxillie, and the marginal ones are smaller and form narrow fascioles.

The inferior marginal plates are densely covered with similar spines, which are a little more acute, but they have very slender spinules along the sutures, forming imperfect fascioles. The actinal plates are numerous, thick, rather squarish, but with rounded angles and a convex surface, with pits where the spines are removed; they are arranged in rows parallel to the furrows, except close to the margin, where they become small, irregular, and crowded; those in the first row are longer radially than the adambulacral plates, so that they are fewer than the
latter; those in the other rows have a tendency to stand opposite those of the first series, those in each succeeding row being smaller, but this arrangement is not entirely regular. The first row of actinal plates extends to within a short distance from the end of the rays, only the last 4 pairs of marginal plates being without them, but they become small and narrow distally.

The adambulacral plates are rectangular, shortest radially, convex, separated by well-marked sutures. The larger specimens have either 2 or 3 rather long aud nearly equal, erect, furrow-spines, on each plate, and about 5 or 6 similar, but slightly larger, erect spines on its actinal surface; these spines are all pointed and quite identical, in size and form, with those of the adjacent plates.

Specimens of ordinary size have the smaller radins about 16 mm .; the larger radius 40 to 42 mm . A few 6 -rayed specimens have occurred. This species was taken at a large number of stations by the U. S. Fisk Commission, in 43 to 1,230 fathoms, between N. Lat. $35^{\circ} 14^{\prime} 20^{\prime \prime}$ and $40^{\circ} 10^{\prime} 15^{\prime \prime}$.

PENTAGONASTER EXIMIUS, new species.
A small, flat species, with a broad, pentagonal disk, nearly rectilinear on the interradial margins, and with small, short, narrow rays, which are obtusely rounded at the end, owing to the presence of a rather large apical plate. The lesser to the greater radius, as 1 to 1.75. Lesser radius of the best specimen, 16 mm .; greater radius, 25 mm .; elevation of the margin of the dry specimen, 3 mm . length of the largest marginal plates, 21 mm . diameter of the largest dorsal paxilla of the rays, 1.2 mm .

The abactinal surface is closely covered by nearly flat, rather large, closely granulated plates, which, in the radial areas, are regularly hexagonal at summit, a central median series being distinguishable, though scarcely larger than those adjacent. The central area of the disk is occupied by angular plates, moreirregular in size and form, among which all the central and the 10 primary radial and interradial plates can be easily distinguished by their much greater size and more utmerous granules, their diameter being about 2 mm ., and the number of granules more than 100. The large triangular interradial areas, destitute of papulee, are oceupied by very closely arranged angular plates, some of which are rhombic, others trapezoidal, and some subtriangular, those nearest the marginal plates being smaller than the others, but all are covered with a miform grauulation. On the larger radial plates there is a central group of 15 to 20 closely packed, rounded granules and a marginal series of from 20 to 25 angular ones. On the distal part of the rays the median plates become smaller and more irregular, and have no intervening papular, and between the last three pairs of marginal plates they are absent. The madreporic plate is small, angular, and nearer to the center than the margin (distance from center, 6 mm .) ; it has rather few convoluted gyri.

Of the upper marginal plates there are 8 on each radial margin, and of the lower plates, 9 , including a very small one next the apical plate. The larger plates of the upper series are nearly rectangular in outline, but rather higher than long; as they approach the end of the rays they become relatively shorter, until, near the end of the ray, the length is about one-half the height. The infernor plates are about equal in size to the upper, and stand nearly opposite to them, but the sutures do not correspond closely; the larger part of their surfaces extend upon the actinal side of the interradial region. The entire surface of the plates of both series is densely covered with small polygonal granules, except a small, rounded, or oval, bare spot on the upper end of each superior plate, and near the lower margin of each inferior plate; but these smooth bare spots are occasionally wanting, and vary in size, indicating that they may have been caused by injury before capture, for the plates are pitted where the granules have subsequently been removed.

The large interradial areas of the actinal side are occupied by a close pavement, mostly of rhombic plates, which are mostly arranged in rows parallel to the ambulacral groove. Each plate is covered by a compact group of angular granules, usually 10 to 15 on each plate; these graunles are coarser and more elevated than those on the surface of the marginal and dorsal plates, but they are all similar and of the same height, producing a very even surface. The adambulacral plates are arranged in 3 nearly regular longitudinal rows; the furrow-series consists usually of 3 nearly equal spines which are moderately stout, not very long, mostly flattened, and obtuse; the next series is formed by 2 , somewhat Hattened, blunt spines, side by side, on the actinal side of each plate; these are a little shorter, and decidedly stouter than the furrow-series; the outer series is formed by 3 small, equal, angular, granule-like spinules on the outer margin of each plate; they are similar to and only slightly longer than the gramules of the adjacent plates. The jaws bear, on each side, a row of 8 or 9 rather stout and short angular spines of which the innermost are a little the largest and also a row of similar spines, of about the same size, on each actinal border, with a few smaller ones in a group at the distal end. The jaws have no distinct actinal keel.

This species was taken by the steamer Albutross in 1883, off La Have Bank, at station 206t, N. lat. $42^{\circ} 25^{\prime} 40^{\prime \prime}$, W. loug. $66^{\circ} 08^{\prime} 35^{\prime \prime}$, in 122 fathoms, and in 1885 off Nova Scotia at station 2507 , N. lat. $44^{\circ} 27^{\prime} 30^{\prime \prime}$, W. long. $62^{\circ} 33^{\prime} 30^{\prime \prime}$, in 80 fathoms. A single specimen was obtained at each locality.

This species is closely allied to P. gramularis, which is also found in the same region. The latter differs in having the interradial margin more regularly incurved, with the rays relatively longer and more regularly tapered and the tip less acute, owing to the smaller size of the apical plate; the granulations of the abactinal marginal plates are also
coarser and less even, and not so numerous; the primary interradial plates are relatively much smaller and less distinct from the others; the madreporic plate is finely cancellate; the adambulacral plates bear more numerous, stouter, and more angular spines; in the furrow-series there are usually four or five spines; on the middle of the actinal surface three to five stout, blunt, angular spines; and on the outer margin usually three or four short, thick, angular, granule-like spines.

Remarks on the chatacters of the preceding families.

The preceding families Archasterida, Astropectinida and Pentagonasteride, as limited by Mr. Sladen,* are not well defined, nor do the few characters given by him hold good in all cases.

The existence of superambulacral plates has been supposed to be characteristic of the Astropectinide ouly, but they exist in several of the genera referred to Archasteridie, viz., Dytaster, Plutonaster, and Pseudarchaster.

The aproctous condition, supposed to be characteristic of the same family, is unreliable, for in nearly all the genera referred to it by Mr. Sladen there is a perfectly well defined dorsal or "anal" pore appearing just as in the Archasteridie, and in some of the genera the pore is even elevated on the summit of a dorsal cone or chimney (Psilaster, Ilyaster, etc.). This pore serves in each of these families (and in Asterioidea generally) for the discharge of the secretion of branched dorsal glandular organs, probably nephridial in function, situated above the stomach.

Whether the central pore serves as a true anus in any of these starfishes is very doubtful, for the intestine is usually nearly or quite abortive. In any case it is impossible to ascertain this point without actual dissection of alcoholic or fresh specimens, which are often not available.

The distinctions between the Pentagonasteridie and Archasteridre are also very faint and indefinite, for although the typical genera of each group appear to be very different, there are many intermediate genera now known, so that there is probably not one diagnostic character that can be given to separate the two groups as limited by Sladen. If the two families are to be preserved, it will probably be necessary to change their limits and to transfer some of the genera.

It would, perhaps, be more in accordance with a natural classification to drop the family Archasteridie and distribute the genera referred to it among those of the other two families. In such a system those genera having distinct fascioles between the marginal plates and between the infero-radial plates would belong with the Astropectinidre, while those without fascioles would be placed in the Pentagonasteride or Gouiasteridre.

By this rearrangement the former family would include mostly those genera covered with true paxillie and parapaxillae, and the latter would

[^67]include mostly genera covered with spinous or granulated plates, protopaxillæ, or pseudopaxille.*

The various kinds of abactinal ossicles pass into each other by varions intermediate forms, so that it is impossible to draw any very strong or sharp family lines on this character alone, though the character of the plating may generally be taken as of generic value.
The existence of definite fascioles of specialized spinules or papillæ on the margins of the plates, so as to form covered channels along their sutures, is evidently a character both of morphological and physiological importance. The existence of fascioles is correlated with the mode of life. Such forms as have them appear to live more or less buried in soft mud or sand and the fascioles are evidently for the purpose of providing a free circulation of water around the whole surface of the body, both to provide for respiration and to keep the surface of the body free from dirt. The paxilliform plates also contribute to both these functions.
The typical Astropectinidie are among those best provided with fascioles and with the most highly developed forms of paxillie. They are also those that are eminently dwellers in and beneath mud and sand. The pointed form of the ambulacral feet is correlated with the same habit.
The family Porcellanasteridie includes Ctenodiscus, Porcellanaster, and allied genera, which have similar, but even more specialized, structural adaptations for the same purposes.

Within the limits of the family Archasteride Mr. Sladen made four

[^68]subfamilies. These are mostly small groups of genera that have more or less close relations to each other, but the distinctions between some of them seem to me too slight for even subfamly groups. Every new genus discovered is likely to break down some of the distinctions made between such groups. Moreover, some of the distinctive characters given by Mr. Sladen do not hold good for the genera classified by him. Thus, the subfamily Pararchasterina is said to have the papule "confined to a limited area at the base of the rays," while the subfamily Plutonasterine is said to have them "distributed over the whole abactinal area." But, as a matter of fact, scarcely any of the genera referred to either of the subfamilies have the papula so distributed, and in many of the genera they can be best described as confined to the central part of the disk and to the median or radial areas of the basal part of the rays and disk. They are almost always lacking on the distal and submarginal parts of the rays, and on more or less extensive dorsal interradial areas of the disk. This is the case in Plutonas. ter, Dytuster, Pseudarchaster, etc., and is also the usual arrangement in the Pentagonasteridæ.

The geuus Pararchaster, Sladen = Benthopecten, Verrill has essentially this same arrangement of papula, only they are absent from a somewhat greater portion of the distal part of the ray, but different specimens of the same species vary widely in this respect according to their age. In fact, there is nothing very peculiar in their arrangement in this genus, as compared with various other species formerly included in the genus "Archuster," so that when the genus Benthopecten was first brietly described by me I did not consider it necessary to refer to this feature, there being various other characters of much greater value.

The special arrangement of the papulie in Pontaster is, however, a character of importance. But there is surely no very close affinity shown between Pontaster and Benthopecten by the arrangement of the papule.

My own view is that Benthopecten may be more closely allied to some of the genera referred to the Pentagonasteride by Mr. Sladen, for it has neither paxillie nor fascioles, but it does have large, odd, interradial marginal plates, a feature found in some of the other genera of the latter family. Probably there should be a special subfamily, Benthopectinince, established for it.

On the other hand, a special subfamily, Pontasterince, may well be established for the genus Pontaster and allied genera, which are evidently closely related to the more typical genera of Archasterida.

A very remarakable new genus of this group, and apparently closely allied to Pontuster, though it has large papular areas, exists on the Pacific coast. It has the following characters:

ACANTHARCHASTER, new genus.
Rays usually five, long, angular, tapered. Disk small; actinal interradial plates very few, spmous, confined to the disk; marginal plates
of moderate size, more or less alternate, spiniferous; those of the upper series smaller than those of the lower, rounded, with a central eminence bearing a single large movable spine, with a group of small spinules arom its base. The plates of the lower series may bear two or more similar large spines surrounded by spinules. The upper marginal plates form a narrow margin along the rays.

The dorsal surface is covered with small, unequal plates in the form of protopaxille and spinopaxillie; the latter have a low, round column and bear a large, central, articulated spine surrounded at base by a circle of small spinules; they are found on the disk and along the median part of the rays. The protopaxille are smaller and part of them bear only small spinules; others lave a small central spine.

The papule cover most of the disk and the entire basal part of the rays.

Peculiar double pectinate pedicellarixe exist on the dorsal surface of the rays and disk, and a single one, of larger size, occupies the center of each actinal interradial area; in one case a similar structure replaces the two upper marginal plates in the interradial angle. These large actinal compound pedicellarie may have teu to twelve incurved papillie on each side, while those of the dorsal surfaces have, usually, three to six. Some of the latter have three convergent groups of curved papillæ. The central dorsal pore is very evident and surrounded by papillæ.
The adambulacral plates have a salient inner angle, and hear a divergent group of furrow-spines and a transverse actinal row of long spines.

The jaw-plates are large, and bear simple marginal and actinal series of long spines.

The type (Acantharchaster dausoni, Verrill), originally described* as Archaster duwsoni, Verrill, was taken in 111 fathoms off the Queen Charlotte Islands.

Family Stichasteritac, Perrier.

NEOMORPHASTER FORCIPATUS, new species.
Rays five, high and rounded at the base, tapering rather rapidly to the slender, acute tips, and in the dry specimen showing a distinct, elevated median row of large plates and four lateral rows of somewhat smaller plates on each side. Interbrachial angles subacute; disk rather small, swollen, in the dry specimen depressed in the center. The lesser to the greater radii are about as one to five. Smaller radius of the type specimen, 16 mm .; greater radius, 85 mm .; breadth of arms at base, 19 mm .; height of the arms at base, 16 mm .; diameter of madreporic plate, 4 mm .

The disk and the principal rows of dorsal plates of the rays are

[^69]covered with short, thick, blunt, almost granule-like spimules and with a great abundance of comparatively large crossed pedicellariee, which are also seattered over all the plates, both of the dorsal aud lateral surfaces of the arms and disk; many of these pedicellariae are nearly as large as the adjacent spinules and about half as thick as the larger spimules of the dorsal series. The rows of plates along the sides of the arms are destitute of spinules, but are thickly covered with pedicellarie. Adjacent to the adambulacral plates there is a row of stont ventral plates, each of which bears two stout, obtuse, club-shaped spines placed side by side and forming a somewhat irregular row, which terminates before reaching the middle of the arm. Ontside of these there is another row of prominent plates, each of which bears one or two small spines toward the base of the arms, but beyond the middle of the arm each bears two spines or sometimes three, like those of the inner row. The surface of these large ventral plates is covered, like the dorsal aud lateral ones, with large crossed pedicellaris. Each adambulacral plate bears two or sometimes three moderately long, round, blunt, and often slightly clavate spines, so arranged as to form two pretty regular rows. Near the mouth each plate usually bears a single spine forming a simple row. Attached to the adambulacral spines and in the ventral interradial spaces are many acute, ovate, forcipate pedicellarix, often mixed with crossed pedicellarie and scarcely exceeding the latter in size; along the imer edge of the adambulacral furrow there are numerous smaller pedicellarie similar in shape. Many of these are raised on slender pedicles; they often form a group of three or four on the inner end of each plate. Jaws elongated, with three or four rather long, round, subacute spines in a row along each side, and with four longer convergent spines at the inner end, two of which are directed upward and inward.

The central part of the disk is covered by a system of rather large primary plates, which form a more or less distinct rosette. The madreporie plate is near the center, moderately large, flattish or somewhat concave, and surrounded by numerons spinules like those of the neighboring plates. It occupies the whole upper surface of a large primary basal plate. The plates of the median dorsal series are rather large and prominent, closely united in a continnous series; their prominent Crests are transverse and bear about 10 to 12 spinules, which are arranged in about two irregular transverse rows, intermingled with the pedicellariar: another row of similar but somewhat sinaller plates extends from the dorsal interradial angle to the tip of the arm on each side; this row, at dirst dorsal, becomes median-lateral at about the midlle of the ray. Toward the base of the arm these plates usually bear a transerse row of 2 to 4 small spinules on a distinct crest or ridge, but these mostly disappear before reaching the middle of the am; between this row of plates and the median dorsal row on the basal part of the arm there is an intermediate low of smaller plates,
most of which bear a small group of spinules and pedicellarise, but this row becomes indistinct at about the middle of the arm, yet continues to the eud. The sides of the arms at the base are occupied by about three rows of large, close plates, mostly without spinules. These longitudinal rows of plates are united by short, stout, transverse processes, so that they leave small rounded interspaces, each of which bears a group of 3 to 6 or more papule on the dorsal surface; on the lower lateral and ventral surfaces the interspaces become much smaller, and the papulze often stand singly. All the plates are very firmly united together, both transversely and lougitudimally, so that their outlines can not be distinguished in the dry specimen withont maceration.

The ambulacral sucker-tubes form 4 close rows, and are furnished with small terminal suckers.
Two specimens (Nos. 11131 and 11425, U. S. N. M.) were taken in 1885 at statious 2530 and 2531 , off George's Bank, in 956 and 852 fathoms; and another in 1886 (No. 14859, U. S. N. M.) at station 2681, off Martha's Vineyard, in 990 fathoms.
The generic position of this singular species is somewhat doubtful. It appears to be more nearly allied to Neomorphaster eustichus, Sladen, from off the Azores, in 900 to 1,000 fathoms, than to any other described form. It differs, however, in having more numerous pedicellaria scattered over the surface, in the greater number of papula, in the transverse arrangement of the dorsal spinules, and in having longer and more slender furrow-spines.

Family Solasteride, Perrier.

SOLASTER SYRTENSIS, new species.

Rays usually 9 , well rounded above, high at base, regularly tapered, moderately long, the length about equal to the diameter of the disk. Interradial angles subacute, occupied by close psuedopaxillie. Disk flattened or convex, according to the mode of preservation. Radii about as 1 to 3 . In one of the type specimens, the diameter is 165 mm .; lesser radius, 28 mm .; greater radius, 80 to 85 mm .; breadth of rays at base, 18 mm .; height of rays at base, 16 mm .; diameter of dorsal pseudopaxillte, about 0.75 mm ; diameter of madreporic plate, 3 mm .

The whole dorsal surface and the sides of the rays are closely and eveuly covered with rounded, flat-topped pseudopaxilla, larger and more even than those of S. endecu. Those covering the central areat of the disk and middle of the basal part of the rays are largest, the size regularly decreasing toward the ends and outer sides of the rays. The spinules on the largest pseudopaxille are often 30 to 40 in number, of which 20 to 25 or more surround the margin, while 6 to 12 or more form a central group. They are all similar-small, slender, of moderate length, and rough at the blunt tips, and seem to be united at their bases by a membranous web.

When the spinules are well preserved those of adjacent pseudopaxillar are nearly in contact, giving the surface an even and somewhat tessellated appearance. The pseudopaxillie on the sides of the rays form regular oblique rows, diverging downward aud outward.

The papulie are large and occur either singly or in groups of two or three in each small interspace between the dorsal plates of the disk and arms; on the sides of the arms they mostly occur singly. No papule were found below the marginal jlates. Madreporic plate of moderate size, covered with fine, much convoluter? gyri Upper marginal plates small, bearing pseudopaxille slightly larger than those abore them on the basal part of the arms, but becoming much more distinct toward the tips, where the adjacent lateral pseudopaxille are sma!l. The inferior marginal plates are much larger and somewhat prominent; the elevated portion is compressed, elongated transversely to the ray, and bears an oblong group of numerous small, crowded paxilliform spinules, similar to those of the dorsal pseudopaxillie. Abont 55 lower marginal plates occur on each side of a ray.

The inferior interradial spaces are of rather small size and are closely covered by plates which bear mostly elliptical or oblong paxilliform clusters of small, slender, crowded spinules, similar to those of the marginal plates, but larger than those of the dorsal pseudopaxillie.

A row of 6 or 8 interradial plates, bearing paxillit, extends a short distance out on the arms between the marginal and adambulacral plates.

The adambulacral spines are long and slender; in the furrow-series each plate bears a group of 4 (sometimes alternately 3 and 4 , or 5 and 4) rather long, tapering subacute, somewhat divergent and nearly equal spines, which stand in a line slightly oblique to the edge of the furrow and are connected together by a web, often extending to half their length in dry specimens and further in alcoholic ones. In alcoholic specimens all the spines are invested in a rather thick membrane. Each adambulacral plate bears, also, a transverse series of 4 or $\overline{5}$ spines of about the same length as, but somewhat thicker than, the furrow-series; they differ but little in length, but the outermost ones are slightly smaller than the inner ones.

The jaw-plates are large and broad; each pair jointly bears an inwardly directed group of 6 rather stout tapered spines, of which the 4 central ones are largest; each plate also bears a marginal row consisting of 7 or $\&$ somewhat smaller spines, the innermost ones being the largest; a curved row of S or 9 similar spines is borne on the central crest of each jaw plate; those of the "2 rows usually cross each other over the elliptical, naked, intermediate space.

Off Cape ('od, station 264 , in 80 fathoms, 1879 ; off Nova Scotia, stations 85 and 86,101 fathoms, 1877 ; also taken by the Gloncester fishermen on George's and Western Banks, in 45 to 80 fathoms.

This species is allied to S. endeca, but differs widely from that species
in the much longer and more numerous furrow-spines; in the larger and more evenly spined dorsal pseudopaxillæ; in the much smaller and more spinulated ventral areas; and in the shorter and broader jawplates and shorter month-spines.

SOLASTER BENEDICTI, new species.
Rays usually nine, motierately long, well-rounded, tapering rapidly to the narrow acute tip; rather high at base; in length about efpual to the diameter of the disk; the lesser to the greater radii are as 1 to 2.75. Greatest diameter of the largest type specimen, 220 mm .; lesser radius $38-42 \mathrm{~mm}$.; greater radius, $10 \check{0}-115 \mathrm{~mm}$.; breadth of arms at base, 25 mm .; height of arms at base, 15 mm .; diameter of dorsal paxill:e, about 5 mm .; diameter of madreporic plate, 3 mm .; distance from the center of the madreporic plate to anus, 11 mm .; length of the crests of the marginal plates transversely, 3 mm .; height, including spinules, about 2 mm . Jaws broad, truncated, with four subequal oral spines and numerous small lateral spines.
The disk is thick, swollen, usually convex. The whole dorsal and lateral surfaces of the disk and arms are covered with small, well separated, conical pseudopaxillie which bear a small group of tapering, acute, divergent spimules. The pseudopaxillie on the central region of the disk are larger than elsewhere and bear about 5 to 7 spinules, of which 1 is central and sometimes longer than the others.

On the sides and towards the ends of the arms the pseudopaxillæ decrease regularly in size until they bear but one or two small spinules near the tips of the arms. On the sides of the arms they are arranged in quincuux and form regular oblique rows. On the dorsal surface they are arranged regularly, but do not form very distinct rows. The papule are rather small and mostly occur singly in each interspace between the plates, which are rather firm and form a closely reticulated skeleton. The madreporic plate is small, inconspicuous, partially concealed by several special pseudopaxille larger than the rest; it is situated decidedly nearer to the center than to the margin. Anal opening conspicuous, nearly central. The upper marginal plates are very small and bear pseudopaxille similar to, and only slightly larger than, those of the plates above them. Inferior marginal plates much larger, with a promineut, much compressed, transverse crest which bears a row of small conical spinules, of which there are 10 to 12 or more on the plates near the base of the arms, where they mostly form a single row, but on the distal portion of the arm, where the plates become thicker and more rounded, the spinules are shorter, stouter, and form two rows; the spinules near the lower margin of the plate are the longest; when well preserved these spinules usually taper to an acute tip. In the interradial angles the crests of the marginal plates become very thin, and the spinules are more slender, more numerons, and often form a single regular row. The actinal interradial areas are moderately Proc. N. M. $94-18$
wide and closely covered with concealed plates, each of which bears, on a small conical elevation, one or two tapering acute spines, similar to, but smaller than, the adjacent adambulacral spines. A row of intermediate actiual plates extends out on the rays nearly to the tips, between the lateral and adambulacral plates; each of these usually bears a simple acute spine similar to the adjacent adambulacral spines. In younger specimens a similar row of plates and spines extends out a short distance along the ray. Each of the adambulacral plates bears an inner or furrow-group of 4 or 5 moderately long, rather stout, tapered, acute spines, of which the central ones are a little the longest; these spines are firmly united by a web for more than half their length in dry specimens, in some of which they closely interlock across the grooves. Each plate also bears a tramserse row, usually of 3 mod erately stout, much tapered, acute, usually somewhat curved spines. These are about equal in length and are longer than, and about twice as thick as, the furrow-spines.

This species was taken in 1885 at station 2530 , off George's Bank, in 956 fathoms, one specimen (No. 14848, U. S. N. M.) ; at station 2550, off Martha's Vineyard, in 1,081 fathoms, one specimen (No. 11816, U. S. N. M.), and in 1886 at station 2682, off Martha's Vineyard, in 1,004 fathoms, three specimens.

CROSSASTER HELIANTHUS, new species.
Rays ahout 13 , rather short, their length less than the diameter of the disk, rounded above, rapidly tapered. The proportion of the radii of the type specimen is as 1 to 2.10 .

The greatest diameter is 125 mm ; the lesser radius, 30 mm ; the greater radius, 63 mm . ; the diameter of the madreporic plate, 4 mm . ; breadth of rays at base, 13 mm . length of rays, 30 to 38 mm . The disk is large and swollen. The whole dorsal surface is covered with moderately large and somewhat elougated paxilliform promineuces or pseudopaxillie, which are lather regularly arranged and well separated, plainly showing in dry specimens the rather firm and closely reticulated skeleton and the small but well-defined interspaces, so that the surface has a rough appearance when dry. The skeleton plates are stoutest opposite the interradial angles on the disk. Tbe pseudopaxillie are the broadbased somewhat conical central summits of the plates; each of the larger ones bears a compact fascicle of 6 to 12 or more small somewhat elongated erect spinules, of which 2 or 3 in the middle of each group are a little the longest, causing the clusters to have a rounded apex. Toward the end of the arms the clusters of spinules are much smaller. The papule are small and very numerous, 6 to 9 usually occurring in each of the larger dorsal interspaces. Madreporic plate rather large, situated about midway between the center and margin, not surrounded by specially large pseudopaxillz.

The inferior marginal plates are prominent, well spaced, not very mumerous, about 16 to 18 in the type specimen. Those near the base
of the ray are transversely oblong, with a curved summit, and bear 20 to 30 small slender spinules mostly arranged in 2 rows; the upper ones are smallest and similar to those of the dorsal pseudopaxillæ. Beyond the middle of the ray the marginal plates become short and bear an irregular group of crowded paxillary spinules. The upper marginal plates are small and bear paxilliform groups scarcely different from those of the dorsal surface of the rays; on most of the rays there is an irregular row of small pseudopaxillie just below the inferior marginal plates, but usually terminating before reaching the end of the ray.

Ictinal interradial spaces narrow, elongated, and covered with a thick skin which is radially striated and bears small scattered fascicles of 2 to 6 rather long, slender, paxillary spinules, while some similar spinules stand singly, leaving much of the surface bare. The adambulacral plates are crowded and each bears a furrow-group of 3 or 4 rather long, tapering, acute spinules, which stand in a somewhat curved row, the central one being larger and somewhat farther inward than the others; outside of these, each plate bears a transverse row of about 10 to 12 closely placed spines, similar in size to the furrow-spines; some of these spines are forked at the tip, others are obtuse, but most are acute, and the outermost are somewhat smaller and more slender than the others. In alcoholic specimens these spines, as well as all the furrow-spines, are united by a web. The jaw-plates are narrow and elongated; each bears 4 large, inwardly directed terminal spines, of which the ¿2 central are decidedly larger and longer than the others, and also a row of smaller acute spines on each side. The ventral surface of each jaw forms a sharp, elongated carina inclosing a narrow elliptical space. On each carina there are about 10 to 12 slender elongated spines.

This species appears to be a true Crossaster, but differs widely from C. papposus in the stonter and closer skeleton plates, smaller and more numerous dorsal pseudopaxillie, with much shorter spinules, and in the much more numerous and shorter adambulacral spines.

It was taken in 1880 by the Gloncester fishermen, near George's Bank, in deep water (schooner Martha C. Young.)

Family Pterasteride, Perrier.

PTERASTER (TEMNASTER) HEXACTIS, new species.

Disk broad, very high, evenly convex, with a rather large central opening surrounded by circles of prominent, imbricated, and webbed spines. Rays six, short, broad, tapered to blunt tips, their lateral margins convex. Lesser to greater radii, about as 1 to 1.5. Lesser radii, 22 mm .; greater radii, 32 to 35 mm ., in the alcoholic specimen; height of disk, 30 mm .

The surface of the disk is covered with very numerous small spinules, covered more or less completely with a thick skin-like membrane and arranged in irregular, divergent groups.

The integument between the spinules is thick, smooth, firm, and everywhere perforated by numerous very small, round pores.

In each interradial region there is a narrow, radiating groove, lined with thick naked integument, destitute both of spinules and pores, but showing a wrinkled surface. These grooves commence at about onefourth the distance from the dorsal center to the margin. In some cases there is only a small slit-like opening in the upper end of the groove, communicating with the space beneath the dorsal membrane, but in some of the interradii the slit is much larger and longer, reaching nearly or quite to the margin, and communicates with a large marsupial pouch, containing well-formed young, some of which were in the act of escaping when preserved. Appareutly the slit-like openings are formed, or at least much enlarged, when the young are ready to come forth, and after their birth the edges of the slits may become again united.

The dorsal spines or pseudopaxillie beneath the integument are large, stout, rather long, and surmounted with a large divergent group of long, slender spinules. In the interradial region, within the marsupial pouch, there is a group of several lobed or branched papule at the base of each paxilliform spine. The large spines situated along each side, within these cavities, have rudimentary spinules at the summit, which do not reach the outer membrane so that they stand free within the cavity, thus leaving the membrane unsupported along the slits. On the ventral side the rays are nearly flat, and the disk around the mouth is deeply concave.

Each ray is broadest at the margin of the disk. The transverse combs are numerous and covered with a thick, firm skin, which entirely conceals the spines in alcoholic specimens. On the broadest part of the ray, opposite the margin of the disk, there are mostly four, rarely five, spines of moderate length in each comb; of these the one next the groove is somewhat shorter than the two or three which succeed it, while the outermost is still shorter and directed more outward, so that the group has a somewhat rounded, but not very elevated, scolloped margin, the membrane receding somewhat between the points of the spines. The spines, when exposed, are rather slender, flattened, rough, and truncate at the flat tip; beyond the outer spine the web rapidly becomes less elevated and each comb lies somewhat obliquely over the one next beyond it, and becomes only a slightly elevated broad fold before reaching the margin. These folds entirely conceal the transverse, ventral spines, which extend to the margin of the ray, but project beyond it very little, if at all; so that the margin is only cremulate or separated into small blunt lobes, separated by slight notches.

Between the outer ends of the combs of webbed spines there is a small, oval pore, which is sometimes covered by an oval operculum, but in some cases it gives exit to a group of two or three short, blunt papuliform organs.

The jaws are surrounded by a marginal group of long, slender, webbed spines, of which there are about four or five on each side; the two innermost are somewhat the largest; on the actinal side of the jaws there are also two much larger, isolated spines, one on each plate; these are entirely covered by a thick skin; when this is removed the spine is flattened, tapered, and blunt at the tip, with a rough surface, but not hyaline.

The ambulacral feet are large and in two regular rows.
Color of the alcoholic specimen dull purple above, darkest on the central part of the disk and interradial region; beneath yellowish.

Taken at station '433, off Newfoundland Bank, N. lat. $43^{\circ} 05^{\prime}$, W. long. $50{ }^{\circ} 43^{\prime}$, in 57 fathoms; one specimen (No. 12004, U. S. N. M.).

This species not only differs from other known forms in having six rays, but appears to be peculiar in the presence of naked interradial grooves and genital slits. This last character may be sufticient to warrant its separation as a distinct subgenus (Temnaster, Verrill), or eveu as a genus. It differs from our other species also in having fewer and stouter spines in the ventral combs; in the broader and flatter ventral surface of the shorter rays; in the much thicker skin of the ventral combs, and in the less evident comb of spiues along the margins of the rays. The dorsal membrane is also firmer and not at all granular; the spinules over its surface are much more numerous, and the pores between them are smaller and more numerous.

The several young oues taken from the interradial slits all have six rays, rendering it probable that this is the normal number.

HYMENASTER MODESTUS, Verrill.

Hymenaster modestus, Verrill, Amer. Jonrn. Science, xxix, p. 151, 1885.
Body small, pentagonal, with concave borderis, rays short, broad, subacute. The dorsal membrane is thin, translucent, with minute grauule-like specks; the spiracular pores are few and minnte; the dorsal cavity, beneath the membrane, is relatively large. Each adambulacral plate bears three very slender, acute, rough spines; two are placed obliquely at the inner edge, ind of these the distal is usually much shorter than the other; the third, which is external to the others, but close to them, on the actinal side of the plate, is more erect, longer, and slightly larger; on the middle part of the rays there are often two similar spines on the actinal side of the plate, close together.

The actinal radial spines are very slender, not crowded, 16 to 18 on each side; the longest ones are the fifth and sixth; these and those beyond reach the margin, which is scalloped between them. The pores between the inner ends of the actinal rays are round, and protected by an opercular spine or papilla, which is flat and expanded at the base, but thin and slender at the tip. The dorsal pseudopasilla are rather large and few in number, with long terminal spinelets, which project through the dorsal membrane as small spinelets; they are pretty uniformly distributed, and there are no defined radial areas.

The jaws have a salient inner angle and an elevated actinal prominence, on which there is, on each plate, a small, short spine near the inner end (others may have existed, but, if so, were rubbed off in the dredge); on each side of the jaw there is a marginal series of about five slender spines.

Color, in alcohol, pale buff above, pink beneath.
Greater radius, 10 mm . ; lesser radius, 7 mm .
Stations 2052 and 2096, in 1,098 and 1,451 fathoms, 1883.
Family Echinasteridie, Verrill.
CRIBRELLA PECTINATA, new species
Rays five, elongated, rounded, thick at base, tapering evenly to the small tips. Disk moderately swollen, the lesser to the greater radii as 1:4.4.

The lesser radius of the type-specimen is 15 mm . the greater radius, 66 mm . ; breadth of rays at base, 18 mm .; diameter of madreporic plate, 3 mm .

The whole dorsal surface and sides of the rays are evenly covered with small well-spaced psendopaxille, each of which bears a fascicle, or more rarely a comb-shaped group of four to eight or more small slender spimules, which stand nearly erect, and are nearly equal in length. The pseudopaxillie arise from elevations of the plates and are so spaced as to leave intervals greater than their own diameters, thus giving the surface a rough papillose appearance; the pseudopaxillie are more closely arranged on the center of the disk than on the arms. The madreporic plate is large and covered with rough spinules in comblike groups.

Each of the interspaces on the arms bears a single large papula, equal in diameter to or exceeding the pseudopaxille; similar papule occur between the reutral plates, where they form regular longitudinal rows. On the ventral surface of the rays there are three regular longitudinal series of plates corresponding in number to the adambulacral plates. The plates in the two outermost rows are oblong at the summit, and each bears an oblong group of slender paxilliform spinules, arranged in two rows, and similar to those of the back. The plates of the outer row are somewhat smaller than those of the next, and the spinules are about twelve to fifteen in number toward the base of the rays, while in the next series there are from twenty to twenty-five spinules, which form pretty regular comb like groups; these extend to the tips of the arms. Each of the interspaces between these rows of plates (which probably represent marginal plates) contains a single large papula. Closely adjacent to the adambulacral plates there is a row of smaller plates, each of which bears a round group of small paxilliform spinules, ten to fifteen in number, similar in size and form to those of the marginal plates. This row of intermediate plates extends from the angle of
the jaw nearly to the tips of the arms, and is not separated from the adambulacral plates, with which they correspond in number, by any papulæ.

Each of the adambulacral plates bears a single small spine, situated deep within and directly across the furrow, forming a single longitudinal series, and also a transverse group, consisting of eight to twelve round, blunt spinules, in two rows; the three inner ones are decidedly longer and larger than the rest, the innermost odd one being the largest of the three, and standing erect on the extreme imer angle of the plate, and therefore nearly at right angles to the small spine within the furrow. The outermost spinules of these groups are similar in size to those of the adjacent ventral plates, from which they are separated by a distinct continuous groove. The jaws are covered with numerous erect spines, which are similar 11 size and form to those of the adambulacral plates, but the adambulacral plate nearest the month bears a group of small blunt spinules deep within the furrow.

Eastport, Me., in shallow water, 1870. (A. E. Verrill.)
This species is similar to C. sanguinolenta in form and general appearance, though the dorsal surface is more uneven and papillose, owing to the larger size of the pseudopaxilla and the more regular interspaces; the psendopaxillae are generally more in the form of rounded fascicles, instead of regular comb-like groups. The differences are much more marked on the ventral surfaces, where the three regular rows of larger ventral plates give a very different appearance to this region, for in the former species the plates are scarcely distinguishable in size, form, and spmulation from those of the lateral and dorsal plates of the rays. The adambulacral and jaw-spines are also shorter and more crowded than in the common form; the papulie are more regularly arranged and not so numerous.

Family Asteridde, Gray, 1840 (emended).
HYDRASTERIAS OPHIDION, Sladen.
Asterias (Hydrasterias) ophidion, Sladen, Voyage of the Challenger, xxx, p. i81, pl. 99, lige. 3 and 4; pl. 103, figs. 3 and 4, 1889.
A broken specimeu was found at station 2573 , in 1,742 fathoms. Its structural characters appear to me to be worthy of generic rank.

Family Brisingide, Sars.
 ODINIA AMERICANA, Verrijl

Brisinga americana, Verrill, Amer. Journ. Sci., xix, p. 139, 1880; Rep. Com'r. Fish and Fisheries, xı, p. 636, pl. 17, fig. 52. 1885.
Freyeila americana, Sladen, Voyage of the Challenger, xxx, pp. 616, 617, 834 , 1889.

This large species is furnished with an abundance of long papulie on the swollen genital region of the rays, as stated in the original description. It belongs, therefore, to the genus Odinia. It is not easy to un-
derstand why Sladen should have referred it to Freyella, unless by inadvertence.

BRISINGA COSTATA, Verrill.

Brisinga costata, Verrill, Amer. Journ. Sci., xxvim, p. 382, 1884.
The original type from station 2210 , in 991 fathoms, has the following characters:

The disk is firm, round, roughly spinulose, the spines small, sharp, standing singly or in groups of two, three, or more. Interradial plates nearly concealed, the exposed part verruciform. Mardreporic plate moderate, with many radiating gyri. Arms very long, strongly depressed, somewhat swollen toward the base, but broad and angular and carinated farther ont, gradually tapering. The basal portion is crossed by 20 to 25 curved or sinuous, very prominent, strong, narrow ribs, or carine, some continuous and some interrupted, and surmounted by a simple row of small, short, acute spinules. Smaller trausverse raised bands of pedicellarixe and small spinules alternate with the ribs. The adambulacral plates bear usually three, or alternately two and three, slender, fluted, glassy spines in a transverse row at about the middle of the plate. The two actinal ones are longer and larger than the other, which is small, nearly erect, and situated on the proximal angle. In addition to these there is a smaller, more slender, inner fur-row-spine, situated at the distal end of each plate and projecting horizontally more than half-way across the groove. Sometimes on alternate plates there are two of these transverse spines toward the base of the arms. The outermost large spine on alternate segments stands raised on a tubercle on a separate lateral plate, which appears to become consolidated with the adambulacral plate on the distal half of the ray. The alteruate lateral plates are elongated, vadially narrow-oblong, spineless, and in contact with the adambulacral plates. These lateral plates agree nearly with the adambulacral in number, but not in length. All the spines are sharp and bear swollen sheaths covered with minute pedicellaris.

The jaws bear, on each half, a slender transverse spine on the inner angle and a large one on the outer angle; sometimes the two onter ones are consolidated into a single larger median one. The adoral end is often without spines, but sometimes bears one small spine on each half or one on one side directed orally. The lips close to the mouth are slightly verrucose.

Diameter of disk, $\because 8 \mathrm{~mm}$. ; breadth of arms, near loase, 11 mm . ; length of longest spines, 12 mm .

Station 2210, in 991 fathoms (No. 7820, U. S. N. M.). It was also taken at station 2533 , in 828 fathoms, and at station 2734 , in 841 fathoms, a single specimen at each locahty.

BRISINGA MUL'ICOSTATA, new species.
Rays 15 in the type specimen. Disk 27 mm . in diameter when dried; round, flat, densely covered with small, rounded, convex plates,
which are in contact or somewhat imbricated over the greater part of the surface and have a small conical elevation in the middle, upon which there is generally 1 , but sometimes 2 or 3 , small, slender, very acute spiues of nearly uniform size over the entire surface, except at the origin of the rays, where both plates and spines are smaller. The madreporic plate is small, situated close to the margin, and has promineut radiating gyri.

Between the bases of all the arms and standing obliquely on the margin there is a rather large, oval, interradial plate, with the surface concave and bare of spines, except around the margin, which is more or less encroached upon by small spinous disk-plates. On the central part of each interradial plate there is a small group of pedicellarise having very slender, curved jaws. A few similar pedicellarie oceur scattered on the disk between the spines. Opposite the base of each ray, near the margin of the disk, there is a pair of smatl pores each in the middle of a small naked membrane.

The jaw-plates are narrow and elongated, the two together being somewhat hour-glass shaped. Each jaw usually bears a pan of very slender, sharp spmes on the oral edge, directed inward; sometimes there is also a much larger median spine in the same plane; on the extreme inner angle on each side there is also a very small, slender spine directed transversely, but the relative size and even the number of these spines varies on the different jaws of the same specimen; on the onter end each jaw bears a pair of much larger lateral spines which stand more erect; sometimes an additional smaller spine oceurs just below one or both of these. On some of the jaws an additional large lateral spine is occasionally found at about the middle and near the margin of one plate and occasionally a pair of such spines appears. All the jaw-spines are covered with groups and clusters of pedicellarix, and the larger spines are inclosed in a sacculated membrane.

The rays are very long, rather large; in the basal-genital region the ray is somewhat swollen and evenly convex, but is here broader than high in the dry specimen; farther out the rays gradually become slender and augular, with a strong dorsal carina due to the ambulacral plates beneath the thin membranous integument. The genital region is usually prolonged and is crossed by a very large number of cousiderably elevated, thin, acute, transverse ribs or carinæ, composed of conical and oblong elevated plates, and surmounted by a simple row of numerous very slender, sharp spines, mostly arranged in comb-like groups along the crest of the plates. In a well-grown specimen there are ou some of the rays upwards of 60 transverse ridges, besides a number of irregular ones at the proximal and distal portion. The ridges, however, are not very regular, many of them being crooked and more or less interrupted, while a very few extend entirely across the ray, and the number varies considerably on different rays. Where best developed these ribs are alternately larger and smaller; the larger ones cor-
respond with and are opposite to the adambulacral plates and have a large lateral spine at their origin on each side; the smaller ribs are irregularly interpolated between the larger, but have the same kind of plates and spinules, but have no large lateral spiues; close to the base of the ray the plates are often irregularly seattered on the dorsal surface and form imperfect rows only on the sides. The number and closeness of the transverse ribs varies on different arms of the same specimen, but in all cases they are more numerous (45 to 60) and closer together than is usual in the genus. A series of round brownish spots, alternating with the larger transverse ribs on each side, apparently indicate the position of the genital pores.

In contact with the adambulacral plates there is a row of small, alternately unequal, lateral plates, two of them corresponding to each adambulacral plate. Toward the base of the rays these plates are about as broad as long, but distally they become narrower and more oblong and much smaller. On the tumid part of the ray, except close to the base, those lateral plates nearly opposite the middlle of the adambulacral plates are elevated, and have a central tubercle, beariug a long, slender, strongly fluted, acute spine similar to the outer ones of the adambulacral plates; toward the extreme basal part of the ray these lateral spines decrease in size, until on the first 4 or 5 segments they are nearly abortive. The long lateral spines continue on the distal part of the ray, but the lateral plates which bear them often become consolidated with the adambulacral plates. The alternate lateral plates are flat and bear no spines.

The adambulacral plates are numerous and short, excavated at the middle of the inner margin. On the middle of the swollen reproductive region each plate may bear as many as 5 or 6 spines; of these, 2 , forming the transverse furrow-series, are very slender and situated 1 at either eud of the inner margin of the plate extending more than half way across the furrow; another slender spine of similar size ofteu stands above each of these, but one or both of these may be absent, on alternate plates, especially on the more distal part of the ray. On the actinal side, and at about the middle of each plate, there are 2 much larger and longer spines, one external to the other, the outer one being considerably larger and longer than the inner, its length being equal to the breadth of the ray; these two, with the similar lateral ones, form an oblique transverse row. Close to the basal part of the ray, the two outermost of the adambulacral spines become much stouter and are columnar in form; the tip becomes swollen with a truncate or convex papillose summit. The apical papille apparently correspond to the terminations of the lateral flutings.

The transverse spines within the furrows bear, sometimes singly and some times in clusters, more or less numerous rather large pedicellarie with very slemler, strongly curved jaws. Similar pedicellariz occur between the larger spines on the adambulacral plates. The larger
spines, in alcoholic specimens, are covered with a loose sacculated integument, which is densely covered with minute, crossed pedicellariæ. The ambulacral feet are large with well developed terminal suckers; each one is usually separated from the next in the same row by two transverse furrow-spines, but frequently only one of these is developed.

A good sized specimen in alcohol has the radius of the disk, 14 mm ; length of the longest remaining ray, which is broken at some distance from end, 220 mm .; breadth of the rays at base, 6 mm .; at the widest part, 8 mm .; length of the disk-spines, 1 to 1.5 mm .; length of lougest arm-spines, 14 mm .

Taken in 1855, at station 2573, off George's Bank, in 1,742 fathoms, 3 specimens (No. 12074, U. S. N. M.) ; also in 1886, at station 2685, off Martha's Vineyard, in 1,137 fathoms, 1 specimen (No. 14858, U. S. N. M.).

BRISINGA VERTICILLATA, sladen.
Brisinga verficillatu, Sladen, Voyage of the Challenger, xxx, p. 604, rl. 109, figs. 9-11, 1889.
A number of disks and loose arms have been taken off our coast, from N. lat. $41^{\circ} 13^{\prime}$, W. long. $66^{\circ} 50^{\prime \prime}$, to N. lat. $36^{\circ} 34^{\prime}$, W. long. $73^{\circ} 48^{\prime}$, in 906 to 1,374 fathoms.

FREYELLA ELEGANS (Verrill) Sladen.

Brisinga elegans, Verrill, Amer. Journ. Science, xxviif, p. 382, 1884.
Freyella bractiata, Sladen, Vorage of the Challenger, xxx, p. 629, pl. 114, figs. 1-4, 1889.
Rays nine to fourteen, but in the majority of specimens twelve, very long and slender, with the reproductive region considerably prolonged and only slightly swollen. Radii as 1 to $36+$. Diameter of the disk of a large specimen, about 25 mm . Disk small with rather acute interradial notches. The surface is densely covered with small, unequal, somewhat imbricated plates, most of which are rounded in outline, while others are angular; all have an elevated, conical, central tubercle, and bear from one to three, or four, small sharp spines, much the greater number having only one spine. Madreporic plate close to the margin, prominent, with few deep grooves separated by broad ridges. Iuterradial plates not distinct, dorsal pore nearly central, usually very distinct and surrounded by a group of small spinules, borne on small angular plates somewhat smaller than those on the rest of the disk. The spinules of the disk are numerous and uniform in size, so that it appears to the naked eye rather closely and evenly spinulated. Numerous small, delicate pedicellarite are usually scattered over the disk between the spines and around their bases, but in some specimens these are mostly wanting. The peristome is very large and the buccal membrane is smooth and delicate. The jaws are rather narrow, longer than broad, with prominent inner and outer angles with incurved sides and a distinct median suture; each half bears two transversely directed spines, one at the extreme inner and the other at the outer angle of the furrow;
the imner end usually bears also a pair of very slender, acute spines directed orally, one on each plate, but sometimes some of the jaws have three or four imer spines, and sometimes but one, in the same specimen; each half of the jaws also bears a much larger and longer spine on the actmal surface at the extreme outer end, corresponding in size and position with the adjacent adambulacral spines. All the month-spines are covered with membranous sheaths, often sacculated, and bearing large numbers of mimute pedicellarie, among which are some of much larger size with strongly curved jaws.
The slightly tumid genital region of the rays extends about onefourth the total length; this portion is evenly rounded on the upper surface and densely covered with angular imbricated scales, each of which usually bears a transverse group of small, sharp spinules, similar to those on the disk (the number varies from one or two to six or eight); they frequently form comb-like clusters on the sides of the arms, where they are most numerous. In some of the larger specimens some of the large plates on the sides of the arms bear, here and there, a single spine three or four times as large as usual. Beyond the genital region the ray is somewhat triangular, with a strong bilobed dorsal carina due to the ambulacral plates showing through the thin dorsal membrane. The rays taper very gradually to a long attenuated distal portion. The carinated portion of the ray is crossed by broad bands of minute pedicellarise corresponding with each adambulacral plate. The ray terminates with a rather conspicuous plate at least twice as wide as the ray near it ; seen from above it has an obovate form swollen in the middle and bilobed on the proximal end; on the rounded aboral end there are six long, slender spines, of which the tiro median ones are smallest and the lateral ones as long as, or longer than, the length of the plate; at the extreme outer end of the plate there is a projection beneath which the eye is situated.
The adambulacral plates are numerous, rather short, and narrow; the furrow side is strongly concave in the middle opposite the suckers, and the distal angle is narrow and prolonged so as to tonch or slightly overlap the proximal angle of the succeeding plate. The sutures between the plates are rather wide and moderately oblique. Toward the base of the rays, in the larger specimens, each plate usually bears a single, long, transverse spine on its distal angle; these spines, extending more than half across the groove and overlapping the spine of the opposite side, serve to separate the pairs of suckers. Along the thickest part of the ray some of these plates have two similar transverse spines, one just above the other, but the extra spine seldom occurs on the smaller specimens. On the prominent actinal surface each plate bears a much larger, long, slender, acnte, strongly fluted spine; back of this there is another row of simlar large spines onehalf as numerons, which often appear to stand on the outer distal angle of the adambulacral plate, but on certain parts of the ray the small
plate which bears them is distinct, and may be recognized to belong to a separate series of small lateral plates which lie in contact with the outer edge of the adambulacral plates and between which there are, alternately, one or two small plates withont spines; close to the base of the rays these lateral spines are entirely obsolete. On the distal half of the ray the plate bearing the lateral spines is usually consolidated with the distal end of the adambulacral plate. Owing to this arrangement the adambulacral plates appear to bear, alternately, one or two long actinal spines on prominent basal tubercles. The longer spines on the distal part of the rays are often as long as three or four adjacent arm-segments; on the basal part they are usualiy equal to about two arm-segments. All the large spines are covered with sacculated integument which is completely covered with minute pedicellariæ. The furrow-spines bear clusters of somewhat larger pedicellaris near their tips.

A rather large, dry specimen has the radius of the disk, 12 mm ; length of the longest ray, which is broken at the end, 200 mm .; breadth of ray at base, 5 mm .; at the widest portion, 7 mm . ; height, 7 mm .; length of dorsal spines, about 1 mm . Another dry specimen has the radius of the disk, 9 mm .; length of the longest ray, which is broken at some distance from the end, 175 mm .; greatest breadth of ray, 5 mm .; length of the longest spines, 6 to 7 mm .

Taken at several stations in 1,374 to 1,434 fathoms.

FREYELLA ASPERA, new species.

Rays, thirteen. Diameter of the disk, when dried, 20 mm . The dorsal surface of the disk is covered with rather large, irregular, often rounded, somewhat thickened plates, which are imbricated on the central portion of the disk, but separated more or less by naked integument toward the margin, and imbricated immediately around the margin. Each plate bears a group of ratner stout, conical, acute, divergent spines about 15 to 20 mm . long; they often form somewhat stellate groups, but in other cases stand in one or two transverse rows. Each plate usually bears from three to eight spines and also some rather large crossed pedicellariæ, with slender, strongly curved jaws. The dorsal pore is subcentral and surrounded by a group of spines a little larger than those over the rest of the disk. Madreporic plate, small, prominent, with a few rather wide, deep, convoluted grooves.

The jaws are short and wide, about as broad as long, with prominent inner angles and somewhat incurved lateral margins. Each jaw normally bears six spines at the adoral end; usually there are four of these, arising from the inner edge and directed inward, which are small, rather slender, aud subequal, their length being equal to about one-half the width of the jaw; each inner angle bears a larger, rather short, robust spine, which projects obliquely about half way across the furrow; each outer angle bears a rather long robust spine on the actinal surface;
on some of the jaws there is a similar spine on the middle of each lateral margin, but these are more frefuently absent. Some of the jaws also vary in the same specimen by having ouly two small spines on the inner edge; others have three.

All the jaw-spines are covered with loose membrane, which bears clusters of numerous pedicellarise, those on the longer actinal spines being very minute, while those on the oral spines are much larger, with slender, strongly curved jaws.

All the arms are broken off in our type specimen, only the three basal segments remaining on any of them; on these segments each adambulacral plate bears a slender, transverse furrow-spine on the promineut distal angle of the margin, and a rather long, slender, acute, fluted spine on its actinal surface; the latter are covered with minute perdicellarix, while the transverse furrow-spines carry clusters of large pedicellariz like those of the oral spines.

The dorsal plates of the bases of the arms, so far as preserved, are similar to those of the disk, but rather smaller, and carry similar, but smaller, spines in small groups.

Taken in 1883 at station 2097, off Chesapeake Bay, in 1,917 fathoms (No. 6301, U. S. N. M.).

This species resembles the coarser spined variel y of Brisinga multicostate in the spinulation of the disk, but the jaws are much broader and their spines quite different.

FREYELLA MICROSPINA, new species.

Rays in the type specimen, thirteen, slender, and of moderate length, evenly rounded and a little swollen on the genital region, angular and slender beyoud. Radii, about as 1 to 10 . Dorsal surface of the disk is thickly covered with small, rounded plates, each of which bears a chuster of numerons veryminute spinulesin more or less stellate groups, mostly of six to twelve. Interradial plates indistinct or showing but little of the surface. Jaws very short and broad, the breadth about equal to the length; the oral end usually bears six small divergent spines, three on each half, but sometimes only four or five are developed; of these the two ontermost, situated on the angles, are directed nearly transversely and are usually blunt or bilobed at the end; the other four, which are directed orally, are smaller, the two central ones very small and papilliform. The actinal surface of the jaw usually bears a pair of rather short, robust spines situated on the somewhat prominent outer angles; these spines are more or less clavate and often flattened at the end, which is usually divided into two to four short prongs or papillie, and in some cases it is deeply fissured; they agree nearly in size and structure with the succeeding spines on several of the basal adambulacral plates.

The genital region of the ray oceupies rather more than one-fourth the total leugth, and is considerably swollen on the upper side, so that
the height, where best developed, is greater than the breadth. The dorsal surface of this portion is completely covered by flat, imbricated, rounded, and angular plates, each of which bears a large number of very minute, sharp, conical spinules, which are closely arranged over most of the surface, but on the sides of the rays they often form two or three small transverse rows on each plate. With these spinules on the plates there are also many minute pedicellarie.

Low down on the sides of the rays, and especially on the distal portion of the genital region, the plates form regular transverse series or bands with naked integument between them; each of these bands corresponds with one of the adambulacral plates. The last of the bands are imperfect, or represented by only a few plates on the dorsal surface, and cease entirely opposite about the twenty-fifth adambulacral plate. On the distal part of the arm the thin membrane is crossed by a broad band of miunte pedicellarix, a baud corresponding to each adambulacral plate. Apical plate not much enlarged, short, obovate, obliquely truncate at the end, about as long as broad; its spines have been rubbed off from the only one preserved.

Along each side of the ray there is a row of long, slender, lateral spines apparently arising from small tubercular marginal plates, which are mostly coalescent with the outer end of the adambulacral plates and usually might be described as a part of them. These marginal spines, on the distal part of the rays, occur opposite the alternate adambulacral plates, but along the genital region they occur only opposite every third plate.

The adambulacral plates are somewhat longer than broad, except at the base of the ray, and but little emarginate on the furrow-margin. Each plate bears a long, slender, fluted spine ou the actinal surface, similar to the adjacent marginal spines, and on alteruate plates there is usually a much smaller, acute, more or less inclined furrow-spine standing just in frout of the larger one, but these are mostly absent or rudimentary on the distal half of the ray. There are no transverse furow spines, unless the spines just described be considered as such. On nine or ten of the basal adambulacral plates the large actinal spine is stout and columnar, with swollen or clavate tips, concave on the summit, and bearing abont four to eight blunt papillir around the margin; those nearest the base are shortest and stoutest, the length increasiug and the size of the terminal enlargement decreasing gradually on those farther out.

Radius of disk, 10 mm .; of longest rays (which may have been regenerated), 95 mm . ; length of longest spines, 8 mm .

Taken in 1884, at station 2220, off Martha's Vineyard, in 1,05t fathoms, one specimen (No. 7821, U. S. N. M.).

This peculiar species, in having a more or less distinctly banded arrangement of the plates on the genital region of the rays, approaches the restricted geuus Brisinga, but its aftinities are decidedly with

Freyella in other respects. The stout, clavate or mushroom-shaped spines at the base of the arms are similar to those of Brisinga multicostata, but the end is concave and the papillie of the terminal crown are ferrer and larger. In the absence or rudimentary condition of the transverse furrow-spines it differs from most of our other species, as well as in the minuteness and great number of the dorsal spines of the disk and rays.

OPHIUROIDEA.

Family Ophiuride.

OPHIOGLYPHA SAURURA, new species.
A five-rayed species with very couvex, angular, unequal disk-scales and radial shields, the latter with prominent outer ends nearly or quite in contact. Arms high and somewhat carinate, each dorsal plate with a central and distal prominence, thus appearing serrate in profile. Three short arm spines. Mouth-shield broad, shield-shaped, pointed within. Mouth-papillie numerous, regular, pointed. Arm-comb absent or rudimentary.
Diameter of the disk, 17 to 18 mm .; length of arms (broken at tip), somewhat more than 40 mm .; breadth of arms at base, 3 mm .; height, 3.5 mm .

Disk flattish, moderately thick, pentagonal, with prominent corners and a small angular notch at the base of the arms. The disk-scales are very irregular in size and form, imbricated and mostly angular, with a prominent central or distal conical or rounded elevation on each.

The primary plates are only slightly larger than many of the others; the central plate is round and easily distinguished. In each interbrachial space there are four or five plates somewhat larger than those on the central part of the disk-one in the center of the margin is the most conspicuous; radial shields irregularly triangular, Ionger than broad, with the inner ends acute and widely divergent, the onter ends and sides obliquely rounded. The surface at the distal end rises into a conical or rounded prominence. In some cases the distal ends are in contact or slightly overlap, one another. The divergent proximal ends are separated by four or five angular plates, of which one or two are large and prominent. The arm-comb appears to be entirely wanting.

Month-shields rather large, thick, convex, broad, shield-shaped; length, 3.5 mm .; breadth, 4 mm .; the outer margin is slightly rounded or subtruncate; the outer angles rounded; sides nearly straight, and the proximal edges straight or slightly incurved, forming an obtuse inner angle. The side mouth-shields are elongated, narrow, curved, with the imner ends somewhat spatulate. The interbrachial areas beneath are covered with convex, thick, angular plates similar to those of the back, but more regular; of these there are about twenty-four in each area, besides small ones in the angles between them. Mouthpapiltar are numerous, regular, closely arranged, acute, conical, with two at the augle of the jaw a little longer than the rest.

The genital slits are long and large, bordered along their distal portions by a long conspicuous genital plate. The papillie are minute and granule-like along the proximal part of the slit, but become larger, flattened, and squarish at the distal end, where they are about twothirds as long as the upper arm-spines.

The papille around the first tentacle pores are a little larger and blunt; of these there are from six to eight to each pore. The second pair of pores have four or five much smaller papille on each side. The third and fourth have about four. The next two have about three on each side; then, on about three or four joints, there are about two or three on the imner side; beyond that, only one.

The arms are of moderate length, regularly tapered, angular, higher than broad, with a more or less evident dorsal carina. In the typical sperimens the dorsal plates are very much thickened and prominent; each one is crossed by one, or somet imes two, deep transverse grooves, so that the upper surface is divided into two, and sometimes three, elevations, of which the distal one is the most marked and forms the whter margin of the plate; the other one forms a more or less irregular central prominence which at the base of the arms forms a blunt transverse ridge, but farther out it becomes a rounded or ovate elevation of the median portion only. In the largest specimen the prominence at the base of the arms is divided into two by a secondary transverse groove; seen from above the dorsal plates, near the base of the arms, have a more or less regular hexagonal outline. The first seven plates are broader than long; the next six or seven are more regularly hexagonal; farther ont they become more and more elongated, until the length becomes nearly double the breadth. The side arm-nlates are thick with prominent distal margins. The arm-spines, which are three (rarely four) toward the base of the arms, are small, short, papilliform, nearly equally spaced, though the upper one is often somewhat removed; they are not more than one-fourth as long as the side arm-plates. In one specimen there are regularly four arm-spines on about three arm-joints near the edge of the disk. The first under arm-plate is pretty regularly pentagonal, abont as broad as long; the second and third are larger, longer than broad, with the outer end broadest and the outer margin curved; beyond this the plates become broader than long, with the outer margin strongly curved and the sides slightly convergent; beyond the middle of the arm the form becomes transversely elliptical. Beyond the fifth or sixth under arm-plates the lateral plates meet beneath, and they become relatively longer in proportion as they approach the tips of the arms.

Tariations.-A specimen from station 2528 , of somewhat smaller size, having the diameter of the disk 14 mm ., differs slightly from the type sperimens. The disk scales are more rounded and evenly convex and the characteristic elevations on the dorsa! arm-plates are much less conspicuous, owing to the transverse groove being broad and shallow, Proc. N. M. 94- 19
nevertheless the entire margin of each plate rises into a very evident transverse ridge, very much as in the typical specimens. The armspines are a little larger and longer, about one-third as long as the side arm-plates near the base of the arms. The month-shields are also relatively broader and shorter, though they preserve the same general form. The scales on the ventral interbrachial areas are more numerous, smaller, and more equal, there being about forty of the larger ones.

Station 2429 , south of Grand Bank, in 471 fathoms (No. 11500, U. S. N. M..) two specimens; station 2528, off George's Bank, in 677 fathoms (No. 11499, U. S. N. M..), one specimen, 1885.

OPHIOGLYPHA TESSELLATA, new species.

A large speries allied to O. confragosa Lyman. Disk pentagonal, with small notches at the bases of the arms, and without any distinct armcomb. Radial shields irregularly ovate, or subtriangular, well separated. The rest of the disk is covered with pavement-like scales, irregular in size and form, among which the primary plates can usually be distiuguished. A large plate lies in the center of the interbrachial margin. Mouth-shields pentagonal, bordered distally by another plate nearly as large.
Arm-spines, generally three, papilliform, very small and slender, the upper one widely removed from the others. Tentacles apparently confined to a few of the basal joints of the arms. Arms somewhat thickened at the base, with swollen joints, rounded above and regularly tapered, appearing rather rigid.

The disk is flattened or moderately swollen, with the interradial margins slightly curved or nearly straight. In young specimens, 6 to 8 mm . in diameter, the primary plates form a pretty regular rosette, and the large marginal interradial plates are in contact with the radial shields at each end; the radial shields are separated by a wedge of three plates in a single row.
In the largest specimens, which are about 22 mm. in diameter, with the arms about 6.5 mm . long, the disk-plates are much more numerous and irregular; the primary plates are rounded, about 1.75 to 2 mm . in diameter, but most of the intervening plates are angular, many of them appearing as if broken, with very small, irregular ones between the larger ones. The disk-plates are slightly thickened, but nearly tlat, separated by narrow, rather deep grooves, in which the membrane appears wrinkled. In alcoholic specimens, the disk-scales are more or less obscured by a thin skin. The radial shields are about 4 mm . long and nearly as broad; their inmer ends are divergent and form a somewhat acute angle; they are separated by six to eight scales, of which two or three are largest, and by two or three inner dorsal arm-plates. The large median interradial plate occupies most of the margin between the radial shields, but has a small supplementary plate at each end. The interradial area, beneath, is largely occupied by the large trap-
ezoidal or pentagonal plate adjoining the distal end of the mouthshield, by two large, elongated genital plates, and by a submarginal row of about three or four angular plates, of which one or two, in the middle, are much smaller than the rest.

The mouth-shields are large, pentagonal, rather longer than broad, the leugth in the larger specimens being about 3.5 mm . and the breadth about 3 mm .; the distal margin is straight, or somewhat incurved; the lateral margins nearly parallel, and the inner edges are nearly straight, meeting nearly at a right angle. The side mouth-shields are narrow and oblong, with nearly parallel sides. The genital papilite commence at the mouth-shields as a single row of small irregular grauules, but become more numerous distally, and at the edge of the disk, near the base of the arms, form an elongated, triangular group of rather large, unequal granules, about twelve to fifteen in number.

The teeth are short, stout, angular, and blunt. The mouth-papillie, in specimens 10 to 13 mm . in diameter, form a nearly regular close row of six to eight; they are small, short, blunt, flattened, and usually squarish in outline, though some are oblong, and twice as broad as high; toward the distal end of the mouth-slits more or less of the papillie are often soldered together. In the largest specimens the mouth-papille become more irregular and often form two rows, besides a row of granules above them; those of the lower row are stout, blunt, conical, unequal in size; those of the upper series are much smaller, rounded or conical.

The inner tentacle-pores, in the large specimens, are bordered by six or seven short, blunt, squarish scales on each side; the second pair has three or four very small scales on each side; the third, about three minute scales on each side; and the fourth pair has two on the proximal, and one, more minute, ou the distal side; beyoud the fourth pair of pores, which are minute, no pores are visible, though a distinct pit exists, bordered by a single minute spiniform tentacle-scale on the proximal side, and by the lower arm-spine.

The arm-spines are usually three, very minute, and nearly equal; the uppermost is near the upper distal angle of the side arm-plate and widely separated from the others; the lowest is usually close to, or in contact with, the tentacle scale; the arm-spines are not more than onefifth or one-sixth the length of the side arm-plates.

The dornal arm-plates are thickened, but not much swollen, and are separated by rather wide and deep grooves; the two or three basal ones in the notch of the disk are short and small; the first free plate is shorter than broad, somewhat lumate; the plates succeeding this become constantly longer in proportion to their breadth; for a short distance fiom the base of the arms they are trapezoidal and have a strongly curved outer margin, straight convergent sides, and a narrow incurved proximal margin; beyond the middle of the arm they become triangular or wedge shaped with the distal margin strongly courex
and the proximal ends forming an acute angle, while the side armplates meet more and more between them.

The side arm-plates are large, thick, and prominent, separated by deep furows; on the ventral side they begin to meet at about the third arm joint beyond the margin of the disk, and their leugth increases rapidly until it becomes twice that of the ventral plates near the ends of the arms; on the upper side they begin to meet at about the fourteenth or fifteenth free arm-joint.

In many of the larger sperimens the dorsal plates are divided by an irregular median furrow into two parts, and in many specimens they are again irregularly divided into smaller portions by one or two more or less transverse furrows, so that they often appear as if composed of four or five irregular pieces; but in other specimens of similar size the plates are entire.

The first rentral arm-plate consists of two small wedge-shaped pieces between the imermost tentacle-pores; the next is much larger, about as long as broar, a little thickened, somewhat shield-shaped, or pentagonal, with rounded corners; the next is broad triangular, with the outer margin strongly curved and the middle of the lateral margins excarated for the second pair of tentacle pores, and the inner end narrow and slightly truncated; those following become relatively wider, broad triangular, with a strongly eurved onter margin, incurved sides, and more or less acute inner angle; beyond the middle of the arm they become relatively smaller, widely separated, and the inner margin forms a very obtuse angle.

Color, in alcohol, dull grayis: or dirty brown.
Feriutions.-There is considerable variation, even among the adult specimens, while the young, 8 to 10 mm . in diameter, differ in many respects from the large ones. The number and form of the mouthpapille and tentacle-scales vary somewhat in specimens of the same size. The mouth-shields are sometimes more top-shaped or pear-shaper? than in the specimens described; the lateral margins being convex with the corners rounded. The large plate at the distal end of the mouth-shield is sometimes divided into two or three parts, most freduently by the separation of the two inner corners as small triangular plates. The two lower arm-spines are not always close together, and sometimes four spines occur, the extra spine appearing either just below the upper one or just above the second.

In the young specimens, 8 to 10 mm . in diameter, the scaling of the disk is much more regular, and the relatively large primary plates form a pretty regular rosette. The mouth-shields are relatively shorter and more top-shaped. The mouth-papillie and tentacle-scales are very regulaty arranged and less nummous than in the specimens described. The first complete ventral arm-plate is prominent and rounded; all the rentral plates beyond this are separated by the side arm-plates. The next three or four later.ul arm-phates are broadly turbinate, with the
outer border evenly curved, and the lateral margins form an obtuse angle. In some of the young specimens of this size there are four minute arm-spines on the proximal joints, three of them being placed together near the tentacle-scale.

Taken off the eastern coast of the United States at fourteen stations, betreen lat. $39^{\circ} 35^{\prime}$ and $41^{\circ} 47^{\prime}$, in 250 to 1,106 fathoms, most fre quently between 400 and 1,000 fathoms. A single specmen was taken off Delaware Bay in 2,033 fathoms, at station 2,038, in 1883.

This species, when first discovered, was referred to 0 . comfrugosa Lyman, from off Patagonia, Mr. Lyman himself having made this identification after having examined one of our specimens; but the subse quent acquisition of a much larger series leads me to consider the two forms distinct, though closely related. Our form is easily distinguished by the single large plate external to the mouth shields; by the more regular and more closely arranged disk-scales; by differences in the mouth-papilla and tentacle-scales, and by the somewhat different form of the under arm-plates. In O. confragosa the radial shields are represented as being decidedly smaller and much more widely separated than in our species, while the large plate in the interbrachial margin is also much smaller. In the latter there are generally but three armspines, while in the former there are usually four.

OPHIOGLYPHA GRANDIS, new species.

A very large species with a swollen, pentagonal disk, covered with irregular, angular scales and rather small, short, inregular, widely separated radial shiekds. Arms high, with pentagonal dorsal plates and transversely elliptical ventral plates. Arm-spines three, small, subequal; the upper one considerably separated from the two lower ones. Mouth-shields broad, shield-shaped; about as broad as long. Tentacle scales numerous at the base of the arms.

Disk, in the type specimens, from 23 to 30 mm . in diameter; length of the longest arms, all of which are broken at the tips, more than 90 mm.

The disk is generally considerably swollen and plump, with the inter. brachial margin nearly straight, or a little convex, and with only a slight notch at the bases of the arms, where there are usualiy no distinct arm-combs, but in those few specimens in which they occur they consist of a single row of from six to eight small, Hattened, squarish, scale-like papillie on each side, which decrease in size from below upward.

The central and other primary plates of the disk are distinguishable, but are only slightly larger than the intervening scales, which arenumerous, irregular in size and form, often triangular, and more or less convex; the larger oues vary in diameter from 1 to 2 mm .; the primary plates are about 2 mm . in diameter. The radial shields are divergent
and rather widely separated by a group consisting of two large me dian and several smaller scales on each side; the radial shields are irregular: polygonal, or somewhat triangular in form, about as loug as broad. with the outer end subtruncate or broadly rounded, and the inner end bluntly pointed and strongly divergent. The interbrachial areas beneath are covered with thick imbricated scales, similar to those of the back, and about 15 mm . in breadth.

The mouth shields are pretty regularly shield-shaped, the breadth about equal to the length, the outer margin broadly rounded or subtruncate, the lateral margins nearly straght, and the inuer margins convergent to a point and forming sometimes a right angle, but usually an obtuse angle; side mouth-plates narrow, with nearly straight, somewhat divergent edges, with the widest end toward the jaw. Mouthpapille numerous and regular, acute conical, seven or eight in number, increasing in length as they approach the end of the jaw.

The genital slits are very long, extending from the mouth-shields to near the underside of the arms; they are bordered externally by a row of short, thin, wedge-shaped, or squarish papillx, which stand close together in a regular row; those nearest the mouth shields are much the smallest and shortest, and are often nearly square, but in many cases are twice as broad as high; their height usually increases distally to the outer end of the slit, where they are sometimes flat, nearly square, and as long as the arm-spines. In many cases they are more or less soldered together into a continmous series, and in the larger specimen they are often partially wanting.

Innermost tentacle-pore very large, elongated, with about eight regular, flattened, obtuse papillie on each side; on the next two pairs of tentacle-pores the papille are smaller, but nearly as numerous; on the fourth pair there are about four on each side; and on two or three succeeding pairs there are two; beyond that, only a single papilliform tentacle scale. At the base of the arms there are three small, papilliform arm-spines, nearly equal in size, the upper one separated from the two lower ones, which are close together; sometimes three spines appear in the lower group. They are about one-third the length of the side arm-plates; the upper one is often a little larger than the others.

The first under arm-plate is small and pentagonal; the second and third are considerably larger, pentagonal, about as long as broad; the third to the sixth separate the side arm-plates and are transversely elliptical, with an inner angle, broader than long; beyond this the plates gradually become shorter and relatively broader, and the side arm-plates come more and more broadly in contact. The upper armplates we strongly convex and prominent, but not much thickened; the three at the base of the arms are short and broad; the fourth is hexagonal, broader than long; beyond this the form becomes regularly hexagonal and the length becomes greater than the breadth, and dis-
tally the outer end becomes rounded and the form somewhat wedgeshape.

Station 2573, off George's Bank, in 1,742 fathoms (No. 12026, U. S. N. M.), 23 specimens, U. S. F. C., 1885.

OPHIOGLYPHA BULLATA, Thomson.
Ophioglypha bullatu, Wry. Thomson, Nature, vin, p. 400, 1873; Voyage of the Challenger, Atlantic, i, p. 400, fig. 7.-Lyman, Rep., i Ophiuroidea, Voyage of the Challenger, v, p. 57, pl. 38, figs. 14 to 17, 1882.-Verrill, Rep. U. S. Com'r Fish and Fisheries, xi, p. 543, 1885.
The large series of specimens of this species taken by the Albatross shows that it is much more variable, especially in respect to the diskscales, thau Mr. Lyman's descrption indicates. The disk is generally very convex, but sometimes it is nearly flat. The disk-scales and radial scales are usually strongly convex and rough, with small granulations, but sometimes, in specimens from the same lot, they are almost or quite flat and nearly smooth, and in our large examples the large disk-scales and the radial shields are even concave in the middle. Usually the central and five radial primary plates form a regular and prominent rosette of large polygonal scales, without any small ones between them, but in some specimens several small, angular scales are iuterpolated between the large primary ones in various ways, and the latter are more or less obscured, so as to appear smaller and rounder. In the small specimens, with the disk 4 to 8 mm . in diameter, the six central plates are always conspicuous, thick and convex, and rise above the rest of the disk. There is usually a single, large, inferior, interradial plate, outside the mouth plates, but it is often divided in large specimens. The mouth plates are pretty constant in form. This species was taken at several stations in 1,608 to 2,620 fathoms.

ASTROSCHEMA CLAVIGERA, new species.
Disk small, with prominent radial shields extending to the center; the whole dorsal surface and that of the arms is covered with small smooth granules. Under surface of the arms and sometimes of the disk, nearly destitute of granules. First two tentacle pores without scales; third and sometimes the fourth with one spiniform; those beyond the fifth and sometimes the fourth with two spines, of which the inner becomes large and long, clavate, aud rough with spinules distally.

The disk in the type specimen is concave in the middle, with strongly incurved interbrachial spaces, and large, prominent, rounded ribs. Diameter of disk, 8 mm .; breadth of arms at base, 3 mm . The arms are very long, and closely coiled around the branches of a gorgonian. Toward the base they are moderately stout, about as broad as high, then taper gralually to very slender tips; each of the joints is marked by an obtuse, elevated ridge, more or less divided dorsally into two prominences by a longitudinal depression along the median line. The
entire dorsal surface of the disk and arms is closely covered by small romeled gramules, which vary but little. in size, but those upon the radial shields are a little the largest. The under surface of the disk and arms of one specimen is covered with a smooth skin entirely destitute of granules, but another specimen of the same size fiom the same locality has the entire under surface of the disk, jaws, and basal part of the arms covered with minute granules, decidedly smaller and more spaced than those on the back; similar granules cover the lower part of the sides of the arms and the intervals between the plates beneath. The teeth are rather large, stout, somewhat spear-head shaped. In one specimen there is a row of three or four small, rounded, subacute mouth-papillix; but in the other, the sides of the jaws are covered with many small granules like those of the disk.

The genital opemugs are large and wide, and together form a large pit in the middle of the interbrachial area, in the dry specimen; but in the alcoholic specimen they are large, oblong, rounded at both ends, converging somewhat below, and separated by a granulated depressed area, about twice as wide as their own breadth.

In both specimens the first two pairs of tentacle-pores are destitute of spines or scales; the third pair has but one, rather large spiniform scale; the fourth par, indifferently one or two, on different arms of the same specimen; the fifth, sixth, and following pairs have two spines, which differ but little in size, but the imner is longer and rapidly increases in size, unthl it becomes more than twice as long and three or four times as thick as the outer one, on the middle portion of the arm, where a third small, short, spinule sometimes occurs above the two regular ones.

The large imner spine is round and usually somewhat swollen, or (lub-shaped, with a blunt end; the outer half is thekly covered with minute, sharp, roigh spundes. The outer of the two spmes is slender, and tapers gradually to a rather sharp point, which is more or lesis spinulons. Toward the tips of the arms the two spmes become rery small, slender, acute and nearly equal.

Frariatoms.--The two specimens obtained differ considerably, as mentioned in the above description, in several characters. They are both from the same locality, attached to the same kind of gorgoman, and have the same size, color, and appearance. The most important difference is in the granulation of the under surface of the disk, which is entirely wanting in one specimen and well marked in the other: and in the presence of small month-papille in the former, which are entirely wanting, or represented ouly by granules, in the other.

Color in alcohol, salmon brown; the intervals between the arm-plates are darker brown than the plates, and the arm-spines are tipped witn dark brown.

Station 2530, off Ceorge's Bank, in 956 fathoms (No. 11852, U. S. N.
M.), 2 specimens, clinging to a species of Paramuricea. Taken by the U. S. F. C. steamer Albatross, 1885.

This species is more nearly allied to A. intectum, Lyman, from oft Havana, than to any other described species. It differs, however, in the character of the grannation, in the number and arangement of the proximal tentacle-scales, and in having much larger and clavate spines on the middle portion of the arms.

NOTES ON THE ANATOMY AND AFFINITIES OF THE coerebide and other american birds.

By Frederic A. Lucas.
Curator of the Department of Comparative Anatomy.

Sone five or six years ago I plamed a paper on the (orebide which, for lack of time and material, has lain at a standstill until the present time. It is brought forward now, not because the necessary amount of material has been obtained, but because it seems probable that if delayed until the needed specimens are secured it will never be written, and also in the hope that these notes and figures may be of some service to other students and save the trouble of again going over the entire ground. It may, to some extent, be considered as a brief supplement to Dr. Gadow's paper on the Structure of certain Hawaiian birds, as comparisons are made with some of the species therein described.

One in search of the relatives of any passerine bird has before him, if not exactly a thankless task, something very nearly akin to it, and one in which even comparatively small results can be reached only by the expenditure of much time and labor. The birds which perch at the top of the avian tree are so many in number and so exasperatingly interrelated that any attempt at sorting them ont is fraught with much difficulty, or, as Dr. Gadow puts it, "the examination of a small. twig of the passerine branch of the Avine tree shakes and disturbs the whole branch, if not the whole top, of the famous ideal tree." So it has been in the present case. Representatives of the Mniotiltida, Meliphagidse, Drepanididre, Tanagrida, and Fringillidæ, have been examined in the hope that the affinities of the Cœrebide might be made apparent; and I am compelled to confess that, on the whole, the result has been unsatisfactory, and that the examination of a considerable number of specimens has rather lessened my hopes that anatomical, and especially osteological, characters may be relied upon to show relationship among the passeres.

Of course one trouble lies in the fact that the so-called families of passeres, at least very many of them, are not families at all, or not the equivalents of the families of other groups of vertebrates. It is my belief that any group of vertebrates to be of family rank should be capable
of skeletal diagnosis, and this test applied to the passeres reduces them to a family or two, as has been done by Huxley and Fiirbinger.

It would almost seem that, aside from purely negative results, the skeleton can be relied upon to show but two things, very general and very close aftinities, for the variation of parts is so infinite that between any 10 given birds we may find every intermediate stage and establish relationships in all directions.

Then, too, characters which would be of much importance among mammals appear, from their instability, to be of but little value in binds. An example of this is found in the condition of the presacral vertebre. In a large number of Passeres there are 4 presacrals, the third and fourth being fused and having a common transverse process; in others there are is presacrals, the fourth and fifth being fused. Such characters as these would seem to be of some importance, and yet Himatione purve has the third and fourth presacrals fused, while H. sanguineu has the fourth and fifth united. And these birds are undeniably closely related.

The same thing occurs again and again in other closely related species, such, for example, as Merula migratoria and Turdus musicus, while the instability of the character is well shown by the fact that it is by no means uncommon to find sacra in which, on one side, the third and fourth vertebree are fused and on the other the fourth and fifth.

The degree of value to be assigned the pterylosis is yet unsettled, and this can only be done by accumulating and comparing the facts in the case. It would be a great service if some one with ample time and unlimited patience would plot the pterylosis, or even the configuration of the dorsal tract, in as many small birds as could be obtained, for it would then be possible to ascertain what correlation, if any, there is between tract pattern and other characters.

Between the continuous dorsal tract of a thrush and the inverted Y of a swallow there is a great difference, and this difference should have some definite meaning, exactly what meaning, is to my mind, not yet evident.

All the birds examined during the preparation of this paper have an uninterrupted dorsal tract whose shape appears to be specifically subject to great variation, but these variations are so slight and so innumerable that, except for general purposes, the pattern appears to be of little service.

The convolutions of the intestine are in very much the same case as the pterylosis for, judging by Dr. Gadow's figures aud my own limited number of dissections, they are subject to great specific variation. There is certainly a decided difference between the alimentary canal (including the stomach) of birds so nearly alike as Coreba cyanea and C. corrulen, and the genera of tanagers vary widely.

The indications are, as might not unaturally have been expected, that such parts as the tongue and alimentary canal are subject to great
variation, so that the skeleton would seem to offer the most stable characters for classification, although, as has so often been said, it is by the resultant of characters that we must be guided.
The members of the Corebide herein discussed are C'areba cymene, C. carulea, Certhiola caboti, C. bahamensis,* and Glossoptila compestris. The palatal regions of the skulls of these genera are figured, and reference to them will be better than any detailed description.

Fig. 1.-Views of palatal region of (1) Coreba cyanea; (2) Certhiola cab̉oti; (3) Glossoptila campestris; all enlarged.

The crania agree in the following particulars: the prepalatine bar is slender, the postpalatine portion produced backward and overhang. ing the anterior ends of the pterygoids. The anterior, interpaiatine angle is small, almost abortive; the transpalatine process slender and spine-like. The more noticeable differences are as follows: In C'arebo the prepalatine is carried forward beneath the premaxillary; in Certhioln and Giossoptilu it abuts upon and interlocks with the posterior, ventral part of the premaxillary. In Corebo the palatine and pterygoid are completely fused; in Certhiola and Glossoptilu they are separate. The pterygoids are anteriorly in contact, or very nearly so, in Careba and Certhiola; in Glossoptila they are separated by the sphenoid.

Certhiola and Glossoptila have septomaxillary splints united with the vomer. Dr. Parker figures them in Chlorophanes atricilla, and they are present in Coreloa carrula, although I failed to tind them in C. cyanca.
The tendinal perforations of the upper end of the tarsus, while arranged on the same general plan in those passerine birds examined, show a number of variations in the executions of details, some of which

[^70]are shown in the figures. Their arrangement in the Corebidx is very much that shown by Myadestes, except that in Certhiola 4 and 5 are merged in one.

Fig. 2.-Hypotarsi of (1) Phoormis obscura; (2) Merula migratoria; (3) Myadestes solilarius; (4) Hemignathus olivaceus; all very much enlarged. The numbers in (2) refer as follows: [1] Foramon for tendon of flexor longus hallucis; [2] flexor perforatus digiti IV and slip to base of first phalanx of digit III; [3] flexur perforatus digiti III; [1] flexor perforans digitomum profumdus; [5] flexor perforans et perforatus digiti II, and flexor perforatus digiti II.

The tongue is forked in Corebu and Certhiola, brushy in Certhiola, laciniated or feathered in Corebor. There is a decided difference betwen the tongues of Coreba carulen and O. cyanert, as is shown by the figures.

Fig. 3.-Greatly enlarged views of tip of tongue of (1) Glossoptila campestris; (2) Acanthorhynchus tenuirostris; (3) Coreba cyanea; (4) Carel,a corulea; (5) Certhiola bahamensis; number one is viewed from below, the others from above.

Chrobu corven comes near having a tubular tongue, but although the edses approach one another they do not meet except at the laciniated tip. In Certhiola the tongue is simply grooved down the center. *
(rlossoptila is noteworthy, from the fact that it has a trifid tongue, a thin. flat, pointed strip being produced between the laciniated branches.

[^71]Certhiola has no crop, Cœreba has a well-marked crop-like dilatation of the oesophagus, and Glossoptila has a good-sized crop. The stomach is small in Certhiola, a little larger in Glossoptila, and largest in Coreba corrulea. In all, the intestine is long and slender. There are many convolutions in Certhiola, comparatively few in Coreba, while Glossoptila is somewhat intermediate between the two. In C. cyanea the intestine is -090 min. long, in C. cocrulcu 125 mm . ; both have two small coeca a short distance above the anal opening. The food of Certhiolu, as indicated by the stomach contents, consists of small insects and spiders, that of Coreba and Glossoptila consists of small berries, containing numerous small seeds.

Fig. 4.-(1) Pterylosis of Certhiola caboti, a little more than half natural size; (2) Dorsal tract of Glossnptila campestris, natural size.

The feather tracts and apteria are, with trifling variations, as shown in the figure of Certhiola caboti. The pattern of the dorsal tract varies slightly according to the species, and the lengths of the median apteria, especially that on the under side of the neck, vary according to the length of the neck.

Glossoptila is different from the other Cærebidze in having a narrower dorsal tract, and much longer and looser feathers.

Professor Baird, in his "Review of North American Birds," considered the Corebidx as nearly related to the Mniotiltidx, being apparently largely influenced by the slender beaks of this last group, and by the peculiar tongue of Dendroica tigrina.

Dr. Gadow, in the "Birds of the Sandwich Islands," considers the Corebide as the nearest allies of the Sandwich Istand Drepanidida, this family being formed to accommodate the slender-billed brushtongued birds peculiar to those islands.

Dr. Sclater* places the Corebide just before the tanagers, remarking that it is difficult to separate them from the tanagers on the one hand and the Mniotiltidse on the other, and this position is that generally accepted.

In considering the relationships of the group, the pterylosis may be left ont of the question, as it will not help us any. The figure showing the pterylosis of Certhiole might, with trifling alterations, do duty for G'oreba, Dendroica, Geothlypis, Acanthorhymchus, and some of the Fringillide, and since the same pattern is found in so many genera, including those but distantly related, it may be considered as very generalized.

The palate of the Mniotiltide differs from that of the Corebide in having the interpalatine process well developed, the

Fin. $5 .-$ Palatal reqion of Uniotilfa ruria, enlarged. transpalatine short and bluntly angular, and the palatines not produced backward over the ptery. goids.

In the general pattern of the palate, the shape and development of the interpalatine and trauspalatine spurs, and in the amount of exposure of the sphenoid between the palatines, some of the tanagers agree very well with the Corebids. Others of the tanagers differ considerably in their palate from the Corebidx, and there seems to be in the Tanagridæ more of an approach towards the union of the palatines beneath the sphenoid.

The Drepanidide, as represented by Vestiaria, Oreomyza, Hemignathus, and Himutione, agree with the Corebide in the character of the transpalatine and interpalatine processes, and exceed them in the depth and production of the postpalatine. This feature is carried to its extreme in the Drepanidide, and the same is true of the compression of the palatines, the free ventral edges of these bones approaching one another very closely, being in Himatione sanguinea almost in contact. The Drepanididae have the sphenoid covered by the palatine, a feature which is not found in the Corebidse, but occurs in some, although by no means all, or even in a large majority, of the Fringillida.* Among the skulls examined, those of Certhiold and Himatione bear the closest general resemblance to one another. Corebu and Glossoptila have a small palato-maxillary, and so do some of the Mniotiltidit. On the other hand, Certhiola and some species of Dendroice do not have this little bone.t It is wanting in Iendroict discolor, coronata, pemsylcanica, Melospian fasciuta, melodia, Loxia curvirostra, Zonotrichia albicollis, L'ipilo erythrophthulamus, Leucosticte griseonucha, Ammodromus and Parula cmericuna. Its exact value remains to be shown, for it appears in forms which are not related, at least closely, and drops ont in some that

[^72]are nearly allied. It is present in the Swallows, but not in the Flycatchers or Thrushes; is well developed in such stont-billed Finches as Carainalis and Habia, missing in Coccothraustes. It appears as a slender splint in Plectrophanes and Calcarias, and reaches a considerable size in Rhamphocolus and Pyranga, while it is lacking in Phonicophilus. None of the Drepanididx and Meliphagidx examined have a palatomaxillary.

None of the Mniotiltidæ or Tanagridre have the angle of the jaw produced, nor do the genera Coreba and Glossoptila. In Certhiola, however, the angle of the jaw is slightly produced, and this occurs in Oreomyza, Vestiaria, Himatione, and to a less exteut iu Hemignathus. The production of the angle is marked in Acrulocercus, and reaches a maximum in Anthochera carunculata. Acanthorhynchus and Tropido-

Fig. 6.-Tongues of Dendroica tigrina; (2) Dendroica coronata; (3) Glossoptila campestris; (4) Acanthorhynchus tenuirostris; (5,6) Coreba cyanea; (7) Coreba corulea; all enlarged.
rhynchus do not have the angle of the jaw produced, although they are "tenuirostral" birds, and the character is one that seems to have no correlation with length of bill. Like many other points in the anatomy of the Passeres, more observations are needed regarding the occurrence of this character, although it would seem that it should be of some importance. It does not occur in many birds, but is found in some of the Icteridie.

The tongue in the Mniotiltidse is of moderate length, with very slightly upturued margins, cleft a little at the tip, and slightly brushy. Dendroica maculosa and D. tigrina represent the extremes so far as speciProc. N. M. 94 20
mens have been examined. The tongue shown in fig. 5 , page 163, "Review of North American Birds," is unfortunately not the tongue of Dendroica tigrina. There has evidently been a transposition of specimens, and fig. 4, which is said to be that of Dacnis, is probably that of D. tigrina. As the shape of the tongue was the principal character of the genus Perisoglossa, the genus would for this reason, if for no other, be untenable; but even had the tongue been as figured, it would hardly seem a character of sufficient importance for the establishment of a genus.

The tongue of the Tanagridse may be slightly bifid as in Pyranga, Tanagra, and Rhamphocoelus, or thick, Heshy, and fringed, as in Saltator atriceps, but so far I have found no species in which the tongue bore any resemblance to that of Coreba.

Among the Drepanidide, Himatione, Hemignathus, and Vestiariu have very perfect tubular tongues, the upturned edges meeting or even lapping over one another slightly, being so firmly apposed that it is often a difficult matter to force them apart. A few filaments at the end, and here and there along the edge, constitutes the entire feathering of the tongue.

Oreomyzu has the commencement of a tubular tongue, but, owing to its shortness, the tubular structure is not carried out. None of these tongues are deeply cleft or widely feathered at the tip, as in the Carebidie, and none approach the peculiar condition found in Certhiola, which has a two-branched tongue, with a twisted brush on either branch, and a shallow groove down the center of middle third of the tongue.

The general pattern of this tongue is very much like that of the Australian Meliornis while the nearest approach to such a tongue as that of Coreba corrulea is found in the Australian

Fig. 7.-Intestinal convolutions of Tan. agra cana. Acanthorhynchus tenuirostris, and in this bird the corebine pattern is carried to the extreme, the tongue being extremely long, slender, bifid, feathered at the tip, and tubular for a part of its length.

The alimentary canal of the Mniotiltidre is, as a rule, comparatively simple, but in Dendroica coronutu the convolutions of the intestine are almost exactly the same as in Coreba. The stomachs of all Mniotiltide examined contained insects. There is no crop in this group and the stomach is large and somewhat pyriform in shape.
The tanagers are froiteaters, are devoid of a crop, and have the largest intestine and simplest convolutions of any birds examined.

In the complexity of the alimentary canal there is a parallel
between Certhiola and the Drepanididie, and the convolutions of Hemignathus olivaceus very nearly coincide with those of C. caboti.*

But in both groups there is varying complexity of couvolution among the different species, and in neither is there any adherence to a given pattern. Amoug the Sandwich Islands birds there is, in the majority

Fig. 8. -Intestinal conrolutions of (1) Glossnptila campestris; (2) Cœreba cyanea; (3) Dendroica coronata; (4) Certhiola caboti; (4a) Certhiola caboti, central portion; (5) Coreba caerula; (6) Hemignathus olicaceus; (6a) Hemignathus olivaceus, with conl opened out to show convolutions; (7) Acanthor. hynchus tenuirostris.
of specimens figured, a slight peculianity in the mamer in which the intestiue begins to uncoil from the center. When looking from below at the right side of the viscera, the intestine is seen, roughly speaking, to star". from the stomach and in a decreasing spiral or series of loops

- There is at first sight an apparent discrepancy between Inr. (ialow's figure and that shown in fig. $8(6)$, of this paper, but this is due to the fact that Dr. Gadow's specimen has a longer and more closely twisted intestine, so that the point of reversion is different in the two.
coil into a knot or short loop, whence it uncoils or unfolds in an increasingspiral. In Loxioides, Psittacirostra, Himatione, Vestiaria, and Hemignathus the first tum of the intestine from the center is to the left, while in the American species figured it is to the right. The point is one of little or no value, but among the species figured the difference exists.

My only specimen of Aconthorhynchus was doubly unfortunate; first in being neatly shot through the palate, completely destroying that region; and, secondly, in having the intestine in so tender a state that it was difficult to trace its convolutions. Hence I do not feel quite positive that the figure is entirely correct, although it is very nearly so, and if there is any error it lies in the portion beyond the central knot and consists in the omission of some convolutions. It is much simpler that in Certhiola, but not unlike Carebu, while a little more complexity beyond the central knot wonid make the general pattern of the intestine very much like that of Glossoptila.

To sum up: In the character of their palate the Curebide differ from the Mniotiltidie and resemble in some points the Drepanidide and some of the Tanagrida.

The Jrepanididæ differ from

Fig. 9.-Lower maudible of (1) C'areba corulea; (2) Certhiola portoricensis; (3) Oreomyza bairdii; all twice natural size.
all the above-mentioned groups except Certhiola in the production of the angle of the jaw.

In their tongue the Corebide are markedly different from the Mniotiltidae, but it is largely a difference of degree rather than of kind. They differ in toto from the Tanagridx, are quite distinct from the Drepanididre, and find their nearest homologue in Acanthorhynchus.

As regards the Drepanidida, it may be thought that this distiuction is very much a matter of opinion, but to me the two patterns of tongue seem quite different, though both derivable from such a tongue as that of Dendroica.

It would, perhaps, require less moditication to derive the tongue of the Drepanididae from such an one as that of Icterus icterus, as this is considerably upeurved along the edges, is not greatly feathered, and is, considering its size, less theshy at the basal portion than that of Dendroica.

It must be borme in mind, too, that there are three distinct types of tongue among the Corebida and that no comparison can be made with them in this particular as a group.

In complexity of alimentary canal they much exceed the Mniotiltide (except Corebu cyanea, noted previously), bear no resemblance at all to the Tanagridie, and are approached by the Drepanidide.

As groups of birds are constituted the Curebide are certainly sufficiently distinct to stand apart, and the gap between them and the Mniotiltida seems widest, althongh this may be due to a tendency on my part to place considerable weight on the geueral pattern of the palate.

The relationship with the tanagers is not very close, although such short-billed forms as Chlorophanes and Ducnis, which unfortmately were not available, might bring the two groups a little closer.

In size, form, pterylosis, structure of tongue, and pattern of convolutions of alimentary canal, there is a strong resemblance between Coreba and Acanthorhynchus, and so far the two forms exhibit a most interesting case of parallelism. The palate, too, on superficial examination, looks not unlike that of Glossoptila, but as Ir. Parker points out in the second part of his memoir on the Skull of Egithognathous Birds, there is a striking dissimilarity in the fact that in Accuthorhynchus the palatines run outside the palatal process of the premaxillary instead of along the inner side, as in passerine birds generally.

Finally, it must be said that the members of the Corebidie do not form a homogeneous group, for the family contains at least three wellmarked types, Corelu, C'erthiolu, and Glossoptilu, and these types differ from one another in a very marked degree. While Ducuis and Chlorophanes have not been examined by me, the figures of skulls and tongues of these genera indicate that they belong near Corebu. These genera form a well-marked group containing those species nearest to the Mniotiltidie and characterized by a long, cleft, feathered, but not suctorial tongue, small crop-like dilatation of the osophagus and simply convoluted intestine.

Certhiola has a bifid, brushy tongue, no crop, extremely complicated intestine, and produced angle to the mandible. The tongue resembles that of some of the Meliphagidx; the other characters are like some found in the Drepanidider. Glossoptile, with its loose ptilosis, decided crop and unique, trifid tongue, is equally well characterized and certainly should stand apart, seeming to hold with respect to Coreba much the same position that Chamea does with the wrens.

The Anatomy and Affinities of Certhidia.

At the suggestion of Mr. Ridgway I have examined three specimens of Certhidia salvini, kindly provided by Dr. G. Baur, with a view of ascertaining whether or not the suggestion of Corebine affinities presented by its external appearance was borne out by its anatomy.

The pterylosis is of the orthodox passerine pattern and the dorsal tract has a diamond-shaped outline, similar to that found in Dendroica and many other small birds. The testimony of the skull is ummistakable, for it has the short, subangular, trauspalatine processes, and well
developed interpalatines characteristic of the Mniotiltida, and well shown by the common warbler of this Galapagos group, Dendroica aureola.
The Carebine skull, on the other hand, is characterized by the fining down of the palatal region, the tramspalatines being reduced to mere spikes, while the interpalatine spur is abortive or small. The cranium of Certhidia is a trifle shorter than that of the majority of the Mniotiltide examined and has a little more material in the palatines. The hypotarsus is also like that of Dendroica in its configuration, slight but perceptible differences existing between it and the corresponding region of any of the Cœrebide. There is apparently nothing specially characteristic in the shoulder muscles, their arrangement being practically similar in Certhidia, Dendroica, Coereba, and many other small birds.

The tongue is warbler-like in shape and character, being moderate in length and slightly cleft and bifid. It is a trifle thicker and more fleshy than in such a bird as Dendroicu cureola and not at all guttershaper. All this is in direct contrast to the elongate, feathered, hol-lowed-out tongue of Coreba, and not at all like the cleft, brushy tongue of Certhiolu, although all three forms agree in one respect: long or short, plain or feathered, the tongue is not suctorial, for even in long-billed Careba the hyoid stops low down on the base of the skull and lacks the elaborate arrangement of museles found in truly suctorial birds. The intestinal convolutions are quite simple, much as in Corebe and Dendroich coronata and aureola, but not exactly like either, althongh, curiously enough, precisely similar to the convolutions of Cimmyris bifasciata. There is, however, no crop-like dilatation of the essophagus as in Carebu. The coca are moderate, and in the best specimen examined the bursa fabricii was very large.

All in all, the anatomy of Certhicliu points to a very near relationship with Dendroica, and indicates that the geuns surely belongs among the Mniotiltidæ.

Remarks on the Affinities of Myadestes and I'heornis.

The skull of Myadestes is rather short, and on its superior aspect bears a considerable resemblance to that of Ampelis. The maxillary process of the nasal is short, not expanded distally, and abuts upon, but does not fuse with the maxillary. In the thrushes this process is wider and continued for a little distance along the maxillary, but does not unite with it. Pherornis resembles the thushes in these particulars. In Tyrannus the descending process of the nasal is narrowest near its origin, expands distally, and aukyloses with the maxillary.

The prepalatine bar of Myadestes is narrow, as in Ampelis, the transpalatine angle much like that of Pheomis. The interpalatine angle is blunter in Myodestes thau in Ampelis, in this respect resembling that of Phoornis and the thrushes.

Tyrannus differs from the genera mentioned above in the early and complete fusion of the prepalatines with the premaxillaries. Ampelis is peculiar in the large symmetrical ossifications of the anterior trabecule which articulate with the vomer.

Fig. 10.-Palatal region of (1) Merula migratorif; (2) Phaeornis obscura; (3) Myadestes solitarius; all enlarged.

Myadestes, like Tyramus, has a flat non-pneumatic maxillo palatine, although that of Myadestes is the less hooklike and more expanded of the two. Phoornis has a maxillo palatine like that of a thrush.

The manubrium of Myadestes is rather wide and low, similar to that of Phcornis, these birds in this particular departing from the thrushes as well as from Ampelis.

The oesophagus is large and there is no crop. The stomach is large, with strong walls. The intestine is very short, measuring but 0.145 m . in length. The stomach was full of small berries mingled with a few remains of insects.

The dorsal tract is almost straight in Myadestes, slightly different from what occurs in Turdus pallasii.

Myadestes was placed by Gray with the Ampelidre, but is included among the thrushes by Dr. Stejneger.

While the bird has some leanings toward

Fif. 11.-Palatal region of Tyrannus carolinensis, enlarged. the Ampelidie it seems to have more decided affinities with the thrushes,
although it is by no means a typical thrush. It certainly has no near relationship with the Tyrannide.

Neither Myadestes nor Phaornis have any trace of a metapterygoid, but while this little process is quite generally present in thrushes, it varies greatly in the amount of development. It is best developed in Merula aurantia and M. migratoria, is small in Turdus mustelimus and pallasi, rudimentary or even wanting in swainsoni and fuscescens. When the metapterygoid is small it is oceasionally difficult to decide whether a minute process is present, or merely a prolongation of the sphenoid foot.

The turdine resemblances of Phoornis have already been pointed out by Dr. Gadow, although he seems to have had doubts about positively placing the birds together. Working over the question anew my own

Fig. 12. - Dorsal tracts of (1) JIy. adestessoliturius; (2) Twolus pullu sii; reduced. observations corroborate those of Dr. Gadow, but I would go a step farther and until it was shown to be otherwise definitely place Phoornis with the Turdidit. Certainly if Myadestes is to be considered a thrush Phacornis is doubly one.

Remarks on the Affinities of Phainopepla Nitens.

Phainopeple was placed by Gray near Ampelis, and here is where it undoubtedly belongs. The skulls of the two are very much like, particularly in the palatal region, and both possess a large, free, swolleu lachrymal, this last being a point of much importance, since such a lachrymal is of rare occurrence among birds. The quadrates of Ampelis and Phainopepla agree with each other in minute as well as general characters, as do also the pheumatic maxillo palatines.
The characters which separate Myadestes from Ampelis separate it also from Phainopepla.
The very marked resemblances between the skulls of Phainopepla and Ampelis render it, in this instance, unnecessary to go into further details, but it may also be said that the general contour of the dorsal tracts in the tro Phainomenteni that the general contour of the dorsal tracts in the two theinoppphan. species agree very well also, although the outer angles of the tract are a little more rounded in Phuinopepla than in A mpelis.

DIS(OVERY OF THE GENUS OLDHAMIA IN AMERICA.

By Charles D. Walcott, Honorary Curator of Paleontology.

In 1865 Prof. James Mall referred a fossil found associated with Buthograptus in the Trenton Limestone at Plattville, Wis., to the genus Oldhamia, under the sperific name of fruticosa.* He described this form as "stems of corneus or carbonaceous texture, frequently branched, the branches again dividing and sometimes, if not always, in whorls, in one of which six divisions were counted." Prof. Hall's reference to Oldhemia was tentative and, from the study of Dr. J. R. Kimehan's \dagger beautiful illustrations of the genus Oldhamia, I am led to think it exceedingly doubtful if the species fruticosu should be referred to it.

Prof. Charles Lapworth mentions the occurrence of an Oldhamia in the purple slates of Farnham, Province of Quebec, like O. vadiata, but does not describe or illustrate it. \ddagger It is placed in the horizon of the Upper Cambrian. Dr. R. W. Ells, of the Geological Survey of Canada, writes me that the Farnham slates belong to the Sillery formation. A poorly preserved sperimen, received from the Survey, proves the presence of Oldhamia, but does not afford data for a specific determination.

During the field season of $1893, \mathrm{Mr}$. T. Nelson Dale, while surveying the areal geology of the Troy sheet of the U. S. Geological Survey, collected, in a belt of reddish shale that extends north and south, west of the Rensselaer plateau, a lot of annelid trails and plant-like impressions, which were sent to me with other material for determination. The only form that I can identify is a species of Oldhamia that is closely related to Oldhamia antiqua of the Cambrian rocks of Ireland.

[^73]No other fossils were identified; and the determination of the geologie horizon is somewhat uncertain.

Genus Oldнamia, Forbes.*

The best illustrations of Oldhamia are given by Dr. J. R. Kinnahan \dagger and Mr. J. W. Salter. \ddagger Prof. Brady discussed the genus and its relations to living forms, in 1865. He proposed to limit the genus to the O. radiata, and to refer the O. antiqua to a new genus-Murchisonites.

OLDHAMIA (MURCHISONITES) OCCIDENS, new species.

Frond with a jointed, slightly tlexuous stem; fan-shaped frouds, formed of numerous simple filaments or attached to the upper end of each joint; the filaments being somewhat longer than the joints and giving the entire froud the appearance of a succession of tufts of filaments, each springing from the summit of the tuft below.
The specimens are preserved as casts on the surface of a smooth siliceous slate. No trace of cells or vesicles appear; and the position of Oldhemia in the classification of organic forms is not advanced. The

Fig. 1. Oldhamia (M.) occidens. View of a single frond from the gorge of tho Poestenkill. Naturalsize.
suggestion that it is a calcareous alga appears to be as satisfactory as any. This species differs from Oldhamia (M.) antiqua Forbes|| in the form of growth and arrangement of the tufts of filaments.

The specimens are from the Cambrian (?) slates.
The Oldhamia was first found in reddish shales associated with greenish shales and beds of quartzite, ranging from one to nearly twenty-two inches in thickness, at a saw-mill dam midway between Burden Lake and Nassau Pond in the township of Nassau; again in similar rocks about 2 miles farther up the same stream and $1 \frac{1}{2}$ miles SSE. from the south end of Burden Lake. It occurs also on the Moordener Kill,

[^74]about $1 \frac{1}{4}$ miles NE. of Schodack depot, in the township of Schodack, and in great abundance in the gorge of the Poestenkill, 13 miles east of Troy, near the Eagle Mills road, aloug the right bank of the river, which there flows south. The Oldhamia is here associated with various trails, and both cover large surfaces of the rock.

The slates are post-Lower Cambrian and pre.Trenton, but their exact stratigraphic position is not fully determined. They are either Upper Cambrian or Lower Ordovician.

NOTES ON REPTILES AND BATRACHIANS COLLECTED IN FLORIDA IN 1892 AND 1893.

By Einar Lennberg, Ph. D., University of Upsala, Sueden.

The following notes are based upon a collection made during a sojourn in Florida from September, 1892, to July, 1893, during which time I wasengaged in general zoological collecting and research. The list contains the greater majority of the species recorded from that part of the United States, besides a number of additions to the herpetological fauna of Florida. The distribution of other species within the peninsula has been extended, or better defined. The biographical notes may not contain any strikingly new facts, but as such observations are not very commonly recorded, and as mine are based on personal experience they may possess some value as corroborative evidence.

I wish, finally, to express my grateful acknowledgment for kind assistance received from the anthorities of the U. S. National Museum.

REPTILIA.

TESTUDINES.

PLATYPELTIS FEROX (Schneider).

The soft-shelled turtle abounds in all lakes and ponds in south Florida. It is canght with nets and seine and readily takes the hook. It is very savage and bites ferociously.

DERMOCHELYS CORIACEA (Linnæus).

This turtle seems to be known to some of the people living at Key West, but it is very rare. I have only seen one specimen in Florida, which had been caught near St. Augustine.

```
CHELONIA MYDAS (Linnteus).
```

Green turtles are still common along the coast of south Florida, but the time of extermination will soon come, as they are callght in great
numbers with nets, harpoons, pegs, etc., in the water, as well as on the beach when laying their eggs, the eggs being secured at the same time. The meat is sold at 10 cents a pound, and a good many are shipped North alive from the Key West market. The largest specimens reach a weight of 800 pounds.

The hawksbill turtle is caught at Key West, where I have seen some. It is not common, and very high in price on account of the shell. It is said to reach a weight of 150 to 200 pounds, but specimens of that size are very scarce.

THALASSOCHELYS CARETTA (Linnious).

The loggerhead turtle is common all round the coast of south Florida, especially among the Keys. It is used for food in some places, for instance at Key West, although not so palatable as the green turtle, and the eggs are eaten whenever they can be found. The eggs are laid in May and June. During the latter month I found them on the Coronado beach at New Smyrna. Although the animals themselves are not always caught, the custom of taking their eggs is as destructive in the long run, and they are going to be exterminated on the coast of Florida sooner or later. They do not grow larger than 300 pounds.

DEIROCHELYS RETICULARIA (L atreille).

This species is not common so far as I know. I have only seen 2 specimens in south Florida, both of which were caught at Clarcona, Orange County, by C. C. Allen, who generously presented one of them to me.

> PSEUDEMYS RUBRIVENTRIS (Leconte).

The red-bellied terrapin, or cooter, is not so common in south Florida as Pseudemys comcinnu, but I have seen it in several localities, viz, in the St. Johns River; at Clay Springs, Orange County; Silver Springs, Marion Comnty, etc. It is to be fom not only in the rivers, but I have canght it with the seine in small lakes in the neighborhood of Apopka, and have likewise received from Mr. U. C. Allen a specimen from Clarcoua, Orange County. The plastron is sometimes uniform red; sometimes marbled with black.

PSEUDEMYS CONCINNA (Leconte).

This is the common cooter of Florida, in which country it is abundant in all lakes and rivers. They are very often seen in great numbers basking on old logs in the water, even in the middle of the winter. They feed on vegetable matter. 'The meat is white and very palatable.

MALACLEMYS CENTRATA (Latreille).
The valued diamond-back terrapin is caught in the salt marshes along the east coast. I obtained several specimens at Hillsboro River, outside New Smyrna, Volusia County.

TERRAPENE CAROLINA (Linn ie u s)。

The box-turtle is not very common in the southern part of Florida. I saw only two specimens in Orange County, viz, at Apopka and Clarcona. It is said to be more abundant around St. Augustine.

GOPHERUS POLYPHEMUS (Daudin).

The "gopher" is common in the dry woods of south Florida. It is diurnal in its habits and is often seen walking about feeding between $11 \mathrm{a} . \mathrm{m}$. and $3 \mathrm{p} . \mathrm{m}$. When disturbed it retracts its head and feet with a hissing sound, like that of a snake, and sometimes tries to bite. The people do not use these animals for food, but sometimes chop them up and give them to the chickens. It is said that the holes are dug down to the ground water. A good many animals, as rabbits, snakes, frogs, etc., seek a refuge in the gopher holes, which are of particular protection to them when the grass in the woods is burnt off.

Lately there was discovered a quite interesting fauna of insects, partly blind, which live in these holes. *

KINOSTERNON BAURII (Garman).

At three different places in Orange County I collected this little turtle, which is new for the peninsula, but has been found at Key West and in Cuba before. I saw it first in Fern Creek, near Orlando, later at Apopka and Oviedo, in the same county. It is easily distinguished from K. pensilvanicum by the different development of the plastron and the color, etc. On the head there are always two pale yellow streaks, one from the tip of the nose backwards through the upper margin of the eye, the other one from the inferior margin of the eye and backwards. Below there are two broader bands of the same color on the inferior surface of the mandibula. The carapace shows three pale longitudinal bands. The shell is not smooth, but worn and eroded by parasitic alge.

One of the specimens collected in Orange County is now in the I..S. National Museum (No. 21326).

KINOSTERNON PENSILVANICUM (Gmelin).

This species is quite common in some localities in the small lakes and creeks, etc.; for instance, in Fern Creek, near Orlando, Orange County. It is sometimes called the mud turtle.

[^75]AROMOCHELYS ODORATA (Daudin).
The musk turtle is common in ponds and creeks in south Florida. In Fern Creek, for instance, it is abundant, and I have also found it in several other places in Orange County. One of my specimens from the above mentioned creek is very interesting on account of several anomalies of the plates of the plastron. The gular plate is divided by a very distinct suture and there is a pair of plates between the femoral and anal plates representing the anterior portion of the anals. The plastron is thus covered by 14 plates. Otherwise this specimen is typical in color and shape.

CHELYDRA SERPENTINA (Linnaus).

The alligator turtle is not very common in south Florida. I know of specimens from St. John's River, Lake Apopka, and the neighborhood of Oviedo, Orange County. As the head is very large, some ignorant people call it the "loggerhead," which name properly belongs to Chelonia caretta.

SAURI.

ANOLIS PRINCIPALIS (Linneus).

The "chameleon" is common all over south Florida. It often enters the houses and frequently you can see this charming little animal climbing on the curtains in your room. It is interesting to see them run about in the sunshine and suddenly change color from brown to the most resplendent emerald green and to observe the males how after some nodding movement with the head they intlate the ru'by colored gular sac. They are very fond of running on the thistles, where they readily find their way between the spines and prickles, being at the same time well protected by them against their enemies. The shape of the head raries considerably, but I am not able to draw any line between the short-snouted and the long-snouted ones, as there are all degrees of intermediates.

SCELOPORUS UNDULATUS (Daudin).
These lizards are very common in south Florida, in the pine woods and among the oaks in dry places, on old fences and houses, etc. When running on old burned stumps and logs in the pine woods, which used to be burned every winter to get better grass for the cattle, they are able to turn perfectly black. On light ground, for instance on oak bark, they resume their gray color with the brown undulations on the back, thus showing themselves possessed of a great faculty of adapting their color to that of the surroundings. They are sometimes called "alligator lizards," on account of the roughness of their scales.

OPHISAURUS VENTRALIS (Linnters).
The "glass smake" has received its name because the tail is so very brittle. Ignorant people believe that the broken pieces are able to join
together again, and therefore call it "joint suake." This harmless lizard is also considered by them to be a very "poisonous snake." Ophisturns is not searce in south Florida, and I have found it in all kinds of places, in the dry pine woods, in hammocks, and under old logs at the border of lakes. It is a burowing animal, and is therefore sometimes plowed up.

CNEMIDOPHORUS SEXLINEATUS (Linnæus).

This swift is extremely abundant on Key West, and the largest and nicest specimens in my collection were caught there. Although so abundant, it is hard to collect, as it is so very quick and active, running through the shrubs and disappearing "quick as a Hash of lightuing." In other parts of south Florida it is rery common, too, in dry places in the pine lands, and on warm and sumny days may be seen all over the country in such places as, for instance, around Orlando and Oakland, Orange County, etc., but it does not seem to do as well anywhere as at Key West on the warm lime rocks and in the dense scrub.

EUMECES FASCIATUS (Linntus).

This lizard is rather common in south Florida under rotten logs and stumps and similiar places. It is not confined to the hammocks, int is also found in the pine woods, in suitable localities, and I have seen a large specmen on the island south of Hog Island outside of Clear Water Harbor, Hillboro County. Strange to say, it is called "scorpion," "blue tail scorpion" or "big scorpion" aud regarded as "awfully poisonous." The bright blue tail is rery brittle and breaks always if one tries to catch the animal by that member.

LEIOLOPISMA LATERALE (Say).

This lizard is one of the smallest in south Florida, where it is abundant in hammocks under old leaves, etc., or on the shores of lakes under logs and stumps. The localities frequented by this skink are always more or less moist; the tail breaks off easily and is as easily reproduced.

RHINEURA FLORIDANA (B a ird).
The "blind worm" or "blind snake," as it is called, is not scarce in sandy places in Orange county. It is often found by people digging or grubbing in the gardens or plowing in the orange groves.

SERPENTES.

CEMOPHORA COCCINEA (Blumenbach).

The amount of individual variation displayed by the present species seems to be considerably greater than one would suspect from a perusal of the literature. Baird and Girard* indicate a variation in the

[^76]Proc. N. M. $94-21$
nasal plate, a point brought out fuller by Garman, * who describes it as "entire, sometimes grooved or half divided, occasionally divided." The former authors also indicate a certain variability in the size of the supraocular. Finally, Jan has described a specimen as a separate subspecies which had the loreal extending to the orbit beneath the preocular. \dagger My specimen, which is from a hammock near Lake Charm, Orange County, the only one obtained by me, has the nasal completely divided. In addition it has 7 upper labials, third and fourth entering the eye, the center of the eye above the fourth, and 9 lower labials, instead of normally 6 supralabials and 8 infralabials. It will be noticed, however, that Jan \ddagger figures a specimen from New Orleans with 7 supralabials like mine, and Dr. Stejneger informs me that the U.S. National Museum possesses several specimens with the same number, for instance, No. 10741 , from Clear Water, Fla., and No. 6298, from Fort Jesup, La. He also mentions 3 other interesting specimens, viz: No. 5221 , from northern Alabama, which on one side has a rather large subpreocular wedged in between the second and thrd supra labials; No. 2387, from Anderson Connty, S. C., in which the rostral extends so far backward as to entirely separate the internasals; and No. 14828, from Georgiana, Fla, with the loreal and supraocular so small as to allow the prefrontals to separate them and enter the eye between them.

The size of the supraocular is not particularly small in my specimen; the number of temporals are $1+2+2$; the number of gastrosteges about 180 . The number of the latter is given by Garman§ as varying between 157 and 174 . In my specimen there are 17 pairs of black rings on the body and 6 on the tail, nearly the normal number. The specimen described by Jan and referred to above has an unusually large number of black rings, but Dr. Stejneger informs me that the U.S. National Museum specimen No. 6998 mentioned above has quite as many, but with the loreal normally related.

My specimen was obtained by digging in the ground. The burrowing habits of this species are evidently the cause of its comparative rarity.

> FARANCIA ABACURA (Holbrook).

I obtained several small specimens in Lake Eola, at Lake Brantleg, and at other places in Orange County. Two larger ones were dug up in a "bay-head" at Oviedo, in the same comnty, in spite of the fact that the people there did not know it and had no name for it.

The U. S. National Museum has received a specimen from Arlington, Fla., No. 9583 , collected in 1878 by Francis C. Goode.

ABASTOR ERYTHROGRAMMUS (D a u din).
I have not found this species in south Florida, but have seen a specimen caught not far from St. Augustine.

[^77]I have but rarely found this little snake out of the water, and in such cases ouly under some log or board near the water's edge. It is common around the borders of the small lakes in Orange County, where I have seen and caught specimens in Lake Eola, Orlando, in and around some small lakes near Clarcona, Toronto, Apopka, and other places.

The number of supralabials is variable. In most cases there are 8 , but I have two specimens with only 7 , and one with only 6 on one side. In these cases of reduction the posterior ones have become fused, as shown by their size and the frequent presence of an incomplete section. The rows of scales are always 17 on all my specimens. The color of the upper surface is sometimes a little lighter on the sides, showing conspicuonsly on the three lowermost rows, at least, a narrow light stripe along the middle of each series. The belly is salmon-red without any spots, but in some specimens there is on the side of each gastrostege a short stripe extendiug to about a fourth or a fifth of the belly, forming the beginning of cross-bars.

STILOSOMA EXTENUATUM, B rown.
This rare and recently described suake* was hitherto known from one specimen only, the type. The three specimens obtained by me

1

2

3

Stilosoma extenuatum (twice natural size).
Fig. 1. Head from above (No. 21327, U. S. N. M.). Fig. 2. Head from above. Coll. Zool. Mus. Univers. एpsala, Sweden. Fig. 3. Head from the side; same specimen as fig. 2.
in Orange County, viz, one at Lake Charm, near Oviedo, the others at Oakland, deviate in their scutellation of the head to an extraordinary degree from the type, which appears greatly abnormal, so much so in fact that the generic determination became one of great uncertainty. One of the specimens has been presented to the U. S. National Museum (No. 21327), and submitted to the curator of reptiles, Dr. L. Stejneger, who is responsible for the identification as well as for the following remarks:

The type specimen of Stilosoma extenuatum is described as possessing no separate prefrontals (these being fused with the internasals), no loreal, and no preoculars. The large internasals join the supralabials and enter the eye, and the parictals join the supralabials behind the postoculars, excluding the temporals from the latter.

The three additional specimens seem to prove that the only normal and stable characters among the above are the absence of the loreal and the joining of the parietals and supralabials. The absence of the preocular is only found in the type, while the fusion of the internasals with the prefrontals is found in the type and in one of the Orange County specimens as well, but not in the other two, in which they are normally separated.

[^78]The absence of the preocular in the type of Stilosoma extematum, or rather its fusion with the prefrontals, at first led to suggestion of even more than sperific difierence, but a reflection upon the fine that the difference hetween the additional specimens themselves is fully as large as between them and type, coupled with the otherwise complete agreement with Brown's original description, soon led to the abandomment of such an idea.

The following additional remarks are derived from the specimen in the U. S. National Museum:

Hypapophyses absent in the posterior dorsal vertebrap maxillary teeth eleren, all smooth, in a continuous series, the anterior and posterior ones sightly shorter than the others; pupil round; two pairs of well-developed, long chin-shields in contact on median line; preocular rather small, square, in contart with supraocular, prefroutal, second and third supralabials; six supralabials; temporals $1+2$, the anterior one separated from postoculars hy parietals which are very 10 g ; gastrosteges, 260 ; anal, 1; urosteges $\frac{4}{4}+1$. 'lotal length, 330 mm . tail, 23 mm .

Mr. Brown compares the coloration of the present species with that of lhinocheilus lecomtii, while ('ope states that it "has the coloration of the type of Hypsiglena or Sibon." None of these comparisons seem particularly happy, while on the other hand the similarity of Stilosoma extenuatum, so far as color and pattern, both above and below, is concerned, to Lampropeltis calligaster is very striking indeed. Even the head markings are almost identical.

On the whole the totality of the characters seems to place this genus among the coronelline suakes rather than with the calamarines, in spite of the marked tendeney to a reduction of the number of head-shields by fusion, and it may be well in this connection to call attention to the unusually great number of gastrosteges, viz, 235-260.

LAMPROPELTIS GETULUS (Linn ঞus).

Rather common in south Florida, where it is sometimes known under the name of "king snake," and is then said to kill and devour the rattlesnake. Sometimes it is called "rattlesnake pilot," and is then regarded as the guide of that snake!

My specimeus have the normal number of 21 rows of scales, while Cope has examined some Florida specimens with 23 rows. The coloration varies greatly. Sometimes the yellow centers of the scales result in more or less well-defined crossbands on the back and the yellow color on the interspaces is less conspicuous. Sometimes there are no distinct crossbands and then the snake looks brown or yellow, depending upon the development of the yellow centers of scales, which sometimes occupy nearly their entire surface. The crossbands, when present, often bifurcate on the sides, embracing darker areas. In this variety the crossbands and forks are narrow, becoming broader inferiorly, often as broad as the dark areas.

Most specimens of mine from Florida have yellow centers on the scales, more or less, even if they are crossbanded. A more typical L. getulus back with whitish crossbands, was caught at Savannah, Ga., by Capt. C. Eckman, and presented to the Upsala Museum. Lampropeltis gctulus is of a rather gentle disposition. When caught they never

[^79]tried to bite, only one opened its mouth, bat they wind themselves round one's arm, showing great muscular strength. When they get alarmed they often rattle with the tip of the tail, trying to scare the euemy.
I have seen eggs laid by an L. getulus in captivity. They were rather large, whitish and with soft skin.

All my specimens were taken on dry land.

OSCEOLA ELAPSOIDEA (Holbrook).

I have one specimen of this beantiful snake from Key West, and another from the neighborhood of Toronto, Orange County. in both there is on one side a small rudimentary loreal, but on the other side the prefrontal extends to the upper labials. One who has seen both Cemophora and Osceolu can not well confound them afterwards. The shape of the head is entirely different. Osceola deserves well the cognomen "elapsoidea." The form of the head is very similar to that of an Elaps, and so are the colors, black, red, and yellow, although arranged differently. On the specimen from Toronto the seventeenth* pair of black rings is situated over the anus and there are five pairs on the tail, the last not complete. On the specimen from Key West the sixteenth* pair is situated over the anns. On the latter specimen the black rings are broader and cover $4-5$ s scales, and in the middle of the back they have a teudency to extend into the red spaces, so that, for instance, the posterior one of the twelfth, thirteenth, and fourteenth pairs extend through the red, meeting the anterior band of the thirteenth, fourteenth, and fifteenth pair respectively. It is remarkable that the yellow dings, althongh narrower, are never intruded upon. The fact that in Elaps fulvius the red, but never the yellow, is very often dotted with black, forms an interesting parallel.

DIADOPHIS PUNCTATUS (Linnteus).

Having obtained this suake only once, not far from Apopka, Orange County, in April, 1893 , I must regard it as rather uncommon in that part of the State.

My specimen has two anterior and three posterior oculars instead of $2-2$, but is otherwise typical as to scutellation and color.

There are nine specimens of this species in the U. S. National Museum from Florida, included under the following catalogue numbers: No. 10585 from Clear Water, collected by S. T. Walker; and Nos. 1198t, 13667, 13702, from Georgiana, by Wm. Wittfield.

OPHEODRYS ESTIVUS (Linnteus).
This beautiful and gentle little suake is to be found all over south Florida down to Key West in "hammocks" and "scrubs." It is often
seen in orange trees. I have never observed it on the ground. It never tries to defend itself in any way.

BASCANION CONSTRICTOR (Linntens).

The black suake is the commonest suake in South Florida and may be sem everywhere-in the dry pine woods, in the small prairies, at the borders of the lakes, on the gromid, or climbing trees, or escaping down into the "gopher" holes.
At Acadia, De Soto County, I captured a small black suake which was crawling ou the upper leaves of a palmetto, and as it presents some peculiarities it may be well to describe it in detail. It was very slender, being 600 mm . in total length, with a tail measuring 180 mm .; borly compressed and head much broader than neck. The color of the upper surface is as black as in any full grown I3. constrictor; the belly is likewise black, but with a narrow median stripe of small, whitish, clondy spots; chin, throat. and upper labials whitish; this color extends back over the first 17 gastrosteges, the posterior ones of which are spotted with black. When killed the belly was speckled all over with round orange red or rusty spots of a diameter of 1 to 2 mm . but these have disappeared in alcohol. Tip of tail underneath, yellowish. Scale rows, 17. Eight supralabials instead of 7 as usual in B. constrictor. Three postoculars, a peculiarity shared in by another full-grown specimen in my collection. On the whole there seems to be a great variation in the number and relation of these seales and in the temporals, of which there are 6 on one side and 7 on the other in my specimen.

According to Dr. Stejneger, to whom I have submitted the specimen for examination, it is a young one in transition to the adult coloration, which it has not yet quite fully acquired.

BASCANION FLAGELLUM (Shaw).

This species is not so abundant as the foregoing one, and is mostly found in dry pine woods in which the soil is rich enough to allow oak trees to grow. It is common around Oakland, Orange County.

It is known as the "coach whip" and sometimes the larger ones are called "chicken suakes," like several other of the larger colubrme snakes. Althongh a bold fighter and sometimes even found to be the attacking party, it is, of course, perfectly harmless, though some of the ignorant natives fear it greatly, believing that with "a blow of its tail it can break the arm of the largest man."

CALLOPELTIS GUTTATUS (Linn \mathfrak{c} us.)

I have specimens of this snake from Ozona Hillsboro Comnty, Orlando, Oaklaud, Apopka, Oviedo and other places in Orange County; from the dense scrub at Coronado beach, New Smyrna, in Volusia County, and from Key West. It is known by different names in different places; for instance, "chicken snake" at New Smyrna and Key

West; "house king-snake" at Oakland, etc. It rattles its tail when offended, and one of my specimens tried to defend itself by biting. Like the following species, it often enters into the houses to hunt rats. The color is different in different specimens. I have not obtained any typical C. g. sellatus (Cope), though on the specimen from Key West the head bands are more obscure and the lateral spots not well defined, some of them-the posterior ones-being rather faint and disappearing on the tail; many of the dorsal spots are open on the sides, having only anterior and posterior dark borders; only the anterior part of the lower surface is regularly tessellated with black spots; further back there is only a trace left of each black square, and the abdomen thus becomes finely mottled with blackish scales not keeled.

Another specimen from Orlando shows variations in the direction of Callopeltis rosaceus (Cope). The belly is checkered and the head is banded in the normal way, but on the back two dark brown stripes extend all the way through the dorsal spots. On the anterior part of the body the lateral black borders of the dorsal spots, as well as the upper black borders of the lateral spots, extend longitudinally from one spot to another, in this way forming longitudinal stripes. A little further back this double black stripe is interrupted, but a less sharply defined brown stripe connects the lateral black border of an anterior dorsal spot with the next behind. Still further back even that brown stripe disappears, and the spots have the same appearazce asin a common C.guttatus. Eveu in a young specimen from Ozona, Hillsboro County, there is a tendency to a longitudinal connection of the spots on the sides of the anterior part of the body, but there are no longitudinal dorsal stripes to be seen. The above-mentioned variations are very interesting, and in the future, I suppose, there will be found more counecting links between the various forms clustering around C. guttatus.*

CALLOPELTIS QUADRIVITTATUS (Holbrook).
I have obtained specimens of this form from different places in Orange County. It is often found in trees, being a very good climber. It enters very often the houses to hunt rats. Caged birds frequently become its prey on such excursions. Why the larger specimens are called "chicken snakes" is easy to understand.
The young ones are spotted, and sometimes these spots remain conspicuous in older specimens, too. I once saw quite a large specimen shot in a packing house, where it had been a regular guest for some time. This snake measured nearly two meters and had large yellow saddle blotches on its back. It was too much damaged to be preserved.

SPILOTES CORAIS COUPERII (Holbrook).
This snake, which is generally called "gopher snake" in south Florida, is not very common. I have obtained only one specimen from

[^80]the neighborhood of Orlando, Orange County, It had 7 superior labials on the right side and s on the left, showing plainly that this character is not constant.

The red on the throat is more or less developed in different specimens. The gopher suake is one of the largest suakes in Florida, and one often hears of specimens of extraordinary size. I have seen some stuffed specimens in St. Augustine which were about 10 feet in length.

I do not know much about its habits, but it seems to prefer high and dry land. It is said to be rather slow moving.

PITUOPHIS MELANOLEUCUS (Dandin).

The common form of this snake in South Florida has large, reddish saddle blotches on the back, becoming anteriorly more and more obsolete and finally showing only a slight mottling on the yellowish gray ground color. I have a smaller specimen on which the dorsal spots are blackish or dark brown, corresponding with Holbrook's figure.* The number of spots on the body is about 25 , but the auterior ones are dissolved into smaller ones and difticult to distingnish. Two faint bands can be seen from the eye to the seventh supra-labial and from eye to eye in a curved line across the posterior part of the prefrontals. Supralabials, 8 ; ocular, $1-4$ on the left side, $1-3$ on the right.

From its loud hissing it is called "bull snake," and "pine snake" from its living in the pine woods. All the specimens observed by me are from dry, sandy pine woods in Orange County.

The skin of a very large specimen measured, without head and tail, $170 \mathrm{c} . \mathrm{m}$. and must have been at least 2 m . This skin was given to me as the skin of a "chicken snake."

A very large specimen when caught hissed loudly and opened its month, but did not bite. It rattled its tail at the same time.

HETERODON PLATYRHINOS, Latreille
The spreading adder is very common in Sonth Florida. I have seen it most frequently in dry places in the pine woods, "highland hammocks," orange groves, etc. In the last named it is often plowed up.

Although the spreading adder is not a poisonous snake, it is very much dreaded as such. If it should bite it would probably inflict a considerable wound with the large posterior teeth. I have heard of tro or three cases in which spreading adders are said to have bitten. These may, nevertheless, be regarded as rare exceptious. In one of these cases it was said that the hand of the bitten man swelled up considerably. He believed that the snake was poisonous, and so did the doctor, therefore the patient was ordered to drink so much whisky that he was nearly killed, and the doctor applied digitalis and other strong poisons. The man was a strong fellow and survived the treatment.

[^81]The bites of harmless suakes may become dangerous from several reasons: (1) Common blood poisoning that cau happen with any wound; (2) poisoning with the poison from the skin of toads, in cases of bite by species feeding on these animals, as I often have observed that it is possible for some of the secretions from the poison glands in the skin of the toad to remain in the mouth of the snake amoug the teeth, especially the larger posterior maxillary teeth which inflict the wound; (3) fear that the snake is poisonous and consequent self-suggestion.

A large specimen of the black spreading adder Heterodon platyrhinos niger (Daudin) that I received in Orlando, Orange County, from Mr. L. Robinson, did not act quite like the gray specimens of the same species. It flattened the head and the neck, but not the body, and made itself very thick. The gray ones used to keep the head down to the ground during their contortions, but this one raised the head, moved it forward and backward, hissing very loudly but without biting. The hissing sound was produced at the time of expiration; at the time of inspiration there was a weak snoring sound.

THAMNOPHIS SIRTALIS (Linnaus).
This beautiful snake called "Grass snake," or sometimes "Garter suake," is quite common in wet places in south Florida, where I have obtained several specimens from different places in Hillsboro, Orange, and Osceola counties. They vary in color, some being more brown, others more green or bluish green; in some the spots are more distinct, in others the stripes, but in all my grown specimens stripes as well as spots are conspicuons, and all belong to the typical form. A young specimen caught at Lake Eola, Orange County, has no stripes, but two rows of square spots on each side, and is thus similar to Thamnophis sirtalis ordinata (Liunreus).*

The grass snake is ill-tempered and even a small one will bite ferociously.

A big female of this species, kept in captivity by a taxidermist, one night gave birth to about 40 young ones that were scattered all over the floor when the owner entered the store in the morning.

THAMNOPHIS SACKENII, Kennicott.

This species is said to be characteristic for Florida. I obtained 3 specimens at Oviedo, Orlando, and Apopka, in Orange C'ounty. All were canght in the grass in wet places. A specimen in the Upsala Museum, collected by Capt. C. Eckman, at Savaunah, Ga., has S labials on one side, but 7 on the other, and another specimen from the same place has ouly 7 on each side. They are olive green but approach Th. sauritu so much that I hardly think Th. suckenii can be maintaned except as a southern variety.

[^82]
LIODYTES ALLENII (Garman).

In a cypress swamp a few miles south of Kissimmee, Osceola County, I killed a big moccasin (Agkistrodon piscivorus), and found in its osophagus a smaller suake which it had probably just swallowed. It was well preserved, except in one place on the middle of the body, where it had probably been bitten by its devourer. This is the only specimen of Liodytes allenii that I have happened to find, and I suppose it is scarce. It corresponds with the desciiption given by Cope, viz:* Color dark brown with two brownish-yellow stripes on each side; below straw color; to which I can add a median row of blackish-brown spots, one on each gastrostege and a median zigzag stripe of the same color underneath the tail between the scutella. The single internasal and the five rows of keeled scales on the tail are very characteristic. The fact that the scales on the tail are keeled, as well as the circumstances under which I found it, indicate that it is a water animal.

Oculars 2-3 in my specimen, but in another in the Upsala Museum, \dagger caught by forest inspector Westerlund, probably at Oakland, Orange County, the oculars are 1-3 (now No. 21388 U. S. N. M.).

NATRIX COMPRESSICAUDA (Kennicott).

Wading through a mangrove swamp at Key West I met, one day, with a blackish looking suake that came rapidly swimming through the water. I caught it and have classified it as belonging to this species, but the color is different from the "subspecies" Cope gives. \ddagger

I will describe it, and if a name should be needed "obscur"" is a good and suitable one. Scales in twenty-one rows. The color of the back is dark blackish gray, "soot color." On this ground the three series of spots can scarcely be distinguished, except on the anterior part of the body, where they form transverse bands; the head is too dark to show any postocular bands; upper and lower labials as well as mentals, with yellowish spots; the ground color of the belly is gray, a little reddish. On each side on the dorsal margin of the gastrosteges there is a small light spot, a median black band extends from the first gastrosteges to the tip of the tail. On the anterior part there is a yellowish spot on each gastrostege in this black band and the thirty anterior spots cover this band nearly completely, but further back they become smaller and less distinct, disappearing on the tail.

Two of Cope's subspecies have twenty-one rows of scales, viz, NT. c. compsolema and N. c. compressicauda. The former is very different from this form, having "numerous dark crossbands, narrowed on the side; three gular yellow bands; a postocular band." The latter has "three rows of dorsal brown spots forming longitudinal bands on neek; one

[^83]row of gular spots; no postocular bauds." This one resembles somewhat the specimen from Key West, which is an intermediate form, but is darker than either.

NATRIX FASCIATA (Linnæus).

This snake is very variable iu several respects. The typical specimens of Natrix fasciata have the back with dark, nearly black, crossbands, or broad transverse spots on a lighter ground, usually brown or reddish brown; the black transverse spots are mostly bordered (at least on the sides) with narrow, yellowish stripes; the belly in different ways spotted or crossbanded with black. This is the commonest form in south Florida. Next to this type comes another, in which the ground color is more grayish brown or dull-brown, with narrow transverse (yellowish) lighter bands, which are surrounded or margined with broader blackish borders. Sometimes these bands are less distinct. Of this form I obtained several specimens from Orange and Osceola counties. A single specimen from Lake John, Orange County, Lad the back uniform brown (about chestnut color), but when the old skin was removed it was seen that only the back was marbled with black, which did not extend toward the sides, there being on the flanks a single row of large red spots. Belly spotted with red, denser on the posterior part and the underside of the tail. Only a small black spot on each side indicates the postocular band.

Another variety, still more distinct, is the one I found in February, 1893, at St. John's River, not far from Lake Jessup; if more specimens of the same kind should be found it may be regarded as a subspecies, for which I would propose the name Natrix fasciata atra. It may be described as follows: Head rather large and broad; body stout, with very strongly keeled scales in 23 longitudinal rows. Preocular, one; postoculars, two. Supra-labials, on one side, eight; on the other, nine. Above, uniform black; only a few scales on the posterior portion, with yellow centers; underneath, yellowish white, with the anterior part of each gastrostege black, thus forming narrow crossbands. The habitus is so different from Natrix fasciata that it struck me at once, and when first seen it reminded me strougly of a moceasin. It did not attempt to escape, but coiled up ready to strike. I was not quite sure about its non-poisonous nature until I had caught it and opened the mouth. It was $78 \mathrm{~cm} . \operatorname{long}$, of which the tail measured 22 cm .

The various forms of Natrix fasciuta are often called "water moccasins" aud regarded as poisonous and dangerous snakes. Although they are harmless they are "uupleasant and ill-tempered," as Jordan says.* In some lowland swamps in south Florida they are extremely abundant. At Arcadia, De Soto County, for instance, I once saw half a dozen in less than a minute. They used to stay at the borders of

[^84]ditches and ponds or lie, resting, on tloating boards, stmmps, ete. At the approath of a person they dive and hide in the mud, but if they can not escape they bite wildly.

NATRIX CYCLOPION (Dumérild Bibron).*

I obtaned only one specimen of this rare snake, and that one is small, though it is easily recognized. Scales in 29 rows; two small subocular plates, or scales, on each side. Temporals, $1-\because$, and a third one behind these, not tonching the anterior one. The temporals indicate the difference from N. tuxispilota, and the number of scale rows the difference from the N. fasciuta group. The color is light grayish brown, with numerous narow, dark erossbands, which are partly broken up into six series of spots. My specimen is from Orange County.

NATRIX TAXISPILOTA (Holbrook).

Of this big water smake I saw quite a number on the shores of Lake Apopka, Orange Comnty. They may be seen resting on objects floating in the water, or on grass and branches overhanging the water, always diving when approached. I could not catch any alive, but had to sboot them in order to obtain specimens.

One large female had on the right side the normal number of oculars, viz, $1-2$, but on the left side 1-3. Another had on both sides "-3 oculars, and the same is the case with a smaller male specimen. When the oculars are $1-2$ the eye rests on one of the labials, but when there are 3 postoculars the lowest one separates the eye from the labials. The number of oculars is couseruently quite variable and seems to be of but little use as a speritic character. The reduced size of the parietals, howerer, as well as the number of temporals, shows that my specimens belong to N. taxispilota. The male specimen has 29 rows of scales. The ground-color is mostly grayish brown, with alternating darker dorsal and lateral square spots which do not touch each other. Other specimens are darker, nearly black, and then the spots become less conspicuous.

STORERIA 1)EKAYI (Holbrook).
At Kissimmee, Osceola County, near the shore of the Laike Tohopekaliga, I fomud a specimen of this snake. It was in February, and, although the day was warm and sumny, the snake was hidden under a piece of board. The upper part of the forehead, extending backwards over the greater part of the parietals, and the cheeks to the posterior margin of the eye, are of a dark brown color. The posterior part of the head is of a yellowish gray clay color, with the exception of two large, nearly triangular, black patches on the sides of the oceiput. The lightcolored stripe formed by the interspare between those two patches extends forwards to the parietals, nicking into the brown color. The
back of the body is of a grayish clay color, with two rows of small illdefined black spots, one on each side of the median line. These spots gradually become still less distinct backwards and disappear on the tail, which is more brown. On the sides some of the scales are darkelged, particularly on the anterior part of the body. The belly is pale gray, with a dirty yellowish tinge. The sides of the gastrosteges are finely mottled with very small black dots.* The total leugth was 245 mm ., the head and body 190 mm ., and the tail 55 mm .

I wish to call attention to the fact that the number of scale rows of this specimen is 15 , the same as in the one recently described by Ir. O. P. Hay \dagger as Storeriu victu from Oklawaha River, Florida, some distance to the north of Kissimmee. In other respects my specimen shows no special agreement with Hay's description or disagreement with that of typical s. dekayi. With only these two specimens thus far obtained in Florida the status of S. victe must remain doubtful, as it will require more material to decide whether the difference in the scale formula is constant or not.

STORERIA OCCIPITOMACULATA, (Storer).

Mr. S. Robinson, of Orlando, gave me, last April, a small red snake which he had caught at Oklawahar River, 10 miles southeast from Ocala, Marion County. The color of the living suake was as follows: Back, uniform dark red or "cherry-red;" belly, salmon or rather miniumcolored; snout and anterior portion of head, brownish yellow; on the upper part of the neck a yellow half collar; tip of snout and chin, whitish; head underneath reddish, mottled with black; a narrow black mottled stripe on each side extends along the upper part of the gastrosteges, but becomes more and more faint posteriorly until it is no longer couspicuous 20 mm . behind the head; a small light spot on the fifth upper labial; mouth, brown; total length, 190 mm . In alcohol a faint light stripe extends from the yellow collar some distance backwards, but soon disappears. Although the color seems to be more brilliant than usual, I have no doubt it is a Storeria occipitomaculatu, as the scutellation is the normal one of this species.

TAN'ILLA CORONATA, Baird and Girard.
In a rotten stump at Oakland I obtained a little Tantille, and another one in the neighborhood of Apopka, Orange County. The last-mentioned is a typical Tantilla coronata in most respects, only the color is a little lighter than Baird \& Girard deseribe it, \ddagger as it is light yellowish gray, with a faint brown tinge along the back; below, whitish; liead, above dark brown with narrow yellowish collar. In this specimen the

[^85]plates of the head are normal, except that the first pair of infralabials do not come in contact on the middle line, althongh very close together. The specimen from Oakland gave me at first much more trouble in classifying, as the prefrontals are completely fused with the preorbitals into one large plate on each side, extending down in front of the eye to the labials and separating the eye from the post-nasal. The color is the same as in the above-mentioned specimen. I take this to be only au individual variation.

ELAPS FULVIUS (Linnæus).

This is the only species of Elaps I have found in south Florida, where it is rather common. It is known under several names, as "coral snake," "American cobra," "garter suake," and "candy-stick." It is perhaps the most dangerous snake in Florida, becanse it is not so much dreaded as the big rattlesnake or moceasin, though being quite as poisonous. As the last-mentioned names show, it is regarded as a "pretty little suake." Few people know or believe that it is poisonous, it looks so harmless, and as a consequence they catch it and handle it rather roughly; the snake gets angry, bites, and a human life is endangered. I know personally of such a case. A Swede at Oakland, Orange County, found au Elups, and because of its very beautiful color he caught it and tried to put it into a bottle of alcohol. The snake bit him, but the mound was not large, and as it did not swell he did not care much about it at first. After a while he was taken very sick, went to bed, asked for a physician, and drank whisky; but it was then too late. He died next morning, about 12 hours after the snake had bitten him. During the last hours he was unconscious, but before that he suffered most excruciating pains. I have heard of several other cases of boys dying from the effects of an Elaps bite.

In other cases people have been bitten by an Elaps fulvius without suffering from it in any way, but I suppose that in such cases the Elaps had not been able to inject any poison into the wound, as it has a rather small mouth. However that may be, I cannot agree with Cope* that the bite "of the smaller ones (meaning smaller species of Elaps) is innocuous to man and the larger animals." It is to be observed that the Elaps bites differently from the Crotalids and Viperids. The latter snake throws its head forward, in striking, and draws it back again immerliately. The Elaps fulvius, I have seen and heard about, have acted in an entirely different manner. The poor Swede above mentioned had to pull the smuke from the wound, and other specimens that I induced to bite into sticks kept the stick in the mouth for a good while. This habit probably signifies an intention to press as much poison as possible into the wound, which makes the suake the more dangerons. Elaps fulvius is, however, a good-natured snake, and it does

[^86]not bite unless it is very much provoked. If not handled too roughly an Elaps may be allowed to crawl on one's hands from one to the other. I have allowed it myself once, but I hardly think I would do it over again, and would not advise anybody else to try it.

I have found Elaps fulcius under logs and digging in the ground as well as crawling about on the surface, but I think it prefers dry land.

The largest specimen I have seen was from Oakland, Orange County, and measured exactly 1 meter from the tip of the nose to the auns, and the tail was 90 mm . This big specimen had 14 black rings on the body and 3 on the tail. Other specimens have but 12 black rings ou the body and 3 on the tail, but one of these has 4 on the tail. The yellow rings cover from one to two rows of scales.

SISTRURUS MILIARIUS (Linnsus).

The ground rattlesnake is not rare in south Florida. I have obtained specimens from different places in Orange and Hillsboro counties. The specimens from the latter place, near the Gulf coast, are darker and have no reddish brown between the black dorsal spots. The latteral spots, too, are larger aud more distunctly black. Even the rattle is darker and larger, and the tip of the tail is not yellowish as in the others. The ground rattlesuake likes dry ground.

CROTALUS ADAMANTEUS, Beauvois.

In the interior of the country the diamond-backed rattlesnake is scarce, but not so along the coast and on some of the Florida keys. In the neighborhood of Ozona, in Hillshoro County, I heard of the killing of nine rattlesnakes within two weeks in October, 1892. It evidently prefers the neighborhood of the water, and is a good swimmer, not afiaid to cross over firom "key" to "key." If not too often disturbed this species is slow and does not rattle unless offended. I sam one in the latter part of October in the pine woods near Toronto, Orange County, coiled up under a palmetto bush. A dog following us went up and sniffed at him, with his nose hardly a foot from the snake. We called the dog back and a man ran forward with a whip and struck the snake several times. After the second blow the snake began to rattle and made himself ready to strike. This shows plainly the slow nature of the snake. In other cases they are more easily offended. Those kept in boxes and cages often begin to rattle as soon as they see anybody approaching. They are easy to keep alive and take food without trouble. I saw one that was kept in a small box and was fed with toads; it did so well there that it changed its skin twice in a summer. They are often kept in the shops of taxidermists and in "curiosity stores," where Northern tourists buy them, paying good prices. The skiu is often used for ornaments or for the manufacture of pocketbooks and similar objects.

People are very seldom bitten by rattlesnakes in Florida. The rattling, the strong odor, and the slowness of the snake are protective.

This snake is often canght by placing an empty barrel over the coils, after which a board is shoved under the snake and the whole thing turned over.

AGKISTRODON PISCIVORUS (Lacépède).
"Moccasin," "Whatermoccasin," "Stump-tail moceasin," and "Cottonmouth moceasin" are the names by which this much-dreaded suake is known in south Florida. It is rather common where it has not been exterminated by man, and has been still more abundant around the lakes and in the swamps. It is a very ugly-looking animal, and very slow. It prefers to lie on the river banks, or on \log s and stumps near the water. I once saw one on the St. John's River, at Lake Jessup, which had filled its lumgs with air and basked in the sm, floating on the surface with the entire body out of the water. The yomg ones have brighter colors and are then sometimes mistaken for A. contortrix, the "Copperhead," but this snake is not found in Florida. I once caught a young moccasin which was being attacked by a butcher bird.

A very interesting fact which I have observed is that a moceasin, when it is angry and ready to bite, rattles with the tail like a rattlesmake. That other suakes have acquired this habit of scaring their enemes by making them believe that they are dangerous rattlesnakes is not so difticult to understand. But why does the moceasin rattle? That the rattling with the tail even by other snakes has something to do with the rattlesnake seems plain; for, why do not the non-American snakes rattle with the tail when excited? If the rattling only was something analogous to the playing with the tongue, why do not all snakes do it?

General remarks.

If we regard the Florida snakes observed by me, from a biographical point of view, under the heads of burrowing, climbing, crawling, and swimming species, the result may be tabulated as follows:

Burrowing species.
Cemophora coccinea.
Farancia abacura.
Osceola elapsoidea.
Stilosoma extenuatum.
Heterodon platyrhinos.
Tantilla coronata.
Elaps fulvius.
Total, 7 species.

Climbing species.

Opheodrys astivus.
(Bascanion constrictor).
(Callopeltis quadrivittatus).
Total, $1(+2)$ species.

Crawling species.
Lampropeltis getulus.
Diadophis punctatus.
Bascanion constrictor.
Bascanion flagellum.
Callopeltis guttatus.
Callopeltis quadrivittatus
Spilotes corais.
Pituophis melanoleucus.
Thamnophis sirtalis.
Thamnophis sackenii.
Storeria dekayi.
Storeria occipitomaculata.
Sistrurus miliarius.
Crotalus adamanteus.
Total, 14 species.

Swimıning species.
Contia pygca. (Farancia abacura). Liodytes allenii. Natrix compressicauda.

Swimming species-Continued.
Natrix fasciata.
Natrix cyclopion.
Natrix taxispilota.
Agkistrodon piscivorus.
Total, $7(+1)$ species.

It will be seen that there are as many burowing species as there are water suakes, the light soil of Florida being very well adapted for subterramean life. Between the different categories there are, of course, no sharp limits.

The following species of suakes seem to be peculiar to Florida:

Contic pygea, Cope. Stilosoma extenuatum, Brown. Callopeltis rosaceus (Cope).
Natrix usta, Cope.

Natrix compressicauda (Kennicott). Thamnophis sackenii (Kennicott). Liodytes allenii (Garman).

Of the genera of snakes, only stilosome and Liodytes appear to be peculiar.

BATRACHIA.

CAUDATA.

 MANCULUS QUADRIDIGITATUS (Holbrook).I have found this animal under old logs at the border of a small lake at Clarcona and at Lake John, and caught it in my dipnet in Fern Creek, near Orlando, Orange County. On land it is rather swiftrumning, and lives in localities similar to those which are frequented by Leiolopisma laterale. These two animals are also similar in color. Several of my specimens had well-developed cirri. One specimen in the U. S. National Museum (No. 2132S).

DESMOGNATHUS AURICULATA (Holbrook).
I have only found one specimen of this species under a log in a wet hammock near Lake Jessup, Orange County. It is found in Georgia, but I do not know that it has been reported from Florida before.

DIEMYCTYLUS VIRIDESCENS, Rafinesque.

In a small but deep pond, with clear water and steep slopes all around, I canght a number of larvie which, according to Dr. Stejneger's opinion, belong to this species. I have not seen it at any other place in Florida except in this pond, situated between Oakland and Lake John, in Orange County, but here many specimens were seen.

AMPHIUMA MEANS, Garden.

It is known under the name of "mud eel" or "mud puppy," and is not rare in Orange County, where I have canght specimens at Oviedo,

Proc. N. M. 94- 22

Apopka, and Orlando. People digging in the "muck" find them frequently in such soil, and I have taken them with my net in ponds and small lakes.

> SIREN LACERTINA, Linn

A man living at Oakland, Orange County, told me that he once had taken two specimens of the "groy mud puppy" on hook and line in Lake Apopka. I did not see any myself.

ECAUDATA.

BUFO LENTIGINOSUS, Shaw.
This is the most common toad in south Florida. It is seen in great numbers abont the houses and other places in the evening. In the daytime it hides under old $\log \mathrm{s}$, boards, etc., at the shores of lakes and other moist places.

BUFO QUERCICUS, Holbrook.

This is a very active little auimal considering the fact that it a toad. It is seen in all kinds of places and at all times of the day, even in the brightest sumshine, but especially after rain. I have seen it very abundant on the dry sandhills about Oakland, Orauge County, as well as in the "flatwood" about Kissimmee, Osceola County, and in Hillsboro County. The specimens from the latter place are a little different, as the frontal ridges are less prominent, straight behind, and the color of the back is redder.

ENGYSTOMA CAROLINENSE, Holbrook.

I have found this peculiar little animal under old logs, dry palmleaves and such things, near lakes and in moist places in Orange County, for instance, in the pineland at Clarcona, and in the hammocks bordering Lake Jessup. It is not very common.

ACRIS GRYLLUS (Le Conte).
In south Florida, along the borders of ponds and swamps, this frog is abundant though not commonly seen. All my specimens show the triangular black spot on the head. The median dorsal stripe is always reddish brown, and I have never seen it green. The posterior femoral stripes are very conspicuous. The light stripe from the orbit to the axilla is constant, but the other blotches are not always light bordered.

HYLA SQUIRELLA, Latreille.
I take this to be the most common Hyla in south Florida. My specimens are from Hillsboro and Orange counties.

HYLA FEMORALIS, Latreille.
I obtained several specimens of this species in Orange County. I think it is the Hyla of the pine woods.

RANA CATESBEIANA, Shaw.

Very abundant in south Florida in ditehes, ponds, swamps, and other wet places. It seems to like sluggish water and muddy bottom. My largest specimen was canght at Lake Eola, Orange County. It was when alive only 10 mm . smaller than the largest one in the U. S. National Museum, recorded by Cope.*

RANA PIPIENS, Schreber.

This is the most common frog in south Florida and is found everywhere in wet places. Some specimens come nearer to R. p. sphenocephala, others to typical R. pipiens, and it is difficult to draw any definite line. It is called "Spring frog." It has a great faculty of changing color between grass-green and brown. When it has turned green it is very beautiful.

RANA CLAMATA, Daudin.

Common near some ponds and small lakes in Orange County, but I could not catch any as they used to jump into the water with a cry long before I reached them.

RANA ÆSOPUS, Cope.

Of this species I have collected one specimen at Ozona, Hillsboro County. It was caught with hook and line in a small pond, and was called "snake frog" by the population there. I have seen it but rarely, and must conclude that it is either scarce or else that its habits are such as to prevent it from being observed. It agrees with Cope's description in every esseutial, but the throat is spotted with numerous elliptical or rounded spots of dark brown color. Two smaller specimens of the same kind were caught in Orange County, at Lake Jessup and Clarcona.

ON THE RODENTS OF THE GENUS SMINTHUS IN KASHMIR.

By Frederick W. True, Curator of the Department of Mammals.

On an earlier page of the present volume of the Proceedings,* I referred two specimens of Sminthus, collected in central Kashmir by Dr. Abbott, to the species recently described by Dr. Biichner, \dagger under the name of S. concolor. I have since had access to Mr. Thomas' description of a new species (S. leuthemi) from Wardwan, \ddagger and find it necessary to revise my previous statements. I am now of the opinion that Dr. Abbott's specimens should be regarded as distinct from both S. concolor and S. leathemi. It may be known from the foilowing description :

SMINTHUS FLAVUS, new species.
Ears prominent. Tail one and one-half times as long as the head and body. Claws moderate. The thumb with an elongated convex nail.

Upper surfaces dull ochraceous gray, which color is produced by the mingling of the gray of the basal portion of the under fur, the ochercolor of its tips and the black of the longer and coarser hair. On the sides the coarse black hairs become less and less abundant, leaving the color nearly pure ochraceous yellow. Upper lip and all under surfaces cream-white, the hair being of this color at the extremitjes and gray at the base. Sides and top of muzzle, and also the ears, chocolatebrown. Backs of the fore feet dusky brown; toes white. Hind feet eutirely white. Tail bicolored, brown above and white below, except in the terminal 12 or 15 mm ., where it is brown both above and below. Claws white.

Nasal bones of the skull long. Interparietal a little more than twice as wide as long. Incisive foramina ending posteriorly opposite the middle of the premolar. Posterior extremity of the palate on a line with the hinder margin of the last molar, aud furnished with a median spinous projection.

[^87]Upper premolar a little broader than long. Last molar larger than the premolar, the crown forming an equilateral triangle with convex sides. First upper molar with two onter and two inner cusps, and a small anterior one. Second upper molar with four cusps. Last lower molar elongate.

Dr. Abbott's measurements of one of the skins (No. $\frac{20140}{35} \frac{1}{5}, 0$, type) are as follows: Head and body, $2 \frac{3}{4}$ inches (69.8 mm .); tail, $4 \frac{1}{4}$ inches $(107.9 \mathrm{~mm}$.$) . The ear, measured from the base of the outer margin, is$ 12.5 mm . long.

Dimensions of skull of type specimen.

This species differs fiom \mathbb{S}. subtilis in the absence of the black dorsal line and the greater length of the tail. I have no skulls of the latter species at command, but from Brandt's figure * and the remarks made by Mr. Thomas in connection with his description of S. leuthemi, it appears that S. subtilis has the palate much prolonged posteriorly, which is not the case in the species herein described.

From S. concolor, Biichner, \dagger the present species differs in the buffy color of the sides of the body and head, the white under surfaces, the brownish fore feet, the white claws, and the coloration of the tail. The whiskers are longer than in S. concolor. The upper premolar and last molar are in line with the other molars; and the last molar is also elongated. The nasals are longer. Whether the characters of the palate are the same in S. concolor and the species herein described can not be determined at present, as Dr. Biichmer makes no mention of this part of the skull.

From the species described by Mr. Thomas, under the name of S. leathemi, the present species appears to differ in the yellowish, rather than rufous, coloration of the body, the brown color of the backs of the fore fect, and the uniform brown color of the extremity of the tail on both upper and under surfaces.

Mr. Thomas gives the length of the ear in S. leathemi as 8.3 mm ., but as he does not specify from what points the measurement is taken it is impossible to say whether the ear in S. flaves is shorter or longer,

[^88]though it appears to be the latter. The length from the base of the outer margin is about 12.5 mm ., which is practically the same length as iu S. concolor.

The tail is approximately of the same length in S. fletus and S. concolor, or about one-half longer than the head and body. This proportion is much exceeded in S. leathemi, which has the tail one and fourfifths times the length of the head and body.

Dr. Abbott's two specimens were obtained in central Kashmir, at an elevation of 11,000 feet, in July, 1891, about a year earlier than the types of S. leathemi were collected. To Dr. Abbott, therefore, is due the first discovery of representatives of this interesting genus in British India.

THE RELATIONSHIP OF THE LACERTILLAN GENUS ANNI. ELLA, GRAY.

By G. Baur, Ph. D.
Assistant Professor of Paleontology, University of Chicago.

Tife genc's Amniella was created by Gray* in 18.52. It was based on a specimen collected by J. O. Goodridge, Surgeon R. N., in California, and placed among the Scincide, section Siaphosina, near Soridiu ıneata, Gray (Lygosoma propeditum, Boulenger). The species was called Anmella pulehra, Gray.
lu 1864 Prof. E. D. Copet established a special family for this genus under the name of Amniellide, which, together with the Anelytropidex and Acontidie, was placed in the tribe Typhlophthalmi.
The characters given were the following: t

TYPHLOPHTHALMI.

Temporal bone [squamosal] superior plate slongate.
Arches incomplete or wanting.
Articular and angular coufluent. Suspensoria one or two.
Dentary, inferior process elongate.
Premaxillary single or double.
Clavicles very slender, transverse rudimentary or wanting.
Mesosternum and other sternal pieces wanting.
Tongue squamous or papillose, simple.-Anelytropid.e, Acontidd.e, Aniellide.
The families of the tribe Typhlophthalmi were thus characterized:
α Two suspensoria; nostril in the rostral shield. Tongue squamous.
Eye concealed by epidermis; occipital segment loosely attached. No frontal underarch

Anelythopide
Eye distinct; occipital closely articulated; two premasillaries........... Acontin.e β One suspensorium; nostril in a nasolabial plate; tongue papillose.
Eye distinct; occipital closely articulatcil ; one premaxillary ; an inferior frontal arch.
*Gray, J. E.-Descriptions of several new genera of reptiles, principally from the collection of H. M. S. Herald. Ann. Mag. Nat. Hist., 2 ser., x, 1852, p. 440.
tCope, E. D.-On the characters of the higher groups of Reptilia Squamata and especially of the Diploglossa. Proc. Acad. Nat. Sci. Philadelphia, 1864, pp. 228-230.
$\ddagger I$ have to thank Dr. Leonhard Stejneger for a copy of these notes, the Proceedings of the Philadelphia Academy being not at hand.

The Anelytropide contain Typhlosaurus, Feylinio, (and Anelytrops); the Acontide the genus Acontias; the Anniellidae the geuus Amiella. Cope continues:

The remarkable genus Anniella lacks the squamosal [quadratojugal] and columella, and has a single premaxillary. The parietal is continnous with tie superior plate of the temporal [squamosal], and is much decurved toward the sphenoid; the froutal encloses the olfactory lobes below; these characters are the most amphisbænian in the order. There are small pre- and postfrontal bones, and a slender ligamentons postorbital arch. I have as yet found no sternal pieces, and the splenio-mental groove is closed, as in Acontias.

The same view is held by Cope* in 1871 and 1875.
Boulengert in 188t adopted the families Anniellide and Anelytropide, but united the Acontiidre with the Scincidx.

The Anniellide are placed between the Anguide and Helodermatidx, and the following characters are given:

No interorbital septum, no columella cranii, no arches.
The year following the family was characterized thus: \ddagger
Teeth large, few, fang-like, with short swollen base. Palate toothless. Skull approaching the Ophidian type, i. e., lacking the prasphenoidal vacuity and consequently the interorbital septum, and the bones which coustitute the brain-case firmly united; no columella cranii, no squamosal; postorbital arch ligamentons; pterygoids in contact with sphenoid; an infraorbital fossa; premaxillary single; nasal and frontal divided; parietal single; pree- and postorbital in contact, separating the frontal from the border of the orbit; seales soft.
Of Anniella, he says:
It appears to be a strongly degraded form of the Anguide, similarly as the Anelytropidæ and Dibamidæ are to the Scincidæ.

Gill, reviewing Boulenger's classification of the Lacertilia, places the Anniellidre in a superfamily Annielloidea, between the Helodermatidæ and Auguidæ.

Shortly after, Cope \| created for the Anniellidæ a special suborder, Anguisauri, which he placed after the Typhlophthalmi, in a speciai group, including the Opheosauri (Amphisbrenians). The characters of this group) were given as "Prootic bone produced beyoud arched body; one suspeusorium (=opisthotic [squamosal]) wanting; pelvic arch rudimentary or wanting," and the characters of the Anguisauri: "Frontal bone underarching olfactory lobes; supraoccipital gomphosis interual,

[^89]no orbitosphenoid." Nothing is added to the family characters of the Anniellidæ.

The same view is held in 1889* and in 1891.t Gill's name Anielloidea is substituted for Anguisauri.

In 1892 Cope \ddagger gave a description of the osteology of Anniella, figuring the skull, hyoid and pelvic arch, and reaches the following conclusion:

The further knowledge of its [Anniella's] structure brings out more clearly its trne position. This is, I think, in the Amulati or Amphishmona. The chatacters which indicate this reference are: (1) The continuity of the parietal with the petrosal and supraoccipital elements. (2) The absince of epipterygoid. (3) The absence of ceratohyal elements. (4) The hypophyses of the cervical vertebra, which are continuous with the centra. (5) The partially open chevron bones, which are also continuons with the centra. (6) The sublougitudinal ileopectineal bone and absence of other pelvic elements.

He now places the Amniellide as a very distinct family among the Amphisbrenia.

We have therefore the following views in regard to the systematic position of Anniella:
1852. Gray: Anniella belongs to the Scincide and is closely related to soridia lineata, Gray.
1864, 1871, 1875. Cope: Amiella is the representative of a special family Anniellidæ, which, together with the Anelytropidz and Acontidre, forms a special tribe of the Lacertilia.
1884, 1885. Boulenger: The Annicllida form a family between the Anguida and Helodermatide ; Anniella seems to be a strongly degraded form of the Anguide.
1886. Gill: The Anniellide have to be placed in a distinct superfamily Annielloidea, between the Anguide and the Helodermatide.
1887, 1889. Cope: The Anniellider belong to a special suborder Anguisauri; the Anguisauri and Opheosauri (Amphisbrenia) constitute a natural group of the Lacertilia.
1891. Cope: The name Annielloiden, Gill is substituted for Anguisauri.
1892. Cope: The Anmiellide form a very distinct family of the Amphisbrenict.

Having lately been engaged in a detailed study of the morphology of the skull of the Amphisbrenians, of which I shall report in another place, it became necessary to examine Amiella, which, according to Cope's latest researches, is considered a member of the Amphisbrenians. My material consists of 2 skulls prepared by myself from alcoholic specimens, which were given me by Prof. J. J. Rivers, of Oakland, Cal., and of a completely macerated skeleton of Anniella pulchra, (No. 3185, U.S.N.M.), from San Diego, Cal., collected by Dr.J. L. Le Conte. I

[^90]am indebted to Prof. Rivers and Dr. L. Stejneger for the great kinduess they have shown me, by furnishing these valuable specimens.

From the study of this material, I reach the following conclusion: Anniella has to be placed in a separate family, very close to the Anguidx, and has its closest relative in Auguis itself. Boulenger's opinion is nearest to the truth. Reasons: (1) There is a distinct epipterygoid (columella). (2) There is a well-developed squamosal [supratemporal, Parker and Bettany, Cope]; but the quadrato-jugal [paroccipital, Cope] is absent. (3) The jugal is present, but rudimentary at its upper end, being connected with the postorbital by ligament only. (4) The lachrymal is present. (5) There is a well-developed supraorbital. (6) The caudal vertebre are segmented, the segmentation being placed in the anterior portion of the centrum. (7) Osteodermal plates are present.

I shall now give a description of the skull and the other most important elements of the skeleton, from which it will be evident that my opinion about the relationship of Anniella is the only one which agrees with the facts. Figures will be published in a paper, now in preparation, "On the morphology of the skull of the Amphisbania."

OSTEOLOGICAL CHARACTERS OF ANNIELLA.

The sliull.-The premaxillary is single, sending a median process between the nasals. There are three processes on the lower side; one median, two lateral ones. The median process extends between the anterior ends of the vomer; the lateral processes are connected with the maxillaries, by which they are embraced on the outer side. The nasals are distinct; they are in connection with the premaxillary, frontals, maxillaries; they are separated above from the prefrontals by a very slender anterior process of the frontals. There are two froutals, in connection with the nasals, prefrontals, postfrontals, and parietals; the descending processes are strong and meet below, underarching the olfactory lobes. The parietal is single and very large; it is in connection with the frontals, postfrontals, petrosals, squamosals, paroceipitals, and supraoccipital. There is no pineal foramen; but the dark pineal eye is quite distinct in the anterior portion of the parietal, aud the pineal fossa is present on the lower side of the parietal. The parietals are bent down strongly. There are two small processes behind close to the median line. The outer and posterior ends of the parietal show short processes, which are placed on the petrosals, and on which the anterior end of the squamosal rests. The supraoccipital is closely united by suture with theparictal. There is amedian process and two lateral processes, on each side of the median, all united with the parietal. Two very small vacuities between parietal and supraoccipital, close to the median line, are present. The supraccipital is connected, besides, with the exoccipitals, paroccipitals, and petrosals. The foramen magnum is bordered by the basioccipital, exoccipitals, and supraoccipital. The condyle is convex, quite simple, and formed by the basioccipitals and exoc-
cipitals. In one of the specimens before me, the sutures between these elements are quite distinct, also the suture between the basioceipital and basisphenoid. The paroccipital processes of the exoccipital are broad, not much developed, connected on the outside with the squamosal and parietal, and touching the posterior slender process of the quadrate. The basisphenoid sends processes ou each side barkwards, over the basioccipital, joining the epiphyseal process between basioccipital and basisphenoid. The basipterygoid processes of the basisphenoid are welldeveloped. The petrosal shows a long anterior process, which nearly reaches the epipterygoid. The maxillary is in comection with the premaxillary, nasal, frontal, prefroutal, supraorbital, lachry. mal, jugal, ectopterygoid, vomer, and palatine. There are 5 maxillary foramina, 2 above and 3 below; the number of teeth is $\overline{7}$, and they show a groove on the anterior and inner side at the top. The prefrontal* is slender, placed along nearly the whole lateral border of the frontal, separated from the parietal only by a slender posterior onter process of the frontal; the descending process of the prefiontal is well developed. The prefrontal is in connection with frontal, supraorbital, palatine, and postfrontal. The postfrontai is small, in comection with frontal and parietal, and the very small postorbital, which is attached to it at its posterior and lower end. The frontal is therefore completely excluded from the orbit; a condition which is found also in Chameleo, Heloderma, Pygopus, and in Trachysaurus, Tyliqua of the Scincidie. \dagger

The supraorbital is a large bone, placed above the eye in the anterior region of the orbit; it is in connection with the prefrontal and maxillary as in Anguis. The lachrymal is very small, in comnection with maxillary, jugal on the outside, and the prefrontal on the inside. The jugal is a slender element; it becomes ligamentous in its upper posterior portion, where it joins the postorbital. It is in comection with maxillary, lachrymal, and ectopterygoid. \ddagger The conditions of these elements are very much like those seen in Anguis.

The squamosal [opisthotic, paroccipital, Cope; supratemporal, Parker and Betany; mastoidien, Cuvier] is a small splint-like bone, standing on the quadrate and connected with the parietal, paroccipital, and touching the petrosal. There is no trace of a quadratojugal (spuamosal, Parker; supratemporal, Cope).§

[^91]The stapes has a very large dise and a short columella; it is placed between the paroccipital, petrosal, and basioccipital.

The vomers are united in the median line, at about three-fourths of their length; posteriorly they diverge. In the middle they show a deep groove, which is bordered on each side by a keel placed on eath vomer. Each vomer is pierced by a foramen. In front they are united with the premaxillary, outside with the maxillaries, and behind with the palatines. The maxillary processes are well developed and cover partially the posterior nares. The palatines are separated in the middle line; they are in connection with the vomers, maxillaries, ectopterygoids, pterygoids, and prefrontals. The pterygoids are completely separated from each other. They show three processes, one posterior one attached to the inner side of the quadrate and extending a little behind its posterior border. This process is deeply hollowed out at its lower and inner side. Two processes are directed in front; the inner broad one is connected with the palatines, the outer slender one with the ectopterygoids. The foramen ectopterygoideum (suborbitale) is bound by pterygoid, ectopterygoid, and palatine: The quadrate is simple, hollowed out somewhat externally; it shows a distinct upper and posterior process, which extends above the stapes to the paroccipital and supports the squamosal. The epipterygoid, which was stated to be absent by all authors in Amuielln, is present; it is a slender, short columellar ossicle, which stands vertically on the pterygoid and nearly reaches the descending process of the parietal. The maudible consists of 5 pieces, articular and supra-angular being ossified. There are $7-8$ teeth, which also show the grooves. The hyoid system is very simple, and has been correctly described by Prof. Cope. It consists of a single glosso-basihyal, which is divided behind, and gives attachment to a very slender first hyobranchial; more slender than figured by Cope.

The vertebre.-There are it presacral vertebre in two specimens examined by me; 73 in Prof. Cope's specimen. All of these bear ribs, with exception of the two first ones. One specimen had even a cervical rib on the second vertebra, but only on one side. The seventy-fitth vertebra has a simple sacral rib united with the centrum; the seventysixth vertebra has the sacral rib distally split, forming a lymphapophysis; the seventy-seventh is of the same form and shows the first chevron, the lateral pieces being not united distally; the seventy-eighth shows only on the right side an indication of splitting at the distal end of the transverse process; the chevrons are not united distally; the seventy-ninth exhibits single candal ribs, and the chevrons are united distally. At the eighty-first vertebra the transverse splitting of the centrum commences; the split is in the anterior portion of the centrum and euts off a small anterior portion of the caudal rib. Cope erroneously states the candal vertebrie are not segmented. I consider the seventy-fifth and seventy-sixth vertebra as the true sacrals, to one of which the rudimentary pelvic arch is attached by ligaments. The
cherrons are placed centrally. There are ten "cervical" vertebre, showing lower processes, which are placed in the center and contain both catapophyses* and intercentra.

The neural spines are developed in the tail, but very little; in the dorsal region they are short, vertical ridges, which are somewhat more developed in the cervical region.

The shoulder girdle and pelvis.-No trace of a shoulder girdle could be found. The pelvis was represented not only by a rudimentary ileum, as stated by Cope, but also by an ischium and pubis, which are mited proximally. The pubis has an obturator foramen. These bones I only found in the macerated skeleton.

De:mal ossifications.-By all authors it is stated that dermal ossifications in the skin are absent; this is not correct; they are well developed.

I now give the osteological characters of the family Anniellida: Teeth large, few, fang-like, with short, swollen base, and indications of grooves. Palate toothless. Skull approaching the Amphisbemian type; no interorbital septum; parietals suturally umted with supraoccipital; petrosal greatly produced in frout; an eprpterygoid; squamosal present, but small; quadratojugal absent; postorbital arch ligamentous; a supraorbital bone; pterygoids not in contact with basicranial axis, except by the basipterygoid processes; an infraorbital fossa; priemaxillary single; nasal and frontal divided; parietal single; pre- and postfrontal in contact. Caudal vertebre segmented; osteodermal plates.

The Anniellide are in the same relations to the Anguidie, as are the Acontiidae to the Scincidar; but they are still more degenerated, for in the Acontiide we still find a very rudimentary quadratojugal.

I shall discuss the relationship of all these degenerate families more fully in my paper on the Amphisbrenia.

[^92]
UIAGNOSES OF SOME UNIDESCRIBED WOOD RATS ($(\dot{i} E N U S$ NEOTOMA) IN THE NATIONAL MUSEUM.

By Frederick W. True, Curator of the Department of Mammals.

The following diagnoses were drawn up in connection with a study of the Wood Rats of the United States, in the National Museum, which I have recently completed. It is my intention to publish further descriptions of these forms, together with notes on other species which inhabit the United States, in a subsequent paper:

NEOTOMA SPLENDENS, new species.
Size of N. fuscipes; tail as long as the head and body. Ears large, moderately clothed with long hairs.

Upper surfaces tawny, shaded with black, especially along the spine. Sides clearer tawny-brown. Hearl more or less grayish. Throat, breast and space between the hind legs white, the hairs being of this color thronghout. A line on the lower sides of the cheeks, the sides of the breast, and the whole belly more or less bright tawny-buff, which color is contimed ou the flanks. Tail unicolor, black throughout, as m N. fuscipes. Fore feet : vhite; hind feet dusky to the toes. Ears dusky

Skull (No. 24231, U.S.N.M.), with the nasal processes of intermaxille not extending greatly beyond the nasals posteriorly (about 2 mm.). Iucisive foramina long, reaching to the line of the anterior molar. Palate ending posteriorly in two small capsules, with an emargination between them. Anterior palatal spine straight. Interparietal narrowly pentagonal, without an angle behind.

Dimensions of type (No. 19693, U.S.N.M., male).*--Total length, 438 mm .; tail, 215 mm.

Dimensions of skull (No. 24230, U.S.N.M.).-Total length, 47 mm ; basilar length (Hensel), 38; zygomatic breadth, 24.2; length of nasals, 17.6; length of incisive foramina, 10.

Type.-No. 19693, U.S.N.M., male, Marin County, Cal. Collected November 25, 1887.

Similar to N. mucrotis, but all the under surfaces and the feet white, the hairs being of this color to the roots. Tail rather sharply bicolored. Ears very thinly clothed with whitish hairs.

Skullas in N. macrotis, but the extremity of the anterior palatal spine touches the vomer.

Dimensions of the type (No. 36n1, U.S.N.M.).*-Head and body, 213 mm ; tail vertebrie, 167; hind foot (without claw), 35 ; ear, from orifice, 27.

Dimensions of skull (No. 3598, U.S.N.M.).-Total length, 48 mm .; basilar length (Hensel), 38; zygomatic breadth, $\because 4.3$; length of nasals, 18.5; length of incisive foramina, 9.5.

Type.-No. 36z1, U.S.N.M., Fort Tejon, Cal. Collected by J. Xantus.

NEOTOMA VENUSTA, new species.

Size moderate Ears large and thin. Tail as long as the head and body.

Upper surfaces mingled buff and pale gray. Sides clearer butf, sharply marked off from the color of the under surfaces, which together with the feet are pure white. Hairs white to the base on the throat, sides of cheeks, breast, inside of fore legs, inguinal region, and feet. A tuft of pure white hairs at the base of the onter margin of the ears. Ears thinly clothed with long, whitish hairs. Tail gray above, pure white below.

Skull thick and massive. Nasals shorter than the intermaxille and much contracted posteriorly. Interparietal large, with a convex posterior margin. Incisive foramina short and broad, reaching posteriorly about to the line of the molars. Tympanic bullie large. Foramen magnum low and wide. Posterior termination of palate concave.

Incisors very broad and convex. Molars long and broad.
Dimensions of the type (No. $\frac{216996}{6460}$, U.S.N.M.).t-Total length, 364 mm . ; tail, 173 ; hind foot, 35 .

Dimensions of the skull of type.-Total length, 43 mm . ; basilar length (Hensel), 36; zygomatic breadth, 23.4; length of interparietal, 6.2; length of incisive foramina, 8.2 ; length of molars (alveola), 9.4; breadth of incisors, together, 4.0 ; breadth of foramen magnum, 7.5.

Type.-No. $\frac{2}{3} \frac{1}{6} \frac{696}{406}$, male, Carrizo Creek, California. Collected by F. Stephens.

NEOTOMA OCCIDENTALIS FUSCA, new subspecies.

Back blackish, sides tawny-gray, belly soiled white. Under side of neck tawny-gray. A small area of entirely white hairs between the fore legs. Upper portion of legs gray both above and below. Fore
feet white. Hind feet with the proximal half of the metatarsus, and also the base of the toes, dusky. Tail black above, buffy-gray below. Ears dusky.
(Skull wanting.)
Dimensions of the type (a dry skin, No. 3370 , U.S.N.M.).-Head and body, 215 mm .; tail vertebre, 180 ; hind foot (and claw), 44.

Type.-No. 3370, U.S.N.M., Fort Umpqua, Oreg. Collected by E. P. Vollum.

Dr. Merriam has recently stated* that the skulls of the bushy-tailed Wood Rats, which constitute the genus Teonoma of Gray, are without vacuities at the sides of the presphenoid, and regards this as a character of importance. The bushy tailed species of the Rocky Mountains (N. cinerca), however, has large vacuities. They are absent only in N. occidentalis and its varieties. Hence this character is not correlated with the condition of the tail. There is, furthermore, much variation in the size of the vacuities in the scaly-tailed species, those of N. floridana and varieties being very small.

A Neotoma from Fort Liard, British America, has the skull similar to N. occidentalis, and Richardson's N. drummondi is perhaps a variety of this species, with no close relationshn to N. cinerea of the Rocky Mountains of the United States.

[^93]
DESCRIPTIONS OF TWENTYTWO NEW SPECIES OF BIRDS FROM THE GALAPAGOS ISLANDS.

By Robert Ridgway,
Curator of the Department of Birds.

The very large and valuable collection of Galapagos birds made by Dr. G. Baur and Mr. C. F. Adams, in 1891, was referred to me for determination of the species soon after the return of those gentlemen from their highly successful exploration of that remarkable island group, but various circumstances have prevented an earlier publication of the results of my study of the collection. Many of the specimens having been obtained on islands never before visited by a collector, it is to be expected that novelties would be found among the rich material which it has been my privilege to study. One box contanning more than one hundred specimens of small birds collected on Charles, Hood, Barrington, and South Albemarle islands was unfortunately stolen at Guayaquil. Had these specimens been received, there can be no doubt that the number of new forms to be here characterized would be still greater.

Perhaps the most interesting result of Messrs. Baur and Adams' explorations is the discovery of species which absolutely bridge the previously existing gap between the so-called genera Geospiza and Cactornis, thus necessitating the suppression of one of these names (the latter, according to the rule of priority). This matter will be fully discussed and illustrated in a much more detailed paper which will be published as soon as practicable.

1. NESOMIMUS BAURI, new species.

Specific characters.-Similar to N. personutus, Ridgway* of Abingdon Island, but much lighter colored above. Dimensions averaging less, and flanks more narrowly streaked with dusky; wing, 4.30-4.45; tail, $3.95-1.30$; exposed culmeu, $0.95-1$; bill from rictus, $1.25-1.27$; tarsus, 1.25-1.35; middle toe, 0.78-0.85.

Habitat.-Tower Island (type in Dr. Baur's collection, Sept. 2, 1891).

[^94]In coloration of the upper parts this form resembles N. melenotis much more than N. personatus; otherwise, however, it is easily distinguished, the bill being much larger (sometimes quite as large as in smaller-billed examples of N. personatus), the light-colored tips to middle wing-coverts much wider, white terminal spots of rectrices smaller and differently shaped, and dusky streaks much narrower.

Three specimens are in Dr. Baur's collection.

2. NESOMIMUS BINDLOEI, new species.

Specifie characters.-Similar to N. bauri, Ridgway, but smaller and with proportionally longer tarsus; ear-coverts solidly black, tips to lesser wing-coverts paler (usually nearly white on posterior row), and white on rectrices more extended. Wing 3.85-4.20; tail, 3.50-390; exposed culmen, $0.83-0.91$; bill from rictus, 1.15-1.20; tarsus, 1.32-1.39; middle toe, 0.75-0.81.

Habitat.-Bindloe Island (type in Dr. Baur's collection).
Five specimens, all separable from N. bauri by the above-mentioned characters.

3. NESOMIMUS ADAMSI, new species.

Specific characters.-Similar to N. macdonaldi, Ridgway,* in color, but very much smaller, and differing in some respects as to coloration.

Habitat.-Chatham Island. (Tvpe in Dr. Baur's collection; ô ad., Chatham Island, June 13, 1891.)

This very distinct species, while about the size of N. melanotis, clearly belongs to the same group as N. machonaldi, having the same brownsh gray band across the chest and broken belt of dusky spots across the lower breast. The ear coverts are more extensively and solidly black than in that species, nearly as much so as in N. melanotis, which perhaps has caused it to be referred to that species. The white tips to the outer rectrices are much more extensive and more abruptly defined than in N. macdonaldi, being very much as in N. melanotis.

Compared with 16 specimens of N. melanotis from James Island, the 11 adults of the present species from Chatham Island differ in the much lighter color of the pileum, the ground color of which is brownish gray relieved by mesial streaks of blackish, which never, at any season, equal the gray in extent; the feathers of the dorsal region are much more broadly edged with gray, and the lower parts are markedly different, as described above.

4. CERTHIDEA SALVINI, new species.

Specific characters.-Similar to C. olivacea, Gould, but much yellower below, the upper parts more decidedly and uniformly olivaceous, under parts much more yellowish, and the bill larger; adult male with throat, etc., ochraceous buff instead of tawny.

[^95]Hubitut.-Indefatigable Island, Galapagos Archipelago.
Adult male (Type, No. 438, coll. Dr. G. Banr, Indefatigable Island, August 6, 1891).-A bove brownish olive (decidedly browner than C. olivacea), the pileum and hind-neck quite uniform with the back, etc., but the rump and upper tail-coverts brighter, more tinged with tawnyolive; wings and tail dusky, the feathers edged broadly with the color of the back, inclining on greater wing-coverts to wood-brown. Supraloral streak, orbits, chin, and throat, soft ochraceous-buff, the latter slightly mottled with buffy whitish; rest of under parts pale buff. yellow, deepening on sides and flanks into a more brownish tint. Upper mandible, dark brown; lower, brownish white; "iris, dark brown;" legs, dark horn-brown; feet, lusky; length (skin), 3.60; wing, 2.10 ; tail, 1.38 ; exposed culmen, 0.40 ; tarsus, 0.81 ; middle toe, 0.48 .

Females and immature males are much more olivaceous above than those of C. olivacea, and the under parts are conspicuonsly more yellowish.

All of the seven examples, two of which are in the National Museum collection, have the under mandible pale brown or whitish.

5. CERTHIDEA BIFASCIATA, new species.

Specific characters.-Most like C. cinerascens, Ridgway,* of Hoord Island, but still whiter (entirely almost pure white) beneath, and wing with two broad, whitish bands across tips of greater and middle coverts.

Habitat.-Barrington Island, Galapagos.
Adult (type, No. 593, coll. Dr. G. Baur, Barrington Island, July 9, 1891). - Above brownish gray, becoming very much paler on the rump; wings and tail dusky, the feathers broadly edged with grayish brown; middle wing-coverts broadly tipped with pale, dull buffy. and greater coverts with dull white, producing two conspicnous bands across the wing. Lores, orbits, cheeks, and entire under parts uniform dull white. Upper mandible dark brown, edged with whitish; under mandible whitish; legs and feet brownish black. Length (skin), 3.40; wing, 2; tail, 1.40 ; exposed culmen, 0.40 ; tarsus, 0.78 ; middle toe, 0.48 .

Three specimens from Barrington Island agree in the above characters.

6. CERTHIDEA MENTALIS, new species.

Specific charucters.-Similar to C. fusen, Sclater and Salvin, of Abingdon Island, but rather smaller, color darker and less olivaceous, the under parts dull light olive-grayish, becoming pale buffy on chin and uuder wing-coverts.

Habitat.-Tower Island, Galapagos.
Adult (type, No. 594, coll. Dr. G. Baur, Tower Island, Sept. 2, 1891).Above uniform deep grayish olive; chin, throat, and under wing-coverts pale buff, deepest on chin, that of throat changing gradually on chest

[^96]to buffy gray, which covers whole chest, upper breast, sides, and flanks; belly dull whitish; under tail-coverts buffy white. An indistinct whitish supraloral streak. Wing, 2.05; tail, 1.58 ; exposed culmen, 0.40 ; tarsus, 0.80 .

There are five specimeus in 1)r. Baur's collection, one of which has the under mandible apparently black, one dark brown, the other three brownish white.

7. CERTHIDEA ALBEMARLEI, new species.

Specific characters.-Similar to C. olivacea, Gould, of James and Jervis islands, but under parts nearly clear pale buff, and tips of middle and greater wing-coverts deeper rusty.

Habitat.-Albemarle Island, Galapagos.
Adult? (type, No. 595, coll. Dr. G. Baur, Albemarle Island, July 21, 1891).-Above uniform dull grayish brown, slightly tinged with olive; wings and tail dusky, the feathers broadly edged with the color of the back; middle and greater wing-coverts rather broadly tipped with cinnamon; under parts cream-buff, paler on belly, more brownish on sides and flanks. Upper mandible light brown, darker on culmen; lower mandible brownish white; tarsi pale horn-color, toes somewhat darker. Wing, 2.05; tail, 1.45 ; exposed culmen, 0.40 ; tarsus, 0.83 .

Another specimen from Cowly Bay, East Albemarle (August 10), is quite like the one described above.

8. CERTHIDEA LUTEOLA, new species.

Specific characters.-Most like C. olivacen, Gould, of James and Jervis islands, but much brighter olivaceous above and (except in very abraded plumage) distinctly buff-yellowish beneath.

Habitat.-Chatham Island, Galapagos.
Adult mule (type No. 56 , coll. Dr. G. Baur, Chatham island, June 17, 1891).-Above uniform bright olive or butfy-olive; wings and tail dusky, feathers broadly edged with the color of the back, the tips of the middle and greater wing-coverts (rather broadly) pale olive-buff, producing two indistinct bands across the wing. Superciliary streak exteuding from nostrils to above posterior angle of eye, eyelids, and entire under parts light buff-yellowish, deepest on throat, elsewhere tinged with olive, especially on sides and flanks; under wing-coverts and under tail-coverts, pale yellowish buff. Bill wholly deep black; "iris brown"; legs and feet dark brown. Wing, 2.13; tail, 1.j2; exposed eulmen, 0.40 ; tarsus, 0.82 ; middle toe, 0.45 .

There are seven specimens of this very distinct form in Dr. Baur's collection, and six in the National Mnsemen collection. None of the latter are in perfect plumage, however, and I have accordingly been obliged to select one of Dr. Baur's specimens as the type.

Two of Dr. Baur's specimens (both adult males, obtained June 17 and 18, while "in full song") and one of the National Museum specimens (obtained March 30 , and in greatly worn plumage) have the bill entirely
deep black. All the rest have the under mandible pale brownish, the upper, deep brown or dusky. Among the latter are appareutly adult birds of both sexes, obtained $A_{\text {pril }} 5$, and June 16-18; but they may be youvg birds which have just assumed the adult plumage.

GEOSPIZA ASSIMILIS (Gould?).

Indefatigable Island (7 specimens) ; Albemarle (1 ?);* Cowly Bay, East Albemarle (1?);* Jervis (5).

Without a specimen of true G. ussimilis, from Bindloe Island, for comparison, I am not sure as to the correctuess of this identification. Whether G. assimilis or not, however, it certainly can not be referred either to G. scandens or G. abingdoni, being much larger-billed than the former and smaller-billed than the latter; in fact, it is about intermediate between the two, without, however, grading into either, so far as is indicated by a series of thirty-two specimens. \dagger

It may be remarked that the color of the bill is the same in the three forms, when specimens of corresponding sex, age, and season are compared. Thus, although the adult male of C. scoundens is described as having the bill varied with yellow, all of the six adult males in Dr. Baur's collection from James Island (the type locality) have the bill wholly black, as do also two males in striped plumage and an adult female. The plumage appears to be quite the same in the three forms.

Should this form prove to be different from G. assimilis, I propose for it the name G. intermedia (type No. 115916, U. S. N. M., Charles Island, April 8; C. H. Townseud).

9. GEOSPIZA BARRINGTONI, new species.

Specific characters.-Similar to G. abingdoni, Salvin, but bill much stouter, with tip less compressed and less acute. Wing, e. $20-2.50$; tail, 1.58-1.62; culmen, 0.79-0.50; tarsus, 0.90 ; middle toe, 0.70 .

Habitat.-Barrington Islaud. (Type, No. 596, in Dr. Baur's collection, obtained July 9, 1891.)
1)r. Baur's collection contains three specimens of this form, two adult males and a specimen in the streaked plumage.
10. GEOSPIZA PROPINQUA, new species.

Specific charucters.-Very similar to G. conirostris, Ridgway, \ddagger of Hood Island, but bill still narrower, with the under mandible no broader than the upper; wing slightly shorter.

Measurements of type (No. 597, coll. Dr. G. Baur, Sept. $\because, 1891$).-Wing,

[^97]3.10 ; tail, 1.90 ; culmen, 0.85 ; width of lower mandible at angle, 0.23 ; of upper at notch, 0.23 ; tarsus, 0.95 ; micldle toe, 0.68 .*

Habitut.-Tower Island, Galapagos.

11. GEOSPIZA BAURI, new species.

Npecific churucters.-Similar to G. media, Ridgway., t of Hood Island, but slightly larger, with bill much higher at base. Wing, 3.20 ; tail, 2 ; culmen, 0.80 ; depth of bill at base, 0.68 ; tarsus, 0.93 .

Hubitut.-James Island, Galapagos. (Type, No. 562, of ad., coll. Dr. G. Baur, James Islaud, August 7, 1891.)

One adult male, an immature male, and an immature female are in Dr. Baur's collection.

This form approaches G. stremu in the size and form of the beark, but the gap between them is very considerable. The bill is also proportionally much more compressed than in G. strenua.

12. GEOSPIZA ALBEMARLEI, new species.

Specific characters.-Intermediate between G. media, of Hood Island, and G. dubia, Gould, of Chatham.

Habitat.-Albemarle Island, Galapagos.
Meusurements of type.-(No. 115977, U.S.N.M., immature ô, Tagus Cove, Albemarle Island, April 10, C. H. Townsend). Length (skin), 5; wing, 2.80 ; tail, 1.85 ; culmen, 0.70 ; gonys, 0.35 ; width of lower mandible at base, 0.41 ; depth of bill at base, 0.52 ; tarsus, 0.85 ; middle toe, 0.60 .

The plumage of the type specimen is about half-way between that of the young male and the perfectly adult bird, the head and neek being nearly uniform dull blackish, the feathers of the dorsal region black, broadly margined with olive, the under parts (except throat) dull buffy whitish (marked with buffy olive laterally); the entire breast and fore part of sides heavily spotted (lougitudinally) with blackish.

An adult female (No. 115978, U.S.N.M., same locality, ete.), is exactly like the immature male in coloration; its measurement being as follows: Length (skin), 5; wing, 2.82; tail, 1.70 ; culmen, 0.75 ; gonys, 0.40 ; width of under mandible at base, 0.42 ; depth of bill at base, 0.55 ; tarsus, 0.90 ; middle toe, 0.65 .

Another female (No. 115975, U.S.N.M., same locality, etc.), evidently unt a very young bird, since its bill, like that of the twoabove-mentioned specimens, is very hard and chiefly black in color, has the top of the head grayish olive, broadly streaked with dusky, the cheeks, chm, throat, etc., very pale grayish buffy, obsoletely streaked with darker,

[^98]and the breast rather indistinctly marked with dusky. Length (skin), 4.70 ; wing, 2.75 ; tail, 1.70 ; culmen, 0.70 ; gonys, 0.38 ; width of under mandible at base, 0.40 : depth of bill at base, 0.52 ; tarsus, 0.90 ; middle toe, 0.62 .

13. GEOSPIZA FRATERCULA, uew species.

Specific churucters.-Similar to G. fortis, Gould, of Charles Island, but smaller, the bill narower and with culmen more convex. Adult males: Wing, 2.50-2.65; tail, 1.60-1.65; culmeu, 0.65-0.67; depth of bill at base, $0.43-0.49$; tarsus, $0.78-0.80$.

Habitat.-Abingdon Island, Galapagos. (Type, No. 116110, U.S.N.M., Abingdon Island, April 16; C. H. Townsend.

Five adult males in the National Museum collection from Abingdon Island agree in the above character, by which they may readily he distinguished from G. fortis, of Charles Island. There are four young birds in the collection, but no adult females. Mr. Salvin says that "the females from Abingdon Island are darker than those from the other two islands" (Indefatigable and Bindloe).

14. GEOSPIZA DEBILIROSTRIS, new species.

Specific characters.-Simular to G. fortis, Gould, in size, but feet larger and stouter, and bill conspicuously smaller. Wing, 2.93; tail, 1.75; culmen, 0.60 ; depth of bill at base, 0.35 ; tarsus, 0.95 ; muddle toe, 0.67 .

Habitat.-James Island, Galapagos. (Type, No. 116003, U.S.N.M., ô ad., James Island, April 11; C. H. 'Townsend.)

Of this very distinct species I have scen but one specimen. The plumage is "solid" black, varied by a slight admixture of buffy whitish on the middle of the abdomen, and broad terminal margins of the same to the longer under tail-coverts, becoming tinged with bright rusty anteriorly. The bill is wholly deep black, the legs and feet brownish black.

The bill is shaped exactly as in G. fuliginosa. but is slightly larger.

15. GEOSPIZA ACUTIROSTRIS, new species.

Specific characters.-Similar to G. parvula, Gould, but bill longer, with straighter outlines, and extremely acute at tip.

Measurements of type.-Wing, 2.45; tail, 1.58; culmen, 0.55; depth of bill at base, 0.30 ; tarsus, 0.75 ; middle toe, 0.53 .

Habitat.-Tower Island, Galapagos. (Type in Dr. Baur's collection.)
The form of the bill in this species is conspicuonsly unlike that of any orher, being almost exactly that of Carduelis.

There are 7 specimens in Dr. Baur's collection, 4 of which are in the black plumage.
16. CAMARHYNCHUS ROSTRATUS, new species.

Specific characters.-Similar to C. habeli, Sclater and Salvin, of Abingdon Island, but larger, with the bill much deeper and broader with much more strongly arched culmen.

Hubitut.-James Island, Galapagos; Indefatigable Island (?).

Achult male (type, No. 116006, U.S.N.M., James Island, April 11; C. H. Townsend).-Head, neck, and chest dull black, passing into dusky sooty brown on forehead; rest of upper parts dull grayish olive, much lighter on rump and upper tail-coverts; lower parts from breast backward dull white, tiuged with buff posteriorly, especially on under tail-coverts; breast, particularly on sides, indistinctly but rather broarlly streaked with dusky. Bill black, brownish ou gonys; tarsi deephorn-brown; toes dusky. Length (skin), 5.30; wing, 3; tail, 1.50; culmen, 0.62 , very strongly arched; depth of bill at base, 0.45 , from base of culmen to angle of gonys, 0.50 ; width of under mandible at base, 0.37 ; tarsus, 1 ; middle toe, 0.70 .

Immature mule (No. 116039, U.S.N.M., Indefatigable Island, April 12; (. H. Townsend).-Above light grayish olive, the top of the head rather grayer, broadly but rather indistinctly streaked with dusky, the feathers of the back still more broadly but much less distinctly darker medially. Supraloral region, malar and suborbital regious and entire muder parts dull grayish white, faintly tinged with yellowish buff, especially on chest and breast; the former and sides of the latter broadly but very indistinctly streaked with grayish dusky. Bill dusky horn-color, light brown on edge of upper and terminal two-thirds of under mandible; tarsi and toes brownish black. Length (skin), 5.30; wing, 2.90 ; tail, 180 ; culmen, 0.60 , very strongly arched; depth of bill at base, 0.45 ; from base of culmen to angle of gonys, 0.47 ; tarsus, 0.90 ; middle toe, 0.62 .

This bird, although from James Island, can not be the same as C. psittaculus, for, although I have not been able to compare it with an adult male of the latter, the dimensions are much too great and the form of the bill far too different.

17. CAMARHYNCHUS PRODUCTUS, new species.

Specific characters.-Similar to C.pauper, Ridgway, of Charles Island, but bill longer, with culmen more arched, and gouys less convex, the sides of the under mandible with several oblique ridges; wing and tail decidedly and tarsus slightly longer. Wing, 2.90; tail, 1.80 ; culmen, 0.70 , exposed portion, 0.55 ; depth of bill at nostril, 0.32 ; tarsus, 0.90 ; middle toe, 0.60.

Habitat.-Albemarle Island, Galapagos. (Type, No. 404, ó , coll. Dr. G. Baur, Albemarle Island, July 31, 1891.)

The form of the bill in this species is so exactly intermediate between that of the thin-billed Camarhynchi and the Cactorni of the C. pallida group that it may almost be as well placed ir one "geuts" as the other!

18. CAMARHYNCHUS SALVINI, new species.

Specific charucters.-Most like C. prosthemelas, Sclater and Salvin, but adult male without black on head, neck, or chest, the latter, together
with sides and tlanks, being broadly streaked with dusky. Immature birds, of both sexes (and adult females?), much more yellowish beneath (usually strongly buff-yellow), always distinctly streaked with dusky on chest, sides, and flanks.

Habitat.-Chatham Island, Galapagos. (Type, No. 125977, U.S.N.M., Chatham Island, March 30, 1891; C. H. Townsend.)

In addition to the 11 specimens in the National Museum collection, collected by Mr. C. H. Townsend, naturalist of the U.S. Fish Commismission steamer Albutross, Dr. Baur's collection contains 7 examples of this very distinct species from the same island.

19. CAMARHYNCHUS AFFINIS, new species.

Specific characters.-Similar to C. psittaculus, Gould, from James and Jervis islands, but smaller and with the chest rather broadly and distinctly streaked with dusky.

Habitat.-Albemarle Island, Galapagos.
Adult? (type, No. 598, Dr. Baur's collection, Cowly Bay, on mountains, August 10, 1891).-Above light brownish olive, lighter on rump, rather grayer on top of head, where indistinctly streaked with dusky; superciliary stripe (passing to a little behind eye), malar region, and under parts light grayish buff, tinged with brownish on sides (almost Isabella-color on flanks), and nearly white on abdomen, the chest and sides of breast broadly and rather distinctly streaked with dusky. Bill light brown, paler and yellower on under mandible; legs and feet dusky horn-color. Length (skin), 4.15; wing, 2.75; tail, 1.70; culmen, 0.55 ; depth of bill at base, 0.40 ; width of under mandible at base, 0.35 ; tarsus, 0.90 ; middle toe, 0.55 .

Two other specimens in Dr. Baur's collection measure as follows: Wing, 2.50-2.60; tail, $1.50-1.70$; culmen, $0.50-0.55$; depth of bill at base, 0.40 ; width of under mandible at base, 0.30 ; tarsus, $0.82-0.85$.

20. PYROCEPHALUS CAROLENSIS, new species.

Specific churacters.-Similar to P. nomus, Gould (from James Island), but female deep buff beneath, instead of clear, light Naples yellow, and upper parts browner.

Habitat.-Charles Island, Galapagos.
Adult male (No. 115926, U.S.N.M., Charles Island, April s; C. H. Townsend).-Lores, ear-coverts, occiput, hind neek, and remaining upper parts uniform blackish brown,* becoming lighter, more grayish, brown on lower rump, upper tail-coverts, and tips of wing-coverts, the edges of the secondaries still paler, and tips of secoudaries, inner primaries and tail-feathers pale grayish brown, passing on terminal margins into brownish white; ontermost tail-feathers pale grayish brown, its outer web slightly paler and faintly tinged with pink. Entire pileum glossy dark vermilion; lower parts scarlet-vermilion,

[^99]paler posteriorly (flesh-color on under tail coverts), deepest on breast, and on throat somewhat broken by exposure of white bases of the feathers; under wing-coverts and axillars flesh-color, the former mixed with dusky. Bill black, under mandible somewhat brownish basally; legs and feet black. Length (skin), t.85; wing, 2.50; tail, 2; exposed culmen, 0.42 ; tarsus, 0.72 ; middle toe, 0.40 .

Immature male (No. 115927, U.S.N.M., Charles Island, April S; C. H. Townsend).-Above dusky brown* (very much paler than in adult), paler and grayer on rump and upper tail-coverts, many of the feathers of lower back and scapulars showing very indistinct and narrow paler tips; wings and tail as in: the adult, but the former rather paler; forehead and fore part of crown whitish, tinged with flesh-pink (especially near nostrils), each feather marked with a rather broad mesial streak of dusky brown, the hinder part of crown nearly uniform dusky, but the feathers light vermilion or flesh-red beneath the surface. Lores and orbits dusky, the ear-coverts paler and faintly tinged with flesh-pink; chin, throat, and malar region white, very faintly tinged With flesh-pink, especially on chin; rest of under parts flesh-color, deepest on tlanks, paler on chest and breast, where narrowly streaked with dusky. Bill and feet as in adult. Length (skin), 5 ; wing, 2.60; tail, 2.03 ; exposed culmen, 0.45 ; tarsus, 0.71 .

Adult female (No. 11592S, U.S.N.M., same date, etc.).-Above grayish olive, becoming gratually paler and more grayish (nearly "han brown") on rump and upper tail-coverts; crown somewhat streaked with paler; forehearl, superciliary region, and malar region, whitish, tinged with buffy yellowish. Chin and throat buffy white; rest of under parts, deep buff-yellow, the chest marked with a few very indistinct dusky streaks. Bill and feet as in the male. Length (skin), 4.80; wing, 2.50; tail, 2.05; exposed culmen, 0.48 ; tarsus, 0.70 ; middle toe, 0.40 .

An adult male in more worn plumage (No. 125988, U.S.N.M., Charles Island, April 1; C. H. Townsend) is, through fading, a more pronounced brown color above than the example described above. The two other adult females show no trace of streaks on the chest.

21. PYROCEPHALUS INTERCEDENS, new species.

S'pecific churacters.-Similar to P. namus, Gould, (from James Island), but female much brighter yellow beneath, browner above, and top of head more tinged with yellow.

Habitat.-Indefatigable Island, Galapagos.
Adult male (No. 418, coll. Dr. G. Baur, Indefatigable Islaud, August 5,1891). -Similar above to males from Charles Island (P. carolensis) but still darker (brownish black rather than blackish brown); beneath similar on chin, throat, and chest, but from breast back the color of a

[^100]decided orange-red or flame-scarlet hue. Wing, ٌ...5~; tail, っ.18; exposed culmen, 0.47 ; tarsus, 0.75 ; middle toe, 0.38 .
Adult female (No. 439, coll. Dr. G. Baur, Indefatigable Island, August 6).-Color above quite the same as that of females from Charles Island, but top of head with a deciled yellowish tinge; superciliary stripe, extending from nostrils to posterior angle of eye (broadest anteriorly), light buff-yellowish; malar region, chin, and throat very pale maize-yellow; rest of under parts light chrome, or deep Naples-yellow-very different from the buff-yellow of Charles. Island specimens. Wing, 2.38; tail, 2 ; exposed culmen, 0.40 ; tarsus, 0.70 .

Immature male (No. 463, same collection, Indefatigable Island, August 7).-Very similar to the adult female, but rather darker above; chin and throat white, faintly tinged with maize yellow; rest of lower parts rather deeper and decidedly "warmer" yellow than in the adult female (a very pale tint of "deep, chrome "), rather paler on the chest, where marked with very narrow shaft-streaks of dusky. Wing, 2.52; tail, 2.0 .0 ; ; exposed culmen, 0.45 ; tarsus, 0.71 ; middle toe, 0.40 .
An immature male (No. Tri6t, U.S.N.M., Indefatigable Island, August 25-Oct. 16, Dr. A. Habel) is similar to that described above, but has the yellow of the chest equally deep with that of more pos terior under parts (the whitish throat being thereby more abruptly defined) and the fine dusky streaks nearly obsolete. Wing, 2.40; tail, 2.02; exposed culmen, 0.45; tarsus, 0.70 ; middle toe, 0.39 .

Young (No. 1160j3, U.S.N.M., Indefatigable Island, April 12; C. H. Townsend).-Above dark grayish brown, the feathers of the back, the scapulars, and the lesser wing-coverts narrowly and rather indistinctly margined with paler; those of the rump and upper tail-coverts much more broadly margined with brownish buff, which constitutes the prevailing color; top of head broadly streaked with dusky on a whitish and pale buffy ground, the forehead chiefly pale buffy; middle and greater wingecoverts broadly tipped with pale brownish buffy, producing two wing-bands; tail feathers also broadly tipped with pale dull buffy; remiges rather broadly margined at tips with whitish. Supraloral region, malar region, chin, and throat whitish, tinged with dull yellowish; rest of under parts light Naples-yellow, the chest, sides, and flanks longitudinally flecked with grayish brown.
22. PYROCEPHALUS ABINGDONI, new species.

Specific characters.-Similar to l. carolensis, Ridgway, in color of back, etc., but red of under parts very different-Hlame scarlet or orange-chrome instead of vermilion. (Female and young unknown.)

Adult male (type, No. 116134, U.S.N.M., Abingdon Island, Galapagos, April 16, 1888; C. H. Townsend).-Pileum intense scarlet or scarlet-vermilion, paler, more orange-red, on forehead; entire under parts orange-red ("orange-chrome"), the under tail-coverts paler, inclining to salmon-color; ear-coverts, hind neck, back, etc., clove-
brown (very nearly same color as in P. carolensis). Length (skin), 4.95 ; wing, $2.55(\text { ? })^{*}$; tail, $2.10(?)$; exposed culmen, 0.48 ; width of bill at base, 0.23 ; tarsus, 0.75 .

Another adult male (No. 116135, U.S.N.M., same date, ete.) is similar, but has the pileum deeper red (intense vermilion) and the fore neck and chest slightly tinged with vermilion. Exposed culmen, 0.45 ; width of bill at base, 0.25 ; tarsus, 0.73 . (Wing and tail too imperfect for measurement.)

An adult male from Bindloe Island, in Dr. Baur's collection, is similar in color of back, etc., to these Abingdon examples, but the under parts are very different, the auterior half being pure scarlet and the posterior half, very abruptly pale saturn-red. The bill is also extremely narrow. Whether the differences are of an individual character or characteristic of the locality can not be determined from ouly one specimen.

Mensurement.-Length (skin), 4.40; wing, 2.48; tail, 2.12; exposed culmen, 0.40 ; width of bill at base, 0.20 ; tarsus, 0.67 .

PYROCEPHALUS DUBIUS, Gould.

Pyrocephalus dubius, Gould, Zool. Voy. Beagle, Birds, 1841, 46.
Pyrocephalus nanus, Auctorum, part, not of Gould.
Pyrocephalus minimus, Ridgway, Proc. U. S. Nat. Mus., XII, No. 767, p. 113, in text, Feb. 5, 1890 (Chatham Island, Galapagos).
This very distinct form was separated by me, provisionally, from P. nanus, as P. minimus, in the paper above cited, without being described in detail. The fourteen specimens subsequently received bring out very strongly its distinctive characters, and show it to be very different indeed from P. nonus and its nearer allies, from which, in any plumage, specimens may be distinguished at a glance. The different plumages represented in the series before me may be described as follows:

Specific characters.-Decidedly smaller than P. nomus Gould and other Galapagoan forms; adult male with lower parts conspicuonsly paler and duller red than pileum; back, etc., lighter and browner than in other forms; adult female with conspicuous superciliary stripe and under parts deep ochraceous-buff, the throat paler, but scarcely approaching white.

Habitat.-Chatham Island, Galapagos.
Adult male (No. 72, coll. Dr. G. Baur, Chatham Island, June 18, 1891).— Entire pileum glossy dark vermilion, exactly as in other forms; lower parts pale scarlet, deepest on breast, much paler on throat, and still more so on chin, which inclines to reddish white. Lores, ear coverts, and upper parts in general deep brown (intermediate between "seal" and "clove"), decidedly lighter and browner than in other forms; tips of wing coverts, elges of secondaries, and whole of outer tail-feathers paler, more grayish, brown. Length (skin), 4.35; wing, 2.23; tail, 1.90; exposed culmen 0.38 ; tarsus, 0.65 ; middle toe, 0.35 .

[^101]Nearly urult mute (No."D," coll. Dr. (r. Baur, Chatham Island, June 16i).-Much like the fully adult male, as described above, but red of prem paler and mixed with many partly hrown feathers, that of under parts very much pales (deep) salmon-color, rers much paler on chin and throat), and upper parts decidedly lighter warm grayish brown. Wing, 2.28; tail, 2.05; exposed rinlmen, 0.36; talsiss, 0.6.5; middle toe, 0.35.

Adult femule (No. (63, conl. Dr. ('t. Bam, ('hatham Island. Jume 17).— Forehead and hroad supereiliary stripe, extending from nostrils to occiput, ochraceous buff; rest of pileum nearly same color, but broadly streaked with deep hair-brown, these streaks so broad on hind part of crown as to nearly conceal the bufly edgings. Ear-owerts, hind neck, back, scapulars, and lesser wing-toverts uniform hair-brown, the rump, upper tail-coverts, and broad tips of greater and middle wingcoverts paler and tinged with bufty; secondaries edged for terminal half' with pale butfy grayish, and hroadly margined at tips with buffy grayish white. Malar region. chin, and throat pale buft: deeper laterally; rest of under parts deep buff, becoming rather chearer and brighter posteriorly, and everywhere devord of the least trace of streaks. Length (skin), 4.25; wing, 2.21 : tanl. 1.ss: exposed culmen, 0.35 ; tarsus, 0.65 ; middle toe, 0.3 ?

Immature male (No. 12:3, coll. 1). Ai, Baur, Chatham Island, June 25).-Much like the adult female, as described above, but top of head nearly uniform grayish brown, like bark, though showing indistinctly detined broad streaks of darker and lighter, with a few concealed bright yellow spots on center of 'rown; anterior part of forehead and superciliary stripe, however, deep buffy, as in the female; buff of under parts deeper and yellower. Length (skin), 4.25; wing, 3.30; tail, 1.92 ; exposed culmen, 0.39 ; tarsus, 0.63 ; middle toe, 0.38 .

The adnlt male deseribed is the brightest colored one in a series of eight, the remainder being more or less paler scarlet beneath. This conspicnous difference of intensity between the red of the plemm (whichs is exactly as in other forms) and that of the lower parts is, next to the small size, the most striking character of the present seecies.

Two other females in Dr. Baur's collection differ from that described in having an appreciable (though in case of one very faint) yellow tinge to the posterior under parts.

Another immature male, also in Dr. Baur's collection, is quite decidedly yellowish on the posterior lower parts, the mader tail-corerts and malar region being nearly maize-yellow.

There can be little doubt, I think, that (iould's Py;ocrphetus dubius was based on a female or immature male of this form, but the question can be determined positively only by examination of the type, now in the British Mnsemm. The original deseription certainly fits the female very well, and the measurements of the type, recently made for me by

Proc. N. M. $94-24$
1)r. Sclater, indicate a very small bird—smaller, in fact, than the smallest in the series of sisteen specimens fiom Chathan! Island.

Dr. Sclater's measurements are materially different from those given by Gould, as the following will show. For convenience of comparison, the fractions of the latter are changed from duoderimals to decimals:

Measurements of Pyrocephalus dubius.

DESCRIITIONS OF SOME NEW BIRDS FROM ALDABRA, ASSUMPTION, ANI GLOLIONA LSLANDS, COLLEUTED BY DR. W. L. ABBOTT.

> By Robert Ridgway, Curator of the Department of Birds.

In the last volume of these Procedings* descriptions were published of seren new species of birdst collected by Dr. W. L. Abbott on the above-mentioned islands, an eighth new form \ddagger having been later characterized in The Auk.s. Other species in Dr. Abbott's collection were identified with forms already described, though some of them were doubtfully determined, no specimens of the birds they were supposed to represent being available for comparison. Duplicates of some of these were sent to Prof. Alfied Newton, who has made a special study of the birds of the Madagascar subregion. Prof. Newton has kindly informed me that they are in reality new forms, and has most generously sent me specimens of the speries to which I had referred them in order that I misht see wherein they were different. I am thus under the necessity of describing six more new birds which have been brought to light by Dr. Abbott's careful explorations.

A more elaborate paper on the avian fama of these interesting islands, together with the Seychelles, Amirantes, etc., based primarily on Dr. Abbott's collection, but including also the results of the work of previous collectors, is nearly completed and will in due time be published.

1. ZOSTEROPS ALDABRENSIS, new species.

Specific churacters.-Similar to Z. palpebrosa ('Temminck), but supraloral region (sides of forehead) distinctly orange-yellowish, under parts with yellow of chest extending farther backward and tinging the median line of the belly; chest and sides less tinged with gray (some specimens having instead a faint brownish wash), and under tail-coverts

[^102]very different in color from chest (varying from maize- to chrome yellow, the throat being canary-yellow).
 Aldabra Island, October 3, 1892; Dr. W. L. Abbott.)

Merswrements of type.-Length (before skiming), 4.2.; wing, 2.1シ; tail, 1.62̈: exposed ©ulmen, 0.3.); tarsus, 0.70; middle toe, 0.37. . Upper mandible, black; lower, leaden; feet, leaden; irides, light brown," (Abbott, MSS.)

2. ZOSTEROPS MADAGASCARIENSIS GLORIOSE, new subspecies

Churacters of subspecies.-Very similar to true Z. madugusedriensis ((imelin), but larger (?), upper parts lesis vivid olive green, and under tail-coverts brighter yellow.

Habitut.-Gloriosa Island. (Type, No. 12s706, U.N.N.M., of ad., Gloriosa Island, January 25, 1893; Dr. W. L. Abbott.)

Measurements of type. - Length (before skimning), 4.50; wing, 2.17;
 black; base of lower mandible, leaden ; irides, pale brown; feet, leaden." (Abвотt, MSS.)

Itaving only one specimen of true Z. marluguseariensis for comparison, I am mot quite satisfied of the propriety of separating the (iloriosa bird, which I do more in deference to Prof. Newton's views than to my own convictions.

3. CINNYRIS ALDABRENSIS, new species.

Spectific characters.-Nimilar to O. somimantu ((imelin), but pectoral band much broader and bright maroom-bay instead of "hestmut; sooty breast-patch much more extensive, reaching, medially, to middle of belly: sides and thanks light yellowish gray, and lower belly rery pale sulphur-yellow (whole belly canary-yellow in (\therefore sonimonga). Female much grayer above and darker below, anterionly, than that of C. souimangu.
 Aldabra Island, October 1, 1892; Dr. W. L. Abbott.)

Meuswements of type.-Length (before skiming), 4.36 ; wing, コ.10; tail, 1.50; exposed culmen, 0.70; tarsus, 0.6.); middle toe, 0.40. "Bill and feet black." (ABbotr, MSS.)

4. CINNYRIS ABBOTII, new species.

specifie churacters.-Similar to (. ul benbensis, but with under parts posterior tomaroon-bay pectoral hand almost entirely sooty black, with fanks mone or less extensively light yellowish gray; uper tail-coverts glossy violet-black, tipped with metallie greenish blue. Female similar to that of C. aldabrensis.

ILubitut.- Issumption Lsland. (Type, No. 12s6s0, U.S.N.M., ô ad., Assumption Island, September 18, 1892; Dr. W. I. Abbott.)

Measurements of type.-Length (skin), 3.90; wing, 2.22; tail, 1.62; exposed culmen, 0.70; tarsus, 0.67 ; middle toe, 0.40 .

5. CENTROPUS INSULARIS, new specios.

Specific characters.—Quite identical in muptial phomage with C. toulou (Miiller); in other plumages, however, very much paler, the posterion muler parts barred with pale brownish buff anil dusky, in nearly equal quantity (miform greenish dusky in corresponding plumage of U. toulou.)

Mebitet.-Ahlabra and Assmmption islauds. (Type, No. 1:28715, U. S.N.M., of ad., Aldabra, October, $185 \sim$. 'Upper mandible, horny brown; lower pale horny; irides, red; feet, bluish black." (Abbotт, Mss.)

Measurements vary so, both in this form and in C. toulou, that I have been mable to derive any satisiactory character from them. The present bird appears, howerer, to have aimost invariably smaller feet than C. toulou, as the following measurements show:

Measurements of Centropus toulou.

Muserm and number.	Sox anll age.	Localit!	liat:.	W「ins.	Tail.	Culmeri.	Deptll of bill.	Tarsus.	Onter tore.
A. N.	$\delta^{*} \mathrm{ad}$	Madagascar	1873	6. 55	9.60	1. 32	. 63	1. 65	1. 20
L. S., 118599.	f ad.	. . do		5.85	9.50	1.28	. 63	1.65	1.15
A. N	+ ad.	do		6.45	8.70	1.30	. 60	1. 67	1.17
A. N		,		5. 35	$9 . \geq 0$	1.17	. 52	1.50	. 98

Measurements of Centropus insularis.

6. CAPRIMULGUS ALDABRENSIS, new species.

N'pecifie churucters.-Similar to C. mudugusentionsis, Grandidier, but averaging larger; scapulars marked with grayish white instead of buff; forencek without collar of buffy spots, and white of tail more extensive (that on lateral feathers extending 1.70 inches from tip in adult male).

Mubitat.-Aldabra Islaud. (Type No. 12s668, U. S. N. M., ô ad., Aldabra Island, September •!9, 189ン, Dr. W. L. Abbott.)

Mersurements of type.-Length (before skinning), 9.25; wing, 6.25; tail, 4.35 ; middle toe, 0.65 .

A REVISION OF TILE FISIEEN OF TIHE AGBFAMILY SEBAN TINE OF THE PACIFIC COAST OF AMERICA.*

By Carl H. Eigenmann aud Cmarles H. Beeson.

Tire primary object of the present paper is to present analytical keys, synonymy, and bibliography of the viviparms genera of Pacific Sebastime. For the sake of convenience the oviparous genera of Sebastine have also been added. The soomendid fall naturally into two groups or subfamilies: the tropical Scorpanine with twenty four vertebre, of which Scorpeena is found in all tropical seas; and the much more numerons Sebastina inhabiting both of the temperate and both of the colder zones, and which invariably have an increased number of vertebrie. While this subtamily has a wide distribution, the number of species found in the north temperate regions of the Pacitic Ocean is much larger than that of all other regions combined.

The Scorpmaine in the region covered by this paper are all shore fishes in the most restricted sense of the word. The sebastime, on the other hand, are rarely fomed in less than 100 feet of water, except whiie young, and much more frequently are found in a depth of 600 feet. Some of the species live in more than twice this depth. The horizontal as well as vertical distribution of any given species is usually quite limited; but a single species, Nelustosomus ruber, seems to range from San Diego to Daska, and only one species, Nehastolobus macrochir, a deep sea form, is foum off the consts of both Japan and the I'nited States. The widest range is that of Sebastomus capensis, found in Chilean and (ape seas. The following notes by Prof. Eigenmann on the habitat of the sim Diego species describe their vertical hange:t
The members of this family * * * seem to live at definite depths, and ou bottom peculiar to each species or group of species. This does not imply that their distribution is narrowly limited, but that a given species may or may not be found at any point within the limits of its habitat, ats the peculiaritus of the bottom at, a
-The classification alopted hy the anthors of this paper is based on their own peculiar interpretation of the importance of certain structural characters. The arrangement and nomenclature proposed will not be, at present at least, followed in the National Musenm.-Epitor.
\dagger Proc. Cal. Acad. Sci.: 2nd ser., inf, 1890, 11 p.
Proceelings of the U. S. National Musemm, Vol. XVII-No. 1009.
given depth are fitted for it or not. To this canse is to be attributed, in part, the fact that so many northern forms have but lately been added to the fauna of San Diego, and that a given species may be canght for several days in succession, and then not appear again for some time. As the different rock-cod boats have found new conditions, oven within a fow hundred yards of their usual fishing grounds, they invariably have brought novelties. Thus on oneday, S. proriger [= macdoualdi], mufus, cos and melanostomus * * * were all bronght by one boat which had accidentally found now conditions. [All were new to science.] * * * S. ruber and levis are frequently associated, while rubrivinctus, clongatus, chlorostictus, constellatus, rosacens, vexillaris, chrysomelas and serviceps form another group.

The rebastina are seemingly ats abundant on the coast of Japan as they are on the const of the United States. Few species extend further south than the bomblary of the United states and they are entirely absent firom Mexico and other tropical coasts, but reappear on the eonst of Chile in sehustomus oculutus, which is synonymous with S. capensis of the Cape seas.

We have examined most of the American species, but none of the Japanese forms. We are fully aware of the hazardous nature of attempting a generic subdivision of a large number of species when a good percentage of the whole number is not available for study, and especially when the absent members practically all belong to a particular region; but an examination of the skeletons of a large number of species warrants us, in the absence of other evidence; to considerably increase the number of genera heretofore armitted. The condition of the parictals has been taken as the primary character for generic division and the constant presence or absence of certain cranial spines, associated with a mumber of minor chatacters, have been drawn upon to furnish definitions for the genera heretofore united under the names Sebastodes, Sebastomus, Sebastosomus, and Sebastichthys.

The cranial spines used in generic definitions are located as follows: (1) The preocular is the continuation of the upper posterior angle of the prefrontal into a spine. It is usually present. (2) The supraoculan, (3) the postocular, and (t) the tympanic are always near the outer border of the frontal. The last of this series of spines always overarches a mucons pore and is present and homologons thronghout the group. The postocular, on the other hame, is absent in several genera. (5) The coronals are also on the frontals, but nearer their middle and directly in front of the parietal ridges. They are developed in but few species. There seems to have been a confusion of this name in the Seorperminat and the spine called coronal in Noorpenu does not seem homologous with the spine ealled coromal in Luctospinn, which has just been described. (if) 'The parietals (orecipital of 'Jordan and (iilbert), as their name implies, are on the parietal bones and form the spine at the end of the rifge rummong near the middle of these bones. (7) The mumble are much less eonstantand thein taxonomie value consequently much le.sis than that of the other spines. They are formed by the transverse division of the parietal ridges.

This revision is based:
(1) On a collection made by Prof. Eigenmamn during a three years' stay in California. Many of the species were here examined in large numbers as they were brought to the markets. Collections were marle at Sin Diego, Cortes Bank, Monterey, and San Francisco. A nearly complete series of these were presented to the National Muscum.
(2) On many of the specimens collected by Jordan and dilbert, which now belong to the National Musemm and to the Indiana University.
(3) A series of skulls and skeletons belonging to Mrs. Eigenmann's collection formed the basis for the classification into genera.

We are indebted to Dr. (i. Brown Goode for the use of species belonging to the National Mnsemm and not otherwise accessible to us.

To Messrs. Gilbert and Test we are indebted for examinations of otherwise inaccessible specimens, and to Messis. Gill and Jordan for suggestions and criticisms.

HISTORYCAL NO'IE ON THE VIVIPAROUS GENERA.

The species of Sebustodes, Schustichthys, ete., were originally included in the long known genus Sebastes. Dr. (iill first distinguished between genera in the following historical sequence:

1. Sebastodes, Glle, Proc. Phila. Acad. Sci., 1861, p. 165 (Sebastes paucispinis, Ayres).
 Ayres, S. auriculatus, Ghard, S. ocellatus, Cuvier, S. heltomaculatus, Ayres, S. melanops, Girard, and S. rosacens, A yres.
2. Sebastosomus, Gill, l. c. 1864, pp. 59, 147 (S. melanops, Girard), to include also Sebastosomus pimiger, Gill.
3. Sebastomus, Gill, l. c. 1864, pp. 59, 147 (S. rosaceus, Girard).

In the last paper quoted, Dr. Gill says:
In conclusion, the genus Sebastichthys includes at least three genera. The Sebastichthys nigrocinctus is somewhat related to Scorpena, and is distinguished by elevated, serrated coronal [parietal] crests. Other California species represented by the Sebastes melanops, seen by me, differ so much that they may be separated and combined for the present unter a genus, sebtstosomus, of which the sebustes melanops of Ayres may be taken as the type. Still others, distinguished by the texture of the bones of the skull, armed orbital ridges, prefrontals, etc., and represented by Sebastes rosacens, Girard, may be named Sebastomus.

In 1880 Jordan and Gilbert* retained Sebustodes as a distinct genus, but united all the other known species under the name sebustichthys, retaining Sebastosomus as a subgenus.

These genera, Scbastodes, Scbastichthys, Sebastosomus, Selorstomus, were again mited by Jordan and Gilbert \dagger in 1882, under the generie name Selustodes, with the remark, "the species differ greatly in form of armature, but the genera based on these differences intergrade too closely to be worthy of retention."

[^103]In 1885 Dr. Jordan* again separated the genus Sebastodes from the other speries which remained mited under the name Scbustichthys.

More recently Ligemmam, \dagger after deseribing N. goorlei, remarked "the genus Scbustodes will either have to be merged with Sebastichthys or the latter divided into other genera." The material for this further division was mot at hand at the time and sebustodes was adopted as defined by Jordan and (iilbert. The present examination of skulls has shown that the intergradation of the armature of the head noticed by them is of secondary importance only, and largely due to their arrangement of the species to emphasize this intergradation in armature, and that, as suon as the large number of species are separated on the more essential relation of the parietals to the supraccipital, the intergradations largely vanish, and the groups originally defined by Gill come to the foreground as valid genera, with the addition of several other genera. An outline of the classification, here more fully treated, was published by us in the American Naturalist for July, 1893.

The interrelation of the various genera is complex. Our conception of it may be illnstrated by the following diagram, the genera with united parietals being marked with an asterisk.

The last general account of these forms to appear was that of Jordan and Gilbert in the Syoopsis of the Fishes of North America. At that time only about 30 species were known. Since then about 20 species have been lescribed. This large increase in the number of known speries, and the observed incongruity of grouping were the chief agents leading to the present revision, which we hope to be a step in the right direction. The synonymy is all simple, and the species have been for the most part well described. We have therefore omitted any further discussion of the former and contined the descriptions to the keys.

[^104]
ANATYSIS OF THE PACIFIC COAST GRNEIRA OF SEBASTLNE

(1. Vertelnate 27 or more
(SEBASTIN.E).
b. Dorsal spines $14-16$; thu lower pectoral rays thickened, unbanched, and produced; ventrals directly uuder pectorals. Suborbital stay strong, spiniferous.

SEbastolobus, I.
bb. Dorsal spines 13 ; vertebrie 27.
c. Palatines with teeth. Lower pectoral rays mblranched, their tips projectiug.
d. Parietals meeting above the supraoccipital,* except sometimes in Primospina.
e. Jaws equal; head narrow above; high and prominent cranial kecls ending in spines. Preocular, supraocular, tympanie, and pariotal present. Gill-rakers usually short, spatulate or clavate, their broadened tips spiniferous. Scales usually very strongly etenold; accessory scales numerous; suborbital stay directed obliquely downward and backward; second anal spine much heavier than and at least as long as third. Body short and deep, back arched, mouth very large but rather narrow, head heary. Inter-and sub-opercle without spine. Branchiostegals and lower jaw naked. Three or four large pores along each ramus of the lower jaw. Species usually with cross bands .-................... SEbASTICHTHYS, II.
ee. Lower jaw much projecting; head broad, skull usually convex; crauial ridges when present usually low. Gill-rakers very long and slender; scales usually smooth, few if any accessory scales. Branchiostegals and lower jaw scaled. Pores of lower jaw concealed except in some species of Acutomentum.
f. Preocular spines well developed. Peritoneum black.
g. Postocular spine present. Supracular, tympanic and occipital spines well developed. Second anal spine strouger and usually longer than the third. Symphyseal knob strong, projecting forward. Dorsal low. Lower pectoral rays normal, not thickened. No spines on inter- and sub-opercles. (Mandible and maxillary scaled) .-................. Acutomentum, III.
g!. Postocular spines not developed. Supraocular and tympanic sometimes present, always concealed by the skin. Occipitals ending in spines or not. Interorbital wide, convex. Lower pectoral rays thickened, their tips projecting beyond the membrane. Bones of the skull striate and pitted. Month small, narrow. Spines on inter-and sub-opercle sometimes present. Peritoneum black

Primosína, IV.
ff. Preocular without spine; skull smooth, without spines. Lower pectoral rays normal. No spines on inter- or sub-opercle. Peritoneum usually white

SEbastosomus, V.
dत. Parietals separated by the supra occipital. \dagger
/4. Cranium with parictal ridges only. Lower jaw much projecting, entering the profile; a prominent symphyseal knob directed forward. Head broad, convex. Interorbital convex, nearly smooth. Lower pectoral rays normal; no spines on interand sub-opercles. Exposed branchiostegals, maxillary and mandibles densely scaled. Pores of lower jaw concealed by the scales.

Sebastodes, VI.

[^105]the. Cranium with many ridges all ending in spines. Branchiostogals (except in A. aurora, S. proriger, and S. rufus) aud usually the lower jaw maked. Pores of lower jaw, except in Auctospina, very large, conspicuous, slit-like.
i. Postocular aud tympanic spines both present. Lower pectoral rays thickened (except in Sebastomus rufirs). Interopercle and subopercle usually with spines.
j. Coronal spines, nuchal spines; a spine below, another in front of eye......... Genus. (?) (single species matzubara), VII.
ij. Coronal spines not developed SEibastomus, VIII.
ii. Postocnlar spine not developed; interopercle and subopercle each with a spine at their approximated corners.
k. Coronal spines not developed; lower pectoral rays usually thickened; interorbital usually with a groove in its middle. The large pores (4) along each ramus of the lower jaw open. Maxillary, mandible, and branchiostegais usually naked or with minute embedded scales.............. PTEROPODUs, IX.
$k k$. Coronal spines developed; interorbital with a median ridge; gill-rakers long; lower pectoral rays normal, not thickened and fleshy: Pores of lower jaw (in auriculatus) entirely closed by a thin membrane.................... Auctospina, X.
$c c$. Palatines without teeth. Preocular, supraocular, postocular, tympanic, parietal, nuchal, and coronal spines developed. Suborbital stay with a sharp spiniferous ridge. \qquad . Sebastopsis, XI.

I. Geuus SEBAS'IOLOBUS, Gill.

Sebastolobus, Gill, Rep. Smithsonian Institution, 1880 (macrochir).
Trpe.-Sebastes macrochir, Günther.
This genus is known from two sperees fomnd in deep watex. It is characterized hy the position of its rentrals and by the peculian shape of its pectorals. The mpper ralys are the lonser and the lower five are thickened and prolonged beyond the membranes much as in many species of Pteropodus, Sebastichthys, and other genera.

ANALYSIS OF THE SPECLES OF SKBASTOLOBUS.
a. Second anal spine one-seventh of the length; highest dorsal spine, $2 \frac{1}{2}$ in the head; eye $1 \frac{1}{2}$ times as loug as snout; a large black spot on the posterior half of the spinous dorsal, and another between the anal spines. D. XV, 6-9; A. III, 5. Lat. l, ca. 45 (Giinther)
. MACROCMIR, 1.
ar. Necond anal spine one-fifth of the length; highest dorsal spine three in head; eye twico as long as snout; a dark blotch on membranes between first and third dorsal spines, and one from sixth to eleventh spine (Bean)ALASCANUS, 2.

1. SEBASTOLOBUS MACROCHIR (Giinther).

Sebastes macrochir, Günther, Ann. Mag. Nat. Hist. (4), xx, 434 (Japaỉ); id., Challenger shore fishes, p. 65, pl. xxvii, 1880 (Inland Sea of Japan, off Inosima, 345 fathoms). This species, first described from Japan, has beon found to be quite abundant off the coast of the United States.

2. SEBASTOLOBUS ALASCANUS, Bean.

Sebastotobus alascanus, Bean, Proc. U. S. Nat. Mus., xiur, 1890, p. 44 (1891). (Off Trinity Island, West Long. 154°, North Lat. 56°, at a ciepth of 159 fathoms.) It is probable that this is only the young of macrochir.
II. Genus SEBASTICIITHYS, Gill.

Sebastichthys, Gill, Proc. Acad. Nat. Sci. Phila. 1862, p. 278 (nigrocinctus).
Sebastichthys, Jordan and Gilberit, Proc. U. S. Nat. Mus. iif., 1880, p, 287 (sp.) (1881).
'TYpe.-Sebastes nigrocinctus, Ayres.
When originally defining it Dr. Gill included in this gemus the types which he afterwards* separater under other generic names. As here mulerstoon it comprises three species which are well separated from all other related genera by the prominent characters set forth in the key. The parictals in all three species cover all but a small posterior part of the supraoceipital. A fouth species which I have not seen (diplopron) seems to form an aberrant member of the genus.

ANALYSIS OF THE SPECIES OH SE1BASTICHTHYS,

a. Gill-rakers short spatulate or clavate, their broadened tips spiniferous. Lower pectoral rays thickened and fleshy. Sides with cross bands.
b. Cranial ridges very rough, spinous; frontals with high crests between the eyes which sometimes end in coronal spines. Orange red, with 5 jet black vertical bars. A. III, 7; D. XIII, 15
nighocinctus, 1.
bb. Cranial ridges smooth; frontals without crests.
c. Scales of head ctenoid; cranial ridges very high, their spines isolated, high and heavy. Nuchal spines distinct from parietal spines. Dark olive, with about 7 oblique black cross bands. A. III, 5; D. XIII, 13.... serriceps, 2.
cc. Scales of head eycloid; eranial ridges very low and long, the spines slender, acute. No nuchal spines. Pink or rose red with brilliaut crimson cross bands rubrivinctus, 3. ad. Gill-rakers long, slender, the longest half length of eye. Lower pectoral rays not enlarged.
d. Premaxillaries produced on each side of median line, forming two forwardly-projecting dentigerons lobes in the deep emargination, between which fits the tip of the mandible. Preorbital one-thixd pupil, with two strong diverging spines. Eye larger, $3-3 \frac{1}{2}$ in head; interorbital, $1 \frac{2}{3}$ in orbit, slightly concare. Longest dorsal spine, 23 in head. Second anal spine longer aud stronger than third, $2 \frac{1}{2}-3$ in head. Scales large, minntely spinons, and readily deciduous, very small and cycloid on maxillary, mandible, and breast. Fin membranes thick and scaled. Uniform rose-red above, bright silvery below, sparsely black-puuctate. Peritoneum jet black. Spinous dorsal with dusky margins, the fins otherwise unmarked. Depth, $2 \frac{3}{4}$; head, $2 \frac{1}{2}$. D. XIII, 12 or 13 ; A. III, 7; tubes, 35 (Gilbert)

DIPLOPROA, 4.

1. SEBASTICHTHYS NIGROCINCTUS (Ayres).

Sebastes migrocinctus, Ay1es, Proc. Cal. Acad. Sci., II, 1859, pp. 25, 217, fig. 54. Sebastichthys nigrocinctus, Gill., Proc. Acad. Nat. Sci. Phila., 1862, pp. 278, 329.Jordan and Gilibert, Proc. U. S. Nat. Mus. III, 1880, p. 455 (1881) (Puget Sound, Monterey Bay).-Jordan and Jouy, Proc. U. S. Nat. Mus. 1881, p. 7, iv (1882) (Mouterey and Puget Sound).-Jordan and Ghbibert, l. c., p. 59.-Bean, l. c., p. 264 (Puget Sound, Vancouver Island) ; Proc. U. S. Nat. Mins. vi, 1883, p. 360, (1884), (Near St. Mary Island, Alaska).-Jordan, Cat. Fish. N. Am., 1885, p. 108 (California).
Sebastodes nigrocimetus, Jordan and Ghlment, Syn. Fish. N. Am., p. 677, 1883, (San Francisco to Vancourer Island).-Eigenainn and Eigenmann, Amu. N. Y. Acad. Sci., 1892, p. 355 (Monterey, San Francisco. P'uget Sound).

Habitat. Monterey to Alaska. Rare.

The spines of the cranimm in this species are as high as those in serriceps. To those of serviepss are added median firontal ridges. With age the spines, as well as the fiontal ridges, become broken into a large number of tubereles or spines so that the individuals of the pimary spines ran hardy be separated from each other. The frontal ridges in this way sometimes give rise to a tuberele corresponding in position to the coronal spines of A Actospina. The mncons canal system is very highly developer in this species. The specimens examined are from San Francisco and Monterey.

2. SEBASTICHTHYS SERRICEPS, Jordan and Gilbert.

Sebastichthys sericeps, Jomban and Gibibert, 1’roc. U. S. Nat. Mus. inf, 1880, p. 38 (1881) (Santa Catalina; Santa Barbara) ; op. cit., p. 455 (San Erancisco, Monterey, Santa Barbara, San Pedro, San Diego).-Johoan and Jour, Proc. U. S. Nat. Mus. Iv, 1881, p. 7, (1882).-Jomdan and Gilibert, l. c., p. 59 (San Diego to Sin Francisco).-JondaN, Cat. Fish. N. An., p. 108, 1885 (hame).-Eigenmann and Eigenmann, Notes, Sam Diego Biol. Lab. i, p. 7, 1889 (San Diego).
Sebastodes sericeps, Jordan and Gilbert, Syu. Fish. N. Am., p. 676, 1883 (San Francisco to Cerros Island).-Eigenmann and Eigenamnn, Iroc. U. S. Nat. Mus. XV., 1892, 1, 168 (1893), San Diego); id., Aun. N. Y. Acad. Sci., 1892, 3555 (San Diego, Cortes Bank, San Pedro, Santa Barbara, Monterey, San Francisco).
Habrtat. - San Diego to San Francisco.
This is one of the smaller spereses and is abmulant in shallow water. On the Cortes Bank I have taken it in 15 fathows.
3. SEBASTICHTHYS RUBRIVINCTUS, Jordan and Gilbert.

Sebastichthys rubrivinctus, Jordan and Giliekt, Proc. U. S. Nat. Mus., III, 1880, p. 146 (1881), (Monterey) ; op. cit., p. 291 (Santa Barbara, Monterey, San Francisco) ; op. cit., p. 455--Jordan aud Jouy, Proc. U. S. Nat. Mus., 1v, 1881, p. 7 (1882), (Monterey)-JoRDAN and Gilbeht, 1. c., p. 57-Eigenmann and Eigenmann, Notes San Diego Biol. Laib., 1, 1). 7, and Ir, p. 1, 1889 (San Diego).
Sebastodes rubrivinctus, Jordan and Gilibert, Syn. Fish. N. Am., p. 670, 1883 (Santa Barbara to Monterey)-Jordan, Cat. Fish. N. Am., p. 108, 1885 (name)-Eigenmann and Eigenmann, Proc. U. S. Nat. Mus., 1892, p. 167 (San Diego) ; id., Ann. N. Y. Acad. Sci., 1892, p. 355 (San Jiego, Cortes Bank, Santa Barbara, Monterey).
Habitat.-San Diego to Monterey.
This species is only occasionally taken. The specimens examined are from San Francisco, San Diego, and Cortes Bank.

4. SEBASTICHTHYS DIPLOPROA, Gilbert.

Sebastichthys diplopron, Gilbert, Proc. U. S. Nat. Mus., xim, 1890, p. 79 (1891), (coast of California, south of Point Conception).
Sebastodes diploproa, Eigenmann and Eigenmann, Amn. N. Y. Acad. Sci., 1892, p. 35 (Santa Barbara).

Habitat, - Coast of California, south of Point Conceptions

This species has not been seen by us, and we place it in this genus with some hesitation. Dr. Gillbert informs us that the parietals are united.
III. Genus ACUTOMENTUM, Ei世enmann and Boeson.

Acutomentum, Eigenaminn and Beeson, Amer. Nat., July, 1893 (ocalis).
'I'Ye.-Sebastodes ovalis, Aybes.
This gemus is composed of about four species. While these agree with each other in the technical chamater's distinguishing the gemus, they show considerable variation in other characters. A. melenostomus approarhes Sebastichthys. in shape of head and body. A. ovetis, on the other hand, is a compressed fish with narrow head. In this last species the sharp chin from which the genus derives its name is most conspicuous.

ANALYSIS OK THE SPECLES OF ACUTOMENTUM

a. Nuchal spines; skull wide, concave between the large postocular spines. Lining of mouth and of gill-cavity black. Short and deep; head heavy; month large; lower jaw projecting, maxillary rathing to helow posterior border of pupil. Eye cqual to snout, $3_{\bar{\circ}}^{2}$ in head. Interorbital $4 \frac{3}{4}$ in head, preorbital 3 in orbit, with an anterior simple and a posterior many pointed spine. Maxillary, mandible, preorbital, and snont scaly. Scales of opercle rather large; neales of the sides very large; accessory seales few. Gill rakers $3 \frac{1}{2}$ in orbit. Dorsal spines very low, about 4 in head; anal spines graduated. Scarlet, shading into madder brown or blackish red above the lateral line. Fins vermilion, the first dorsal, with its membranes, narrowly black edged. All other fins more or less black on distal half, the candal most so. Head vermilion, tinged with black. Head $3 \frac{1}{1}$ in the total length; D. XIII, 13; A. III, 7;
 au. Nuchal spines or none; gill cavity dusky. Elongate. General appearance of Sebustomus proriger. Head pointed, lower jaw projecting, maxillary reaching to below posterior margin of eye, 2 in head. Interorbitalslightly convex, without ridges. Cranial ridges low, obscure, but all tezminating in sharp spines; pre-supra- and postocular, tympanic aud occipital spines present. Eyesmall; orbit $1 \frac{2}{5}$ in snout, $4 \frac{3}{4} \mathrm{in}$ head, $1 \frac{1}{6}$ in interorbital. Preorbital $\frac{3}{5}$ of an orbital diameter, with 3 retrorse spines below, the posterior the smallest; a retrorse spine just below the orbit. Opercular spines simple and strong. Mandible, maxillaries, suborbitals, and entire snout sealed. Scales of the head small and strongly ctenoid, those of the body larger. Outlines of spinons dorsal regularly arched, the 4 th and 5 th spines highest, 3 in the head; highest articulate ray 8^{2} in the heal. Anal spines graduated, the second being stronger but considerably shorter than the third, which is $5 \frac{1}{3}$ in the head; highest ray 3 in the head. P'ectorals extending somewhat beyond the ventrals. P'eritoneum black. Top of head and back chielly black, lateral line vermilion; a blackish band just below the lateral line becoming much wider forward and extending on the sides below the fifth dorsal spine. A large opercular spot, a broad band downward and backward from eye, a narrow one across cheeks below the eye, lips and tip of lower jaw chiefly black; the rest of the head and sides chiefly vermilion. Anal and ventrals vermilion; pectorals and candal blackish; dorsals nearly black. Axils dusky. Head 3 in the total length; depth 33 ${ }^{\frac{3}{9}}$; D. XIII, $13 \frac{1}{2}$; A. III, $7 \frac{1}{2}$ macdonaldi, 2.
aaa. No nnchal spine; skull convex between the postocular spines. Lining of month and of gill-cavity pale. Cranial ridges low. Dorsals low.

Lower spines of preopercle short and flat, the second not reaching base of third. Highest dorsal spine $2 \frac{1}{2}$ in head. Oval, deep, compressed. Lower jaw with an aente, antrorse symphyseal knob. Preorbital narow, with a sharp retrorse spine. Gill rakers long, $1 \frac{1}{2}$ in orbit. Eje little longer than snout. Second anal spine longer and stronger than third, $2 \frac{1}{3}$ in head. Maxillary and mandible scaly. Peritoneum black. Head olivaceus, strongly tinged with creamy red, especially below; mombrane of both dorsals covered with many small, round, black spots; similar spots usually on tho body. Head 3; depth $2 \frac{3}{4}$; D. XIII, 14; A. III, 8; tubes 70.
ovalis, 3.
$b b$. Lower spines of preopercle large, the second reaching beyond base of third. Second anal spine eularged, much stronger and longer than third, $2 \frac{1}{3}$ in head; highest dorsal spino $2 \frac{3}{4}$ in head. Caudal peduncle $\frac{1}{4}$ the depth; maxillary extending to middle of pupil, $2 \frac{1}{3}$ in head; interorbital space flat, $1 \frac{1}{3}$ in orbit. Eye $3 \frac{7}{3}$ in head. Preorbital very narrow, lobate, but without spines. Scales small, rough; those above lateral line much smaller than others and irregularly disposed; those on breast, suout, maxillary, and mandible smooth. Gill rakers 2 in orbit. Dusky above, with faint traces of darker blotehes along back. A dark blotch on opercle, one on subopercle, and one on upper half of axil. Top of head, inclnding membrane of premaxillary, dusky. Spinous dorsal with a dark marginal band; other fins, except pectorals, margined with black. Peritonemm black. Heal $3 \frac{2}{3}$; depth $3 \frac{1}{3}$; D. XIII, 1כ゙; A. III, 8; tubes 50 [Gilbert]

ALUTUM, 4.

1. ACUTOMENTUM MELANOSTOMUM, Ei もnmann and Eigenmann.

Sebastodes melanostomus, Eigenmany and Eigenminn, Proc. Cal., Acad. Sci. 2d Ser., III, 1. 17, 1890 (San Diego) ; id. Proc. U. S. Nat. Mus., Xv, 1892, 1. 164, (1893), (San Diego); iul. Ann. N. Y. Acad. Sci. 1892, p. 355.

Sebastichthys introniger, Gilbert, Proc. U. S. Nat. Mas., XiII, 1890, p. 81 (1891) (coast of California south of Point Conception).
Sebastodes introniger, Eigenmann aud Eigenmann, Ann. N. Y. Acad. Sci., 1892, 1. 355.

Hamitat.-Coast of California south of Point Conception.

2. ACUTOMENTUM MACDONALDI, Eigenmann aud Beoson.

Sebastodes proriger, Eigenmann and Eigenmann, Proc. Cal. Mead. Sci., 2d Ser. iIf, p. 15 (San Diego), not S. proriger, Jordan and Gilibert.
Acutomentum macdonaldi, Eigenmann and Beeson, Amer. Nat., July, 1893 (San Diego).
Habitat.-Off San Diego in 100 fathoms.
This species is known from a single specimen in the cational Musenm. In gencral appearance it resembles N. proriger, with which it was for a time confonnded. The original description is reproduced in the key.

3. ACUTOMENTUM OVALIS (Ayres).

Sebastodes ovalis, Ayres, Proc. Cal. Acad. Sci., 1862, p. 212, fig. 65-Jordan and Gifbert, Syn. Fish. N. Am., p. 660 (coast of California)-Eigenmann aud Eigenmann, Proc. U. S. Nat. Mus., xv, 1892, p. 163 (1893), (San Diego); id., Ann. N. Y. Acad. Sci., 1392, 1, 355 (San Diego, Cortes Bank, Santa Barbara, Monterey).
Sebastichthys ovalis, Jordan and Gribert, Proc. U. S. Nat. Mus., ili, 1880, p. 143 (Monterey Bay) ; 1. 455 (Monterey Bay, Santa Barbara)-Jordan and Jour,
 l. c., 1. 56 ; Jordan, Cat. Fish. N. Am., 1). 107, 1885-Digenmann and EigenMann, Notes San Diego Biol. Lab., I, p. 7, and If, p. 1, 1889 (San Diego). Habitat.-San Diego to Monterey.

4. ACUTOMENTUM ALUTUM, Gilbert.

Sebastichthys alutum, Gilbert, 1'roc. U. S. Nat. Mus., Xiri, 1890, 1. 76 (1891) (coast of California south of Point Conception).
Sebastodes alutum, Eigenmann and Eigenmann, Ann. N. Y. Acad. Sci., 1892, p. 3 ั!.

Habitat.-Coast of Southern California.
This species seems to resemble A. rufus. If the parictals are separate it must be transferred to Sebestomus. The species is known from the types only.
IV. Genus PRIMOSPINA, Eigenmann and Boeson.

Primospina, Eigenmann and Beeson, Amer. Nat., July, 1893 (mystimus).
Type.-Sebastichthys mystimus, Jordan and Gilibert.
This genns is composel of only two variable species. The skull is thick, and there is greater rariation in the presence or absence of spines in different individuals of the same species, than in any of her genus. Preocular spines are always developed, but suprancular and tympanic spine are present in some individuals and not in others. The parietal ridges end in spines in one species but mot in the other. From this genns as a center have been developed in one direction the genera Sebustosomus, Sebustones, and Sehestomns. In another direction I'teropodus, Auctospiuct, and still in another A Automentum and seluestichthys have become differentiated.

ANALYSIS OF THE SPECHES OF PRIMOSI'INA.
a. Parictal ridges not terminating in spines. Oblong, depth 23 ; slaty black, paler below the lateral liue; sides more or less mottled \qquad . Mystinus, 1. aa. Parietal ridges ending in spines. Oblong elongate, depth $3 \frac{1}{4}$; dull olive green; sides with obscure ronnd, rusty spots ENTOMELAS, 2.

1. PRIMOSPINA MYS'INUS (Jordan amd (i illbert).

Sebastes variabilis, Ayres, Proc. Cal. Acad. Sci., I, 1, 7, 18:̈4 (San Francisco). [not of Pallas.]
Sebastodes melanops, AYres, Proc. Cal. Acad. Sci., 1I, p. 216 (in part).
Sebastichthys melanops, Jordan amk Gilbert, Proc. U. S. Nat. Mus., ini, 1880, p. 287.-Eigenmann and Eigenmann, Notes San Diego Biol. Lab., i, 1. 5, and 1I, 1. 1, 1889 (Cortes Bank, San Diego).
Sebastichthys mystimus, Jordan and Gilbert, Proc. U. S. Nat. Mus., im, 1880, p. 455 (1881), (Puget Sound, Sau Francisco, Monterey, Santa Barbara, San Pedro, San Diego).-Jordan and Jouy, Proc. U. S. Nat. Mus., iv, 1881, p. 8 (1882), (Monterey, San Francisco).-Jordan and Gilbert, 1. c., p. 70.Bean, l. c., p. 265 (Puget Somil).-Jolidan, Cat. Fish. N. Am., p. 107, 1885 (California).
Sebastodes myslinus, Jordan and Gilbert, Sjun. Fish. N. Am., p. 659, 1883 (1'uget Sound to San Diego).-Ergenmann aud Eigenmann, Prec. U. S. Nat. Mus.,

Proc. N. M. $94-25$

Xr, 1892, p. 163 (1893), (San Diego); id., Amn. N. Y. Acad. Sci., 1892, p. 355 (San Diego, Cortes Bank, San Pedro, Santa Barbara, Monterey, San Francisco, Puget Sound).
Habitat. - San Diego to Puget somed.
This species raries more than any other in its armatme and in the degree of convergence of the parietals, farts whirh leme weight to the supposition that it is the central species about which the others are grouped. The specimens examined are from San Franciseo and show the following variations:

Indiridual rariations in Irimospina mystinus.

Catalogue No. of specimen.	Parictals.	Inter- aul sub-opercular spines.		Postocular spines.	Tympanic spines.
1085.	Separate				Knob.
1360.	Joined.	Slight	Present		Do.
1171.	. . . do	Slight			1 Do.
1087.	\ldots do.	Prescut.	Present	Present	Knols.
1093.	Separate			1 present	Do.
$\begin{aligned} & 1137 . \\ & 1190 . \end{aligned}$	Joined	Presea	$\begin{aligned} & \text { Preser } \\ & \text {-.do } \end{aligned}$	$\begin{gathered} 1 \text { knob } \\ \text { _. . } \end{gathered}$	Knob. 2 spine
1115	Separate			2 short spines	2 knobs.

2. PRLMOSPINA ENTOMELAS (Jordan and Gilbert).

Sebastichthys entomelas, Jomdan and Gilbert, Proc. U. S. Nat. Mus., hi, 1880, p. 142 (1881), (Monterey Bay) ; op. cit., p. 455 (San Francisco, Monterey Bay).Jordan and Jouy, Proc. U. S. Nat. Mins., iv, 1881, p. 8, (1882), (Monteres).Jordan and Gilbert, 1. c., p. 56.-Jordan, Cat. Fish. N. Am., p. 107, 1885.
Sebastoies entomelas, Jordan and Gilbert, Syn. Fish. N. Am., p. 659, 1883 (Mouterey).-Eigenmany and Eigenmanx, Ann. N. Y. Acad. Sci., 1892, p. 35 (Port Harford, Monterey, San Francisco).
Habitat.-Port Harford to San Francisco, Cal.
This speces is only provisionally placed here. We have not examined it, but Mr. F. C. Test informs us that the parietals are mited, and that the parietal ridges end in minute spines. lu the last point this species agrees with the genus A cutomentum, but the absence of postocular and the occasional absence of supracular and tympanic spines unite this variable species with tine variable Primospina.

Y. Genus SEBASTOSOMUS (Gill).

Sebastosomus, Gill, Iroc. Acad. Nat. Sci. Phila., 1861, p. 147 (melanops).-EIGENmanN and Beeson, Amer. Nat., July, 1893 (redefined).
TYיE.-Sebastes melanops, Girard.
This genus differs from all others in the fart that no cranial spines are developed.

ANALYSIS OF THE SPECIES OF SEIBASTOAOMUS.
a. Peritoneum white.
b. Snout acuminate, tho lower jaw strongly projecting, entering the profile. Anal truncate or subtruncate.
c. Eye large, 1 in snout, 1 in interorbital, 4 in head. Tips of nasal spines free. Parietal ridges well doveloped. Highest dorsal spine $2_{5}^{2}-23$ in hoad. Pala-
tine band of teeth of nearly miform width. Olivaceous, yellowish on sides, lighter below. Sides with rusty spots usually near the tips of scales. Base of spinous dorsal sometimes spotted. Second dorsal, caudal, and anal bright orange, margined with black. An orangestreak down and back from eye, a broader one back from eye, a narrow one on maxillary. Pectorals and ventrals orange or brassy, blackish tipped. Head 3; depth about 3; D. XIII,

cc. Eye smaller, $1_{\frac{1}{3}}$ in snout, $1 \frac{1}{4}-1 \frac{1}{5}$ in interorbital, $4 \frac{1}{2}$ in head. 'Tips of nasal spines concealed. Highest dorsal spine $2_{5}^{4}-3$ in the head. Band of palatine. teeth usually much narrower at the middle than at the ends. Gray, darker above, with a series of large light spots on the back. Fins colored like the body, the second dorsal, the candal, and anal yellowish. Head 3; depth
 bb. Snout blunt, lower jaw scarcely projecting. Anal rounded. Eje slightly more than 4 in the head. Highest dorsal spine $2 \frac{1}{2}-3$ in head. Pectorals rounded, not reaching tips of veutrals. Dark gras, with small darker spots. Black spots on base of spinous dorsal. Head 3; depth 3-35 ; D. XIII, 13 $\frac{1}{2}$; A. III, $7 \frac{1}{2}-8 \frac{1}{2}$
. Melanops, 3.
aa. P'eritoneum black. Mouth smaller than in melanops, the maxillary reaching to below posterior margin of pupil; lower jaw somewhat projecting but without prominent knob at the symplysis; preorbital narrow without spine; lower jaw fully scaled; highest dorsal spine a little less than half head. Gill rakers numerons, very long and slender, nearly as long as the eye. Head $3 \frac{1}{3}$; depth $3 \frac{1}{3}$; D. XIII, $15 \frac{1}{2}$; A. III, $8 \frac{1}{2}$. Blackish green, the sides rather pale, much mixed with darker; fins dusky, the upper mottled; dark shades from eye backward. (Jordan and Gilbert) ciliatus, 4.

1. SEBASTOSOMUS FLAVIDUS (A y res).

Sebastodes flavidus, Ayers, Proc. Cal. Acad. Sci., p. 209, fig. 64, 1862.-Lockington, Proc. Cal. Acad. Sci., Vii, p. 81, 1876 (San Francisco).-Jordan and Gilbert, Syn. Fish. N. Aim., p. 657, 1882 (coast of California). -Eigenmann and Eigenmann, Notes San Diego Biol. Lab., I, p. 5, 1889, in part (San Diego); id., Proc, Cal. Acad. Sci., 2d ser., Iur, p. 36, 1890 (Sau Diego); id., Proc. U. S. Nat. Mus., 1892, p. 163 (San Diego); id., Ann. N. Y. Acad. Sci., 1892, p. 354 (San Diego, Cortes Bank, Santa Barbara, Monterey, and San Francisco).
Sebastichthys flavidus, Jorinan and Ginhert, Proc. U. S. Nat. Mus., ini, 1880, p. 455 (San Francisco, Monterey, San Pedro, San Diego). - Jordon and Jour, Proc. U. S. Nat. Mus., 1881, p. 8 (Monterey, and San Francisco).-Jordan and Gilbert, Proc. U. S. Nat. Mus., 1881, p. 55 (San Diego to Cape Mendocino, Monterey).-Jordan, Cat. Fish. N. Am., p. 107 (California).
Habitat. - San Diego to Puget Sound.
2. SEBASTOSOMUS SERRANOIDES (Eigenmann and Eigenmann).

Sebastodes flarifus, Eifiexmann and Eigenmans, Notes San Diego Biol. Lal)., i, p. 5, 1889 (San Diego), in part [not flavidus of Ayres]; id., Proc. U.S.Nat. Mus., 1892, p. 163 (San Diego) ; id., Ann. N. Y. Acad. Sci., 1892, p. 354 (San Diego).
Sebastodes serranoides, Eigenmann and Eigenmann, Proc. Cal. Acad. Sci., 2d ser., iII, p. 35, 1890 (Sau Diego) ; id., Proc. U. S. Nat. Mus., 1892, p. 163 (San Diego) ; id., Ann. N. Y. Acad. Sci., 1892, p. 354 (San Diego, Cortes Bank, Monterey, San Francisco).

Habitat.-San Diego to San Francisco, in rather shallow water.
The specimens examined are from San Diego and San Francisco.

3. SEBASTOSOMUS MELANOPS (Girard).

Sebastes melanops, Giraned, Proc. Acad. Ňat. Sci. Phila., 1854, viri, p. 135.-Girard, U.S. Pac. R. R. Surv., 1858, x, p. 81 (Cape Flattery to Astoria).-Güntimer, if, p. 98 , 1860 (copied).-SuCKLEy, U.S. Pac. R. R. Surv., 1860, xif, p. 354 (Puget Sound).-Ayres, Proc. Cal. Acad. Sci., fig. 66, 1862.-Lockington, Proc. Cal. Acad. Sci., 1876, p. 81 (San Francisco).
Sebastichthys melanops, Giraild, Proc. Acad. Nat. Sci., Phila., 1862, p. 278.—Jordan \& Jouy, Proc. U. S. Nat. Mus., IV, 1881, p. 8 (1882) (Neah Bay, Washington, Monterey, San Frameisco).-Jordan and Gilbert, Proc. U. S. Nat. Mus., IN, 1881, P. 56 (1882) (Monterey northward).-Bean, Proc. U. S. Nat. Mus.. w, 1881, p. 252 (1882) (Mouterey, San Francisco, Puget Sound, Sitka); and p. 269 (Alaskan peninsula to or beyoud San Francisco).-Jordan, Cat. Fish. N. Am., p. 107, 1885 (California).
Sebastodes melanops, Eigenmann and Eigenmann, Amm. N. Y. Acad. Sci., vi, 1892, p. 354 (Monterey, Alaska).

Sebastosomus simulans, Gille, I'roc. Acad. Nat. Sci., Phila., 1864, p. 147 (Cape Flattery).
Habitat.-Monterey to Alaska.
We have been mable to recognize s. simulans from the following note constituting its sole description "* * * two species are apparently confounded by Ginard and the name Sebostes melanops, one with 'a small spine upon the suprascapular bone, two others upon the edge of the opercle, and another from Cape Flattery with the lower opercular spine as well as the supraorbital ridges obsolete, and the forehead between the eyes perfectly arched."

1. SEBASTOSOMUS CILIATUS ('Tilos).

Épinephelus ciliatus, Thees, Mém. Acad. Sci., St. Petersburg, iv, p. 474, 1810.
Sebastichthys ciliatus, Jordan and Jouy, Proc. U. S. Nat. Mus., IV, 1881, p. 8 (1882) (Kodiak).—Bean, Proc. U. S. Nat. Mus., IV, 1881, p. 252 (1882) (Aleutians; Kodiak) ; and pp. 267 and 271 (Alaska); op. cit., 1883, p. 359 (Mary Island; Tolstoi Bay, Alaska; Nakat Harbor, Pt. Chester, Alaska).-Jordan, Cat. Fish. N. Am., p. 107, 1885 (Alaska).
Sebastodes ciliatus, Jordan and Gilbert, Syn. Fish. N. Am., p. 658, 1883(Alaska).Eigenmann and Eigenmann, Amn. N. Y. Acad. Sci., 1892, p. 355 (Alaska).
Perca variabilis, Pallas, Zoogr. Rosso. Asiat., III, p. 241, 1811.
Sebastes variabilis, Cuvier and Val., iv, p. 347, 1829.-Günther, Cat. Fish. Brit. Mus., 1I, p. 99, 1860.
Habitat.-Alaska.
VI. Gemus SEBASTODES, Gill.

Sebastodes, Grll, Proc. Acad. Nat. Sci., Phila., 1861, p. 165 (paucispinis) ; Ligenmann and Bieeson, Amer. Nat., July, 1893 (redetiued).
'Type.-Sebastes paucispinis, Ayres.
Dr. Gill rightly insisted that Sebustes pancispinis, Ayres is generically distinct from N. nigrocinctus, ete. Such a separation is, however, arlmissible only if the heterogenous species, usually lumped under the generic name Sobustichthys, we relegated to their respective genera. The genus approaches sobustomus through S. goorlei. The genus Sebastomus, on the other hand, closely approaches this genus through S.
clongatus. In the weak eranial armature it elosely approaches Sebostosomus flavidus, etc.

ANALYSIS OF THE SPECIES OF SEBASTODES.
a. Preopercular spines radiating, the two lowest directed downward. Head heary, broad, the lower jaw not greatly projecting. Posterior angle of mandible below middle of orbit. Clear vermilion, no black anywhere; fins vermilion, membranes of dorsal dusky. A. III, 8 ; tubes in lateral line 54.... GOODEI, 7. ad. Preopercular spines all directed caudad, the two lower ones remote from the rest and much smaller. Head long, pointed, the lower jaw much projecting. P'osterior angle of mandible bchind the orbit orange red, darker above, many irregular dark blotehes and dots; young olivaceous. A. III, 9; tubes in lateral line $65-80$, scales $90-100$ paucispinis, 2.

1. SEBASTODES GOODEI, Eigenmanu and Eigenmann.

Sebastodes goodci, Eigenmann and Efgenmann, Proc. Cal. Acad. Sci., 2d ser., ime, p. 12, 1890 (San Diogo), p. 36 (Sau Francisco) ; icl., Proc. U. S. Nat. Mus., xv, $1892,1.163$ (1893) (Nan Diego) ; id., Ams., N. Y. Aead. Nei.. 18:2, p. 35t (Nan Diego, Monterey, San Francísco).
Sebastichthys goodei, Grlbert, Proc. U. S. Nat. Mus., xir, 1890, p. 75 (1891) (Coast of California, sonth of Point Conception).
Habitat.-San Diego to San Francisco. Locally abundant.

2. SEBASTODES PAUCISPINIS (Ayres).

Sebastes paucispinis, Ayres, Proc. Cal. Acad. Sci., I, p. 6, 1851 (San Francisco).Girard, U. S. Pac. R. R. Surv., vi, p. 15, pl. xxija, figs. 1-4, 1855 (San Francisco) ; op. cit., x, p.83, pl. xiia, figs. 1-4, 1858. -Günther, Cat. Fish. Brit. Mus., II, p. 98, 1860.
Sebastodes paucispinis, Gill, Proc. Acal. Nat. Sci., Phila., 1861, p. 165.-Ayres, Proc. Cal. Acad. Nei., 1862, 1. 215.-Gill, Proc, Acad. Nat. Sci., Phila., 1862, p. 278 (California).-Jordan and Gilibert, Proc. U. S. Nat. Mus., III, 1880, p. 455 (1881) (San Francisco, Monterey, San Luis Obispo, Santa Barbara, San Pedro).—Jordan and Jouy, Proc. U. S. Nat. Mus., Iv, 1881, p. 8 (1882) (Santa Barbara, Monterey, San Francisco).-Jordan and Gilbert, l. c., p. 55 (from San Francisco to the Santa Barbara Islands).-BEAN, l.c., p. 472 (Port McLaughlin, Brit. Columbia).-Jordan and Gilbert, Sỵn. Fish. N. Am., p. 656, 1883 (Coast of California).-Jordan, Cat. Fish. N. Am., p. 107, 1885.Eigenmann and Eigenmann Note, San Diego Biol. Lab., i, p.5, 1889 (Cortes Bank) ; id., Proc. U. S. Nat. Mus., xv, 1892, p. 163 (1893) (Cortes Bank, Sau Diego) ; id., Ann. N. Y. Acad. Sci., 1892, p. 351 (San Diego, Cortes Bank, San Pedro, Santa Barbara, Port Harford, Monterey, San Francisco).
Habitat. -San Diego to British Columbia. Abundant.

VII. GENUS ALLIED TO SEBASTOMUS.

Perca variabilis, Pallas, Zoogr. Rosso. Asiat., ifi, p. 241, 1811 (in part).
Sebustes matzubarte, Hiliknborr, Sitzher. (iesellschaft Naturforschender Freminde Berlin 1880, p. 170.
Sebastodes matzubara, Jordan, Proc. Acad. Nat. Sci., Phila., 1883, 291.
Habitat. - Aleutian Islands.
This species is known to ns from deseriptions only. It seems to form the type of a genus related to Sebustomus, but we leave the
detemination of its generic relationships to some one who has specimens.
VIII. GENUS SEBASTOMUS, Gill.

Sehastomus, Grle, Proc. Acad. Nat. Sci., Phila., 1864, 1. 147 (rosaceus/.
TYPE.-Seberstes rosaceus, Girard.
The species of this gemus are all closely related. The armature of the skull varies but little. S. mber, with broken cranial ridges, stamds at one extreme, S. lexis at the other. The bulk of the species have several pale spots on the sides which are similarly arranged in the different species.

ANAIYSIS OF THE SPLCLES OF SEBASTOMUS.
a. Cranial ridges entire.
b. Median portion of interorbital with a convex ridge. Cranial ridges low, bones of cranium striate or granular; symphyseal knob projecting nearly as in Sebustosomus flavidus; second anal spine little longer or stronger than third.
c. Gill-rakers very long, $1 \frac{1}{2}$ in orbit; scates all ctenoid.
d. Supraoular, postocular, and tympame spines tubercular or pyramidal, very broad and short, directed upward more than back-

* ward. Dorsal spines $2 \frac{3}{4}$ in head. Symphyseal knob very sharp. Numerous accessory scales above lateral line and on tail. Anal spines graduated, slightly more than 3 in head. Outlines of spinous dorsal little arched. Compressed, elongate. Maxillary reaching to middle of eye. Interorbital slightly couvex, as wide as orbit or little wider. Eye longer than snout $3 \frac{1}{2}-4$ in head. Preorbital 4 in orbit, with 2 small, backward directed spines. Head entirely covered with moderate-sized scales, body with larger ones. Rufous, variously marked with brown. Lateral line rufous. Upper angle of operele, a line from eye to upper half of pectoral, another parallel to it from upper angle of maxillary backward, and tips of jaws dark brown. Axil black. Margin of spinous dorsal and greater part of membranes of soft dorsal black. Caudal dasky. Membranes of remaining fins chiefly black. Hear 3; depth $3 \frac{1}{2}$; D. XIII, 14; A. III, 8. Tubes in lat. I. 56 \qquad d九. Supraocular, postocular and tympanic spines all slender, conical, their acute tips directed backward more than upward. Dorsal spinesabout 2_{4}^{2} in head. Symphyseal knob blunt. Accessory scales few. Head broad, the interorbital 3 in the distance from tip of smont to base of occipital crest. Mandible, maxillary, and tip of snout scaly. Membranes of spinous dorsal not greatly incised.
c. Scales of mandible very rough; color chiefly brick red..... miniatus, 2.
ee. Scales of mandible smooth; color chiefly orange............. PinnigFr, 3. cc. Gill-rakers short, not more than three times as high as wide. Scales of head cyeloid, those of body weakly ctenoid; accessory scales numerous. Head narrow, the interorbital $4 \frac{3}{亏}$ in the distance from tip of suout to base of occipital crest. Mandible, maxillary, and tip of snout naked. Highest dorsal spine little less than half length of head, the mem-
brane of the first three spines meeting the succeeding spines at their basal fifth. Second anal spine thick: Pink. Four interrupted crossbars of black..... Levis, 4: bb. Median portion of the interorbital deeply grooved; bones of cranium smooth polished; gill-rakers rather short; accessory scales numerons; second anal spine usually much strouger and longer than third. Upper parts (except in gilli and rupestris) with three to five pink blotches, one below end and o:te below origin of soft dorsal; one below middle of spinous dorsal just above the lateral liue, frequently a smaller one above this near the base of the fin; usually one at the base of the fourth dorsal spine.*
f. Dorsal spines moderate, considerahly less than half length of head.
g. Preorbital with three flat spines. Maxillary and mandible entirely sealed; secoud anal spine little longer than third, considerably shorter than the rays, $2 \frac{1}{3}$ in the head. Pink overlaid with bronze; top of head, and back above lateral line bronze, the five spots pink. Sides below the lateral line finely vermiculated with bronze, which occupies more space than the ground color. Dorsal light bluish-piuk clouded with bronze, the rays of all the other fins pink, the membrane bronze. D.XIII, 12-13; A.III, 6 ; tnbes 37 40

EREUS, 5.
gg. Preorlital with two flat spines.
h. Upper half of borly everywhere with conspicuous small round pink spots. Scales of the cheeks all minute, a few scales on upper part of maxillary and at angle on lower jaw. Interorbital narrow and very deeply concave .consteldatus, 6 .
$h h$. Not marked with small round white or pink spots.
i. Gill-rakers two in orbit; both jaws with smooth, small seales, interorbital $\frac{?}{5}$ width of eye, supraocnlar ridge low. Many accessory scales. Pectoral not reaching vent. Light orange, every where overlaid with blackish, the latter color forming fine reticulations on lower part of sides. Light spots of sides large, ill defined. Head, $2 \frac{3}{5}$; depth, 2_{5}^{*}; D.XIII, 12; A.III, 6 umbrosus, 7.
ii. Gill-rakers three or more in orbit.

[^106]j. Without bronze spots.
k. Mandible naked; second anal spine moderate; pale blotches on sides surrounded by purple. Orange red, tinged or mottled with golden yellow. Fins rosy, mottled with orange; head with radiating stripes of orange and rosy; nape with alternating bars of yellowish and deep red. Second anal spine $2 \frac{1}{3}$ in head; head, $2 \frac{2}{8}$; depth, 3 ; D.XIII, 13; A.III, 6. rosaceus, 8.
$k k$. Mandible finely scaled near its base; second anal spine equal to maxillary, 2 in head. Bright rose red; region above lateral line with much deep green, the green replaced by golden below the lateral line. Top of head with cross bars of green and red. Green streaks radiating from eyes. Head, 21 ; depth, 3 ; D.XIII, 14; A.III, 6 ; tubes, 58 .

ji. Dorsal surface rather closely covered with small, round, bronze spots, which extend upon the membrane of the soft dorsal. Series of confluent brouze spots form radiating streaks on sides of head; lower lip and anterior part of maxillary dusky. A few conspicuous spots on base of pectoral. A light spot under last dorsal spine, one on opercular flap. Mandible entirely naked; maxillary with a few scales medially. Preorbital with an anterior and a posterior spine. Interorbital nearly evenly concave, the median groove shallow. Upper three preopercular spines directed backward. Second anal spine $3 \frac{1}{2}$ in head. Lower jaw projecting; no symphyseal knob. Head, 3; deptl, 3; D.XIII, 132 ; A.III, $7 \frac{1}{2}$. Pores in lateral line, 44 or 45 gilli, 10. gqg. Preorbital very narrow, its least width less than one-fourth pupil, lobate and without spine. Jaws oqual, maxillary reaching beyond middle of pupil; ego $2_{\frac{t}{5}}$ in head, longer than snout or interorbital, whose least width is one-half the orbit. Nuchal spines present. Longest dorsal spines 3 in head, second anal spine $2 \frac{2}{3}$ in head. Pectorals short, $1_{6}^{5}-2$ in head. Snont naked or nearly so. Scales on maxillary and mandible minute and smooth, little evident. Fins with a thick membrano covered with fine seales. Five dark bars on back, two elongate black streaks below lateral line. A black blotch on middle of ventrals, a bar at base of pectoral and in axil. Head, $2 \frac{1}{2}$; depth, $2 \frac{5}{6}-3$; D.XIII, 13; A.III, 7. Pores in lateral line, 31.
.-.. Rupestris, 11. ff. Dorsal spines little if any less than half length of head.

1. Mandibles scaled, except about the pores; maxillary evenly scaled. Preorbital with a posterior spine only ; interorbital flattish, with a deep median groove, $1 \frac{2}{5}$ in orbit; orbit 4 in head; second anal spine $2 \frac{3}{3}-3$ in length of head. Peritoneum white or dusky. Spinous dorsal deeply incised, the membrane of the fifth spine meeting the sixth spine near its basal fourth. Highest spine 2-2 $\frac{1}{2}$ in head. Head and body intense rose pink. Back and dorsal finindistinctly marked with raw sieuna, fins colored like the body. D. XIII, 13; A. III, 16; tubes in latewal line, $37 \ldots$ eos, 12.
ll. Mandibles entirely maked; maxillary with it few scales above; preorbital with an anterior simple spine, or a pos-
terior simate 3 to 4-pointed spine. Interorbital deeply soncave with a deep median groove, $1 \frac{3}{4}$ in orbit; orbit $3 \frac{1}{2}$ in head. Second aual spine 2^{2} in leugth of head. Peritoneum very dark, olivaccous above, sides pinkish and golden; four pink spots placed as in rosaceus but less distinct. Body above lateral line with numerous well-defined spots of olive green. Fins nearly plain red; base of dorsal spotted with olive. D.NLII, 13; A.II; 6; tubes, 50 ... au. Cranial ridges of the adult broken and armed with accessory spines. (iill-rakers short clavato. Accessory scales numerous. Second anal spine little larger or longer than third. Jaws naked. Interorbital with a median groove. Color chiefly deep vermilion. D.XIII, 14; A.III, 7; tubes in lateral line, 50. ruber, 14.
2. SEBASTOMUS RUFUS (Eigenmann and Eigenmann).

Sebastodes rufus, Eigenmann aud Eigenmann, Proc. Cal. Acad. Nat. Sci., $2 d$ ser., III., p. 13, 1890 (San Diego) ; id. Proc. U. S. Nat. Mus., Xv, 1892, p. 163, 1893 (San Diego) ; iu. Ann. N. Y. Acad. Nat. Sci., 1892, p. 355 (San Diego).
Habitat.-San Diego.
This species is known from the types only. In many of its characters it greatly resembles Acutomentum. The parietals are nearly tonching for a considerable distance in the single specimen at hand. It is probable that the parietals are normally muited aud that this species should be placed near Acutomentum clutum, Gilbert.
2. SEBASTOMUS MINATUS (Jordan and Gilbert).

Sebastichthys miniatus, Jordan and Gilbert, Proc. U. S. Nat. Mus., ini, 1880, p. 70, (1881) (Santa Barbara, Monterey, San Francisco) ; op, cit., p. 455 (San Francisco, Monterey, San Pedro, Santa Barbara).-Jordan aud Jouy, Proc. U. S. Nat. Mus., Iv, 1881, p. 8 (1882) (Monterey, San Francisco).-Jordan and GilBeirt, l. c., p. 57 (Santa Barbara to San Francisco).-Jordan, Cat. Fish. N.
 I, p. 5, 1889 (Cortes Bank).
Sebastodes miniatus, Jordan and Gilbert, Syn. Fish. N. Am., p. 663, 1882 (San Francisco to San Diego).-Eigenmann and Eigenmann, Proc. U. S. Nat. Mis., Nv, 1892, p. $16 t$ (1893) (San Diego); id., Ann. N. Y. Acad. Sci., 1892, p. 355. (San Diego, Cortes Bank, San Pedro, Santa Barbara, Port Harford, Monterey, San Francisco).
Habitat.-San Diego to San Francisco.
This species is very abundant in the waters of sonthern California. The specimens examined are from San Diego and San Francisco.

3. SEBASTOMUS PINNIGER (Gill).

Nehastodes rosacens, Ayers, Proc. Cal. Acad. Sci., 186², p. 216, fig. 62 (not Sebastes rosaceus, Girard).
Sebastosomus pinniger, Gill, Proc. Acad. Nat. Sci., Phila., 1864, pp. 59, 147.
Sebastichthys pinniger, Jordan aud Gilbert, Proc. U. S. Nat. Mus., inf, 1880, pp. 72, 455 (1881) (Puget Sound, Sau Francisco, Monterey).-Jordan and Jouy, Proc. U. S. Nat. Mus., 1881, p. 8 (Monterey, Neah Bay, San Francisco, Puget Sound).-Jordan and Gilbeirt, Proc. U. S. Nat. Mus., Iv, 1881, p. 57 (1882) (Monterey northward).-Bean, l. c., 1881, p. 265 (Puget Sound).-Jordan, Cat. Fish. N. Am., p. 107, 1885.

Sebastodes pinniger, Jordan and Gllibert, Syn. Fish. N. Am., p. 662, 1883. (Monterey northward).-Eigenmann and Eigenmann, Proc. Cal. Acad. Sei. 2d ser., III, p. 16, 1890 (San Diego) ; id., Proc. U. S. Nat. Mus., Xv, 1892, p. 164 (1893) (San Dicgo); id., Ann. N. Y. Acad. Sci., 1892, p. 355 (San Diego to Puget Sound).
Habitat. - San Diego to Puget Sound.
This spreies is thenorthern form of miniatus. It is rare in the soutlo but abundant northward.
4. SEBASTOMUS LEVIS (Eigenmann and Eigenmann).

Nebastichthys leris, Eigenmann and Eigenmann, Notes San llego Biol. Lab., i, p. 6, and II, p. l (Cortes Bank, San Diego).
Sebastodes levis, Eigienmann anel Eigenmann, Proc. Cal. Acad. Sci., $2 d$ Ser., III, p. 36 (Monterey) ; id., Proc. U. S. Nat. Nat. Mus., xv, 1892, p. 163 (1893) (San Diego); id., Ann. N. Y. Acad. Nat. Sci., 1892, p. 355 (San Diego, Cortes Bank).
Habitat.-San Diego north to San Francisco.
This is the largest of the rock cod, reaching a weight of 30 pounds. It is abundant on the coast of sonthern California.
5. SEBASTOMUS EREUS (Eigonmann and Eigenmann).

Sebastodes qereus, Eigenmann and Eigenminn, Proc. Cal. Acad. Sci., 2 d ser., ili, p. 20 (San Diego) ; id., Proc. U. S. Nat. Mus., XV, 1892, p. 165 (1893) (San Diego); id., Ann. N. Y. Acad. Sci., 1892, p. 355 (San Diego).
Habitat. -San Diego. .
This species is rather rare at San Diego. In all characters but the parietals the single specimen now in the National Museum agrees with this genus. The parietals are, however, unquestionably united in this specimen. The other specimens we have not been able to examine in this respect. For the present we have thought best to place this species in the genus Sebastomus.
6. SEBASTOMIUS CONSTELLATUS (Jordan and Gilbert).

Sehastichthys constellatus, Jordan and Gilbert, Proc. U. S. Nat. Mis., iiI, 1880, p: 295 and 455 (1881) (Santa Barbara Channel, San Francisco, Monterey).Jordan and Jouy, Proc. U. S. Nat. Mus., Iv, 1881, p. 8 (1882).—Jordan and Gilbert, l. c., p.57.—Jordan, Cat. Fish. N. Am., p. 108 (1885).-Eigenmann and Eigenmann, Notes San Diego Biol. Lab., I, p. 7 (Cortes Bank).
Sehastodes conslallatus, Jombin and Ginbert, Syn. Fish. N. Am., p. 655., 18×3 (Coast of California, San Francisco southward).-Eigenmann and Eigenmann, Proc. U. S. Nat. Mus., Xv, 1892, p. 165 (1893) (San Diegro) ; id., Ann. N.Y. Acad. Sci., 1892, p. 355 (San Francisco, Monterey, Santa Barbara, Sau Diego).
Habitat.-San Diego to San Francisco. Abundant.
The specimens cxamined are fiom San Joiego, Santa Barbara, and San Francisco.

7. SEBASTOMUS UMBROSUS (Jordan and Gilbert).

Sebastichthys umbrosus, Jordan and Gilbert, Proc. U. S. Nat. Mus., v, 1882, p. 410 (1883) (Santa Barbarib).-Jordan, Cat. Fish. N. Am., p. 108, 1885 (California).

Sebastodes umbrosus, Jordan aud Gilbert, Syn. Fish. N. Am., p. 950, 1883 (Santa Barbara).-Eigenmann and Eigenmann, Ann. N. Y. Acad. Sci., 1892, p. $35 \overline{5}$ (Santa Barbara).
Habitat.-Santa Barbara.
This species is known from the types only.

8. SEBASTOMUS ROSACEUS (Girard).

Sebastes rosaceus, Grrard, Proc. Acad. Nat. Sci., Phila., 18:51, p. 146; U. S. Pac. R. 1R. Surv., vi, 1855, p. 14, pl. xxi (San Francisco); l. c., x, 1858, p. 78, pl. xxi (poor figure frou specimen in bad condition).-Günther, Cat. Fish. Brit. Mus., in, p. 98, 1860 (copied).-Lockingion, Proc. Cal. Acad. Sci., 1876, p. 79 (San Francisco).
Sebastichthys rosacens, Gill, Proc. Acad. Nat. Sci., Phila., 1862, p. 278.-Jordan and Gilbert, Proc. U. S. Nat. Mus., iII, 1880, p. 455° (188i) (San Francisco, Monterey, Santa Barbara).-Jordan and Jouy, Proc. U. S. Nat. Mus., iv, 1881, p. 8 (1882) (Sau Francisco, Mouterey).-Jordan and Gilbert, 1. c., 1881, p. 57 (San Francisco to Santa Barbara).-Jordan, Cat. Fish. N. Am., 1. 108, 1885 (California).-Eigenmany and Eigenmany, Notes San Diego Biol. Lab., r, p. 7, and If, p.1, 1889 (Cortes Bank, San Diego).
Sebustodes rosaceus, Jordan and Gilbert, Syn. Fish. N. Am., p. 666, 188: (Coast of California).-Etgenalann and Eigenmany, Proc. U. S. Nat. Mus., xy, 1892, p. $16 t$ (1893) (San Diego); id., Amm. N. Y. Acad. Sci., 1892, p. 355 (San Diego, Cortes Bank, Santa Barbara, Monterey, San Fraucisco).
Sebustes helvomaculatus, Ayres, Proc. Cal. Acad. Sci., ir, p. 26, 1859, fig. 8.Lockington, Proc. Cal. Acad. Sci., 1876, p. 79 (San Francisco).
Habitat. - San Diego to San Francisco.
The specimens examined are fiom San Diego and San Francisco.
9. SEBASTONUS RHODOCHLORIS (Jordan and Gilbert).

Sebastichthys rhodochloris, Jordan and Gilbert, Proc. U. S. Nat. Mus., in, 1880, p. 144 (1881) (Monterey); and p. 455 (San Francisco and Monterey Bay).Jordan and Jouy, Proc. U. S. Nat. Mus., iv, 1881, p. 7 (1882) (San Francisco, Monterey).—Jordan and Gilizert, l. c., 1881, p. 57 (Monterey and Faral--lones).-Jordan, Cat. Fish. N. Am., p. 108, 1885 (California).
Sebastodes rhodochloris, Jorman aud(illbert, Syn. Fish. N. Am., p. 667, 1882 (Monterey and San Francisco).-Eigenmann and Eigenmana, Aua. N. X. Acad. Sci., 1892, p. 355 (Monterey, San Francisco).
Habitat.-Monterey to San Francisco, off the coast.
This species is abundant in the San Francisco markets, where it is confounded with the closely allied rosaceus.
10. SEBASTOMUS GILLI (R. S. Eigenmann).

Sebastodes gilli, R. S. Eigenmann, Amer. Nat., Xxv, p. 154, 1891 (Point Loma).Eigenmann and Eigenmann, Proc. U. S. Nat. Mus., Xv, 1892, p. 165 (1893) (San Diego) ; id., Aun. N. Y. Acad. Sci., 1892, p. 355 (San Diego).
Habitat.-San"Diego, in about 100 fathoms. Known from the types only.

11. SEBASTOMUS RUPESTRIS (Gilbert).

Sebastichthys rupestris, Gilbert, Proc. U. S. Nat. Mus., Xin, 1890, p. 76 (1891) (Coast of California, south of Point Conception).

Sebastodes rupestris, Eigenmann and Eigenmann, Ann. N. Y. Acad. Sci., 1892, \mathbf{n}. 355.

Habitat.-Off southern California, in deep water. Known only from the collections of the U.S. F. C. steamer Albatross.
12. SEBASTOMUS EOS (Eigonmann and Eigenmann).

Sebrstodes cos, Eigenmann and Eigenmann, Proc. Cal. Acad. Sci., 1890, $2 d$ ser., ni, p. 18 (San Diego) ; id., Proc. U. S. Nat. Mus., Xv, 1892, p. 165 (1893) (San Diego); id., Ann. N. Y. Acad. Sci., 1890, p. $35 \overline{5}$ (San Diego).
Habitat.-Ofí San Diego in deep water; not rare.
13. SEBASTOMUS CHLOROSTIC'US (Jordan and Gilbert).

Sebastichthys chlorostictus, Jordan and Ghibert, Iroc. U. S. Nat. Mus., III, 1880, p. 294 (1881) (Monterey) ; and p. 455 (San Francisco and Monterey) ; op cit., 1881, p. 57 (Monterey and Farallones).-Jordan, Cat. Fish. N. Am., p. 108, 1885 (California).-Eigenmann and Eigenmann, Proc. U. S. Nat. Mus., Xi, 1888, p. 465 (1889) (San Diego) ; id., Notes San Diego Biol. Lab., I, p. 7 (San Diego).
Sebastodes chlorostictus, Jordan ant Gmbibert, Syn. Fish. N. Am., p. 668, 1882 (Monterey and San Francisco).-Eigenmann and Eigenmann, Proc. U. S. Nat. Mus., Xv, 1892, p. 165 (1893) (San Diego); id., Ann. N. Y. Acad. Sci., 1892, 1. 355 (San Diego, Cortes Bank, Port Harford, Monterey, San Francisco).

Habitat.-San Diego to San Francisco; abundant.

14. SEBASTOMUS IRUBER (A y res).

Sebastes ruber, Ayres, Proc. Cal. Acad. Sci., 1854, pp. 5, 7 (San Francisco); id., Proc. Boston Soc. Nat. Hist., 1855, p. 97 ; id., Proc. Cal. Acad. Sci., 1862, p. 215.-Lockington, Cal. Acad. Sci., 1876, p. 79.

Sebastichthys ruber, Jordan and Gilbert, Proc. U. S. Nat. Mus., 1II, 1880, p. 455 (1881) (Puget Sound, San Franciseo, Monterey̧, Santa Barbara). -Jomdan and Jouy, Proc. U. S. Nat. Mus., Iv, 1881, p. 8 (1882) (Monterey, San Francisco, Puget Sound).-Jordan and Gilbert, l. c., 1881, p. 57 (Santa Barbara north-ward).-Bean, l. c., 1881, p. 252 (Santa Barbara, Monterey, San Fraucisco, off Port Bingham, Jacob's Island, Gulf of Alaska) and pl. 269, 271, 472 (Alaska to or beyoud San Francisco; Kygani St., Alaska).-Jordan, Cat. Fishes N. Am., p. 108, 188 (California).-Eggenmann and Ergenmann. Notes San Diego Biol. Lab., 1, p. 6, and ir, p. 1, 1889 (San Diego).
Sebastodes ruber, Jordan and Grlbert, Syn. Fish. N. Am., p. 665, 1882 (Pacific Coast, Santa Barbara northward). -Eigenmann and Eigenmann, Proc. U. S. Nat. Mus., Xv, 1892, p. 164 (1893) (San Diego); id., Ann. N. Y. Acad. Sci., 1892, p. 355 (San Diego, Cortes Bank, San Pedro, Monterey, San Francisco, Alaska).
Habitat.-San Diego to Alaska; abundant, aud one of the largest species.
IX. Genus PTEROPODUS, Eigenmann and Beeson.

Pteropodus, Eigenmany and Beeson, Amer. Nat., July, 1893 (maliger).
Type.-Sebastichthys maliger, Jordan and Gilbert
This genus is composed of a number of species showing considerable variations in the gill-rakers and in the cranial structure. The gill-rakers are shortest in rostrelliger and longest and slenderest in maliger. The eranial spines are lowest in rostrelliger and highest in mebulosus. In the shape of the body clongutus is closely related to suxicolla and proriger. The latter species are long and slender and have
thin pectoral rays. They probably live off the bottom. Those with thickened pectoral rays are, for the most part, heavy, and probably live on the bottom much of the time. The genus approaches Selonstichthys in its cranial armature, usually naked branchiostegals and lower jaw, and in the large mucus pores of the lower jaw. It differs from that genus in its separate parietals.

ANALYSIS OF TIE SPECIES OF PTEROPODUS
a. Lower pectoral rays not thickened. Maxillary, mandible, and branchiostegals more or less sealed.
b. Buccal and gill cavities and peritoneum jet black. Pale below, dusky above, blotched with reddish and black; a blackish blotch on opercle; fius dull reldish, irregularly marked with blackish, candal mostly red, sometimes witle a black terminal bar. Short and deep, heavy anteriorly with slender caudal peduncle. Maxillary reaching beyond pupil, $2 \frac{1}{5}$ in head; jaws equal, the lower mostly included, but with a projecting symphyseal knob. Eye, 2 量 3 in head; snout, $4{ }^{2}-6$. The two lower preopercular spines directed downward and backward, the others back. Two or three strong preorbital spines. Gill-rakers short, 5 in orbit. Highest dorsal spine, $2 \frac{1}{3}$ in head. Second anal spine, 2 in head. Scales small, not regularly imbricated, smooth and cycloid, except those on occiput and a few along the lateral line on posterior part of body; snont naked, maxillary and mandible only partly scaled. Head, 21 ${ }^{\frac{1}{2}}$ depth, 3; D.XIII, 12; A.III, 5; tubes, 40-45. (Gillert).................... sinensis, 1.
bb. Buceal and gill cavity white.
c. Three or four brownish bars on sides, reduced to dorsal blotches in the adult; one on occiput, one including front of dorsal, one under posterior rays of dorsal, one under soft dorsal, and one on back of tail. Conspicuous olive-brown spots on caudal, usually confined to base aud upper lobe of fin. Maxillary reaching to posterior margin of pupil, $2 \frac{1}{4}$ in head. Eye, $2 \frac{3}{4}-3 \frac{1}{4}$ in head, much longer than snout or interorbital width. Interorbital flattish, without ridges. Preorbital one-third pupil, with two strong triangular lobes ending in spines. Cranial ridges low. Preopercular spines directed backward. Giill-rakers slender, $2 \frac{1}{2}$ in orbit. Highest dorsal spine, $2 \frac{1}{2}$ in head. Second anal spine, $2-2 \frac{1}{3}$ in head. Scales rough-etenoid on breast, maxillary, mandible, and suout. Head, $2{ }_{5}^{2}-2 \frac{3}{3}$; depth, $3-3 \frac{1}{4}$ in the length. D.XIII, 12 or $13 ;$ A.III, 7 ; tubes, 45. (Gilbert)
samicola, 2.
ec. No crossbars.
d. Olive-green, marbled with darker; sometimes brownish; no red anywhere.

Body oblong, not tapering rapidly. The lower jaw somewhat projecting. Maxillary extending to beyond pupil, 2 in head. Eye, $3 \frac{1}{2}$ in head. Cranial ridges low. Preorbital very narrow, with two stout spines. Second preopercular spine longer and slen-
derer than the others. interorbital space broad and slightly convex, widened backward, a littlo depressed on each side next the superocular spine. Gill-rakers sleudex, 3 in eye. Preorbital scaly; maxillary partly scaly; mandible with some smooth scales. Dorsal deeply emarginate, the highest spine 2 in head. Head, 3; depth, 24: D.XIII, 14; A.III, 6; Lat.
1., 52.

ATROVIRENS, 3.
dd. Interrupted longitudinal, olive-green bands on the sides over a ground of light red; upper fins blotehed with olive, lower pale red. Maxillary reaching to posterior part of orbit, $2 \frac{1}{2}$ in head. Eye, $3 \frac{1}{3}$ in head; interorbital concave. Gill-rakers about 3 in eye. Highest dorsal spine, $2 \frac{3}{4}$ in head. Second anal spine, 2 in head. Peritoneum dusky. Head, 23 ; depth, $3 \frac{1}{3}$: D.XHI, 13;
A.III, 6
. ELONGATUS, 4.
aa. Lower pectoral rays thick and fleshy.
e. Elongate, lower jaw projecting and with a strong symphyseal knob. Maxillary, mandible, and branchiostegals densely scaled. Light red blotches under third dorsal spine and uuder the first and last dorsal rays. General color bright light red, mottled above with dusky olive-green; opercle with a dusky blotch; caudal bright red, speckled with dark olive. Mouth small, the short maxillary extending to beyond the middle of the eye, $2 \frac{1}{4}$ in head. Eye very large, longer than snout; preorbital narrow. Interorbital convex, nearly as broad as eye. Gill-rakers slender, 2 in orbit. Highest dorsal spine, 3 in head.
f. Second anal spine much longer and stronger than the third, $2 \frac{1}{8}$ in the head. Peritonenm black. Head 3; depth $3 \frac{1}{2}$; D. XIII, 13; A. III, 7 ... PRORIGEI, 5. $f f$. Second aual spine shorter than the third; peritonerm white.

BREVISPINIS, 6.
ee. Body short and deep; lower jaw scarcely projecting, or, the jaws equal. g. Gill-rakers long, about 2 in orhit.
h. Peritoneum jet black; clorsal spines low, $2 \frac{1}{3}-2 \frac{1}{2}$ in head. Elongate, caudal peduucle 3_{5}^{3} in depth of body. Maxillary reaching vertical from middle of pupil, $2 \frac{1}{3}$ in head. Lower jaw slightly the longer. Eye much longer than snout, $3-3 \frac{1}{4}$ in head. Interorbital somewhat concave, $1 \frac{0}{8}$ in diameter of orbit. Preorbital withoutspines, extremely narrow, its least width two-sevenths pupil. Preopercular spines directed backward. Second anal spine very long, $1 \frac{1}{2}-1 \frac{1}{5}$ in head. Scales rough ctenoid, those on maxillary, mandible, and breast smoother. Five vaguely defined black bars on back. 'Two black streaks backward from eye, the upper terminating in a conspicuous blotch on opercle. Head 2 ; depth $3 \frac{1}{3}$; D. XIII, 14 or 15 ; A. III, 7 or 8 ; tubes 42 (Gilbert)
zacentrus, 7.
hh. P'eritonemm pale; median part of interorbital with a deep groove.
i. Dorsal spines high, littlo less than head less opercle, their membranes deeply incised. Jaws equal. Yellowish brown, anterior part of the back and sides usually clear yellow; breast yellow ; anterior part of body closely covered
with round spots of orange. Soft fins slaty black, the pectorals and dorsal paler at loase and specklod. Head 23 ; profile steep; depth 21. D. XIII, 13; A. III, 6. T'ubes in lateral line 47inger, 8. ii. Dorsal spines moderate, 2 in head; lower jaw projecting. Three straight dark erossbars, one from nape across base of pectoral, one from between sixth and seventh dorsal spines toward anns, a half one from eighth to tenth dorsal spines to lateral line, a broutcer one below soft dorsal. These bars extend onto the dorsal fin. A few smali dark spots on base of pectorals and on shoulder; sides of tail more or less mottled. Dark streaks radiating from eye. Maxillary extending bejond eye, about $2 \frac{1}{3}$ in head. Eye equals snout, $3 \frac{7}{7}$ in head; considerably more than interorbital width. Interorbital concave; two strong ridges dividing it into a median and two lateral grooves. Preorbitalnarrow, with two flat processes. Preopercular spines directed backward. Gill-rakers about 2 in orbit. Second anal spine $2 \frac{1}{3}$ in head. Maxillary, mandibles, and suout maked. Scales mostly cycloid. Head 3; depth 3; D. XIII, 147 ; A. III, $6 \frac{1}{2}$ \qquad Dallif, 9.
g9. Gill-rakers, four or more iu eye.
j. Interorbital nearly flat, the supraocular ridges scarcely raised, cranial ridges all low, the spines directed backward.
k. Gill-rakers higher than wide. Peritonemm white. Dorsal spines 2 in head or longer.

1. Dark brown varied with light brown CAURINUS, 10. ll. Lemony ellow to dark brick red, color variable. Frequently light Wlotches arrangerl as in clirysomelas. D. XIII, 16; A. III, 6 . \qquad Vexillaris, 11.
$k k$. Gill-rakers scarcely higher than they are wide. Peritoneum brownish. Dorsal spines about $2 \frac{1}{2}$ in head. Blackish green, spotted with darker and with lighter. D. XIII, 13; A. III, 6 RASTRELLIGER, 12.
$j j$. Interorbital deeply concave, the supraocular ridges high. Cranial ridges all high, the spines directed backward and usually upward and outward.
m. Dorsal spine a little more than half length of head; parietal ridges very high; pale blotches on sides, forming a continuous lateral band. Body and fins profusely speckled with pale; dark markings black, pale markings yellow. Head 3; depth 23; D. XIII, 13; A. III, 7; tubes 49 NEBULOSUS, 13. mm . Dorsal spines not more than half length of head; pale blotches on sides not forming a continuous lateral band. Occipital ridges moderate. A series of four light spots along the base of the dorsals.
u. Yale markings flesh-color; dark markings olivaceous. Scales rougher, cranial ridges lower, parietal spines lower and narrower. Spinous dorsal higher, 2 in head, its membranes more deeply incised than in chrysomelas
carnatus, 14.
nn. Pale markings yellow, dark markings Wlackish. Dorsal spines $2 \frac{1}{4}$ in head. Head $2 \frac{3}{4}$; depth $23 ; 1$. XIII, 13; A. III, 6 ; tubes 46 Chrysomelas, 15.
2. PTEROPODUS SINENSIS (Gilbert).

Sebastichthys sincnsis, Gilbert, Proc. U. S. Nat. Mus., xiff, 1890, p. 81 (1891) (Santa Barbara).
Sebastodes simensis, Eigenmann aud Eigenmann, Anin. N. Y. Acad. Sei., 1892, p. 355 (Santa Barbara).
Habitat. -Santa Barbara.
This species is known only from the types collected by the Llbatross.

2. PTEROPODUS SAXICOLA (Gilbort).

Sebastichthys saxicola, Gllierit, Proc. U. S. Nat. Mus., xif, 1890, p. 78 (1891) (Coast of California south of Point Conception).
Sebastodes saxicola, Eigenmanñ and Eigenmann, Ann. N. Y. lead. Sci., 1892, p. 355 (Santa Barbara).
Habitat.-Coast of southern California; known only from the types.
3. P'TEROPODUS ATROVIRENS (Jordan and Gilbert).

Sebastichthys atrovirens, Joikdan and Gilbert, Proc. U. S. Nat. Mus., inf, 1880, pp. 27, 289, \& 455 (1881) (San Diego, Cataliua Island, San Pedro, Santa Barbara, San Luis Obispo, Monterey, San Francisco)-Jordan and Jouy, Proc. U. S. Nat. Mus., IV, 1881, p. 8 (1882) (San Pedro, Santa Barbara, Monterey, San Francisco)-Jordan and Gilbert, 1. c., p. 561 (San Francisco to San Diego)-Jordan, Cat. Fish. N. Am., 1). 107, 1885.
Sebastodes atrovirens, Jordan and Gilbert, Syn. Fish. N. Am., p. 662, 1883 (Coast of California)-Eigenmann and Eigenmann, Proc. U. S. Nat. Mus., Xv, 1892, p. $16 t$ (1893) (San Diego) ; id., Ann. N. Y. Acad. Sci., 1892, p. 355, (San Diego, Cortes Bank, Santa Barbara, Port Harford, Monterey, San Francisco).
Habitat.-Coast of California from San Diego to San Francisco.
We are indebted to Mr. F. (. Test for an examination of the skull of this species.

4. PTEROPODUS ELONGATUS (Ayres).

Sebastes elongatus, Ayres, Proc. Cal. Acat. Sci., 1899, p. 26, fig. 9.
Sebastichthys elongatus, Jordan and Gilbert, Proc. U. S. Nat. Mus., iri, 1880, pp. $143 \& 455$ (1881) (Monterey, San Francisco)—Jordan and Jouy, Proc. U. S. Nat. Mus., IV, 1881, p. 8 (1882) (Monterey, San Francisco)—Jordan and Gilbert, l. c., p. 56-Jordan, Cat. Fish. N. Am., p. 108, 1885 (California)Efienmann and Eigenmann, Notes San Diego Biol. Lab. i, p. 7 \& if, p. 1, 1889 (Cortes Bank, San Diego).
Sebastodes elongatus, Jordan and Gilibert, Syn. Fish. N. Am., p. 668, 1883 (Monterey and San Francisco)-Eigenmainn and Eigenmann, Proc. U. S. Nat. Mus., XV, 1892, p. 165 (1893) (San Diego); id., Ann. N. Y. Acad. Sci., 1892, p. 355 (San Diego, Cortes Bank, Monterey, San Fraucisco).
Habitat.-San Diego to San Francisco; abundant.
This is one of the smaller species.

ј. PTEROPODUS PRORIGER (Jordan and Gilbort).

Sebastichthys proriger, Jondan and Gibibert, Proc. U. S. Nat. Mus., iif, 1880, pp. 327 and 455 (Monterey, Farallones, San Francisco)—Jordan and Jouy, Proc. U. S. Nat. Mud., Iv, 1881, p. 8 (1882) (Monterey, San Francisco)-Jordan and Gilbert, l. c., p. 56 , (Monterey and Farallones)-Jordan, Cat. Fish. N. Am., p. 107, 1885.

Sebastodes proriger, Jordan and Gilbert, Syn. Fish. N. Am., pp. 661 \& 950,1883 (Coast of California)-Eigenmann and Eigenmann, Ann. N. Y. Acad. Sci., 1892, p. 355 (Monterey and San Francisco).
Habitat. - Monterey to San Francisco.
The specimen recorded by us as Sebastodes proriger from San Diego is Acutomentrom macionaldi.

6. PTEROPODUS BREVISPINIS (Beam).

Sebastichthys proriger brevispinis, Bean, Proc, U. S. Nat. Mus., vi, 1883, p. 359, (Hassler Harbor).
Sebastichthys brevispinis, Jordan, C'at. Fish. N. Am., p. 107, 1885 (Alaska).
Sebastodes proriger; Jordan and Gilbert, Syn. Fish. N. Am., p. 950,1883 (Alaska). Habitat.-Alaska.
This species replaces proriger in Northern waters.

7. PTEROPODUS ZACENTRUS (Gilbert).

Sebastichthys zacentrus, Gimbert, Proc. U. S. Nat. Mus., xiif, 1890, p. 77 (1891), (Santa Barbara).
Sebastotes zacentrus, Eigenmann ano Eigenmann. Ann. N. Y. Acad. Sci., 1892; p. 355 (Santa Barbara).
Habitat.-Santa Barbara.
This species is known only from the types.
8. PTEROPODUS MALIGER (Jordan and Gilbert).

Sebastichthys maliner, Jordan and Gilbert, Proc, U. S. Nat. Mus., 1880, im, pp. 322 and 455 (1881), (Farallones, Monterey Bay, Straits of Fuca).—Jordan and Jouy, Proc. U. S. Nat. Mus., 1881, p. 7 (1882), (Puget Sound, Monterey, San Francisco).-Jordan and Gilbert, l.c., p. 58 (Mouterey northward).-Bean, l. c., pp. 252, 269, 271-472 (Sitka, Port MeLanghlin, B. C.) -Bean, Proc. U. S. Nat. Mus., vi, 1883, p. 360 (1884), (Safety Cove, B. C.).-Jordan Cat. Fish. N. Am., p. 108, 1885.
Sebastodes maliger, Jordan aud Gilbert, Syn. Fish. N. Am., p, 673, 1883 (Monterey to Sitka).-Eigenmann and Eigenmann, Ann. N. Y. Acad. Sci., 1892, p. 355 (Monterey, San Francisco, Puget Sound, Alaskib). Habitat.-Monterey to Alaska.
This, one of the prettiest of the Scorpenidie, is not rare at San Francisco. The specimens examined are from that place.

9. PTEROPODUS DALLII (Eigenmann and Beeson).

Pteropodus dallii, EigenmanN and Beeson, Amer. Nat., 1894, p. 66 (San Francisco).
The single specimen of this species kuown is 200 mm . long. It belongs to the Indiana University and was probably collected by Mr. W. G. W. Harford, of the University of California. It is labeled S. auriculatus, var., aud in general appearance it resembles that species. The senlpturing of the skull and absence of coronal spines separate it distinctly from Auctospina. In coloration it seems to approach P. saxicola, but it differs from that species in the naked suout and mandible, in the grooved interorbital, etc. In its gill-rakers, white peritonemm, grooved

Proc. N. M. $94-26$
interorbital it approaches I. maliger, from which it differs in many features.

We have taken the liberty to name this species for Mr. William Healey Dall, of the U. S. (xeological Survey, who has been intimately identified with west-coast zoology for many years.
10. PTEROPODUS CAURINUS (Jordan and Gilbert)

Sebastes caurimus, Richardson, Voy. Sulph., p. 77, pl. 41, fig. 1, 1845.
Sebastichthys caurimus, Jordan and Gilbert, Proc. U. S. Nat. Mus., III, 1880, pp. 455,466 (1881), (Puget Sound).-Jordan and Jouy, Proc. U. S. Nat. Mus., IV, 1881, p. 7 (Puget Sound).—Jordan and Gilibert, Proc. U. S. Nat. Mus. iv, 1881, p. 58 (Puget Somal northward).-Bean, Proc. U. S. Nat. Mus., IV, 1881, pp. 252, 271, and 472 (1882), (Puget Sound, Old Sitka, Departure Bay, B. C., Rose Harbor, Queen Charlotte Island, Chacan, Alaska) ; Proc. U. S. Nat. Mus., Vi, 1883 p. 360 , (Duncans Bay, B. C., Departure Bay, St. Mary Island, Alaska).Jordan, Cat. Fish. N. Am., p. 108, 1885.
Sebastodes caurimus, Jordan and Gllibert, Syn. Fish. N. Am., p. 672, 1883 (Puget Sound to Sitka).-Eigenmann and Eigenmann, Ann. N. Y. Acad. Sci., 1892, p. 355 (Puget Sound, Alaska).
Habitat-Puget Sound to Alaska.
11. PTEROPODUS VEXILLARIS (Jordan and Gilbert).

Sebastichthys rexillaris, Jomban and (inmert, I'roc. U. S. Nat. Mus., H1, 1880, p. 292 (1881), (Santa Barbara Channel).-Jordan and Jouy, Proc. U. S. Nat. Mus., Iv, 1881, p. 7 (1882), (Monterey, San Francisco).-Jordan and Gilbert, l.c. p. 58 (San Diego to Puget Sound).-Eigenmann and Eigenmann, Proc. U. S. Nat. Mus., XI, 1888, p. 465 (1889), (San Diego).
Sebastichthys caurinus rexillaris, Jordan and Gilbert, Proc. U. S. Nat. Mus., III, 1880, pp. 455, 466 (1881), (Puget Sound).-Jordan, Cat. Fish. N. Am., p. 108 (Califoruia).
Sebastodes caurimus vexillaris, Jomdan and Gilbert, Syn. Fish. N. Am., p. 672, 1883 (California).
Sebastodes rexillaris, Eigenmann aud Eigenmann, Proc. U. S. Nat. Mus., xv, 1892 p. 167 (1893), (San Diego).-Eigenmann and Eigenmann, Ann. N. Y. Acad. Sci., 1892, p. 355 (San Diego, Cortes Bank, San Pedro, Santa Barbara, Monterey, San Francisco).
Sebastichthys carmatus, Eigenmann and Eighnmann, Notes San Diego Biol. Lab., I, p. 7,1889 (Cortes Bank) not carnatus of Jordan and Gilbert.
Habitat. - San Diego to Puget Sound.
Everywhere abundant and very variable. The specimens examined are from San Diego.

12. PTEROPODUS RASTRELLIGER (Jordan and Gilbert).

Sebustichthys rastielliger, Jomban and (imbert, I'roc. UT. S. Nat. Mus., ili, 1880, pp. 296, 455 (1881), (San Francisco, Monterey, San Lnis Obispo, Santa Barbara, Sau Pedro, Santa Catalina Island).-Jordan and Jouy, Proc. U. S. Nat. Mus., Iv, 1881, p. 7 (1882).-Jordan and Gilbert, Proc. U. S. Nat. Mus., Iv, 1881, p. 58 (1882), (Humboldt Bay).-Jordan, Cat. Fish. N. Am., p. 108, 1885.
Sebastodes rastrelliger, Joridan and Cinheret, Syn. Fish. N. Am., p. 671, 1883, (Coast of California).-Eigenamnn and Eigenmann, Proc. U. S. Nat. Mus., xv, 1892, p. 167 (1893), (San Diego); id., Amm. N. Y. Acad. Sci., 1892, p. 355 (San Diego, San Peilr?, Santa Barbara, Port Harford, Monterey, San Francisco).
Habitat. - San Diego to Humboldt Bay.

This is an aberrant species with very short gill-rakers and very thick lower pectoral rays. In its gill-rakers it approaches some of the species of Sebastomus. The specimens are from San Francisco and San Diego.

13. PTEROPODUS NEBULOSUS (Ayres).

Sebastes nebulosus, Ayres, Proc. Cal. Acad. Sci., 185⁄4, p. 5, (San Francisco).Ayres, Proc. Bost. Soc. Nat. Hist., 1854, p. 96.
Sebastichthys nebulosus, Gill, Proc.Acad. Nat. Sci. Phila., 1862, p. 278.—Jordan and Gilbert, Proc. U. S. Nat. Mus., iif, 1880, p. 455, (Puget Sound, San Francisco, Monterey).-Jordan and Jouy, Proc. U. S. Nat. Mus., 1881, Iv. p. 7 (1882), (Neah Bay, Monterey, San Francisco, Puget Sound).-Jordan and Gilbert, l. c., p. \&8, (Monterey to Puget Sound).-Bean, Proc. U. S. Nat. Mus., 1881, p. 265, and 1883, p. 360, (Puget Sound, Vancouver Island, near St. Mary Island, Alaska).-Jordan, Cat. Fish. N. Am.. p. 108, 1885.
Sebastodes nebulosus, Jordan and Gilbert, Syn. Fish. N. Am,, p. 676, 1883 (Vancouver Island to Monterey).-Eigenmann and Eigenmann, Anu. N. Y. Acad. Sci., 1892, p. 355 (Monterey, San Francisco, Puget Sound).
Sebastes fasciatus, Girard, Proc. Acad. Nat. Sci. Phila., 1854, p. 146; id., U. S. Pac. R. R. Surv., vi, p. 15, 1855 (San Francisco) ; op. 'cit., p. 78, pl. Xxif, 1858, (Presidio Bay, San Francisco).-Günther, Cat. Fish. Brit. Mus., iI, p. 104, 1860.
Sebastichthys fasciolaris (Lockington), Jordan and Gilbert, Proc. U. S. Nat. Mus., iII, 1880, p. 297 (1881), (San Francisco).
Habitat. - Port Harford to Puget Sound.

The specimens examined are from Port Harford.

14. PTEROPODUS CARNATUS (Jordan and Gilbert).

Sebastichthys carnatus, Jordan and Gilbert, Proc. U. S Nat. Mus., iif, 1880, pp. 73, 4in (1881), (Monterey, San Francisco, San Luis Obispo, Santa Barbara, San Pedro).-Jordan and Jouy, Proc. U. S. Nat. Mus., iv, 1881, p. 7 (1882), (San Francisco, Monterey).—Jordan and Gilbert, l. c., p. 58 .-Jordan, Cat. Fish. N. Am., p. 108, 1885.

Nebastodes carnatus, Jordan and Gilbert, Syn. Fish. N. Am., p. 674, 1883 (Coast of California).-Eigenahann and Elgenalann, Proc. U. S. Nat. Mus., xv., 1892, p. 168 (1893), (San Diego): id., Ann. N. X. Acall. Nat. Sci., 1892. p. 35.5 (Nan Diego, San Pedro, Santa Barbara, Port Harford, Monterey, San Francisco).
Habitat. - San Diego to San Francisco.
The specimeus examined were collected at San Francisco and San Diego.
15. PTEROPODUS CHRYSOMELAS (Jordan and Gilbert).

Sebastichthys nebulosus, Jordan and Gilbert, Proc. U. S. Nat. Mus., ini, 1880, p. 73 (1881) (not S. nebulosus of Ayres).
Sebustichthys chrysomelas. Jordan and Gilbert, Proc. U. S. Nat. Mus., inf, 1880, pp. 45 5 and 465 (1881) (from San Nicolas to Cape Mendocino)-Jordan and Jour, Proc. U. S. Nat. Mus., Iv, 1881, p. 58 (1882) (Santa Barbara, San Francisco).
Sebasticthys carnatus chrysomelas, Jordan, Cat. Fish. N. Am., p. 108, 1885.
Sebustodes chrysomelas, Jordan aud Gilbert, Syn. Fish. N. Am., p. 672, 1883. (San Francisco to San Diego)-Eigenmann and Eigenmann, Proc. U. S. Nat. Mus., xv, 1892, p. 167 (1893) (San Diego); id., Ann. N. Y. Acad. Sci., 1892, p. 35 ă (San Diego, San Pedro, Santa Barbara, Monterey, San Francisco).

Sebastichthys chrysomelas murpurens, Emimanann and Eigenmann. Notes San Diego Biol. Lab. I, p. 8, 1879 (Cortes Bank).
Habitat.-San Diego to San Francisco. Abundant and variable.
The specimens examined are from San Francisco.

> X. Genus AUCTOSPINA (Eigenmann and Beeson).

Auctospina, Eigenmann and Beeson, Amer. Nat., July, 1893 (auriculatus).
TYPE.-Sebastes auriculatus, Girard.
This genus is now known from two species. One of these inhabits the shallow bays and generally shallow waters not frequented by other species of this group. The other is as yet linown from deep water only, 260 fathoms.

The genus scems to us to be well characterized by the presence of coronal spines, a pair of spines on the frontals anterior to the origin of the parietal rideses. In auriculatus there is a blunt knob on the frontals between the coronal spines and the parietal ridges.

ANALYSIS OF THE SPECIES OF AUCTOSPINA.
a. Peritonemm black; maxillary nearly reaching vertical from posterior margin of orbit, $2 \frac{1}{4}$ in head; eye large, $3 \frac{1}{3}$ in head, much longer than snout or interorbital width; interorbital with a pair of strong ridges. Preopercular spines radiating; highest dorsal spine, $2 \frac{1}{2}$ in head; mandiblescaled; seales very rough ctenoil, those on breast, branchiostegal rays, and maudible rough. Uniform light below, a narrow black streak along edge of spinous dorsal, the triangular incised portion of membrane above it white (?). Depth, $2 \frac{3}{4}$; head, 21 ${ }^{2}$; D. XIII, 13 or 14; A. III, 6, Lat. line, $29 . . .-$............................. aurora, 1. $a a$. Peritoneum white; maxillary reaching boyond eye, $2 \frac{1}{8}$ in head; eye, $4 \frac{7}{2}$ in head, little longer than snout; interorbital with a median ridge; preoperenlar spines all directed backward; highest dorsal spine 2 in head; mandible naked; few scales on breast and maxillary. Blackish hrown, mottled; thished lirownish red! Depth, 21 ${ }_{2}$; head, $3 \frac{1}{5}$; D. XIII, 13; A. III, 7. Lat. line, 45. AURICULATUS, 2.

1. AUCTOSPINA AURORA (Gilbert).

Sebastichthys aurora, Gilbert, Proc. U. S. Nat. Mus., xili, 1890, p. 80 (1891) (Point Conception).
Sebustodes aurora, Eigenmann and Eifenmann, Amm. N. Y. Acad. Sci., 1892, p. 355.

Habitat.-Coast of southern California in deep water.
This species is known only from the flbatross' collections.

2. AUCTOSPINA AURICULATUS (Girard).

Sebastes auriculatus, Girard, Proc. Acad. Nat. Sci., Phila., 1854, pp. 131, 146; id., U. S. Pac. R. R. Surv., vi, p. 14, 1855 (San Francisco) ; id., X, p. 80, 1858 (Presidio, San Erancisco)-Ayres, Proc. Cal, Acad. Sci., 186', p. 215, fig. 68.
Sebastichthys auriculatus, (ille, Proc. Acad. Nat. Sci., Phila., 186き, p. 278-Jordan and Gilbert, Proc. U. S. Nat. Mus., III, 1880, p. 455 (1881) (Puget Sound, San Luis Obispo, Santa Barbara)-Jordan and Jouy, Proc. U. S. Nat. Mus., IV, 1881, p. 7 (1882) (mouth Russian River, Santa Barbara, San Francisco, Puget Sound)-Jordan and Gilbert, l. c., p. 58 (Santa Barbara to Puget

Sound)-Bean, l. c., p. 265 (Vancoutor Island)-Jordan, Cat. Fish. N. Am., p. 108, 1885 (California).
Sebastodes auriculatus, Jordan aud Gilbert, Sym. Fishes N. Am., p. 670, 1882 (Vanconvers to Cerros Island)-Eigenmany and Eigenmann, Proc. U. S. Nat. Mus., Xv, p. 1892, 167 (1893) (San Diego) ; id., Proc. U. S. Nat. Mus., xv, 1892, p. 167 (1893) (San Diego); id., Aun. N. Y. Acad. Sci., 1892, p. 355 (San Diego, Santa Barbara, Port Harford, Monterey, Sau Francisco, Columbia River, Puget Sound).
Sebastes ruber var. parvus, Ayres, Proc. Cal. Acad. Sci., 1851, p. 7 (San Francisco). Habitat.-Sau Diego to Puget Sound, in shallow water. Cerros Island.
The specimens examined are from San Diego, Monterey, and San Francisco.

XI. Genus SEBASTOPSIS, Gill.

Sebastopsis, Gill, Proc. Acad. Nat. Sci., Phila., 1862, p. 278 (polylepis), 1853, p. 207, Sauvage Nouv. Arch. Mus. (2), 1 p.-Ann. Sci. Nat. (5), xvii, art. 5, 1875 (minutus).
Type.-Sebustes minutus, C'vier and Valexchexnes - Sebastes polylepis, Bexeeker.

1. SEBASTOPSIS XYRIS, Jordan and Gilbert.

Sebustopsis xyris, Jordan aud Gilbert, Proc. U. S. Nat. Mus., v, 1882, p. 369 (1883) (Cape San Lucas)—Jordan, Proc. U. S. Nat. Mus., viif, 1885, p. 387 (1886) (name).
Head, 21 ; depth, $3 \frac{1}{2}$; D. XIII, 10; A. III, 5; lat. 1., 24 (pores). Mouth large, ollique, the maxillary extending to beyoud pupil, its length $1 \frac{5}{6}$ in head. Jaws naked. Preorbital narrow, its edge lobate, not spinous. Eye about $3 \frac{1}{4}$ in head. C'ranal ridges very short, sharp, and high. Interorbital space narrow, very deeply concave, with two longitudiual ridges. Preocular, supraocular, postocular, tympanic, parietal, nuchal, and coronal spiues present. Suborlital stay forming a sharp elevated ridge, with a sharp spiue near its front, under the cye, and another near its junction with the preopercle. Gill rakers very short. Dorsal fin deeply notched, the longest 2_{5}^{2} in head. Second anal spine much longer than third. Vertical fins with bands and blotehes of dark brown ; a large dark blotch on last dorsal spines. (Jordan and Gilbert.)

MISTORICAL LIST OF SPECIES AND THEIR PRESENT EQUIVALENTS.

1880. Sebastes matzubare, Hilgendorf $=$ matzubare.
1880. Sebastes machrochir, Giinther=Sebastolobus machrochir.
1880. Sebastichthys serriceps, Jordan and Gilbert =Sebastichthys serriceps.
1880. Sebastichthys miniatus, Jordan and Gilbert = Sebastomus miniatus.
1880. Sebastichthys carnatus, Jordan and Gilbert = Pteropodus carnatus.
1880. Sebastiohthys entomelas, Jordan and Gilbert=Primospina entomelas.
1880. Sebastichthys rhodochloris, Jordan and Gilbert=Sebastomus rhodochloris.
1880. Sebastichthys atrovirens, Jordan and Gilbert=Pteropodus atrovirens.
1880. Sebastichthys rubrivinctus, Jordan and Gilbert=Sebastichthys rubrivinctus.
1880. Sebastich thys vexillaris, Jordan and Gilbert = Pteropodus vexillaris.
1880. Sebastichthys chlorostictus, Jordan and Gilbert=Sebastomus chlorostictus.
1880. Sebastichthys constellatus Jordan and Gilbert=Sebastomus constellatus.
1880. Sebastichthys rastrelliger, Jordan and Gilbert=Pteropodus rastrelliger.
1880. Sebastichthys fasciolaris, Lockington=Pteropodus nebulosus.
1880. Sebastichthys maliger, Jordan and Gilbert=Pteropodus maliger.
1880. Sebastichthys proriger, Jordan and Gilbert=P'eropodus proriger.
1880. Sebastichthys chrysomelas, Jordan and Gilbert=I'teropodus chrysomelas.
1881. Sebastichthys mystinus, Jordau and Gilbert=Primospina mystinus.
1882. Sebastopsis xyris, Jordan and Gilbert=Sebastopsis xyris.
1882. Sebastichthys umbrosus, Jordan and Gilbert=Sebastomus umbrosus.
1885. Sebastichthys brevispinis, Bean=Pteropodus brevispinis.
1889. Sebastichthys levis, Eigenmann and Eigenmann=Sebastomus levis.
1889. Sebastichthys purpureus, Eigenmann and Eigenmann=Pteropodus chrysomelas.
1890. Sebastodes goodei, Eigenmann and Eigenmann=Sebastodes goodei.
1890. Sebastodes rufus, Eigenmann and Eigenmann=Sebastomus rufus.
1890. Sebastomus melanostomus, Eigenmanu and Eigenmann=Acutomentum melanostomus.
1890. Sebastodes eos, Eigenmann and Eigenmann $=$ Sebastomus eos.
1890. Sebastodes areus, Eigenmann and Eigenmann=Sebastomus cereus.
1890. Sebastodes serranoides, Eigenmann and Eigenmann=Sebastosomus serranoides.
1890. Sebastolobus alascanus, Bean=Sebastolobus alascanus.
1890. Sebastichthys alutus, Gilbert $=$ Acutomentum alutus.
1890. Sebastichthys rupestris, Gilbert $=$ Sebastomus rupestris.
1890. Sebasticiuthys zacentrus, Gilbert=Pteropodus zacentrus.
1890. Sebastichthys saxicola, Gilbert $=$ Pteropodus saxicola.
1890. Sebastichthys diplaproa, Gilbert=Sebastichthys diplaproa.
1890. Sebastichthys aurora, Gilbert=Auctospina aurora.
1890. Sebastichthys introniger, Gilbert $=$ Acutomentum melanostomum.
1890. Sebastichthys sinensis, Gilbert=Pteropodus sinesis.
1891. Sebastodes gilli, R. S. Eigenmann=Sebastomus gilli.
1893. Acutomentum macdonaldi, Eigenmann and Beeson $=$ dcutomentum macdonaldi.
1893. Pteropodus dallii, Eigenmann and Beeson=Pteropodus dallii. THE PRESENT REVISION.
I. Sebastolobus, Gill.

Sebastolobus macrochir (Giinther).
Sebastolobus alascanus, Bean.
II. Sebastichtifys, Gill.

Sebastichthys nigrocinctus (Ayres).
Sebastichthys serriceps, Jordan and Gilbert.
Sebastichthys rubrivinctus, Jordan and Gilbert.
Sebastichthys diploproa, Gilbert.
III. Acutomentum, Eigenmann and Beeson.

Acutomentum melanostomum (Eigenmann and Eigenmann)
Acutomentum maclonaldi, Eigenmanu and Beeson.
Acutomentum ovalis (Ayres).
Acutomentum alutum (Gilbert).
IV. Prmospina, Eigenmann and Beeson.

Primospina mystinus (Jordan and Gilbert).
Primospina entomelas (Jordan and Gilbert).
V. Sebastosomus, Gill.

Sebastosomus flavidus (Ayres).
Sebastosomus servanoides (Eigeumann and Eigonmann).
Sebastosomus melanops (Girard).
Sebastosomus ciliatus (Tiles).
VI. Sebastodes, Gill.

Sebastodes goodei, Eigenmanu and Eigenmann.
Sebastodes paucispinis (Ayres).
VII. Genus allied to Sebastomes.
? matzubare, Hilgendorf.
VIII. Sebastomus, Gill.

Sebastomus capensis (Linnæus).
Sebastomus rufus (Eigenmann and Eigemmann).
Sebastomus miniatus (Jordan and Gilbert).
Sebastomus pinniger (Gill).
Sebastomus levis (Eigenmamu and Eigenmann).
Sebastomus rereus (Eigenmann and Eigemmann).
Sebastomus constellatus (Jordan and Gilbert).
Sebastomus umbrosus (Jordan and Gilbert).
Sebastomus rosaceus (Girard).
Sebastomus thodochloris (Jordan and Gilbert).
Sebastomus gilli (R. S. Eigenmann).
Sebastomus rupestris (Gilbert).
Sebastomus eos (Eigenmann and Eigemmann).
Sebastomus chlorostictus (Jordan and Gilbert).
Sebastomus ruber (Ayres).
IX. Pteropodus, Eigenmann and Beeson.

Pteropodus sinensis (Gilbert).
Pteropodus saxicola (Gilbert).
Pteropodus atrovirens (Jordan and Gilbert).
Pteropodus elongatus (Ayres).
Pteropodus proriger (Jordan and Gilbert).
Pteropodus brevispinis (Bean).
Pteropodus zacentrus (Gilbert).
Pteropodus maliger (Jordan and Gilbert).
Pteropodus dallii, Eigenmann and Beeson.
Pteropodus canrimus (Jordan and Gilbert).
Pteropodus vexillaris (Jordan and Gilbert).
Pteropodus rastrelliger (Jordan and Gilbert).
Pteropodus nebulosus (Ayres).
Pteropodus carnatus (Jordan and Gilbert).
Pteropodus chrysomelas (Jordan and Gilbert)
X. Auctospina, Eigenmann and Beeson.

Auctospina aurora (Gilbert).
Auctospina auriculatus (Girard).
XI. Sebastopsis, Gill.

Sebastopsis xyris, Jordan and Gilbert.

ADDITIONAL NOTES ON THE NATIVE TREES OF THE LOWER WABASH VALLEY.

By Robert Ridgway.

Sivce the publication of my "Notes on the Native Trees of the Lower Wabash and White River Valleys in Illinois and Indiana," * and the additions and corrections to the same article, \uparrow a considerable amount of further information has been gathered, partly through my own observations during occasional visits to that region, but chiefly through investigations made by Dr. J. Schneck, of Mount Carmel, Ill., who having been appointed by the state anthorities to make an exhibit of Illinois woods at the New Orleans Exposition, was enabled to take measurements of many species which, for one reason or another, I had not measured. Dr. Schneck having kindly furnished me with these measurements and given me permission to publish them, they are presented in the following notes, except in those cases where figures already published are not affected.

After the lapse of so many years, it is to be expected that additions are to be made to the list, that some statements are to be modified, and that errors are to be corrected. These will be found under appropriate headings at the end of this paper.

Before proceeding to take up the species in regular order, it may be well to explaiu that the first number corresponds with the numeration of my first paper, while the number in parentheses prefixed to the name of a species corresponds in each case with that given in the octavo edition of Prof. Sargent's "Catalogue of the Forest Trees of North America," published in $1880, \ddagger$ and not with the numeration of the large quarto "Report on the Forests of North America (exclusive of Mexico)," published in 1884.

[^107]Measmrements of girth are always taken above the swell at the base of the tree, or at a height usually of '2 to 4 feet, though sometimes 5 or 6 feet from the gronnd. The height is always measured from a felled tree with a 100 -foot tapeline. Unless otherwise stated, all trees measured were found in the immediate vicinity (within 3 miles radius) of Mount Carmel, Hll, though sometimes on the opposite side of the Wabash River, in Knox and Gibson counties, Indiana.
2. (8.) LIRIODENDRON TULIPIFERA, Linuaus. Tulip Tree; "Poplar."

A large poplar cut for shingles 8 miles east of Vincennes measured s feet across the top of the stump, which was solid to the center; the last cut was 63 feet from the first, and the trunk made 80,000 shingles.
3. (10.) ASIMINA TRILOBA (Linnatus) Dunal. Pawpaw.

The largest specimen measured by Dr. Schneck was 48 feet high and 27 inches in circumference.
4. (14.) TILIA AMERICANA, Linnæus. American Linden. "Lin."

Dr. Schneck's largest measurements are, girth, $17 \frac{1}{2}$ feet; height, 135 feet.
6. (-.) "ILEX VERTICILLATA. Black Alder."

This should read "Ilex decidua, Walter. Deciduots Holly." I. verticillata occurs also, but it is only a shrub.
7. (40.) ESCULUS GLABRA, Willdenow. Smooth Buckeye.

A tree of this species meastured by Dr. Schneck was 83 feet high and 35 inches in circumference.
11. (53.) NEGUNDO NEGUNDO (Linnæus) Karsten. Box Elder.

A tree measured by Dr. Schneck was 60 feet high and $9 \frac{1}{2}$ feet in circumference.

> 13. (-.) RHUS GLABRA, Liunæus. Smooth Sumac.

Jr. Schneck measmred a specimen of this species which was 20 feet nigh and 9 inches in girth.
16. (65.) GYMNOCLADUS DIOICUS (Linnieus) Koch. Coffee-bean; Coffee-nut.

Height, 129 feet; circumference, $7 \frac{1}{2}$ feet, are the dimensions of a tree measured by Dr. Schneck.
17. (66.) GLEDITSIA AQUATICA, Marshall. Water Locust.

The known size which this tree attains is considerably increased by Dr. Schueck's measurements, which show that a height of 90 feet is sometimes reached, the specimen measured being ouly $4 \frac{3}{4}$ feet in circumference.
18. (67.) GLEDITSIA TRIACANTHOS, Linnæus. Honey Locust.

The largest specinen measured by Dr. Schneck was 156 feet high and 18 feet in circumference.
19. (58.) ROBINIA PSĖUDACACIA, Linnateus. Black Locust.

A cultivated specimen, growing in Wabash County, Ill., measured by Dr. Schneck, was 95 feet high and $11 \frac{1}{2}$ feet in circumference.
21. (76.) PRUNUS AMERICANA, Marshall: Wild Plum.

The tree from which Dr. Schneck's specimens of the wood were taken measured 28 feet high and 27 inches in circumference.
22. (78.) PRUNUS ANGUSTIFOLIA, M arshall. Chickasaw Plum.

Dr. Schneck's specimen was 20 feet high and 21 inches in circumference.
23. (81.) PRUNUS SEROTINA, Ehrmann. Wild Cherry.

A wild-cherry tree measured by Dr. Schneck was $1: 3$ feet high by $10 \frac{1}{2}$ feet in circumference.
25. (87.) PYRUS CORONARIA, Linutus. Crab Apple.

Dr. Schneck's specimen was 28 feet high and 26 inches in circumference.
28. (96.) CRATEGUS CRUS-GALLI, Linnæus. Cockspur Thorn.

Height, 32 feet; circumference, 20 inches (Schneek).
30. (102.) CRategus tomentosa, Linumus. Black Thorn.

Height, 29 feet; circumference, 21 inches (Schneck).
31. (105.) Amelanchier canadensis, Medicus. June Berry.

Height, 38 feet; circumference, 28 inches (Schneck).
32. (106.) Liquidambar styraciflua, Linneus. Sweet Gum.

Articles describing this species refer to the corky excrescences to the branchlets as if they were a constant feature. So far is this from being true that it is probably no exaggeration to say that not 5 per cent. of the total number of trees possess them, or at least they are not conspicuously developed in a greater proportion. Indeed, so far as my observation goes (and I liave examined many hundred trees), these excrescences are decidedly exceptional.
37. (124.) VIBURNUM PRUNIFOLIUM, Linnæus. Black Haw.

Height, 21 feet; circumference, 11 inches (Schneck).
41. (154.) FRAXINUS PUBESCENS, Lamarek. Red Ash.

Height, 138 feet; circumference, 16 feet (Schneck).
44. (157.) FRAXINUS VIRIDIS, Michaux, f. Green Ash.

Height, 92 feet; circumference, $\begin{gathered}\text { feet (Schneek). }\end{gathered}$

15. (165.) CATALPA SPECIOSA, Warder. Catalpa.

While near Fairfield, Wayne comty, Ill., in May, 1890, I was shown a number of small but domishing catalpa trees which had spronted from fence posts. The latter had been split and put into the ground while green and spronted at the ground, the sprouts forming well-shaped trees $10-15$ fect high with stems of proportionate thickness. I supposed they had been planted inside the fence, and wonld not have suspected their curious origin had not my attention been called to it.
47. (176.) ULMUS ALATA, Michaux. Winged Elm.

Height, 5.5 feet; circminferene, 27 inches (Schneck). In the town of Fairfield, Wayne county, Ill., are some beatiful examples of this handsome tree planted as shade trees along some of the streets. They have assumed asymmetrical spreading form and display conspicuously the curions conky winged appendages to the branches. This species is abundant in hottom lands of Wayne, Richland, Edwards, and adjoining counties in Illinois.

49. (179.) ULAUS PUBESCENS, Walter. Slippery Elm.

A tree measured by J)r. Schneck was $8: 3$ feet high and $7 \frac{1}{3}$ in circumference.
50. (183.) CELTIS MISSISSIPPIENSIS, Bosc. Mississippi Hackberry.

This is surely a distinct species from ('. occidentalis in the region under consideration, being always easily distinguished by the conspicnonsly different foliage, bark, and fruit-the latter not only different in size but in color also. I found it abundant in creek bottoms in the southern portion of lichland county, Ill., where some of the trees were taller than I had seen them elsewhere, apparently 100 feet or more in height.

A specimen measured by Dr. Schneck was 95 feet high and $5 \frac{1}{2}$ in circumference.
59. (202.) HICORIA GLABRA (Miller) Britton. Pig-nut; Broom Hickory.

Height, 120 feet; circumference, $8 \frac{1}{2}$ feet (Schneck).
60. (203.) HICORIA SULCATA (Willdrnow) Britton. Big shell-bark; Bottoms Shell-bark.

Height, 119 feet; circumference, δ feet (Schneck).
-. (200.) HICORIA AQUATICA, Michanx, f. Water Hickory.
This species was not included in my list, although referred to in the introduction (1. 50) as having been, with M. myristicelform is, mentioned by Prince von Wied, in the list of trees observed by him at New Harmony, Ind.* Under date of December 15,1853 , Dr. Vasey wrote me

[^108]that he had lately received specimens of I. aquatica from Mr. W. F. Fortune, collected at Equality, Gallatin comnty, Ill., adding that it was sent to him as H. Pcean, "which the foliage much resembles, but the nuts are much flattened, and ridged, and the meat is as bitter as that of H. minima."

In view of this virtual confirmation of Prince von Wied's record of II. "tuatica, H. myristiceformis should be looked for in the lower Wabash bottom-lands.
65. (218.) QUERCUS DIGITATA (Marshall) Sudwortli. Spanish Oak.

A specimen of this oak measured by Dr. Schmeck was 97 feet high and 6 feet in circumference.
In the White River bottoms there oceurs a very strongly marked variety of this species or possibly a tree that is specifically distinct, distinguished from the true (). digitutu, which is especially a tree of thinsoiled uplands, by its much larger and taller growth and distinctly light-colored bark. In fact, although it has the bristle-pointed, acutelobed leaves of the black-oak group, and moreover has the lobes shaped as in Q.digitatu and the under surface of the leaves densely tomentose as in that species, the bark of the trunk is so light-colored as to cause the tree to be easily mistaken for one of the white oaks, as, for example, Q.alba or Q. Muhlenbergii, which it further resembles in habit. So very different is it, in these particulars, from Q. digitate that I feel quite certain it will prove, on investigation, to be at least subspecifically distinct.
The first specimen met with by me was growing in the White River bottoms, abont five miles above the mouth of that stream, on the southern side. It measured 14 feet in circumference, with the trunk free of branches for at least 70 feet, but rather crooked. Other trees quite identical in characters were afterward examined by Dr. Schneck and myself near White River Poud, several miles southwest of the tree above mentioned, but neither of us. have seen it elsewhere than in the bottom-lands lying between the extreme lower portions of White and Patoka rivers, where the typical black-barked o. digitatu seems not to oceur at all, being, as previously stated, apparently confined to thinsoiled or clayey uplands.
66. (222.) QUERCUS IMBRICARIA, Michaux. Laurel Oak; Shingle Oak.

Height, 100 feet; circumference, 8 feet (Schneck).
67. (226.) QUERCUS LYRATA, Walter. Swamp Post Oak; Overcup Oak.

This tree grows in the bottoms of all the streams tributary to the Wabash, at least as far north as Jasper comnty, IIl., where I found it in the vicinity of Rafe's mill, in July, 1857. In Fox River bottoms,
immediately west of Sugar Greek prairie, Richland county, this oak was the prevailing species over considerable areas of swampy woods.
69. (I.) QUERCUS MCHAUXI, Nuttall. Michaux's Oak; Basket Oak.

More recent investigations have shown this tree to be a common one in rich bottom-lands, and certainly specifically distinct (in our district) from Q. platanoides (Q. bicolor).
70. (228.) QUERCUS MUHLENBERGII, Engelmann. Yellow Oak; "Chinquapin."

Height, 155 feet; circumference, 12 feet (Schneck).
71. (229.) QUERCUS NIGRA, Linnxus. Black Jack; Jack Oak.

Height, 65 feet; circumference, $3 \frac{1}{2}$ feet (Schneck).
75. (235.) QUERCUS MINOR (Marshall) Sargent. Post Oak.

While my estimate of "about 50 to 80 feet high, and 2 to 3 feet in diameter" as the "usual size of the heavier growth" is probably very nearly correct, larger trees oceur, one measured by Dr. Schneck being 103 feet high and 10 in circumference.
79. (244.) OsTRYA VIRGINIANA (Miller) Willdenow. Hop Hornbeam.

Height 25 feet, girth 26 inches (Schneck).
82. (249.) BETULA NIGRA, Linntous. Red Birch; River Birch.

Height 105 feet, circumference 10 feet (Schmeck).
8t. (一.) SALIX DISCOLOR, Muhlenberg. Glaucons Willow.
Height 15 feet, circumference 9 inches (Schneck).
-. (一.) SALIX LONGIFOLIA, Muhleuberg. Long-leafed Willow; Sand-bar Willow.

Height 70 feet, circumference 20 inches (Schneck).
85. (261.) SALIX NIGRA, Marshall: Black Willow.

My maximum measurement of $87 \frac{1}{2}$ feet is exceeded by one by Dr. Schneck of a tree which was 95 feet high and $7 \frac{1}{2}$ feet in circumference.
88. "POPULUS TREMULOIDES. Aspen; Quaking-Asp." ($=I$. grandidentata Michaux. Large-toothed Aspen!).

Dr. Schneck measured a tree of this species which was 97 feet high and $4 \frac{2}{3}$ feet in circumference.
P. tremuloides apparently does not occur in our region.
89. (277.) JUNIPERUS VIRGINIANA, Linnæus. Red Cedar.

A specimen growing in Saline County, Ill., measured by Dr. Schneck, was 75 feet high and 5 feet in circumference.
90. (一.) JUNIPERUS COMMUNIS, Linnieus. Juniper.

A Saline County specimen measured by Dr. Schneck was 25 feet high and 18 inches in circumference.

APPENDIX.

A.-NUMBER OF' sPEC'TES OF NATIVE TREES ASCERTAINED TO OCCUR INDIGENOUSLY IN THE LOWER WABASH VALLEY.

The total number of species given in my catalogue is 94 ; but from this number the following are to be deducted, as being more properly classed as shrubs than trees:

1. Rhus glabra. Smooth Sumac.
2. Viburnum dentatum. Arrow-wood.
3. Amorpha fruticosa. False Indigo.
4. Salix lucida. Shining Willow

The number would thus seem to be reduced to 90 ; but the additions far outnumber the reductions, the following having been omitted from my list:
*1. Ptelea trifoliala, Linna ns. Hop Tree.
*2. Euоиуmиs atropurpureus, Jacquin. Burning Bush; Wahoo.
3. Rhamnus Caroliniana, Walter. Carolina Buckthorn.
4. Esculus octandra, Marshall. Sweet Buckeye.
5. Rhus Vernix, Linutus. Poison Sumac; Poison Dogwood; Poison Elder.
*6. Crategus spathulata, Michaux. Small-fruited Haw.
*7. Hamamelis Firginica, Linnæus. Witch Hazel.
8. Nyssa aquatica, Marshall. Tupelo.
9. Faccinium aròoreum, Marshall. Farkle-berry.
10. Bumelia lanuginosa, Persoon. Gum Elastic; Shittim wood.
11. Bumelic lycioides, Giertner. Southern Buckthorn.
12. Mohrodendron tetraptera (Liunieus) Britton. Silver-bell Tree; Snowdrop Tree; Calico-wood.
*13. Forestiera acuminata, Poiret. Water Privet.
14. Planera aqualica, Gmelin. Water Elm.
15. Hicoria aquatica (Michaux.f.) Britton. Water Hickory.
16. Castanca prmila (Linnexs) Miller. Chinquapin.
*17. Salix lougifolia, Muhleuberg. Saudbar Willow.
Of the above, those marked with an asterisk have been identified in the immediate vicinity of Mount Carmel, the others being mainly more southern, or occurring only farther down the river. No. 6, Cratergus spathulate, is not included in Dr. Schneck's list and has not been met with by him or myself during recent years. Specimens in fruit were found by us, however, near Mauck's Pond, Gibson County, Iud., in September, 1871.* There is some doubt as to No.16, Castunea pumiln, which is given on Prof. Sargent's authority; but there is a possibility of an error having been made from the circumstance that the name "chinquapin" is in that region almost universally applierl to the fruit of Quercus MIHhlenbergii.

[^109]The actual number of indigenous species of trees in the Lower Wabash Valley (from the month of White River southward) would thas appear to be 107 , but the total may be still larger through the probable addition of Thex opuca, quoted from southern Indiana, Cirutayus arborescens (Union and Jackson comnties, Ill.), Hicoria myristicoformis (Posey County, Ind., fide Prince von Wied), and a few of more general distribution (as Ulmus rucemosu) which have not yet been reported from the area under consideration.

B.-NUMBER OF SPECIES GROWING IN RESTRICTED AREAS.

Some interesting ahlitions, or additional observations, may be made to the lists given on pages 50 to 53 of my catalogne. Regarding list "(2)", for example (pp. 52,53), it may be stated that the piece of woods in question consisted wholly of low flat ground, much of it under water in wet weather. Much valuable timber had been culled over the whole area, while from considerable portions nearly all the large growth had been lestroyed, two species (the Western Catalpa aud Black Wialnut, easily identified from the stumps) having in fact been quite exterminated. If these latter harl been still growing, the total number of species growing on the 7.5 acres would apparently be 54 , instead of 52 , as given in the list. A subsequent examination, however, revealed the presence of two anditional species, viz: Fraximus quadrangulata (Blue Ash), and Hicoria microctrpo (Little Shellbark), making the actual total 56 species. During a later examination (made in October, 185^{2}), which was restricted to 22 acres of the same piece of woods, no less than 43 species of trees were detected, notwithstanding one piece of s acres had been wholly deprived of the undergrowth and most of the large trees, while more or less timber had been cut from the whole tract. This gives about two additional species of trees for each separate acre of the whole area. The species noted are the following:

1. Liriodendron tulipifera. Common.
2. Asimina triloba. Common.
3. Acer rubrum. Common.
4. Acer saccharum. Common.
5. Rhus copallina. Common, growing 20 to 30 feet high.
6. Gleditsia triacanthos. A few small trees.
7. Gymmocladus dioicus. A few small trees.
8. Cercis Canadensis. Common.
9. Prunus Americana. Common.
10. Prumus serotina. Rare.
i1. Liquidamlutr styracillua. ('ommon.
11. C'ormus flovidle. Common.
12. Nyssa sylvatica. Common.
13. Viburnum pruxifolium. Abundant.
14. Diospyros Firginiana. Comenon.
15. Fraxinus Americana. Common.
16. Fraxinus quadrangulata. Common.
17. Sassafias sassafias. Common.
18. Ulmus Americana. Abundant.
19. Ulmus pubescens. Common.
20. Celtis occidentalis. A few small trees.
21. Morus rubra. Common.
22. Platanus occidentalis. Common.
23. Hicoria orafa. Abundant.
24. Hicoria microcarpa. Common.
25. Hicoria sulcata. Common.
26. Hicoria alba. Common.
27. Hicoria glabra. Common.
28. Hicoria minima. Common.

29. Quereus platanoides. Common.
30. Quercus macrocarpa. Rather common.
31. Quercus coccinea. Common.
32. Quercus velutina. Common.
33. Quercus rubra. Common.
34. Quercus palustris. Common.
35. Quercus imbricaria. Common.
36. Fagus atropunicea. Common.
37. Carpinus Virginiana. Common.
38. Salix nigra. Most abundant tree along edge of swamp.
39. Populus heterophylla. Abundant along edge of swamp.
40. Populus monilifera. Common along edge of swamp.
41. Populus grandidentata. Sparingly scattered through woods.

On a tract of 40 acres, partly cleared, 1 mile sontheast of Oney, Richland County, Ill., the following speries were rerognized during an imperfect survey of the woods:

1. Asimina triloba. Common.
2. Acer saccharinum. Common.
3. Acer rubrum. Rare?
4. Acer saccharum. Common.
5. Gleditsia triacanthos. Common.
6. Cercis Canadensis. Abundant.
7. Prumus Americana. Common.
8. Prunus serotina. Common.
9. Pyrus coronaria. Common.
10. Cornus florida. Abundant.
11. Nyssa sylvatica. Common.
12. Diospyros Virginiana. Common.
13. Fraxinus quadrangulata. Common.
14. Catalpa speciosa. Common.
15. Sassafras sassafras. Common.
16. Ulmus Americana. Common.
17. Ulmus pubescens. Common.
18. Morus rubra. Rather common.
19. Platanus occidentalis. Common.
20. Juglans nigra. Common.
21. Hicoria ovata. Common.
22. Hicoria minima. Common.
23. Hicoria glabra. Common.
24. Hicoria alba. Abundant.
25. Quercus alba. Abundant.
26. Quercus platanoides. Rather common.
27. Quercus minor. Common on high grounds with thin soil.
28. Quercus macrocarpa. Common.
29. Quercus coccinea. Common.
30. Quercus velutina. Common.
31. Quercus rubra. Common.
32. Quercuspalustris. Common.
33. Quercus imbricaria. Abundant.
34. Betula nigra. Rather common along bank of stream.
35. Salix nigra. Rather common in wet places.
36. Populus monilifera. Rather common along loank of stream.

For the sake of comparison of variety of tree-growth between the foregoing Mississippi Valley localities and localities of equal or greater area east of the Alleghanies, in the same latitude, the following lists are presented:
(1) Near Falls Church, Fairfax County, Fa.; locality, a 200-acre farm and vicinity.

1. Liriodendron tulipifera. Common.
*2. Ilex opaca. Rare.
2. Acer rubrum. Common.
*4. Robinia pseudacacia. Abundant, but perhaps spread from cultivation.
3. Prunus serotina. Rather common.
4. Cornus florida. Abundant.
5. Nyssa sylvatica. Rather common.
6. Diospyros Virginiana. Common.
*9. Chionanthus Virginica. Rather common.
7. Fraximus (Americana?). Rare.
8. Sassafias sassafras. Abuntant.
9. Ulmus Americana. Rare. Proc. N. M. $94-27$
10. Juglans nigra. Very rare.
11. Hicoria alba. Rather common.
12. Quevcus alba. Abundant.
13. Quercusplatanoides. Commononlow grounds.
*17. Quercus prinus. Abundant on high grounds.
*18. Quercus Phellos. Common on low grounds.
14. Quercus nigra. Common on high grounds.
15. Quercus digitata. Common on high grounds.
16. Quercus rubra. Rather common.
17. Quercus velutina. Rather common.
18. Quercuspalustris. Common.
*24. Castanea dentata. The most abundant tree on higher grounds.
*25. Castanea pumila. Abundant.
*26. Juniperus Firginiana. Abundant.
*27. 'inus rigida. Common.
*28. Pimus Virginiana. Abundant, often covering almost exclusively considerable areas.

The species marked with an asterisk are not included in any of the سestern lists. Two of them (Nos.9) and 25) did not assume the size and scarcely the habit of trees, and ought, in fairness, to be omitted.
(2) Bottoms of the Patuxent River, Maryland, from Laurel 4 miles southward.
*1. Magnolia glauca. Common locally.
2. Liriodendron tulipifera. Abundant.
3. Asimina triloba. Common locally.
*4. Ilex opaca. Common.
5. Aeer saccharinum. Rare.
6. Acer rubrum. Very abundant.
*7. Robinia pseudacacia. Common on higher grounds but perhaps escaped from cultivation.
8. Prunus Americana. Rare.
9. Prumus serotina. Rather rare.
10. Pyrus coromaria. Rave.
11. Crategus Crus-galli. Rare.
12. Amelanchier Canadensis. Rare.
13. Liquidambar Styraciflua. Very abundant.
14. Cornue floridd. Abundant.
15. Nyssa sylvatica. Common.
16. Fiburnuт prunifolium. Occasional.
17. Diospyros Virginiana. Common.
18. Fraxinus Americana. Rare.
19. Sassafras sassafias. Common.
20. Ulmus Americana. Rather rare.
21. Morus rubra. Rather rare.
22. Platanus occidentalis: Common.
23. Juglans nigra. Rare.
24. Hicoria alba. Rather common.
25. Hicoria glabra. Occasional.
26. Hicoria minima. Oceasional.
27. Betula nigra. Commou.
28. Carpinus Caroliniana. Abundant.
29. Quercus alba. Common.
30. Quercus minor. Occasional on uplands.
31. Quercus lyrata. Common locally.
32. Quercus platanoides. Common.
33. Quercus Michauxi. Common locally.
*31. Quercus prinus. Common on uplands.
35. Quercus rubra. Common.
36. Quercus velutina. Common.
37. Quercus palustris. Abundant.
38. Quercus digitata. Common on uplands.
39. Quercus nigra. Common on uplands.
40. Quercus phellos. Abundint.
41. Castanea dentata. Abundant on uplauds.
42. Fagus atropunicea. Common locally.
43. Salix nigra.
44. Populus grandidentata. Occasional on uplands.
*45. l'inus rigida. Common.
*46. Pinus Virginiana. Abundant.
*47. Juniperus Virginiana.

The above seemingly large list includes every species of tree which I was able to recognize in any portion of the extensive area (at least 5 square miles), which inchuded besides ordinary bottom land, swamps and uplands, with varying conditions of soil. If the count had been restricted to an area of say 100 acres, in any portion of the larger area, the list would have been reduced about one-third. The district having been carefully explored on very numerous occasions (much more thoronghly than I have been able to explore any western tract of equal extent), it is probable that the list is very nearly complete.
C.-CLASSIFIED MEASUREMENTS.
(1) Additions to the "list of trees attaining a height of 100 feet or more."

No.	Species.	Maximum ascertained height.	Girth of tree measured.
35	Quercus Michanxi	119 feet (R. R.)	13 feet.
36	Quercus minor	103 feet (J.S.)	10 feet.
37	Hicoria glabra	$\begin{aligned} & 115 \text { feet (R.R.); } 120 \\ & \text { feet }\left(J . S_{0}\right) \text {. } \end{aligned}$	$7 \frac{1}{2}$ feet (R. R.) ; $8 \frac{1}{2}$ feet (J. S.).
38	Hicoria microcarpa	134 feet (R.R.)	9 feet 10 inches.
39	Hicoria sulcata ..	119 fent (J. S.)	8 feet.
40	Betula nigra	105 feet (J.S.)	10 feet.
41	Prunus serotina	135 feet (J.S.)	$10 \frac{1}{2}$ feet.
42	Fraxinus pubescens	138 teet (J. S.)	16 feet.

(2) Increased maximum height as determined by subsequent measurements.

Numer. ationoi original list.	Species.	Maximum height as giren in original list.	Maximum height by subsequent measure. ments.
2	Tilia Americana.	130 feet (R. R.)	135 feet (J. S.).
6	Grmnocladus dioicus	109 feet (R. R.)	129 feet (J. S.).
7	Gleditsia triacanthos	137 feet (R. R.)	156 feet (J. S.).
15	Celtis occidentalis	134 feet (R. R.)	136 feet (J. S.).
28	Quercus Muhlenbergii	1223 feet (R. R.)	$155 \text { feet (J. S.). }$
19	Quercus palustris.....	120 feet (J. S.)	135 feet (J. S.).

(3) Trees which apparently do not reach a maximum height of 100 feet.

No.	Species.	Height.	Girth.	No.	Species.	Height.	Gixth.
	Æsculus glabra		Inches. 35	21	Po		Inches.
2	Amelanchier Canadensis..	38	28	22	Populus heteroplylla...	92	90
3	Asimina trilcba	48	32				
4	Carpinus Caroliniana	32	54	23	Prunus Americana.	28	27
5	Celtis Mississippieusis.	95	132	24	Prunus angustifolia	20	21
6	Cercis Canadensis	54	66	25	Ptelea trifoliata.	15	12
7	Cornus Horida.	50	50	26	Pyrus coronaria.	38	26
8	Cratægus Crus-gall	32	20	27	Quercus digitata	61	72
,	Crategus mollis.	37	27	28	Quercus lyrata	61	54
10	Cratrgus tomentosa	26	21	29	Quercus nigra..	65	42
11	Euonymus atropurpureus.	20	15	30	khus copallina.	$32 \frac{1}{2}$	29
12	Forestiera acuminata...	22	18	31	Rhus typhina.	35	12
13	Fraxinus sambucifolia	83	56	32			
14	Fraxinus viridis	92	60		vated)	95	38
15	Gleditsia aquatic	90	57	33	Salix discolor	15	9
16	Ilex decidua	28	37	34	Salix longifolia	70	20
17	Juniperus Virginiana	75	60	35	Salix nigra.	95	108
18	Juniperus commun	25	18	36	Sassafras sassafras	95	144
	Morus rubra	68	124	37	Ulmus alata.	55	27
19	Negundo Negundo	60	114	38	Ulmus pubesceus	83	88
20	Ostrya Virginiana	25	26	39	Viburnum prunifolnum	21	11

In the case of a number of the above-named species only one specimen was measured, and it is therefore highly probable that larger individuals occur.

As a result of these additional measurements the last paragraph on page 56 (continned on page 57) of my first paper requires material modification. Compared with the vast number of trees of mature growth which are cut down and destroyed even in a single year, the number of trees from which these measurements were taken is insignificant indeed, and it is quite certain that in not a single instance has
the largest individual of any species of tree growing in the Wabash Valley within the last twenty-five years been measured.

From the meager data that have been gathered, however, we are able to show that the species may be grouped, according to ascertained maximum height, as follows:
(1) Number of species reaching 100 feet.

Maximum leight attained.	Number of species.	Maximum height attained.	Number of species.
100 feet.	42	145 feet..	14
105 feet.	38	150 feet.	13
110 feet.	36	155 feet.	11
115 feet.	3.4	160 foet.	8
120 feet.	27	165 feet.	$\dagger 6$
125 fert.	24	170 feet.	\pm
130 feet.	$\because 1$	175 feet	53
135 feet.	20	180 feett.	\|12
140 feet.	15	190 feet.	$1 / 1$

*Liriodendron tulipifera, Liquidamber Styraciflua, Platanus occidentalis, Hicoria Pecan, Quercus macrocarpa, Q. velutina, Q. coccinea, and Populus monilifera.
\dagger Liriodendron tulipifera, Platanus occidentalis, Hicoria Pecan, Q. coccinea, Q. macrocarpa, and P'opulus monilifera.
\ddagger Liriodendron tulipifera, Hicoria Pecan, Quercus coccinea, and I'opulus monilifera.
§Liriodendron tulipifera, Hicoris Pecan, and Quercus coccinea.
$\|$ Liriodendron tulipifera and Quercus coccinea.
TI Liriodendron tulipifera.
(5) List of trees of which no measurements have been taken.

1. Aralia spinosa. Angelica Tree; Hercules Club; Devil's Walking-stick.
2. Hicoria aquatien. Water Hickory.
3. Castanea dentata. American Chestuut.
4. Castanea pumila. Chinquapin.
5. Chamecyparis thyoides. White Cedar.
6. Crategus coccinea. Searlet Hawthorn.
7. Crategus cordata. Washington Hawthorn.
8. Crategus spathulata. Small-fruited Hawthorn.
9. Magnolia acuminata. Cucumber 'Tree.
10. P'inus chinata. Yellow Pine.
11. P'yrus amyustifolia. Narrow-leafed Crab-apple.
12. Quercus P'hellos. Willow Oak.
13. Tilia heterophylla. White Basswood.

In the list of species "usnally classed as shrubs," on page n s of my original paper, those numbered $1,2,3,6$, and 7 are to be canceled and transferred to the list of trees. Their measurements are given in table 3 of this paper, on page 419.

In the table which immediately follows the above-mentioned list No. 1 should read Ilex Iecidur instead of "Ilex rerticillata," and to the species (trees and taller shrubs) whose measurements are there given may be added the following :
(6) Measurements of larger shrubs.

No.	Species.	Locality.	$\begin{gathered} \text { Total } \\ \text { height. } \end{gathered}$	Girth.
	Cephalanthus occidentali	Mount Carmel, Ill		Inches. 12
6	Cornus paniculata.....		15	8
8	Foresticra acuminata.		25	18
$\stackrel{8}{9}$	Salix serica	Mount Carmel, Ill	15	11
10	staphylea trifolia		18	11

The specimens from which the above measurements were taken formed part of the fine collection exhibited by the State of Illinois at the New Orleans Exposition.

It may be of interest in this connection to give the following measurements of the larger growing woody climbers, for which also I am indebted to Dr. Schneck:
(7) Measurements of larger woody vines.

No.	Species.	Total length.	Girth.
1	Aristolochia tomentosa	Feet. 83	Inches. 10
2	Rhus toxicodendron...	97	18
3	Tecome radicans	87	* 19
4	Vitis cordifolia.	115	$\dagger 26$
5	Vitis riparia....	60	12
6	Cissus ampelopsis..	50	12
7	Bignonit capreolata.	+ (?)	

* The average circumference of four stems measured by me was $39 \frac{1}{2}$ inches, the largest being 41 inches in girth. One of 40 and another of 35 inches girth climbed the same tree.

1 The largest vine of this species measured by me was 36 inches in circumference. Four vines of V. cestivalis averaged $30 \frac{3}{3}$ inches in girth at 3 feet from the ground, the largest being 38 inches around. \ddagger This, though climbing high, is a very slender vine, few stems much exceeding 1 inch in diameter; one which I pulled loose from the trunk of a large tree measured 55 feet to its first ramification.

A Large Tulip Tree.
Liriodendron Tulipifera, Linnæus.
Knox County, Indiana.

A Giant Sycamore.

a Giant Sycamore.

a Tall Sycamore.
Platanus occidentalis, Linnæus.
Richland County, Illinois.

DISTRIBUTION OF TIE LAND AND FRESII-WATER MOLLUSKS OF THE WEST INDIAN REGION, AND THEIE EVIDENCE WITH REGARD TO PAST CHANGES OF LAND AND SEA.

By Cifarles Torrey Sitpson. Aid, Department of Mollusks.

The West Indian arehipelago lies almost wholly within the tropies, and extends from latitude 10° to $27^{\circ}: 30^{\prime}$ north, and between longitude 59° and 85° west, and embraces an area of abont 95,000 square miles. It presents an example of an astonishingly rich and diversitied land snail fama; in fact no other area of the globe of ecpual extent can be compared with it. Within this region there are about 1,600 species of terrestrial mollnsks, belonging to some (i5 genera, a number almost as great as that fom on the mainland of the entire continent of America. The structure of the Greater Antilles is very different from that of the lesser archipelago,* or from that of the Bahama group). Wach of the fom large islamls is believed to consist of a nucleus of igneous and metamorphic rock, that forms the summits of the higher monntains, which are flanked by Cretaceons, Tertiary, and Post Tertiary beds. The loftiest peaks of eastern Cuba attain a height of 8,400 feet; those of Haiti and Jamaica a little over 7,000 , while Puerto Rico's greatest elevation is slightly less than t,000 feet. These momntain chains rum, for the most part, lengthwise of the islands, and from a glance at the map one can not help thinking that Haitiwhich looks something like an enormous letter Y, with one arm pointing toward Cuba, the other in the direction of Jamaia, while the stem is directly in line with Puerto Rico-is a sort of comnecting link in the great archipelago. The chamel between Cuba and Haiti is 875 fathoms in depth, the one dividing the latter island fiom Jamaica is about 1,000 , while that between Puerto Rico and San Domingo is 260 fathoms deep.

[^110]Between Cuba and Jamaica there is a great trongh some 3,000 fathoms in depth, known as the Bartlett Deep. Rumning nearly due west from Cape Cruz on the south side of Cuba, and north of the profound abyss is a shoal on which are the Cayman Islands, but which deepens to 1,500 fathoms before reaching Belize. To the southwest of Jamaica a wide shoal extends to the coast of Honduras, forming the Mospuito, Baxonnevo, Savanilla, Rosalind, and Pedro banks, along which are seattered low islets, and which, with an elevation of 500 fathoms, would connect Jamaica with the continent. The western end of Cuba points directly toward Cape Catoche, from which it is separated by a strait 130 miles wide and 1,164 fathoms deep. The 100 -fathom line would unite Cuba to the Bahamas. It the southeast the Greater Antilles are separated from the Lesser by the Anegada Channel, which carries in a depth of 1,100 fathoms from the Atlantic, ending in a deep basin betreen Santa Cruz aud St. Thomas of 2,400 fathoms. East of this a ridge crosses it which comes within 900 fathoms of the surface.

The Lesser Antilles have not a central mucleus of igneous or metamorphic rock. In referring to this subject Alexander Agassiz says:*
The position of the most recent Plincene and Post Pliocene beds seems to indicate that some of the volcanoes now active in the West Indies date back to the Pliocene period, and others to the Post Pliocene. The islands to the north of Guadeloupe form two parallel chains, the western consisting of Saba, St. Eustatius, St. Kitts, Nevis, Redonda, and Montserrat, all of which are volcanoes of I'ost Pliocene date; while to the eastward is a chain of voleanoes of Tertiary age-Sombrero, Anguilla, St. Martin, St. Bartholemew, Barbuda, and Antigua. At Guadeloupe the recent islands are directly united with the volcauic chain, and the still more recent limestones are found on its western shores.

Agassiz and other anthorities agree that the northern portion of the Lesser Antilles is of much more recent origin than the greater archipelago, and the volcanic chain no doubt rests upon a submarine platean.

The Bahama gronp is also believer to be of somewhat modern origin. Agassiz thinks that it was formed on an extensive shoal, from the remains of marine animals deposited at a time when the current from the Gulf of Mexico flowed over the area of the present archipelago with very much less velocity than it does at present. t All the islands are low, and many of them are of coral formation.

Before entering into details as to the distribution of genera and species it may be well to say a few words as to the means of dispersal of the land and fresh-water mollusks. Where closely related forms or groups are found in lands separated by the sea, I think we may generally conclude that they have reached their present distribution by one or more of the following means:

First:-By former land connection which hasexisted within the lifetime of present species or groups.

Second:-by the sea, by means of oceanic currents, winds, or storms. It is very well understood now that many land, and some fresh-water

* Three cruises of the Blake, 1, p. 109..
top. cit., p. 75.
plants and animals are carried across more or less wide spaces of ocean from shore to shore in various ways on the surface of the sea. In tropical comutries especially, heary rains swell the mountain streams to torrents, which tear up trees and masses of earth hehl together with a network of roots, and bear them swiftly to the ocean. These are often peopled with land snails, or carry their eggs, and in their course to the sea may frequently plow up mud firm the bottom which contains freshwater mollusks. Or fresh-water suails may inhabit the surface and crevices of such trees, that become stranded on their way down, or lay their eggs on them, the whole to be carried onward at the next flood. In many places, notably the northern shores of South America, the sea is constantly encroaching on the land, and large areas of forest bound together by matted roots and tangled vines are being undermined and swept away.

Of course if the distance from land to land is short, and there are wiuds that blow, or tides that rum in the right direction, the probability of such molluslis being safely carried across is much greater than if they have far to travel, have head winds, or contrary currents. Darwin has shown that some of the land snails will live for considerable periods of time in sea water, and many of the fresh-water species will remain alive for some time in the air under favorable circumstances, and others are found living in water more or less brackish. One who has noticed much of the drift in the West Indian region-trees and bambons, often carrying masses of earth and stones-can easily believe that they might bear with them suails for quite a voyage without wetting them to any considerable extent.* I think I shall be able to show that most of such migrations in and about the West Indies have been accomplished under favorable circumstances, that long stretches of umprotected sea, head winds, and coutrary currents have generally proven fatal to dispersal by the ocean.
Third:-The agency of man. It is hardly necessary to mention the well-known instances where man is known to have been the means of carrying from one country to another different animals or plauts. Many mollusks are known to have been transported through his ageney. Helix similaris is a native of eastern Asia, but is now naturalized in most of the warmer parts of the world. Helix aspersu and lacten, common edible snails of Europe, are colonized in a number of foreign coun-

[^111]tries, as well as Riumina decollutu, and many others. I have little doubt that Subulina octona has been introduced into a number of the West Indian islands in this manner, for C. B. Adams mentions that in 1849 it was found only in a single locality in Jamaica, in a garden near Kingston,* while now one can not pick up a handful of shells any where on the island without finding it.

Orthelicus undutus, a Mexican species now found in south Florida, Cuba, Jamaica, and some of the Wiudward Islands, is another case in point, no doubt. \dagger

Fourth:-By birds. Small mollusks or their eggs may be, and no doubt are, sometimes carried from one locality to another in mud attached to the feet or feathers of birds. And lastly, it is possible that such mollusks or their eggs might be transported moderate distances by windstorms, though such migrations are probably very rare. \ddagger

A number of eminent biologists have regarded the Antillean region as an independent one, and among these are De Candolle, Schouw, Martins, Berghaus, Hinds, Woodward, Baird, Griesbach, Brown, Sclater, Wallace, Engler, Packard, Drude, Hartlaub, and Fischer. These men studied the plants, forests, animals in general, birds, and mollusks. Others, among whom are Agassiz, Heilprin, and Merriam, have regarded it as a subregion of the American tropical province, and still others have united it with the tropical American region. Whether the evidence of the land and fresh water mollusks of the Lesser Autilles goes to prove it a separate proviuce may well be doubted, since it is peopled so largely with South American species and genera, but I believe that the character of this fanua in the Greater Antilles is very distinct from any other, and that the peculiar generaand subgenera of laud mollusks have been developed in the localities where they now preponderate.

Bland, whose exhaustive studies of the distribution of the land shells of this region are well known, and whose conclusions are considered authoritative, says:§

[^112]
Abstract

Seeing, moreover, the greater number of both genera aud speceies, absolutely and proportionately in the islands under consideration, it may not mueasonably bo suggested that the insular stamp has rather been impressed on the fana of the continent than the reverse.

Since the time of Bland's studies the discovery of many new species, a better knowledge of their distribution, the great progress made in classification, and in the soundings of the Caribbean, the Gulf of Mexico, and the adjoining parts of the Atlantic, the added knowledge of the currents and winds, as well as the adrances made in the stndy of the geology and paleontology of this general region go to confirm the above statement, and in the direction of proving that the land molluscan fama of the greater archipelago is largly a peculiar oner, that it developed in part in the region it now occupies, and that it has spread, to some extent, to Florida, the Bahamas, Mexico, Central and South America, and the Lesser Autilles, by some of the means I have mentioned above.
Some 28 genera and subordinate groups of land mollusks are confined strictly to the Greater Antilles, and no less than 24 more have here their metropolis, or greatest numerical development of species.

It has been claimed that there has never been land connection between the islands of this archipelago, and that the homogeneonsuess of its land and fresh water molluscan fauna could be accounted for by supposing that many of the species had been carried from island to island, by storms or currents, or that they had been transported by other means. While no doubt a small proportion of the forms have thus migrated, yet the number of species common to two or more islands is so small, and the distribution of many of the genera and subordinate groups is so peculiar, that I believe we are not justitied in explaining the present distribution by such an hypothesis. Cuba, with nearly 700 species of land and fresh-water mollusks, has only 53 not confined to the island; Jamaica, with over 500 species, has 41 ; Haiti, with 270 species, has only 30; and Puerto Rico, with 130 species, has 34 stragglers to other localities.*
Now, it is very remarkable that while many species of non-operculate land suails are common to the Greater Antilles and the continent, as well as to several of the different Lesser Antillean islands, not a single operculate is known to inhabit both the greater archipelago and the mainland of tropical America. Two species, Chondropoma dentatum and Helicina subglobulosa, and possibly a third, Ctenopoma rugulosum, all Cuban forms, are colonized in the extreme southern end of Florida,

[^113]and althongh nearly half the species of land snails of these four larger islands are operculates, not more than 9 or 10 of them are found outside of a single island. This might be taken as evidence that the non-operculate forms were of much more ancient origin than the others, many of them reaching back to a time of former land connection, while the operculate species were of more recent development, which I suspect may be the case; or that the former are better adapted to migration across the ocean than the latter.

The fact that the operculates form so large a proportion of the Antillean land suail fauna, that a majority of the genera are found on two or more of the islands and the mainland, while nearly every species is absolutely restricted to a single island appears to me to be very strong testimony in favor of a former geueral land connection.

I believe that all the evidence of the terrestrial and fluviatile molluscan fama of this region indicates that in the early Tertiary Period, perhaps, there was a general land elevation of the Greater Antilles, and possibly of some of the arljacent area; that Wallace's theory of a land comection of the greater islands is correct; that during some part of this time a landway extended across to the continent;* that the species and groups of this then connected territory migrated to some extent from one part of it to another, and that a probable connection existed over the Bahama platean to what was at that time no doubt the island of Florida. It would appear that at this time the volcanic islands of the Lesser Antillean chain were not yet raised above the sea, or that if there was land in that region it has since been submerged, and there seems to be no good evidence in favor of any land comection with the Greater Autilles since the lifetime of the present groups and species of West Indian land and fresh-water mollusks.

We have not as yet a sufficient knowledge of the geology and palæontology of this general region, or a large enough acquaintance with the distribution of the temestrial and fluviatile mollusks in Central and South America to at all fully trace the past history of the region, or of the forms of life in question, and, therefore, most of these theories and speculations are advanced with the utmost-caution, and rather as suggestions, subject to modification by future discoveries, than as absolute explanations of the facts. Yet enough is known to make many points reasonably certain.

Bland has divided the Greater Antilles into five different sub-provinces: $\dagger(1)$ Cuba, with the Isle of Pines, the Bahamas, and Bermuda;

[^114](2) Jamaica; (3) Haiti ; (4) Puerto Rico. with Vieque, the Virgin Islands, Sombrero, Anguilla, St. Martin, St. Bartholomew, and St. Croix. The islands south of the latter, to and including Trinidad, he plates in a fifth province. Fischer follows essentially this arrangement,* except that he places the Bahamas in a separate division and adds Bermuda to that of North Americat, though he thinks the latter group of islands shows about equal malacological aftinities with Florida and the Antilles.

While the molluscan faunas of each of the four large islands of the Greater Antilles contain much that is peculiar, yet I believe that the relationship of the genera and species is much closer than has generally been supposed. Among genera that are restricted to this archipelago only five are confined to Cuba-Glandinella, Diplopoma, Blasospira, and Tenopoma, each having but a single species, and Polymita, with four species; one is restricted to Hatiti-Rolleir, with one species-and two to Jamaica-Zaphysema, with six species, and Jemaicia, with two. Of geuera of wide distribution that are found only on a single island there are three in Cuba-Cionellu, Gundlachia, and Viviparu, each with a single species-and four in Jamaica-Carychium, Strobilops, Hemisimus, and Veluatu, each with one representative-while Puerto Rico has a single Clausilia, and three Peltellas.

Nearly all the peculiar genera, and those of wide distribution that are at all numeronsly represented, are found in three, if not all four, oi the larger islands. The following table exhibits the distribution of all the terrestrial and fluviatile genera. The marine Neritinas, the semi-aquatic Auriculidae, and the Truncatellas, which are distributed in the same way as the ordinary salt-water Gastropods, are not included. There are no peculiar fresh-water molluscan genera in the West Indies. The lists of this paper are as accurate as I can make them. The fact that so many changes have recently been made in the literature and classification, aud that no two authors agree as to specific and generic values, make it well nigh impossible to give lists that are correct.

[^115]Distribution of genera of West Indian land and freshwater mollusks.

Ancylus

* Lia and Leia are both preoccupied, and at the suggestion of Mr. T. D. A. Cockerell I gladly bestow on this beautiful genus the name Vendryesia, in honor of Mr. Henry Vendryes, of Kingston, Jamaica, who has made a lifelong study of the shells of that island.

Distribution of genera of West Indian land and freshwater mollusks-Contiv?led.

Genera and groups.	Cuba.	Haiti.	Jamaica.	Puerto Rico.	Elsewhere.
Gundlachia .	1				Widely distributed.
Physa...	2		1	1	Do.
Aplexa	1	1	1	1	Do.
Potamopyrgus Hyluoliia	1		2		Do. Do.
Vivipara..	1				Do.
Pachycheilus	4		1		American tropics.
Hemisinus...			1		Do.
Ampullaria	3		1		${ }_{\text {Did }}$ Do.
Valvata..			1		Widely distributed.
Proserpina.	2	3	4		Mexico. 2 .
Geomelaniat.	4	1	21		
Neocyclotus: Neocyclotus	1		1		24 species on mainland from Mexico to
Ptychocochlis t			32		enezuela; Lesser Antilles.
Rolleia..		1			
Crocidopoma...	1	3	1		
Megalomastoma	13	19 19	12	3	Guatemala, 1. 2 in Mexico.
Jamaicia......			2		
Ctenopoma	30	1	2		1 in Florida; several in Bahamas.
Cistula	15		3	3	4 in Central America; 2 in Yucatan; 2 or 3 in South America (?); a few in
Chondropoma.	57	19		4	Florida, 1; Equador, 1; Venezuela, 4; Merico, 2. Ceutral 1 merica 3.
Diplopoma	1				
Licina.	1	3			
Tudora	7	5	17		1 in Mexico; 1 or 2 in Sonth America and the Leeward 1slands.
Colobostylus.	4	5	14		1 in Honduras; 1 in Trinidad.
Blasospira	1				
Aenopoma.	1		12		2 in Guatemala; 3 in South America (?)
Eutrochatella	21	6	6		1 in Honduras.
Alcadia..	9	4	14		A few in the Bahamas.
Helicina	58	23	16	9	World-wide in the tropies.
Lucidella.		1	8		
Stoastoma. Sphraium	1	1	80 1	1	World-wide.
Pisidium..	2		1		Do.

\dagger The species included in this genus, from Cuba and Haiti, were placed by Pfeiffer in Truncatella in a section which he called Montanx (Mon. Pneum. Viv. Sup. II, p. 3), on account of their habitat in the mountains, away from the sea. Crosse has placed them in the sub-genus Blandiella (J. de Couch, xxx., p. 303) and states that, so far as is known, they differ from true Geomelanias only in the absence of a prolongation of the anterior part of the aperture. Some of the latter have this development at the base of the aperture, others at the right margin, and a few are scarcely, if at all, produced. B. filicosta, and lirata of Cuba are in the National Museum collection, and some specimens of these show this peculiarity to a slight degree, and I should pronounce them both to be Geomelanias on conchological eridence without the slightest hesitation.
\ddagger Platystoma Klein, applied by Fischer and Crosse in a generic sense to this group of peculiar Jamaican forms typified by Neocyclotu: jamaicensis Chemnitz (Miss. Sci. au Mex. 7 th part, p. 149), has been several times preoccupied. Klein was not a binomial author.

The name, therefore, can not stand, and I would substitute that of Ptychocochlis in place of it. The group on conchological characters seems to be nearly related to Neocyclotus Fischer and Crosse, in which, for the present, I think it had better remain as a subgenus.

It will be seen from the above table that no less than 37 genera are either pecoliar to the Greater Antilles or have here their principal developement. These are Thysanophora, Sagda, Zaphysema, Polymita, Hemitrochus, Pleurodonte, Cepolis, Liguus, Cylindrella, Tendryesia, Macroceramus, Pineria, Glandinella, Melaniella, Cerion, Proserpina, Geomelania Neocyclotus, Rolleia, Crocidopoma, Megalomastoma, Choanopoma, Jamaicia, Ctenopoma, Cistula, Chondropoma, Diplopoma, Licinu, Tudora, Colobostylus, Blesospira, Xenopoma, Adamsiella, Eutrochatella, Alcadia, Lucidella, and Stoastoma, and they are represented in this region by

1,023 species. Seven of these genera are found in all four of the larger islands; Thysanophora, Hemitrochus, Pleurodonte, Cylindrella, Maeroceramus, Choanopoma, and Cistula, with 514 species in this region; while twelve more, sugdta, Cerion, Geomelunia, Megalomastoma, Crocidopoma, Ctenopoma, Choudropoma, Tudora, Colobostylus, Eutrochutellu, Alcadir, and Stonstomu, represented by 401 species, are found in three or a majority of the islands.

Of the remainder of the Greater Antillean genera nine are found in two islands, Cepolis, Liguus, Tendryesin, Pineria, Proserpina, Neocyclotus, Licinu, Adamsiella, and Lucidella, with only St species, and 9 are limited to a single island, Zaphysema, Polymita, Glandinella, Melaniella, Rolleia, Jamaicie, Diplopoma, Blasospira and Senopoma, with but 24 species.

Of the widely distributed genera whose metropolis is elsewhere, and which te may suppose have entered this region by some of the means I have previously mentioned, 16 are found in all four of the islands, represented by 371 species; 6 are met with in three of the islands, with 33 species; 10 in two of them, with 31 species, while only 7 genera are found limited to a single islaud, six of them having but 1 species each, and one having 13 species.

From the above figures the remarkably homogeneous character of the terrestrial and fluviatile molluscan fiuna of the Greater Antilles may be understood, for out of 78 genera here represented by about 1,400 species, 22 , nearly one-third of them, are met with in all four of the islands, having 885 species, or more than 60 per cent of the whole number; and 18 others are common to three of the islands, with $4: 34$ species. It will thus be seen that nearly all the important genera have a general distribntion in this region, and are largely represented in species.

Now, while it is true that certain genera and minor groups are peculiar in some cases to a siugle island, as, for example, the typical Pleurodontes, Zaphysemu, and P'tychocochlis to Jamaica, Polymita, and Diplopomu to Cuba, Rolleia to Haiti, or Luquillia to Puerto Rico, yet it is 110 doubt equally true that the relationship between them and certain groups found on other islands of this archipelago is quite close. The toothless or slightly toothed Pleurodontes of Jamaica are not very far removed from Curocolus; Dialeuca, also a Jamaican group, is very closely allied to the Cordyas of Cuba and Maiti, and Pilsbry has shown* that Zaphysema, Thysanophora, and sagda are quite intimately related. Such alliances between the species of the different islands are very common, especially among the Helicidse, Cylindrella, Macroceramus, the Alcadias, and Helicinas. In short, there can be but little doubt that all or nearly all the special groups contined to one or more of these islands are much more nearly related to other Greater Antillean groups than to those of any other part of the world.

This period of elevation in the West Indies was followed by one of

[^116]subsidence. It continued until only the summits of the monntain chains were above the level of the sea, and probably reacherl its culmiuation sometime in the Xiocene period. During this time such groups of terrestrial and fluviatile mollusks as then existed were driven higher and higher up the mountain sides, and crowded into ever-narowing quarters, and it is quite probable that some of the generat and many species were drowned out or perished for want of room aud food. As Puerto Rico consists mostly of low, comparatively level land, with a single not very lofty momain range, it is possible that the limited area left abore the sea accountis for the absence of many genera found in the other islands, and which may have been abundant within its borders at the time of a former land connection.

During a visit to Jamaica the past winter the writer, in eompany with Mr. John B. Henderson. jr., of this city, obtained three large boxes of fossil marl, which we dug from a bed some two feet in thickness, in what is called the White Limestone Series of the Miocene at Bowden, near the east end of the island. This marl, which was brought to the Smithsonian Institution, has proven to be astonishingly rich in fossils, especially marine mollusea, and in it were found six species of land shells, consisting of a Ptychocochlis, a Lucidella, a Pleurodonte, a Thysamophore, an Opects, and a Suceined. The first two and the last named were in good condition, and nearly perfect; the Pleurodonte was represented by two fragments, an apex with three whorls, and an aperture containing the teeth. The Thystomophor was in a crumbling condition and the two specimens of opeus were broken. At Bogwalk, at the foot of a Miocene limestone ledge, the writer found fragments of fossil Sagdas, but not in a condition for identificition. These shells were no doubt washed down by rains and streams and deposited in the marine strata, as we found in several cases an abundance of recent forms in the bays and thrown upalong the shores. I consider the evidence of these fossil land shells with regard to the past history of the groups, and of the Greater Antilles, quite important. They show that in the Miocene period, at a time when perhaps all but the summits of these islands was submerged, several of the great characteristic groups of this region were in existence; that no change whatever has taken place in their characters beyoud the differentiation of species; for, with the exception of the Succinet, which does not seem to differ from s. latior, an abundant species on this lam, and the Opers (O. striata, also very common) all these forms are probably extinct. The Bowden beds are believed to be the equivalent of the Chattahoochee formation of the southeastern United States, and were no doubt laid down in the earlier pant of the older Miocene. The stratum from which these fossils were dug is only a few feet above sea level, and is overlaid with shales and marls to the summit of the hill, some 300 feet above. Succiner is world-wide as well as Opens, and neither are distinguished in the West Indies by any special characters. Thysunophore is distributed throughout the Greater

Proc. N, M, $94-28$

Antilles, and has a few representatives on the mainland, the Bahamas, and the Lesser Antilles.

All the species of the subgenus Ptychocochlis agree very closely in their corrugated shells and the character of the opercula; and this group, together with the typical Sagdas and Pleurodontes, are confined to the island of Jamaica. It is not unreasonable to suppose that during the period of general elevation certain forms from the widely distributed genera of land and fresh-water mollusks crossed over to the Greater Antilles from the continent, that such genera as Glandina, Streptostyla, and others whose metropolis is on the manland also migrated across, and that species of a number of genera whose greatest development is in this archipelago spread out and reached the shores of America. Most of the subordinate groups of Glundina and Streptostyla, and several of those of Cylindrella were then in existence, for we find their species to-day alike on the continent and the different islands of the archipelago. During the subsidence, which must have been gradual, Jamaica was first separated from the rest of the Greater Antilles, and between the time of separation and the date of laying down the Bowden marl it is probable that the typical Pleurodontes and Ptychocochlis were developed from some less differentiated, ancestral stock. The separation of Cuba, which occured sometime after that of Jamaica, gave rise to the special Cuban gromps, or no doubt to such of them as are dominant and abundantly represented on the island; while Haiti and Puerto Rico, being louger united, have a much more closely related fauna.

In his catalogue of the terrestrial and tluviatile mollusks of Haiti* Crosse divides the island into four subregions-one on the north, taking in the Sierra de Monte Christi; another south of this, extending from the Mole St. Nicholas through the island to Cape Engaño; a third embracing the southeast peninsula, and the fourth situated between the arms of the Y , and he remarks significantly:

It is remarkable that the purely geographical considerations on which somu authors regard Haiti as a link that formerly united the four islands are confirmed and corrohorated by the existence in each of the four regions of a kind of small malacological fanna, indopendent of species which are scattered throughout the island and which comprise the common fauna.

Every species of Colobostylus known on the island, the group Thaumasia of the genus Cylindrella, and the representatives of Tendreysia, Stoastoma, and Lucidella, all of which have their metropolis in Jamaica, are found in the southwest peninsula, while the great Helices of Cuban groups are met with in the northwestern arm of the island, and the speries of the east end show an alliance with the forms of Puerto Rico.

In the Miocene silex beds of Tampa, Florida, there have been found a number of land shells which probably belong to the same fana as that which existed during that epoch in the Greater Antilles. These consist of six Helices of the section Plagioptychu, a group at present

[^117]confinel to Haiti, Puerto Rico, and the Bahamas, a Cerion, not differing greatly in appearance from C. incana, but wholly destitute of teeth, a Cylindrella much like some of the recent Cuban species, and four Bulimulus. The Miocene silex beds of Tampa and the Bowden marl are believed by Dr. Dall to be nearly or quite synchronous. These forms, or their ancestors, may have migrated from Cuba across the Bahama platean and what is now the bed of the Gulf Stream. An elevation of 344 fathoms would join the Bahamas to Florida.

If, then, a land comection existed between the Greater Antilles and Central America during the period of elevation it would not be difficult for species of Glandina, Streptostyla, Tolutaxis, Polygyra, Bulimulus, Orthalicus, Veocyclotus, Ampullaria, Pachycheilus, and Hemisinusgenera whose metropolis is on the continent-to pass from the latter to the former, or forms of widespread genera to migrate across to the islands. Aud on such a landway it seems more probable that the species of Thysanophora, Cylindrella, Macroceramus, Megalomastoma, Choanopoma, Cistulu, Chondropoma, Tudora, Colobostylus, Adamsiella, and Eutrochatelle, passed over to Mexico and Central America than that they were carried by currents or any of the other agencies I have mentioned.

In the present state of our knowledge it is a little difficult to tell how long the period of subsidence lasted, and we can not determine with certainty how much of the area of the islands was submerged. An elevation of some 3,000 feet above present sea level probably marks the limit in Jamaica, as the stratitied Miocene rocks are believed to reach to about that height.

In another part of this paper I have attempted to show something of the close relationship of the molluscan famas of the different islands of the Greater Antilles. Jamaica, by the evidence of its land snails, stands the most isolated of any of the islands; Cuba is the next most so, while those of Haiti and Puerto Rico are much more nearly related to each other than to those of either of the first two. About 20 genera and minor groups are confined to or have their metropolis in Jamaica; a like number belongs to Cuba, 7 to Maiti, and 1 to Puerto Rico. Of the special Jamaican groups, Sagda, Pleurodonte restricted, Geomelania, Colobostylus, Tudora, Ptychocochlis, LAtemsiella, Alcadia, Lucidella, and Stoastomu are abundantly represented throughout the island, and highly characteristic, forming the major part of the land-snail fanna. In Cuba, Liguus, Macroceramus, Cerion, Choanopoma, Ctenopoma, and Chondropoma are generally distributed and characteristic; while Curocolus and Parthene stand in the same relation to the Haitian fama.

Now, as bearing directly on this subject, it may be mentioned that the strait between Haiti and Jamaica is deeper than that between any of the other islands, being nearly 1,000 fathoms in depth, that between Cuba and Haiti is slightly more shallow, being only about 875 fathoms,

While the one between the latter island and Puerto Rico carries but 260 fathoms. Supposing these islands to have been united at a former time, then during a period of gradual subsidence, Jamaica would be separated sometime before the rest of the Antillian island would be broken up, then Cinba would be isolated, while Haiti and Puerto Rico would remain united for a longer time. The distribution and character of the land-smail famas of these islands agree exactly with just what would be the result of such a subsidence and separation.

When this region was revisited with a period of elevation-a period Which seems to be still in progress-a large area of limestone was mocovered, which, with a warm climate and an abundant rainfall, was soon overspread with forests and cut into immumerable gullies and 1:avines, furnishing the very best of conditions for the development of forms, and the multiplication of individual land-snans, and the genera and groups which had been hudded together on the reduced peaks of these islands iradualiy spread out and took possession of the new territory. I regard these facts as the probable explanation of the enormous development of terrestrial molluscan life in the Greater Antilles.

RELATIONS OF THE LAND AND FRESII-WATER MOLLUSCAN FAUNA OF THE GREATER ANTHLLES WITH THAT OF MEXICO AND CENTRAL AMERICA.

It is, I believe, acknowledged that the terrestrial and fluviatile molluscan fama of the Greater Antilles has certain rather intimate relationships with that of the adjoining mainland of Central I merica and Mexico. The great genus Glandina, which at present has its metropolis in the latter region, is represented in the archipelago by a number of species almost equal to that found on the continent. Only a single recent species exists outside of the warmer parts of America- G. algira of southern Emope and northern Africa-though the genus is abundantly represented in the Tertiary beds of Europe. Not only is it found in the Greater Antilles, but several of the minor groups are there represented. The section Olencina is mostly Antillean, but has 4 species on the mainland; Vericelle has 7 on the continent and 21 in the islands; Melia has two species in Mexico and 13 in the archipelago, and the section (ilandina, which is abumdantly represented on the mainland, has a single speries in Haiti. Streptostyla, amother Mexican gemms, has 9) Antillean speries- 4 in Cuba, 2 in Haiti, and 3 in P'nerto Rico. Tolutaxis, a thixd group belonging to the American manland, has 1 species in Cuba and another in Haiti, and Orthulicus, whose metropolis is in the warmer parts of America, has 1 species common to Cuba and Jamaica.

Fischer and Crosse* divide the Stenogyride into two subfamilies-

[^118]Caecilianellinte, with Geostilbia and Caecilinnella, and Subulminte, with Azeca, Ferussacia, Loweir, Opers, R'umina, Steno!!!r'a, Pseudobaler, Melaniella, Špiraxis, Leptinuria, subulinu, and lilessula as generia. Among these Opeas, though represented in the isles of the Indian Ocean, the East Indies, and Polynesia, has its greatest development on the American Continent from Mexico to Venezuela, but it also has several species in the Greater Antilles; while spiroxs, another genus of this family, mostly American, is about equally represented in this archipelago and on the continent. The genns Leptimarin, as defined by Fischer and Crosse, is confined to America, and includes all the suecies of the Antilles hitherto placed in Tornatellina, the latter being by them restricted to the Old World. The former is about equally represented in middle America and the Greater Antilles. Simpulopsis is another genus with its metropolis in America, and with a distribution much like Leptinuria. To these may be added the continental Bulimuhus, with 74 species in Central America and Mexico, which is well represented in Cuba, Haiti, Puerto Rico, and Jamaica, and Polygyra (restricted), with its metropolis in Mexico and the southern United States, but which inhabits Cuba and Jamaica.

On the other hand, we find that the peculiar terrestrial molluscan fauma of this archipelago has, as Bland has expressed it, "made a strong impression" on the mainland. The following table will show the continental distribution of these Antillean genera:

Distribution of genera of Antillean land mollusks.

Genus or group.	Species in Greater Antilles.	Species of Mexico.	$\begin{array}{\|c\|} \text { Species } \\ \text { of } \\ \text { Central } \\ \text { America. } \end{array}$	Species found elsewhere.
Thysanophora.	52	3 ?		2 in Southern States.
Cepolis.	5		1	1 in Peru.
Hemitrochus	12	1 ?		Several in the Bahamas.
Macroceramus	54	3		2 or 3 in Lesser Antilles.
Cylindrilla	168	7	4	3 in northern S. Am, and Lesser Ant.
Neocyclotus....	34 17	2	$\underset{1}{2 ?}$	Northern South America. 20 sp .
Choamopona...	54	2		
'Tudora	29	1		1 or 2 in South America; Leeward Islands.
Chondropoma	80	2	3	South America, 4.
Colobostylus	23		1	1 in 'Trinidad.
Cistula..	24	2	4	2 in South America(?); a fow in Lesser Antilles.
Adamsiella	13		2	3 in South America(?).
Eutrochatella *	33		1	

* Several other species of Pneumonopomata are found in Mexico, Central and South America, which lıave been referred to Adamsiclla, Cistula, Tudora, and Ohondropoma, which doubtfully belong to these genera.

Among the fluviatile mollusks there are no genera common to the two regions whose metropolis is in either of them, save Pachycheilus and Hemisinus; but quite a number of species inhabit both the mainland and the archipelago. The same is true of a good many terrestrial forms, The following list gives these species and their distribution:

Land and fresh-water mollusks i biting the Greater Antilles and the continent.

* This species is distributed over nearly all the United States and as far south as Honduras: Prime states (American Corbiculide, p. 76), that P^{\prime}. consanguinetm, Prime, of Cuba can scarcely be separated from $P_{\text {abd }}$ abditum Hald., and on carefully comparing authentic specimens in the National Misenm I believe then to be tho same.

I am not prepared to believe that so extensive a relationship-the exchange of so many genera, subordinate groups, and species-could have been brought about merely by ocean currents and winds. Since the gulf stream was turned into its present course-probably during the later miocene, when the Isthmus of Panama was elevated-its tendency would be to sweep any species that might fall into it, from the Antilles or the continent, up into the Gulf of Mexico, and away from either shore. The prevailing winds of the region have no doubt been from the east-north-east in the past, as in the present, and would favor the landing of Antillean species in Yucatan, though their effect would he largely neutralized by the current. We find that very nearly as great a migration has taken place from the mainland to the archipel. ago as in an opposite direction. The depth of the Yucatan Chamel would seem to prechde the likelihood of a former landway ruming west from Cuba, hat the presence of Streptostyla, with eight species scattered through Cuba, Haiti, aud Puerto Rico, and Volutaxis with two
species, one each in Cubai and Haiti, while neither of the genera are found in Jamaica, appears to favor a more northern as well as a southern landway.

RELATIONS OF TIIE GREATER ANTILLEAN LAND NNAIL FAUNA WITII THAT OF 'THE BAHAMAS.

I next pass to the relationship of the land snail fana of the Greater Antille; with that of the Bahamas. - On this extensive archipelago, with some 3,000 islands and an area of nearly 6,000 square miles, there are only about 80 species of land suails known. The climate of the islands is warm, the structure of most of them is coral limestone, and there is a plentiful rainfall, with sufficient vegetation to furnish shelter and food for an abundance of snail life; in fact the number of individuals is in many cases great. All the groups with the exception of the Mexican genus Schusicheilus, represented by a single species, are Cuban and Haitien, or are such as are found in those islands; and a number. of the species are common to the Greater Antilles. In many genera, especially Hemitrochus and Cerion, there is an almost endless amount of variation, with few breaks sufficient for the proper separation of species. The islands of the Little and Great Bahama Banks being nearest to Cuba, and lying in the course of the currents that flow by that island, partake most largely of its fauna, while those to the north of Haiti bear more strongly the impress of its forms. Yet when we come to carefully consider the manner in which this archipelago must have been colonized with land snails, we need not be surprised at its comparative poverty of species, or that it has no peculiar genera. Whether in time past this area arose above the sea and had land comection with Cuba and Florida doe:; not matter so far as its present terrestrial molluscan fama is concerned. As the highest point in the archipelago is only about 300 feet above sea level it is quite probable that the entire Bahaman region was submerged during the general period of subsidence, and whatever species may have existed were doubtless destroyed. We may suppose that during the period of elevation which followed, as soon as these islands began to appear above the sea, and were fitted for the abode of land snails, those nearest to Cuba, Hati, and the gulf stream received oceasional stragglers which drifted across the not very wide chamel.*

[^119]This migration by currents and in some cases, no doubt, by winds from the Greater Antilles to the Bahamas, has not been of long continuation, for the reason that the last elevation of this latter archipelago above the sea has been comparatively a recent one and therefore there has not been time for the formation of new genera or subordinate groups, and only for few valid species. Many of the forms are so slightly differentiated that they can not be separated with any degree of acmacy, and others have broken into endless variations, which may be taken as an indication that the region has not been very long colonized and that species are multiplying.

Had this land been connected with Cuba or Haiti since it was last elevated above the sea it is probable that it would now be far richer in generat and species than it is.

TIE TROPICAL LAND AND FRESII-WATER MOLLUSCAN FAUNA OF SOUTIIERN FLORIDA, AND ITS RELATION TO THAT OF THE GREATER ANTILLEN, MENICO, ('ENTRAL AND SOUTH AMERICA.
In southern Florida some 28 or more species of land and freshwater mollusks occur, nearly all of which are now living in Cuba, while a few belong in Mexico, 1 possibly in South America, 2 are found in the Bahamas, and 1 perhaps came from Trimidad.*

This terrestrial and fluviatile population of southern Florida is in all probability the result of recent migration, mostly by means of winds and currents. Most of the species are confined to the lower chain of keys or the extreme sonthern part of the peninsula. Chondropoma dentutum extends a short distance north of Cape Sable, Bulimulus multi. lineatus reaches Caximbas, and Liguns fusciutus has been doubtfully reported as far north as the Caloosahatchee River. Guppya gundlachi and the two Hucroceramus no doubt extend their range to at least the middle of the State. Bulimulus dormuni, Polygyra cereolus, Planorbis tumidus, and sphurium cubense probably inhabit the entire peninsula, and A mpullerin depresse, which is a form of A. caliginosa, extends into Georgia.

[^120]It scarcely seems necessary to enter into any argmment to show that these tropical forms now found in Florida are not the lineal descendants of the Helices and Bulimulus, the Cylindrella and Cerion or other species of the Miocene silex beds of Tampa. The living land and freshwater mollusks of Florida of tropical origin are absolutely identical with forms at present found in Cuba, Jamaica, and the continent, while those of the Tampa beds are all extinct, and we can not for a moment suppose that their desceudants would be sperifically identical with Antillean and Mexican forms that had come from another line of descent. I believe that the present species have been colonized but a short time in Florida, and the fact that, although the soil, contom, and climate of the comntry are quite different from those of tropical America, nct a single introluced form has as yet changed specifically, and only one possibly varietally, is strong evidence in this direction.

It is most likely that tropical land smails have been cast on the shores of the peninsula with the jetsam and flotsam of the sea ever since the Gulf Stream has had its present course, an amply sufficient leugth of time for the development of species from some of the original wanderers, as that great ocean river was probably turned into the Gulf of Mexico and past the State of Florida during the latter part of the Miocene, when the Isthmus of Panama is believed to have been raised and North and South America were joined together. I would suggest that the reason why no such new species exist there might be that in all probability any forms that were colonized on the peninsula prior to the time of the Glacial Epoch were destroyed by the change of climate, which swept out of existence, and drove to the southward so much of the animal and vegetable life of North America.* The presence of a great cap of ice coming down to the latitude of 40°, within 10° or 600 miles of the northern part of the State, would, especially at certain times in winter during the prevalence of northerly winds, be likely to destroy by cold such species as might be landed by the Gulf Stream. Even now, with a much milder climate than this region possessed during Glacial times, an oceasional unusually severe winter almost annihilates the tropical fishes of this region, and kills in part, or even entirely, many forms of West Indian vegetation as far south as Cape Sable. Several of these Cuban land snails are only met with on the lower keys, an area practically free from frost.

We know that a very slight difference in latitude or climate may cften set a bound on the distribution of different forms of animal and vegetable life. Thus, nearly all the immigrant West Indian vegetation now found in Florida is confined to the southern half of the peninsula, though there are no apparent reasons so far as soil, food, and moisture

[^121]are concerned why it should not extend north indefinitely. The tropical land suails of Mexico come north in the low lands for the most part only to the northern border of that liepublic, and many other instances of a like restriction by climate could be given. It is probable that a decrease of a very few degrees in temperature would destroy the Antillean land and fresh-water mollusks in Florida.

It is believed by many of our ablest glacialists that the Ice Age lasted down to within from 6,000 to 10,000 years of the present, and the period which has elapsed since its close would probably be too short to allow for any considerable variation in mollusks. The Bahamas being protected on the north and west by the Gulf Stream, and lying generally in a lower latitude, no doubt enjoyed during the Glacial Epoch a milder climate than Florida, and have been peopled longer with immigrant forms; a sufficient time to allow for the development of numerous varieties and species, but no groups or genera.

I think there need be no difficulty in accounting for the presence of tropical land and fresh-water mollusks in Florida by means of the transporting agency of the sea. The Gulf Stream sweeps up past northern South and Central America, part of it eddying around in the Ginlf of Mexico. A brameh of it, however, flows along the north shore of Cuba, and by the shoal in latitude 24° is thrown in close to the lower chain of Florida Keys. Alexander Agassiz says:*

The curve of the Florida reef along the Gulf Stream is due in great measure, as Hunt shows, to a comnter current along the reef rmning westward. This current is known to all navigators, and though ill defined at Cape Florida becomes stronger and wider as it goes west. It has a width of at least 10 miles at Key West and 20 miles at Tortugas. This is elearly shown by the mass of surface animals friven alourg upou this westerly current by the southeasterly winds. The tides set strongly arrosis the reefs and through the chanmels between the keys, the flood runuing north and the ebb south.

Mollusks washed down with trees, hamboos, or masses of drift from the northern shore of Cuba would be swept along by the strong cullrent of the Gulf stream to the eastward and northward, and many of them, carried by the southeast winds into this counter current, might be landed by the inflowing tide among the lower keys within a few days after leaving their native island. Species from Honduras might at long intervals be drifted by westerly winds across to the eastern part of the Gulf Stream, and so be carried around and landed in the way I have described; or they might possibly sometimes survive a passage around the eddy in the gulf. The fart that there are more forms from C'uba found in Florida than there are from Middle America, and that only a single very doubtful South American species is known in that state, t illustrates the comparative difficulty which these wanderers

[^122]experience in being drifted to our shores. I may mention in passing that every strictly Cuban species-I think withont exception-now known to be living in Florida is an inhabitant of the western end of the island, and most of them are known to have a general distribution throughout the western part of it, and especially on its northern shore.

RELATIONS OF THE TERRESTRIAL AND FLUVIAJILE MOLLUSCAN

 FAUNAS OF THE GREATER ANTILLES AND TIIE WINDWARD ISLANDS.A careful examination of the lists of genera, subordinate groups, and species of these two areas will reveal the fact that while there is a relationship between the two famas it is not nearly so close as the one between the faunas of the former region and the continent.

Land Snails common to Puerto Rico and the Lesser Antilles.

* Also found in the island of Buen Ayre, of the Leeward Gronp.
\dagger French Guiana also.
+Soveral of these stenogyridue and sume other species have probably been introduced throngh the agency of man.

Fresh-water Mollusks common to Puerto Rico and the Lesser Antilles.

Species.	Guadeloupe.	Martinique.	Domin. ica.
Planorbis gualaloupensis, Nowb schrammi, Crosse lucitus, P'r	$\begin{aligned} & \stackrel{x}{x} \\ & \underset{x}{x} \end{aligned}$	\times	
Ancylus beani. Bourg.	x		
Apleeta sowerbyana, A. dorb	-		
Potamopyrgus coronata, Pfr			x

From the above lists it will be seen that there are 14 species of terres trial and 6 fluviatile mollusks common to Puerto Rico and one or more islands of the Lesser Antilles, while no less than 24 laud mollusks belong to that island and some of the other (ireater Antilles, and 13 fresh-water species. The following tables show the specific relationship between these molluscan fannas of Puerto Rico and the other islands
of the more northern group; all of them being found in the last-named island:*

Land Mollusks common to Puerto Rico and other Greater Antillean Islands.

Iresh-water mollushs common to Puerto Rico and other of the Greater Antilles.

It will be seen that so far as species are concerned the relationship between the land and fresh-water mollusks of Puerto Rico is much closer with the Greater than with the Lesser Antilles. It is, however, among the genera and minor groups that the break in the molluscan famas of the two archipelagoes is most noticable. Among the Helices the genus Pleurodonte, t which includes all the sections of the old and well known Carocolus, is distributed throughont the West Indies, northern Sonth America, and Central America. The section Carocolus, consisting of lenticular toothless species, is confined to the Northern Archipelago, and is found in Cuba, Haiti, and Puerto Rico. The section

[^123]Plewrodonte, better known as Lucernu, is limited to Jamaica, as is Eurycratera. The section Polydontes is Cuban; Parthena and Luquillia are confined to Haiti and Puerto Rico, while Gonostomopsis, with a single species, belongs in Martinique, and Caprimus, better known as Dentellaria, is a characteristic group of the Lesser Antilles, extending into South America, but is not found in the Greater Antilles. Thelidomus with a metropolis in the Greater Autilles has three species in the Lesser Antilles and South America. Not a species of the genus Pleurodonte is common to the two regions.

Another great genus found abundantly in all the islands of the Northwestern Archipelago, Hemitrochus, is absolutely wanting in the Windward Islands, as are also the smaller Cuban genus Polymita, the Jamaican genera Sagda, Lucidella, and Neocyclotus, and Cepolis of Haiti and Puerto Rico; though the latter genus has a single species in Central America, and another in Peru.

Macroceramus,* Liguus, Cerion, \dagger Tendreysia, Geomelania, Proserpina, Otenopoma, Adamsiella, Megalomastoma, Colobostylus, Alcadia, Stocistoma, and Eutrochatella, Greater Antillean genera, are entirely wanting in the Lesser group; while Cylindiella, Glandina, Cistulu, Choanopoma, Chondropoma, and Tudora, all highly characteristic of the Northwestern Archipelago are but feebly represented by a few strag. glers, mostly in the northern end of the chain. Three genera only are peculiar to the Windward Islands; two with a single species each; Rhodony.x in Martinique; Amphibulima in Dominica, Guadeloupe, and St. Kitts; and Pelliculu with two species in Guadeloupe.
The fact of the rather recent formation of these northern volcanic islands, built upon an old submarine plateau, that of the comparative poverty of the species and genera of this archipelago, and of their slight relationship to those of the northwestern group, all go to indicate that the Anegada Channel has not in the lifetime of the present land-snail fama been bridged. A fer species, however, have passed, no doubt by way of the sea or other means, from one group to the other, more from the northern islands to the southern than the reverse, as might be expected from the comparatively richer fanna of the former. The current which flows from the Atlantic through this chamel would not probably favor the drifting of species from either archipelago to the other, and this with the prevailing wind from the east-northeast would naturally carry most of the land suails washed into the sea out into the open water of the Caribbean, where they would perish.

I do not think that anyone who at all carefully studies the land and fresh-water molluscan fauna of the Lesser Antilles can doubt that it is

[^124]for the most part derived from South America. At Trinidad-which is merely a detached fragment of Venc\%ucla-more than half the species are common to the mainland, and among them are one or more of the continental Borns, an Ampullariu, a Marisa, and an Anodon.*

Borus is found in St. Vincent, Barbados, Cinadelonpe, St. Kitts, and Montserrat, \dagger and Bulimulus, another most characteristic South American genus is abundant throughout the Lesser Antilles. The 500-fathom line will be fomm to divide the Lesser Antilles into three groups; the most northern embracing every island from Sombrero and the Saba bank south to and including Dominica. Between the latter and Martinique is a chamel 575 fathoms in depth, and south of it is another of 54 fathoms. Beginning with St. Lucia, which is separated from St. Vincent by a depth of 486 fathoms, all the islands to the southward are united to the mainland by the 500 -fathom line. Barbados is somewhat isolated, and is surombled by comparatively deep water, being sep, arated from the chain by 1,403 fathoms, while Trinidad, Tobago, Margarita, and Tortuga are all within the 100 -fathom line. Several South American Bulimus typified by B. curis-sileni are found in the islands from St. Vincent southward, and Martinique, which is separated from the islands north and south of it by chamels over 500 fathoms in depth, has no Pineriu, Chontropoma, Choonopomu, or Cistuld, which are Greater Antillean genera found in the Windward Islands north of it. As a proof of the comparative poverty of the Lesser Antilles it may be staterl that the whole archipelago does not contain 300 species of terrestial and fluviatile mollusks; scarcely more than half the number belonging to Jamaica.

One group is found in nearly all the Windward Islands, Caprimus (better known as Ientelluria), a section of the genus Pleurodonte, which seems to bear about equal relationship to the sections found in the Greater Antilles, and to Lebbyrinthus of northern South America. There is another division of the genus, Isomeria, which is confined for the most part to the higher Andean regions of Peru, Equador, and Colombia, characterized by a lesser development of teeth in the aperture than Labyrinthus, and which may have sprung from the latter. The distribution of these groups is a little peculiar. We may suppose the Greater Autilles to be the site whereon Pleurodonte developed, from the fact that six out of the eleven of its sections are wholly confined to that region, as is another, Thelidomus, with the exception of a couple of species, while a majority of the species of the genus are also fomn there. It would seem strange that some ancestral form which had migrated to the Lesser

[^125]Antilles should develop into the group Caprinus, not a species of which should be found north of this archipelago, and that not one of the six other Greater Antillean groups should be represented in the Windward lsles; that it should develop a few species on the mainland and pass into Labyrinthus, no species of which is fomed outside the continent.

It appears to me a not unreasouable solution of this rather curious phase of distribution, in view of the very slight relationship that otherwise exists between the land and fresh-water mollusks: of the Greater and Lesser Antilles, and of the fact that many of the latter islauds are of such recent date, that it is more probable that ancestral forms of Plewrononte migrated from Jamaica across the old landway to IIonduras; that the subsidence of some 400 miles of this ancient bridge destroyed the connecting links so that lleurodonte restricted developed in the island and Labyrinthus on the continent; that the latter (extending now as far north as Central America) spread out over the lower regions of northern South America, and developed into Isomeria in the mountains; that from this stock descended Caprimes, which is now represented by a ferw species in Guiana, and probably in the adjacent territory, and which migrated northward among the Lesser Antilles to St. Kitts and Barbuda, its farthest limit.*

To briefly recapitulate, a considerable portion of the land snail fauna of the Greater Antilles seems to be aucient and to have developed on the islands where it is now found. There appears to be good evidence of a general eleration of the Greater Autillean region, probably some time during the Eocene, after most of the more important groups of snails had come into existence, at which time the larger islands were united, and there was land connection with Central America by way of Jamaica and possibly across the Yucatan Chamel, and there was then a considerable exchange of species between the two regions. At some time during this elevation there was probably a landway from Cuba across the Bahama platean to the Floridian area, over which certain groups of Antillean land mollusks crossed. At this time it is likely that the more northern isles of the Lesser Autilles, which seem to be voleanoes of later Tertiary and Post Pliocene date, were not yet elevated above the sea or if so they have probably been submerged since. After the period of elevation there followed one of general snbsidence. \dagger

[^126]During this the island of Jamaica-as the character of its land-snail famat shows, as well as the depth of the chamel between it and HatiWas first to be isolated, then Cubal, and afterwards Haiti and Puerto Rien were separated. The comnection between the Antilles and the manland was broken, and the Bahama region, it it had been previonsly elevated above the sea, was submerged; the subsidence continting until only the summits of the momitains of the four Greater Antillean islands remained above water. Then followed another priod of elevation, which has lasted no doubt matil the present time, and the large areas of limestone uncorered (of Miocene, Pliocene, and Post Pliocene age) in the (rreater Antilles have furnished an admirable field for the development of the groups of land smails that survived on the summits of the islands. The Bahamas have appeared above the surface of the sea, either by elevation or growth, and have been peopled by forms drifted from Cuba and Haiti, and a number of land and fiesh-water species have been recently colonized in South Florida, probably since the (ilacial epoch. The Lesser Antilles have been peopled for the most part from South America, possibly receiving from that region the group C'aprimus, so characteristic of the former region, as well as several genera of land operculates, while a few stragglers have been carried loy sea no doubt fiom the Greater Antilles and colonized on the more northern of the Windward Islands.

DESCRIPTIONS OF NEW SPECIEA OF RECENT AND FOSSIL LAND SHELLS FROM THE ISLAND OF JAMAICA.
I.-Recent species. SAGDA MAXIMA, new species.

Plate XVI, figs. 7, 8.
Shell large, pyramidal in form, with nearly straight sides and obtuse summit, moderately striated, and covered with a thin, horn-colored epidermis; whorls, S_{2}^{2} to 9 , moderately convex; suture distinct and well impressed, sometimes slightly margined; last whorl wide, well rounded; aperture large; base rather flat, not deeply excavated at the umbilical region; the latter covered with a light, glazed callous, which joins the outer edge of the aperture. Interior entirely destitute of a lamella. Greater diameter 30 ; lesser 27 mm ; height 28 mm . Near Petersfield, Westmoreland, on a mountain, in heavy forest.

This speries resembles \mathcal{S}. epistylioites somewhat, but has a broader, less excavated base, and fiom one to one and a half less whorls, which are wider than those of the latter, and the shell has not so pointed a summit. Some 25 specimens (all dead) were obtained, varving fiom

[^127]young to adults, and though several were broken open no vestige of a lamina was observed at any stage of growth.

PLEURODONTE (EURYCRATERA) JAMAICENSLS, Chmitz, var. (ORNEA.
A variety of this speries was found at Mandeville, Manchester, rather more delicate in structure than the type, and entirely destitute of color, the epidermis being horn-colored.

ADAMSIELLA GRAYANA, D'foiffer, var. AUREOLABRA.
A large number of specimens of what may prove to be a new species were fomd at Rio Novo, in St. Mary. The apertme is smoother than that of the type, and is of a rich, reddish-oramge color; the body of the shell is shining, and very finely decussated under a glass. The species is exceedingly variable, and this may be only a strongly marked variety.

LUCIDELLA AUREOLA, Ferussac, var. INTERRUPTA.
This variety is covered with interrupted and slightly wavy, revolving strie, the hrie blotched with white. Dnncan's, Trelawney.

> II.-Fossil species.

NEOCYCLOTUS (PTYCHOCOCHLIS) BAKERI, new species. Plate XVI, figs. 1, 2.
Shell large, depressed, with 5 well-rounded whorls; nuclear whorl wanting in the only specimen found; second, third, and fourth whorls covered with delicate, radiating, zigzag corrugations, which become very much coarser on the last three fourths of the body whorl; the periphery of the latter being almost smooth, the upper surface becoming very strongly and irregularly waver toward the aperture; the base and umbilical region having stroug folds, which sweep forward obliquely toward the periphery; umbilicus rather wide, extending to the summit of the shell, and exhibiting the volutions; umbilical keel almost entirely wanting, there being two very slight revolving elevations, one at the outer edge of the umbilicus, the other farther out on the base, the area between them being Hattened so that the shell seems to have two faint keels; aperture moderately large; operculum unknown. Greater diameter 25, lesser 21 mm ., height $12 \mathrm{mmm}^{2} \mathrm{~m}$.

Locality aml position: stratum of marl in the Miocene berls at Bowden, St. Thomas, Jamaica, associated with marine fossils.

I take pleasure in naming this fine speries in honor of Capt. L. I). Baker, president of the Boston Fruit Company, who gave us permisision to excavate in the beds, and furnished us men and every facility possible to make our work a success.

LUCIDELLA COSTATA, new species.
 Plate XVI,fig. 6.

This is a small species, abont one-half the diameter of the average L. aureold. There are is whorls which are moderately rounded; the Proc. N. M. $94-29$
suture being shallow amd somewhat camalionlate, with about 10 strong, revolving (o) tid on the borly whorl and in on the penult whorl, and hefween these are smaller revolving liar. The center of the base for about fwo-fifths of the diameter of the shell is perfectly smooth, and slishty hollowed in the umbilieal region. The upper part of the aperture of the only specimen fomod is broken away, leaving only the basal tooth, which is slightly compressed parallel with the outer edge of the basal lip.

Diameter $3 \frac{1}{2}$, height nearly 3 mm .
Found with Neocyclotus bukeri and other fossil shells.
PLEURODONTE BOWDENIANA, Hew species.
Plate XVI, figs. 3, 4, $\overline{5}$.
Two fragments of this shell were found, an apex with 3 whorls and about one-third or the base of a body whorl with the aperture in perfect condition. The fragment containing the nucleus shows the upper surfare of the whorls perfectly plain, the suture being only marked by an elevated line; it has a wide umbilicus and a very sharp keel. The other fiament shows a rather sharply defined peripheral keel; the aperture is very ohlique and rather compressed, with two strong teeth, which are somewhat like those of P. lucerno, but are set more obliquely with the aperture, the outer one being somewhat flattened on the upper extremity; the lip is thin, not reflected above, reflected and joined solidly to the base along its inner half, the outer basal half is free and well reflected. Back of the basal lip there is a deep, somewhat oblique, oval pit, corresponding exactly with the shape of the outer tooth, and extending within it to its summit. The large umbilicus of the young shell is completely closed by the flattened callous of the lower lip in the adult. The diameter of this shell if perfect would probably be about 40 mm ., the height about 15 mm . It was found in company with the other fossils in the Bowden beds. The basal pit behind the aperture is a remarkable character, and I know of no other Plewrodonte which has it developed in such a manner.

The Thyscmophora found with the above fossils is, I believe, new, but it is not in fit condition to describe or figure.

Explanation of Plate XVI.

[^128]

3

4
New Species of Mollusks from Jamaica.

Figs. 1, :. Neocyclotus bakeri (Fossil)
Figs. 3-5. Pleurodonte bowdeniana (Fossil)

Fig. 6. Lucidella costatct (Fossil). Fig. \%, 8. Sagda naxima (Recent)

S(IENTIFIC RENULTA OF EXPLORATIONS BY THE U. ふ. FISII COMMISSION STEAMER ALBATROSS.

[Published by permission of Hon. Marshall MeDonald, Commissioner of Fisheries.]
NO XXVIII- - ON CETOMIMIDE AND RONDELETIIDE, TWO NEW FAMILIES OF BATHYBIAL FISHES FROM THE NORTHWESTERN ATLANTI(.

By G. Brown Goode aud Tarleton H. Bean.

In our forthcoming work entitled "Oceanic Ichthyology" the three species here noticed will be described and figured. The publication of this work will probably be delayed for several months, and it is thought proper to publish in advance some account of these very interesting forms, each of which is represented by a single specimen.

These are Malacopterygian fisher, belonging to the group set aside by Gill under the name Inioni. Their relations to the other members of the order are not well understood by us, but they are somewhat closely allied to the Synodontidie, thongh lacking scales and the adipose dorsal fin, and having grannlar teeth arranged in bands.

The family Rondeletide is distinguished from Cetomimide by the presence of ventral fins, and the incompleteness of the opercular apparatus.

> CETOMIMIDE, Hew family.

Malacopterygian, with body somewhat compressed, scaleless. Head naked. Lateral line conspicuous. No barbels. No photophores. Mouth exceedingly large; the margin of the upper jaw formed by the premaxillaries only; the lower jaw strongly curved, and slightly projecting beyond the upper. Teeth in jaws in bands, granular. The vomer, the palatines, the pterygoids, and also the first gill-arch aud the lingual bones (which are greatly enlarged), as well as the upper pharyngeals, are covered with teeth of a similar character. Opercular apparatus incomplete; its bones very thin, membrane-like. Mesocoridcoid wanting. Post-temporal connected with back of cranium, near sides. No adipose fin. Dorsal fin far back, short, high, inserted opposite the anal which it resembles. Pectorals short, placed rather low.

Ventrals absent. (iall opening immense, the membranes deeply cleft, free from the isthmus. Gills 3. Psendobranchia absent.

CET O MIMUS, new remus.
Borly oblonge, compressed, scaleless; similar in its vertieal outline and propertions to that of the right whales (Balarnidar), a resemblance which is greatly enhanced by the shape of the enomons mouth, and in the lower jaw strongly duved, mojecting slightly beyond the snout. Teeth in gramula bands, covering all the bones of the mouth, tongue, and throat. Nucons pores sometimes present on the back. Nostrils far forward, open slits without flap. Eyes very small, and placed far below the dorsal protile. Gill-membranes deeply cleft, not attached to the isthmus. Gill-rakers absent, replaced by granular tooth-like surface upon the such. (iths 3 ; no slit behind the third. Branchiostegals 9. Opercular apparatus incomplete, bones thin and membranous. Dorsal short, hish, inserted very far back, directly opposite the anal, which it resembles in shape and size. Caudal peduncle short and slender. Ventrals absent. Pectorals broad and short, placed low. Caudal small, weak, probably emarginate or truncate. Lateral line broad, consisting of two furows connected vertically by numerons short cross-grooves.

CETOMIMUS GILLII, new species.

Plato XVVII, fig. 2.

The height of the body is a little less than one-fourth of the total length; length of head a little less than one-third. Eye minute; contained about $2: 3$ times in the length of head, and about eight times in that of shout; inserted midway between the margin of the jaw and the dorsal profile, distant from the former a space contained about $2 \frac{1}{2}$ times in the length of the snout. The maxillary reaches rery far back, extending to a point behind the orbit equal to $1 \frac{1}{2}$ times the length of the snont. The origin of the dorsal is directly above that of the anal, which is inserted a short distance behind the vent; distance from the snout erual to more than four times the length of its own base, and the distance of its termination from the root of the upper rays of the candal equal to its own greatest height. The anal fin is similar in shape and extent to the dorsal, but has the thirteenth to the fifteenth rays the longest. while the eighth to the eleventh are the longest in the dorsal. The length of these longest rays is about equal in the two fing, and is contained slightly less than three times in the length of the head. The pertoral fin is inserted somewhat below the middle of the body and close to the extremity of the opereular flap. It is broadly lanceolate, and its length is contaned about $3 \frac{1}{2}$ times in that of the head. Ventrals lacking. Color, blue-black. The lateral line sweeps in a bold curve from a point above the upper angle of the gill-opening to a point in the middle of the body butween the origin of the dorsal
and anal fins, and thence in a straght median line to the base of the caudal.

Radial formula: B. $9 ; \mathrm{D} .16 ;{ }^{\circ} \mathrm{A} .16 ; \mathrm{P} .16$.
A single specimen (No. 35.59, U.S.N.M.), five inches in length, was taken by the Albatross, August 20,1884 , at station 2206 , in $3903: 5{ }^{\prime}$ N. Lat., $71^{\circ} 24^{\prime} 30^{\prime \prime} \mathrm{W} . L o n g$., at the depth of 1,043 fathoms.

CETOMLMUS STORERI, new species.
Plate XXII, Fig, 3.
The height of the borly is a little more tian one-fourth of the total length; the length of the head is contaned three and one-third times in that of the body. Diameter of the eye contained about eighteen times in the length of the head, and about seven times in that of the snout, the eye being inserted nearer to the dorsal profile than to the jaw, its position iu the vertical being twice as fin from the line of the upper jar as from the dorsal lines, it is nearly in the line of the vertioal erecter from the middle of the upper jaw to the rightangles of its edge. The lower jaw is strongly curved, and propects far beyond the upper. The origin of the dorsal fin is a little in advance of that of the anal, which is inserted at a distance from the rent equal to three or four times the diameter of the eye. The dorsal fin is Ionger than the anal, the termination of the latter being under the fifth ray from the end of the dorsal. They are about equal in height, and the direction of the rays when erected is backward, and at an acute angle with the axis of the body. The longest rays are contanch about two and one-half times in the length of the head. Pectoral fin is inserted very far down, the lower portion of its peduncle almost on the abdominal line; the fin is lanceolate, and although mutilated, is believed to have been about half as long as the head. The lateral line sweeps in a sinmons curve from a point above the upper angle of the gill-opening to a point somewhat in advance of the insertion of the dorsin, and thence in a straight line to the base of the caudal. A line of mucoms pores on either side of the median dorsal line in advance of the dorsal fin.

Radial formula: D. 19; A. 16.
A single specimen (No. 35634 , U.S.N.M.), $t_{i=1}^{2}$ inches in length, was taken by the Fish Commission steamer Albuthoss at station ?2.2. December 5,1854 , in $3900: 3^{\prime} 15^{\prime \prime}$ N. Lat., $700500^{\prime} 45^{\prime \prime} \mathrm{W}$. Lou., at a depth of 1,535 fathoms.

This species is provisionally deseribed from a carefol drawing made by Miss M. M. Smith, December 11, 18st, under the eriticism of I)r. Bean, the type specimen having been inacessible at the time this study was made.

The species is named in honor of 1)r. David Inmplureys Storer, who died in Boston at the age of eighty years, in September, 1891, in token of our appreciation of the distinguished services of this pioneer in American ichthyology, who began systematie work upon the fama of the western Atlantic more than half a century ago.

RONDELETIIDA, new family.

Body more or less compressed, scaleless. Head maked. No barbels. Mouth large. Margin of the mper jaw formed by the premaxillaries only. Teeth coarsely granular. Opercular apparatus complete; its bones rery thin, membrane-like. No adipose fin. Dorsal fin far back; short and low; inserted opposite the anal. Pectorals short, placed rather low. Ventrals present, abdominal. Gill opening very wide; membranes deeply cleft, free from thoisthmus. Pseudobranchise absent.

RONDELETIA, new genus.
Borly oblong, rompressed, scaleless. Mouth large; lower jaw slightly projecting. Teeth in bands, coarsely gramular in the jaws; vomer and palatines toothless; a row of large mucous pores on the lower surface of the mandible and extending upward on the preoperculum. Posterior nostril with a slender filament anteriorly. Eyes moderate; near the dorsal profile. Suont rather long, obtuse. Supraoceipital bones with a pair of strong spines projecting horizontally forward orer the orbit. Gill-membranes entirely separate; gill-rakers numerous, rather long and slender. Gills 4; a narrow slit behind the fourth. Branchiostegals 7. Opercular bones thin, membranous. Dorsal short, rather low, opposite and similar to the anal. Pectorals and ventrals small. C'andal small, probably forked. No vestiges of a lateral line.

This genus is dedicated to Rondelet, the French ichthyologist of the seventeenth century.

RONDELETIA BICOLOR, new species.
Ilate XVII, Fig. 1.
The height of the body is a little less than one thiod of the total length; length of the head nearly one-half. Diameter of the eye contained six times in the lemgth of the head, and twice in the length of the snout. The maxillary reaches to below the hind margin of the eye, and the intermaxillary about as far. Origin of the dorsal fin nearly opposite the vent. The anal origin immerlately behind the vent, the terminations of the two opposite. The fins are low, the rays pointing horizontally barkwarl ; the longest ray in the dorsal fin about one-fifth of the length of the head, and the longest in the anal, one fourth. The pectoral fin inserted below the middle of the body, and under the end of the opereular flap; its length nearly one-fourth that of the heat. Ventrals inserted behind the middle of the total length, and still farther behind the tips of the extended peetorals; their length about two-ninths that of the head, and when extended reaching beyond the vent.

Golor, purplish-blark, with cherry-colored margins to the fins; whit ish in spirits.

Radial formula: B. 7; 1). 14; A. 14; P. 9; V. 5.
A single sperimen (No. 3800 , U.N.N.M.), 4 inches in length, was taken ly the Fish Commission steamer Albetross at station 2724, Lat. $366^{\circ} 47^{\prime}$ N., Lon. $733^{2} 25^{\prime}$ W., at a rlepth of 1,641 fathoms.

$\stackrel{2}{2}$

New Species of Bathybial Fishes.
Fig. 1. Rondeletict bicolor, Goode and Bean.
Fig. 2. Cetomimus gillii, Goode and Bean.
Fig. 3. Cetomimus storeri, Goode and Bean.

SCIENTIFIC RESULTS OF EXPLORATIONS BY TIIE l . s. FISL COMMISSION STEAMER ALBATROSS.

[Published by permission of Hou. Marshall McDonald, Commissioner of Fisheries.]
NO. NXIX.-A REVISION OF THE ORDER IHETEROMI, DEEP-SEA FISIEN, WITH A DESCRIPTION OF THE NEW GENERIC TYPES MACDON.ALDAA AND LIPOGENYS.

By G. Brown Goode and Tarleton H. Bean.

Trie collection of heteromous fishes obtained by the U. S. Fish Commission includes representatives of three of the five known genera of the order. The first species was taken in 1880 by a New England fishing ressel from the stomach of a ground shark on the Gramd Bank of Newfombland. The Albatross secured its first specimen (a Mucdonaldia) in 1884 off the coast of New Jersey, and again, in 1857, dredged a second specimen of the same species mearly the same locality.

In 1886 this ressel collected several examples of Notucouthus: rumlis. Test of the Bermudas, and in 1857 Lipogenys was dredged oft the Maryland coast.

Heteromi have been recorded from the Aretie, the Nediteramean, north and sonth Atlantic, and north and sonth P'acific, in depths ranging from 100 to upward of 1,800 fathoms.

Order HETEROMI.

Notacanthi, Bleener, Tentamen, 1859, xxili. (In part.)
Heteromi, Gill, American Naturalist, November, 1889, p. 1016.
Teleosts with the scapular arch formed by the proscapula and post temporal (or posterotemporal), the latter detached from the sides of the cranium, and impinging on the supranccipital; the hypercoramid and hypocoracoid coalesced into a single lamellar imperforate plate; the actinosts normal; the cranium with the condyle eontined to the basioccipital (ill defined); the exoccipitals coalesced with the epioties and opisthoties; the vomer obsolete; the opereular apparatus complete, but the preoperenlum slightly connected with or discrete from the sus. pensorium; the suborbitals suppressed; the jaw bones complete aml little aberrant; the palatines, entopterygoids, and ectoptyergoids well developed; the anterior vertebrie separate, and the ventrals ablominal. (Gill.)

All the heteromons teleostshaveasubfusiform, moderately compressed body, with head and smout protruling, and sometimes produced and proboscis-like as in Polyacanthonotus.

Family Notacantildane.

Notacantini, Rafinesque, Indice d'Ittiologia Siciliana, 1810, p. 34. Notacanthini, Bonaparte, Cat. Metodien, 1816, p. 72.
Notacanthoidei, Bleeker, l. c.
Notacanthi, Günther, Cat. Fish. Brit. Mus., ini, 1861, p. 544.
Notacanthider, Gils, Arr. F'am Fish.; 1872, p. 21; Johnson's Cyclopredia, iII, 1883, Century Dictionary, iv, 4022 .-Jordan and (thberet, Bull., U. S. Nat. Mus., xvi, p. 370.
Heteromous teleosts, with elongate, subfusiform, moderately compressed body. Head short and smont protruding, sometimes produced, proboscis-like (as in Polyuconthomotus). Mouth moderate, horizontal, or inferior, suctorial (as in Mucdonuldia). Seales small on body and head; lateral line present. Teeth slender, closely set, in a single series in each jaw. Gill-openings wide, the membranes separate and free from the isthmus.

Dorsal fin median, with short and free dorsal spines, and with soft rays very few or absent. Anal fin long, rather high, extending from the middle of the body to the caudal, with which it unites, and with numerous spinousrays. Ventralsabdominal, often confluent, with 1-5 spines aud $4-8$ soft rays. Pectorals short and high. Pseudobranchir, none.

The elaborate anatomical description of Notuconthus sexspinis given by Giinther* with numerous excellent figures, applies in its geueral features to all the members of this family.

In the discussion of the genera and speries below, little attention has been given to the degree of comection of the ventral fins. In every instance these are comate or contluent, but the degree of comection fepends not so much upon their proximity to each other as upon the extent of the comecting membrane in the several forms, and we question whether the character can be so defined as to serve even for specific distinctions.

All the species examined by us have the peculiar modification of the posterior extremities of the maxillary, and the sharp spine more or less hidden by the fleshy fold of the lips at the angle of the month on either side.

KEY TO TIE GENERA OF NOTACANTHIDA AND LIPOGENYODE,
I. Jaws normal. Dorsill spines separated. Teeth in hoth jaws.
A. Dorsal spines 6-12. Teeth in upper jaw compressed, and obliquely triangular. Ventrals commate or confluent......................... Notacanthide.

1. Origin of spinons dorsal far in adyance of vent. Month lateral. Ventral fins comnate or confluent
. Notacantius.
2. Origin of spinous dorsal in vertical from vent. Mouth subinferior, crescentic. Jaws cach with 22 teeth. Ventral fins united.... Gigliolia.

[^129]B. Dorsal spines 27-38. Teeth in jaws erect, fine. Ventrals separated.....

- Polyacanthonotine.

1. Snout proboscis-like. Dorsal and anal spines long, flexible, the latter not exceeding 30 in number. Lateral line strongly arched.

Polyacanthonotus.
2. Snout not vers elongate. Dorsal and anal spines low and strong, the latter 50 or more in number. Lateral line straight.... Macdonaldia. II. Jias modified to form a suctorial mouth. Dorsal spines close together, united by membrane to form a high triangular tiu.

Lifogenyidie.
A. Dorsal spines 5 , with 5 soft rays.

1. Lateral line obsolete.

LIPOGENYs.

Genus NOTACAN'IHUS, Bloch.

Notacanthus, Beoch, Abhandl. Böhm. Gesellsch., 1787.-Lacép̀̀de, Hist. Nat. Poiss., 1804.-Goode, Proc. U. S. Nat. Mus., 11I, 1880, p. 555.
Acanthonotus, Bloch, Ichthyologia, xir, 1797, p. 113, pl. CCCCxNxi. (No description separate from that of species A. nasus.) - SCHNEIDER, Bloch, Syst. Iehth., 1801, p. 390 , pl. xlvif.
Campylodon, Fabricius (fide Günther).
KEY to the species of notacanthus ani) gigliolia.
I. Origin of dorsal considerably in advance of that of anal. Lip normal, continu-

A. Body much higher over ventrals than over pectorals, and comparatively short.

1. Lateral line in front of dorsal spines, following profile of back, then sinking to median line of body. D. X-XI.
a. First dorsal spise behind vertical from axil of ventral. A. XIIIXIV. (XVIIq)..
b. First dorsal spine in front of vertical from insertion of ventral. A. XVII ... N. Anadis.
B. Body little higher over ventrals than over pectorals, and comparatively elongate.
2. Lateral line inconspicuous, nearer to dorsal than to ventral outline throughout, not arched anterionly. 1). V1-VIII.
a. Last dorsal spines over anterior part of soft anal. A. XII,
N. bonapartif.
b. Dorsal and soft anal not passing same vertical. A. XIII-XIV.
N. SEXSPINIS.
3. Lateral line slightly arched above pectoral, sinking to median line of body in advance of first dorsal spines. D. X.
a. Last dorsal spine over fifth from last anal spine. Fins low. A. XIX. N. phasganorus.
II. Origin of dorsal over the vent. Lip absent in middle portion \qquad Gigliolia.
A. Body moch higher over veutrals thau over pectorals; comparatively short.
4. Lateral line arched over ventrals and pectorals. D. Vili.
a. Snout thick, swollen. A. XV-XVIII
(i. moseleyi.

NOTACANTHUS NASUS (Bloch), Jorelan and Gilbert.
Acanthonotus nasus, Blocif, Ausl. Fische, xir, p. 114.-SCHNEider, Bloch's Systema Ichthyologize, 1801, p. 390.
Notacanthus nasus, Bloch, Fische, vir, p. 113, pl. 431.-Cuvier and Valenciennes, Hist. Nat. Poiss., vir, p. 467, pl. ccixil.-Lütken, Vid. Med., 1878, p. 145.-GüNTHEr, Cat. Fish. Brit. Mns., III, p. 54 ; Challenger Report, xxif, p. 248.-Giglioli, Elenco, 94.-Vallant, Voy. Travailleur and Talisman, p. 317.

Campylodon fabricii, Reinhardt, Vidensk. Selsk. Afhandl., 1838, p. 120.
Notacanthus chemnitzii, Blocı, (Abh. Bolım. Gesellsch., 1787).-Jordan and Gilbert, Bull. U. S. Nat. Mus., xvi, p. 370.

A Notocanthus with elongate body, whose greatest height lies between the pectoral and ventral fins and is contained about four and one half times in the distance from the rent to the tip of the snont. Head short, compressed, its length not quite three and one-half times in the distance from vent to snout. Mouth large, extending backward to a point nearly under the eye; the maxillary nearly to the vertical from the anterior margin of the pupil. The month does not lie entirely on the under portion of the head, but is sublateral. There are thirty-five teeth in the intermaxillaries on each side. The distance between the upper protile of the head and the eye is about equal to the diameter of the eye, which is slightly greater than one-third the length of the snout (certainly not more than one-half the length of the snout) and about one-eighth the length of the head. [In this ronnection it is taken for granted that the hole in the skin of the head represents the size of the eye. If, howerer, we assume that the entire portion free of seales is the eye, the diameter is greater and enual to one-sixth the length of the head. It is, at any rate, considerably less than the width of the interorbital space. \mid The gill-cover appears to be divided to below the symphysis of the operculum (with hyomandibular), and is free from the isthmus.

Scales are lacking only about the mouth and eyes; about forty rows of smail scales (2 mm . broad, 4 mm . long) between the ventral outline and the lateral line; smooth and imbricated.

Of the eleven dorsal spines, the first (overlooked by Bloch and Valenciennes) is very small and only visible as a point; placed close to this (1 mm .) is the second, which is also very short and feeble. The third, though also short, is thicker. The rent lies behind the fifth spine. Of the fifteen anal spines, which have their origin immediately behind the rent, the first (overlooked by Jbloch and Valemeiennes) is very small; it does not extend beyond the profile; the second and third but slightly. The spines which are longest and placed farthest back still bear traces of a comecting membrane, and are probably only wornoff rays. The pectorals are inserted somewhat farther back from the gill-covers than shown by Bloch; the end is surely broken off, but yet it can hardly be doubted that this fin is too long in bloch's figure; its base is less than one-sixth the length of the heal. The ventral fins, connected together behind the median line by a membrane, terminate considerably in adrance of the vent (they are apparently worn off a little behind).

Radial formula: D. 11; A. $15+11 \mathrm{~S}$. U? ; P. 19; V. $3+7(\mathrm{l}), \mathrm{S}(\mathrm{r})$; Branchiostegals VIII. (r)—ri. (l).

Totallength (restored), 85 cm. Lengthof head, about 10.7 cm . Height of body, about $S \mathrm{~cm}$. Length of caudal, about 47.5 cm .

The full diagnosis given above was furnished by our friend Inr. Franz Hildgendorf, custos of the zoological collections in the Royal Museum of Natural History, Berlin, who also gives the following notes on the present condition of the type:

The original Bloch specimen (Cat. gen. No. 1409) is still in existence (our museum possesses in addition to this only a single specimen of Notactuthus, Notac. sexspinis), but it is in a very unsatisfactory condition. It was perhaps injured in transportation from Paris. The jar has not been opened for more than thirty years. Very likely Bloch received it in a poor state of preservation-at large cavity in the belly between the pertorals and ventrals, a dilipidated left cheek, injured ereballs, intestines wanting. etc. In addition to this, there are other defects of a later date, such as the loss of the caudal, the tip of the snont, the maceration of the froutal bones. The gill arch is almost entirely gone; the intestines altogether. The frontal hone is crushed and the first vertebra is discomnected. There is a long gap in the dorsal fin.

The actual length is now 82 cm . ; in addition to this shonld be added at the most 1 cm . for the snout and $\frac{4}{3} \mathrm{~cm}$. for the caudal fin. This makes its former length about 85 cm . (Bloch says $2 \frac{1}{3}$ feet. This would be according to the Rhenish, i. e., Prussian, measure only $7 \times \frac{1}{2} \mathrm{~cm}$. Perhaps Bloch had a longer foot, or he gave ouly an approximate measurement.) As we have no other specimen which we might have confounded with that of Bloch, and ours still bears the label (apparently in Trosehel's handwriting), " Notucanthus musus, Iceland. Bloch," I have no doubt that No. 1409 is the type specimen. Nor can there have been another in Paris.

How much of the end of the caldal is missing is difficult to say. The point of the fracture is hard and the fin hones are soft. If Valenciennes's account is accurate, the candal fin only is missing, and one or two rays of this are still attached. If Bloch's description is correct, there were $149-(13,8$, or 10 ? spines for the caudal $),=126-128$ rays in the anal; consequently a caudal end, with at least 10 rays, in addition to the caudal fin, was lost, and the fish would have heen somewhat longer than 85 cm . I presume there was an oversight on Bloch's part.

The material now classed by authors under the name of N. nasus is the following: (1) A specimen deseribed by Fabricius in 1798 under the generic name of Campylodon, obtained in 1794 from Greenland; (2) Bloch's type in the Berlin Musem, believed by him to come from the West Indies, described under the names J. chemnitzii (?), N. uasus, and Acanthonotus nasus; (3) a specimen, obtained off Iceland by La Recherche and brought by Gaimard to the Paris Musemm, figured in the Règne Animal, and said to have been figured also in the Voyage in Scandinavia; this, as has already been stated, is possibly a typical N. nasus; (4) a specimen, 3 feet long, obtained in South Greenland, and brought in 1877 to the Copenhagen Museum. This also is possibly not a characteristic representative of the species.

Both Canestrini and (iglioli enumerate Notacanthus nasus among Mediterrancan fishes, but entirely without warrant.

NOTACANTHUS ANALIS; Gill.

Notacanthus analis. Gill, Proc. U. S. Nat. Mus., vi, 1838, p. 255.-Güvther, Challenger Report, xxif, p. 248, note.-Vailiant, Voy., Travailleur and Talisman, p. 318, et seq.-Jordan and Gilibert, Cat. Fish. N. Amer., 1885, p. 58.

A Totacanthus, with its body much higher over ventrals than over pectorals, and comparatively short. Its height equal to one-third of the distance from the vent to the tip of the snout, and nearly equal to
the length of the head. The lateral line areuate in front of the dorsal spines, following protile of the back, and then sinking to the median line of the body. First dorsal spine in front of vertical from insertion of ventral.

The snont is compressed, pointed, much produced beyoud the moderate month. The cleft extends nearly to the vertical through the middle of eye. The length of the snont is one and one-half times the diameter of the eye. The width of the interorbital area is slightly less than the diameter of the eye. The projection of the snout beyond the month equal to the diameter of the eye, or nearly so. The snout is compresised, not swollen. Mouth narrow, transverse, its width about one-fourth the length of the head. The eye is plated some distance below the upper protile and in the line of the lateral line continued to the nostrils. Gillopening wide; the membranes confluent and slightly in advance of the vertical from the upper end of the gillopening; not attached to the isthmus. Scales very minute, imbricated, adherent.

All the dorsal spines are short, the anterior very short; the second and first nearly over the origin of the ventrals, the fifth above the vent, and the sixth slightly behind the origin of the anal. The longest about one-half as long as the eye. The last (eleventh), which is followed by a single ray attached to it by membrane, is over the fifteenth spine of the anal. The dorsal spines are distant from each other, and behind each is a narow angular membrane. The anal begins immediately behind the vent and in its middle portion is considerably elevated; the length of its longest rays are about equal to that of the suout, from which point it slopes rapidly to the tip of the tail. The pectoral, placed high up, in the middle axis of the body, is inserted at some distance behind the gill-opening and is broad and nearly oval in shape. Ventrals confluent, some distance in advance of the vent, stont, broad, ovate in form, not extending to the vent but separated from it by a distance equal to half their own length. Color uniform light brown.

Radial formula: D. xI; A. xviit + .
This description is prepared from the types of Gill, (No. 37850, U.S. N.M.) from Albatross station 2677 , N. Lat. $33^{\circ} 39^{\prime} \mathrm{W} . \mathrm{Lon} ., 76^{\circ} 50^{\prime} 30^{\prime \prime}$, in 4 Th fathoms. The types, two in number, measime $11 \frac{1}{2}$ and $12 \frac{1}{2}$ inches, respertively. Another specimen (No. $44^{\circ} 46$, U.S.N.M.) was obtained by the Albutross firom station 2676 , in $32^{\circ} 39^{\prime} \mathrm{N}$. Lat., $70^{\circ} 01^{\prime} \mathrm{W}$. Lon., at a depth of 407 fithoms.

NOTACANTHUS BONAPARTII, Risso.

Notacanthus bonaparti, Risso, Wiegm. Archiv f. Naturgesch., 1840, p. 376, pl. x. Notacanthes bomapartii, Filipler and Verany, Mem. Acc. Sci. Torino, xvier, 1857, p. 190, Notad 6.-Canestrini, Pesci d'Italia, p. 118.-Moreav, Hist. Nat. Poiss. France, 1881, 1. 161.-Giglioli, Elenco, 33.
Notacanthus mediterranens, Fibippi and Vbrany, Mem. Acc. Sci. Torino, 2d series, XVıII, 1859, p. 190 (nota supra); Alcuni Pesci del Mediterraneo, 1857, p. 3.Gïntimer, Cat. Fish. Brit. Mus., III, p, $\quad 45 .-$ Canestrini, Pesci d Italia, 1872, p. 118.--Moreau, Hist. Nat. Poiss. France, 1881, 111, p. 158 (wood 3nt).-Vailmant, Voy. Travailleur and Talisman, p. 317 ; p. 325 , pl. xxvir.

A Notacunthus, with body sleuder, comparatively elongate, little higher over ventrals than over pectorals; with its lateral line ineonspichons, nearer to the dorsal than to the ventral outline, not arched anteriorly. Snout produced and compressed. Palatine teeth in a single series. Ventrals joined by a membrane of considerable width between the internal rays. The height of the body is about one-thirteenth of its length; its thickness, about one-twenticth. The tail does not appear to be in the least, truncated, though so deseribed by certain authors, one of whom in his figure shows a tail carried to an acute point, making the length of the borly considerably greater in proportion to its height than is indicated in his own description. Color yellowish, with silvery reflections; the limb of the opereulum, the margin of the orbit, and the mouth darker.

Radial formula: D. vi-vir ; A. xı-100+; v. ir, IIt-6 (IV-8 aceording to Filippi and Verany).

This form was carefully figured and described by Risso in 1840. He had a single specimen 148 millimeters long, which he recognized as an inhabitant of abyssal depths (Sejeur alymes marines vaseux). By some error his description and figure, otherwise perfectly consistent, disagreed in respect to the number of spines in the dorsal fin, the figure showing 7, the deseription 9. Misled by this, Filippi and Verany redescribed the same fish in 1879, and to justify their course proposed the theory that Risso's descriptions and figures were based on different specimens-a theory accepted without criticism by later writers, but which we can not believe a true one.

Risso was a carefuland experiencel worker, and it would be unjust to the memory of one of the best Italian ichthyologists to admit that he could be guilty of such an error. Then, too, he states positively that he had only a single specimen. It is much more probable that the German typesetter in the office of Wiegmann's Archiv mistook a " τ " for a " 9 " in Risso's manuscript.

Risso's figure is a good one of a young N. mediterranens and his description agrees with it perfectly with the exception of this one figure in type.

The specimen described and figured by Giinther under the name N. mediterraneus is not a Mediterranean form, but one from the Southem lacific, and has been referred by us to a new genus and species.

Morean is in error in referring the figures of Bloch and Cuvier and Valenciennes to this species. (See discussion under Notucanthus nasus.)
N. bonapartii was described under the name N. mediterraneus by Filippi and Verany in 1857 from a specimen obtained at Nice, and preserved in the Zoological Maseum at Turin. Two others from the same locality, referred by Moreau to this species, are in the musemm in Paris. The Trarailleur and Talisman obtained four additional individuals, one from the coast of Soudan, at a depth of 1,232 meters, and another
from the same region at 932 meters; two from the Bane D'Arguin at 1,49.5 meters. These last have been made the subject of an elaborate deseription by Vaillant, who also publishes a good figure.

This species is distinguished from N. sexspinis, (fig. 192A-B), described by Richardson from Australian Seas* and subsequently described by Giinther, who also gives an excellent figure t by the varions characters, most striking of which is the difference in the relationships of the position of the dorsal spines and the soft anal fin. In N. sexspinis the dorsal and soft anal do not pass the same vertical, whereas in N. mediterraneus the last three dorsal spines are placed over the anterior part of the soft ana!. The National MLuseum is indebted to Dr. Giinther for a specimen of Notucanthus sexspinus from New Zealand (No. 12625 , U.S.N.M.). It is a small specimen, and does not exhibit any inflation of the cheeks, such as is shown in the plate in the Challenger report. It has eight dorsal spines.

The type of N. mediterraneus from Nice was examined by Giglioli at the Turin Museum in 1889. Its total length is 203 mm ., and its radial formula D. $6 / 1$; A. 12 / 132? ; V. 3-4 / 8; C. 5?

Prof. Giglioli informs us that in his "Central Collection of Italian Vertebrates" at Florence he has four specimens of N. bonapartii, as follows:
a. Nice, August 11, 1882. Total length, 153 mm . D. $8 / 1$; A. 6-7/120; V. 3/6-7; P. $9-10$; C. 3-4 ?. A large curved spine in upper corner of mouth on either side.
b. Nice, March 7, 1891. Total length, 205 mm. D. $7 / 1 ;$ A. $14 / 120 ;$ V. $3 / 7$. P. 12. C. 4\%. Buccal spines hidden in skin.
c. Nice, June 15, 1892. Total length, 203 mm. D. $7 / 1$. A. 8 \%/140. V.3/5-7. P. $10 / 12$. Buccal spines large and prominent.
d. Syracuse, 1855-60\%. D. $7 /$ 1. A. $11 / 25$. P.9-10. V. $3 / 5$. Tail broken off. Buccal spines conspicuous.
Another specimen, collected by Bellotti at Messina, December 12, 1882, and now in the Museo Civico at Milam, was examined by Giglioli, who states that it was 104 mm . long, and had D. 7 / 1. A. 7 / ?. V. $3 / 6 . \quad$ P. 10-12. С. 5 ?.

NOTACANTHUS PHASGANORUS, Goode.

Notacanthus phasganorius, Goone, Proc. U. S. Nat. Mus., III, p. 535, Apr. 18, 1881.Günther, Challenger Report, xxir, p. 249.-Jordan and Gilbert, Bull. U. S. Nat. Mus., xvi, p. 900.-Valleant, Voy. Travailleur and Talisman, p. 318 et seq.
A Notacanthus, with its body a little higher over the ventrals than over pectorals, and comparatively elongate; with its lateral line slightly arched above the pectorals, sinking to median line of body in advance of first dorsal spines, and its last dorsal spine over the fifth from the last anal spine.

[^130]Its body is much compressed, its greatest wioth slightly more than one-third height of the body at vent.

Scales round, thin, Hexible, very small upon the head (not wider than the diameter of one of the donsal spines), but uron the anterior half of the body about three times as large, decreasing in size upon posterior half, until upon tan they are smaller than upon head. Number of seales in lateral line not far from 400 . (In the partially digested specimen before me it is impossible to make an exact emmeration.) Number between lateral line and dorsal fin, about 20 ; between lateral line and anal fin, about 36. Head covered in every part, even the lips, with small scales, of which there are about 40 between eye and end of opercular flap. Sales deeply embedded (in life are probably hidden beneath a slimy eptdermis).

Length of the head about $7!3$ in that of body. Bones are all flexible, and their ontlines are iuvisible withont dissection, the whole being covered with a leathery skin. Width of interorbital space appears to be (in the mutilated head) somewhat greater than length of snout and about one-fourth length of the head. Diameter of orbit appears to be about one-half width of interorbital space. Length of postorbital portion of head nearly three times that of snout. Length of mandibular bone slightly exceeds twice diameter of eye; that of upper jaw considerably greater. Teeth in upper jaw blunt, acicular, set side by side like the teeth of a comb, about 32 on each side. In lower jaw shorter, slenderer, and in double rows. Villiform teeth upon palatines.

Dorsal fin begins at a distance from snout not far from tro and three-fonrth times length of the head, and nearly over the one hundred and tenth scale of lateral line; it consists of ten low, widely separated spines, unconnected by any membrane. Distance between first and tenth spine nearly double length of head.

Spines from fourth to ninth about equidistant, while the other interspaces are shorter.

Distance from suout to anal fin equal to about four times length of head. Anterior spinous portion of anal resembles dorsal and is devoid of counecting membrane. (The membrane is also absent from the posterior half of the fin, but may possibly have been destroyed.) Anal rays extend to tip of tail and number about 130 , the number of spines being 19. Anal begins immediately behind vent, and its length of base is slightly lesis than half that of body (less by a length about equal to the distance fiom the angle of the month to the gill opening).

Pectoral fin placed at a distance behind the gill-opening about equal to width of its own base (its length is at least double this distancehow much more can not be determined, but the fin is evidently short and rounded in contour, the upper rays longest). Its base is stont-peduncular, and thickly covered with scales.

Distance of the veutrals from snout equal to that of the dorsal,
though its insertion is slightly in advance of that of dorsal. Ventrals closely adjacent, selarated by namow iroove, hroad, with pedunclelike bases, thickly covered with sobles, ath are provided with two spines and dight or nine (as nearly as the specimen will permit determination) rays.

Padial formula: D. x; A. XIX (130); C. 0; P. (17) ; V. If, S-9.
The I. S. Fish Commision received the tope from the sehooner Gatherer, of (ilomeester ((Gapt. Brisgs Gilpatrick), which had been taken firm the stomath of a (iround-shark (sommiosus brevipinnis), on the Grand Bank of Newfoundland.

GIGLIOLIA, new genus.
A gemus of Sotacanthirla, distinguished from Notacunthus by the less advanced position of the dorsal, the first domal spine being placed in the vertical over the vent and close to the vertical from the first anal spine. 1)orsal spines $6-9$; anal spines $15-15$, these being longerand more slender than in Totarchthus, enveloped nearly to their tips in a membrane, and grading imperceptibly in length and size into those of the anal, which is comparatively high. The greatest leight of the body is in the region of the ventral tins, and the lateral line, which is conspicuons, is arehed over the pectorals and rentrals, but follows closely the dorsal outline until it passes beyond the dorsal spines, after which it is directed in a straight line to the tip of the pointed tail. Head comparatively broad, month inferior, almost suctorial; teeth in each intermaxillary 20-22; shout thick, swollen, much produced, nostrils large, conspicuous, covered by a membranous flap. Pectoral short, broad, romded. Ventrals placed low down and completely united, extending to the vent.

In general appearance and proportions this form resembles the highbacked division of the genus Notucanthus, to which belong T.uasus and N. chemnitzii. Its month, however, is placed more on the under surface of the head than even in N. sexspinis, and resembles in some respects that of our new genus Macdonaldia.

This genns is named in honor of Commendatore Emrico Hillier Giglioli, professor in the Iniversity of Florence and founder of the Central Musemon of Italian Vertebrates, who has been identified with all the efforts of the Italian Govermment in deep-sea research, and whose thorough works mpon the geographical distribution of Italian vertebrates, both terrestrial and aquatic, are of an importance which can not be overstated.

The only species assigned to this genus is that obtained by the Challenger off the southwest coast of South America, and referred by Giinther to Votncunthus bonaportio. For this form, represented by a single individual $11 \frac{1}{2}$ inches $l o n g$, from a depth of 400 fathoms at station 1310, we propose the specific name moscleyi, in memory of the lamented Henry

Nottidge Moseley, F. R. s., naturalist of the Chullenger, and later Linacre professor in the University of Oxford.

GIGLIOLIA MOSELEYI, new species.

Plate XVIII, fig. 1.
Notacantlus bonapartii, GUnther, Challenger Report, xxir, 243, pl. 1xi, fig. c.
The following excellent description is by Dr. Giinther :
Body moderately elongate, its greatest depth opposite to the ventral fin, and contained twice and two-thirds in distance of the rent from the end of the snont; the length of the compressed oblong head is contained twice and one-third in the same length. The snout is thick, swollen, much produced berond the narrow transverse month, which is opposite to the front margin of the orbit, and quite at the lower siderof the head. Twenty teeth on each side of the upper jaw. The eye is close to the upper profile, two-thirds of the length of the snont, one-fifth of that of the hear, and.less than the width of the interorhital space. Gill openings of moderate width, the gill membranes being confluent in the vertical from the upper end of the gill opening, and not attached to the isthmus.

The whole body and head are covered with minute, smooth, imbricate, and adherentscales.

All the dorsal spines are short, the anterior very short, the second opposite to the vent. The anal spines commence immediately behind the vont and increase in length posteriorly, passing into the flexible rays, which are of rarying and indefinite number. The pectoral is inserted at the usual distance from the gill opening and has a base of moderate width. Ventrals united and exteuding to the vent ((iinther).

Radial formula: D. VIII-IX; A. XV-XVIII, 150; C. 3; P. 9; V. I, 7; Сяec. pyl. 5.

Gents POLYACANTHONOTUS, Bleeker.

Polyacanthonotus, BeEERER, GÜnther, Chullenger: Report, xxif, 1875, p. 243 (as subgenus.
Zanotacanthus, Gill, Johuson's Cyelopedia, III, 1876, 1. 883.
Paradoxichthys, Giglioli, Nature, Xxv, p. 535, 1882.
Teratichthys, Giglioli, l.c.
Notaconthids, with very slender, elongate body, and inferior month, and the snout prolonged into a proboscis-like tip, resembling that of Mastucembelus, its length at least one-third that of the head. Dorsal fin represented by numerous slender, curved, flexible, disjoined spines, the first of which is placed some distance behind the vertical from the origin of the pectoral. Anal composed of a smaller number of longer, slender, flexible spines, passing at a point some distance behind the last of the dorsal spines into a low, short, anal fin. Pectorals morlerate, slenter, placed above the median line of the body, and rlose to the lateral line. Ventrals slender, entirely separate, not reaching to the vent. Scales inconspicuons or probably absent. Lateral line conspicuous, descending from the angle of the opereulum in a strong, broad curve, to below the midule region of the body at a point not far from the vent. Teeth very fine, in rows upon each jaw; stronger teeth upon Proc. N. M. $94-30$
the palate, armanged in the form of a horseshoe. The rentral with one spine. Type, Notacanthus rissoanus (Filippi and Verany.)

POLYACANTHONOTUS RISSOANUS (De Filippi and Verany), Giinther.
Notacanthus rissoanus, De Filippi and Verany, Mem. Acc. Sci. Torino, 2 d ser., XVII, 1859, p. 6; Nota Sopra alcmi Pesel del Mediterraneo, 1857, p. 3.Güntier, Cat. Fish. Brit. Mus., ifi, p. 515.-Canestimin, Pesci d’Italia, p. 118.-Giglioli, Elenco, 34; Nature, Xxv, p. 535 -Moreau, Hist. Nat. Poiss. Frauce, p. 162.-Valllant, Voy. Travailleur and Talisman, 335, pl. xxvii, tig 1.
[Sotacanthus (Polyacanthonotus) rissoanus, Güntier Challenger Report, xxir, p. 250 (description and figure relate to another species).]

Peradoxichthys garibaldianus, Giglioli, Nature, xxy, p. 535.
A Notacanthid fish, sleuder and elongate in form, its greatest height above the anms and near the middle of the borly, one-fifteenth of the length of the borly; its height at the shoulders alout onetwentieth. The length of the head is about one-eighth of that of the body. Snout very elongate, one third of the length of the head; as long as the height of the body at the shoulders and three times the diameter of the eye. In form resembling that of .Inestucembelus. "The combition of the type," remarks Vallant, "does not allow us to estimate the size of the mouth, but its comature does nof reach the anterior edge of the orbit. Its form is analogous to that in other species of the gemus, that is to say, its inferior teeth are exceedingly fine and closely set in the jaws, while there are stronger teeth upon the palate, where they are armosed in the form of a horseshoe."

Eye moderate in size, its dianeter one-eighth the length of the head; interobital suace very narow, not one-half the diameter of the eye. Branchial opening larie. Operenlum truncated posteriorly.

Vent in front of the middle of the borly.
No trates of scales. The lateral line, however, is conspictous, and it descends from the mpper angle of the operculam to the midalle of the body, or a little below it, in the vicinity of the region of the vent. The first dorsal spine is placed two-thirds times its own length back of the vertical fiom the axil of the pectoral, and its length is less than the diameter of the eye. The highest dorsal spines, those in the posterior thind of the din, are twice as lons as the diameter of the eye. The spines are all slightly curved barkward, and there is a soft, supplementary ray behind the last. The anal spines are longer than the dorsal spines, the longest two and one-half times the diameter of the eye. The first, which is somewhat longer than the first dorsal spine, situated immediately behind the vent under the eighteenth dorsal spine.

In the specimen figured and described by Vaillant there is a semblance of a minnte, separate candal fin, but it is by no means certain that this existr. The pectoral is placed a considerable distance from the operculum, nearly equal to the length of the snout, and its lower axil is in the merlian line of the body, or nearly so. Its length is about equal to that of the snout. The ventrals, situated at a distance
from the snout equal to about one-thind of the length of the body, do not reach the anus, and are the same size as the pectorals. In Vaillant's specimen they appear to be separate, and he was able to observe but a single spine. The color, in fresh condition, was milky white; the head and iris being black.

Radial formula: D. 29-37; A. 34-41.
This species was known to Risso, who had in his collection the specimen which afterwards served De Filippi ass a type and which is now in the Turin Musenm. A sketcle by Risso of this fish, to which he never gave a name, is given in "Oceanic Ichthyology." The Turin specimen was examined by Prof. Giglioli in $188 \cdot$; it is 160 mm . long and has the following radial formula: D. 29/1; A. 35.

Prof. Giglioli has three specinens in his collection at Florence. We are indebted to him for the following details concerning them:
a. Nice, August5, 1881 (type of Paradorichthys ('aributdianus): Total length, 199 mm . D. $32 / 0 ;$ A. $38 / 100 ;$ P. $9-10 ;$ V. $1-10$; C. 4?. This specimen has a long, straight spine, pointed backwards, above the maxillary bone on either side.
b. Nice, March 1, 1891: 'Total length, 186 mm ; D. 30/1; A. $41 / 150 ;$ P. 10; V. $1 / 10$; C. 4?. Found dead and partly decomposed. The peculiar maxillary spine is small in this and in the following specimen.
c. Nice, January 27, 1892 : Total longth, 160 mm . D. $30 / 0$; A. 34 /; Found partially digested in the stomach of Galeus canis.
In addition to these specimens one other was taken by the French expedition off the coast of Moroceo, station 40 , at a dep,th of 2,212 meters. Its radial formula was D. 37/1; A. 27/?.

MACDONALDIA, new genus.
Sotacanthids, with elongate body and inferior mouth. Borly and head covered with minute, imbricated scales. I orsal tin represented by mumerous short, straight, robust, and disjoined spines, 27 to 34 in mumber, the first in advance of the insertion of the pectoral. Anal as in Notacuthus but lower, and with a longer portion of low, short, slightly curved, disjoined spines, from 35 to 55 in number, which under the final dorsal spines pass into flexible rays. Lateral line straight, conspicuous. Pectorals moderate, placed far back, below the middle line of the body and remote from the lateral line. Teeth in jaws erect, small; and also in series on the vomer and palate. A line of pores on the inner edge of the mandible. Ventrals moderate, entirely separate. Type, Notacanthus rostratus, Collett.

This genus is named in honor of Col. Marshall Melonald, U. S. Commissioner of Fisheries, in commemoration of his liberai policy 1 n furthering ichthyological research.

MACDONALDIA ROSTRATA (Collett) Goode aud Bean.
Plate XVIII, fig. 2.
Notacanthus rostratus, Collet, Bull. Soc. Zool. France, 1889, p. 307.
The body is greatly compressed, its outlines tapering rapidly in both directions from the origiu of the vent. Its greatest height is con-
fained $: 3!$ times in the distance of the vent from the tip of the snont, or about fomedifths the length of the head, which is contaned 9.5 times in the total. The smout is compressed, pointed, snake-like, produced beyond the month a distance less than the diameter of the eye, and contaned three times in the length of the head. The mouth is small; its cleftearcely reaches to the anterior nostril. Each jaw is armed with a series of minute teet hand at similar series on vomer and palate. The eye is morlerate insize, placed not far from the dorsal profile, distant about $2 \frac{1}{2}$ diameters from the curd of the snont, more than three times from the end of the opercle. (xill opening wide. The borly and head covered by minute, imbricated scales. A line of mucous pores extends from the anterior end of the lateral line forward under the eye and thence to the end of the maxilla.

The dorsal spines are short, distant from one another, the first being over the end of the operele, the fifth slightly behind the vertical through the origin of the peratal, the twelfth slightly in advance of the origin of the pectoral, tine fifteenth almost over the origin of the anal, and the last (twenty-eighth) a little behind the middle of the length of the tail. In another individual the fourth spine is immediately over the pectoral insertion, the thirteenth over the ventral origin, and the whole number of spines is 30 , but there is behind the thirtieth a minute spine almost united by membrane. The anal bewins immediately behind the vent, and after the fifth spine the height of the fin remains unform until the length of the rays gradually decreases near the tip of the tail. The pectoral is inserted at a distance from the gill opening nearly twice its own length. The ventrals have a broad base, are not confluent and reach to the vent or slightly beyond it.
D. xxyili-xxix ; A. xlif-LiII.

The types are No. 35601 , U.S.N.M., and were obtained by the steamer Albutross at station 2.216 , latitude $39 \supset 47^{\prime} \mathrm{N}$., longitude $70^{\circ} 30^{\prime}$ $30^{\prime \prime} \mathrm{W}$., in a depth of 963 fathoms. They measure 16.1 and 16 inches, respectively. Another specimen, 17 inches long, was obtained by the same steamer at station 2553 , latiturle $39 \circ 45^{\prime} \mathrm{N}$., longitude $70^{\circ} 36^{\prime} \mathrm{W}$., i_{11} a depth of 551 fathoms.

Closely allied to M. rostratu is Notucanthus challengeri (Vaillant) (Notacanthus rissounus, Ciinther, Chullenger Report, XXIf, :250, pl. LXI, Fig. B: not Filippi and Verany), renamed by Vaillant in the report of the Trumallent and Thelisman, pase :387. 'This is distinguished by the larger nmmber of its domsal rays, the less anterior position of the origin of the donsial, the lesser height of the body in comparison with the distance from the rent to the snont, comparatively longer snout and larger eye, and the absence of the suborbital row of mucous pores.

Dr. (xiinther states that although the species is a matter of some certainty, the diagnosis of N. vissoctus "applies sufticiently well to his specimen;" further remarking that "since a number of Mediteranean fishes are identical with Jananese, and at least one other species
of Notacanthus, N. bomaportii, shows a wide geographical range, he should not feel justified in giving a distinet name to the fish described." We can not help) feeling that Dr. (xiinther has departed from his customary cantions and scientific method in this case, and are satisfied that he would not have done so had he seen the specimen ohtained by the French Exploring Expedition on the coast of Moroceo, and described and figured by Vaillant. Coming as it does from the Mediterrancan region, and having a proboscis-like character of the snont, mach more emphasized than in the Japanese form, the presmmptions in favor of its illentity with N. rissocmus are very strong. We therefore not only adopt the identification of Vaillant, in preference to that of (xiinther, but accept the new name which Vailant has proposed for the Japanese form.

Family LIPOGENYIDAE.
Lipoyemyide, Gill, MS.
Heteromes with a roundish, inferior, suctorial mouth; imperfert lower jaw with its rami separated at middle, comected with the eorresponding sides of the upper jaw, and invested in a thick, transversely plicated horseshoe-shaped lip, reflected upward behind on the cheeks; no teeth; short row of four or five partially comected graduated dorsal spines, and five to seven branched rays, forming a regular fin. (Gill.)

The anomalous and mexampled monification of the lower jaw and month deserves a detailed anatomical examination; but the existence of only one specimen for the present, at least, is deemed to render such an investigation inadvisable.

LIPOGENYS, new genus.

Head and body compressed, the body elongate as in Fotaconthus. Snout prolnced, compressel, obtase at tip. Cleft of the mouth inferior, suctorial, circular in frout, surounded by rugose, contractile lip, with cleft posteriorly flanked by wing-like flaps, containing the modified mandibulary bones which articulate with the end of the maxilla, and are free behind. A concealed spine at the end of the maxilla. No teeth. Anterior nostril in short tube, the posterior oblong, under a short flap. Iorsal fin short, but normal and well developed, with a distinct soft portion. Anal fiu normal in position, high, with many spines, and with some of the rays spine-like, thongh forked. A distinct though very small caudal fin. Ventrals normal, well developed, with several spines. Scales minute, very numerous. Lateral line conspicuons.

LIPOGENYS GILLII, new species.
Plate XVIII, fig. 3.
Body compressed, its greatest width one-half its height, which is about one-tenth of the length. The length of the head is contained $8 \frac{2}{3}$ times in that of the body and twice in the distance firom the origin
of the pertoral to the vent. The wilth of the interorbital spare is about egual to the diameter of the eye, which is one-fifth the length of the head. The length of the snout is about one-fourth that of the head. The postorbital portion of the head is twice as long as the snout. The peenlian form of the jaws and month has heen deseribed under the head of the genus. The diameter of the circular opening is about one half the diameter of the eye. The dorsal fin begins at a distance from the snout equal to about three times the length of the hearl. It consists of five graduated spines, of which the first is minute and the longest as long as the suout, and five rays, of which the second is longest, nearly one-half as long as the head. The spines and rays are all compactly arranged in a strong triangular fin. The length of the dorsal base equals one-half that of the head. The anal begins under the fourth spine of the domsal; it contains 41 spines and si rays, of which the anterior 10 are stiff, though articulated, and divided at the tip. The longest ray is longer than the Iongest spine, about as long as the snout. The ventral consists of seven spines and seven rays. The two fins almost meet in the median line, but are disconnected. The fin reaches to the vent. Its distance from the tip of the snont is about 212 times the length of the head. The pectoral is placed below the median line of the body, at a distance from the head about equal to the diameter of the eye; its length is a little greater than the postorbital part of the head. The lateral line is well developed anteriorly, becoming obsolete at a distance from the end of the dorsal about equal to $2 \frac{2}{2}$ times the length of the head.

The color is uniform light brown. 'The under side of the gill covers dark, showing dark at the edges of the opercular bone.

The type measmes 17 inches in length. It is No. 39212, U.S.N.M., and Was taken by the steamer Albutross at station 2742 , in N. lat. $37{ }^{\circ}$ $46^{\prime} 30^{\prime \prime}$; W. lon. $73^{\circ} 56^{\prime} 30^{\prime \prime}$, from a depth of 865 fathoms.

Generic Types of Macdonaldia and Lipogenys.
Fig. 1. Gigliolia moseleyi, Goode and Bean.
Fig. 2. Mactonuldiat rostrata. Goode and Bran.
Fig. 3. Lipogenys gillii, Goode and Bean.

SCIENTIFIC RESULTS OF EXPLORATION IBY TIEE U. 心. FISH COMMISSON STEAMER ALBATROSS.

[Published by permission of Hon. Marshall McDonald, Commissioner of Fisheries.]
No. XXX.-ON HARRIOTTA, A NEW TYPE OF (YHM.EROID FISH FROM THE DEEPER WATERS OF THE NORTHWESTERN ATLANTIC.

By G. Brown Goode and Tarleton M. Bean.

A Remarkable type of Chimeroid fish was obtained by the [${ }^{\text {r. S. }}$. Fish Commission steamer Albatross while engaged in deep-sea exploration in the northwestern Atlantic.

Four specimens were taken, two of them young, and with proportions quite unlike those of the adults.

The limits of range are, of course, by no means determined by the capture of these isolated specimens, all of which came from between latitudes north $360^{\circ} 45^{\prime}$ and $39{ }^{\circ} 44^{\prime}$, and longitudes west $70 \circ 30^{\prime}$ and $74^{\circ} 28^{\prime}$, each sperimen being from a distinct locality. The habitat of the genus must then be described as western North Atlantic, 707 to 1,080 fathoms, off the coasts of Virginia, Maryland, and Delaware.

In the present notice no attempt is made to discuss the relationships of the new form, except to say that it is allied to Chimsern, Hylrolugus, and Callorhynchus. Dr. Gill is disposed to form a subfamily of the Chimeride for its reception, and it is not unlikely that as a result of more thorough study it may be found necessary to place it in a family by itself. The descriptive notes which follow are from the alrance sheets of our memoir, entitled "Oceanic Ichthyology" and were prepared six years ago. Fearing still further delay in the publication of our book, we present them, together with figures of both old and young.

> HARRIOTTA, new genus.

Snont exceedingly elongate, with a cartilaginous midrib and foliaceous lateral expansions of the skin at its base. Two dorsal fins, the anterior with an immense triangular spine, finely serrated upon its lateral edges. Anal fin reduced to a cutancous fold. Longitudinal axis of the tail nearly the same as that of the tronk, very elongate, with
filamentons tip, the fin below muth more extensive than that above. No cephatic organ. Gill-openings lateral; separated by a wide isthmus. No spiracles. Teeth as in Chimero. Olaspers small and simple.

HARRIOTTA RALEIGHANA, new species.
Plate XIX.
Tail extended in a very long filament in the older individuals, wanting in the young. The first dorsal fin separated from the second by an interval nearly equal to the diameter of the eye in the older individuals, very much greater in the younger ones, in which the cantilaginous portion is exceedingly narow and high. The second dorsal fin long and low, its height about equal to the diameter of the eye, its leugth equal to that of the head. The spine precerling the first dorsal fin is rery strong; its lengeth in the ohler individials equal to the distance from its own base to the origin of the second dorsal; it is proportionately much longer and stonter in the young, and there is also a donble row of strong spines in adrance of the second dorsal, and in the noteh between the serond dorsal and its continuation upon the upper part of the tail: and there is also a similar group of at least six strong spines upon the top of the head back of the interorbital space, and surrounded by the eurve of the forward extension of the lateral line. Fares of these spines may be felt beneath the skin in ofder individuals of both sexes. Claspers in the young male examined, small and simple, in length scarcely equal to two-thirds of the long diameter of the eye. Pectoral fins immense, wing-like, rounded in the young, subfalcate in the older individuals; inserted slightly in advance of the origin of the first dorsal, and extending in the older forms beyond the root of the rentral. Ventrals also subfaleate; similar in form and appearance to the pectoral, and extending to a point at twothirds of the distance from the origin to the ent of the second dorsal; in length little less than half the snout. In the young, the ventrals are placed somewhat farther back, and reach to a point under the origin of the third section of the dorsal fin. The tail is prolonged in a slender filament, and in the older individuals the entaneous flap upon its lower edge is three or four times as deep as that above, and extends beyond it anteriorly and posteriorly. In the younger specimens the upper and lower haps are about equal in height, and the upper flap extends fan in advance of the insertion of the lower one. The lateral line extends in a straght line from a point beneath the origin of the first dorsal approximately to the middle of the lower caudal lobe, which it follows along its base for the remainder of its rourse; in advance of the dorsal fin it bends downward in an elliptical eurve, and then rises vertirally from the oceiput to join its counterpart from the other side; bridle like extensions of the same system extend on the sides of the head under the eye, curving upward in front of the eye, then downward and joining on the under side of the snout to a brameh rmming from beneath the ege downwand to the base of the
 Nox

cive

वя

U. S. NATIONAL MUSEUM

New Species of Harriotta.
Figs. 1,2. Ifrerviotta ruleighanu, Goode and Bean. (Adult.)
Figs. 3,4. Iferriotter ruleighenu, Goote and Bean. (Voung.)
pectoral fin in the young, or under the throat to a junction in the older ones, and also forward from the same point under the eye to join on either side the circle which surrounds the month. An elaborate system of mncous pores upon all sides of the snout; on the under surface of the snout in four longitudinal series. In the older individuals there is an extension of the lateral line system on either side of the midrib on the snont to its tip, and there are also symmetrical continuations of the same upon the under surface of the snont. Color, brown; caudal filament, pale.

The diameter of the eye is contaned $5 \frac{1}{2}$ times in length of the snout in the older specimens, and the distance between the eyes is equal to their diameter.

Of this species we hawe seen four specimens: The largest, a female (No. 39415, U.S.N.M.), 25 inches in length, from $39^{\circ} 44^{\prime} 30^{\prime \prime}$ N. lat., $70030^{\prime} 45^{\prime \prime}$ W. long., in 1,081 fathoms, taken by the steamer illbutross. Another, a male (No. 38200, U.S.N.MI.), 1912 inches in length, was taken by the Albutross in $36^{\circ} 45^{\prime} \mathrm{N}$. lat., $74^{\circ} 2 \mathrm{~s}^{\prime} 30^{\prime \prime} \mathrm{W}$. long., at a depth of 781 fathoms. A third, a young individual (No. 25520, U.S.N. M.), 4 inches in length, was obtaned by the Albutross in $39^{\circ} 3 \sigma^{\prime} 45^{\prime \prime} \mathrm{N}$. lat., $71^{\circ} 18^{\prime} 45^{\prime \prime}$ W. long., in 991 fathoms. Still another, No. 35631, was taken at station $2 \geq 3 \overline{9}$, lat. $39^{\circ} 12^{\prime}$, long. $72^{\circ} 03^{\prime} 30^{\prime \prime}$, in 707 fathoms.

This species is named in honor of Sir Walter Raleigh, philosopher and explorer, by whom the first English scientific expedition was sent to the New World.

OVERLAYING WITH COPPER BY THE AMERICAN ABORIGINES.

By Otis T. Mason, Curator of the Department of Ethology

In a recent paper* Prof. F. W. Putnam gives an account, with figures, of several objects made of wood and covered with copper. In a later report + is an account of copper objects sheathed with silver, a pendant of copper sheathed with gold, ear ornaments of copper sheathed with silver and meteoric iron, and bracelets of copper sheathed with silver. Since that time Prof. Putnam has found many other specimens from Ohio, and calls attention to Atwater's statement, in Archeologia Americana, describing objects as being overlaid with silver.
Numerous specimens have been discovered by others, notably by Mr. Warren K. Moorehead, in his explorations of mounds near Chillicothe, Ohio. These examples are quite sufficient to show that the American aborigines in the Mississippi valley and in South America had the art of cold-hammering copper, of beating it to overlie and fit upon a warped or curved surface, and of turning the edges under.
This process must not be confounded with the mere hammering out of implements, nor with that other process of making a sheet of copper as thin and uniform as a ship's sheathing and then producing figures by rubbing or pressure. Some doubt had been expressed concerning the genuineness of such work, but Mr. Cushing's late experiments \ddagger change the status of the problem. But of the overlaying and turning under there can be no reasonable doubt. It is entirely within the compass of tools known to have been used. That there might be no mistake about this, Mr. Joseph D. McGuire has hammered out a nugget of Lake Superior copper into a sheet as thin as the one figured, and by grinding the surface with common sand has removed all marks of the stone hammer and stone anvil. These experiments were conducted in the National Museum by the simplest processes. No attempts were made to do the overlaying. This is to be regretted, as the warping of the sheet so as to lie close to the meven surface must have required great skill.

[^131]To dompare with the overlaying of wood and bone by sheet copper, discovered in the mounds and described by P'utnam, the U.S. National Museum has received from Lient. G. T. Emmons, U. S. Navy., two figures of humming birds in wood, well carved and painted red. Illustrations of these are given below. Wach wing and the tail of each bird is overlaid with a covering of sheet copper, pressed down to fit and turned under at the margins so as to be held fast. The surfaces are adorned with the conventional wing and eye signs of the Maidas. Especial attention is called to the carving on the copper. The furrows and ridges are all cut with steel tools. The effects are produced by first making a narrow, deep furmw and then swaping the metal away from one edge.

BIRDS OF WOOD, WITH WINGS AND TAIL OVERLADD WITH COPPER.
Metal working by the American aborigines,

The author does not remember whether any engraving appears on the Ohiomound specimens. Such as the Maidas and the Tlingets now make with jewelers' tools would have been above and beyond the ability of the aboriginal metallurgists of the Mississippi valley.

Figure 1 shows the first example of a bird (No. 165,675, U.S.N.M.) neatly carved fiom wood. The work has been very cleverly done, and the specimen gives evidence of having been used for a long time. The tail and each wing are separately overlaid with a sheet of copper, closely fitting. The ornamentation upon the surfaces are the abbreviated symbols for eyes and wings. Figure 2 represents the under side
of the same object and exhibits more graphically the mamer in which the edges of the copper plates are thimed out and turned under all round to prevent their falling off:

Figure 3 shows the second bird with one wing cover removed. Here is to be observed the careful manner in which the upper surface of the wing was carved to shape and smoothed down. The copper plate is warped so as to lie in contact with this surface at every point. The removal of the plate and the examination of the reverse side, shown in figure 4 , reveal the metallurgic processes employed. It will be seen that neither punch nor severe pressure produced the marks on the onter surface. The marks on both examples were cut with metal tools. These specimens have both been examined by a skillful engraver and they have given evidence of having been cut and scraped as indicated above.

Fig. 4. coprek wing COVER.

SCIENTIFIC IRESILTS OF EXPLORATIONS BY TILE U. S. FISH COMMISSION STEAMER ALBATROSS.
[Published by permission of Hon. Marshall McDonald, Commissioner of Fisheriés.]
No. NXXI.—DESCRIPTIONS OF NEW GENERA AND SPECIES OF CRABS OF THE FAMHY LITHODID.E, WITH NOTES ON THE YOUNG OF LITHODES CAMTSCHATICUS AND LITHODES BREVIPES.

By James E. Benedict, Assistant Curator, Department of Marine Invertebrates.

CRuStacea of the convenient suborder of Decapoda known as Anomura, from the North Pacific Ocean and Bering Sea, a region prolifie in representatives of this group, have been gradually accumulating in the Museum. Recently large collections have been received from the U.S. Fish Commission firom dredgings made by the steamer Albatross in Bering Sea and on the voyage to and from that locality. In these collections are many fine sperimens of the family Lithodida, which contains the largest of known (rabs, with the exception of the giant maioid crab of Japan, Mucrocheira letempleri of de Haan. Though the following descriptions and notes are based principally on Fish Commission material from the above region, one species of Lithodes is described from the North Atlantic and one from the South Pacific.

LITHODES GOODEI, new species.

Lithodes agassizii, Smitu (part), Bull. Mus. Comp. Zool., x, p. 8 (part), pl. i, figs. 2 and $2 a, 1882$; Proc. U.S.Nat. Mus., Vi, 1883, p. 25 (part); Rept. Comr. of Fish and Fisheries, 1882, p. 351 (1884) ; Rept. Comr. of Fish and Fisheries, 1885, p. 607 [3], p. 638 [34], pl. iil, figs. 1 and 2 (1886).-Verrill, Rept. Comr. of Fish and Fisheries, 1883, pp. 521,553 (part), pl. xxxin, figs. 151 a , 1516 (1887).
An examination of the specimens of Lithodes taken by the Albatross in deep water off the eastern coast of the United States, shows a wide difference between those from south of Cape Hatteras and those from more northern waters. The average range in depth of the northern form is about 900 fathoms, of the southern 500 fathoms. The southern form, Lithodes afassizii, was described by Prof. S. I. Smith from the dredgings of the Blake.* Prof. Smith also describes and figures in the same place the young of the northern form as the young of L. agussizii.

A series of specimens from both localities convinces me that the two forms constitute good species.

These two species and the species deseribed next in order constitute a group having in common a rostrum with a long median spine and two basal spines and lacking the subrostral spine or horn usual in the genus.

The carapace of L. goorle i is much more convex than that of L. agus. sizii. The spines arise from the summit of large tubercles, and the surface altogether lacks the small spines so thickly sprinkled over the latter species. The spines of the rostrum hike those of the carapace are much longer than those of L. agassizii, and while the horn is wanting, its position is indicated by a slight protuberance. The antemal scale is rudimentary, with the exception of a specmen from station 2203 on which it is rudimentary on the left side and well developed on the right.

On the secoud segment of the female abdomen there are abont twelve spines ranging in length from 12 to 20 mm . The large plates on the left side of the abdomen are but little calcified in L. aymssizii; in L. goodei, they are much more firm. The comical tubercles are also better calcified and fewer in number on the leathery portion.

Another marked difference between the two species hes in the very much longer spines of the chelipeds and ambulatory legs. In the adult specimen before me from station 2193 , several spines on the carpal and propodal joints reach the great length of 43 mm ; on another specimen they are but 30 mm . In our largest specimen of L. ughssizii the spines on these segments measure but tive or six mm. A no less striking difference is seen in comparing the ambulatory legs of the two species, the subeylindrical legs of L. goodei contrasting with the flattened legs of L. ayassizii, the former free from spinules between the spines and the latter thickly sprinkled with them.

Young: In L. goodei the variation in length of spines from the young to the adult is extreme. In a young specimen $i 0 \mathrm{~mm}$. in length the length of one of the spines at the base of the rostrum is 44 mm .; the spines of the carapace are from 32 to 38 mm . in length.

Type.-Ňo. $804 \overline{4}$, U.S.N.M.; female; off Nantucket Shoals; station 2196; 1,230 fathoms.

LITHODES DIOMEDEA, new species.

This species is very close to L. groodei, but it is not difficult to separate the two. (iood specimens were obtained by the Albatross from station 2789 , off the sonthern part of Chile, in latitude $42^{\circ} 36^{\prime}$ S., No. 18526, U.S.N.M. Numerous young Lithodes talken at station 2788, in latitude $45^{\circ} 35^{\prime}$ S., No. 18527, TT.S.N.M., I have also referred to this species.

The spines of the carapace are not so long as those of L. goode i, but are more slender and similarly placed; their tubercular hases ane not.
so large and swollen as in the Atlantic species. The rostrum is of the same character as in L. goorlei. The chelipeds are much the same, but the fingers are a little more slender and the tubereles on the prehensile edges of the right hand are much smaller. The ambulatory feet have a few spines twelve mm. in length on the carpal and propodal segments. One of the largest spines of the ambalatory feet projects from the ischimm, while the spines of the coxal joints alone are sufficient to distinguish this species from any other species of Lithorles that I have seen. These spines project from the distal lower margin and vary from eight t) eleven mm . ini length.

The numerons young taken at station 2788 are similar to the ardult, except that where spines are barely indicated in the adult there are short sharp spines in the young.

LITHODES EQUISPINUS, new species.

Carapate, rostrum, chelipeds, and ambulatory legs with conical spiues suberual in length. The range in length is from about four to six mm. The longest spines of the carapace are scattered along the lateralmargins; the longest spines of the cheliped are at the inner distal margin of the merus aud the spines on the middle point of the inner margin of the capal segment. The areolations of the carapace are well marked, but not so bold as in some species. The rostrum is on a line contimous with the gastric region, and consequently a little depressed. A line of seven spines runs along the median line of the gastric region to near the bifurcate tip of the rostrum. The two spines on the rostrum are larger than those of the gastric region. The rostrum is armed with nine spines, aranged as foliows: Two on each side, two above, two at the end forming the bifurcate tip, and the lower spine or horu, which is the largest spine on the species.

Loculity.-Bering Sea, stations 333:2, 3489, and 3502; 1st to 406 fathoms.

Type.-No. 18528, U.S.N.M.; station 3332; 406 fathoms.

LITHODES COUESI, new species.

This species reminds one of L. matu. The largest spines of the carapace are arranged about the margin; they are slender and sharp. The longest are situated at the outer orbital angles, the antemal angles, the hepatic regions, and three on the wargin of the branchial regions. The spines on the intervening spaces of the margin are more numerous and much smaller. The surface of the carapace is set with short, sharp, conical spines. The gastric region is swollen and well defined. The cardiac region is barely indicated between the confluent branchial regions. The depression between the gastric and cardiac regions is very deep. The rostrum is 20 mm . long, and made up as in L. maid, but the terminal portion beyond the distal lateral brauches is slender and bifid rather than bifurcate, as in L. maiu; the basial brauches are Proc. N. M, $94-31$
a little further forward. The scale is rudimentary; the spine at the outer angle is branched at the base, the branch consisting of a single short, sharp spine on the onter surface. The abdomen is without spines; the spines of L. main are replaced by tubercles; those of the first segment are rery much closer together than the corresponding spines in L.muin. The tubercles on the lower margin of the second segment are low and somewhat oblong at base; those in the center of the segment are larger.

The chelipers are slender and weak. The armature of the fingers of the right hand is slight; the fingers gape. The fingers of the left hand are long and slender and gape at base. The rpines of the chelipeds and ambulatory legs are numerous and arranged about as in L. muin, but are shorter.

Loculity (und type.- It station 33:9, in 399 fathoms, north of Unalaska, a single male (No. 18531, U.N.N.M.) was taken; also at station 3338, off Shumagin Bank, in 625 fathoms, three young specimens (No. 18532, U.S.N.M.) which I refer to this species without hesitation. The rostrum differs in being bifureate as in L. main. It is possible that additional specimens of the adult form might show the rostrum to be bifurcate rather than bifid.

LITHODES RATHBUNI, new species.

Carapace of male armed with long spines on the different regions; also with longer spines on the margins. There are four on the gastric; two short and two long on the cardiac region. The branchial region has six spines of various lengths. The postero-lateral margin has the longest spine, it being 26 mm . in length on one side and 23 mm . on the other. Both have lost their points. Anterior to this there are three spines, the shortest mbroken one being 17 mm . long; on the margin posterior to the longest spine there are four spines, the longest of which is 14 mm . in length and the shortest eight mm. The rostrum is composed of five branches; the main stem is sharply bent upward and is strongly bifurcate; the lower horn is almost on the horizontal line of the body, and projects forward more like the usual main portion of the rostrum; the lateral bramehes arise at the base and project forward. The movable spine of the antema is very long and slender; there is a short branch or spine on its onter and upper margin near the base.

The right cheliped is slender and rather weak. Its longest spine is situated on the distal upper margin of the merus. There are upwards of twelve spines on the carpus. On the median onter surface of the palm there are two rows of four spines each. The fingers gape at the base; their prehensile edges are tubercular. The left cheliped is smaller and more slender than the right. The cutting edges of the fingers run back to the gape, or a little more than one-half their length. The ambulatory legs are slender and very spiny; the spines are from three to five mun, is length,

Locality.-Station 3191, off San Simeon Bay, California, in 211 fathoms.

Type.-No. 18533, U.S.N.M.

LITHODES CALIFORNIENSIS, new species.
This species is remarkably like the preceding, except in the relative length of its spines and the form of the rostrum. It comes from about 100 miles farther sonth. There are two specimens, both females, while the only representative of the preceding species is a male. As the differences between them are not known to be sexual, I hesitate to mite them.

The spines of the carapace are much shorter and stouter, but oceupy the same relative position. On the lateral margin there are two long spines; the one above the third ambulatory foot equals in length, but is much stouter, than the one similarly placed on the preceding species. The most marked difference between the two species is in the rostrum; in both specimens of L. culiforniensis the rostrum is bific, while in L. ruthbuni it is bifucate, the tip being composed of two well-developed divergent horns. The subrostral spine extends out amost as far as the rostrum proper. The chelipeds are as in L. ruthbumi, except that the spines are shorter and there is less gape in the right hand and more in the left.

Locality.--Station 2949, off Santa Cru\% Island, Califoruia, in 155 fathoms.

Type.-No. 18534 , U.S.N.M.

LITHODES CAMTSCHATICUS (Tilesius).

Maja camtschatica, 'Tilesius, Mem. Acad. Imp. Sci., St. Petersburg, v, 1812, p. 336 , pls. V and Vi (1815).
Lithodes camtschaticus, Latreille in Cuvier's Règne Animal, 2d ed., iv, p. 65.
Lithodes spinosissimus, Brandt, Bull. Phys, Math. Acad., St. Petersburg, vir, 1849, p. 172 (Young),-Stimpson, Boston Jour. Nat. Hist., Vi, op. 478, 1857.
The measurements and description of L. spinosissimus given by Brandt indicate that the thorax sent him by Wosnessenski was that of a young specimen of Lithorles. The Alaskan collections contain many young Lithodes that come well under Brandt's short description, except that the rostrum proper is bifid, while Brandt describes it as simple. One specimen from a lot taken at station 3233,7 fathoms, Bristol Bay, answers his description in this respect. I believe this specimen to be abnormal, as the other young from the same station have the bitid rostrum. The spines on the carapace of the young are placed as in the adult, but are proportionally much longer. A large amomet of dredging has been done in Alaskan waters, and nothing that I have seen approaches the description of I. spinosissimus except the young Lithodes which 1 have confidently referred to L. camtschaticus.

LITHODES BREVIPES, Milne-Edwards and Lueas.

Lithodes brevipes, Milne-Edwards and Lucas, Arch. Mus. Hist. Nat., Paris, if, p. 465, plls. xxiv-xxyif, 1841.

Lithodes camtschaticus, Richters, Abh. Senck. Natur. Ges., xini, p. 404, figs. 9 and 10 .
In the work cited Dr. Richters describes and figures young Lithodes as the young of L. camtschuticus. There are four specimens of the same form in the collection; one obtained by Mr. William Palmer at St. Paul Island, where I)r. Richters' specimens were collected; two by Dr. L. Stejneger at Bering Island, and one dredged by the Albutross at station 3.jsis in 2.) fathoms. The largest specimen is a cast shell washed up by the tide; it is 34 mm . in length and 31 mm . in width. The smallest specimen is 16 mm . in length by 14 mm . in width. In most respects the largest of the young is a miniature of the adult L. brevipes, but contrary to the rule in seven species of Lithodes the young of which are in the collection, the young of L. brewipes, if I have not mistaken it, have but a bare indication of spines, or rather of the place where spines are to be, the spines being indicated on the carapace of the smallest by small gramules better seen with a lens, while in the largest specimen the spines are indicated by tubercles, and at the summit of the tubercles there is not the slightest indication of the sharp, horny-tipped spine of the adult L. brevipes. The movable antennal spine of the adult is bifurcate; in the young it is bifid.

LEP'OLITHODES, new genus.

Paralomis (part), Henderson, Challenger Report, xxvir, p. 44, 1888. Not Paralomis, Wihite aud Stimpson.
White established the geuns Paralomis in $18 ⿹ 勹 6$ by thus designating Lithodes grountutus of Hombron and Jacquinot. An examination of a single specimen of that species from Sandy Point, Straits of Magellan, shows it to belong to White's previonsly established genus Echinocerus. The name l'urulomis as a synonym of Echinocerus being no louger available, I propose the name Leptolithodes for those species having long and angular ambulatory legs and comparatively stout chelipeds. The species of the genus will then be as follows, in the order of descrip. tion: Leptolithodes "culentus (IIenderson), L. usper (Faxon), L. lonyipes (Fiaxon), aud the two species here described from the west coast of the United States and British Columbia.

LEP'TOLITIIODES MULIISPINUS, new species.
The carapace is about as broad as long; the areolations are well defined (On the median line at the summit of the gastric region there is a sharp spine abont fom mm. in length. The lateral margins are armed with from twelve to sixteen spines about three mm . in length. In the young and in some of the adults there are small spines on the branchial resion. A semicircular line of six or seven spines marks the
limits of the branchial and intestinal regions. The carapace is thickly studded with blunt spines, each terminating in a flattered face or surface cut obliquely to the surface of the carapace; this fare is encircled by a fringe of short stiff bristles. The rostrum consists of a simple median spine with two basal spines. Cuder the rostrum proper there is a very short conical spine homologous with the subrostral spine of Lithodes; behind the spine are one or more spinules. The abdomen in the male is composed, after the second segment, of several rows of leathery plates; the second segment is better calcified and harder. The abdomen of the female is twisted to the right as in Lithorles.

The chelipeds are moderately slender and extend almost to the distal end of the carpal joints. The spines on the inner margin of the carpal segments are the most prominent. The ambulatory legs are long and slender and thickly set with spines. The spines of the merns are not so distinctly arranged in rows as on the carpal and propodal segments; there is, however, a distinct row on the upper margin. The spines of the carpus are arranged in eight more or less distinct rows; on the propodal segment the spines are arranged in six fall rows and two half rows. There are four short rows of spines on the proximal end of the dactylus. The dactyli are compressed, slightly bent and a little twisted. An average-sized specimen measures 80 mm . in length, is mm. in breadth, and the distance from tip to tip of the ambulatory legs is 360 mm .

Types.-No. 18535, U.N.N.M., off Queen Charlotte Islands, British Columbia, station 2860, 876 fathoms.

LEPTOLITHODES PAPILLATUS, new species.

From the Albatross dredgings oft Lower California, or perhaps south of that region, there is a male specimen of Leptolithodes withont a label. It is much larger than any other species in the collection, and while differing materially is yet very closely related.

The carapace is broader than long; the areolations are well marked. The gastric region has no spine, and is not protuberant as in L. multispinus. The cardiac region is much shorter; the depressions run into one which extends to the margin of the carapace at the middle of the posterior border. In L. multispinus the grooves run separately back to the posterior border, with the posterior point of the cardiac region between them. There are no spines on the dorsal surface or margin of the carapace; even the anterior angles lack spines. From the spines at the external orbital openings to the posterior margin there are small tubercles or papillie on the margin. In the center of some of these tubercles by the aid of a lens a very small horny point can be seen surrounded by bristles. The surface of the carapace is thickly set with these small papillie which bear stiff sete irregularly scattered over the summit. In L. asper (Faxon), * the papillie are encircled with a crown of stiff setæ.

[^132]The rostrum is simple with two rery small hasal spines. Beneath the rostral spine there is a swelling where in $/$. multispinus there is a short spine. The eyes extend far heyond the hasal spines of the rostrum, while in I. muttispimus the spines extend much beyond the eyes.

The rhelipeds are much stonter than those of I. multispimus, and the fingers of both hands are more curved.

The ambulatory legs are similar to those of L. multispimus, but the pines are not so long and are broal at the base; the dactyli are comparatively shorter, stouter, and broader at the tips.

Type.-No. 185̃36, U.S.N.M., off Lower California (?).
PRISTOPUS, new gemus.
The rostrum, antennal scale, and the character of the abdomen are substantially as in Leptolithodes. The legs are much compressed; the anterior and posterior margins are set with shar? spines. In Leptolithodes the legs are angular, not at all compressed, and the spines are arranged in rows on the angles or ridges. Parulomis formosus, Henderson, belongs to this genus.

PRISTOPUS VERRILLI, new species.

The carapace is verurose, the arcolations prominent. The gastrie region is much elevated amd is sumounted by a small spine. On each side, on the border of the branchal region, there is a deep pit. A groove runs from the pits to the depression between the gastric and carliae regions. There are about twelve spines, two to three mm. in length on the lateral border of the carapace. The posterion boundary of the intestiual region ss marked by a semicucuiar row of tubercles. The cardiac region is triangular; the apex of the triangle cuts well into the intestinal region where the depression that marks it rus into a deep slit or oblong median depression. The frontal margin is broad and straisht. The spines of the anterior angles and the orbital spines point forward; the orbital spines are a little che longer. Between the spine on the angle and the orbit there is a row of smatler spines and one or two gramules. The trispinose rostrum is composed of a bifurcate rostrum proper and the subrostral spme which extends much beyond the two upper rostral spines. The antemal seale tapers to a sharp point and has three sharp spiaes or branches on each side. The lateral plates on the left of the abdomen in the female are firmged with short, slender, blunt spines.

The chelipeds extend a little beyond the middle of the propodal segment of the first pair of ambulatory feet. The right cheliped is stouter than the left. The prehensile edges of its fingers are strongly tuberenlar. The upper margin of the palm is spiny; there are also some small spines on the middle and on the lower margin. There are thee long spines on the imer margin of the carpus. The left cheliped is similar but smaller, and the prehensile edges of the fingers are sharp.

The ambulatory feet are wide and much compressed. The anterior and posterior margins are armed with sharp spines, alternating in general large and small. On the upper surface of the proximal end of the merus of the fourth pair of feet there is a row of fine spines; the corresponding spines on the third pair of feet are smaller, and on the second pair still smaller.

Type.-No. 18537, U.S.N.M. Off the Pribylof Islands, Bering Nea, station 3501,688 fathoms.

ED DGNATHUS, new genus.
Similar to Dermaturus, but with the terminal joints of the outer maxillipeds much dilated as in Ifapuloguster. The onter margin of the antemal scale is expanded and thin; the inner margin is concave, giving the scale a half-moon shape.
(EDIGNATHUS GILLI, new species.
Carapace longer than wide, convex in both directions. The areolations are not well marked but can be mide out. There are no spines on the margin behind the antero lateral angles. The surface is set with flattened plates moderately large, and of a deeper color than the surface; these plates are surrounded by rows of short curled bristles; on the anterior side of the plates are patches of holes larger than those from which the hair arises; they may be the follicie holes caused by some larger form of bristle that has disappeared from the old dry specimens from which this description is written. The lower surface of the broad moon-shaped antennal scale is smooth, the upper surface is rough, the onter edge has three or four short triangular teeth. The spine at the external angle of the orbit is very small; the rostrum is simple, short, and pointed. The distal ends of all the joints of the maxillipeds are swollen, but in the ultimate and penultimate remarkably so. The abdomen is as in Dermaturus. mandti. The chelipeds are thickly set with gramular tubercles. The right one is very large and reaches much beyond the ambulatory feet. The fingers gape widely from the palm to the tips. The left cheliped is much smaller, and the hand in proportion to the large one reminds one of Gelasimus among the Brachyura. The fingers are spoon-shaped; they have some very small tubereles on the elge, but the edge for the most part is black horn color. The ambulatory feet are romded, short, and strong, without spines; the daetyli are compressed and armed with spinnles beneath.

Types.-No. 18525, U.S.N.M.; locality unknown, 2 8.
Loculity.-Alaska, W. H. Dall; one claw, without label, No. 1852t, U.S.N.M.

LEPEOPUS, new genus.
Fostrim simple, triangular. Penultimate and ultimate joints of maxillipeds not dilated. Antemal scale short, flattened. Abolomen of female much twisted to the right; first segment very small, second very
large; third, fourth, and fifth segments represented on the left margin by large plates; sixth and seventh segments very small. In the male, the third, fourth, and fifth segments are solt, withont plates; the sixth segment is central, and the seventh difficult to distinguish. The chelipeds are subequal, the fingers long and spoon-shaped. The dactyli of the three pairs of ambulatory feet shut against two spines situated on the distal under surface of the propodus, giving the feet a prehensile character.

LEPEOPUS FORCIPATUS, new speçies.
The carapace is flattened, broader than long; the areolations are but slightly marked. The anterior angles of the carapace are produced to a point reaching much beyond the line of the points of the prominent orbital spines or points. The rostrum is triangular, produced and bent downward. The antemal seale is short, flattened, and squamose. The carapace and abolomen are thickly set with row: of short bristles situated in transverse, straight depressions. The ambulatory legs are also set with rows of short loristles, but the depressions are semicircular and imbricated. These, with the markings of the carapace, give the crab a very squamose appearance. The squame of the chelipeds are much smaller and less conspicuons. The chelipeds are not so long as the ambulatory feet, reaching to about the middle of the propodal joints. There are four or five spines on the inner and upper margins of the merus, and one on the inner margin of the carpus. The fingers are long and weak, broadening out into spoou-shaped tips. The outer or contact edges are armed with very small tubercles and bunches of bristles, while the imer edges are armed only with the bristles. The merus of the ambulatory legs is armed on the anterior margin with five or six short conical spines; it is broarl and much flattened; its anterior margin is semicircular and its posterior margin straight. The carpus is much narrower than the middle of the merus and is about the same width as the propodus. The propodus has straight margins aud is much flattened; on its distal under surface are two spines which receive the dactyhs; right behind on the central line is a third sharp spine. The dactyli are short and Hattened, terminating in a sharp, spine-like tip; the inner margin is thin and armed with spinules.

I know nothing of the habits of this crab, but from its lightuess and soft texture, the shell being calcified merely enough to keep its form, I believe it may be fom among seaweed, when its subprehensile ambulatory legs may assist it to hold its position.

Types.-No. (fifos, U.S.N.M.; P'ary Passage, Graham Island, British Columbia, J. G. Swan; 2 ô, 1 ㅇ.

SCIENTIFIC RESULTS OF EXPLORATIONS BY THE U. S. FISH COMMISSION STEAMER ALBATROSS.

[Published by permission of Hou. Marshall McDonald, Commissioner of Fisheries.]

Abstract

No. XXXII- REPORT ON THE CRUSTACEA OF THE ORDER STOMATOPODA COLLECTED BY TIE STEAMER ALBATROSS BETWEEN 188.' AND 1891, AND ON OTHER SPECIMENS IN THE U. S. NATIONAL MUSEUM.

By Robert Payne Bigelow, Pii. D.,

Bruce Fellow in the Johns Hopkins University.

The material which forms the subject of this report is derived from various sources. It consisted at first of the Stomatopoda collected by the Albatross on her voyage arouml to the Pacifie during the winter of 1887-'88. This had been refered to Prof. W. K. Brooks for a report, aud it was at his request that I uadertook the task. Subsequently the later collections-of the Albatross were turned over to me, including the specimens collected during the expedition of 1891 under the direction of Dr. Alexander Agassiz. The Crustacea of that expedition had been referred to Dr. Walter Faxon, and I am indebted to him for the Stomatopoda. I have had, moreover, free access to the collection of Stomatopoda in the U.S. National Museum, including the earlier collections of the Albutross, specimens collected by the U. S. Fish Commission schooner Grampus, and specimens sent in by naval officers and others. Many of these specimens had already been identified by Mr. Richard Rathbun. I have been able to make also a small addition to the collection, consisting of four species collected by me in the Bimini Islands, Bahamas, while there, during the summer of $189 \because$, in connection with the marine laboratory of the Johns Hopkins University.

The collection as it now stands before me consists of adults and larve, the former representing 34 species, distributed through 5 genera, as follows: Gonodactylus, 2; Odontodactylus, 2; Pseudosquilla, 6; Lysiosquilla, 5 ; and Squilla, 19. Of all these 14 are new species. They comprise inhabitants of tropical and temperate waters of both hemispheres. The collection of larve is large, but it contains mothing like a complete series of stages of any one species and almost no larva that can be referred with any certainty to its adult form. It does con-
tan, howrver, a few specimens of umbsual interest, which will be described in the concluding section of this report.

As it has not been my intention to expand this report into a monograph of the group, I have gone into the mattex of classification only so far as seemed mocessary to indicate my views as to the relationships of the species with which I have had to deal. I have not used the comparatively recent classification of Gerstaecker (1889), because it does not seem to me at all satisfactory, but have followed Miers and Brooks, avoiding changes muless there appeared to be strong reasons for making them. In a preliminary paper, however (18934), I pointed out that the species of the genus Gonorluctylus, as it stood then, fell maturally iuto two groups, which I ranked provisionally as subgenera, and for one of which I proposed the name Odontodactylus. It seems better now to regard them as distinct genera, of which one retains the old name, while the other is described in this report under the new name just mentioned. It is possible that the latter will be found on future investigation to merge into the gemus Coronidn, but they appear to be distinct at present. The genera Leptosquilla and Pterygosquilla have been inserted in the key to the genera, althongh there seems to be hardly sufficient ground for separating them from the Chloridella seetion of the genus Squilla.

An analytical key is the best form in which to convey a general idea of the distinguishing characters of a group of speries, but it can not always be made to show the natural aftinities. Nevertheless I have endeavored to do so as far as possible, and with that end in view have rearanged the species of Laysiosquilla and Squilla. It will be noticed that the principal divisions that I have made in these genera do not correspond with the old divisions into Lysiosquilla and Coronis on the one hand, nor into Squilla and Chloridella on the other.

This work has almost all been done in the biological laboratory of the Johns IIopkins University, and I desire to express my thanks to Prof. Brooks for his advice and supervision. I am, however, alone responsible for any errors or omissions that it may contain. I have also to thank Mr. James E. Benedict and Miss Mary J. Rathbun, of the National Museum, for valuable assistance, and Mr. Baldwin for his care in making the greater part of the drawings.

Order STOMATOPODA.

This order may be defined as a group of malacostracous Crustacea in which the stalked eyes and the first pair of antemme are borne mpon distinct movable segments; the rostrum in the adult is separated by a movable joint from the carapace, which is small and does not cover the last fom distinct thoracio segments ; the first five of the eight pairs of thoracice limbs are mot binamons and are adapted to serve as arcessory month parts, the second pair being strongly devoloped into the large raptorial
limbs in which, as in the three following pars, the terminal segment (dactylus) eloses upon the next segment (manus) like the blade of a pen-knife; the last three paiss of thoracie limbs are binamous, having a lateral appendage upon the penultimate segment, and are adapted for walking: the abdomen is very strongly developed: tufted wills are carried upon the exopodites of the first five alodominal appendages and the sisth pair (uropods), which art with the telson as a powerful tail fin, are strengthened by a stout process fiom the basal segment ending in one or two spines.

Family Squillide.

We may regard the Stomatoporle as comprising a single family with the characteristics of the order. For the sake of avoiding eiremmocution it has been fomd desirable to use certain technical expressions. They are mainly those already used by Brooks, but it may be well at this point to indicate brietly their meanings. According to ond present morphological ideas the thorax of the Malucostrace consists of eight somites, and those which are usually left meovered by the carapace in the Squillida are therefore the fifth, sixth, seventh, and eighth, and sometimes the fourth is also exposed (fig. 13). In the posterior half of the carapace there is often an irregula transrerse depression, known as the cervical suture, and there is always besides a pair of longitudinal sutures (pl. xXI). In the genus siquilla there are often five longitudinal carint upon the carapace-an unpaired median one, an intermediate pair, and a lateral pair. The lateral carime are often continued into the anterior lateral spines, while the intermediate ones usually extend as marginal carine aromod the edges of the posterior lateral lobes (pl. Nxi). The eyes are often tlattened and have the cormeal portion divided into two lobes. In that case there are two principal axesthe perluncular axis (ab, fig. 14), ruming from the base of the perduncle to the line between the lobes, and the corneal axis (ed, fig. 14), coinciding with the greatest diameter of the corneal portion. The three distal segments of the great raptorial limb are known as the carpus, manus, and dactylus (c, m, and d, fig. 7). In the higher species of Squilla there are eight principal ridges or carina upon the abdominal somites deseribed as submedian, intermediate, lateral, and marginal (fig. 9. sc, $i e, l^{\prime}$, and me). The seventh abdominal somite, or telson, usilally has a donsal merlian catina, that I shall speak of as the crest, and there is sometimes a ventral one that may be called the keel. The projecting points on the margin of the telson fall into two series. The larger ones are the marginal spines, of which there are usually six (figs. $9,16, s m$, im , and l), with sometimes indications of an aditional pair (fig. 16, (1)): the smaller ones aro the denticles, of which there are six sets (fig. 16, sll, id, and ld). The armagement of the denticles for each species is often characteristic and may be expressed in a formula. The formula for sifuille mantis is $3-\downarrow, 1-8,1$; which means that in this
species one may expect to find on each side of the median line of the telson three or four submedian denticles, from four to eight intermediate ones, and one lateral one.

ANALYTICAL KEY TO THE GENERA OF SQUILLID,
I. Sixth abdominal somito more or less completely fused with the telson.

The dactylus of the raptorial limb dilated at the base and withont lateral teeth.
Protosquilla, Brooks.
II. Sixth abdominal somite separated from the telson by a flexible joint.

1. Dactylus of the raptorial limb dilated at the base, and the manus without pectinations.
a. Antennary scales and uropods not unusually small.

Hind body strongly convex; raptorial dactyli withont lateral teeth.
Gonodactyles, Latreille.
Hind body moderately convex; raptorial dactyli armed with lateral

b. Antennary scales and uropods very small; hind body depressed; raptorial dactyli with lateral teeth......................... Coronida, Brooks.
2. The dactylus of the raptorial limb, as a rule, not dilated at the base (dilated in Leptosquilla) and the manus provided with minnte pectinations on the inner margin.
a. Telson with 6 marginal spines and never more than 4 denticles between the submedian and intermediate spines.
Body compact and convex; dactylus of raptorial limb not dilated and with not more than 3 lateral teeth or unarmed.

Pseudosquilla, Guérin.
Body loosely articulated and flattened; dactylus of raptorial limb not dilated and with at least 5 lateral teeth.. Lysiosquilla, Dana.
b. Telson with 6 (rarely 8) marginal spines and, as a rule, with more than 4 intermediate denticles.

* Lateral margins of the first 5 abdominal somites expanded to equal three-fourths of the width of the median portion, measured between articulations.
Raptorial dactylus not dilated, with 10 to 11 teeth; abdomen, except the sixth somite, without submedian carina.

Pterygosquilla, Hilgendorf.

* * Lateral margins of the abdominal somites not greatly expanded, about one-fourth the width of the median portion.
Ophthalmic segment greatly elongated and prolonged beyoud the rostrum for more than half its length; raptorial dactylus dilated at the base; abdomen, except sixth somite, without submedian carine; eyes eylindrical Leptosquilla, Miers.
Ophthalmic segment not greatly elongated; raptorial dactylus not dilated, or very slightly so.

Squilla, Fabricius.

Genus GONODACTYLUS, Latreille.

Conodactylus, Latreilie, Encycl. Meth. Hist. Nat., x, p. 473, 1825; Cr. in Cuvier,
 1837.-DE HAAN, Niebold's Fama Japonica, C'rust., p. 220, 1849.-DANA, U. S. Expl. Exp., Xifi, p. 615, 1852.-Mers, Ann. and Mag. Nat. Hist. (5) v, p. 115, 1880.-Brooks, Voyage of the Challenger, xvi, ii, p. 55, 1886.

Diarnosis.-Stomatopoda having a movable joint between the sixth abdominal segment and the telson; the hind body convex; the dactylus of the raptorial claw enlarged at the base and with a sharp inner
edge that fits into a groove on the mams, and is without lateral teeth; and no pectinations upon the manus.

Remarks.-This genus, as it was defined by Miers (1880), included all those species in which the raptorial claw is withont pectinations on the penultimate joint and has the dactylus dilated at the base. From this Brooks (1886) has separated two groups of species. One, the genus Protosquillu, includes forms having the dactylus unarmed and the telson fused with the sixth abdominal segment; the other, the genus Coronida, is composed of those species having the hind body depressed, the dactylus armed with spines on the inner edge, and possessing very small antemnary scales and uropods. The forms that have remained up to this time in the genus Gonodactylus fall naturally into two groups, one clustered around the well-known G. chiragra, Latreille, and the other around G. scyllarus, Linnieus. These two groups are so distinct that I am convinced that they should be given the rank of distinct genera. The first group forms the genus Gonodactylus proper and corresponds exactly to Brooks's definition, while the other, for which I propose the name Odontodactylus, would be excluded by his definition, and will be described below.

analytical key to the species of gonodactylus.

* Telson with 3 rounded longitudinal prominences on the dorsal side.

Whole dorsal surface of telson beset with fine prickles, only the submedian marginal spines well developed, the other 2 pairs obsolete; sixth abdominal somite with 6 smooth carinæ.spinosr:s, Bigelow.
Like the above, but with only 4 distinct carine on the sisth abdominal somite, the whole dorsal surface of which is covered with prickles.
spinosissimus, Pfeffer.
Dorsal surface of telson without prickles; two pairs of marginal spines well developed, only the lateral pair obsoletechiragra, Fabricius.

* Telson with more than 3 narrow carinte on the Dorsal side, and all 6 marginal spines developed.
The 5 narrow carine of the telson grouped together on a hemispherical prominence \qquad . glabrous, Brooks. Seven closely packed dorsal carinte on the telson................... Graphurus, Miers.

GONODACTYLUS SPINOSUS, B igelow.
Gonodactylus spinosus, Bigelow, Johus Hopkins Univ. Circ., 106, p. 101, June, 1893.

Diagnosis.-A Gonodactylus laving cylindrical eyes, a transverse rostrum, with a long median spine and subacute antero-lateral angles; a smooth carapace, nearly oblong, the posterior margin being straight, but the rounded antero-lateral lobes projecting forward; the hind body strongly convex; the lateral margins of the first exposed thoracie segment not produced, of the next three segments roundel; the first five abdominal segments smooth above and with lateral marginal carina, the sixth segment with six broad and smooth dorsal carinæ, each ending in a spine; three high, rounded, longitudinal dorsal promineuces on
the telson, the whole dorsal surface beset with mumerous minute prickles; two large submedian marginal spines, with minute movable tips, the intermediate and lateral spines being obsolete, and the basal prolongation of the mopod ending in two thattened curved spines, of which the outer is the longer.

General description. - lixcept for the telson, this species corresponds in structure almost exactly with the well-known fi. chiraffre, Latreille. Ther telson also resembles that of the last-mamed species, but it has strking and characteristic differences. The three central dowal prominences are higher than in G. chirugra, broader and more closely pressed together. The vertical diameter of the telson exceeds lalf the horizontal diameter, which is not the case in the other species. The basal carinte of the submedian and intermerliate marginal spines are represented by broarl, rombled, longitudinal prominences, separated from each other and from the central ones by narrow grooves. The lateral marginal pair of carine is inconspichons. But what is most characteristic is that the whole dorsal surface of the telson, except the bottom of the grooves, is roughened by minute projecting spines. The telson appears at first sight to have but a single large pair of marginal spines. Closer examination, however, reveals two small teeth on each side that are evidently homologons to the intermediate and lateral spines of such a form as G. graphurus, for instance. The submedian spines have a large number of minute denticles on their inner margins.

The first antenne are short, the second joint not extending beyond the eyes. The second antenne are nearly as long as the first pair, but the antemary scale is small, not larger than half the short carapace. The basal prolongation of the uropod is broad and flat and the spines are curved inwark. The outer one has no tooth on its inner margin. The distal segment of the exopodite is about half as long as the proximal one, which bears nine movable spines.

When I published my preliminary deseription of this species I had not seen Pfeffer's paper (1889) in which he describes a very similar species from Zanzibar, G. spinosissimus. It is possible that the two forms may prove finally to be merely varieties of a single species, but at present they appear to be distinct in spite of the fact that they disagree in very few particulars. The chief differences are in the fifth and sixth abdominal somites. In our specimens there is but a single pair of carine on the fifth somite, and the sixth bears six prominences with smooth and shining surfaces, the spaces between beng somewhat pubescent. Each prominence or carina is tipped with a spine. The outer pair are the longer, the other four are of more nearly the same length, the intermediate pair being smaller and a trifle shorter than the submedian pair. The other form, on the contrary, has, accorling to Pfeffer, two pairs of carine on the fifth abdominal somite, and on the sixth there are four rounded linobs, the middle pair near one another and separated from the lateral by a deep furrow. The last-mentioned pair is also
separated by furrows from the lateral portions of the somite, which are hardly at all elevater. Both these lateral portions and the kuobs are thickly beset with strong upright independent spinules. In the absence of any intermediate form, G. spinosus may be regarded as a distinct species.

Size.-Length of the body, 2 cm .
Locality.-Two female specimens, No. 4295, U.S.N.M., were collected by Col. N. Pike at Mauritius.

GONODACTYLUS CHIRAGRA (F a bricius).
Mantis marina barbadensis, Petiver, Pterigraph, Amerie, pl. xx, fig. 10.
Squilla chiragra, Fabricius, Ent. Syst., II, p. 513, 1793. Desmarest, Consid. Crust., p. 251, pl. xlill, 1825.
Cancer (Mantis) chiragra, Herbst, Naturg, Krabben, II, p. 100, 1796.
Gonodactylus chiragra, Latreille, Encyel. Méth., x, p. 473, 1825.-Mrers, Ann. and Mag. Nat. Hist. (5), v, p. 118, 1880.-Brooks, Voyage of the Challenger, XVi, ii, p. 56.
Gonoluctylus smithii, Pocock, Amn. and Mag. Nat. Hist. (6), NII, 1893.
The collections of the U. S. Fish Commission and the National Museum contain a large number of specimens of this species from mmerous localities among the Florida Keys, in the Gulf of California and the Abrolhos Islauds. One specimen (No. 9493, U.S.N.M.) was collected by the Albatross at station 2323, off Havana, Cuba, at a depth of 163 fathoms, and I have added to the collection specimens taken in a foot or two of water on the sand flats in the Bimini Islands, Bahamas. They are common there, hiding among the algat and under shells and stones. One specimen was found in a red sponge. When disturbed they move from one shelter to another with great rapidity. The coloring is distinctly protective, varying from a mottled green and white to a nearly pure green. I have also to record the oceurence of this species in burrows in the rock at Port Henderson, Jamaica.

In addition to these there is a single small specimen collected by W. L. Abbott in the Indian Ocean (No. 18457, U.S.N.M.) and a mumber of small specimens collected by Col. N. Pike at Mauritius (No. 2202, U. S. N. M.). These differ from the ('. chiragra of our coast in that the carine of the sixth and terminal abdomiual segments are narrow instead of being broadly rounded.

ODONTODACTYLUS, new genus.
Odontodactylus (subgenus), Bigelow, Johus Hopkins Univ. Circ., 106, p. 10n, June, 1893.
Gonodactylus (part), Latreille, Encycl. Méth. Hist. Nat., x, p. 473, 1825.-Berthold, Abhandl. k. Gesellsch. Wiss. Göttiugen, inf, p. 30, 1847.-de HaAn, Siebold's Fauna Japonica, Crust., p. 225, 1849.-White, Proc. Zool. Soc., 1850. p. 96.-A. Milne-Edwards, Nouv. Archiv. Mus. Hist. Nat., 1v, p. 65 (footnote), 1868. -Miers, Ann. and Mag. Nat. Hist. (5), v, p. 115, 1880. -von Martens, Sitz.-Ber. Gesel. Naturf., Berlin, 1881, p: 93.-Pocock, Ann. and Mag. Nat. Hist. (6), xif, 1893.
Diagnosis.-Stomatoporla having a movable joint between the sixth abdominal somite and the telson; the hind body moderately convex;
the dactylus of the raptorial limb dilated at the base and provided with lateral teeth; the rostrum more or less triangular but not produced into a spine; the telson strongly resembling that of the genus Pseudosquillu, and as a rule with not more than two intermediate denticles.

Remarks.-This genus, which occupies an intermediate position between Gonorlactylus and Pseudosquillu, was described by me in a preliminary paper (1893) as a subgenus of Gonodactylus, but it is sufficiently distinct to merit the rank assigned to it here.

ANALYTICAL KEY TO THE SPECIES OF ODONTODACTYLUS.*

* Dactylus of raptorial limb with 2 lateral teeth.

Rostrum trausverse and subtriangular ; median crest of telson elevated. scyllarus, Linnreus.
Rostrum enlarged at the base and ending in a point ; median crest of the telson lamellate, but much less elevated than in the next.
bleekerif, A. Milue-Edwards.
Rostrum quadrilateral; median crest of the telson lamellate and with a vertical height nearly equal to its distance from the lateral margin.

CULTRIFER, White.
Dactylus but little ventricose at the base; rostrum somewhat transverse, not acute; telson as broad as long dorsally, nearly smooth, with an acute crest ending in a spinule . Elegans, Miers.
** Dactylus with more than 2 lateral teeth.
Dactylus with 3 teeth; rostrum pentagonal with a short median point.
tizachurus, von Martens.
Dactylus with 3 teeth; rostrum ovately convex, its extremity bent downward; eyes very large and globular . Carinifer, Pocock.
Dactylus with 5 to 7 small serations on its inner margin ; rostrum siunate at the sides, tip obtuse and strongly incurved......................Japonicus, Berthold.
Dactylus with 6 small lateral teeth; rostrum not simuate but transverse and rounded in outline; eyes very large
Dactylus with 9 teeth; rostrum with evenly convex anterior border and evenly rounded angles; eyes large..
Dactylus very little rentricose at base and with about 8 teoth on its inner margin; rostrum transverse \qquad brevirostiris, Miers.

ODONTODACTYLUS SCYLLARUS (Linntus).

Squilla arenaria prona, SEBa, Thesaurus, 1H, p. 5, 1758.
Cancer scyllarus, Linneus, Syst. Nat. (ed. Xii), p. 105.t, 1766.
Squilla scyllarus, Fabricius, Ent. Syst., if., p. 512, 1793. Lamarck, Hist. Anim. sans Vert., v, 1818, p. 189.
Cancer (Mantis) scyllarus, Herbst, Nat. Krabben, ete., II, p. 99, 1796.
Gonodactylus seyllarns, Latreille, Encyel. Méth., x, p. 473, 1825. etc.-Miers, Ann. and Mag. Nat. Hist. (5), v, p. 115, 1880.

[^133]There is a female specimen in the National Mnsemm, collected by A. B. Steinberger, at Samoa (No. 5147, U.S.N.M.).

Length of the body, 14 cm .

ODONTODACTYLUS HAVANENSIS, J i ir elow.

Plate Nx .
Gonodactylus havanensis, Bigelow, Johns Hopkins Univ. Circ., 106, p. 101, June, 1893.

Diagnosis.-An Odontodnctylus, having large, subspherical eyes; large antemal seales; the dactylus of the raptorial claw strongly dilated at the base and provided with six small marginal teeth besides the terminal one; a transverse rostrum withont angles; a nearly square carapace with rounded comers; three exposed thoracie segments with rounded margins; six spines on the sixth abdominal segment; a dorsal crest and four other carime on the telson, six margin 1 spines, the submedian pair with mobile tips, and mumerous minute submedian denticles, two intermediate, and one lateral one on cach side; rather large mopods with two simple basal spines, the outer one the longer.

General description.-A single specimen of this interesting specres was found in a bottle with a young (i. chiragra both having been collected by the Allatross in the Gulf of Mexico, off Havana. The body is short and broad, and is convex on the dorsal side (pl. xx). The sides of the carapace, thoracie segments, and abdomen form nearly a straight line. The width of the carapace at the auterior eud equals onefifth of the length of the body, while the width of the abdomen at the fiftin segment equals about one-fourth of it. The rostrum is twice as broad as it is long and is evenly curved in front. The carapace is almost perfectly square. It is a little narrowed in front and the posterior and anterior margins are slightly incurved. Only three thoracic segments are exposed. These have rounded margins and like the carapace and the first five abdominal segments are devoid of carinre. The third, fourth, and fifth ab-

Fig. 1.
RIGHT UROPOD OF ODONTODACTYLUS havanensis.

Ventral side, five times natural arzo dominal segments have posterior lateral spines. The sixth segment has six carine ending in spines and two additional tubercles on each side, one between the submedian and intermediate carime and another between the intermediate and lateral ones. There are no spines at the articulations of the uropods (fig. 1). The telson has a narrow elevated dorsal median crest ending in a Proc. N. M. $94-32$
spine. The distance throngh the posterior part of the crest to the rentral surface of the telson is about equal to one-fourth of the width of the telson. The other four carinie are less elevated. The marginal spines are prominent and the movable tips of the subme dian pair are much longer than in O. scyllarus. The basal prolongation of the uropod (fig. 1) is continued into two simple spines of which the outer one is the longer but is not so long as the exopodite. The distal joint of the lat-

Fig. 2.
ENDOPODITE OF ODONTODACTYLUS HAVANENSIS.

Endopondite from first abdominal limb. Nine times natural size. ter is about, two-thirds as long (measured on the ventral side) as the proximal one, which bears eleven movable spines. The eyes are very large, but are subspherical and not at all triangular. The width of the cornea equals 0.09 of the length of the body. The first antenne are short, the first three segments hardly extending beyond the eyes and almost equaling the Hagella in length. The second antenne reach almost as fin forwari as the first pair. The antemnary scales are large, very nearly equaling the carapace in leugth and half as wide. The raptorial claw is rather small. When folded it only reaches backward to the cervical suture of the carapace, and the dactylus is only three-fourths as long as the manus. The latter is devoid of spines or pectinations of any kind, and is provided with a simple continnons groove for the reception of the dartylus when (losed. The datetylus is strongly dilated at the base, and is provided with six very small and thin teeth on its inner edge. 'The appendages to the pleopod are lincar. A remarkable pecularity of the specimen before me is that while it is a mate it is like a female in having no clasping organs on the exoporlites of the first abdominal appendages, which are just like the succeeding ones (fig. 2).

It is probable that this is a very young specimen, and some of its characters may be due to its youth, but a young (i. chiragra of the same size possesses the clasping organs and exhibits all the adult features.

Cobor.-The alcoholic specimen has a dark spot on the carapace and black markings on the uropods.

Size.-Length of body, 2 cm .
Loculity.-The unique specimen was taken by the Albatross in 1885 at station 232:3 at a depth of 163 fathoms off Havaua, Cuba. (No. 17997, U.S.N.M.)

Genus PSEUDOSQUILLA (Guérin).
Squilles trapues, Milne-Edwards, Hist. Nat. Cr. 11, p. 525, 1837.
Squillw (sect. iii) parullelre, de HaAN, Niebold's Fauna Japonica, Cr., p. 221, 1849.
Pseudorquilla, Guérin (ined.), Dana, U. S. Expl. Exp., xiri, Cr., r, p. 615, 18̊̀2.Miers, Ann. and Mag. Nat. Hist. (5), v, p. 108, 1880.-Brooks, Voyage of the Challenger, xvi, ii, p. 53, 1886.

Mingmosis.-Stomatopoda, with the sisth abdominal segment not fused with the telson; the hind body smonth, very convex, and narrow; the datylus of the raptorial claw not dilated at the base and possessing not more than three lateral teeth, or in some cases none; the submedian spines of the telsm long aud having movable tips ; not more than four intermediate denticles, usually one.

Remorks.-This genas is, as a whole, compact and well defined, but the three species that I have placed under I in the key are of doubtful afinities. P. monorlactylu, Milne Vdwards, may prove to be an immature form; P. stylifera, Milne- Edwards, approaches Gonoductylus very closely; and fomoductylus e'nsiger, Owen. seems to be closely related to the last.

ANALATICAL KEY TO THE SPECLES OF PSEUDOSQUILLA.

A. I'seudosquilla, proper. Hind body narrow and thick; raptorial claw armed with a ferv marininal spines.
a. Basal prolongation of the uropol ending in 2 spines; dastylus with 3 teeth.

* Telson with crest and 4 other carinie ? empusa, De Haan.
* * Telson witha crest and 6 other carine.

Eyes flattened, club-shaped, 2 eye-spots on carapace....ornata, Miers.
* * * Telson with crest and 8 other carine.

Eyes flattened, club-shaped; rostrum with small merlian spine. oculata, Brullé.
Ejes very large and triaugular; rostrum without a spine.
megalophthalah, Bigelow.
b. Basal prolongation of the uropod euding 11 one long terminal spiue having 2 other spines on its inner margin. Telson with crest and 10 other carine.

* Dactylus with 3 teeth.

Rostrum with a long median and 2 short lateral spiues.
Lessonif, Guérin.
Rostrum with prominent median spine but no lateral ones.
CEBLSif, Roux.
** Dactylus with 4 teeth; telson wider than long........ PilaEnsis, de Man. B. Doubtful position. Dactylus with a single terminal spine.

Telson smooth except for crest; many very minute submedian denticles; rostrm almost subtriangular, acuto...........anononctyla, Milne-Edwards.
Telson with crest and 2 other carinie; rostrum longer than wido, narrowed at the end .. stylifera, Milne-Edwards,
hostrum trispinose, median spine obsolete.
(\% GONODACTYLUS) ENSIGER, Owen.

PSEUDOSQUILLA CILIATA, Miers.

? Squilla ciliata, Fabmicius, Ent. Syst., II, p. 512, 1793.
Squilla stylifera, Lamarck, Hist. Anim. saus Vert., v, p. 189, 1818.-Latreille, Encyel. Méth., x, p. 472, 1825.
Pseudosquilla stylifera, Dana, U. S. Expl. Exp., xiri, Cr., 1, p. 622, 1852.-? von Martens, Archiv. f. Naturg., xxxvili, p. 146, 1872.
Pseudosquilla ciliata, Mers, Aun. and Mag. Nat. Hist. (5), v, p. 108, 1880.Brooks, Voyage of the Challenger, XVI, ii, p. 53.

This speries is represented in the National Museum by a large number of specimens firon the Florida Keys; one from Bermuda (Dr. F. V. Hamlin) (No. 5136, U.S.N.M.), aml another from Monolulu (?) (No. (558.4 , U.S.N.M.). I found it also in abundance at Bimini, in the Bahamas, associated with Gonoductylus chirugra and resembliug that species very closely in habits and coloring.

ISEUDOSQUILLA ORNATA, Miers.

? Pseulosquilla oculatu, Heller, Reise dor Novara, Crust., p. 121, 186̈̈, not Brulle. Pseudosquilla ornata, Meres, Ann. and Mag. Nat. Hist. (5), v, p. 111, 1880.
The National Mnsenm contains one specimen of this species, purchased from H. A Ward (No. 15629, U.S.N.M.).

Loculity.-Mauritius.
Length of body, 7.5 cm .

PSEUDOSQUILLA OCULATA (Brullé).

Squilla oculata, Brullé, in Webb and Barthelot, Hles Canaries, Zool. Crust., р. 18, 1836-'4.

P'seudosquilla oculata, Miers, Ann. and Mag. Nat. Hist. (5), v, p. 110, 1880.
There is a small specimen in the National Museum that seems to belong to this species. It was collected by Col. N. Pike, U. S. Consul at Mauritius (No. 5137 , U.S.N.M.).

The localities for this species given by Miers are the Canaries and Madeira.

PSEUDOSQUILLA MEGALOPHTHALMA, Bigelow.

Pseudosquilla megalophthalma, Brgelow, Johns Hopkins Univ. Circ., 106, p. 101, J une, 1893.
Dingnosis.-A Psendosquilla with very large triangular eyes, the corneal axis being transverse; a very long, slender dactylus on the raptorial claw, with three teeth; a nearly heart-shaped rostrum without spines; narow, rounded lateral processes on the first exposed thoracic segment, the lateral margins of the next two segments truncated; posterior lateral spines on the abdominal segments from the second to the fifth, and the usual, six.spines on the sixth segment, with a smaller addifional one on the imer sile of each intermediate spine; a crest and eight other carime on the telson, six marginal spines, the submedian pair being the longest and mobile; two simple spines on the basal prolongation of the uroporl, and ten movable spines on the exopodite.

General description.-In the collection of the U. S. National Museum We have three specimens of Pserdosquille from Mantius, representing as many species. One of thesemay be identified as P. ornata, Miers, another as P^{\prime}. oculutu, Brullé, and the third (No. 18003, U.S.N.M.) is a new species relater to the other two, perhaps more closely to oculate than to the other. It is easily distinguished from both by its large triangular eyes. The conical axis is at right angles to the peduncular
one, which is eight-elevenths as long as the former and equals six onehundredths of the total length of the body. The carapace is twentytwo one-liundredths of the total length and about two-thirds as wide as it is long. The abdomen is a little wider and the telson a little narrower. Its width is about equal to its length, leaving out the mobile spines, and this is about fourteen one-hundredths of the total length.

The rostrum is of a broad heart shape, truncated at the base. It is therefore intermediate in shape between the rostrim of P. ornatu and P. oculatu. The length equals five sevenths of the width. It covers the ophthalmic segment completely. The carapace is relatively longer than in P. ornatu, and is perfectly smooth and without angles. The lateral margins of the exposed thoracie segments are romded and without spines-of the first they are narrow and of the next two broad and truncated. There is a pair of slight projections on the ventral side of the first segment corresponding to the ventral spines in Squilla, and there is a similarly placed pair of larger somewhat conical projections on the next segment. The abdominal segments from the first to the fifth have each a stont spine pointing downward and backward on the ventral median line. All but the first of these segments have the posterior lateral angle produced into short spines. The sixth segment has six broad dorsal carine ending in stout spines, and there is a small additional spine on the inner side of each of the regular intermediate ones. There is no spine in front of the articulation of the uropod. The.telson is most nearly like that of I '. oculatu. It has the same number of carine, eight besides the crest, and the basal carine of the submedian and intermediate spines, but while in P^{\prime}. oculata the carine of the pair next the lateral marginal pair are parallel to the axis of the body, and point toward the intermediate spines, in this species they are oblique and continue out to the tips of the lateral spines. The submedian carime are serrated. The ventral surface of the telson is perfectly smooth. There are no submedian denticles, two intermediate, and one lateral one. The outer one of the two spines of the basal prolongation of the uropod is the longest, and is very nearly as long as the exopodite, the distal segment of which is larger than in P. ornata. The antenne are much longer than in the other two species. The first three segments of the first pair are three-fourths as long as the carapace, and the flagellie are-also of about this length. The antemary segment bears a truncated collar-like process on each side. The second antenme are about three-fourths as long as the first.

The antennary scale is three-fifths as long as the carapace. The raptorial claws are very long and slender. When folded the limb reaches from the eyes to the most posterior part of the carapace. The pectinations are confined to the proximal half of the penultimate joint. The appendages to the walking legs are linear.

Size.-Length of the body, 6.8 cm .

Loculity.-The single specimen, a mate, was purchased from II. A. Ward, and it was collected at Mauritius.

PSEUDOSQUILLA LESSONII (Guérin).

Squilla cerisii, Gúrrin, Voy. Coquille, Crust., p. 40, 1830 (S. lessonii on plate). Squilla spinifrons, Owen, Proc. Zool. Soc., p. 6, 1832.
Squilla lessonii, Milne-Edwards, Hist. Nat. Crust., If, p. 527.-White, List Crust. Brit. Mus., p. 8t, 1847.
Squilla monoceros, Milne-Edwards, Hist. Nat. Crust, II, p. 526, 1837.-Gay, Hist. Chile Zool., HII, Cr., 1. 224, 1849.
Pseudosquilla lessonii, DaNa, Crust. U.S. Expl. Exped., xiri, i, p. 622, 1852.-Mirers, Ann. and Mag. Nat. Hist. (5), v, p. 113, 1880.
Pseudosquilla marmorata, Lockington, Proc. Cal. Acarl. Sci., p. 33, 1877.
A female individual is in the National Museum, collected by D. S. Jordan at Wilmington, ('al. (No 30s1, U.S.N.M.), and several smaller specimens were taken by the Albutross with the Tanner combination towing net at the surface at Surface station $29 \mathrm{in} \mathrm{S}. \mathrm{Lat}. 000^{\circ} 46^{\prime} 00^{\prime \prime}$, and W. Long. $89^{\circ} 42^{\prime} 00^{\prime \prime}$ (No. 18481 , U.S.N.M.).

Length of largest specimen, 13 cm .
PSEUDOSQUILLA STYLIFERA (Mi]ne-Edwar is).
Figure 3 (p. 505).
Gonodactylus styliferus, Mirne-Edwards, Hist. Nat. Crust., II, p. 530, 1837.—GAy, Hist. Chile, p. 225, 1849.
Pseulosquilla stylifera, Miers, Ann. and Mag. Nat. Hist. (5), v, p. 112, 1880.
A specimen undoubtedy belonging to this species is in the possession of the Johns Itopkins Univelsity, having been sent by F. W. Simonds. It was caught by a fisherman in a gill net off Dead Man's Island, San Pedro, Cal. This specimen corresponds exactly to Miers's description, except that the telson can hardly be said to have " 8 large marginal teeth." It has the nsual six marginal spines, the submedian pair having small movable 1 ips , and a broad rounded denticle between the submedian and intermediate spine on each side. (See fig. 3, p. 505.) An additional minute movable spine should appear on the raptorial manus of this figure, and also a minute denticle on the outer edge of the basal prolongation of the uropod.

The color of the living animal, according to Mr. Simonds's memorandum, was violet.

The length of the body is 14.5 cm .

Genus LYSIOSQUILLA, Dana.

Coronis, Latreilie, Enesel. Móth. Ilist. Nat., X., p. 47.4, 182a; Crust. in Cuvier's Régne Anim., ǐ., 1. 109, 1829.-Milne-EdWaßds, Hist. Nat. Crust., If, p. 530, 1837.-GeisstaEcken, Arthropoda, in Jrom's Klass. und Ord. des Thierreichs, v, ji, p. 743, 1889.
Squilla (§), Milne-Edwards, Hist. Nat. Crust., II, p. 518, 1837.
Squilla (sect. i, Maculate), de HaAn, Fama. Japon. Crust., p. 220, 1849.
Iysiosquilla, Dana, Crust. U. S. Expl. Exped., XIII, p. 615, 1852.—Mers, Ann. and Mas. Nat. Iist. (5), v, p. 5, 1881.—Brooks, Voyage of the Challenger, xvi, ii, p. $44,1886$.

Diugnosis.-Stomatopoda having the sixth abdominal segments separated from the telson by a movable joint; the hind body depressed, loosely articulated, and wide; the dactylus of the raptorial claw without a basal enlargement, but with not less than five marginal teeth; no more than four denticles, and often only one, betreen the intermediate and submedian marginal spines of the telson, which is usually wider than long; and the outer spines of the basal prolongation of the uropod usually longer than the inner one.

Remarlis.-Although the name Coronis antedates Lysiosquilla, the latter is the proper name for this genus, because the former was used first by IIiibner in 1816 for a gemus of Lepidoptero. The species of Lysiosquilla may be separated into two subgroups; one, corresponding to Latreille's genus Coronis, includes those in division A and $B r$ of the following key. They all have small eyes and broad appendages to the walking legs. The three species in B a, however, have characters which place them in an intermediate position between A and B b, the latter division correspoudiug to Dana's gemus Lysiosquilla proper, which is characterized by the possession of large triangular eyes and linear appendages to the walking legs. Brooks has pointed out the relationship between Coronis and the lower forms of Squilla.

ANALYTICAL KEY TO THE SPECIES OF LYGIOSQUILLA.
A. Telson with a transverse row of dorsal spines in addition to the marginal ones, eyes as a rule cylindrical.
a. Dactylus of the raptorial limb with 6 or 7 teeth.

* Five dorsal spines on the telson.

Telson with about 12 minute submedian denticles; rostrum quadrate with lateral angles right angles; dactylus with 6 teeth.
acanthocarpus (Gray) Miers.
The same, but dactylus with 7 teeth.
acantiocarpus var. septemspinosa, Miers.
Telson with 12 minuto submedian denticles; lateral angles of rostrum rounded; dactylus with 6 teeth; transverse markings without eyespots... . . Saracinorum, F. Miiller.
Telson with 6 to 8 submedian denticles; not minute, transverse markiugs, with eye-spots on carapace and telson; dactylus with 6 teeth.
biminiensis, Bigelnt.

* Seven dorsal spines on the telson.

Dactylus with 6 teeth. brazieri, Miers.
Dactylus with 7 teeth
atifrons, de Haan.
b. Dactylus with 10 or 12 teetl.

Telson with 3 dorsal spines................................... . spinosi, Wood-Mason.
Telsou with 8 scarcely discernible dorsal spines EUSEBLA, Risso.
[NOTE.-Squilla indefensa, Kirk (1879), and Squilla tridentata, Thomson (1882),
are probably Lysiosquillae belonging iu this section (Cf. Miers, 1880, p. 125),
while N'quilla lexis, Hutton (1879), appears to belong in this section or the next.]
B. Telson without dorsal spines.
a. Eyes small.

* Dactylus with 10 teeth. Eyes small, with coruea oblique and somewhat flattened; telson with 6 marginal spines, the submedian mobile, and on each side 7 to 9 minute submedian denticles, 4 intermediate and 1 lateral
. Armata, Smith.

Dactylus with 12 teeth. Eyes nearly globular; telson nearly square, without (?) teeth or spines SCOLOPENDRA, Latreille.

* * * Dactylus with 1.5 to 16 teeth. Lyes cylindrical; telson nearly square, with a pair of mobile submedian spines and 10 submedian denticles. excavatizix, Brooks.
b. Eyes large and subtriangular.

Dactylus with 5 to 7 teeth. T'elson smooth, with a slight median elevation and 6 marginal spines, only the lateral pair acnte.

Glabriuscula (Lamarek) Meyers.

* * Dactylus with 9 to 10 strong teeth.

Hind body smooth and telson like the preceding.
maculata Fabricius.
Hind body with longitudinal wrinkles; sixth abdominal somite grotesquely sculptured; telson smooth.................................. Telson roughened with fine gramulations on each side of the flattened shield-like crest; 6 strong and acute marginal spines; submedian denticles fused
scabricauda, Lamarck.

* * * Dactylus with 11 teeth. Telson like the preceding, but more spinous. DesaUssurer, Stimpson.
**** Dactylus with 20 teeth. Telson nearly as in maculata, eyes (\%).
polydactyla, von Martens.

LYSIOSQUILLA BLMINIENSIS, Bigelow.

Lysiosquilla biminiensis, Bigelow, Johns Hopkins Univ. Circ., 106, p. 102, 1893.
Diagnosis.-A Lyssiosquillu having eylindrical eyes; 6 teeth on the dactylus of the raptorial claw, the terminal one the strongest; broadly ovate appendages on the first 2 pairs of pleopods and strap-shaped ones on the third pair; a nearly quadrate rostrum with a median spine; a smooth carapace without angles; the angles of the segments of the hind body rounded, except the posterior lateral angles of the sixth abdominal segment, which are prodnced into spines; a long spine curving batkward on the anterior edge of the articulation of the uroporl; a transverse row of 5 dorsal spines on the telson, and 6 marginal spines, the submedian pair being mobile; on each side 3 to 4 submedian denticles, not minute, 4 intermediate and 1 lateral one.

General description.-This species from the Bahamas may prove to be identical with the Australian L. acenthocarpus, lout Miers does not mention the very striking coloring of our species, and the raptorial claw and the telson seem to differ.

The body (fig. 4) is rather flat, generally smooth, and somewhat loosely put together. The carapace and the exposed thoracie region each occupy a little less than one-fifth the total length of the body. The width of the carapace is about seventy-five-ninetieths of its length on the median line, while this is equaled by the greatest width of the abdomen. The length of the telson is three-serenths its width and one-third the length of the carapace. The eyes are small and eylindrical and their bases ase covered by the rostrum. The latter is nearly sforare amb has a sharp median spine that reaches forward to the proximal edge of the corneal parts of the eyes. The carapace has
rounded anterior and posterior lateral lobes. The cervical suture is faintly marked on the outer side of each of the two longitudinal sutures.
The exposed thoracic and first five abdominal segments are devoid of carine or spines. The sixth abdominal has a short spine at each of its posterior lateral angles and a larger spine curved backward in front of the articulation of each uropod (fig. 5). The telson is perfectly smooth except for a transverse row of five spines on the dorsal side near the posterior margin (figs. 4 and 6). The mobile snbmentian

Fis. 3.
PSEUDOSQUILLA ETYLIFERA.
Drawn by W. F. Stmonds. About half natural size.

Fis. 4.
LYSIOSQUILLA BIMINJENSIS.
About twice natural size.
pair of marginal spines are placed a little toward the ventral side and are curved upward (figs. 5 and 6). They are not much longer than the adjoining denticles. Judging from Miers's figure, the marginal spines in our species as well as the submedian denticles are considerably larger than in L. acenthocarpus, and there appears to be no median sinus in the latter species, while there is a small one in the former. The basal segment of the uropod (fig. 5) bears two stont spines, of which the inner is much the longer. The endopodite is cleaver-shaped.

The distal segment of the exoporlite exceeds in length the proximal segment, which bears six movable spines. The antenne of the first pair are about equal to the carapace in length. The three basal seg-

Fis. ${ }^{5}$.
TELSON AND UROPODS OF LYSIOSQUILLA BMMNIENSIS.
Seen from below. Five times natural stze. m - Movable apine.
ments do not reach much beyond the eyes. The antemnary somite is armed with a pair of sharip lateral spines. The serond antennare are about as long as the first. The antemary seale is very small, about one thind as long as the carapace. The raptorial limbs are well developed, but are not very long (fig. 7).

Fig. 6.
SIDE VIEN OF TELSON OF LYSYOSQUILLA BIMINIENSIS. About 4 tid times natural size.
d.-Dorsal median spine.
a.-Dorsal median spine.
$m_{i}-$ Submedian moinle spine.
$m_{n}-$-Lutumedian ${ }^{1 /}$
Gralul.-Sixth ahiominal somite. 4. - Anus. The carpus has a simple ridge on its anterior side ending distally in a spine. The manns is stont and bears four movable spines. The dactylus is slender and graceful. The terminal spine is much larger than the other five but the one next to it is not very small, as it is in L. acanthocarpus. The appendages to the first two pairs of walking legs are almost circular in outline, while they are strap-shaped on the next pair.

Color.-The coloration of this species is peculiar and characteristic. The ground color is an opaque white and this is marked by transverse bands, one on the rostrum, two or three on the carapace, and one on each of the segments posterior to it (fig. 4). On one of my two specimens, a male, these bands were fawn-colored, on the other one, a female, they were pink, and in addition to this fawn color or pink, as the ease might be, the band was marked by a tine dark reddish brown stippling. In both specimens
the posterior lateral lobes of the carapare are bordered by a narrow band of deep black, separated from the rest of the carapace by a similar band of bright lemon yellow, forming conspicuous eye-spots. There are also two pairs of yellow and black stripes on the last thoracic and on the fifth abdominal segments bordering the posterior margin for some distance inward from the augle, and the telson has a pair of black eye-spots edged in front with yellow, one on each side of the median line, just in front of the dorsal spines. All except the black markings wash out in alcohol.

Size.-Length of body, 4.8 cm .
Locality.-Two specimens, a

Fig. 7.
LEFT RAPTORIAL CLAW OF FEMALE LYSIOSQUILLA blainiensis.
About 4兴 times natural size.
c. Carpus. m. Manus. (1. Dactylus. male and a female, were found by me in a burrow in the sand at Nixies' Harbor, Bimini Islands, Batamas (No. 17999, U.S.N.M.).

LYSIOSQUILLA ARMATA, Smith.

Lysiosquilla armata, Smitir, Proc. U. S. Nat. Mus., III, 1881, p. 413.
The collection contains a female and a mutilated male from the stomach of a flounder. They were dredged by the U. S. Fish Commis. sion steamer Fish Hawk, at stations 1247 and 1251 , southwest of (iay Head, Martha's Vineyard, at a depth of 27 and 17 fathoms, bottom sand (No. $12 \pi=5 \overline{4}$, U.S.N.M.). Although these specimens were identified by Prof. Smith himself, as shown by the label, they differ somewhat from his description. The eyes in both specimens are not large and are ouly a little more than half as broad as the rostrum. The posterior part of the body of the male is destroyed, but in the female the posterior margins of the fourth, fifth, and six abdominal segments and the lateral margins of the telson in front of the lateral spines are smooth, entirely devoid of the slender spines or spinules described by Smith. It may be that the possession of these spimules is a sexmal character of the male. The telson of the female has six well-developed marginal spines, the submedian pair being very slender and mobile. There are seven to nine very small submedian denticles on each side, four intermediate ones, two of them being very large, flattened, and rounded in outline, and two others alternating with them, being very small and acute, and there is one small lateral denticle on each side. The rostrum is tipped with a small spine.

Size.-Length of body, 5.8 cm . Width of rostrum, 3 mm . Length of corneal axis of eye, 2 mm .; peduncular axis, 2.5 mm .

LYSIOSQUILLA GLABRIUSCULA, Miers.

? Squilla glabriuscula, Lamarck, Hist. Anim. sans Vert., v., p. 188, 1818.Latreille, Eneyel. Méth. Hist. Nat., x, p. 470, 1825.-Milne-Edwards, Hist. Nat. Crust., II, p. 519, 1837.
Squilla rittata, Mhane-Emwards, Hist. Nat. Crust., II, p. 519, 1837.-WHine, List Crust. Brit. Mus., p. 83, 1847. -Gibbes, Proc. Amer. Assoc., p. 199, 1850.
Lysiosquilla glabriuscula, Miers, Ann. and Mag. Nat. Hist. (5), v, p. 7, 1880.
There are two specimens of this species in the National Museum, collected by Dr. Whitehurst at (darden Key, Tortugas, Fla. (No. 2052, U. S.N.M.). They are a male and a female; the latter is the larger and is 21.3 cm . long. The dactyli of the raptorial claws of the male have six very long teeth. The female, on the contrary, has but three very short lateral teeth in addition to the long terminal one.

LYSIOSQUILLA MACULATA (F a bricius).

Squilla arenaria, Rumph, Amboin. Rarit., p. 6, 1705.
Squilla maculata, F゙Abricius, Ent. Syst., II, p. 511, 1793.
Cancer (Mantis) arenarius, Herbst, Nat. Krabben u. Krebse, If, p. 96, 1796.
Lysiosquilla maculata, Mrers, Proc. Zool. Soc., p. 138, 1877; Ann. and Mag. Nat.
Hist. (5), v, p.5, 1880.—Brooks, Voy. of the Challenger, Xvi, ii, p. 45, 1886.
This species is represented by three specimensin the National Museum, a male collected by Dr. William II. Jones, U. S. Navy, of the U. S. S. Wachusett, at Tawhae, Marquesas, in 1884 (No. 6593, U.S.N.M.), and a female collected by A. B. Steinberger at Samoa (No. 5148, U.S.N. M.). The latter is 30 cm . in length and exhibits the same peculiarity of the raptorial claws that Miers describes. The dactylus has a stont terminal tooth and seven or eight very small lateral teeth. The third specimen (No. 3392, U.S.N.M.), also collected by Steinberger, is the raptorial claw of a male from Samoa and exhibits ten well-developed teeth (including the terminal one) on the dactylus. This is evidently a true case of sexual dimorphism.

LYSIOSQUILLA SCABRICAUDA (Lamarck).

Squilla scabricauda, Lamarck, Hist. Anim. sans Vert., V., p. 188, 1818.-Latreille, Encyel. Méth. Hist. Nat., x, p. 470, 1825.
Squilla hoeveni, Herklots, Addit. Faum. carcin. Afric. occident., p. 17, 1851.
Lysiosquilla inornata, Dana, U. S. Expl. Exped., xili, Crust., i, p. 616, 1852.
Lysiosquilla scabricauda, Mers, Ann. and Mag. Nat. Hist. (5), v, p. 7, 1880.
There are two specimens, a female and a young male, in the Musemm, collected by Henry Hemphill at Johus Pass, Fla. (No. 6471, U.S.N. M.), one male specimen collected by D. S. Jordan at Key West, Fla. (No. 14112, U.S.N.M.), a female from Galveston, Tex. (M. Wallace, No. 2268 , U.S.N.M.), and another from Pensacola, Fla. (Silas Stearns, No. 5150, U.S.N.M. , and a male collected by James D. Dana at Rio de Janeiro (No. 211.5, U.S.N.M.). The dactyli of the raptorial claws seem to be a little smaller in the females than in the males, but there is nothing like the difference seen in I. glabriuscula and L. maculata.

Genus SQUILLA, Fabricius.
Squilla, Fabricile (part), Ent. Syst., if, p. 511, 1798.-Latreille (part), Hist. Nat. Crust., vi, p. 271, 1803; Encycl. Méth. Hist. Nat., x, p. 467, 1825.Lamarck (part), Hist. Anim. sans Vert., v, p. 186, 1818. - Mllne-Edwards (part), Hist. Nat. Crust., II, p. 517, 1837. - de Haan (part), Fauna Japon. Crust., p. 220, 1849.—Dana, Crust., U. S. Expl. Exped., xiri, i, p.615, 1852,Miers, Ann. and Mag. Nat. Hist. (5), v, p. 16, 1880.-Brooks, Voyage of the Challenger, xvi, ii, p. 23, 1886.-Gerstaecker, Bronn's Klass. u. Ord. des Thier., v, ii, p. 742, 1889.
Chlorida, Expoux and Souleyet, Voy. de la Bonite, Zool., I, Crust., p. 26t, 1841. Chloridella, Mers, Ann. and Mag. Nat. Hist. (5), v. p. 13, 1880.-Gerstalecker, Bronu's Klass. und Ord. des Thier., v, ii, p. 743, 1889.
Diagnosis.-Stomatopoda having the telson attachen to the sixth abdominal segment by a movable joint; the hind body depressed and wide; the dactylus of the raptorial claw with usually not more than six teeth; as a rule, more than four intermediate denticles on the telson, which is usually longer than wide; and the inner basal spine of the uropod the longer of the two.

Remarks.-This is by far the largest and most diversified of the genera of Stomatopoda. I have followed Brooks in including within it the old genus Chloridella (Eydoux and Souleyet) Miers, the chief characteristic of which is the shape of the eyes. The species that Miers referred to are contained in division $\mathrm{B} a$ of the following key, but no sharp line can be drawn between these and those species having the small eyes (e. g., S. dubia), which have been placed in different divisions of the genus, where many other characters indicate that they belong.

ANALYTICAL KEY TO THE SPECIES OF SQUILLA.
A. Submedian spines of the telson with movable tips.
a. Submedian carima absent or obsolete on the first five somites of the abdomen.

* Dactylus of the raptorial limb with 4 teeth, including the terminal one.

Lateral process of the fifth thoracic somite very short and acute; no keel on the telson. \qquad - QuAdilidens, Bigelow. Lateral process of the fifth thoracic somite broad, curved slightly forward, and blunt; telson with a keel \qquad polita, Bigelow.
** Dactylus with 5 teeth. Lateral process of the fifth thoracic somite flattened antero-posteriorly, short, straight, and blunt.
desmarestif, Risso.
*** Dactylus with 10 teeth. Telson nearly smooth, with denticles $13,18,1$.
Gracilipes, Miers.
b. Submedian carine present on all abdominal somites, except the telson.

Dactylus with 4 teeth; 5 longitudinal crests on the telson........ines, Hess.
Dactylus with 7 to 9 teeth; telson with crest and keel, and curved lines of pits; denticles $0,10-11,1 \ldots \ldots$.....Armata, Milne-Edwards.
B. Submedian spines of the telson with immovable tips.
a. Hind body without submedian carince except the sixth abdominal somite; eyes small.
a^{1}. Raptorial dactylus with 4 teeth.
*Anterior lateral angles of the carapace rounded. rotundicauda, Miers.
**Anterior lateral angles of the carapace produced into spines.
Rostrum semioval
. micropithalia, Milne-Edwards.
Rostrum emarginate .
. Latreillei, Eydoux and Souleyet.

a^{11}. Dactylus with 5 teeth.

Rostrum wider than long.
chlorida, Brooks. [=? decobata, Wood-Mason.]

Telson with erest and obsolete curved lines of pits; denticles $0,6-7,1$.
lata, Brooks.
Telson with 4 or 5 carine on each side of the crest; denticles $4,8,1$.
rasciata, de Haan.
b. 8 distinct carine on the first 5 abdominal somites, the dorsal surface of the telson on each side of the crest either smooth or marked by symmetrically curved lines of pits.
b^{\prime}. Lateral process of the fifth thoracic somite on each side a single spine, a pair of ventral spines also present.

1. Eyes small.

Eye stalk dilated; lateral spine of the fifth thoracie somite prominent, flattened dorso-ventrally, and acnte; denticles on telson 1-3, 3-4, 1dubia, Milne-Edwards.
Eyes triangular, stalk not dilated; lateral spine of the fifth thoracic somite short, flattened antero-posteriorly, and blunt; denticles on the telson 3-4, 8, $1 \ldots \ldots$................abva, Bigelow.
2. Eyes large and triangular.

* Dactylns with 4 teeth. Denticles on the telson 12, 12, 1.
leptosquilla, Brooks.
* * Dactylus with 5 teeth.

Lateral spine of the fifth thoracie somite straight and acute. dufresnil (Leach), Miers=prasinulineata (Dana), Ives.
Lateral spine of the fifth thoracic somite longer and slightly curved....................... prasinolineata (Dana §), Miers.
Lateral spine of the fifth thoracic somite strongly falcate and acute
scorpio, Latreille.

* * * Dactylus with 6 teeth.

Corneal and peduncular axes of the eye at right angles; lateral spine of the fifth thoracic somite short, straight, and acute; denticles on the telson 5-6, 11-12, 1.... mantoidea, Bigelow.
Corneal and peduncular axes of the eye nearly at right angles; lateral spine of the fifth thoracie somite curved forward and acute; marginal spines of the telson enormonsly developed in the males; denticles 3-4,5-7, 1....... acureata, Bigelow.
Corneal and peduncular axes of the eye distinctly oblique to one another ; lateral spine of the fifth thoracic somite curved forward and acute; no thickening of the telson in males; denticles 4, 6-8, 1 . empusa, Say.
Lateral spine of the fifth thoracic somite straight and acnte, margin of telson slightly thickened in males; denticles 3 or 4, 8-11, $1 \ldots$. mantis, Latreille.
Lateral spine of the fifth thoracic somite spatuliform, othervise like S. mantisneglecta, Gibbes.
Lateral spine of the fifth thoracic somite curved forward and acute; margin of the telson much thickened in males, the thickening being interrupted on the outer side of each of the 6 marginal spines; denticles 5, 10-11, 1-2.
panamensis, Bigelow.
Lateral spine of the fifth thoracic somite very strongly curved forward; marginal thickening on the telsou of the males continuous between the intermertiate spines; denticles $4-6$, 10-13, 1 .
intermedia, Bigelow.

Males with a continuous thickening all around the outer margin of the telson; keel produced into a sharp spine; denticles 5 to $7,1 \check{-19,1 \ldots . ~ B i f o n M i s, ~ B i g e l o w . ~}$

* * * * Dactylus with 8 teeth. Manus of raptorial limb with numerous immobile marginal spines Raphidea, Fabricius.
$b^{\prime \prime}$. Lateral processes of the fifth thoracic somite bilobed; no ventral spines on this somite.

1. Eyes small. Median carina of the carapace deeply bifurcated.
nepa, Latreillo.
2. Eyes large.

* Dactylus with 5 tecth. Lateral processes of the sixth and seventh thoracic somites bilobed...........QUnquedentata, Brooks.
* * Dactylus with 6 teeth.

Lateral processes of the sixth and seventh thoracic somites bilobed.
 Lateral processes of the sixth and seventh thoracie somites not bilobed, posterior lateral angles of the carapace smmply roumded.............-. .-............................... ALBA, Bigelow.
Lateral processes of the sixth and seventh thoracic somites not bilobate, posterior lateral augles of the carapabe project as rather prominent loves LiEvis (Hess) de Man.
c. Eight or more carine on the first 5 abdominal somites, the dorsal surface of the telson marked by carince in addition to the median crest and the carinio at the bases of the marginal spines and renticles.
c^{\prime}. Eight abdominal carine.
Dactylus with 3 teeth. Telson with 1 carina on each side of the crest.. . Ferussacir, Roux.

* * Dactylus with 6 teeth. Telscn with 10 carine on each side of the

$c^{\prime \prime}$. More than 8 abdominal carinæ.
* Dactylus with 5 teeth.

Nine carinie on the hind body supplex, Wood-Mason. Very many carine on the hind body; lateral processes of the exposed thoracic somites bilobate..............meticarinata, White.

* Dactylus with 6 teeth. Hind body with 5 median and 6 lateral carine; lateral processes of the exposed thoracic somites bilobed costata, de Haan.

SQUILLA QUADRIDENS, Bigelow.
Squilla quadridens, Bigelow, Johns Hopkins Univ. Circ. 106, p. 100, 1893.
Diagnosis.-A Squilla with small triangular eyes having the corneal axis slightly shorter than the peduncular and somewhat oblique; dactylus of raptorial claw short, with four teeth; rostrum nearly that and ovate; rarapace without carine except at the posterior lateral angles, which are rounded, anterior lateral angles nearly right angles and subacute; exposed thoracic segments without sudmedian carine, lateral process of the first very short and acute, of the second and of the third broadly rounded; withont submedian carinte on abdominal somites except the sixth; telson having a low crest ending in a spine and shallow symmetrically curved furnows on each side, no veutral keel, six marginal spines, the submedian with mobile tips, and between them on each side four to five submedian teeth, six to eight intermediate, and
one lateral; uropod having four to five movable spines on its outer edge; its basal prolongation with six long teeth on its inner edge and a large rounded lobe on the outer ellge of the imner spine.

General description.-Uufortunately this species has to be described from a single small specimen. The general form of the body is flat tened and rather compact. The greatest width of the abdomen equals the length of the carapace and one-fourth of the total length of the animal, measured firm the anterior extremity of the ophthalmic segment to the base of the median marginal simus of the telson. The greatest width of the carapace equals nine-elevenths of itsl ength. The anterolateral angles of the carapace are slightly less than right angles and are withont spines, while the posterior corners form rather prominent rounded lobes. The only carine on the carapace are an incompletely circular marginal carina at each posterior lateral lobe and within this a short longitudinal carina representing the posterior portion of the lateral carina of some of the other Sçuillie. The exposed thoracic segments have well-marked intermediate carina. The lateral spines on the first segment are compressed antero-posteriorly and are distinct from the ventral ones, which are acuminate and bent slightly forward.
The sixth abdominal segment is the only one that bears a pair of submedian carine; all the others have well-marked intermediate, lateral, and marginal carine. All six carine of the fifth and sixth segments end in spines. There are no spines on the sisth segment in front of the articulations of the uropod.
The width of the telson at its base nearly equals the length of the sixth abdominal segment and the telson taken together. The telson has six prominent marginal spines without a trace of an additional anterior lateral pair. The submedian spines in this specimen do not have movable tips, but microscopical examination shows articulations which indicate that they did possess movable tips, which have been broken off. The marginal teeth are long and sharp. The upper surface of the telson is ornamented by a longitudinal erest ending posteriorly in a spine and about five shallow furrows running from the crest outward and backward to the posterior margin. There are also some irregular furowings near the lateral margin. There are faintly marked carine at the bases of the marginal spines, the lateral pair being continued forward along the margin to the base of the telson. The rentral surface is very faintly marked by furrows corresponding to the dorsal ones. The uropod has the two joints of the exopodite of equal length; on the external edge of the first jomt there are five movable spines. The remarkable teeth on the inuer edge of the prolongation of the basal joint are long and slender.

The eyes of this animal are rather small. The corneal region is elongated and slightly bilobed. The corneal axis nearly equals fourteen fifteenths the peduncular one, and is set somewhat obliquely to it. The peduncle is not dilated and is much narrower at its base than the
corneal region, so that the ere as a whole has a triangular ontline. The ophthalmic segment bears a truncated process at the has of earh eye.

The antenne of the first pair are long, equaling about half the length of the body. The marginal spines of the first body segment are acuminate. The second antemne are about two-lifths as long as the first. The antennary scales of this sperimen have been lost. The raptorial claw when folded does not reach to the posterior marsin of the carapare. The carpus has no spines. The dactylus is short and its outer margin has a simple curve broken only near the articulation by a small tubercle. It bears foum slender teeth, of which the proximal one is much smaller than the others. The appendages of the walking legs are linear.

Color.-The alcoholic specimen is marked by a few dark pigment cells arranged symmetrically ou the carapace and hind body.

Size.-Total length, 22 mm .
Loculity.-The type specimen was taken by the Albutross in 1886, with a trawl at a depth of 20 fathoms, in N. Lat. $2\left(f^{\circ} ⿹^{\prime} 0^{\prime \prime \prime}\right.$ and W. Long. S $0^{\circ} 15^{\prime} 0^{\prime \prime}$, off Key Largo, Fla.; bottom, coral sand. (No. 11547, U.S.N.M.)

Rematris.-It is with considerable hesitation that I found a new species upon this single specimen, which very closely resembles the next species, S. polita. I should have placed it in that species it I had not been able to compare it directly with a specimen of the same size.

Such a comparison showerl that in this species the eyes are smaller and the thoracic segments much wider, and there is an entire absence of the keel on the telson which the other possesses.

SQUILLA POLITA, Bigelow.

Squilla polita, Bigelow, Johns Mopkins Univ. Circ., 88, 1891.
Diagnosis.-Eyes of medimm size, triangular; dactylus of raptorial claw with four teeth; rostrum ovate without canina; carapace without carine, except on posterior lateral lobes, which are rombled, cervical suture obsolete on the median line, anterior lateral angles acute; lateral spine of the fifth thoracie segment broad, blunt, and curved forward, lateral margins of the next two segments romded; hind body without submedian carinte except the sixth abdominal segment; telson with a dolsal crest and ventral keel and a few curved lines of pits on eath side; six large marginal spines, the submedian pair having movable tips, and on each side of the median sinus two to three submedian denticles, nine to twelve intermediate, and one lateral one.

General description.-This species is closely related to Squilla desmarestii, Risso, and has many points of resemblabee to N. armuta. The body is well arched, but somewhat less compact. The carapace is longer than the exposed thoracic segments, and a little less than half as long as the first six ablomiual segments and about twice as long as

$$
\text { Proc. N. M. } 9 \pm-33
$$

the telson. The whole dorsal surface of the animal has a highly polisherl appearame that suggesterl the mame which I have given to the speries. The rostrum is ovate, without carinet, and it covers the first antemary sewment. The carapate has a polished suface and is devoid of carinar, exerpt on the posterior lateral lobes, where the intermediate and lateral carina are present. The posterior median tuberele is obsolete. The corvical suture is ohliterate: for some distance ois each side of the median line. The anterior lateral angles are short, acute spines. The positerior lateral lobes are evenly rounded. The distance between the anterion lateral angles equals twiee the lemoth and exceeds half the posterion width. The campace differs fiom that of s. "rmotre chiefly in the disalpearanme of the cervical suture on the median line and in the small depressed anterior lateral spines.

The exposed thoracis sesments hare no submedian carine, but the intermediate carine are mominent. The ventral spine of the fifth segment is elongated, emverl forward, and acute。 The lateral process is broadly flattened donso-ventrally, slightly curved forward, and blunt. The margins of the next two segments are broadly rounded and without spines. Submedian carine are entirely absent in the abdomen, except on the sixth somite. Intermediate lateral and marginal carine are well marked and end in :ipines, except in the first two abdominal somites, where there are $n o$ spines.

The telson (fig. S) is relatively smaller than in S. Itesmarestii, and is much wider. than long. There are 6 long and sharp marginal spines, each having at the base a slightly raised carina; the spines of two outer pairs

Fig. 8.
TELSON OF SQUILLAA FOLITA.
Three tlmes natural size. curve somewhat toward the median line. The submedian spines are jointed, and the movable distal part is longer than in S. desmarestii. The denticles are long and acute and extend along the outer edge of each submedian spine nearly to the joint. There are no anterior lateral carine.

The crest has a sharp edge and rises rather abruptly from the general surface. It is intermpted by a depression near its anterior end, and its posterior end is extended into a long acnte spine. The dorsal surface of the telson is polished, as in s.desmurestio, but in this species thereare distinct symmetrically curved depressed lines and some shallow cireular pits, showing in a rudimentary condition the same scolpturing found in S. muntis and its allies. The ventral surface is smonth except for obsoleto curved depressed lines and a long prominent keel.

The eyes are of moderate size. The comeal portion, which is slightly constricted in the middle, is aboni equal, not longer, than the interior margin of the eve, and its longasis is at an angle of about 45° to the
long axis of the eye stalk. The anteri in pocess of the segment is acute. The lateral processes are broad, flat, and truncated.

The first antemat ernal i.: length the distance from the cud of the rostrum to the posterior end of the thorax.

The serond antema mach to alont the lase of the flagella of the first pair. The exopodite is small.

The distal joints of the raptorial limb are short. The dactylus has four curved teeth and has a well-marked tuherele on the outer edge close to the articalation. The mams bears three movable spines, the middle one being much the smaliest. The carpus has one blunt spine on the anterior side.

The prolmgation of the hasal joint of the uropod is not deeply serrated on the imer edge, but simply modulating. The inner process of the prolongation is not twice as long as the outer one and bears on its outer side at about the middle of its length a very conspicuous rounded tooth. There are five movable spines on the exopodite.
No secondary sexual differences appear.
Color:-An aleoholic specimen is marked in a way very similar to S. mantis except on the telson. There is a dark V-shapeed spot at the end of the crest of the telson, and lines of pigment cells follow the line of pits.

Size. The largest specimen is 6.3 cm. in length and the smallest 2.2 cm.

Locality.-All the specimens in the collection were taken by the Allatross; two males and one female from santa Rosa Island, ('alifornia (No. 18494, U.S.N.M.), one small male from ofi Abreojos Point, Lower Cailfornia (No. 18475, U.S.N.M.).

SQUILLA DESMARESTII, Risso.
Squilla desmarestii, Risso, Crust. de Nice, p. 114, 1816.-Mirers, Ann. and Mag. Nat. Hist. (5) v', p. 28, 1880.
There are two males in the collection firm the Chanel Islands contributed by Edward Lovett, Esq., of London, England (No. 65£2, U.S. N.M.). Miers fails to mention the eyes in his description. They are triangular, but swall as compared with a specimen of S. punamensis, for example, of the same size.

SQUHLA ARMATA, Milne-Edwards.
Squilla armata, ?Mmene-Edwarns, Hist. Nat. Crust., II, p. 521, 1837.-? Gay, Hist. de Clile, Zool. Nir, Crust., p. 223, 1849.-Miers, Ann. and Mag. Nat. Hist. (5) v, p. 26, 1880.-Bigelow, Jolhns Hopkins Univ. Cire., 88, 1891.
Diagnosis.-Eyes large, triangular; dactylus of the raptorial limb with seven to nine teeth; rostrum narrowed in front with a slight median elevation; carapace with median carina obsolete or entirely absent, intermediate and lateral carine present only on the posterior lateral lobes, anterior lateral angles producel into acute spines; lateral
spines of the fifth thoracie segment narom, straight, and acute, the lateral processes of the next two segments broadly rounded and produced intos spines that point hackward; eight earine on the abdominal segments: telson with a crest and a keel and a series of eurved lines of pits on each side, six marginal spines, the submedian pair with movable tips, no submerlian denticles, ten to eleven small intermediate ones, and one lateral one.

General deseription.-The carapace is twice as wide behind as it is in front. The exposed part of thorax is as long as the carapace; and the abdomen, laving out the telson, is twice as long. The abdemen is about the same width for its whole length. The telson is about as long as wide.
The rostrum is triangular, a little wider than long. The apex is blunt and rounded. In one specimen the apical margin is indented so

Fig. 9.

TELSON AND UROPODS OF SQUILLA ARMATA.
Twice natural size.
b.-Basn 1 prolongation of uropnd.
im., l.- Intermediate and lateral marginal apines,
sc., $i c_{1,} l c_{\text {. }} \mathrm{cm}$.-Submedian, intermedıate, lateral, and marginal carinae,
as to hare four short teeth. The median and marginal carina are obsolete or entirely absent, and the dorsal surface is smooth except for a slight roughness in old specimens.
The carapace has generally a smonth, polished appearance. There is a well-marked transverse suture, but it makes only a slight depression across the median line. The posterior lateral lobes are evenly rounded, not angled.

The exposed thoracic segments possess submedian and intermediate rarinar. The fifth segment has a pair of short and acute ventral spines and a pair of much longer lateral processes that are straight, evenly tapering, and sharply acute.

On the lateral margins of the next two segments there is no trace of an anterior lobe. The marginal process is evenly rombled to the
posterion lateral edge where it is suddenly produced into a sharp spine directed backward and outward.

The segments of the abromen, except the sixth, and the telson are all provided with submedian, intermediate, lateral, and margiual carine; the latter are absent in the sixth segment. All the carine ent posteriorly in sharp spines except the submedian ones in the first five regments. In the posterior margin of the fifth segment on each side, half way between the submedian and intermediate carinit, there are from one to four spines grouped together.

The telson ((ig. 9) has little or no indication of an anterior lateral carina or spine. The submerlian spines are jointed so that they have each a short and acute movable tip. The ventral surface has a keel which is rleepest just posterior to the anus. The rest of the surface is smooth except for an obsolete series of curved lines corresponding with those of the dorsal surface. Between the subnedian spines the margin is divided by a deep median sinus into two rounded lobes very much as in N. lutu, and there are no teeth present except sometimes very minute dentations on the posterior edge. Between a submedian aud intermediate spine there are ten or eleven conical teeth and between each intermediate and lateral spine there is one. These are very small elevations at the base of each tooth and spine.

The eyes are triangular, the corneal portion equals in length the distance along the imer ed ge of the eye from the.anterior end of the corneal part to the anterior edge of the hard part of the stalk. The median process of the ocular segment is subacute. The lateral processes are rounded laterally, but the anterior margin of each gives rise to a stout, straight, rounded spine which points forward and slightly outward opposite the inner edge of the eye. The first antenne are nearly as long as the carapace and exposed thoracic segments taken together. The autemuary

Fig. 10.

RAPTOTRAL CLAW OF SQUILLA ARMATA.
Nearly three times natural size. segment bears a pair of stout lateral processes curved forward and sharply acute.

The flagellum of the second anteuna does not reach quite to the base of the flagellum of the first autenna.

The raptorial claw (tig. 10) is stout. The dactylus is armed with seven to nine teeth, rarely six. There are three movable spines and a row of pectinations on the manus as usual. The anterior edge of the carpus has one tooth-like projection.

The uroporls (fig. !) are very much as in S. promemensis. In generad the spines are more conspicumes, exerpt the outer one of the prolongation of the basal joint, which is not half so long as the inner one. The small tooth (large in small specimens) is beyond the middle of the spine. The two joints of the exopodite are equal in lasth and the first one bears on its onter edge seven movable spines. The endopodite is narrowly spatulate, relatively a litte broader than in s. punamensis.

Thereare no serondary sexual difterences and no peculiarities of coloring in my specimens.

This species conforms to Miers's deseription of A." "rmutn in every essential point that he covers.

Nise-The largest specimen in the collection is 12.2 rm. in length. Most of the specimens, however, are smaller, abont 6 (om long.

Locrality.-This collection of specimens consists of a gond number of both sexes from four stations off the coast of I'atagonia, viz., station 2769, off the (iulf of St. George (No. 1Stio, U.S.N.M.); station 26st, off Port Otway (No. 1847:, U.S.N.M.) ; station $278: 3$, off the west coast of Patagonia (No. 18505, T.S.N.M.) ; and Island Harbor (No. 18471, U.S.N.M.), the depth being from 51 to 122 fathoms.

SQUILLA DUBLA (Milne-Edwards?) Miers.

Squilla mantis, Desmarest, Consid. Crust., p. 250, 1825.
Squilla dubia,? Milne-Edwards, Hist. Nat. Crust. if, P. 522, 1837.—? Gibbes, Proc. Amer. Assoc., vi, p. 200, 1850.-Miens, Aun, and Mag. Nat. Hist., (5) v, p. 24, 1880.
\& Squilla rubrolineata, DAns, Crmst., U. S. Expl. Exped., xin, i, p. 618, 1852.von Martens, Arch. f. Naturgesch., 37, p. 144, 1872.
The National Museum possesses three specinens of this species, a male
 a young male collected by (1. C. Leslie, Charleston, S. C. (No. 3139, U.S.N.M.), and a female found by Dr. W. H. Jones, U. S. Navy, in a salt lake near Guayaquil, Ecuador (No. 14113, U.S.N.M.).

The specimen from Savanah corresponds exactly to Miers's description. The lateral spine of the first exposed thoracie segment is straight - in fiont but rombded behind. In the Charleston specinen it is curved forward a little as in S. empusa.

The specimen from Guayaquil is practically illentical in form with the one from Savamah, except that there are one or two more denticles on each side of the telson. A character common to these specimens, and not mentioned by Miers, is the shape of the eyes. They are very small. The eyostalk is dilated in the middle and the corneal axistof the eye, while oblique, is shorter than the pedmeular one.

> SQULLLA PARVA, Bigelow.

Squilla parva, Bigelow, Johns Hopkins Liniv. Circ., 88, 1891.
Dictmosis.-Squillae with narrowly triangular eyes, the corneal part being shorter than the total length; dactylus of the raptorial claw having six teeth; triangular rostrum rounded anteriorly and provided
with median and marginal carinar fire carinae on the calapa"e, its anterior lateral angles pormod int: spines and posterion corners evenly rounded; lateral process of the fifth thoradic sesment very short, flattened antero-posteriorly and obtuse, of the sixth and serenth withont spines and rounded; submedian carine on all seoments of the hind borly behind the fisst exposed thomado; the telson ornamented dorsally by a crest and corved lines of pits, and having six marginal spines and a pair of anterior lateral carinat, and on each side three to four submedian teeth, eight intermerliate, and one lateral.

General description.- Ill the specemens of thes speries seen so far are small. The caramace is mather short, being $0.2 \begin{aligned} & \text { a } \\ & \text { of the total length and }\end{aligned}$ seventeen-eighteenths of the greatest width of the abolomen. The greatest width of the carapace is about 0.iT of its length. The telson on the other hand is relatively large and is broader than long, its length being about 0.16 the total length and 0.92 of its width at the base.

The carinie on the rostrum (tig. 11) are small, but (an be mate out distinctly with a lens. In the anterion fontl! of the camapace the median carina is obsolete or completely lost, but the lateral carine pass directly into the anterior lateral spines. Each of the four exposed thoracic segments (fig. 12) has four dorsal longitudinal carinæ except the first, which has no snbmedian ones. The lateral process of the fifth segment is drawn out into a very shore obtuse spine that is fattened ante-ro-posteriorly and is counected by a ridge with the short acute ventral spine of the same side. The sixth and seventh segments have on each side a broad, evenly

Fig. 11. CEPHALIC REGION OF SQUIRLA PARVA. Three times natural one. rounded, lateral lobe pointing obliquely a little backwimrl. In front of this on the sixth segment there is a slight projection common to most species of sifuilla, but on the seventh this projection is somewhat larger and flattened and approaches the condition found in s. nepu. The eighth segment possesses a similar lobe. The canime of the abomen, like those of the thorax, are well developed. None of these end in spines on the first, second, and third abdominal segments, while all hut the submedian ones do so on the fomth, amt all of them on the fifth and sixth. Besides the six dorsal spines on the sixth segment there is a stont marginal spine in front of each uropod. The telson has a low, sharp crest, ending in a prominent spine and six small carine at the bases of the six marginal spines, together with a pair of anterior lateral carinit in front of the
carime of the lateral spines. The rest of the dorsal surface is marked hy about ten curved rows of fine shallow pits on each side of the crest. The rentral surface is smooth, except for similar but somewhat fainter lines. The six marginal spines are prominent and arote and are immobile. The median simus is rery derp. The submedian teeth are obtuse, while the intermediate ones are acute.

Returning to the anterior part of the body (fig. 11), the eyes immediately strike one as ont of keeping with the other characters, for while the corneal part of the eye is flattened and set obliquely to the peduncle, it is relatively small,

Fig. 13.

EXPOEED THORACIC SEC:MENTS OF SQUILLA PARVA.

Four times natural size the corneal axis being only about four-fifths as long as the peduucular one. The ophthalmic segment is emarginate in front. The first anteunie are about half as long as the body, while the second pair are not quite half as long as the first. The antennary scale is about half as long as the carapace. The carpus of the raptorial claw has on its anterior edge a longitudinal crest, the distal extremity of which is an acute angle, and beyond this there is a small blunt tubercle. The outer (posterior) edge of the dactylus is a compound curve, being slightly sinuate near its base, but there is no basal tubercle. The six teeth are well developed and progressively longer toward the distal extremity. The appendages of the walking legs are linear. The first joint of the exoporlite of the uropod is much longer than the second, and bears eight or nine movable spines. The inner margin of the basal prolongation of the mopod is serrated, and there is a large rounded lobe on the outer side of the imner spine.

Color.-The alcoholie specimen have the body covered with a mottled pattern of dark pigment cells.

Nixh.-The length of the largest specimen in the collection is 4.15 cm .
Loculity.-The collection contains six males and one female collected by the Llbutross in March, 1885 , from the stations not over 13 miles apart in the Bay of I'anama where the depth was from 7 to 16 fathoms, and the bottom green mud (Nos. 1847-18479, U.S.N.M.). There is also one poorly preserved specimen from off Manzanillo, Mexico (No. 18450, U.S.N.MI.), that seems to belong to this species although the telson is somewhat different from the Panama specimens.

SQUILLA PRASINOLINEATA (Dana?) Miers.
Squilla masinolineata, ? Dava, Crust. U. S. Expl. Exped., xir, p. 620, 1852.Mers, Ann. and Mag. Nat. Hist. (5) v, p. 19, 1880.
A specimen in the collection (No. 11290 , U.S.N.M.) corresponds pretty closely to Miers's description of a specimen that he doubtfully refer's to Dana's spectes of this name. Unfortunately the source of this
specimen is not recorded. According to Ises (1891) this species should be described under a new name for he regards S. prasinolinenta, Dana, as identical with S. Iufiesmii (Leach) Miers, the first name having the priority. He records (1891) a specimencorrespouding to Miers's description of S. dufresnii from the coast of Yucatan.
squilla mantoidea, bigelow.
Squilla mantoidea, Bigelow, Johns Hopkins Univ. Cire. 106, p. 101, 1893.
Diagnosis.-Lyes triangular, lut with the corneal axis at right angles to the perluncular one; clactylus ol raptorial claw with sin teeth, outer margin not sinuate; rostrum sulonallate, carinate; camanace with tive carina, the median one bifurated, and with strong anterior lateral spines; lateral spine of the fifth thoracie segment short, straight, acute, and flattened obliquely, lateral processes of the next two segments strongly produced and acute; submedian canine on thoracic and abdominal segments without spines, exeept the sixth aldominal; telson with a crest and a long ventral keel, twelve or more lines of pits on each side, six marginal spines; denticles 5-6, 11-12, and 1.

General description.-The collection contains but a single specinen of this species, a female from Borneo. Judging ouly by the published descriptions of S. mantis one would refer this specimen to that species, but on comparing it with specimens from the Mediterranean it is seen at once to be specifically distinct.

The body is compact and broad and the carine are all well marked. The greatest width of the abdomen equals the leugth of the carapace, which makes up nearly one fourth of the total length of the body. The telson is onesixth of the total length, and its width is $1 \frac{1}{4}$ times its length. The rostrum is fourfifths as wide as it is long; it is broadly rounded in front, with nearly parallel sides, and has well-marked marginal and median carinæ.

The carapace is narrowed anteriorly; its smallest diameter being a little more than half the greater, which is a little less than four-sevenths of its length. The five caringe and the cervical suture are well marked. The median carina incloses a narrow oval area in its anterior quarter. The lateral carina are continued into prominent spines that are a little way in from the anterior lat-

Fig. 13.
EXPOSED THORACIC SEGMENTG uF squilla mantoidea.

Natural :ize.
4. - Fourth to eighth thoracie segments. 1 ubd.-First abdumal serments. c.-Carapace. eral angles. The posterior lateral lobes are prominent, but are not distinctly angled. The lateral spines of the first exposed thoracic segment (fig. 13) resemble those of S. mantis, being straight and acute, but they are small and flattened obliquely. The
ventral pair are large and trianglar. The lateral spines of the next two segments are longer than in S. mentis and acute, and on the first ore there is a small additional anterior lobe. The submedian carine are well marked, and the first five abdominal segments have eight carine, all of which end in spines except the submedian ones and the intermediate of the first two segments. The sixth segment has six carine ending in spines and a spine on the anterior side of each uropod. The telson is quite different from that of s. muntis. The crest is low and narrow, and ends in a spine. The general suriace of the telson is smooth except for eight or ten lines of very small, shallow pits, arranged symmetrically on each side of the

Fig. 14.

EyE OF SQUILLA MANTOIDEA.
Twice natural size. (1), - Preduncular axis. ct.-Corueal axis. median line. It has a rather long ventral keel. There are six marginal spines, rather long and slender, and with basal carine. The anterior lateral carine also end in a small projecting angle. There is scarcely any elevation at the bases of the denticles, while in S. mantis there is a distinct ridge bordering the telson in both sexes. Another difference of importance between these two species is in the ejes. In S. mantoidea, while the corneal axis is longer than the peduncular one ($6: 5$), it is unlike S. mantis in being transcerse instead of oblique, giving the ere a very different shape (fig. 14). The antenure are rather long, the first three segments equaling the carapace in length. The second antenne only reach a little way beyond the second joint of the first. The antemary seale is a little over six-tenths the lengtin of the carapace. The raptorial claw is long, when folded reaching back as far as the median posterior edge of the carapace, and is more slender than in S. mantis. The antepenultimate joint has but one spine, not two. The dactylus is not sinuate on its outer margin, and the distal ones of the six teeth are very long, much longer than the proximal ones, the length decreasing gradually towards the base of the dactylus. The appendages of the walking legs are linear. The inner basal spine of the uropod is twice as long as the onter one, bear's a small lobe on its outer margin and is finely serrated on its inner margin. The distal joint of the expodite is shorter than the proximal one, being tenthinteenths of its length when measured on its ventral side, while in S. muntis the two joints are equal, measured in the same way. The proximal joint bears eight movable spines.

Cohor.-The alcoholic specimen shows a dark band on the rostrum, thee irregular bands on the carapace, and a band on cach sewment of the himd body exeept the sixth abdominal. The posterior half of each uropod is black.

Size.-Length of body, 12 cm .

Loculity.-There is in the collertion a single female fiom Bornen, purchased of H. A. Ward, No. 1850-i. U.S.N.M.

SQUILLA ACULEATA, Bigelow.
Squilla uenteatu, Betelow, Johns Hopkins Univ: Circ., 106, 1). 101, 1893.
Dictgosis.-A species having small hut triamgular eres, the corneal axis not exceeding the peduncular and nearly transerse; the dactyli of the raptorial dats very strong, with six teeth; a broad rostrum provided with median and lateral carinte; five carinar mon the carapace, the lateral ones passing into the anterior lateral spines, and the posterior lateral margins angled; the lateral processes of the first exposed thoracie segment comed forward and ache, of the second and third atmminate; submedian carinar present on all the segments of the hind body except the fixst exposed thoracie, but not ending in spines except on the sixth abdominal, all the other catinte ending in spines on the thind, fourth, and fifth segments, and the lateral ones wh the first and second; in the male a thickened crest on the telson endinge in a small spine. the surface of the telson on each side marked with curved lines of pits, six marginal spines, of which the submedian and intermediate are very large and curverl, and, like the lateral ones, have thickened basal carine, and between these three to four submedian teeth, five to seven intermediate, and one lateral tooth, no trase of a ventral keel; the inner spine on the hasal prolongation of the mopod much longer than the outer and with a rounded lobe on the outer side near its base.

General description.-At inst sight this species appears to be ilentical with S. cmpuser exept for its smaller eyes and the heightened topography of its telson, but a careful comparison of the specimens reveals many minor points of difference. I shall base the following deseription upon a large male specimen from Chile and afterward compare with it a small female from Panama.

The boty is strongly and compactly put together. The carapace is nearly 0.22 of the total length of the body and 0.97 of the greatest width of the abdomen. The width of the carapace is about 0.83 of its length. The telson takes up 0.17 of the total length of the animal, and its width at the base is 1.06 times its length.

The eyes (fig. 15) are strikingly small, their width (length of the corneal axis) being 0.033 of the length of the body, but this is very nearly equal to the length of the peduncular axis, and the eye is flattened in the usual way and is subtriangular. The ophthalmic segment is rounderiand entire in front, and the processes at the bases of the eyes are short and rounded. The processes on the antemnary

Fig. 15.
EYEいた SQUILLA A'Cletata.

Twice naturat segment are also rounded. The first antemme appear to be about two-fifths the length of the body, while the second pair rearh to the end of the third joints of the first pair. The antemary scales are
of about the usual size-a little more than half the length of the carapace. The raptorial daws are rather short when folded, only reaching back as far as the angle on the sinle of the carapace. The carpus has no spines, but is amed with a sharp crest that ends distally in a rombled angle. The onter edge of the dactylus describes a curve which if slightly changed might lecome either a simple or a compound curve.

The rostrum is mealy as boad at the tip as it is at the base, and the lateral and median carinat are well maked. The median carina of the carapace is bifurcated in front but is only faintly marked in this region. The angle on each posterior lobe is well marked. The ventral spines on the first exposed (fifth) thoracic segment are strong, sharp and pointed obliquely forward, and there is a low ridge rumning from each one to the nearest marginal process. There is a small projection on the second segment in front of each lateral lobe. The submedian carina are nowhere very prominent, but the others on the abdomen become more and more pronounced toward the telson. The sixth segment has a small spine on the same side in front of the uropod.

The long submedian and intermediate spines, curved like the horns of a cow together with the thickenings at the bases of the spines and
at.-Anterior lateral angle and carinı. $l_{\text {., }}$ im., 8 m --Lateral, intermediate, and submedian flumes, ewch with a baval carima. den,. id., sil,-Lateral, moternedate, anil smbmed.an denticles.

Fig. 16.

TELSON OF SQU'ILLA ACULEATA.
Male. Two-thirds natural size. teeth, give the telson (fig, 16) a very striking appearance. There is a separate elevation at the margin corresponding to each denticle and spine, and there is also a distinct pair of anterior lateral carinte. The general surface of the telson is unnsually smooth, but the pits are unnsually well defined. They are arranged in about eight rows. The ventral surface is perfectly smooth exept for a corresponding series of pits aurl a small carina on each side running in a short way from the extreme anterior lateral angle. The denticles are all blunt. The uropods present nothing remarkable except that the lobe on the inner spine of the basal projection is a little nearer the base than usual. The inner margin of the projection is blantly serrated and the second joint of the exoporlite is about two thirds the length of the first joint. The latter bears eight movable spines.
S. empusu, siay, differs from this specimen in having wider eyes (0.043 times total lensth); the processes on the antenary segment aconte; two small spines on the anterior edge of the carpus of the raptorial
claw; the outer edge of the dactylus, a compound curve, and the median earina of the carapace distinct in front. The lateral processes of the sixth and seventh thoracie segments in s. empusa are acute, but hardy acuminate, and the submedian carina of the fourth and fifth abdominal segments end in spines. The marginal spines of the telson are also not unnsually long, and on the ventral surface there is a distinct postanal carina, or keel; while the two joints of the exopodite of the uropod are of equal length, and there is no lobe on the inner spine of the basal projection.

The small female specimen from Panama, refered to above, oreupies an intermediate position between the larger suecimen I have just described and S. empusa. The eyes are the same size as in the latter, relatively to the length of the body, but the ratio of the length of the peduncle to that of the corneal axis is greater than in s.empusa and like that of the type suecimen. The outer edge of the raptorial dactylus is a compound curve and the dorsal surface and the margin of the telson closely resemble the condition found in s. empusa, but in ali other respects this specimen agrees with the type. . Ls the females and the young of both sexes are known to difler from the mature males in several species of Squilla, I think it most probable that this small specimen represents an immature condition of the larger one.

Color.-The larger specimen has completely faded, but the smaller one has a symmetrical mottlerl arrangement of dark pigment cells.

Size.-Length of body, 15 cm . and 6.85 cm .
Locality.-The large specimen was collected by W. H. Jones, U. S. Nary, then on board the U.S.S. Wrachusett at Iquique, Chile (No. 1119s, U.S.N.M.). The smaller one was taken at Panama and was purchased from H. A. Ward (No. 15626, J.S.N.M.).

SQUILLA EMPUSA, Say.

Squilla empusa, Say, Journ. Acad. Nat. Sci. Phila., i, p. 250, 1818.-MilneEdwards, Hist. Nat. Crust., ir, p. 525, 1837.-De Kay, Netr York Fauna, vi, Crust., p. 32, 1844.-Miers, Ann. and Mag. Nat. Hist. (5) y, p. 23, 1880.Brooks, Voyage of the Challenger, xvi, p. 25, 1886.

Dirgnosis.-Eyes triangular and with oblique corneal axis equal to pechuncular axis; six teeth on the dactylus of the raptorial claw, the outer edge of the dactylus sinuate; rostrum variable, generally a little longer than broad, subquadrate or hemiellipsoidal and possessing latcral and median carinx ; carapace with five carinx, the median one bifurcated, the lateral ones produced into large anterior lateral spines, the posterior lateral margins angled; the fitth thoracic segment with separate ventral and lateral spines, the latter being slightly curved forward and acute; the lateral processes of the next two segments strongly produced and acute or mocronate; eight carinæ ou the first five abdominal segments; telson with crest and curved lines of pits, six marginal spines and-eight basal carina and on each side three to four submedian,
six to nine intermediate, and one lateral denticle; the carina and the elevations at the bases of the denticles always distinct; never any thiskening of the margin of the telson or of the abromen in the mates.

Remorlis.--Say's description of this species is very briof, and like Gibhes, his conception of s. mantis seems to have been derived from a figure given by Herbst that was, I think, intendel to represent S. nepu, Latreille. IIis description is colored by this idea. De Kay's figure is very pore, but indicates that the outer edge of the dactylus is simuate.

Miers pointed out that this species is extremely close to N. montis, but may be recognized by the lateral prowesse:; of the first exposed thoracie segment being elongated and enved forward, instearl of being straight. Brooks has deseribed and figured the first abolominal appendage of the male. All of these athors, however, neglect characters which separate this from closely related species. In order to compare them we need to start with an mletuate definition of S. empusu, and it is with the hope of supplying this that I have introduced the above diagnosis, founded upon the study of specimens from Beaufort, N. C., preserved at the Johns Hopkins University, and on others from various localities in the National Museum.

This species is so very near to Nomantis that Miers was at first inclined to regard it as a mere variety, and it seems to me that this is probably the correct view. Although very slight, there are, however, differences, which are constant in the specimens that I have examined. As stated above, the lateral spine of the first exposed thoracie segment is more curved than in N.mantis. The rostrum in full-grown specimens of S. empusw is broader in proportion to its length, and the corneal axis of the eye very nearly equals the perluncular one, while in S. montis the conneal axis is about six-fifths the length of the perluncular one. Large specimens of N.mantis, of both sexes, have a slight thirkening at the margin of the telson that is almost altogether absent in S. cmpusa.

Size.-Length of body of a largo specimen, 18 cm .
Localit!.-There are specimens in the National Musem from numerons stations between Woods IFoll, Mass, and Pensacola, Fla.

SQUILLA MANTIS, Latreille.
Squille mante, De Geer, Mém. pour servir ì l'hist. des Insectes, vir, p. 533, 1778.
Squilla mantis, Latreille, Hist. Nat. Crust., Vi, p. 278, 1802; Encycl. Méth. Hist. Nat., x, p. 471, 1825.-Mers, Ann. and Mag. Nat. Hist. (5), v, p. 21, 1880.

Of this species, common in the Merliterramean, the Musemm possesses two males collecter by Dr. D. A. Jordan at Veulce, Italy (No. 5151, U. S.N.M.), and a male and female fiom Naples, received from Rev. A. II. Norman (No. 14552 , U.S.N.M.).

SQUILLA PANAMENSIS, Bigelow.
Squilla panamensis, Jigelow, Johns Mopkins Univ. Circ., 88, 1891.
Diugnosis.-Squillar with large triangulan eyes having a slemen stalk; slx teeth on the dactylus of the raptorial claw; an ovate or ellip-
soidal rostrum with median and marginal carina; a carapace having five carinat, very small spines at the anterior lateral angles and angled at the sides posteriorly; the lateral spines of the fifth thoracie : ieg. ment curved a little forward and acute, the lateral processes of the next two segments oblicpuely trumeated and subarute; cight carime on the abdominal segments, all on the last three of these segments ending in spines; a crest and curved lines of pits on the telson, a long rentral keel, six or eight marginal spines and five submedian, ten to twelve intermediate and one to two lateral teeth; the crest and margin of the telson as well as the lateral margins of the abdomen thickened in the male, the thickening being greatest at the bases of the marginal spines.
General description.- 1 female sperimen of this species is difficult to distinguish from N. cmpusu, Say, but an alult male is casily recognized by the thickenings of the telson and sides of the abdomen, there being no trace of these sexnal chanacters in s. empusa. The typieal form exhibits other points of difference from that species, which will be mentioned farther on.
The carapace occupies about two-tenths of the total length of the body and is a little longer than the telson, which is about 0.16 or 0.18 of the total length. The width of the telson at its base nearly ef uals its length and the greatest width of the carapace. The carapace is narrowed in front so that the distance between the anterior lateral angles only slightly exceeds half of the greatest width. The diameter of the body just behind the carapace is less than laalf the greatest width of the abdomen.

The rostrum is orate or subtriaugular and faintly marked by median and marginal carine.

The carapace has five longitudinal carine, the median one being bifurcated at each end, so as to inclose a lozenge-shaped area, and the lateral ones ending in a minute spine at each anterior lateral angle.

All segments of the hind body are provided

Fig. 17.

THORACIC REGION OF SQUILLA PANAMENSIS.

Natural sizo. with submedian carine, except the fifth thoracic. This segment, fig. 17, has a pair of acute ventral spines, and its lateral spines are acute and slighty curved forward. In my preliminary deseription of this species (1591) I spoke of the margins of the next two segments as bilober, which is somewhat misleading, for in the first of theni, while there is an anterior lateral process exactly homologous to the one found in s. nepa, still it is so small and the posterior process is so much larger, that the term tends to convey a false impression, which I wish to correct. The lateral processes of the second of these segments hat better be described as inlented or simate. In both cases the posterior processes are
rombed and mucronate or subacute in the typical fomm. Nll the carinae on the fourth, fifth and sixth abdominal somites end in sinines, and there is a sipine in front of the articulation of each wopod. In the first abomiatal somite only the marginal carine end in spines; the second has spines terminating the lateral "arine as well as the marginal ones, and the third has also spines on the intermediate ones. There is a

Fig. 18.
TELSON OF SQUILLA PANAMENSIS.
Male. Shagtly enlarged. very slight median tubercle on all but the first and sixth abdominal segments. In full-grown males the marginal carinæ are thickened. This thickening extends as a broad elevation along the posterior margin and involves the greater part of the lateral carine. There is no trace of any such thickening in the females.

In the female of the typical form the crest of the telson ends in a small spine. and behind it there is a small tribercle. The six marginal spines are slender and acute and have basal carine. There is also a distinct anterior lateral pair of carinr. The denticles are large and rounded and have smaller elevations at their bases. The dorsal surface is marked on earh side by a row of shallow pits, ruming mearly parallel to the crest and a series of about a dozen curved lines of pits, ruming ontward and backward. The ventral surface has an exactly similar arrangement of these sculpturings. There is also a keel extending about half way from the anus to the median sinus, and there is a pair of lateral carine. In full-grown males the crest and the dorsal side of the margin of the telson are very much thickened (fig. 18). The basal elevations of the denticles on the medial side of each carina form with it a continnous ridge, while there is a distinct furrow separating the carina from the elevations on its lateral side. The marginal thickening is greatest at the bases of the spines.

The eyes are broadly triangular. The corneal axis is oblique andabont one-fifth longer than the perluncular ixis, while it is about tive onehundrealthe of the total length of the body. The spines at the bases of the eyes are erect and truncated. The first three joints of the first antenus are about equal in length to the carapace. The second antemme are about as long as this and the antemnary scale is very nealy two-thirds as long. The mptorial claw is strongly developed. The carpus has a sevies of teeth on its antmior margin. The outer margin of the dactylns is mot sinuate and has no tnberele or one that is hardly pereptible near the articulation. The appendages on the walking legs are slightly spatulate or simate. The basal prolongation of the uropod is fincly serrated on ther imer side and the imer spine is twice as long as the onter one, and has a minute lobe on the outer side in the
middle of its length. The terminal joint of the exppodite is about two-thirds the length of the first joint, which bears eight or nine movable spines.

Trarieties.-Animals answering to this description appear to be very abundant in the Bay of Panama. There are three other groups of specimens in the collection that are distinct from these, but the differences are so slight that they may all be regarded as varieties of one species. First, there are a number of specimens from oft Cape Lobos, Mexico, and from Point San Fermin to Consag Rock, Lower C'alifornia, that are evidently of the same species as those I have described as s. punamensis, but which differ from them in having the lateral spine of the fifth thoracie segment more curved and the anterior lateral carina of the telson produced into short spines, so that there are eight marginal spines on the telson. This form may be designated as rariety A. the Panama form being taken as the type of the species. Taricty 1 ; is represented by a few specimens from the southeast of Tiburon Island, Mexico. It agrees with the first in that the telson has but six marginal spines, while it differs from this and agrees with the last in having a well-marked tooth upon the outer side of the imer spine of the basal prolongation of the uropod, and it differs from both the othess in having the proximal segment of the exopodite not longer than the distal segment. The marginal spine of the fifth thoracic segment is large and curved formard into a strongly sickle-shaped, acute process. The margins of the next two segments are rounded on the anterior side and have their points directed farther backward, and are more sharply achte than in the other varieties. This variety is also very difierent in its color markings, if we may judge from alcoholic material. It is muth less like the type than variety A, and it may be found eventually to rank as a separate species, for the only male specimens in the collection are very small and immature, so that until adult males have been found we can not tell whether or not this form possesses the characteristic telvon of s. punumensis.

It is also with some hesitation that 1 refer to this species, a single young male specimen from off Cape Frio, Brazil. In the shape of its body, the arrangement of pigmenterl areas in the integument, and the form of its eyes it resembles S. ponamensis very much, and the enge of the telson appears to have begun to thicken, so it is probably better to regard it as belonging to this species rather than to N. cmpusa. If this view be accepted this specimen will represent a third variety, C. It differs from the type in having the rostrom elongated so that it partly covers the ophthalmic segment. The anterior lateral spines of the carapace are longer. The lateral angles of the second and third exposed thoracic segments are longer and more acute. The first abdominal segment carries lateral spines and the second one has intermediate ones. Moreover, there is a good-sized lobe on the outer side of the inner spine of the basal prolongation of the uropod.

Proc. N. M. $94-34$

Color.-In alcoholic specimens there is a line of dark pigment following both of the longitudinal sutures of the carapace and bordering its anterior margin, except the middle third. The posterior margin of the carapace and of most of the exposed segments of the body are marked each by a dark line. There is also a very dark triangular spot on eath side of the telson near the crest. Vrriety B has in addition a large transverse dark spot on the second and fifth abdominal segments and fantly marked transverse bands on the carapace andother segments.

Size.-The largest specimen measures 14 cm . in length.
Loculity.-The specimens of the type-form, of which there are a large number of both sexes and of various sizes, were all taken by the Albutross in Fanama Bay at a depth of between 26 and 47 fathoms (Nos. 1845s-18460, U.S.N.M.). Of V'triet! A about $\because 0$ specimens were taken
 Lower California (Nos. 18465, 18466, U.S.N.M.), 5 oft Diges' Point, (18467, U.S.N.M.) and 10 oft Cape San Fermin (Nos. 18463,18464 , U.S. N.M.). The depth varied from 12 to 76 fathoms. Three females and two young males of Craricty I were taken in 29 fathoms of water at station 3014 southeast of Tiburon Islant, Mexico (No. 18468, I.S.N.M.). A single male specimen of Terity (! was captured off C'ape Frio, Brazil, in 59 fathoms (No. 18469, U.S.N.M.).

SQUILLA INTERMEDIA, Bigelow.
Squilla intermedia, Bigelow, Johns Hopkins Univ. Circ., 106, p. 102, 1893.
Dinmosis.-A S'quilla having very large nearly T-shaped eyes; very large and strong raptorial claws, with six teeth upon the dactylus; the rostrum narrowed in front and provided with well-marked median and lateral carine; fivestrong carine on the carapace, the metian one bifurcated in front and behind, and the lateral one ending in spines at the anterior lateral angles, posterior lateral marsin angled; the lateral margin of the fitth thoracie segment produced into a strongly sickleshaped acute spine, of the sixth and serenth obliquely truncated and veryacute; eight prominent carina on the abominal segment sall ending in spines except the submedian of the first four segments; a low crest on the telson ending in a smail spine, a post-anal keel without a spine, the dowsal and ventral surfaces of the telson marked by numerous curved lines of very fine pits, six marginal spines, and four to six submedian denticles, ten to thirteen intermediate and one lateral one; the crest and dorsal side of the margin of the telson very much thickened in the male, the marginal thickening being continuous between the intermediate spines.
(icneral description.-This species stands in an intermediate position between s. prommensis aud S. biformis. The body is compactly and strongly put together. The exposed thoracic region is about two-thirds the length of the carapace. The latter oceupies a little less than onefourth the totail length of the body, while the telson is just one fifth the total length. The length of the telson is the same as its wiolth at the
base, and also equals the greatest width of the earapace. The greatest width of the abdomen is abont one-tenth greater than the length of the carapace. The eyes are of somewhat different proportions in the two specimens before me, for in the female the corneal axis exceeds the peduncular one by 0.43 of its length and is 0.068 times the length of the body, while in the male the corneal axis exceeds the other by only 0.15 and is 0.060 times the length of the body.

The rostrum is narrowed and romoded in front, and besides the marginal carina has a prominent median carina in its anterior half. The carine on the carapace are very well marked, and the cervical suture is very distinct. At each of the anterior lateral angles the lateral carima is continued into a strong projecting spine. There is a marked external angle on each posterior lateral lobe. Submedian and lateral carina are present on all the exposed thoracic segments. The first one has a strong, acute pair of veutral spines, besides the sickle-shaped lateral spines. The lateral processes of the next two segments resemble those of S. biformis, but are more acute. The abdominal carinse are very prominent and the spines are strong and sharp. There is a small spine in front of

Fig. 19.
TELSON OF SQU'illa intermedia. Male. Slightly enlarged. the articulation of the uropod. In the male the marginal carine are very slightly thickened. The telson of the female is very similar to that of the female N. biformis. The crest rises gradually from the geueral surface, which is smooth except for about a dozen curved lines of very shallow pits, the lines branching at the periphery. The carine at the bases of the marginal spines are small and low. There is also a pair of anterior lateral carine separated from the posterior pair by only a slight dorsal notrh. There are slight elevations at the bases of the denticles. This specimen differs from a female of s. liformis in having fewer and larger denticles on the telson, larger marginal spines, a higher crest, and no spine on the short ventral keel. In the male (tig. 19) the crest and the margin of the telson are much thickened on the dorsal side. But it differs from the male S. biformis in having the marginal ridge interrupted in two places on each side. One of these marks the end of the anterior lateral carina, and the other is just behind the lateral denticle. Except for these, the ridge is smooth and continuous and therefore quite different from the condition found in S. panamensis.

The basal prolongation of the uropod is finely serrated on its inner margin, and the inner spine has a rounded lobe in the middle of its outer side. The proximal foint of the exopodite is but a little longer than the distal one and bears seven movable spines. The eyes are large
and broadly T-shaped, especially in the female. The male has rounded processes at the bases of the eres, while in the female they are acute. The ophthalmic segment is emarginate in front. The next segment is completely covered by the rostrm and bears a pair of acute spines. The first three joints of the first antenne are longer than the carapace. The second antemne are about as long as the caraluare, and the antennary scales are three-fourths as long. The raptorial claw is so long that when folded it extends as far back as the most posterior point of the carapace. There are two short spines on the outer margin of the carpus. The pectinations on the inner margin of the manns have an undulating outline. The dactylus has six strong teeth. It is angled near the articulation, but from the angle to the tip of the terminal tooth its outer edge forms a simple curve. The appendages on the three posterior pairs of thoracic legs are linear or narrowly spatulate.

Size.-Length of the largest specmen, 10.5 cm .
Locality.-There are but two sperimens in the collection, both collected by the Albutross. One, a male, was taken in 1885 at station 2378, in the Gulf of Mexico, near the delta of the Mississippi (No. 9658, U.S. N.M.). The other, a female, was taken in 1886 at station 2655 , in the Atlantic, north of Little Bahama Bank (No.11543, U.S.N.M.).

SQUILLA BIFORMIS, Bigelow.

Plate xix.

Squilla biformis, Brgelow, Johns Hopkins Univ. Circ., 88, 1891.
Diagnosis.-Eyes large, subtriangular or nearly T-shaped; dactylus of the raptorial claw with six teeth; rostrum ovate, with median and marginal carine; carapace provided with five well-marked carine, auterior lateral augles produced into small acute spines, posterior lobes angled at the sides; lateral spines of the first exposed thoracic segment strong, well curved forward, and acute, lateral processes of the next two segments obliquely truncated and acute; eight prominent carinae on the first five abrominal segments; telson with a "rest, a short rentral keel produced into a stout spine directed batekward, and the gencral surface marked by many symmetrically rurved lines of shallow pits, the donsal surface in males elevated into a continuous smooth thickening around the entire free border; in females no elevations at the bases of the denticles and very small carinie at the bases of the six marginal spines; five to seven submedian denticles, 15 to 19 intermediate, and one lateral, all small.

General deseription.-This is a large species, abont 17 cm . long. The carapare (pl. xixi) equals in length the exposed thoracie segments and the telson measured from its base to the tip of the submedian spines, and is somewhat less than half as long as the first six abominal segments. The body widens gradually from the posterior margin of the

SQUILLA BIFORMIS
Male. About three-fourths natural size.
carapace to the serond abdominal segment, then keeps about the same width back to the telson.

The rostrum is as broad as it is long and is broadly romeded in outline anterionly. It extends over the first antennary segment. The median and marginal carine are well marked, the former extending, however, only along the first half of the rostrun. The length of the carapace equals nearly the posterion width and is about twice the width between the anterior lateral angles. All five carine are well market. The median is bifurcated fore and att, and it and the intermediate are interrupted by the transverse suture. There is a median tubercle on the posterior margin. The anterior lateral angles are rounded except at the point of termination of the intermediate carina, where a sharp spine arises abruptly. The posterior lateral lobes are obtusely angled laterally.

The exposed thoracie segments are provided with well-marked submedian and intermediate carine. The ventral spine of the first exposed segment is obliquely flattened and armminate the lateral one is flattened dorso ventrally, curved forward, and acute. The lateral margins of the next two segments are obliquely truncated and acute.

The first five abdominal segments have submedian, intermediate, lateral, and marginal dorsal carine. The sixth has all but the latter, and the second, third, fourth, and fifth have double median tubercles. The marginal and lateral carinze of the first abdominal somite end posteriorly in spines. This is true of all but the submedian in the second, third, and fourth, and in the fifth and sixth they all end in spines.

The telson is a little shorter than broad and generally rounded in outline. There are six relatively small marginal spines which in the female (fig. 20) are continued into very slightly elevated carinæ. The anterior lateral carinse are distinct, but not prolonged into spines. The submedian spines are divergent. Between each submedian spine and the shallow median

Fig. 20.
TELSON OF SQUILIA BIFORMIS,
Fernale. Slightly enlarged. simus there are five or seven blunt teeth. Between a submedian and an intermediate there are 15 or 17 , and there is one between the intermediate and lateral spines. The crest is rather broad and terminates in a very small spine. On the ventral surface there is a short prominent keel, which is drawn out into a stout and sharp spine, pointed directly backrard. Both dorsal and ventral surfaces are marked by numerous symmetrical curved lines of shallow pits, and the dorsal surface is slightly roughened between them. In the adult male (pl . XXI) the crest is thickened and whole margin of the telson is very much swollen on the dorsal side, so that all the carine run together.

The eges are very latge and noarly T-shaped. The corneal part is rery prominent, is more than twice as long as the stalk, and is rlivided into two parts by a slight groove. The anterior process of the ocular segment is emarginate. The lateral processes are tlat, broad, and obtuse. The first antemat are rather lons, about the length of the last five abdominal segments. The spines of the corresponding segment are short, straight, and acute. The second antemne reach a little beyond the base of the flagella of the first pair. The antemany scale is large. The raptorial claw is strong. The dactylus has six long claws. The pertinations on the manus are in a slightly undulating line. The carpus has two or three short processes on the anterior ealge. The appendages to the thoracic appendages are linear. The inner spine of the basal prolongation of the uropod is more than twice as long as the outer one, and has a very small tooth on its onter side, about the middle of its length, and the imer edge is sermated. The endopodite has its sides nearly parallel. The terminal joint of the exopodite is nearly threefourths the length of the dirst joint. On the onter edge of this joint there are eight to ten movable spines, usually nine. In fully mature specimens the difference between the sexes is very marked. In the adult male, besides the thickening of the crest and the margins of the telson, the marginal carine of the other abdominal somites are very broad and thick, and each one is comnected along the posterior margin of the somite with the lateral carina, which is a little broader than in the female. The general shape of the abdomen differs in the two sexes, the first, second, and third segments being much wider in the male (pl . xXI).

The young males in the collection (e. g., two 5.4 and 7.4 cm . long, respectively) are in general like mature females, but differ in certain peculiarities of the telson. The crest is sharp and ends in a prominent spine. The marginal spines are relatively much larger than in the adult. Between the submedian spines and the median sinus there are next the spine two or three ordinary teeth, then for the rest of the distance to the sinus it appears as if the teeth were fused and their outer edges produced into a number of very fine teeth. This is most marked in the younger specimens. In a nearly fill grown female the pair of teeth next the sinus were found to possess similaly servated borders.

Color.-The alcoholic specimens have no characteristic coloring.
Size.-The largest specimen is a male $17 \mathrm{~cm} . \operatorname{long}$.
Locality.-The Albutross, in 1889. captured tirce large males, two small ones, and two large females, in the dinlf of 'alifornia, off La Paz Marbor, at a depth of 11 ? fathoms (No. 18493. T.S.N.M.). The Albatross expedition of 1891, under the direction of Dr. Alexander A gassiz, took 66 specimens of both sexes and varions sizes at stations $: 3389$, 3391,3396 , amd 3397 (No. 1stit, C.S.N.M.), in Panama Bay, the depth varying from 85 to 259 fathoms.

SQUILLA RAPHIDEA, Fabricius.
Squilla arenaria marina, Seba, Thesaurus, III, p. 50, 1758.
Squilla raphideci, Fabricius, Ent. Syst. Suppl., p. 416, 1798.-Latreille, Encycl. Méth., x, p. 471, 1825.-Milne-Edwards, Hist. Nat. Crust., if, p. 524, 1837.White, List Crust. Brit. Mus., p. 84, 1817.-Miers, Ann. and Mag. Nat. Hist. (5), v, p. 27, 1880.

Squilla mantis, var. B. major, Lamarck, Hist. Anim. sans Vert., v, p. 187, 1818. Squilla harpax, de Haan, Fauna Japon. Crust., p. 222, 1849.
The Museum contains two specimens, one from Hongkong, China, collected by W. Stimpson on the North Pacific Explering Expedition (No. 2108, C.S.N.M.), the other collected by the U. S. S. Pulos, no locality given (No. 5146, U.S.N.M.).

SQUILLA NEPA, Latreille.
? Cancer (mantis) digitalis, Henbst, Naturg. Krabben und Krebse, p. 93, pl. xxyrif, tig. 1, 1796.
Squilla nepa, Latreille, Encycl. Méth. Hist. Nat., x, p. 471, 1825.-MhlneEdwards, Hist. Nat. Crust., ir, p. 522, 1837.-Berthold, Abhandl. c. kön. Gesellsch. d. Wiss. Göttingen, inf, 1845.—de Hann, Siebold's F'ama Japonica, 1850.-Bigelow, Johns Hopkins Univ. Circ., 106, p. 102, 1893.
? Squilla nepa, Heller, Reise der Novara, Crust., p. 124, 1865.-Miers, Cat. New Zeal. Crust., p. 89, 1876; Ann. and Mag. Nat. Hist. (5), v, p. 25, 1880.
? Squilla oratoria, Dana, Crust. U. S. Expl. Exped., xhi, i, p. 621, 1852.
? Squilla Edwardsii, Grebel, Zeitschr. f. d. gesammt. Naturwiss., xvir, p. 319, 1861.
? Squilla Massavensis, Kossmans, Zool. Ergeb, einer Reise in dem Kiisteng. des Rothen Meeres, II, p. 99, 1880.
Diagnosis.-A scuilla with very small eyes, the corneal axis being about three-fourths the length of the peduncular one and at right angles to it, and 0.029 times the length of the body; the dactylus of each raptorial claw deeply sinuate on its outer margin and provided on its inner margin with six teeth, including the terminal one; an ovate rostrum with marginal carine and a small median tubercle; five carinae on the carapace, the median one bifurcated for nearly or more than half its length; spines at the anterior lateral angles of the carapace extending tarther forward than the suture between the carapaceand rostrum, the posterior lateral angles being evenly rounded; no ventral spines on first exposed thoracie segment but instead an additional lateral process, making two on each side, the anterior one being curved forrand and acute and the posterior one much smaller, narrow, straight, and blunt; the lateral margins of the next two segments bilobed, the two lobes on the first one being of equal length and rounded or subacute, but the posterior one broader than the other, while on the second one the anterior lobe is rery much the smaller; eight submedian carine on all the segments of the hind body except the first exposed thoracic; a crest and a keel on the telson and symmetrical lines of pits on each side; six marginal spines and eight basal carimar and between the former two to three submedian, eight to ten intermediate, and one lateral denticle.

Loculity.-The collection contains two female specimens. One of these is fiom Singapore (No. 2120, U.S.N.ML.), and was collected by J. D. Dana while with the U. S. Exploring Experlition under Wilkes. The original label bears the mame " squille rhetorica, S. \& M." The other one is labeed Borneo (No. 15627, U.S.N.M.), and the name of the collector is not given.

Remulis on symonymy.- ln the collection of the National Museum I have found two sets of specimens, either of which corresponds perfectly with the description of Squilla nepu, Latreille, as giveu by

Fig. 21.
cepilalic region of squilda nepa.
slights enlarged. Miers, but which are evidently distinct. The most striking difference is in the eyes. Of one set, these are small and of the Chloridella type; of the other, they are large and of the type found in S. mantis. Further comparison shows other points of difference. The question immediately presents itself, which of these is the form that was originally described as Squilla nepa? and this suggests the further question, is the other form a new species, or has it been described under one of the several names now regarded as synonymous with nера?

Latreille's original description of Squilla nepa is based ona single specimen from China, is very short, and applies equally well to either of our forms ; but he refers to the figure given by Herbst (1796) of sifuilla digitalis, and in this the animal is represented as having small eyes, the corneal axis not exceeding the peduncular one. This would indieate that the original s. upo was our small-eyed form. Miers says, to be sure, that this figure seems intended for S. montis, but this does not seem to me to be true. Although Herbst gives Squilla mantis, I) (reer, etce, as a synonym of his "Cancer (mantis) digitalis," it appears to me that he had chiefly in mind the East Indian form, and took it for granted that the Mediterranean one was the same, for in his figme (Tah. 33 , fig. 1) the margins of the thoracic segments are bilobed, thus plainly showing the chief characteristic that separates the two species, and in the text he says:

Das Vaterland ist Ostimdien; anch findet man ihn häufig im Arriatischen Meere und im Liburnischen Meerbusen, woselbst er Canochia genaunt wird.

Except in a few points, however, the description given by Herbst

Would apply equally well to any Squilla related to S'. montis, and it seems to be the general opiuion of the zoologists that followed him that his figures are moliable. We may, therefore, follow the general usage and give to Latreille the wedit of first clearly distinguishing the Mediterranean from the Indian species.

Turning now our attention to s. oratoria, De Haan, the most prominent synomym of s. nepa given by Miers, we find that Heller (1sfis) stparates forms under these two names, but as noted by Miers, does not give his reasons for doing so. Dana ($\mathbf{1 8 5}$) reports this species from Singapore, but his short description contains nothing to distinguish it from s., mepo. De Hatn's origimal description (1850) is a short one in Latin and contains nothing that is not also true of s. nepa. In his analytical key he separates the two by the difference in the length of the anterior lateral angles of the carapace. So far Miers appears to be right in regarling the two as synonyms, but De Maan's figurediflers from the one of Herbst referred to by Latreille in representing the aumal as having large triangular eyes. Moreover, De Haan gives S. "ffinis, Berthold, as a syonym of s. orutoriu and when we refer to Berthold's baper (18.5) we find what we wre seeking, a clear distinction between the large eyed and smalleged forms of N. mepe.

Berthold founded his species, s. uffinis, upon some specimens that he purchased from a ship that had heen to ('hina. In his museum he found an old specimen marked s. digitalis that corresponded to the descriptions of S. mou given by Latreille and by Milue Edwards. Comparing the two he found the following differences:

Squilla affinis, Berthold.

The cornea measures obliquelㄷ $2 \frac{1}{2}{ }^{\prime \prime \prime}$.
The upper end of the peduncle reaches nearly to the upper end of the cornea so that the latter is placed obliquely above or below the peduncle.

The rostruin has an upturned onter margin.

The anterior bifurcation of the median carina of the carapace reaches backward only one-fifth of its length.

The anterior lateral angles of the carapace do not extend beyond its anterior frontal border.

The deuticles un the telson are swoller: and are arranged obliquely anterior posteriorly.

The whole body is thicker, relatively to its length broader aud higher.

The last joint of the raptorial claw is slightly bent, but not sinuate.

Squilla nepa, Latreille.
Only $1 \frac{1}{2}{ }^{\prime \prime \prime}$.
The upper end of the peduncle hardly reaches any farther forward than the other, so that the cornea is placed directly in frout of the peduncle.

The rostrum has no such upturned border. (See marginal carina shown in fig. 21).

This bifurcation reaches backward nearly half the leugth of the carapace.

These angles are strongly produced so that they extend beyond this border.

The denticles have no swollen elevation and point directly backward.

The body is more slender, less high and broad.

The last joint of the raptorial claw has the proximal half of its outer margin strougly sinuate.

Both sets of my specimens have rostra with carinated margins, and I fail to find any essential differences between them in the denticles on
the telson or in the general proportions of the body. Otherwise, the distinguishing characters given by lerthold hold for my specimens and I am convinced that they represent two distinct species. As Berthold was the first to separate these species we should undoubtedly follow his nomenclature, regarding the small-eyed form as s. nepr, Latreille, and giving his name S. affinis to the other. Berthold's description of the latter is very romplete, is accompanied by measurements and figmes, and was published five years before de ILaan's. I can not see that de Ilaan had any warrant for replacing Bertholds name for this species by one of his own, and the latter should be dropped.

The similarities and differences between these two species as exhibited in the collection before me are expressed brietly in the definition given above and in the one which follows.

SQUILLA AFFINIS, Berthold.
Squille affinis, Behthold, Abhandl. kön. Gesellsch. Wiss. Göttingen, int, p. 26. 1845. -Brgelow, Johns Hopkins Univ. Cire., 106, 1). 102, 1893. Squilla oratoria, De. Hadn, Siebold's Fauna Japon. Crust., p. 223, 1850.
? Squilla oratoria, Helleer, Reise der Novara, Crust., p. 124, 1865.
?Squilla nepa, Miers, Ann. and Mag. Nat. Hist. (5), v, p. 25, 1880.
Squilla nepa, Brooks, Voy of the Challenger, xvi, ii, 1. 25, 1886.
Diagmosis.-A N'quillu with large triangular eyes, the corneal axis being obligue and as long as or usually longer than the peduncular one and 0.05 times the length of the body; the onter margin of the dactylus of the

Fig. $2:$.
CEPHALIC REGION OF SQUILLA AFFINIS.
Slightly enlargei.
 raptorial claw not sinuate or only slightly so; six teeth on the dactylus; the rostrum slightly truncated and provided with marginal carine and a median tubercle; five carinæ on the carapace, the median one not bifurcated for more than one-fourth its length, and the lateral ones continued into the anterior lateral spines, which do not reach as far forward as the suture between the rostrum and carapace, the posterior lateral angles eveuly rounded; no ventral spines on the first exposed thoracic segment, its lateral processes and those of the next two segments bilobed as in S. nepa; submedian carince present on all except the first segments of the hind body; crest, keel, and symmetrical lines of pits on the telson and six marginal spines, eight basal carime, and between the former four to five submedian, seren to nine intermediate, and one lateral denticle.*

Loculity.-There are in the collecticn ome mate and three females, brought by J. B. Bernadou, I. S. Navy, then of the U. S. S. Alert, from Nagasaki, Japan, and supposed to be from Korea (No. 14116, U.S. N.M.) ; tro males collected by P. L. Jouy in 188.5 at Fusan, Korea (No. 12426, C.S.N.M.) ; a small femate from dapan, purelased of H. A. Ward (No. 1562 S, U.S.N.M.), and a much smaller one from Vokohama, Japan (No. 9347, U.S.N.M.) ; two specimens from the IT. S. S. Pulos (No. 5145, U.S.N.M.), and a number collected by R. Hitchoock in Japan (No. 13940 , I'S.S.M. j, and by W. Stimpson at Hongkong (No. 2004, U.S. N.M.).

SQUILLA ALBA, Bigelow.
Plato xxif.
Squilla alba, Bigelow, Johns Hopkins Univ. Cire., 106, p. 103, 1893.
Diugnosis.-A species possessing very large triangular eyes, the corneal axis being oblique; a pair of sarge raptorial claws with six teeth on the dactylus; an orate rostrum with obsolete carmar; a carapace with five carine, the median one not bifurcated in front, with the anterior lateral augles produced into spines, and the posterior lateral augles rounded; no rentral spines, but two lateral lobes on each side of the first exposed thoracic segment, the anterior one being large, strongly curved forward and acute, the posterior one short and rounded; rounded lateral margins on the next two segments, not bilobed; eight carine on the abdominal segments; a nearly smooth telson with a low crest ending in a spine and a few curved lines of confluent pits upon its dorsal surface; six marginal spines and between them five to six submedian, twelve intermediate, aud one lateral denticle; a large rom ded lobe on the inner tooth of the basal prolongation of each uropod and one in the angle between the two teeth.

Gencral description.-This is a well-marked and striking species. The color of the living specimens at once attracts attention. Except for the corneal region of the eyes, which is yollowish, the whole animal is a pure opaque white, marked by only a few symmetrically and definitely placed minute black spots, the positions of which are shown in pl. Axne. The shape of the anmal is also peculiar. The carapace and the exposed portion of the thorax are equal in length and together make up abont four-ninths of the total length of the bod!. The segments in front of the carapace are also elongated so that the rostrum does not completely cover the first antemary segment. Moreover, the eyes are musmally large, so that the whole cephalothoracic reqion has a drawn-out appearance, not well shown in the figure. The rostrum is ovate and nearly smooth, the median and lateral carina being only faintly marked.

The general sufface of the carapace is smooth and polished; the median carina is not bifureaterl in front, but stops short some distance before it reaches the anterior edge of the carapace. The lateral carine
rim forward very dose to the edge and pass into the anterior lateral augles. The first exposed thoracie segment has submedian aud lateral carinat as well as the rest. Its lateral processes recall the condition found in s. nepu. Latreille. There are no ventral spines and there is a strong and sharp lateral one curved until it points directly forward and bearing on its posterior side a flattened rounded lobe. The lateral processes of the next two segments are, however, not bilobed, but are broad and rounded and only slightly emarginate on the anterior side. The small lobe on the fourth segment is rounded.

The abdomen is rather compactly put together. Only a small number of carine end in spines, namely, the usual six on the sixth segment, all but the submedian on the fiftli, and the lateral and marginal ones on the fourth. The spine in front of the articulation of the uroporl is very minute or absent. The length of the telson is five sixths of its width at the base. It has an acute median crest ending posteriorly in a stout spine. Of the six marginal spines the intermediate pair is moch the longest and stontest. They all have short low carine at their bases. The anterior lateral carine form no angles at their posterior ends, but taper off gladually. The lateral denticles are very acute and without elevation at their bases. There are about six oblique, fantly marked rows of confluent pits on the dorsal surface of the telson oin each side of the crest, besides the row of pits on each that runs nearly parallel to it . The ventral surface has a correspondiug series of obsolete pits and there are faint carime also on the bases of the submedian and intermediate spines, an unusual feature, otherwise the ventral surface of the telson is perfectly smonth, there being no keel nor lateral carine.

The basal prolongation of the mopod is serrated along its inner margin, and besides the large rounded lobe in the middle of the onter side of the inner spine there is another similar lobe in the angle between the two spines. The first joint of the exopodite is a little longer than the distal one and bears six movable spines.

The corneal portion of the eyes is unusually large in proportion to the size of the body, and is much greater in bulk than the pedicle. The pedicle is small and inversely conical, while the corneal region is rolnminons and reniform. The ophthalmie segment bears a short romded process at the base of each eye. The lateral processes on the next segment are subacute. The first antenna reach nearly half the length of the body, the first three joints being as long as the carapace. The second antemme as long as the carapace, and the antemary scale is about half as long. The raptorial claws, when folded, do not reach to the posterior extremity of the carapace. The carpus has merely a slightly elevated ridge on its anterior margin. The dactylus has a mmute projection on its onter margin near the articulation.

The appendages of the walking legs are linear.
Color.-The eyes are yellowish, while the rest of the body is opaque

SQUILLA ALBA.
Nearly three times natural size.
white, with a few symmetrically placed black spots. (See pl. xxir.) The same number of spots is not always present.

Size.-The largest of the two specimens is 4.1 cm . in length.
Locality.-Two females were collected by me in Bimini Harbor, Bahamas, where they were found burrowing in the calcarmous sand. (No. 18495, U.S.N.M.).

SQUILLA RUGOSA, Bigelow.

Squilla rugosa, Bhgelow, Johns Hopkins Univ. Cire., 106, p. 102, 1893.
Diagnosis.-A Arquilla having large triangular eyes with oblique cornea; long raptorial claws, their dactyli armed with six teeth; a subtriangular truncated rostrum, slightly raised at the margin; five longitudinal carince upon the carapace, the median and intermediate being interrupted by the cervical suture, and the median one not bifurcate in front; the anterior lateral angles of the carapace produced into acute spines, and the posterior angles rounded; six carinæ on each of the exposed thoracic segments, the lateral process of the first of these segments being lanceolate and acute, with the second and third rounded in front and produced backward into an acute spine; eight carine on the first five abdominal

Fig. 23.
TELSON OF SQUilla rugosa.
Aboul twice natural size. segments, all the abdominal carina ending in spines except the submedian of the first four segments and the intermediate on the first two; three to four teeth on the posterior margin of the fifth and sixth abdominal segments between the snbmedian and intermediate spines; ten prominent carine on the dorsal surface of the telson on each side of the crest, which ends in a spine, six marginal spines, and on each side five submedian teeth, ten to twelve intermediate, and one lateral one; the basal prolongation of the uropod with eight to twelve long tecth on its inner margin, and a romoded lobe on the outer side of the inmer spiue.

Generdi description.-The first impression one receives on handling a specimen of this species is the marked prominence and sharpness of all its carine and spines. The general proportions of the borly are very similar to those of A'. quadridens. The length of the carapace is very nearly equal to one-quarter of the total length of the body and to the greatest width of the abdomen. The greatest width of the carapace is equal to three-fourths its length. The telson is very nearly as long as it is broad at its base.

It is in the uropod, the telson and the adjoining segments that we find the most striking peculiarities of this species. The most prominent of these is the sculpturing on the dorsal surface of the telson (fig. 23). The median longitudinal crest is high and narrow and ends behind in a very sharp spine pointing directly backward. There is a
tubercle beneath the spine. (On each side of the "rest there is a shorter carina ruming nearly parallel with it. Ontside of this there is another carina taking a similar anme but extending to the base of the submedian spine, where it ends abruptly: Ther proximal two-thirds of this carina is repeatedly interruperl, so that this part of it consists of a series of seven or eight elongaterl tubereles. Then next outside of this one there is a series of six parallel carime rumning obliquely outward and backward. The fifth one of these extends on to the intermediate spine and tapers smalablly to its tip. Then two more carinat, one beginning at the posterior edge and ruming along the lateral margin and another parallel one just inside of this. They both taper off on the lateral spine.

The ventral surface of the telson is nearly smooth except for a low leed and two small tubereles, one each side of the anns. The sixth abdominal segment has, besides the hatal six dorsal spines, a small marginal spine on each side on the front edge of its artieniation with the uropod.

The presence of three or four small teeth on the posterior margin of the fifth and sixth abdominal segments between the smbmedian and intermediate spines on each side is one of the

Fig. 24.
EXPOSED THORACTC SEGMENTS OF SQUILLA RUGOSA.

Alcoust $12 / 5$ times I: matal size. unusual features of this species. Another one is the presence of from eight to twelve or perhaps more long slender teeth on the inner edge of the basal prolongation of the uropod. The lobe on the imner spine is at about its middle. The proximal joint of the exopodite is but slightly longer than the distal one and it bears from eight to thirteen movable spines; eight is probably the usual number.

The rostrum in this species is provided with marginal carine, but has no median one. The lateral carinse of the carapace are continued into the antero-lateral spines. The lateral spine of the fifth thoracic segment (fig. 24) extends outward prominently at right angles to the body. It is very muth compressed dorso-ventrally and is lance-shaped. The ventral spmes are distinet and triangular in outline. They are compressed obliquely and are straight. The lateral spines on the next two siegments point strongly backward.

The eyes are large and broadly triangular, the comeal axis being tensevenths the length of the pedmenlar one and oblique to it. The ophthalmic segment is not at all covered by the rostrum, is acate in front and only very slightly produced into lobes at the bases of the eyes. The lateral lohes of the first antemary segment are acute. The first antennare considerably longer than half the length of the body. The second antenne only reach a little beyond the second joints of the first. The antemary scole is a little more than equal to half the length of the canapace. The raptorial claw is long, and when folded reaches
as far back as the most posterior portion of the carapace. The carpus is without spines. The manus has the usual three movable spines, and the marginal pectinations form a slightly undulating line. The dactylus is rather slender and its outer edge is a simple curve except for a scarcely perceptible tubercle near its base. It is armed with six teeth that gradually increase in length from the base outward. The appendages of the walking legs are linear.

Size.-Length of body, 7.7 cm .
Loculity.-The single female specimen in the collection was taken by the Albatross in $18 s^{5}$ in the Gulf of Mexioo ofi Charlotte Larbor, N. Lat. $26018^{\prime} 30^{\prime \prime}$, W. Long. 830 s $^{\prime \prime} 45^{\prime \prime}$ at a depth of 27 fathoms (No. 9835, U.S.N.M.).

THE LAKVA.

The ontogeny of the Stomatopoda inchudes a remarkable metamorphosis, and the amimals while in the larval stage bear so little resemblance to their adult fom that it was but natural that the earlier zoologists should suppose them to he adnlts of another family and should give to them generie and specifie names. We are indebted to the researches of Clans (1871), Faxon (18s²), and Brooks (1879, 1886, and 1892) for our knowledge of the true relationship of these forms. While they are now only entitled to bear the names of adult species of which they are the immature representatives, it is still convenient in speaking of them to use the old generic names, and Brooks (1886) extended this terminology at the same time that he pointed out distinguishing characters of the representative larval forms of most of the genera, so that now for each one of the principal adnlt genera we have a corresponding larval type. The ontogeny of Protosquilla, Pterygosquilla, and Leptosquilln is mknown. The chief characteristies of the larval forms of the other genera are displayed in the following:

ANALYTICAL KEY TO THE TYPES OF STOMATOPOD LARVF,
I. Eyes sessile; appendages $\mathrm{I}-\mathrm{X}$ developed and xiv-xvir also budded in older stages..... Erichthoidina, Claus. (An early stage; adult form unknown).
II. Eyes stalked; appendages I -vir and xiv-xvir, present in earliest stages.

* Erichthus Form: Telson usually quadrate or hexagonal in general outline, with never more than fintermediate denticles.
\dagger Body elongated; carapace narrow without prominent ventro-lateral angles and with posterior lateral angles near the dorsal surface.
Telson slightly wiler than long, and notched on the median line; posterior lateral spines of carapace long; never any trace of lateral teeth upon the raptorial dactylus.

Gonerichthes, Brooks. (Larva of (Goxodactylus).
Like the above, but the dactylus of the raptorial limb showing traces of lateral teeth in the oldest stages.

Odonterichthus, new type. (\$ Larva of Odontodactyles).
Hind body very long; telson longer than wide, sometimes ovate in general ontline; carapace narrow and short with short rostrum and short postero-lateral spines:

Pseuderichtius, Brooks. (Larva of Pseudosquilla),
t Body short; carapace large and wide, infolded on the ventral side, with prominent ventral angles, and posterior lateral angles widely separated from the median line. Hind body wide and dlat; telson wider than long.

Lysionificithus, Brooks. (Larva of Lysiosquilla).
Alima Form: Telson usually octagonal in general outline with munerous intermediate denticles.
\dagger Basal spines of each uropod small and equal.
Body short and broad, nearly covered by the carapace, which is folded downward and inward.

Erichthalma, Brooks. (? Larvit of Coronida).
$t+$ The inner one of the basal spines on each uropod the longer.
Hind body short and broad; carapace broad, covering all lont the last thoracie segment, but not folded in at the sides.

Alimerichties, Claus. (? Larva of Squila [Chloridella]). Body greatly elongated; carapace fattened, elongated, and narrow (about $\frac{1}{4}$ as wide as long); usually several thoracic segments exposed Almia, Leach. (Larva of Squilla).

General remarlis on the collection. - The collection of lanver is of considderable size, but it is not worth while for us to linger orer it, for it contains lout few forms of special interest, no consecutive series, and no stages that can be assigned with certainty to any adnlt species. The most striking featmes are the quantity of large Lysinerichthi from the Atlantic and the number of very large Alime from the Bay of Panama. The former resemble the specimen figured by Brooks (1ssi in inl. x, fig. 7. and which he regards as the young of Lysiosquilla muculatu. The latter are of two species, one with a rery wide carapace and the other with a narrow one. It reems probable that these will be found to be the larva of the two large species of squille that are common at PanamaS. panamensis and S. biformis.

The larve of stomatopods are sometimes to be fonnd in immense schools. While with the Johns Hopkins University Marine Laboratory at Bimini in the summer of 1592 I fomd a few stomatopod larvie of varions kinds and stages almost every time that the towing net was used, but after dark on the eveniags of July 19, 20, and $\because 1$ the towing nots were crowder with an immense number of very small Gonerichthi, apparently identical with the form represented by Clans (1871) in his fig. 22 B.

THE ODONTERICHTHUS LARVA.

Two specimens among the larve from the Atlantic are of especial interest. They are probably in the last larval stage and exhibit most of the chamaters of comerichthi except that lateral teceth are to be seen beneath the larval skin on the dactylus of the raptorial limb. It is evident that they can mot be larve of Gomodnctylus, but, if Brooks is right in regard to the relations of the larval forms, the specimens before us must belong to a gemus very clasely related to fionoductylus. The nearest one is Odontorlactylus, and it seems probable that these
larvie belong to two manuown species of that gemes. They therefore represent a new larval type for which I propose the name Odonterichthus.

One of them (No. 995s, U.S.N.M.) was taken by the Ilbatross October 3,1883 , at station 2101, off Nantucket. It is represented in fig. 25. A comparison of this figure with Brooks' fig. ., pl. xir, which represents a Gonerichthus from St. Vincent, Cape Verde, will show a striking similarity. They both exhibit the form of body, the shape of the carapace, and telson, that Brooks has shown to be characteristic of the Gonodactylus larvie. An examination of fig. 25 will convey a better idea of this interesting form than pages of description. It will be seen that the specimen before us differs from Brooks' in having a somewhat shorter rostrum with five or six small spines on the ventral

odonterichthus larva.
Two teeth on the rostrum are hidden by the eye, Drawn with a carners lucida $\times 14$.
side, and in having a minute additional secondary spine on the ventral edge of the carapace. The dactylus of the raptorial limb is much more developed and shows five lateral teeth beneath the larval skin. The similarities are so much greater than the differences that the latter may be due merely to a difference in age, the one being an older stage of the other. These forms wonld appear to belong to a species in which the larvie can be distinguished from Gonerichthi only after the teeth begin to form on the raptorial dactylus.

The other species, however (fig. 26), is not so similar to the Gonerichthus type, but approaches the Pseuderichthus form, and this is just what we shonld expect if my view be accepted that this is a larva of Odontoractylus, because this genus is distinctly intermediate in some

Proc. N. M. $94-35$
of its characters' between Gonorlactylus and Pseudosquilla. Compare Odontoductylus. huranensis (pll xa) with (ionodectylus chiragra on the one hand and with Psendosquilla ciliath on the other, and then compare
 richthus, as, for instance, the forms figured by Brooks: on pl. xir, fig. 6, and on plo xy, fig. 11, respectively. It will be seen that this larva
 of the raptorial limb shows traces of seven or eight lateral teeth. It is thus excluded from either of the genera with which we have been comparing it. Odontoductylus havenensis, however, has six lateral teeth upon the dartylus and O. hansenii, recently described by Pocock (189:3) has nine distinct teeth, so that our larva may well belong to this gemus. It probably belongs to some West Indian species, was swept north by the (iulf Strean and then driven into Woods Holl by a southerly wind, for such has been the fate of many tropical creatures.

Brooks also found in the Challenger collections "larvie which closely resemble Pseuderichthus, although they may be Gonoductylus larvie;" perhaps they are younger stages of Odonterichthus.

TIIE METAMORPHOSIS OF SQUILLA QUADRIDENS.

At Bimini on the 7th of July, $189{ }^{\prime}$, several Alime were taken in the tow net. The two largest ones appeared to be alike on a superficial examination and were distinguished from the rest by the great elongation of the body in proportion to its width. One of these was preserved

[^134]in alcohol and is represented in fig. 27 . The other was left in the aquarium, and on July 9 it molted in the form seen in fig. 28 . I'nfortunately the two larvae were not compared care-
 fully before the molt, but I have no doubt that they were identical in form, for there was no difference in general appearance, and a careful comparison of the specimen represented in fig. 27 with the older one in fig. 28 shows so many features in common that one can hardly doubt that the one form is derived from the other, and this opinion is confirmed by the entire absence of any characters inconsistent with such a view. Of course, these two forms are separated by the critical change from the larval to the adult form, and there is more difference between them than between any other two stages.

The adult form (fig. 28) appears to be identical with Squilla quadridens, Bigelow, the type specimen of which was found on the Florida coast not far from where these larve were captured. A comparison of the figure with the deseription of the species (p. 511) will show that it corresponds in all the chief characters, althongh it probably would not assume its fully matured form and detail of structure until after several more molts. In the passage from the larval to the adult form the body becomes broader and more compactat the expense of its length, so that shortly after the molt it is but 1.1 cm . in length, while before it was 0.5 cm . longer. Another specimen whicil may have undergone another molt since assuming the adult form was captured by the towing net four days later.

The dactylus of the raptorial limb in the larva (fig. 27) is unatmed, but one can see three lateral teetl in addition to the terminal one lying beneath the larval skin. In this way it corresponds to the adult form, and at the same time recalls Brooks's description (1886, p1. 90-93), of Squillu (Alima) bidens, Claus, but a comparison of this description and the
acompanying figures with our form shows so many difierences that the two must be distinct.

Our larva, siquilla (Alima) quadridens, is in the first plate much smaller than Alimu bidens at the stage with three lateral teeth on the dactylns, the later being an inch in length while the length of the former is but 1.6 cm .

Then in our form the carapare is relatively shorter and narmower, making with the rostrum less than two-fifths of the total length of the body measured along the median

Fig. 2.

FIRST STAGE OE ADULT FORM OF SQUiILA QUADRIDENS.

Drawn with the camera lucida $\times 8$. line. The rostrum does not extend beyond the shafts of the first antenne and does not equal half the length of the rest of the carapace. The anterior lateral angles are not so prolonged, and the posterior lateral spines reach only so far as the boundary between the second and third of the four posterior thoracic segments, which are left exposed by a deep incision in the posterior margin of the carapace. There is a single secondary spine at the base of each posterior lateral process and three or four minute ones on the side of the carapace in front of the mouth. The hind body is more elongated than in Alima bidens and comprises more-than three-fifths of the total length from the tip of the rostrum, but, as in that species, all of the posterior lateral angles of the first five abdominal somites eud in acnte spines, and there are two submedian spines on the sixtl. The shape of the telson is very similar to that of the other species, but it has a different number of secondary denticles, there being on each side fifteen submedian, eight to nine intermediate, and no lateral ones, while in A. bidens they are $20 \mid, 1:-1: 3,0$. The basal prolongation of the monod shows beneath the larval skin the chatacteristic form of the adult, including traces of the acute teeth on the inner side. The raptorial claw is more slender than in 1 . lin!ens, and the mamm bears two equally
large eurved teeth on its proximal portion instead of 1 large one, and has numerous minute teeth on its distal portion.

A number of Alime were fomud at the same time in earlier stages. They are all of one species which is very similar to or identical with Alima gracilis, Milne-Edwards, and they may be the earlier stages of the form that I have just described, but no decision can be reached on this point, as the necessary intermediate stages are wanting.

LIST OF PRINCIPAL AND RECENT WORKS TO WHCH REFERENC' IS MADE, ARRANGED IN CHRONOLOGICAL ORDER.

17\%. DE GEER, Charles.-Mémoires pour servir à l'histoire des insectes. Stockholm.
1796. Herbst, Johann F. W.-Versuch einer Naturgeschichte der Krabluen und Krebse. Berlin und Stralsund.
1818. Sar, Thomas. - An account of the Crustacea of the United States. Jour. Acad. Nat. Sci. Phila., I, part II, p. 250.
1825. Latreille, P. A.-Squilla. Encyclopédio méthodique, Histoire naturelle,人, p. 471.
1837. Mine-Edwards, H.-Histoire naturelle des Crustacés. Paris.
1841. De Kay, James E.-Crustacea. Natural History of New York, Zoology, Pt. vi.
1815. Berthold, A. A.-Ueber verschiedene neue oder seltene Reptilien ans NeuGrenada und Crustaceen aus China. Abhandl. d. kön. Ges. d. Wiss. zu Güttingen. 3. Bd., pp. 3-33.
1850. Gibbes, Lewis R.-On the carcinological collections of the United States. Proc. Amer. Assoc. Altv. Sci., 1850, p. 193.
de MAan, W.-Crustacea. Siebold's Fauna Japonica.
Milve-Edwards, H.-Les Crustacés. In Le Règne Animal, par Georges Cuvier. Edition accompagnée des planches gravées. Paris. pp. 151-163.
18.i. Dana, Jaines D.-Crustacea, part I. U. S. Exploring Expedition under Wilkes, xim.
186.). Hess, W.-Beiträge zur Kenntniss der Decapoden-Ǩrebse Ost-Australiens. Arch. f. Naturg., Xxxi pp. 126-173.
1868. Heller, C.-Crustaceen. Reise der oesterreich. Fregatte Novara, zool. Theil, 2. Bd., ill Abth.

Milne-Edwards, A. Nouv. Árch. Mus. Hist. Nat., 1v, p. 6 .
1sit1. Clads, C.-Die Metamorphose der Squilliden. Abhandl. d. Gesel. Wiss. Güttingen, $\times V I, p .1$.
182. von Martens, E.-Ueber Cubanische Crustaceen. Arch. fïr Naturgesch., II Bd., p. 147.
18i3. Mine-Edwards, A.-Description de quelques Crustacés. Jour. des Musenm Godeffroy, I, Meft 4, p. 77, Taf. 12 and 13.
18\%.) Wood-Masox, J.-On new and little known Crustacea. (Abstract.) Proc. Asiatic Soc. Bengal, 1875, p. 231.
1879. Kirk, T. W. - On additions to the carcinological Fauna of New Zealand. Trans. N. Z. Inst., XI, p. 304.

Brooks, W. K.-The larval stages of Squilla empusa. John Hopkins Univ. Studies Biol. Lab. I, No. 3, p. 143.
1880. Miers, E. J.-(a) On the Squillide. Ann. and Mag. Nat. Hist., Ser. 5 , r, pp. 2-30 and 108-127. (b) Malaysian Crustacea, 1. c., pp. 458-160.
Fossmany, R.-Zoologische Ergebnisse einer Reise in dem Küistengebiete des Rothen Meeres. Leipzig: Engelmann. Heft 2, p. 99.
1881. Nifens, E. J.-Crustacea. In the survey of II. M. S. Alert. Proc. Zool. Soc. Loudon, p. 61.
1881. Smitir, S. I.-Preliminary notice of the Crustacea dredged off the south coast of New England by the U. S. Fish Commission, in 1880. Proc. U. S. Nat. Mus., III, pp. 413-452.
von Mantens, E.-Vorlegung einiger Squilliden ans dem zoologischen Mnselm in Berlin. Sitzungs-Berichte der Gesel. Naturf. zu Berlin, Jahr. 1881, pp. 91-94.
1882. Faxon, W.-Crustacea, in Selections from Embryological Monographs, compiled by Alexander Agassiz, Walter Faxon; and E. L. Mark. Bull. Mus. Comp. Zool., IX, No. 1.
De Vis, C. W.-Description of a species of Squill from Moreton Bay. Proc. Linn. Soc. N. S. Wales., vir, p. 321.
Haswell, W. A.-Catalogue of the Australian Stalk- and Sessile-eyed Crustacea. Sydney.
Thomson, G. M.-Additions to the crustacean fauna of New Zealand. Trans. N. Z. Inst., xiv, p. 230.
1884. Mers, E. J.-Crustacea. In Report on the Zoological Collections made in the Indo-Pacific Ocean during the voyage of II. M. S. Alert, 1881-1882. London.
1886. Brooks, W. K.-Report on the Stomatopoda, voyage of the Challenger. Zool., XVi, if.
1887. De Man, J. G.-Ind. Arch. Decapoden und Stomatopoden. Arch. f. Naturgesch. I, Heft 3, 1. 571.
Müllele, F.-Zur Crustaceenfauna von Trincomali. Verh. nat. Ges. zu Basel, Theil ViII, 2. Heft, p. 470.
1888. de Man, J. G.-Report on the Potophthalmons Crustacea of the Mergui Archipelago. Jour. Linn. Soc., London. Zool., xxir, p. 295.
Pocock, R. I.-Crustacea of the China Sea. Ann. and Mag. Nat. Hist., Ser. 6, v, pp. 72-80.
1889. Gerstaecker, A.-Arthropoda, in Bronn's Klassen und Ordnungen des ThierReichs, V. Bd., II. Abth., pp. 686-751, Taf. 6t-68.
Preffer, G.-Uebersichte der von Herrn Dr. Franz Stuhhnann, in Aegypten, anf Sansibar, und dem gegeniiber-liegenden Festlande gesammelten Reptilien, Amphibien, Fische, Mollusken und Krebse. Mitteilungen ans d. naturhist. Mus, in Hamburg, yi. Jahrg., 5. (Aus dem Jahrb. der Hamb. wiss. Anstalten, VI.)
1891. Bigelow, R. P.-Preliminary notes on some new species of Squilla. Johns Hopkins Univ. Circ., 88.
Ives, J. E.-Crustacea from the northern coast of Yucatan, etc. Proc. Acad. Nat. Sci. Phila., 1891, p. 184.
1892. Brooks, W. K.-Tho habits and metamorphosis of Gonodactylus chiragra, in Brooks and Herrick, The Embryology and Metamorphosis of the Macrura Memoirs Nat. Acad. Sci., v, No. 4, chap. 3, pp. 352-360.
1893. Bigelow, R. P.-(a) Preliminary notes on the Stomatopoda of the Albatross collections and on other specimens in the National Museum. Johns Hopkins Univ. Circ. 10f, June 1893, p. 100.
(b) The Stomatopota of Bimini, 7. c., p. 102.

Pocock, R. I.-Report upon the Stomatopod Crustaceans olbtained during the cruise in Australian and China Seas of H. M. S. Ienguin. Ann. and Mag. Nat. Hist., series 6, x1, No. 66, June, 1893, pp. 473-179, pl. xx, B.

THE PTERYLOGRAPIY OF CERTAIN AMERICAN (OOATSUCKERS AND OWLS.

By Hubert Lyman Clark.

A recent examination of a number of ('aprimulgi and Striges for the purpose of studying their pterylographical characteristics has proved of such interest that the results seem worthy of publication, although tie work is necessarily only preliminary. In the carrying on of these studies I have been placed under great obligation to Dr. R. W. Shufeldt and Mr. F. A. Lucas, of Washington, for many helpful suggestions, and to the National Museum for much of the material. For the rest of the material I am indebted to Mr. F. A. Ward, of Rochester, and especially to Mr. Frank B. Armstrong, of Brownsville, Tex., who has given me invaluable assistance. I am also under great obligations to Dr. W. J. Holland, of Pittsburg, for the use of his valuable scientifie library, without which I should have been placed at great disadvantage.

All of the specimens examined have been birds in the flesh, either fresh or alcoholic, as the use of skins for the study of pterylography seems to be of questionable value. Owing to the fact that Striges have eleven primaries while Caprimulgi have only ten, I have adopted the somewhat radical change advocated by Wray* of numbering the primaries from the wrist outward instead of from the tip of the wing inward, as is usual. Although I do not consider the plan wholly free from objections, it has been necessary to do this to avoid inextricable confusion in comparing the primary formulae in the two groups, for the real first primary of the owls is wanting in the Caprimulgine wing. For the same reason the central pair of tail feathers is designated as number one and the outer pair five or six, as the case may be.

As the four genera of North American Caprimulgi have all been examined, I give first as complete a review of the pterylosis of this group as the material at hand will warrant, with particular reference to each gemus. After this is given an account of such owls as have been obtainable, and this is followed by a comparison of the pterylog. raphy of the two groups and the conclusions to which I have been led. The work is, as already stated, only preliminary, and, of course, can only be completed by a study of all the important species of both
groups, but it is hoped that the present article may not only serve as an introduction to such a work, but may also arouse more interest in the study of comparative pterylography.

CAPRIMULGI.

In Nitzsch's "System der Pterylographie" there is given a fairly complete account of the pterylosis of Cuprimulgus curopeus and further remarks on C. longipemis, forcipatus, and spalurus, Egotheles nove hollandia, Podurgus gigu:, and Nyctornis othereus, but apparently the celebrated German had not examined our North American species. Dr. Shufeldt has carefully described the pteryloses of Autrostomus and Chordeiles in his memoir on the Macrochires,* and the former is figured. So far as I know these are the only important papers which have yet appeared bearing directly on the pterylography of the group, unless we include Stentornis, which has been examined and the ptery. losis figured by (rarrod, \dagger although it is not improbable that others may have escaped my search.

The Caprimulgi are remarkable for the variations shown in the pteryloses of the different genera, but the plan is similar in all the North American species and may be briefly summed up as follows: The whole head is fully covered with feathers, which are, however, arranged in more or less complete and often parallel longitudinal rows, forming on the forehead and crown definite patterns, each genus having its own peculiar arrangement. From the head there extends backWard comsally the upper cervical tract which, dividing between the shoulders into two strong forks, extends to the end of the shonder blades. The dorsal tract, which begins immediately behind this fork, shows great variation in its distinctness and extent, but is usually more ow less forked at first and then, uniting into a single tract, runs backward to the root of the tail. Anteriorly it may mite its two brauches with those of the cenvical tract, thas inclosing a diamond-shaped spinal space, as hest shown in Phulcenoptilus, or it may spread out more decidedly toward the sides and even send forward a few feathers almost to the humeral tracts, as is well shom in Chordeiles virginiams. The humeral tracts are strongly definerl, and the upper surface of the wing is very completely feathered, except for an evident apterium at the onter end of the humerus. The parapterum is not always very evident, but usually comects the humeral tract with the feathers of the forearm, of which there are seren or eight more or less complete rows, the lower three or four being the secondary coverts, while there are also two very strolig rows of primary coverts. Directly at the knee joint is a prominent femoral tract, which, after crossing the tibia diagonally, extends part way along the posterior edse of the femm, althongh it never reaches as far as the dorsal tract. The pterylosis beneath is more miform. The

[^135]lower cervical tract forks at about the middle of the neck and each branch extends down orer the side of the breast, where it is very broad and strong, and then (as it enters on the surface of the abdomen, or a little before) suddenly contracts to a strip only two rows broad, which curves inward and ends a little in front of the anus. The hypopterum is generally very evident and connects the sternal tract with the incomplete fourth row of under wing coverts. The lower surface of the wing is very slightly feathered, but there are tro complete rows of primary and three of secondary coverts and an incomplete fourth row of the latter. The four genera agree also in the following details:

Aftershafts present but weak. True down wanting. Oil gland not tufted. Primaries, 10. Rectrices, 10. Alula feathers, 3. Secondaries, 12 or 13 , but the wing is aquincubital.

The larger wing and tail feathers are all pecnliar in the length of the quill (callamus) and the corresponding shortening of the shaft (rhacis) which ends with the vexillie. The four genera fall naturally into two groups, as follows:
I. Secondaries, 12; tail not forked, tho central pair of rectrices longest ; rictal bristles very prominent ; infra-mandibular region sparsely feathered; no inner branch or tooth on the lower cervical tract.
A. Only 8 complete longitudinal rows of feathers on the crown. Tarsus not feathered at all

I'hal.enopthats.
B. Eight complete rows, but tarsus feathered halfway down in front.

Antrostomus.

II. Secondaries, 13; tail forked, central pair of rectrices shortest; rictal bristles not evident; inframandibular region well feathered; lower cervical tract with a prominent inner tooth.
A. Ten complete rows on crown. Tarsus feathered in front Chordeiles.

Gems PHALENOPTILUS.
Of this genns I have only had the opportunity'to examine one sperimen, but as that was in good condition, it probably illustrates correctly the pterylosis of the genns. As the primaries had been cut off, the formula for their comparative lengths can not be given, but there irere 12 secondaries. On each side of the head, along the edge of the rictus, there is a single row of long, stout, bristle-like feathers. Above this is a second row of smaller contour feathers and above this a third incomplete row of the same. From the base of the culmen (fig. 1) there run backward on each side two rows of contom feathers, so near together as to almost make a single row. For a short distance these double rows are about parallel, and then curving inward they mite for a short distance into a band thee rows broad. On the crown they separate once more into four distinct rows, which, although somewhat curved, are almost parallel* for some distance, but mite again at the commencement of the cervical tract. Another row begins on each

[^136]side just behind the nostrils and rums backward into the cervical tract almost parallel to those first described. The fourth complete row on each side commences under the eye, near the angle of the mouth, and atter ruming forward a little way curves up and back and rums parallel to the others into the cervical tract. There is another incomplete row on each side, which begins about the middle of the upper eyelid and runs down the back of the head behind the ear, but does not seem to join in the cervical tract. The rows are closer together than in any of the other genera and curve as shown in fig. 1. The upper cervical tract is quite broad and is clearly and widely forked at the end. The dorsal

pterylosis of phalanoptilu's nuttalli.
tract extends forwand from the oil gland, in a mather narrow band which is forked in front and mites planly with the cervical tract, thins inclosing a diamont-shaped spinal space. There are on each side of this fork a few soattered contour feathers, but they are not very evident. The femoral tract is clearly defmed, but is not peculiar in any way, thongh on the femm between it and the dorsal tract there are many scattered contour feathers. There are also a few such feathers on the tibia, but there are none on the timsins. The humeral trants are strong and extembing clear across the shoulders mite with the rentral tracts. The featherson the chin and thont (f g. . 2) ane widely separated and are artanged in more or less longitudinal rows which converge in front to
unite at the base of the gonys. The lower cervical tract is broad and divides near the middle of the neck. The ventral tract contracts on the breast some distance before reaching the posterior edge of the sternum and ends a little in front of the anus. There are seattered contour feathers on the belly and on the sides of the breast anterior to the hypopterum.

Specimen examined.

Genus AN'TROSTOMUS.
In general, this genus seems to agree very well with Phalanoptilus. The ten primaries give the following formula in comparative lengths: $S=9,7-10,6,5,4,3,2,1$, and there are 12 secondaries. The patteru

PTERYLOSIS UN ANTROSTOMLS VOCIFERUS.
of the hear-feathering (fig. 3) differs from the preceding genus in the absence of the third row aloug the rictus; in the greater curvature and wider separation of the rows and in a fer other minor details easily seen ou an examination of the plates. The upper cervical tract is broal at the start bat becomes rapidly very narrow, while the rest of the upper
surface agree: with Phulomoptilus, although the dorsal tract i.s much broader, and there appear to be no scattered contour feathers on the back. Tentrally introstomus differs from the "Poor-wills" in a much greater sparseness of feathers on the chin (fig. 4) and in the continned breadth of the sternal tracts, which become narrower only as they enter on the surface of the abdomen. The feathering of the tibia does not end at the joint, but extends down on the tarsus in front, more than half way to the toes.

Specimens examined.

No.	Name.	Collection.	Condition.
1	Antrostomus vociferus-do	U. S. National Museum Brownsville, Tex	Alcoholic. Fresh.

It will at once be seen from the above description and figures that my observations on the pterylosis of this genus differ radically from those of Dr. Shufeldt.* In regard to this difference, Dr. Shufeldt assures rae that he has compared lis figure, since its publication, with other specimens and has found no changes necessary. He las, however, very kindly permitted me to examine his original drawings, and it is only fair to say that they do not differ so much from mine as do the figures in the plate. The latter seems to have been very carelessly executed, and so it is desirahle to have a more aceurate figure, which I hope is to be fom above.

Cienus N Y C'IIDROMUS.

In this genus the wing is very much like Autrostomus, as there are twelve semondaries, and the ten primaries wive the following formula: $8,9,7,10,6,7,4,3,2,1$.

On the head (fig. is) we find an arrangement of the rows quite different fiom the other there gencra. There is the usual donble row ruming fiom the foot of the rulmen over the middle of the head, back to the cervical tract. Beside this and parallel to it are two single rows some distance from it and from each other. There is then a difth complete row, ruming from the amgle of the mouth bemeath the cye, forward, then up and back over the mper evelid, and finally into the cervical tract with the other fomr. From the imer side of this row a branch roms forward for some distance along the superior edge of the ere cavity. The row of rictal bristles is prominent, and there are a number of contour feathers, filling the spa:e between it and the fometh longitudinal row. The upper cervical tract is very narrow, while the dorsal tract is rather broad. The spinal space is not very clearly defined, and there are several bows of strong contom feathers (with weaker ones scattered alont) ruming at almost right angles to the dorsal tract, extending out from its anterior end. The femoral tracts are unusmally well developed, and the tibie are feathered rery

[^137]sparsely, but the tarsus is wholly bare. The humeral tract shows the remarkable peculiarity of not reaching entirely across the shoulder. but becomes almost obliterated at its anterior end. This was clearly shown in all the specimens examined. In the infra mandibular region the feathering is even more scattered than in Antrostomus, so as to

PTERYLOSIS OF NYCTIDROMUS ALBICOLLIS MERRILLT.
leave two very distinct and complete apteria (one on either side) and a less evident one in the center. The lower cervical tract (fig. (6) is very narrow and is deeply forked. The parapterum is not very strong, and in one specimen the hypopterum nearly failed altogether. In all other respects, however, it seems to agree with Phalamoptilus.
specimens cxamined.

Genus CHORDEILES.
In all of the specimens examined the primaries had been cut so that their formula can not be given, but there were 13 secondaries. On the head we see that the rictal bristles are so insigmficant as to leave in
the plucked bird very little trace of their presence. There is on each side of the crown the usual donble row of featherss ruming back ward trom culmen to cervical tract, and beside this, but at some distance from it, two widely separaterl parallel longitudinal rows. A fifth row runs across the extreme upper part of the eyelid with an onter branch down to the eyelid proper. The upper cervical tract is very broad in ('. cirginimmus (fig. 7), but in ('. texcensisit is as narrow as in Lutrostomus. In C. cirginiomus the fork of the cervical tract is rery strong, but that of the dorsal tract is very indistinct, while from each side of the latter there

PTERYLOEI; OE CHORDEILES VIRGINIANUS.
extends a broad tract out and up over the back so as to connect very slightly with the broad humerals. In C.texensis the dorsal tract is much like Antrostomus, and there are no traces of the peculiar tracts, just described, on the sides of the back. In both species of Chordeiles, howerer, the femoral tracts are normal and the feet are feathered half-way down on the tarsus in front. On the lower surface (fig. 8) the two species agree with Phelumoptilus, except that the infra-mandibular region is very well feathered and the lower cervical tract, dividing very far up, on the throat, bears on its inner edge, close by the furcula, a very noticeable branch or tooth, while the sternal tracts are remarkably broad and strong.

Specimens examined.

In regard to the differences in the dorsal tract as above given between C. dirginiunus and ('. texensis, it is probable that an examination of fresh material, which it was impossible for me to obtain, will show that they are not so great as I have indicated. Indeed, it is likely that good specimens of ('. texensis will show dorsal tracts similar to C. virginiomus, as Dr. Shufeldt fonud them so in the specimens which he examined.*

STRIGES.

In his System des Pterylographie, Nitzsell has given an aceount of the pterylography of some 21 species of owls, of which at least tive are American, namely: Strix carginiana (Bubo virginianus), S. brachyotus (Asio accipitrinus), S. asio (Meguscops asio), S. myctect (Nycte" nyctect, and S. cunicularia (Speotyto cunicularia). Besides these, \therefore. lapponica is closely allied to our Scotinptex cinered and Hybris flemmeat is represented in our Strix pratincola. Aside from Nitzsch's work the only contribution to the pterylography of the owls which I have found is contained in some "Notes on the Auatomy of Speotyto cunicularia hypogaea" by Dr. Shufeldt, \dagger in which is given a very complete and accurate account of the pterylosis of the burowing owl; important differences between that form and the other owls being pointed out. As a rule, however, it may be safely said that the owls show a striking uniformity in the arrangement of the feathers, of which the general plan is as follows: The head is more or less fully feathered above, and especially densely in front. The upper cervical tract usually commences broad, but rapidly becomes narrow, and forks between the shoulders more or less deeply. The dorsal tract is very incomplete anteriorly and is only indistinctly connected with the cervical forks, but posteriorly it becomes a strong single band, which forks behind so as to more or less surround the oil gland. The hmmeral tracts are strong and usually broad and the parapterum is very evident. There are tro complete rows of primary coverts, and on the forearm there are seven or eight rows of feathers, of which the lower three or four are trie secoudary coverts. The femoral tract is very strong and evident, running obliquely across the upper end of the tibia from the knee, along on the posterior edge of the femur. The tibia and tarsus are usially very completely covered with feathers, and often the toes also. At the base of the gonys the infra-mandibular region is very thickly feathered, but this dense patch divides abruptly and either passes up on each side and runs along the ear-conch, as in those owls in which this conch is fully developed, or, as in other species, disappears on the rami of the lower jaw. The rest of the chin and throat are very sparsely feathered in most owls, but in others it is fully covered. The lower cervical tract is narrow and is divided on the neck so as to pass down on either side to form the strong sternals. It is also connected with the hmmerals, and especially with the

[^138]triple row of small feathers on the lower edge of the patagium, while all of the upper outer corner of the breast is usually more or less feathered. From the lower end of the sternal tract there runs a strong hook over to the hypopterum, which is itself very evident. There are two rows of primary and three or four of secondary under coverts. The ventral tracts rommence on the breast, usually near the fureula, and seem to be fused with the sternals at first, but soon separate from them and run down on either side almost to the anns, becoming very narrow on the belly. strix shows a very peculiar modification of this typical form, in the fusion again of the sternal and ventral tracts at the posterior end of the former. The post-anal tract, comprising the under-tail coverts, is strong and very conspicuous in the larger species. All of the specimens of Striges examined agreed in the following details:

Aftershafts wanting. True down wanting. Oil gland not tufted. Primaries 11 , the eleventh very small. Rectrices 12 (except Micropallas). Alula feathers 4 . Wing aquincubital.

As only nine species, representing eight genera, have been available for study they can not be very satisfactorily arranged in groups pterylographically, but when all the genera are examined such an arrangement may be possible. For the sake of convenience I have, however, divided the eight genera as follows:
I. Head uniformly and thickly feathered above and sometimes below, although the lateral neck spaces reach nearly to the ears and the infra-mandibular region is sometimes sparsely feathered, often showing apteria aloug the rami of the lower jaw.
A. Rectrices 10 .. Michorallas.

I3. Rectrices 12.
a. Upper cervical tract well forked; ninth, eighth, and seventh primaries longest . spevtyto.
b. Upper cervical tract slightly forked; seventh, sixth, and eighth primaries longest.

- Glaveidium.
II. Head not uniformly feathered, but usually showing longitudinal rows on the crown, and the infra-mandibular region is very sparsely feathered.
A. Sternal tract free from ventral at posterior end; outer pair of rectrices shortest.
a. Linear arrangement of feathers near the center of the crown between the eyes, but on account of their nearness to each other not showing any very definite pattern; lower cervical tract clearly defined on the chin SyRNIUM.
b. Linear arrangement of feathers on the crown forming a definite pattern between the eyes or else not evideut at all; lower cervical tract indistinct on the chin ; ninth, eighth, and seventh primaries longest. Asio.
\therefore Linear arrangement of feathers on the sides of the crown, back of the eyes. 1. Tarsus fully feathered; seventh, sixth, and eighth primaries longest.

Megascors.

2. Tarsus only feathered in front halfway to the toes Gymnoglaux
B. Sternal tract fused with ventral behind as well as in front; middle pair of rectrices shortest.
(1. Ninth, eighth, aud tenth primaries longest

Strix.
Note.-The above arrangement is not intended to show any affinities between these genera, but simply to set out more prominently some of the differences.

Genus MICROPALLAS.

Infortunately, I have only had the opportun ity to examine one specimen of this very interesting genus of little owls, but Mr. Lucas and Mr. Ridgway have very kindly examined the skins of both. II. whitneyi and JI. graysoni in the National Musemm, and have therehy coufirmed its chief peculiarity, namely, the presence of only ten rectrices. Indeed, the specimen which I examined had only nine, but there is a possibility that one had been lost aceidentally. The primaries had been cut, and so their formula can not be given, but there were only 13 secondaries. In the general pterylosis this genus differs from A sio accipitrimus (figs. 9 and 10) in the uniform feathering of the head above and below, except the naked space ower the eye; in the narnowness and weakness of all the tracts, but especially the femoral; and in the somewhat less complete feathering of the toes, where the feathers are very hair like. The dorsal tract and the posterior end of the cervical were not easy to make out, but seemed to be like Asio. In fresh specimens, however, I should expect to find the cervical tract scarcely forked and the dorsal extending forward so as to almost meet it, as in Giluncidium.

Specimen examined.

Genus SPEOTYTO.
Although this genus shows some modification of the typical Strigine pterylosis, it did not seem necessary to publish a tigure, as one has already appeared with a full account of these differences in the Jommal of Morphology for June, 1s89, by Dr. Shufelrt. All the specimens which I have examined agree with the description there given, althongh really the width of the tracts is not so especially noterorthy when compared with our other owls as in comparison with the figures of Nitzsch. Indeed, I have not noticed in any of the owls which I have examined the extreme narrowness of the tracts to which Nitzsch called attention, although they may be narower than those of the hawks and some other birds. The chief peculiarity of speotyto lies in the uniform feathering of the whole head, more complete than in any other owl I have seen. This was especially clear in the young bird from the National Musemm, where the sides of the head were more fully clothed than in the adults. The lateral neck spaces are broad and do not reach quite to the ear, as in other owls, but permit, instead, a slight mion of the upper and lower cervical tracts on the sides of the head. In all other respects Speotyto agrees with A sio, except that the tarsus is only feathered to the base of the toes, and that only in front. The eleven primaries rank as follows in length: $9=8,7,6=10,5,4,3,2,1,11$. Proc. N. M. $94-36$

There are fifteen secondaries and twelve retrices, but of the latter one bird from the National Museum (No. Sing3) possessed thirteen.

Specimens examined.

Nitzsch says of $尺$. cumicularia that "it has twenty-four remiges, of which ten are on the hand; the first equals the fifth; the second between the fourth and fifth; the third somewhat longer than the fourth." Since he does not mention the refl first primary, it is neces. sary to add one to earh of these figures in order. to get the formula as he meant it. Reversing the notation, it then becomes $8,7,9,6=10, \overline{5}$, $4,3,2,1,11$, which agrees substantially with what I have given. Althongh Nitzsch allows the genns only fourteen secondaries, both Dr Shufeldt and I found fifteen.

Genus GLAUCIDIUM.

The pterylosis of this genus is very similar to that of Micropallas and speotyto, but the infra-mandibular region is not at all thickly feathered and there are distinct apteria along the rami of the lower jaw. The upper cervical tract is broader than usual and posteriorly divides so very slightly that the fork is not clearly defined at all, while the dorsal tract extends farther forward than in A sio, althongh it does not quite reach the end of the cervical. The humeral tracts are not very broad, being narrower than the upper cervical. The femoral tract is well developed and the tarsus is feathered only as far as the somewhat hairy toes. Beneath Glaucirlium agrees closely with Asio, although the ventral tracts are not quite so clearly marked on the breast. The formula for the primaries is as follows: $7,6,8,5,4=9,3,2,1,10,11$. Two of the specimens examined had fourteen and the other two fifteen, secondaries, while there are, as usual, twelve rectrices.

Specimens examined.

Genus S Y RNIUM.
The only specimen of this gemus which I have examined agrees very well in the general pterylosis of the body with A sio aceipitrimus, but dif-
fers on the head in a few details. The lomer cervical tract is clearly defined on the chin instead of being indistinctly seattered, while on the crown the longitudinal rows are so close together and so similar that the general effect is like the uniform feathering of speotyto. The feet are fully feathered to the base of the toes and the latter are more or less feathered above. The wings had been clipped but there were apparently sixteen secondaries.

Specimen examined.

No.	Name.	Collection.	Condition.
1	Sjrnium nebulosum.	U. S. Nat. Mus .	Alcoholic.

Genus ASIO.
This genus seems to me to show, best of all the owls I have examined, the typical Strigine pterylosis, and this in especially true of A. accipitrinus. The dense feathering of the anterior part of the head; the apterium above tiee eye; the four distinct longitudinal rows on the

PTERYLOSIS OF ASIO ACCIPITRINLS.
crown, a pair on each side; the broad upper cervical tract rapidly narrowing and deeply forked; the strong humeral tract and parapterum on each wing; the rather weak dorsal tract indistinct at first, but clearly defined posteriorly and forking to include the naked oil gland; the strong femorals with numerous scattered feathers between them and the dorsal; the feathering of the feet almost to the claws; the very sparsely feathered infra-mandibular space; the deeply forked lower cervical tract; the very evideut contour feathers on the upper outer
part of the breast, and whefly the complete separation on the breast of the sternal and rentral tracts, all make up the typical poterylosis of the owls and are clearly shown in figs. 9 and 10. Asio wilsoniomus does not show these points as well, or at least the specimens which I Was able to obtain did not show them, but as they were not in very good condition it is possible that perfect material will show more complete asreement with Asio recipitrimus. The species of wilsonimus. examined did not show clearly the longitudinal arrangement of feathers on the crown, although the head was not miformly feathered as in speotytu; the femoral tract was no longer a true femoral, but scarcely reached the femm at all, being confined to the back of the tibia (this may be easily understood hy imagining the femoral tract in fig. 10 to be moved down on the tibia one-eighth of an inch nearer the tansus) ; on the front of the tibia the feathering was so very dense that there was a very distinct tract there. The two species asreed in possession of fiftern secoudaries and in the following formula for the primaries: $9,8,7,10=6,5,4,3,2,1,11$.

Specimens examined.

Nitzsch says of strir bruchyotus: "Twenty-four remiges, the second the longest, the first somewhat shorter than the third." Making the same addition and reversion as we found necessary under speotyto, this formula becomes ! $, 8,10,7,6,5,4,3,2,1,11$, which is almost the same as that I have given. He only credits the genus with fourteen secondaries, while I have always found one more.

Genus MEGASCOPS.
Exeppt for the peculiar difference in the arrangement of the longitudinal rows on the head, the poterylosis of this gemus is rery much like that of A sio. 'This difference is very

Fig. 11.
HEAD OF MEGASCOPS ASIO.
Showing arrangement of longitudinal rows. well shown in the plates and may be briefly characterized thus: In Λ sio the longitudinal rows are central, while in Megascops they are lateral. On the infra-mandibular space the feathers are more numerous in the screech owls, but other distinctions are not obvious. There are fourteen secondaries, and the eleven primaries rank as follows: $7=6,8,5,9,4,3,2,10=1,11$. The fect were more heavily clothed in feathers, though the same surface was
covered, in the specimen fiom New Iork State than in liemicottio and in the latter more than in me callii.

Specimens exumined.

Nitzsch says of Scops asio: "Twenty-two remiges * * * the fomth the longest, the third equal to the sixth, the second to the serenth, and the first seareely to the ninth." This gives the formmat $7,6, S=5,9=4,3,2.10,1,11$, which is about what I have given. He only allows twelve secondaries, while I have alwiys tomn fourteen.

Genus GYMNOGLAUX.

Among the other owls from the National Mnsemm, there was a representative of this gemus from Puerto Rico, hut its specific identity mas not known. It agreed in uearly all particulars with Meguseops, the only important difference being in the feathering of the feet. The longitudinal rows on the head were arranged as in IIeyuserps, although they were not quite so dearly defined. The tibia was hearily feathered in front, but the tarsus was only clothed abont half-way down and was bare on the sides and behind, so that it tras more extensively demuded than in auy other owl examined. The primaries had monformately been cut, so that their formula can not he given, but there seemed to be only thirteen secondaries, a small number for an owl.
specimen examined.

No.	N゙ame.	Collection.	Condition.
1	Gymuoglaux sp. ?	C. S. Nat. Mus	A coholic.

Genus S'TRIX.
'This geuns shows a greater variation from the normal owl-type than any other of which I know and would deserve a figure it it had not already been so well figured by Nitzsch. It differs from Asin in the following particulars: The head is more uniformly feathered above and shows no signs of longitudinal rows, but the infia-mandibular region is scarcely feathered at all, except for the very narrow lower cerrical tract, which begins at the base of the gonys and extends nearly to the furcula before forking widely. It is, however, slightly divided for some distance before it actually forks, so that the upper part of each branch is abruptly
wider than the lower, although there is no true inner branch given off. The upper cervical tract is very urrow, while the humerals are narrower than in any other genus and the parapterum is weak. The femorals are strong, but very difiuse, and are scattered over most of the femur. The feet are not feathered quite to the toes, hat the latter are very hairy. The sternal tract is fused with the ventral, not only at its origin near the fureula, but also at the other end of the breast, so that the tracts are really one; very broad on the sternum, and containing a longitudinal apterium, and becoming abruptly narrow on the belly. The hypopterum is rery strongly marked, and the hook comecting it with the stemal tract is composed of larger feathers, and they are much more numerous than in the other owls. Indeed, the whole breast is much more thickly feathered than in Asio. Another remarkable peculiarity is the formula for the comparative leugths of the rectrices. In all the other owls the middle pair of tail- feathers is the longest and the extermal pair shortest, so that the formula is.1, 2, 3, 4, 5, 6. In strix, however, this is exactly reversed, the outer pair being the lougest and the formula reading $6, \pi, 4,3,2,2$, . There are fifteen secondaries and the primaries rank as follows: $9,8,10,7,6,5,4,3,2,1,11$.

Specimens examined.

Nitzsch says of IIybris flemmen: "Twenty-four remiges, the three first about equally long, but the second is really the lonsest." This formula is the same as what 1 have just given. There are, however, fifteen secondaries, instead of fourteen, as Nitzsch says.

COIIPARISON OF THE TWO GROUPS.

Before entering on a detailed comparison of the tro groups which we hate been examining, it will set some of the facts more clearly before us if we arrange them in tabular form.

Comparison of the groups.

Group.	Number of primaries.	Number of feathers in the alula.	Aftershaft.	Condition of oil-gland.	True domn.	Condition of wing.
$\begin{aligned} & \text { Caprimulgi } \\ & \text { Striges.... } \end{aligned}$	10 11	4	Present. T:antins	Bare	$\begin{aligned} & \text { Wanting } \\ & \text {. } \mathrm{dolo.} \end{aligned}$	$\begin{aligned} & \text { Aquincubital. } \\ & \text { ilo. } \end{aligned}$

Comparison of the generu.

Maving thus set the more important facts before ns in a condensed and therefore consenient form, let us see what inferences, if any, ran be drawn from them. In order to estimate correctly the value of likenesses and the weight of differences, one must first comsider the relative importance of the different pterylographical eharacters in any two groups. We may safely assert that the most importance attaches to the fundamental plan of the pterylosis, while slight ramations camy little weight. 'This is to be infered from the uniform: pterylosis of - lemly defined groups such as the Grouse or eren the Passeres. Next to this I should rank the condition of the wing, whether aunincubital or not, and the number of rows of coverts and then the condition of the oil-glaud tuft, aftershaft, and wown. The number of rectrices, remiges, and feathers in the alula are much more variable and depend to some extent perhaps on the size of the bird, but of comse agreement in these details would carry more weight than differences. Less valuable would be the demulation of the tarsus and tibia, which is more or less deperndent on the habits of each species, while the least important of all characters is tine presence or absence of peculiar feathers or crests, beranse these often differ eren in the two sexes of the same species. Estimating the ralue of the characters in this way, let us now examine, under the following four heads, the comparative pterylography of the two groups before us: (1) fundamental plan of pterylosis, together with its variation in detail: $(\underset{\sim}{2})$ arrangement of the feathers of the wing; (3) aftershafts, oil gland, and down: (4) tail.

Fumbumental plan and rariation in detail.-In regard to the fundamental plan of the perylosis, it neeths only a slane at the figures to show us that while dorsally the two groups are rery similar, there is Fentrally at least one important difference. On the head the feathering is much more dense and miform in Striges than in Caprimulgi, but there are nevertheless signs in the former group of a tendency towards a less uniform covering, as witness the longitudinal rows of Asio and Mequscops. Furthemore, in Chordeiles, there is at moth more uniform feathering of the infra-mandibular region than in any owl except possibly spotyto. There is no constant difference betwern the two groups in the upper and lower cervical tracts Which are always narow and cemrly forked. The dorsal tract is prattieally the same in looth, varying indeed in the different genema as to its extent and its union with the forks of the upper cervical. The strong humerals with an evident parapterum are also common to the two gromps and the peculiarly placed femoral tract is likewise charac teristic of both, which is the more remarkable as the tibia is almays much more heavily feathered in Striges. As a rule, too, the owls have the feet much more fully clothed, hat as much of the tamis is bare in Gymmoglunx as in Antrostomus so that this slisht difference is by no means constant. On the ventral surface the two groups agree in several minor details such as a strong hypopterm and hook, connecting with the sternal tract, and the mumerous scattered feathers on the upper outer corner of the breast and on the shonder, including a comection between the lower cervical and the humeral tracts. But it is on the breast that we find the first real difference in the fundamental plan, and this demands a careful examination. In the Caprimulgi, the lower cervical after forking continues on each side as a single tract, forming on the breast a broad and strong sternal, and on the belly, after narowing abruptly, the much weaker ventral tract. In the Striges on the other hand, the lower cervical, after forking, forms on earlh side of the breast the well-marked sternal tracts, but does not contime dowin on the belly to form the rentrals. These are, on the contrary, in the typical Strigine pterylosis, entirely separate from the other tracts at least as far up as the furcula and owing to their weakness at that point their mion with the stemals is often very indistinct. It will be at once seen that this difference is really important, but when we consider the condition of these tracts in Strix, we find an arrangement that is really intermediate between the two groups, and this gives us a hint as to how the Caprimulgine form may have been derived from such an arrangement as ocrurs at present in the owls. In strix, as has alrealy been fointed out, not only do the rentral and sternal tracts fuse clearly near the fureula, hut owing to the slight ont ward curve of the former and a more abrupt inward coure of the latter, the two mite at the posterion extremity of the sternals su as to form in reality one broad tract on the breast, contaning a longitudinal apterimm. It
will be casily seen that should this fosion inerease at each end and continue until the apterium had disappeared, we would arrive at the Caprimulgine condition. May it not he true that in this way the single tract of the Caprimulgi has been formed? At any rate there is mothing inherently improbable in the idea. If this be sranted the conclusion is ineritable that the fundamental phan of the pterylosis was originally the same in both grous, and since in those minor points in which they differ (such as the longitudinal rows on the head in the Cap)rimulgi and the feathering of the tarsus in the Striges) theme are mumerons intergradations, there is certainly reason to admit the possibility of some relationship. It may be mentioned here that strix shows another peculiarity which is not unlike one of the features of "'hordeiles. It will be remembered that the lower cervical fork of the latter genus shows a prominent imer branch and although this is mot fonmed in any owl, yet the peculiar formation of the tract in strix gives us a hint as to its possible origin. The above hypotheses in regad to the origin of the single sternal-rentral tract in the Caprimulgi and the imer cervical tonth in Chordeiles seem to indicate greater specialization on the part of this group and it is worth while to bear this in mind as we consider the other characters to be compared.

Arrangement of the feathers of the wing.-Since the wing is one of the most characteristic organs of a bird, and since variations in the arrangement of its feathers are almost endless eren within the limits of well-defined groups, similarities in these points must carry considerable weight, especially when these likenesses are in such details as the comparative length of the primaries. If we compare the wing of an owl with that of one of our goatsuckers, we find substantial agreement in several points, but some apparently important differences in others. Both agree in being aquincubital, a chatacter which seems to be of the greatest importance. They agree further in the number of rows and distribution of the coverts and even fairly well in the comparative lengths of the primaries. Thus among the Caprimulgi, the eighth aud ninth are about equal and are longest; then follow the seventh and tenth (about equal), and the sixth, very little shorter, and then $5,4,3,2,1$. Chomdeiles (according to Cones) has the tenth equal to the ninth and the rest in regular succession. Among the owls examined there are three groups; Asio and Speotyto agreeing very closely with the whip-poor-will as above given, the eighth and ninth being abont equal, serenth next, sixth and tenth (equal), and the rest in regular order; strix differing from these and approaching Chordeiles in the greater length of the tenth primary, which is longer than the sereuth and almost equals the ninth; Gilaucidium and Megescops showing a very different arrangement with the seventh longest and the tenth about equal to the first. Striges, however, possess the eleventh primary in a rudimentary condition, while it has completely disappeared in the Caprimulgi. The latter have only three feathers in the alula,
while the owls have four. The number of secondaries raries in the different gemera, but it is almost always greater in the owls. It will be notieed that these differences are all numerical and that the smatler mumber is always the characteristic of the Caprimulgi. It is well known that in the evolution of birds there has been a distinct tendency towads a reduction of the number of remiges and this tendency has been rey marked in the specialization of many groups of small hand birds. This reduction talies place not only at the upper or imer end of the forearm, thus decreasing the number of secondaries, but also at the couter end of the hand, thas decreasing the number of primaries. The former is much the more common and extensive method, so that the momber of secombaries may vary between six and forty; while the latter is limited to one or two feathers only, the number of primaries at lanst in C'amate birds, varying between ten and twelve. We thus see that in the structure of the wing, the Caprimulgi show a greater specialization than the striges, although the armangement of the roverts, the absence of the fifth secomdary, and the comparative lengths of the primaries wonld seen to imlicate that the original plan of the wing was the same in both gromps. This is in line with the conclusion to which om examination of the general pterylosis had brought mand the comsideration of the remaining characters maty throw still more light on the subject.

The presence of aftershafts, oil gland, and down.-In the general structure of the phomage there is a superficial resemblance between the owls and goatsuckers, but a careful examination does not altogether bear this out. The greatest difference lies in the presence of an aftershaft on the feathers of the Caprimulgi whirh is entirely lacking in Striges. Although stronger in Tyctidromus than Chordeiles, it is, eren in that senus, very weak, although I have always fomed it presemi. In the owls, however, it is miformly absent and I have found no trace of it in any of the sperimens which I have examined. This difference can not, therefore, he easily explained away, at least not motil we know more of the origin and function of the aftershaft and are hetter acquanted with the perylography of all the sanera. I have already spoken of the peeculiar length of the calamus in the large wing and tail feathers of the Caprimulgi, but I did not find the same structure clearly shown among the owls, exepht in Glamcialum, where thas as evident as in Nyetidromzs. Down feathers are very rare in both groups, if present at all, and I fomm no trare of an oil-wland tuft in either, although Nitzsch speaks of finding a trace of it in Strix.

Nomblor cumd lem!th of fathers in the luil.- What has been said above in regard to the reduction of the momber of remiges in birds is also true of the rectrices, althongh the evidence is less satisfactory. Itowever, it will hardly be disputed that the presence of ten rectrices in the Caprimulgi indicates ereater modifeation than the preseure of twelve

[^139]in the owls. This difference in number might have been something of a difficulty in showing any comection between the two gronns. were it not for the interesting discovery that AFicropellus possesses only ten, a fact which seems to have previously escaped notice. Another thing of interest in regard to the tail is that while in both Striges and Caprimulgi it is the rule for the middle pair of rectrices to be longest, there is an exception in each group; among the former strix, and in the latter, Chordeiles, has the outer pair longest.

CONCLUSIONS.

Having thus compared in detail the pterylographical characters of both Caprimugi and Striges, as far as the material at ham would allow, I may justly be permitted to draw a few inferences firom the facts before me. It can hardly be denied that these facts indicate a certain degree of affinity, and although to me this relationship seems quite close, of course it is well understoond that conclusions based on one set of facts will often be overturned by another set and are, therefore, unreliable. Judging from the wings and tail, the uniter ste:mal and ventral tracts, and the striking longitudinal arrangement of the feathers on the crown, there can be little donbt that the Caprimulgi are the more decidedly morlified of the two grouns. In each one of these particulars, moreover, there are owls almost as fully modified, yet they do not combine them as do all of the Caprimulgi. Thus, Micropulles has ouly ten rectrices, but the head is uniformly feathered and the ventral tract is distinct, while Strix shows a partial mion of the sternal and rentral tracts, but has twelve rectrices and a closely feathered crown. We may thus reasonably conclude that the common ancestors of the two groups were rapacions birds much more like owh than goatsuckers and probathy more or less noctumal in their habits. They had a well-feathered head, a widely forked upper cervical tract, seplarrate sternal and rentral tracts, a peculiarly situated femoral tract, twelve rectrices, of which the midde pair were longest, and twenty-six or more remiges, of which eleven were on the hand. The plumage proh. ably possessed an altershatt and the oil gland was bare, while the tarsus may have been feathered. From this extremely hypothetical stem, there som arose birds more crepuscular than nocturnal and insectivoroms rather than carnivorous. These were the immediate ancestors, of the Caprimulgi and soon lost the first primary, one pair of rectrices, and several secondaries. In them also the rentral and sternal tracts fused and the feathers of the head condensed into longitudinal rows, while the feathers of the tarsus began to disappear. Thins the general Caprimulgine pterylosis arose by what will at once be seen as a process of condensation, possibly due to the need of greater lightness and -pleed for the capture of their insect prey. Phelenoptilus shows the most perfect development of this Caprimulgine form and so is the most modern descendent of these hypothetical ancestors. C'hordeiles
seems to have brandied off from the ('apmimulgine form rery early and probally hy becoming diumal to a greater degree. Thus having little need of semsitise rictal bristies, it lost them, while the wing and tail were also monliferl. Among the owls the variation fiom the suppowed ancestral form has heen more spasmodic and the direct progress much less, but the pterylography of even the American forms is too lit the known to draw any satisfactory conclusions. It is certainly a very curions fact that strix shows some variations which are completely parallel to those of Chordeiles; thes, the outer pair of tail feathers is the longest, the tenth primary almost equals the ninth, the peculiar forking of the lower cervical tract gives a hint of the origin of the imer bramelh of 'hordeiles, and, finally, the parial fusion of the sternal and ventral tracts is decidedly Caprimulgine. Whether this indicates a nearer approach to that hypothetical, lost, parent form is, to say the least, doubtful. More probably Strix has varied from the Strigine stem in the same way, though to a greater degree. perhaps, than Chordeiles has from the Caprimulgine.
The conclusion, then, to which this study of their pterylography has brought me is that the Caprimulgi are related to Striges, and not very distantly either-probably a branch from the early part of the Strigine stem. 1r. Shape, in his address at Budapest on "Recent Attempts to Classify Birds," says that the idea that Caprimulgi and Striges are nearly allied \cdot is now semuted," but he admits that the nearest approach to the latter is in stentornis. Garrod, in his rery interesting account of the latter gemus,* concludes that it resembles Striges much more than Caprimulgi, while Parker \dagger considers its resemblance to either group as being purely analogons, and so forming no connecting link between the two. The weight of argment perhaps, of authorities certainly, is thus directly opposed to the conclusions to which my observations had led me. It must be, therefore, as above stated, that a conclusion based on one set of facts only is eminently unreliable and should be set aside if the other characters are all against it. Homarer this may be, I can only say that a comparative study of the pterylography of the two groups as represented in North America most certainly shows some surprising similarities. Perhaps, howerer, it is ouly an extraordinary case of what may be called "analogous variation."

[^140]
THE BOX TORTOISES OF NORTH AMERICA.

By W. E. Taylor.

In the discussion of the gemus Terrapene* it is my purpose to present, in detail, the osteological characters and the geographical distribution of the genus. In doing this I have had the privilege of examining a great number of specimens, representing approximately the whole distribution of the genus in the United States and Mexico.t

History and nomenclature.-From very early times systematic zoologists have mentioned the common box tortoise, under varions names, as occurring in North America. Over sixty authors have given one or more species as found in various localities. But most of these writers merely mention the names of the species, while localities, if given, are indefinite. A full discussion of these writings would be out of place in this article, and hence I content myself with barely mentoning a fer of the most important papers, the authors of which have reported new species or proposed new names.

Edwards, in 1751, gives a good tigure of Terrapene carolina.
Limneus, in his tenth edition of the Systema Natura, 17.58, mentions Testudo carolina as from Carolina. His description was taken from Edwards.

Gray, in 1844, described Emys limosternoides, which may be Terrapene triunguis, Agassiz.

Gray, in the Proceedings of the Zoological Society of London. 1849, describes Onychotria mexicana as from Mexico.

Agassiz, in his Contributions to the Natural History of the United States, 1857, describes Cistudo virginea (Gmelin), Cistudo trimmuis,

[^141]Cistulo ornutu, and Cistudo melor, the first being Testudn corolinu of Limmern, while the last three were recosnized as new speceres.
stratuch, in his Vertheilung der schildkröten, 1s6is, included all of our American forms under Terrapene carimata, Limnens.

Cope, in his Cherk-List of North American Batrachia and Reptilia, 15.5, reeognzes ('istudo dansu, subsperies clansu (limelin and Holbrook), ('. clumsu, subspecies triuntmis, and C.ormatu. He placed Testudo carolina of Linnaens under the genus Testudo.

True, in Yarrow's Check-List of North America Reptilia and Batrachia, 1sisis, recognizes Cistudo chrolime, ('. carolime triunguis, and C. ormuta.

Boulenger, in his Catalogue of Chelonians in the British Musemm, 1858, admits but two species, as follows: Cistudo carolina, ('. curolimu var. kimostermoides, Cistudo curolina var. mejor, ('. curolinu var. mexicame, and C. ornata.

Baur, in the American Naturalist, 1593, after making a study of the osteology of Terrupene, adopts the following species: Terrapene major, T. carolina, T. mexicana, T. triunguis, and T. ornata.

By continuing the work of Dr. Banr, and adding to the collections already made by him, I am able to confirm his observations, and, at the same time, to add a new species.

I recognize the following speries: Terrapene major, T. bauri, T. caroline, T. mexicana, T. triunguis, and T. ornata.

Not until within the last few years has the osteology of our forms been carefully studied. Gray overlooked the rudimentary quadratojugal in T. cotrolimu. Agassiz, in his characterization of the geuus, speaks of the temporal arch as "either cartilaginous or only partially. ossified," forgetting the fact that T. major, described by him, possesses a well-dereloped zygomatic arch.

Bonlenger gives the absence of a bony temporal arch as characteristic for Terrapene.

Briihl gives a figure of the skull of Terapene carolina, but overlooked the quadrato-jugal.

Baur, in the Zoologischer Anzeiger for 1858, No. 296, first pointed out the fact that T. cholinu possesses a rudimentary quadrato-jugal, contrary to the opinion held by Gray and others. Later, in Scieuce, No. 426 , 1891, he gave the osteological characters of Terrapene major, T. carolima, and T. ormutu; and still later, in the American Natumalist, 1893, the complete osteological characters and general descriptions of T. me!or, T. curolinu, T. mexicana, T. triunguis, and T. ormate were given.

The geographical distribution of Terrapene has never been com. pletely worked out. Most authors have merely given a few localities or the range of each species in a general way.

Igassiz, in 15:5, gives T. corolina (Cistudo virginea) as the north eastern type and eroneonsly states that it "has the most extensive range" of the genus. He also mentions Terrapene (Cistudo) triunguis
as the western and sonthwestern type, and Termpene (('istudo) ornutu as the northwestern type. Owing to the limited data accessible he faled torecognize that the last-mamed species is the western form, from the Vellowstone to the lío Grande. He also mentions Terrapene ('istulo) mofor as the sonthern and sombleastern type of the genus.

Cope, in 15\%.5, states that Teropene corolina is found in the "Eastern region and Lonisianian and Floridian districts:" T. trimmois in the "anstroriparian region to Georgia, eastern P'ennsylvania," and T. ornute in the "Central region."

Bant, in 189:, gives the geographical distribution of the species as follows: T. mejor, "Southern States;" T. curolimu, "Eastern States to Indiana;" T. mexicomu, " Mexico;" T. triumguis, "Louisiana, Arkansas, Indian Territory, Mississippi, (xeorgia;" T. ormutu, "Central States."

The writer's notes on the geographical distribution of Terrapene will be given under a separate heading.

Genus TERRAPENE, Merrem.

1820.-Terrapenf, Merirenr, Versuch eines Srstems der Amp,hibien, p. 27 (type, Testudo clausu, Gmelin = T. carolina, Linneus).-Baur, Zool. Auz., 1888, No. 296; Scieuce, xvil, 1891, p. 190; Proc. Amer. Philos. Soc., 1892, p. 245.
1822.-Cistuda, Fleming, Philosophy of Zoology, if, p. 270.
1832.-Diclida (part), Rafinesque, Atlantic Journal, i, p. 64 (in Analyse de la Nature, 1815, name only).
1835.-Pyxidemys (part), Fitzinger, Ann. Wiener Mus., i, p. 123.
1844.-Emyoides, Gray, Catalogue of Tortoises in British Museum, p. 27.
1819.-Onychotria, Gray, Proc. Zool. Soc. London, 1849, p. 17.
1857. - Cistudy, Afiarsiz, Contributions to the Natural History of the L'nited States, 1, p. 444.-Boulenger, Catalogue of the Chelonians in British Museum, 1889, p. 114.—Baur, Proc. Amer. Philos. Soc., 1892, p. 44.

KEY TO THE SPECIES OF TERIREPENE,
I. Three digits on the hind foot.

1. Zygomatic arch complete. Webs abseut. Phalanges on the fore foot 2-3-3-3-2, hind foot $2-3-3-2-1$... BaURI, p. 576.
2. Zygomatic arch incomplete. Welos absent.
a. Number of phalanges in the fore foot 2-3-3-2-2, hind foot 2-3-3-3-1. Carapace tectiform mexicana, p. 579 .
b. Number of phalanges in fore foot 2-3-3-2-2, hind foot 2-3-3-2-1. Carapace not tectiform triunguis, p. 580.
II. Four digits on the hind foot.
3. Zygomatic arch complete. Webs distinct. Phalanges in the fore foot 2 -3-3-3-2, hind foot 2-3-3-3-2

Major, p. 575.
2. Zygomatic arch rudimentary. Digits slightly webbed. Phalanges in the fore foot 2-3-3-3-2, hind foot 2-3-3-3-2. Carapace keeled. . carolina, p. 577.
3. Zygomatic arch abseut. Webs absent. Phalanges in the fore foot 2-2-2-22, hind foot 2-3-3-3-1. Carapace not keeled ornata, p. 581.

TERRAPENE MAJOR (A g as siz).

1857.-Cistudo major, Afrassiz, Coutribintions to the Natural History of the United States, I, p. 445 (type in Mus. Comp. Zool., Cambridge, Mass.; locality of type, Mobile, Ala.).-Garman, Bull. Essex Inst., xyi, 188t, p. 10.

186:).-Terrapene curinata (part), Strauch, Mém. Acad. Sci. St. Petersb. (7), vili, No. 13,1 . 46.
1870.-Cistudo carolina var. major, Gray, Supplement to the Catalogne of Shield Reptiles, p. 19.-Boulexger, Catalogue of Chelonians in British Museum, 1889, p. 117.
1891.-Terrapene major, Baur, Science, xvir, 1891, p. 190 ; Amer. Natural., xxvir, 1893, 1. 677.
Quadrato-jugal well developed ; zygomatie areh complete, and always present and relatively wider and more fully developed than in T. banri. Maxilie distinctly notehed. Upper branch of the scapula cousiderably longer than the inner branch (endo-scapula); digits with distinct welldeveloped webs. Nimber of phalanges in the forefoot, $2-3-3-3-2$; hind foot, 2-3-3-3-2. Number of claws in the hind foot, 4 .
('arapace oblong in horizontal outline; transverse ontline semicircular. Auterior margin but slightly curved; moderately compressed above and median ridge distinct. The width of the carapace compared to length varies from $10-12$ to $10-14$. First pleural phate more than half as wide as long. Ground color varying from black, yellowish olive or dark brown to very light dingy brown. The yellow spots are arranged in radiating lines but are not connected. The plastron is usually of a straw-yellow color with the dermal plates more or less faintly bordered with black or dark brown.

This species is found in regions adjacent to the Gulf coast of Florida, Alabama, Louisiana, and Texas.

List of specimens.

No.	Collector.	Collection.	Locality.
1	G. Kohn		New Orleans, La.
${ }_{3}^{2}$	G. Kohn (i. Kohn		Mandeville, La.
4	Dr. G. Baur*		Galreston, Tex. Nashville, Tenn.

* Not seen by the writer, but examined by Dr. Baur.with reference to the points discussed in this paper.

TERRAPENE BAURI, new species.
Quadrato-jugal well developed; zygomatic arch complete, though not as wide as in T. mojor. Webs absent. Number of phalanges in the forefoot, $2-3-3-3-2$; hind foot, $2-3-3-2-1$. Number of claws on the hind foot, 3 .

Carapace semicircular in transverse outline, imperfectly oblong in horizontal outline. Median ridge and keel distinct. First pleural plate more than three times as long as wide. Ratio of width to length of the carapace approximately 10 to 13.

Ground color of the carapace dark bromn, sometimes slightly olive, marked with yellow, arranged in radiating lines rather than single spots; keel yellow. The markings of the carapace bear a very close resemblance to the extreme western species T. ornate, a species from which it is entirely separated geographically. Plastron yellowish with but few markings.

The type (No. 8352, U.S.N.M.) was collected in Florida by F. B. Meek.
The species is named for Dr. Baur, who first noticed the peculiarities of the type, but having only the one specimen considered it as an exceptional individnal of T. triunguis.

List of specimens.

No.	Collector.	Collection.	Iocality.
1	F. B. Meek	No. 8352, U.S. N. M	Florida.

TERRAPENE CAROLINA (Linnaus).

1758.-Testudo carolina, Linnecs, Systema Naturie, 10 ed., i, p) 198 (from Enwards; locality, South Carolina); 12 ed., I, 1766, p. 852.-SChneider, Naturgeschichte der Schildkröten, 1783, p. 334.-Gmelin, Systema Naturie, r, ii, 1788, p. 1041.-Bonnaterre, Tableau Encyclopédique et Méthodique, Erpétologre, 1789, p. 28.—Donndorff, Zoologische Beyträge, ifi, 1798, p. 20 .
1758. - Testudo carinata, Linn.eus, Systema Naturie, 10 ed., i, p. 198; 12 ed., i, 1766, p. 353.-Schneider, Naturgeschichte der Schildkröten, 1783, p. 361.Lacépède, Histoire Naturelle des Quadrupedes Ovipares et des Serpens, i, (Synops. méth.), 1788, p. 164.-Bonnatrare, Tableau Encyclopédique et Méthodique, Erpétologie, 1789, p. 28.-Donndorff, Zoologische Beytrige, III, 1798, p. 27.-Shaw, General Zoology, III, pt. i, 1802, p. 35.
1788.-Testudo clausu, Gmblin, Systema Naturie, i, ii, p. 1042.-Scuobepfe, Historia Testudinum, 1792, p. 32, Pl. Vii.-Donndorff, Zoologische Beyträge, III, 1798, p. 27.-Shaw, General Zoology, iif, pt. i, 1802, p.36, Pl. Vif.-Daudin, Histoire Naturelle des Reptiles, iII, 1803, p. 207, Pl. xxiri, figs. 1, 2.—Le Conte, Annals Lyc. Nat. Hist., New York, III, 1830, p. 124.
1788.-Testudo breri-caudata, Lać́pède, Histoire Naturelle des Quadrupides Ovipares et des Serpens, I (Synops. méth.), p. 169.
1789.-Testudo incarceratu, Bonnaterese, Tablean Ençclopédique et Méthodique, Erpétologie, p. 29.
1789. - Textudo incarcerata-striatu, Bonnaterre, Tablean Eneyclopédique et Méthodique, Erpétologie, p. 29.
1803.-Tesfudo virgulata, Daudin, Historie Naturelle des Reptiles, im, 1. 201, Pl. Xxili, figs. 3, 4.
1812.-Emys clansu, Schweigger, Königsberg. Arch. Naturwiss., i, pt. i, pp. 315, 438.-Wagler, Natiorliches System der Amphibien, p. 138.—Schlegel, Fauna Japonica, Reptilia, 1833, p. 65.
1×12.-Limys virgulata, Schwelgiger, Känigsberg. Arch. Naturwiss., 1. pt. i, pp. 316, 441.
1812.-Emys schneideri, schweigger, Küuigsberw. Arch. Naturwiss., ı, pt. i, pp. 3iT, 442.
1820.-Terrapene clausa, Merrem, Versuch eines Systems der Amphibien, p. 28.Fitzinger, Neme Classification der Reptilien, 1826, p. 45.
18:5.-Terrapene carolina, Bell, Zool. Journ., II, p. 309.-BaUr, Science, xvir, 1891, p. 190 ; Amer. Natural., xxvir, 1893, ${ }^{\text {p }} .677$.
1825.-Terrapene nebulosa, Bell, Zool. Journ., II, p. 310.
1825.-Cistudo clausa, Say, Journ. Acad. Nat. Sci. Phila., Iv, pt. ii, pp. 205, 214.Bonaparte, Cheloniorum Tabula Analytica, 1836, p. 6.
18:6. - Terrapene virgulata, Firzinçar, Neue Classification der Reptilien, p. 45.
1827. -Cistuda clausa, Harlan, American Herpetology, p. 73.

1×30.-Limys (Cistuda) clausa, Bonaparte, Sulla Seconda Edizione del Regno Animale Osservazioni, p. 162.
Proc. N. M. $94-37$

18:31.-Emys (Cistuda) curolime, GRay; in Grittith's Animal Kingdom, Ix, Append., p. 7. 1831.-Cistuda carolina, Grar, Synopsis Reptilium, I, 1. 18.-Holbroor, North American Herpetology, 2 ed., I, 1842, p. 31, Pl. H.-De Kay, Zoology of New York, pt. iii, 1842, p. 24, Pl. I., tig. 1.-Gray, Catalogue of Tortoises in the British Museum, 1844, p. 30.
1835.-Cistudo cotrolimu, Duméril and Brbron, Erpétolosie Générale, if, 1835, p. 210 ; iv, i854, p. 224.-Duméril, Muséum d'Histoire Naturelle de Paris, Catalogue Méthodique de la Collection des Reptiles, 1851, p. 7 (part).-Wied, Nor. Acta Acad. Leop. Carol., xxxir, i, 1865, p. 1, Pl. i, fig. 1.-Gray, Supplement to the Catalogue of Shield Reptiles, 1870, p. 19; Hand-list of Specimens of Shield Reptiles in the British Museum, 1873, p. 18.-True, in Yarrow, Bull. U. S. Nat. Mus. 24, 1883, p. 37.-Boulenger, Catalogue of the Chelonians in the British Museum, 1889, p. 115, figs. 32, 33.-Strauch, Mém. Acad. Sci. St.-Pétersb. (7) xxxviif, No. 2, 1890, p. 62 (part).-Baur, Proc. Amer. Philos. Soc., 1892, p. 44.
1835.-Pyxidemys schneideri, Fitzinger, Ann. Wiener Mus., i, p. 123.
1835.-Pyxidemys virgulata, Fitzinger, Ann. Wiener Mus., I, p. 123.
1835.-Pyxidemys clausa, Fitzinger, Ann. Wiener Mus., i, p. 123.
1857.- Cistudo rirginica, Agassiz, Contributions to the Natural History of the L'nited States, I, p. 445, Pl. IV, figs. 17-19; Pl. vili, figs. 10-14.
1862.-Terrapene carinata (part), Sthauch, Mém. Acad. Sci. St.-Pétersh) (7) v, No. 7, p. 96 ; ViII, No. 13, 1865, p. 45.
1875.-Cistudo clausa, subsp. clausa, Cope, Bull. U.S. Nat. Mus. No. 1, p. 53.
1884. - Cistudo carinata, S. Garman, Bull. Essex Inst., xvi, p. 10.
1892.- ('istudo carolima var. carolina, H. Garman, Bull. Ill. State Lah. Nat. Hist., ili, p. 219.

Quadrato-jugal rudimentary, triangular in shape and connected with the quadrate only. Zygomatic arch absent. Maxillary, distinctly beaked lout not notched. Cervicals and their processes relatively short. Upper branch of the scapula somewhat longer than the imer branch (endoscapula), but not so long as in T. major. Number of phalanges in forefoot, 2-3-3-3-2 or 2-3-3-2-2; hind foot, 2-3-3-3-2. Digits slightly webber. Claws in the hind foot, 4. First pleural plate approximately twice as long as wide.

Carapace ovoid in outline; ratio of width to length in adults, about as 10 to 12. Not compressed above; keel distinct and median ridge absent. Color dark brown or blackish, marked by yellowish or brommish radiating spots and lines. Ofteu the keel is marked by an interrupted yellow or brownish yellow line.

Plastron oval in outline, with distinct shoulders on each side of the hinge area. Ground color dull yellow, variously blotched and mottled with lavendar brown.

Kentucky and Tennessee specimens are the most beautiful of our North American forms, and may possibly be entitled to rank as a variety of T. carolina. The carapace is ovoid in horizontal outline; semiovoid in transverse section. The general color is black or very dark brown, marked by bright yellow, sometimes the latter color preFailing. The posterior portions of the secoud, third, and fourth vertebral plates are marked by distinct but irregular quadrate blotches which are broadly bordered by bright yellow. The upper portions of the first, second, and third costal plates are similarly marked. The
spaces in front of these blotches on the vertebral plates and below them on the costal plates are marked by spots and radiating blotches of yellow. The presence of a distinct keel and the absence of a median depression are points readily distinguished. The plastron is yellow, irregularly blotched and mottled with much brown and black, broadest across the femorals. The upper portion of the head and neck is brown, slightly specked with yellow; a yellow line begimning at the posterior of the eye runs back over the ear and the posterior of the skull. Maudible, throat, and lower neek light yellow. Upper scales of the legs grayish; lower scales mostly orange or reddish. The individual described is a female collected at Midway, Ky., by Prof. II. Garman. Another specimen very similar but younger was sent me by Prof. S. S. Maxtell. This one was collected at the mouth of Billingtons Creek, near Lovelaceville, Ballard County, Ky., in the extreme western portion of the State, where the writer has often observed other specimens. Prof. Benj. B. Penfield, of Nashville, Temn., sent me two specimens which agree with the Kentucky individuals in every point except that a distinct triangular quad-rato-jugal was present.

In general form and osteological characters this variety grades into, if it is not identical with, typical specimens of T. corolinu, and may be regarded as the sonthern extension of this species. Hence the distribution of T. carolime may be given as eastern United States, south to Carolinas, Georgia, Tennessee, and Kentucky, reaching the Mississippi, west to eastern Illinois and Wisconsin, and north to Canada.

List of specimens.

TERRAPENE MEXICANA (Gray).
1849.-Onychotria mexicana, Gray, Proc. Zool. Soc. London, 1819, 1, 17. I'l. II (type in British Museum; locality of type, Mexico).-Dugès, La Naturaleza (2), 1888, p. 11.
185̈̆. - Cistudo mexicana, Gray, Catalogue of Shield Reptiles in the British Museum, p. 40 ; Supplement to the Catalogue of Shield Reptiles, 1870, p. 19.Bocourt, Mission Scientifique au Mexique, Reptiles, fasc. 1, 1870, p. 17 (part).-Günther, Biologia Centrali-Americana, Rentilia, 1885, p. 1.Cope, Bull. U. S. Nat. Mus. 32, 1887, p. 21.
1889.-Cistudo carolina var. mexicana, Bovlenger, Catalogue of Chelonians in the British Museum, p. 118.
1891.-Terrapene mexicana, Baur., Science, xvir, 1×91, p. 191; Amer. Natural, 1893, p. 677.

Quadrato-jugal very rudimentary; connected with the quadrate and rather elongated. Zygomatic arch absent. Upper branch of the seap ula as in T. major. No webs between the digits and only three claws on the hind foot. Number of phalanges in the forefoot $2-3-3-2-2$; in hind foot 2-3-3-3-1. Maxilla not notehed.

Carapace oval in horizontal outline; rather triaugular in transerse ontline. Ratio of width to length in adults approximately $\mathbf{1 0}$ to 13. The additional plate found between the fourth and fitth vertebral plates seems to be characteristic. First pleural plate more than three times as long as wide.

Color of the carapace brownish yellow marked by dark brown madiating lines and irregular spots. Head yellow, irregularly marked by black or dark brown. Throat yellow, posterior neek light brown.

Plastron curved in the region of the abdominal and femoral plates, aud distinctly mucronate posteriorly. Color, whitish yellow, the posterior burder of each dermal plate bordered with smoky hrown.
City of Mexico and Tampico, Mexico.
List of specimens.

TERRAPENE TRIUNGUIS (Agassiz).

1831.-? Emys kinosternoides, Gris, in (iriftith's Animal Kingdom, ix, Append., p. 12; Synopsis Reptilium, 1831, p. 32.
1835.-Limys cinosternoidés, Duméril et Bibron, Erpétologrié Général, ir, p. 303; ix, 185́4, p. 227. Duméril Muséum d'Histoire Naturelle, Catalogue Méthodique de la Collection des Reptiles, 1851, p. 12.
1844.-Emys (Emyoides) kinosternoides, Gray, Catalogue of Tortoises in the British Museum, p. 27.
1857.-Cistudo triunguis, Agassiz, Contributions to the Natural History of the United States, 1, p. 445, Pl. VII (type in Mus. Comp. Zool., Cambridge, Mass.; locality of type, Louisiaua).-Garman, Bull. Essex Inst., xyi, 1884, p. 10.
1865.-Terrapene carinata (part), Strauch, Mém. Acad. Sci. St. Petersb., (7) Vili, No. 13, p. 45.
1875.-Cistudo clausa subsp. triumguis, Cope, Bull. U. S. Nat. Mus., 1, p. 53.
1883.-Cistudo carolina triunguis, True in Yarrow, Bull. U. S. Nat. Mus. 24, p. 37.
1×59 - Cistude carolina var. cinosternoides, Boblentiep, Catalogue of Chelonians in the British Museum, p. 117.
1890.-Cistudo carolina (part), Striscich, Mém. Aead. Sei., Nit. Petersb., (7) xxxviri, 2, p. 62.
1891.-Terrapene cimosternoides, BaUR, Science, xvir, 1891, p. 191.
1893.-Terrapene triunguis, BAUR, Amer. Natural., 1893, p. 677.

Quadrato-jugal rudimentary and triangular; comnected with the quadrate only. Zygomatic arch absent. Scapula as in T. major. No webs between the digits, and only three claws on the hind foot. Phalanges in the forefoot, 2-3-3-3-2; hind foot, 2-3-3-3-1. Maxilla slightly notched. Cervicals and their processes relatively short.

Carapace moderately oval, keeled, and slightly compressed. Ratio of width of carapace to length in adults about 10 to 13 . First pleural plate similar to T. bauri. Ground color dark-brown or olive-yellow, much mottled with yellow.

Plastron oval. Ground color yellow, much mottled with brown.
The Louisiana form seems to be a dwarf variety of this species and is peculiar to Louisiana. They were first noticed by Agassiz who states: "Had I not noticed a few larger specimens from the Osage River and from Georgia, I should not hesitate to consider them as a distinct species." They are characterized by their relatively small size, peculiar markings, and rather full development of the quadrato-jugal. Some times the quadrato-jugal is sufficiently developed to come into contact, if not uniting, with the jugal. These individuals are readily distinguished by their small size, three toes, and general color. In color they vary from pale yellow or dusky to dark brown, marked by small radially distributed yellow spots, often only few in number. The fact that they grade into larger forms of other localities prevents them from being ranked as a separate species.

Mississippi, Louisiana, Arkansas, Indian Territory, southern Missouri and Kansas, and Texas.

List of specimens.

No.	Collector.	Collection.	Locality.
1 2 3	$\begin{aligned} & \text { G. Kohn } \\ & \ldots \text { do } \\ & \text {............ } \end{aligned}$		New Orleans, La. do. flo.
4	... do		Mandeville, La.
5 do		do.
6	do		do.
7	Dr.O.P.Hay		
8	Julius Hurter		St. Louis, Mo. do.
10	Dr. Kennerly	Nu. 53, U. S. N. M	Fort lnge to San Antonio, Tex.
11			Wailes, Miss.
12		No. 303 (7174), Mus. Phila. Acad. Sci.	Mill Creek, Chickasaw Nation, Ind. T.
13	Dr. Palmer.	No. 304 (7177), Mus. Phila. Acad. Sci.	Fort Arbuckle, Ind. T.
14	Dr. E. Palmer. .	No. 305 (7192), Mus. Phila. Acad. Sci.	Fort Gibson, Ind. T.

TERRAPENE ORNATA (A g assiz).
185'7. - Cistudo ornata, Agassiz, Contributions to the Natural History of the Uniter States, I, p. 445, Pl. III, figs. 12, 13 (type in Mus. Comp. Zool., Cambridge, Mass.; locality of type, Upper Missouri, Iowa).-Cope, Bull. U. S. Nat. Mus. 1, 1875, p. 53 ; Bull. U.S. Nat. Mus. 17, 1880, p. 13.-True in Yarrow, Bull. U. S. Nat. Mus. 24, 1883, p. 37.-Garman, Bnll. Essex Inst., Xvi, 1884, p. 10.-Boulenger, Catalogue of Chelonians in the British Museum, 1889, p. 118.-H. Garman, Bull. Ill. State Lab. Nat. Hist., III, 1892, p. 220.
1891.--Terrapene ornata, Baur, Science, xvir, 1891, p. 191 ; Amer. Natural., 1893, p. 678.

Quadrato-jugal entirely absent, and hence zygomatic arch never present. Postorbital arch much more slender than in other species. Maxillie notched. Cervicals and their processes relatively very short. Upper brauch of the scapula of the same leugth as the inner branch (endoscapula). Digits without distinct webs. Number of phalanges in forelimb, $2-2-2-2-2$; hind limb, 2-3-3-3-1. Number of claws in the hind foot, 4.

Carapace in horizontal ontline broadly oval; much compressed above; medium ridge usually present, but the keel always absent, even in the young. Interpleural foramine between the ribs of the first and second dorsal vertebre almost obsolete. Ratio of the width to the length of the carapace in adults, never exceeding ten to twelve, rarely more than ten to eleven. The depression of the carapace is usually so great as to render the outline of a transverse section almost oblong in shape.

The ground color of the carapace varies from very dark-brown, marked with bright-yellow radiating lines with a yellow medium line, to very light colors with no markings. 'Third vertebral plate less than two-thirds as long as wide, being in all other species relatively longer.

Plastron widest across the abdominal plates. Ground color brown, marked by irregular yellow lines. Posterior to the hinge ligament these lines show a tendency to become longitudinal, while on the anterior of the hinge ligament these lines are mostly transverse.

East of the Rocky Mountains to Wisconsin, eastern Illinois, central Indian Territory, and eastern Texas.

List of specimens.

No.	Callector.	Collection.	Lucality.
1	Dr. G. Banr		Lawrence, Kans.
2	-...-.do		Indiana (?).
3	do		Kansas; Logan County.
4	do		do.
6	Or.O. P.		Kansas.
7	Prof. T. D. A. Coc		Las Cruces, N. Mex.
8	looy Ri. Larkin		do.
9	Prof. J. D. Brıne		El Paso, Tex.
10	William Lloyd.	No. 16481, U. S. N. M	South of Devil's River, Texas.
11	,	No. 20959, U.S. N.M	Corpus Christi, Tex.
12	Dr. Kennerly	No. 52, U. S.N. M .	San Antonio to Fort Inge, T'ex.
13	Prof. H. B. Dunca		Peru, Nebr.
14	Hayden.	No. 7541, U.S. N. M	Sand Hills, Nebraska.
15	Kennicott	No. 7542, U.S. N. M	Illinois.
16	Hayclen.	No. 57, U. S. N. M	Tellowstone (Iirer).
17	Bailey		do.
18	Bailey Fir....	No. 15861, U.S. N. M	Kenuedy, Nebr.
20	Palmer..	No. 7177, U. S. N. M .	Old Fort Cobl, Okla.
21	W. S. Wood	No.156, U. S. N. M	Republican River, Nebraska.
22	-.-.-do	No. 156, U. S. N. M	dlo.
23	Dr. Hayden	U.S. N. M .	
21	Dr. Meyer.		Kankakee, Ill.

GENERAL REMARKS.
The geographical distribution of Terrapene offers many interesting phases for study. The relatively fixed habits of the species of the genus render their variations more or less local in character. Good illustra-
tions of this fact are seen in the T. ormate of Texas and the T. triznomis of Louisiana and southwestern Arkausas and southeastern Indian Territory. But, notwithstanding these conditions, the specific characters are maintained thronghout the range of each species, as has been shown.

Terrupene major may be said to be strictly a gulf species, having for its range the gulf coast from the Rio Grande to Florida, possibly including southern Georgia. The specimens examined by me seem to be larger in the average than individuals of other species, and in general osteological characters they certainly represent the primitive form of the geuus. They possess a well-developed quadratojugal, a complete zygomatic arch, and are distinguished from T. bouri by the number of phalanges, color pattern, and webbed digits, there being four claws on each hind foot.

Terropene bauri may be said to belong to the peninsula of Florida, possibly including southern Georgia. It resembles T. major in having a complete bony zygomatic arch and T.triunguis in having but three toes on the hind foot, while it differs from either in the number of its phalanges. The color markings of the type, excepting plastron, are almost identical with T. ornata, a species from which T. bauri is completely separated both by osteological characters and geographically. The specimens mentioned by Agassiz as three-toed specimens of T. curoline from North Carolina, and T. trium!uis from Georgia may belong to this species.

Terrapene carolina is found in the northeastern United States, extending from the St. Lawrence and Great Lakes south to the Carolinas and Tennessee and west to the Mississippi River in Kentucky and to eastern Illinois.* This species seems to exist in greatest abundance in New Jersey and adjacent regions, but Ir. Hinds informs me that it is very common at Lebanon, Tenn. It seems to be, in a certain sense, the mountain species, being found thoughout the mountains of Peunsylvania, as well as elsewhere, and seems to be coextensive with the Allegany range southward. It is characterized by its rudimentary quad-rato-jugal, the hooked upper jaw, and the presence of a distinct keel on the carapace, the number of phalanges, and its slightly webbed digits.

* Unfortunately I am unable to speak definitely as to the precise westorn limit of T. carolina north of the Ohio River. The specimens reported by Prof. H. (iarman as from various points in southwestern Illinois are inaccessible at the time of writing, owing to alterations now being made in the musenm at Champaign, 1ll. Prof. W. K. Higley, in his catalogne of Wisconsin reptiles, mentions T. carolina as collected at the following places in Wisconsin, namely, Walmouth County, two specimens; Milwaukee; Pine Lake; La Crosse; aud Green Bay. Not having had an opportunity to examine Prof. Higley's specimens, I have been unable to verify his identificatious. Mr. Hurter, in his catalogue of St. Louis reptiles, mentions one specimen of T. carolina, but since it is the only one which has been fomed in that locality he rather infers that it was brought into St. Lonis. This inference is made more probable by the fact that the individual was found in the elevator yards.

On the south it adjoins or overlaps the territory of T. burri and T. trinnguis, while on the west it overlaps the T. trinnguis and T. ornata for a comparatively short distance. Its principal characters remain constant whether the specimens be taken from the Atlantic coast, the mountains of P'ennsylvania and Temnessee, or the prairies of Ohio and Indiana. Specimens from Kentucky and Temnessee exhibit certain peculiarities in color markings. These peculiarities have been discussed fully under the specific characters of T. carolina.

Terrapene mexicuma is at once distinguished by its tectiform carapace, rudimentary quadrato-jugal, and the number of phalanges. Several authors have reported this species from the City of Mexico, and Bocourt mentions one specimen as from Tampico, Mexico-the most northerly locality reported. These meager data would hardly justify me in outlining its range.

Terrupene triunguis in many respects shows a peculiar distribution. Roughly speaking it may be said to occupy the swampy districts of the Lower Mississippi and bordering territory. It is found in the southern half of the State of Mississippi, and passing into the extreme sonthwestern portion of Illinois is found as far north as St. Lonis, Mo.; thence west in the Osage River Valley in eastern Kansas; thence southwest to the Arkansas River and its tributaries in Indian Territory; thence to Matagorda Bay bordering the gulf from the Rio Graude to Alabana. This species is characterized by its rulimentary triangular quadrato-jugal, its number of phalanges and webless digits, three claws on the hind foot, its keeled carapace with its slight median depression.
Both Dr. Baur and O. P. Hay inform me that in southwestern Arkansas and central and eastem Indian Territory specimens are often found which are greenish yellow and without spots, but marked individuals are also present in the same region. Specimens from Louisiana are rather small, having a dwarfed appearance, and are somewhat peculiar in their markings. Their osteological characters, also, are somewhat variable. However, typical specimens of the species are found in this region.

Terrapene ornata is fom from the Rocky Mountains east to Lake Michigan and Indiana, south to the Ozark Mountains, and east to western Indian Territory and central Texas, and from the Rio Grande River north to the Yellowstone River. This species may be said to belong to the plains and the table-lands. In Kansas, where it becomes extremely numerons, Prof. Cragin speaks of it as so abundant as to become a nuisance as a cumberer of the ground. It seems to subsist and thrive in our most arid climates, being found in the sand hills of Nebraska and the barren regions of New Mexico and Texas. In its geographical distribution it seems to be governed more by soil, rainfall, and vegetation than latitude. Throughout all its range it is characterized by the entire absence of the quadrato-jugal, the possession of only two phat langes in each digit in the forefoot, its broadly oval carapace, with a median ridge but without keel, a plastron widest across the abdominal
plates, and the variegated markings of the carapace. Texas specimens are somewhat stouter and more compact, and often individuals possessing no color markings are found, but, notwithstanding these exceptions, the species is remarkabiy constant thronghout its range. It occupies a larger territory than all other species combined.

In the tasonomy of Terrapene, as first noted by Dr. Baur, the modification of the zygomatic arch occupies an important position. The quadrato-jugal is well developed in primitive forms of the genus, rudimentary in intermediate forms, and absent in T. ornata, the most specialized species.

The skull of a species belonging to a closely related geuus, Cyclemmys amboinensis, is represented in fig. 1. In this species the elongated quadrato-jugal (b) lies along the anterior border of the quadrate completely separating the

Fig. 1.
SKULL OF CYCLEMMYS AMBOINENSIS.
a.-Postfrontal. b.-Quadrato-jugal. c.-Jugal. latter, as well as the squamosal, from the jugal (c) and postfrontal (a). The postfrontal is much elongated and widened, and with the jugal and quadrato-jugal forms a complete zygomatic arch.

Fig. 2 shows the zygomatic arch of T. major. The postfrontal has retreated and in this species forms a narrow club-shaped bone just posterior to the orbit and takes no part in the formation of the zygomatic arch. However, a complete arch is present, composed of the somewhat quadrangular quadrato-jugal and the jugal.

Fig. 3 illustrates the structure of the zygomatic arch of T. bouri, a form, in this respect, closely related to T. major. It will be noticed that this arch is more slender than in T. major.

In T. carolina (fig. 4) the quadrato-jugal is rudimentary and is not comnected with the jugal, and lence the bony zygomatic arch is incomplete.

In T. mexicana (fig. 5) the zygomatic arch is incomplete, and the quadrato jugal has been reduced to a very small remnant. The same thing may be said of T. triunguis (fig. 6), except that in this species the quadrato-jugal is more nearly triangular. In T. ornata (fig. 7) the zygomatic arch has completely disappeared.

In this connection the modification of the phalanges seems worthy of our attention. In all species there are five digits in each foot, and on the fore foot of each there are five well-developed claws. However, in the fore foot the number of phalanges varies, the number being in T. major, T. bauri, and usually T. carolina, 2-3-3-3-2; in T. mexicana, T. triunguis, and sometimes T. carolina, 2-3-3-2-2, and in T. ornata, 2-2-2-2-2.

The hund foot of T. major, T. carolina, and T. ornata possesses four claws, while in the remaining species but three claws are present. With
reference to the number of phalanges in each hind foot the species are as follows: T. mujor and T. curolina, 2-3-3-3-2, the same number as in the fore foot; T. ornatu and T. mexicanu, 2-3-3-3-1; T. bauri and T. triunguis, 2-3-3-2-1.

The loss of the phalanges on the hind foot might be accounted for by supposing that the distal phalauge does nut develop. But in the case of the fore foot, where the full number of claws are still present, the distal phalange evidently does not disappear. Hence the reduction

2.

4.

6.

3.

5.

7.

Figs. 2-7.
SKULLS OF TERRAPENE.
Showing modification of the zygomatic arch in different species,
a, Postfrontal. b, Quadrato-jugal. c, Jugal.
(For explanation of figures see page 585.)
must take place either by the coossification of two phalanges, or it phalange and a metacarpal, or by the disappearance of a phalange.

Zehntner, 1890, after stadying the development of the Alpine Swift, C'ypselus melba, concludes that the reduction in the number of phalanges takes place in this species by coossification. He states that in the fourth digit the first phalange probably mites with the fourth metatarsal, while the third and fourth phalanges unite with each other.

Also the second and third phalanges of the third digit unite. Hence in the Cypselus, notwithstanding that in the early stages of growth the normal number of phalanges for birds, $2-3-t-5$, is developed, in this genus the number of phalanges in adults is $2-3-3-3$.

Pfitzner, 1890, discusses the reduction of the number of phalanges in the little toe of man. In embryos and young children he found the normal number of phalanges 3 , but in the case of older children the middle and the end phalanges usually unite, though in some instances the middle phalange disappeared.

In Terrapene I have not been able to determine the method of the reduction in the number of phalanges since embryological material of T. ornata has not been obtained. I hope to be able to investigate this question further at a later date. But, in the examination of younger specimens, I find no evidences of coossification such as mould probably be indicated by the disproportionate length of a phalange formed by the union of two phalanges.

The distribution of the species of Terrapene presents several interesting problems. It seems probable that all of our species are derived from one form. The closeness of the relations of the species would seem to indicate that our forms are varieties rather than species. However, at least twodifficulties are in the way of this conclusion. First, there can be no question but that if we take two extremes of development of the species of the genus, for instance, T. major and T. ornata or T. carolinu and T. ormata, we must recognize them as separate species. But since other intermediate forms seemingly comnect these species, if the closeness of relations be considered as indicating varietal rharacteristics only, we are forced to consider all species as varieties, a conclusion that would seem to be erroneous. Second, while the relations indicated by a study of the different species seems close, yet the distinctions seem definite and fixed, even where the ranges of the species overlap. The study of a number of specimens seems to indicate that the different species are derved from one form, and that afterwards, by isolation, caused possibly by geological and climatic agencies, they became distinct. When we remember the comparatively fixed abode of these animals it seems reasonable to suppose that these changes might have been brought about by relatively simple agencies which need not necessarily have acted simultaneously. Hence, it would seem proper to classify each form as a distinct species, each possessing certain fixed osteological characters. If these conclusions be true then it would seem most reasonable to suppose that T. ornata has become more distinct from the other species by its comparatively longer isolation, aided by the generally arid climate of its habitat.

It will at once be noticed that of the species found within the United States each occurs in a district which, in eartain geograplical features, is peculiar to itself. T. ornutr occupies a district peculiar in its arid climate and, for the most part, sandy soil. T. triunguis is found in the
low swampy regions of the Mississippi and its tributaries, the climatic conditions here being the reverse of the district occupied by T. ornatu. T. cerelina oceurs in both the mountains and plains, yet its climatic surromblings are somewhat miform and peculiar to its region. T. bauri inhabits the peninsula of Florida, while T. major is found adjacent to the gulf coast, the two species occupying districts each peenliar in itself.

Another peculiar fact in the distribution of Terrapene is that, so far not a single species has been reported west of the Rocky Mountains, motwithstanding its great abundance on the table-lands east of these mountains.
For an explanation of the canse of this fact we can only surmise. It is well known that in the Alleghany Mountains T. carolinu ascends to a height of several thonsand feet, as high, probably, as any other species of our chelonians. Prof. Cockerell and Mr. Ray R. Larkin have sent us specimens of T. ornata, collected at Las Oruces, N. Mexico, between five and six thousand feet above the sea level. Possibly the true explanation of the fact that Terrapene has not been found west of the Rockies may be accomted for by the great elevation and conseruent climate of the mountains. If this explanation be the true one, then it is only a question of time when the Tcrrapene will finds its way over the Rocky Mountain range.
The mformation extant and the material at our command, we regret to say, does not permit us to accurately outline the limits of the species either south or north of the United States bomdary lines. It seems probable that at least one or more of our species may extend into Mexico, though no such record exists. Neither do we have any authentic record of the existence of the Terrapene in British America, though it is possible, if not probable that specimens will ultimately be found there. However, if we judge from the comparatively small number of specimens found on the northern borders of the United States, the species can not be abundant north of the boundary line.

University of Chicago,
Chicago, Illinois, June 1, 1894.

DESCRIPTION OF UTA MEARNSI, A NEW LIZARD FROM CALIFORNIA.

By Leonhard Stejneger, Curator of the Department of Reptiles and Batrachians

THE accidental nature of reptile collecting is well illustrated by the discovery of this very conspicuons and distinct species in a region Which has been visited before by some of our best collectors.

The trenchant character of the distinctions between the present species and its nearest ally inhabiting the Cape St. Lucas region emphasizes the gap between the Cape region proper and the rest of the Lower California peninsula.

This discovery, moreover, is quite important, inasmuch as it bridges over the supposed difference between Uta thalassina and the other species of the gemus Uta. Bouleuger, in 1885,* established the genus Fetrosturus for that species because of its small candal scales, the smoothness of the dorsal granules, and the absence of denticulation on the border of the posterior gular fold. The present species, however, has the caudal scales large, keeled, and spinose, in fact, exactly as in the typical species of the genus Cta; the dorsal scales are larger, more convex, nearly tubercular on the sides, thus approaching the other Utas, while the question of denticulation to the collar is one essentially of degree only. However, the species which I am dedicating to its discoverer, Dr. E. A. Mearns, U. S. A., naturalist of the International Boundary Commission (United States and Mexico), is undoubtedly nearly related to U. thulassina and more so than to any of the other species of the genus.

UTA MEARNSI, new species.

Diagnosis.-Dorsal scales uniform, small, smooth; edge of gular fold without enlarged scales; four or five very long and pointed scales on anterior border of ear-opening; tail with large, strongly keeled, spinose scales; scales on arms and legs strougly keeled. One well-marked

[^142]black line from shoulder to shoulder across the back; tail above, regularly cross-barred with black.

Hubitut.-East slope of Coast Range on boundary line between California and Lower California.

Type.-No. '21882, U. S. N. M., Summit of Coast Range, United States and Mexican boundary line, California.

Description of the type.-Female. Head moderately depressed, snout narrow; canthis rostralis well marked; nostrils rather large, almost superior, much nearer to the tip of the snout than to the orbit; earopening large, with four very long, triangular, pointed scales and three smaller ones in front; head-shields smooth; frontal divided trans. versely; about eight of the posterior supraorbital seales enlarged, one being particularly large, these separated from the frontals by a single series of granules; superciliaries, particularly the anterior ones, very long and narow; a very long and narrow infraorbital; occipital as large as ear-opening; supralabials six, and, like rostral, very wide and low; infialabials scarcely higher, but considerably narrower; scales on throat small, rounded, smooth, those on the middle and near the edge of the gular fold somewhat larger; only one transverse gular fold, not denticulated; sides of neek strongly folded; scales on back and sides rather large, rounded and convex grauules, those on lower surface of body larger, that, hexagonal; limbs with enlarged, keeled scales, and rather long, the anterior when pressed to the side reaching to the insertion of the thigh, the posterior when stretched forward reaching to the orbit; twenty femoral pores on each side; tail depressed at base, slender, its length more than one and three-fourths that of head and body, covered with rings of rather large scales which, on the upper surface and the sides, are provided with a very strong keel ending in a projecting spine.

Color above olive, more brownish on head and tail, with irregular dusky, nearly backish, cross-bands; lighter spots, or marblings, on the interspaces; a very distinctly marked, straight, and intensely black band from shoulder to shoulder across the back; limbs irregularly crossbanded with dusky; basal two-thirds of tail pale brownish olive with wide black cross-bars, terminal third uniformly blackish; under surface greenish white, bluish on tlanks with lighter dots; chin aud throat with a network of bluish gray.

Dimensions.-Total length, 229 mm . ; head and body, 79 mm . ; tail, 150 mm .; fore limb, 37 mm .; hind limb, 61 mm .

Variation.-In addition to the type Or. Mearns' collection contains six other specimens which fully establish the characters of the species. The individual variation is comparatively slight, and but few deviations from the above description of the type are noticed. In some specimens there seems to be a slight anterior gular fold, but it is not marked by any diflerence in the scutellation. In one specimen the frontal is not divided transversely, and in about one-half, the large supraoculars are
separated from the frontal by a double row of granules. Other discrepancies will be noticed in the list of specimens given below.

The males have eularged postanal scales.
The individual differences of coloration consist mainly in the outline and intensity of the dusky cross-bars, while the black collar is equally distinct in all.

The sexes are alike in color, except thatt he blue flank-pateh is somewhat darker and wider in the males.

Compurison with L'ta thalassina.-Although closely allied to C'ta thalassina, described in 1863 by Prof. Cope from specimens collected at Cape St. Lucas, the present species differs in mauy essential points, most of which have been indicated in the diagnosis.

In addition to these it may be remarked that the granules on the back are larger in U'tu meurnsi, but that the veutral scales are smaller; it lacks the well-defined anterior gular fold of C°. thalussimu; the legs and tail are comparatively longer, and the femoral pores are more numerous; each of the latter, moreover, is bordered behind by two granules, while in U. thalassina there are three. The last mentioned species appears also to be much the larger, as the specimens collected by Dr. Mearns seem to be quite adult.

The most striking differences, however, are the long preauricular spines and the large, strongly keeled, and spinous caudal seales of Cth mearmst, together with the absence of the two posterior dorsal black bands so characteristic of U. thetassine.

Geographical distribution.-Dr. Mearns found this species "extremely plentiful" among the rocks on the easteru slope of the Coast Range of California, near the Mexican boundary line, from the lowest water in the canyon at the base to the smmmit. So far this is the only locality where it is known to have been taken. I would suggest, howerer, that it was most probably this species which Mr. Lockington has recorded from Ensenada, Todos Santos Bay, Lower California, 75 miles southeast of San Diego (Amer. Natural., 1880, 1. 295), as Utu thulassina.

List of specimens.

$\begin{aligned} & \text { Catalogue } \\ & \text { number } \\ & \text { U.S.N.M. } \end{aligned}$	Sex.	Locality: Coast Range, California, near the Mexican boundary.	Body aud head.	Tail.	Femoral pores.	Supra. labials.
21882	Female .-	Summit of range	mm. 79	mm. 150	21)	6
21883	Female ...	Mountaiu Spring, eastern slo	74	(*)	22	5-6
21884	Female ...	Eastern base	78	(*)	20	5
21885	Female	-...do	75	140	21-22	5
21886	Male.	Mountaiu Sprıng, eastern slop	79	(*)	23-25	5-6
21887	Male.....	- .-. do-................	88	(*)	21-24	6
21888	Female...	Lowest water, eastern ba	73	(*)	19-20	6

NOTES ON BUTLER'S GARTER SNAKE.

By Leonhard Stejneger, Curator of the Department of Reptiles and Batrachians.

The garter snakes of North America constitute one of the most diffieult groups with which the ophiologist has to deal. The geographical rariation is recognized to be excessive, while at the same time the individual variation is so great as to obscure the boundaries between the species. The result is that there is a great diversity of opinion among authors as to the number of species and the proper limitation of the forms, and while one is inclined to recognize a long series of species, another will ouly allow a very limited number indeed, though admitting numerous "varieties," at least of some of the species.

While undoubtedly many a slight variety, or even individual freak, has been designated as a species, on the other hand, some of the most distinct species have suffered degradation to mere varieties or subspecies.

The Thamnophis butleri of Cope is an example of this. In 1889 Prof. Cope described a single specimen from Richnond, Ind., under the above name, dedicating it to Amos W. Butler. In describing it he stated expressly that "it is remarkably distinct from everything which occurs in the United States, and has only a superficial resemblance to the E. flacilubris, Cope, of Mesico." This statement alone should have prevented it from ever becoming associated with Thamnophis sirtalis as a subspecies until additional material should establish the incorrectness of Prof. Cope's standpoint, who, haviug himself endeavored to subordinate the various binominals under other forms as trinominals, would have been able to discover the relationship with T. sirtalis, if such relationship existed. But no such additional material has been forthcoming.

It is therefore with great satisfaction that I amounce that a second specimen has recently been obtained and added to the collection of the National Museum. It was collected by Mr. P. H. Kirsch, of the U. S. Fish Commission, at Cedar Creek, Waterloo, Ind., on July 17, 1893. This specimen, No. 21692 U.S.N.M., corroborates everything Prof. Cope said about the species in the original description and sub-

[^143]stantiates the characters relied upon for its separation. The number and size of the temporals $(1+1)$ is the same, and the lateral stripe involves distinctly the second, third, and fourth scale rows. The size and shape of the head is also quite characteristic, it being remarkably small and conical. Moreover, the eye is proportionately much smaller than in any of our Thamnophis species, with the exception of T. leptocephalus and T. vagrans.

This smallness of the eye is so striking, and it reminds one so much of the last-mentioned species, that I have a strong suspicion that the specimen which E. W. Nelson collected near Chicago, Ill., in 1874, and identified with T. vagrans,* was, in reality, a third specimen of the rare T. Butleri, about the geographical range of which we can at present only guess. It is almost needless to add that T. vagrans does not occur in Illinois.

For the sake of completeness I add the synonymy of the species which is the subject of the present article.
1889. - Eutania butleri, Core, Proc. U. S. Nat. Mus., Xi, 1888, p. 399.
1892.-Eutania butlerii, Cope, Proc. U. S. Nat. Mus., Xiv, 1891, 1. 651.-Eutainia butlerii, Hay, Batr. Rept. Indiana, p. 120 (1892).
1893.-Tropidonotus ordinutus var. butleri, Boulenger, Cat. Snakes Brit. Mus., I, p. 212.
*See Davis and Rice, Bull. Chicago Acad. Sci., 1, iii, 1883, p. 30.

ON THE NPECIFIC NAME OF THE COACHWIHI SN゙AKE.

By Leonhard Stejneger,
Curator of the Department of Reptiles and Batrachians.

The name commonly applied to this species is Buscamion flagelliforme, and as authority for this Hame Catesby's Natural History of Carolina has been as frequently quoted. Catesby's names antedating Linneus' tenth edition and, besides, not being binominal have no standing in zoological nomenclature. One subsequent to 1758 has therefore to be adopted.

Curiously enough no one seems to have supplied a true binominal name for this snake until after the begiming of the present century, the first being apparently Shar's Coluber flagellum, * which is based exclusively on Catesby's, Vol. II, plate LIV, consequently the species in question, without the slightest doubt. I think it will also be found that no one applied Coluber flagelliformis binominally to the present species intil Holbrook, in the first edition of his Herpetology (1836), adapted it from Catesby's Anguis flagelliformis.

The erroneous application of the specific name flatelliformis to our coachwhip snake is due to a misidentification of Laurenti's Natrix flagelliformis. \dagger That he describes an entirely different snake will be plain from a glance at his diaguosis, which is based on "Seba II. $\because 3,2$ " as follows: "Supra creruleo iequali, infra viridescente; capite angulato; rostro producto tetraedro; dorso utrinque linea alba ab abolomine distincto; cauda pentaedra." \ddagger He then adds: "var β. (Catesby Carolin. 2.47);" but Catesby's plate XLVII is not our coachwhip, being distinguished from Laurenti's diaguosis chiefly, as he says: "Colore magis cæruleo viridescente."§

It will be seen that Laurenti's snake is not the coachwhip snake, neither in its entirety nor in part.

[^144]The next quotation often referred to our snake is Daudin's Coluber flagelliformis,* but with no better reason, as it is a snake "supra lete viridis, subtus albidus," \dagger which Daudin confounds with another of Catesby's green species, viz, pl. Lvir. This is, however, the Coluber wstious of Limmeus. As a matter of fact, Daudin refers Catesby's representation of the true coachwhip snake, viz, "Anguis flagelliformis, Catesby, Hist. nat. Carol. pl. 5t," to his Coluber filiformis which consequently becomes in part a synonym of Bascanion flagellum.

[^145]
DESCRIPTION OF A NEW SALAMANDER FROM ARK.ANSAS WITH NOTES ON AMBYSTOMA ANNULATUM.

By Leonhard Stejneger,
Curator of the Department of Reptiles and Batrachians.

Abstract

Among some specimens recently received from Hot Springs, Ark., through Messrs. H. H. and C. S. Brimley, there are two species of salamanders which are interesting in the highest degree, as one represents a new species of Desmognuthus, while the other is the second specimen of Ambystoma ammulum, the first one which with certanty establishes this species as North American, as the locality of the type and hitherto unique specimen is unknown.

DESMOGNATHUS BRIMLEYORUM, new species,

Dicignosis.-Mandibular alveolar margin continuons and completely toothed; tail compressed, keeled, finned; a tubercle in canthus oculi; 14 costal folds; gular fold absent, or very faint; parasphenoid patches not separated anteriorly; vomerine series, when present, long aud oblique; underside pale with faint dusky mottling, if any.

Habitat.-Hot Springs, Ark.
Type.-U. S. National.Museum No. 22157.
Descrintion.-Head rather large; body long and slender; tail shorter than head and body; limbs short, when adpressed not meeting by four or four and a half costal interspaces; digits short, variable in proportion, but outer finger usually considerably reduced.

Costal grooves, including the axillary and inguinal, 14 ; gular fold absent, or but feebly indicated; a vertical groove behind the angle of the month, and another a little distance in front of fore limb, the former comected with the posterior angle of the eye, all very faint; a wellmarked papilla in the angle of the eye; a vertical groove from nostril to edge of lip.

Maxillary and mandibular teeth small, mumerons, and continuous almost to the angle of the mouth, all very blunt, except those on the premaxillaries, which are sharp aud pointed; vomerine teetl, when present, in two long series posteriorly nearly parallel but diverging anteriorly outward toward the choane, from which they are separated
by about the same distance as from the parasphenoid patches; the latter are quite continuous anteriorly, diverging backwardly, consequently forming one apparently heart-shaped patch.

Outline of lower mandible, seen from below, rounded, with no anterior narrowed prolongation.

Tail nearly cylindrical at base, tapering to a point and becoming compressed posteriorly, with a keel, or low fin, along the upper median line.

Color variable; above, grayish-clay color, becoming pinkish on the tail, more or less overlaid with dusky spots or mottlings; sides darker, usually with a series of light spots; underside pale, mostly uniform, sometimes mottled with very indistinet gray on the belly.

Jimensions of largest specimen.-Total length, $1 \geq 8 \mathrm{~mm}$.; snout to vent, 72 mm . ; vent to tip of tail, 56 mm .; fore limbs, 13 mm .; hind limbs, 17 mm .; snout to fore limbs, 21 mm ; width of head, 12 mm .

Tariution.-Among the specimens examined there is but little difference, except that in the larger ones the romerine teeth are missing, ar rather common thing among the species of this genus.

The larger specimens are also duskier and less distinctly marked. The young specimens have brighter colors and more definite markings; thus there is a double series of dusky spots down the middle of the back and another double series on the sides, more or less inclosing the lateral series of light spots, which therefore appear ocellated; there is also a light line from eye to angle of mouth.

Comparison with other species.-Having referred this interesting nov-elty-which I dedicate to Messrs. H. H. and C. S. Brimley, from whom the Museum has obtained much interesting material-to the genus Desmoynuthus, I need hardly remark that the vertebre are opisthocelous and that the premaxillaries are fused together. It will therefore only need comparison with the three species of the genus hitherto recognized, viz, D. ochrophere, D. fusce, and D. nigra. From the former it is at once distinguished by the shape of the tail, as well as by well-marked differences in the mandibular dentition. From D. nigra it can easily be told apart by the number of the costal grooves, not to mention size and color.

From all, including 1). fuscu, it differs in the almost complete obliteration of the gular fold, and from the latter, with which it has the general proportions and external habitus in common, by the faintness of the grooves of the sides of the face and neck, as well as by the absence of the marked glandular swelling on the sides of the neck, so characteristic of D. fusca. The whole outline of the head, moreover, is different, it being more rounded and proportionally wider, resembling much more that of Plethodon ghetinosus than a Desmognuthus. The maxillary and mandibular alveolar margins are straight, not undulating, and the anterior glandular prolongation of the lower lip is absent. Finally, the palatal dentition is considerably different.

In I). fiscu the vomerine teeth when present are few, forming two
short arched series behind the choana, stighty oblique, converging behind, while the parasphenoid patches are separate their entire length; in I. brimleyorum the vomerine series are unth larger, nearly parallel posteriorly, diverging anteriorly, while the parasphenoid patches are united in their anterior portion. The latter appears also to be a larger species, although not so large as D. nigro, while the coloration approaches closely that of 1 . fuscu, except that the lower parts are considerably paler.

AMBYSTOMA ANNULATUM, Cone.

This species was described by Prof. Cope from a single specimen in the U. S. National Museum (No. 11564), the origin of which was unknown. It was consequently not even known with certainty that the species was North American. It was therefore highly interesting to receive from Messrs. Brimley a well-preserved specimen collected at Hot Springs, Ark., thus establishing the habitat of this striking species.

A direct comparison with the type specimen shows the peculiar coloration to be identical, with the trifling exception that in the type the light cross-band from arm to arm is interrupted on the middle of the back, while in the new specimen it is continuous, like the other cross bands. A pale cross band between the eyes, not mentioned in Prof. Cope's description, is present iu both specimens. The new specimen is comparatively fresh, and the ground color appears to have been black, the cross bands silvery gray.

There are several structural differences, however, between the two specimens. Thus, in the new specimen, the tail is shorter and someWhat compressed terminally; the vomerine series are longer and extend mesially farther forward. The fourth toe is comparatively shorter.

With only two specimens at hand, the exact locality of one of which is unknown, these differences do not seem important enough to warrant a specific separation, in view of the striking identity of the color pattern, which is absolutely unique in the gemus.

DIAGNOSIS OF A NEW GENUS OF TROGONS (HETERO. TROGON), BASED ON HAPALODERMA TITTATUM OF SHELLEY; WITH A DESCRIPTION OF THE FEMALE OF THAT SPECIES.

By Charles W. Richmond,

Assistant Curator of the Department of Birds.

Among the many birds sent to the United States National Museum from Mount Kilima-Njaro and other points in Easti Africa, by Dr. W. L. Abbott, are four very fine specimens of the rare Hapaloderma* rittutum, Shelley, the female of which is, apparently, as yet undescribed. The specimens sent by Dr. Abbott consist of one adult and one immature female and two adult males, all obtained on Mount Kilima-Njaro, between 6,000 and 7,000 feet altitude, during the years 1888 and 1889.

An examination of these specimens, and a careful comparison with the common African trogon (A. narina) leads me to believe this species should be removed from Apaloderma and recognized as representing a distinct genus. From Apalodermu narina, its supposed nearest relative, it differs in several important respects. The bill is very small and slender, and much compressed from above downward, being, in fact, the extreme in this direction, among the Old World trogons. The tomia of both maxilla and mandible are without serrations behind the subterminal notch, the presence or absence of which is an important factor in the recognition of genera in this very homogeneous family. Both A. narina and its close ally (probably subspecies), A. constantic, have these sermations, they being the only known representatives of the family in the Old World possessing this character. The patteru of coloration in the female of A. vittatum differs from that of A. narime in that the color of the whole head is milike that of the male; in the latter species the top of the head is similar to that of the male. Another character, of probably not more than specific importance, is the difference in the pattern of coloration of the tail. In A. narimu the three outer retrices are white for their exposed portion, while in A. rittutum these feathers are conspicuously marked with black and white bars.

In view of these very considerable differences existing between the two species, fully enongh, in my estimation, to warrant the adoption of
a new generic term for A. vittutum, I am led to propose for this species the name

HETEROTROGON, new genus.
Diagnosis.-Size medium; form siender; tail long; rectrices not truncate. Three center pairs of rectrices, dark purplish-blue, with metallic reflections, in both sexes; no black terminal bar on middle pair; three outer pairs with black and white bars on their exposed portious. Bill small, slender, and much compressed. Tomia of both maxilla and mandible smooth, without signs of serrations posterior to subterminal notch. Sexes unlike in coloration.

Habitat.-Equatorial Africa, extending across the continent. Apparently confined to the highlauds.

Type.-Hapaloderma vittatum, Shelley.
The points of distinction between this genus and Apuloderma, Swainson, may best be seen by the following key : a. Bill extremely small and slender; much compressed.
b. Tomia of maxilla aud mandible without serrations posterior to subterminal notch.
c. Three onter rectrices with bars of black and white.
d. Female differs decidedly from male on top of head.. Heterotrogon. a^{\prime}. Bill large and swollen.
b^{\prime}. Tomia of maxilla and mandible with serrations posterior to subterminal notch.
c^{\prime}. Three outer rectrices white, for their exposed portions, without bars.
d d^{\prime}. Female similar to male on top of head..................Apaloderma.
The extreme rarity of Heterotrogon vittutus in collections, and the absence of information respecting the female, probably account for its non separation from Apaloderma before the present time. It is unnecessary to compare this genus with Apulharpuctes or Pyrotrogon* of the East Indies, as they belong to a different section of the family.

The adult female obtaned by Dr. Abbott on Mount Kilima-Njaro, August 7,1888 , at an elevation of 6,000 feet (No. 117973 , U.S.N.M.) may be described as follows: Pileum Prout's brown, somewhat darker on lores, with a distinct coppery gloss, except on forehead; this gloss most intense on sides of occiput, where it is reddish bronze; ear coverts slightly darker, with slight greeuish reflections, the feathers of normal length with filamentous terminations; suborbital region blackish slate without metallic gloss; back, rump, and upper tail coverts metallic green, quite golden bronze on back, scapulars, and rump, but plain grass green on upper tail coverts. Three inner pairs of rectrices dark

[^146]purplish blue, with narrow metallic green edgings on the onter webs; three outer paiss same color, but barred with white on exposed portions, exactly as in the male. Throat, jugulum, and upper breast raw umber, tinged with cinnamon, rather inelining to drab on the throat; sides of neck metallic. green as on the back; lower breast russet, the color sharply defined from the raw umber of upper breast and throat; abolomen and crissum geranium red, some of the russet feathers of breast bordering the abdomen also tinged with this color; flauks and tibia, slate; wing, as a whole, dull slaty black, a slight greenish reflection appreciable on tertials and wing coverts; onter edges of second, third, fourth, fifth, and sixth primaries narrowly bordered with white for basal half of exposed portions, and to their insertions; secondaries, tertials, and greater coverts of wing with narow zigzag bars of white, the bars 0.08 to 0.10 of an inch apart; primary coverts plain dull slate black; middle and lesser coverts dull black, broadly margined with metallic green, the greater coverts and tertials narrowly edged with the same color. Bases of secondaries, tertials, and fifth, sixth, and serenth primaries white, making an irregularly-shaped spot an inch long, on the under surface of the wing; unler wing coverts smoke gray. Wing, 4.90; tail, 6.6N; tarsus, 0.65 ; exposed culmen, 0.50 ; width of maxilla at base, 0.60 inches. "Feet white" (light brown in dried specimen); bill yellowish buff.

Another female, immature, obtained in the same locality, at 7,000 feet altitude, June 10, 1888 (No. 117974 , U.S.N.M.), differs from the one just described in the following particulars: Pileum Prout's brown, some of the feathers broadly edged with metallic green, as on the back; lower breast russet, with iudistiuct buffy edgings to the feathers on the sides, and occasional buff feathers, tipped with dull black (these are feathers of the first plumage) ; abdomen pale geranium red, sparsely intermingled with buff feathers near median line; under tail coverts cinnamon, with faint mottlings or bars of greenish black (with metallic reflectious) on some of the feathers; bars on three outer rectrices irregular and indistinct, the second and third pair with 1.25 inches of unbared white at terminal end. A few white spots on greater wing coverts, secondaries, and tertials are signs of immaturity; these spots are on the outer webs, near the distal ends of the feathers. Maxilla blackish; mandible yellowish horn color, tip black. Wing, 4.80 ; tail, 6.50 ; tarsus, 0.62 ; exposed culmen, 0.55 ; width of maxilla at base, 0.55 inches.

The two adult males in the collection agree with published descriptions. They were obtained on Kilima-Njaro, altiturle 6,000 feet, one on August 8, 1888, and the other on October 9, 1889. Their measurements are given below :

Meuswrements of adult mules of Heterotiogon rittatus.

$\begin{aligned} & \text { U.S.N.M. } \\ & \text { No. } \end{aligned}$	Wing.	Tail.	Tarsus.	Exposed culmen.	Width of maxilla at base.
1179\%	4.70			0.52	0. 58
119223	5.06	7.10	0.58	. 50	. 66

ON THE BOTHRIOTHORACINE INSECTS OF THE UNITED STATES.

By L. O. Howard, Entomologist, U. S. Department of Agriculture.

No published attempt has been made to divide the large and important chalcidid subfamily Eucyrtine into tribal groups beyond the suggestion of the writer* of the use of the name Tetracnemini for the Encyrtime possessing branched antemme. There are, however, several natural divisions of the subfamily to which tribal names should be given in any revision of the group. One of these is the group under consideration. The extraordinary sculpture of the head caused the partial association of Bothriothorax and Phenodiscus in the synoptical tables of Foerster, Thomson, and Mayr, and to these two genera are to be added two others, Chelcaspis and Pentelicus, based upou undescribed material in the U. S. National Museum.

We unfortunately know nothing of the habits of the new genera, since the few specimens known have all been collected by sweeping. Of Bothriothorax, however, the habits are well known, and the species are parasitic upon dipterous larve, as follows:
B. clacicornis, Dalman, from Syrphus sp. and Anthomyia cepurum; B. peculiaris, Howard, from Syrphid larva on oak; B. californicus, new species, from larva of Cutacomba pyrastri, Limmens, feeding on rose aphis; B. noveborucensis, new species, from Syrphid larver preying upon hop aphis.

We have as yet no American species of Phenodiscus; but P. cercopiformis and P. aeneus of Europe, are said to be parasitic upon Coccidr.

BOTHRIOTHORACINI, new tribe.
Short, stout-bodied Encyrtine, with very large, thimble-like punctation to the rery broad and very short head; short, stout legs, with five-jointed tarsit and broal wings; antenne inserted below the middle of face, eleven-jointed, funicle joints short, scape slender, or with leaf-like expansion.

[^147]
ANALYSIS OF THE GENERA

Marginal vein very short or wauting.
Mesoscutum with a sculpture very similar to that of head.
Mesoscutum rery short, only half as long as scutellum; autennal clnb as loug as all funicle joints together; postmarginal vein as long as stigmal

Chalcaspis. Mesoscutum at least as long as scutelium; antennal club shorter than funicle; postmarginal vein much shorter than stigmal Bothriothorax.
Mesoscutum with punctures less dense than those of head, and with a plain shagreening of the surface; antennal club shorter than funicle; postmarginal and stigmal reins short, subequal

Pentelicus.
Marginal vein long, rarely shorter than stigmal; mesoscutum shagreened, with sparse punctures

Phenodiscus.
CHALCASPIS, new genus.
Female-Body very short and very stout; head very thin anteroposteriorly, very broad (laterally); eyes long oval, very widely separated, faintly hairy; face very conves, not firrowed; oceipital border rery sharp; genal sulcus distinct, widely open at eye border; ocelli indistinct, at the corners of a very obtuse angled triangle, lateral ones near the eye border. Antenne inserted at border of mouth; scape slender, not broadened, rather short; Hagellum rather longer than scape; first funicle joint shorter than perlicel, remaining funicle joints not longer than wide; club large oval, slightly obliquely truncated, as long as all funicle joints together. Pronotum nearly covered by occipital border of head. Mesoscutum very short. Mesoscutellum long and broad, twice as long as scutum, nearly flat, rather pointed, with entire border emarginate; axillar sutures very indistinct, axille meeting at tips. Abdomen very short and broad. Legs stout. Wings short and broad; submargiua? vein reaches costa at abont one-half wing length: marginal vein lacking; stigmal loug, curved; radial angle narrow; postmarginal as long as stigmal.

CHALCASPIS PERGANDEI, new species.

Female.-Length, 1.3 mm .; expanse, 3.4 mm .; greatest width of forewing, 0.59 mm . Punctation of head (except the smooth occiput), mesocutum, and mesosentellum nearly miform throughout, the punctures round, lengthened somerthat posteriorly on sutellum; tegule smooth, with a shallow forea at imer base; mesopleura finely shagreened; rest of body smooth. Funicle joints of antenuer short, all broader than long, increasing in length and breadth from 1 to 6 . Head, pronotum, and mesonotum greenish or coppery in color, with strong metallic reflections; eyes dark red or black, maudibles black; antenmal seape honey̆ yellow with black bulbus; pedicel and club dark brown or black; funicle joints honey yellow, joint 1 darker than the others. Pleura and abdomen metallic with greenish or bluish luster. All coxie metallic; all femora, tibier, and tarsi heney yellow. Entire forewing slightly infuscated.

Described from four female specimens, two collected by Mr. Theodor

Pergande, in the District of Columbia, in July and August, 1878, one taken by myself in September, 1884, and one captured by Mr. J. M. Aldrich, in Sonth Dakota. All in the U.S. National Museum collection. I have also seen two females in the collection of the American Entomological Society at Philadelphia.

Geaus BOTHRIOTHORAX, Ratzeburg.

Bothriothorax, Ratzeburg, Ichnemmonen d. Forst-insekten, 1, 1844, p. 208.Foerster, Hymenopterologische Studien ir, 1856, p. 32.-Suellen van Vollenhoven, Schetsen, 1871, Tab. vif.-Thonsox, Hymenoptera Scandinavix, iv (1875), p. 133.-Mayr, Die Furopaische Encyrtiden, 1875, p. 80 (754).
Female.-The body is rather broad and thattened. The autenne arise not far from the border of the mouth; the scape is quite long aud not flattened; the pedicel is as long as or longer than the first funicle joint; this last is as long as or longer than thick; the chb is shorter than the funicle or (with B. pradoxus) twice as long. The face is delicately impressed; vertex and clypeus are very broad, and the ocelli form a very obtuse-angled triangle. The thin (antero-posteriorly) broad (laterally) head is very deeply punctured, as are also mesonotum and scutellum; in the center of each puncture is a little papilla, from which springs a delicate hair; besides this, there is a leather-like sculpture. The mesoscutum and scutellum are rather strongly transversely arched, and the lateral borders of the latter are quite sharp. The ovipositor is not at all, or very slightly, extruded. The marginal vein of the hyaliue wings is very short, or is lacking; the stigmal is long, and the postmarginal is short, or very short; radial angle wide.

Male.-Very similar to the female and only distinguished by the antemne and by the sparser punctuation of the head. The pedicel is short, somewhat longer than thick; the funicle quite lengthened, and the joints small and strongly concare beneath, so that the funicle appears somewhat toothed above; most of the joints have two half whorls of long hair; the club is almost as long as the last two funicle joints together.

ANALYSIS OF THE SPECIES OF BOTHRIOTHORAX.
Puuctures of mesonotum deep but very irregular, giving a strongly rugose appearance

VIRGINIENSIS.
Punctures of scutum quite round and regular. Axilla meet at tips. PECULIARIS. Axillie separated at tips:

Scutellum more or less emarginate at tip.
Scutellum nearly uniformly punctured.
Emargination of tip of scutellum faint; antennæ rather long and slender. \qquad
Emargination very distinct; antennæ short and stout.CALIFORNICUS.
Normal punctation of scutellum ceases on posterior third, and is replaced by delicate longitudinal aciculation; emargination of tip slight.
xurimpes.
Scutellum not emarginate at tip.
Notum transversely and longitudinally convex; rertex rounding up between the eyes. Rotivinformis.
Notum nearly flat; vertex flat Planiformis.

BOTHRIOTHORAX VIRGINIENSIS, H ow ard.

Bothriothoras rirginiensis, Howand, Bull. 5, Div. Entom., U.S. Dept. Agric., 1885, p. 20 .

Female.-Length, 1.63 mm .; wing expanse, 3.96 mm .; greatest width of forewing, 0.69 mm . Face and vertex with large, round, thimble-like punctures, each with a central umbilicus, becoming sparser on lower face and more elongate. Cheeks also faintly shagreened; punctation of mesoscutum more irregular than on vertex, individual punctures elongated and more or less irregular; mesoscutellum like scutum, except that it is aciculate at base. Abdomen smooth; pleura smooth; eyes faintly hairy; antenne regularly. clavate; pedicel longer than first funicle joint, which is a little longer than broad; remaining funicle joints increasing slightly in width and in leugth; club slightly longer than sixth funicle joint. Color metallie greenish black; antenne jet black; all coxic metallic; all femora metallic, brownish at tip; front and modlle tibie brownish yellow, hind tibie greenish black; all tarsi yellow; wing veins light brown.

Described from one female specimen collected September 18, 1881, at Arlington, Va. Type in the U. S. National Museum.

BOTHRIOTHORAX PECULIARIS, H o w a rd.
Bothriothorax peculiaris, Howard, Bull. 5, Div. Entom., U. S. Dept. Agric., 1885, p. 20.
Femule.-Length, 1.65 mm .; expanse, 4.2.5 mm.; greatest width of forewing, 0.7 mm . Axillie meet at tips, face uniformly punctate, cheeks behind genal sulcus impunctate, faintly shagreened; punctures of mesonotum supplemented by faint granulation ; scutellum nearly smooth at tıp, faintly emarginate; tegule faintly granulate, abdomen and pleura smooth. First funicle joint of antennt somewhat shorter than pedicel; funicle joints subcylindrical, increasing in diameter from one to six; joint six as thick as long; club as long as three preceding funicle joints together, much flattened and sharply, somewhat obliquely, truncate at tip. Gencral color blue green; basal half of antennal scape honey yellow; distal half black above, yellowish below: flagellum black with green luster; middle and hind femora honey yellow; front and middle tibie honey yellow; hind tibie black: all tarsi honey yellow; wing veins light brown.

Male.-Antennie much longer and more slender than those of female; perlicel twice as long as thick; joint one of funicle three times as long as thick, and one-third, or a little more, longer than pedicel; other funicle joints suberual in length, about as long as pedicel, well separated and increasing slightly in thickness; club thattened, very obliquely truncate, and nearly as long as two preceding funcle joints together; all joints clothed with short, close hair. In coloration similar to female, except that the antenne and front femora are honey yellow throughout.

Described from three females and ten males, reared in November from a Syrphid larva, found on an oak leaf at Arlington, Va. Types in the U. S. National Museum.

BOTHRIOTHORAX NOVEBORACENSIS, new species

Female.-Length, 1.6 mm . ; expanse, 3.8 mmn ; greatest width of forewing, 0.7 mm . Axilla well separated at tips; punctation of head as with preceding species; same with that of mesonotum and sentellum. Axillie nearly smooth, scutelium faintly emarginate at tip, tegulae smooth, eyes faintly hairy; marked depression at centrai hond border of mesoscutum; abdomen faintly shagreened, mesoplemra smooth, antenne more slender than with preceding species; ,oint 1 of funcle one-half length of pedicel ; joints $\because \because$ to 6 increasing slightly in wioth and length; club obliquely truncate, as long as the two precerding funicle joints together. General color bright metallic blne-green; tegule light brown at tip, somewhat metallic at base; antemal scape honeyyellow at base, brown toward tip; thagellum brown; all legs honey yellow, front and middle femora brownish, hind tibie black, all coxie metallic; wing veins brown.

Described from two female specimens, one collected on hop at Richfield Springs, N. Y., by Mr. Theodor Pergande, Uctober 7,1 ssi, close to a Syrphid larva, and the other by Mr. Koebele at Boscawen, N. H., October, 185 . The measurements apply to the New Iork specimen; the New Hampshire specimen is considerably larger. Types in the U. S. National Museum.

BOTHRIOTHORAX CALIFORNICUS, new species.

Female.-Length, 1.75 mm.; expanse, $4 . t$ mm. : greatest width of forewing, $0 . \delta$ mom. Axillie well separated at apex. scutellum distinctly emarginate, eyes planly hary; head punctured as with precedings species, fincial depression shghtly marked. Soutum and scutellum similarly punctured, the punctations on the side of the seutellum becoming somewhat elougate, less so in the center, the punctations with shagreened center; punctures lacking at extreme tip of scutellum, but shagreening persistent. Axillat nearly smooth, with one or more faint depressions; tegule shagreened on basal half. Abolomen smonth, except secoud segment, whirh is taintly shagreened. Oeciput rather strongly shagreened, mesoplema smooth. Antemme short, stouter than with preceding spectes; flagellum not more than one-third lonser than scape; first fumele joint one-half as loug as pedicel; joint 2 equal to joint 1 , joints $3,4,5$, and $i f$ becoming each a little louger and a little wider than its precedins joint. Club Hattened, obliquely trumeate nearly to base, and as long as thee preceding fimele joints together. (ieneral color metallic bluish-green, tegule also metallie, antente black throughout, all legs dark brown, hind tibie metallof, middle and fore tibice lighter towad tip; all tarsi honey yellow; wing veins brown.

Proc. N. M. $94-39$

Described from three female specimens reared by Albert Koebele at Alameda, Cal., in July, from pupa of ('atuombu p!!rastu, Limucus, among aphides on rose. Types in the U. S. National Museum.

BOTHRIOTHORAX NIGRIPES, new species.
Femule.-Length, ユ..2 mm.; expanse, $\boldsymbol{\tau}$ mm.; greatest width of forewing, 0.93 mm . Axillap well separated; eyes, naked, scutellum slightly emarginate; hear punctured as with precerling species, facial depression not marked; punctation of scutum and scutellum like that of head, except that posterion one-thind of seutellum hears no large punctures, hut is very finely and longitudinally shagreened or aciculate. Axilla smooth, except for two large round punctures side by side on the wider portion of each. Tegula as with preceding species. Entire surfare of abolomen fantly shagreened; pleura smooth; occiput as with preceding species. Antemne as with the preceding species, except that the first funcle joint is as long as the pedicel. Gencral color metallic buish-green, with strong bronze retlections on thorax, these reflections being given off from the interspaces between the punctures. Base of antemal scape brownish, remainder of antemma black; tegule black; all legs black, except that the tarsi are honey-yellow, and fore tibix are light brown; wing veins light brown.

Described from two female specimens, one collected on cabbage at Las Cruces, N. Mex̃., by Mr. T. D. A. Cockerell, and the other collected at Los Angeles, Cal., by Mr. 1). W. Coquillett. Types in the U. 心. National Museum.

BOTHRIOTHORAX ROTUNDIFORMIS, new species.

Female.-Length, 1.7 mm . ; expanse, 4.3 mm . ; greatest width of forewing, 0.85 mm . Scutellum not emarginate at tip; axille well separated at tips; notmon of thorax transersely and longitudiually convex (a character wheh this species possesses in common with, though in rather more maked degree than, all the preceding'speries, but in which it difters radically from the following species). Head punctured as with preceding species, occiput transrersely shagreened, facial depression well maked, transersely rugose: eyes faintly hary. Scutum punctured like head, scutellum similarly punctured anteriorly, punctares becoming fainter toward tip, which is delicately transversely shagreened; axilla with sereral small faint impressions; tegula smooth; pleura smooth; abdomen smooth, ovipositor very slightly exserted; antemate as with culiforniens, not so thickly clothed with pile as most of the other species. General color metallic bluish green; tegule dark brown, somewhat metallie at base; antenue dark brown, with scape yellowish at base. All cosif metallic, hind femora metallic, middle and front lemora dark brown at middle, yellowish at tips; front femora rather darker than middle. Front and middle tibia honeyyellow, hind tibie nearly black, all tarsi honey-yellow, except apical
joints. Wing veins brown, with darker spot at juncture of submarginal and stigmal.

I escribed from one female specimen taken in Placer County, Ual., by A. Koebele, in August. Type in the U. S. National Museum.

BOTHRIOTHORAX PLANIFORMIS, new species.
Femule.-Length, 1.8 mm ; expanse, 3.9 mm ; greatest width of forewing, 0.8 mm . Axillie nearly tonching, scutellum not emarginate, eyes plainly hairy; notmo of thorax flat, mesosentum and scutellum in same plane. Head punctured as with preceding species on frout and vertex; facial depression very distinct, ocenpying nearly all of lowex half of face, depression irregularly shagreened; face between depression and genal suleus, rugose; cheek behind suleus faintly longitudinally shagreened. I'unctures of mesoscutum rather sma'l and less pronomed than those of the head, but dense and accompanied by faint shagreening; on mesoscutellum punctures become much sparser, and the shagreening, which takes a longitudinal direction, much more markerl. Axillae with many small punctures; tegule faintly shagreened over entire surface; mesopleura distinctly shagreened, especially on anal half. Abrlomen smooth at sides, faintly shagreened above and below, ovipositor distinctly exserted. Both scape and Hagellum of antenne rather longer than in preceding species; first funcle joint longer than second and rather shorter than pedicel; third and fourth equal to second; fifth, and sixth equal to first; club as with preceding species. General color black, faintly metallic, mesoscutellum with faint coppery luster, facial depressiou with brilliant purple luster; tegulae black, somewhat metallic, middle tibie becoming lighter toward tip; tarsi as usual yellowish, with black apical joints. Wing veins brown, stigmal and short projection of submarginal darker than submargiual.

Described from one female specimen collected in Placer County, Cal., by A. Koebele, in August. This species resembles Phenodiscus in punctation of mesoscutellum, but in venation and other respects belongs to Bothriothorux. Type in the C. S. National Musemm.

BOTHRIOTHORAX PECKHAMII, A shmead.
Bothriothorar peckhamii, Asmaead, Trans. Amer. Ent. Soc., xiir, 132.-Cresson. Syuopsis Hymenoptera North America, pt. ii, p. 240.
This species, Mr. Ashmead informs me, is not a Pothriothorax. He has kindly allowed me to see the type, and it seems to form a new genus near Comys, but lacks the scutellar tuft.

> PENTELICUS, new genus.

Female.-In habitus this form is intermediate between Bothriothorax and Chalcraspis, but has the shagreened mesonotum of I'henodiscus, the rombl punctures of the mesonotum, however, being rather close iustead of sparse. It is not so short and broad as Chalcaspis. The
head resembles that of Chalcaspis; the ocelli are similanly placed, the eyes are shorter, more rombled, and hairy; facial depression well marked, genal sulcus plain but not widely opened at eye-border, as in Cholcospis. Mesoscutum is nearly as long as scutellum; axille are very difficult to distinguish and are widely separated at tips scutum and seutellum rather closely punctate, with plain shagreening in addition. Scutellum rather tlat, margined round entire free border, and with a delicate central longitudinal carina. Antenne resemble those of Bothriothornx. Forewings broad and rather short, stigmal given off before submarginal reaches costa, postmarginal about as long as stismal; both, however, short. Radial angle narrow. Abdomen short, triangular, rather sharply pointed at tip.

I'ENTELICUS ALDRICHI, new species.
Femule.-Length, 1. F mm.; expanse, 2.8 mm . ; greatest width of forewing, 0.6 mm . Punctation of front divides at top of tacial depression and rums in a narow band down below each eye. Walls of facial depression fanty shagreened, the shagreening continuing in a longitudinal manner upon the cheelis, each side of the genal sulens and so around upon the ocerput. Mesosentum with punctures lacking mpon its anterior border. Tegulir smooth; abdomen smooth; mesoplema fantly shagrened. Antenne with indistinct jomts, funicle joint one nearly as long as pedicel; funcle joints subequal m length, but increasins in width to flattened and very obliquely truncate club, which is as long as two precedmg funicle joints together. General color somewhat metallic greenish-black; face highly metallic, with greensh-bronzy reflections, facial depression with bright green reflections; mesonotum much duller. Tegula black, antemne dark hrown or black, scape honeyyellow. All femora and tibie black, with yellowsh extremities: trochanters yellowish; tarsi light honey-yellow, with black apical joints.
bescribed from one temale specimen collected in South Dakota by Mr. J. M. Aldrich. Type in the U. S. National Museum.

Genus PHENODISCUS, Foorster.
Phenorlisons, Foenster, Hymenopterologische Studien, 11., 1856, p. 144.
Discodes, Forister, Hymenopterologische Studien, II, 1856, 1. 32.-Suellen Van Vollenhoven, Schetsen, 1871, 'Tab. vif.
Phenodiscus. Thomson, Hymenoptera Scandmavie, w, 1875, p. 136.-Mayr, Europaische Encyrtiden, 1875, p. 83.
No American species of this gemus have yet been fommd. So many European gemera, however, have abrady been recognized that it is probably only a question of time before species of this genus will be found to occur in the linited States. I know the genus only through a simgle male specimen of I^{\prime}. weus, Datman, given to me by Dr. Mayr, and am therefore ohbiged to repeat here this anthor"s comprehensive description of the genus.

Femule.-Body short, moderately hroad; anteme inserted not far
from mouth border; scape rather short, with no leaf-like expansion: perlicel is shorter or longer than first funicle joint: finicle moderately compressed or almost eutirely cylindrical; club as long as two or three last funcicle joints together. Facial depression slight; genal sulcus sharp, reaching from the eye to the mouth border: front and rertex very broad: ocelli at the comers of an obtuse-angled triangle; head thickly and very coarsely punctate: mesoscutum and scutellum rather strongly shagreened, with sparse hair-bearing punctures; plenra shagreened, not glistening; axilla of the slightly arched scutellum meet at tips; ovipositor entirely or ahmost entirely hidden Wings wholly or partly infuscated. Marginal vein is as long as or somewhat shorter than stigmal, never very short; postmargiual variable in length.

Hule.-Somewhat like the female; scape short, perlicel as long as broad; funcle joints and club subequal in thickness, with short and rather close pile; sculpture of the head is lighter and sparser than in the female, the thorax also with finer sculpture; soutellum, especially behind, more strongly arched than with female; wings not infuscated; venation like female.

ADDENDUM.

W'alker's genus I cuasins, just redescriberl by the writer,* belongs to this new tribe. It differs at once from the genera here deseribed by possessing a broad leaflike expansion to the antennal scope. It is a monotypical genns. and has been fomed only on the island of st. Vincent, B. W. I.

[^148]
NOTES ON THE (iEOMRAIIICAL HINTRIBUTHON゙ OF SCALE INSEOTS.

By T. D. A. Cockerell.

In ture preparation of a list of localities from which Coceidar have been recorded it becomes so evident that our knowledge is not merely incomplete, but fragmentary, that further consideration of the matter at the present time might seem useless. I do mot. howerer, take this view, but prefer to record the frasments of information so far accumulated, hoping that those who read these notes may be in some cases stimulated to assist in filling the gaps.

PALEARCTIC REGION.

Althongh Enrope has been apparently well searched, new things are turning up every few months, and I really believe that we do not know the Coccider of any European country so well as we do those of New Zealand. There are two or three reasons why the European list, as appearing in the books, must be considerably reduced. One is that there is doubtless a good deal of synonymy not yet clearly made out, owing to the formerly prevalent idea that it was sate to consider anything on a new food plant to be a new species. Another is the number of imperfect descriptions of older authors, which, in the absence of certainty as to what was intended, will have, eventually, to be dropued. The third reason is that rery many species described from Emope have been fomd in hothonses on exotic plants, and certainly do not beloug to the paleartic fama. When signoret wrote, these hothouse species already numbered 48 , and they have been largely added to since by Douglas and Newstead.

Making as good an estimate as I am able to at present, I find the tiuly palearctic Coccidse to be as follows:
 піни, 2; Xylococeиs, 1; Gossypuriu, こ; Eriococcus, 6; Rhizococcus, 1; Bergrothia, 1; Oudables, 2; Intctylopius, 11; P'uto, 1; Phenacoccats, 12; Ripersit, 4; Tetruru, 1; ('ryptococeus, 1; liermes, 9; Ortheziu, 5; Asterolecanium, г̃; Pollinia, 2; Lecuniodiaspis, 1; Signoretia, 1; Fillippia, 1;

Eriopeltis, :3; Lidhtensin, 1; I'ulvimarin. 17: C'eroplastes, ᄅ̈; Physo-
 Exaretopus, 1; l'пirmairin, 1; Aspidiotus, こ.: Diaspis, s; Aulacospis,
 Aomilia, 2.

Thus the palearatic region has about 200 species (some of donbtful validity) which appear to be native to it. This is not a very good showing when we remember that even in the nearctic region, where We must have a lively sense of our ignorance, we recognize about 120 , although, it must be confessed, many of these can not be clamed as native.

Turning, now, to the several portions of the palearctic region, the facts are still more striking. The great majority of the species is from France, the country of Signoret, Boisduval, Lichtenstein, and other coccidologists. In early times bouche described species from Germany, and still carlier we have the "Fama Boica" of Schrank. The species of Schrank, being found in Austria, were in later days elucidated by Loew. In Italy there was Targioni-Tozzetti, but this author frequently omitted to give the descriptive information necessary for the identitication of names bestowed, these omissons, happily, being mostly supplied by Nignoret. At the present time Berlese, in Italy, and diard, in France, are publishing on Coccidæ.

In the Spanish pemmsula, about ten pears ago, some spectes were described by P'. Colvee, and later than that Mr. A. C. F. Morgan, residing at Onnto, has stmblied the gromp, thongh not adhug very much to the fama of his locality.

In Greece some contributions have appeared from (iennadins, who allso favors us with a record of Aspidiotus cillontio (his conceineus) from the Island of Chios, off the coast of Asia Minor. The same insect has been reported by Shipley from Cyprus, and is stated to oceur in Syria. The manland of Asia Minor furnishes one spectes, Ductylopius caricus, described in 1883 by Gennadus.

From Egypt we know little, but Signoret described therefrom his Ceroplastes mimose; and more recently we have the Incrya argyptiaca of Mr. Douglas, which may, however, be really a native of India.

Algeria has furnished two species of Asterolecumium on bamboo, but these doubtless belong really to the tropics, where they have since been found. Gincrinin servolule, reported by Signoret, is more probably native there. Just lately M. (iard has named from Ageria two speries, Leconium asporogi and Dinspis asperanf, but I am not aware that the descriptions have yet appeared.

Madena and the Canary Islands now furnish the imported Cocens refcti, but their native corcid fama is manown. If my recoliection is correct, Aytilnspis pomorum was found apparently native in the Canaries by Mr. D. Murris recently.

Taking the more northern parts of Emope, there is the "scarlet
grain of Poland," but I do not recall any records of native speries in linssa proper with the exception of Gossyparia momifera. It is also seported from Egypt, Arabia, Armenia, and Algeria. Holland supplies Eropeltis lichtensteinio. The scandinavian peninsula, since Limnan time, has been neglected, thongh we have the (homuspis sorbi, Dong. las, from Finland.

Cermany was alluded to abore, but a paper by R. Goeithe on the Coceide of the Rhine district, published in 18St, should be mentioned. When I was in Jamaica, Mr. C'. Schanfuss, of Neissen, Sasony, sent me a number of Coccide becanse, he said, there was no one in Cermany who could identify them. Happily, since then, a new student has arisen in Bohemia, Mr. K. Sule, and from his energy and zeal we may look for great additions to our knowledge. Mr. Newstead has just described Fiorimin sulci, found by him, which is the tirst undonbtedly palearetic Fiorinic.

Finally, the British Isles have to be considered. Work done in earlier times by Westwood, Curtis, Hardy, and a few others, was only fiagmentary in its nature, and did not afford a basis for a good knowledge of the insular roceid fanna. After the publication of Signoret's Essai in Frauce, the way was clearly open for some student to elucidate the British species; but instead of a new writer, Mr. J. W. Douglas, ahready a reteran in entomology, came forwarl, and has for the last ten years produced papers in rapid succession on the subject. Still more recently, however, we have a new student in Mr. Newstead, and it is to him we immst look for the first revisional monograph of British Coceidar.

Passinge eastward into the Asiatic portion of the palearctic region, we are met by a total absence of information, excepting the before mentioned records from Asia Minor and Syria, and a Porphyrophora long ago made known from Armenia. On the sonthern horder, in a region perhaps rather Oriental than palearctic, we have the lately described Pollimin !fandis, Newstead, from Beloochistan, where it was discovered by Lient. R. Tomlin.

At this point it seems desirable to urge the importance of getting some knowledge of the Coccide of Japan. In California certain species are said to have been imported from Japan, but we have no knowledge, apparently, of the coccid fauna actually existing in that country. Japanese fruits are now often imported into the U'nited states, and the possibility of importing Japanese Coccide must be carefully considered. Prof. Gillette recently sent me an Aspidiotus found on a plum at Canyon City, Colorado. I do not know the species, but think it may probably be Japanese.

ETHIOPIAN REGION.

If, as seen above, our knowledge of palearctie Coceidix is still small, how absurdly small is that of the coccid fanna of the Ethiopian region-a region which one might expect to teem with motesting
species. The known species are less than half the number of those found in Jamaica.

From 'Tangler to Cape Town, all down the west coast, I find no remod ly recent whaters: only the Ionophlelous ruddomi, Westwood, described from a male.

At the north, perhaps better recorded in the palearetic list, is A tomidin blenchurdi, Targioni-Tozzetti, on the date palms of the sahara.
At the Cape we have the old Limatan Ceroplestes myrice and the Cocrus diosmatis, neither of which are now positively recognized. R. Thanen, in 1sist, wrote on a supposed species of Ifargurodes fomm with termites and ants. More lately there are signs of awakening interest from this part of the word, and new species are gradually falling into the hands of coceddologists. Thus we have Ortomion matensis, Donglas, and Dactylopius graminis, Maskell, both from Natal.

On the eastern coast the same lack of information is found, althongh, indeed, Dactylopius bromelie comes from Kanzibar.

It need hardly be said, after this, that the central portions of the continent are virgm gromod, as likewise is Madagasear, thongh there is a possibility that one or two of the hothonse species may really be from that island.
For Manitins we have Icerys researches, datiog from 1864, and mate erer famons by the name Iceryu. In 1 sisis Guérin-Meneville, taking up the same subject, treated the Cocerdar infesting sugar cane in Manitus and hemion. He recognized three Coceider and an Ileyrodes. In 1sio shgmet added Ceroplastes cinsomi to the Manritius fauma.

Iteryun seychellarmm, Westwood, the I. sucelheri of signoret, is found in the Seychelles, Rombom, Rodrigum, and Manitus, and, it is said, also in Madeira, of course there mintroduced.

There is still one more record, Mr. Butler's Coccus ceratyormis from Rombigne\% Unfortunately, we do not know to what gemns this insect belongs. It is no concus in the Signoretian sense. Vinsonia stellefera is recorded from Réunion.

ORIEN'AL REGION.

Putting aside the speries of which the generic position is unknown (that is, the last century of Cocecidir of Anderson), I find described from the Oriental region the following:

Wrallirvianu, 1; Monophlelous, 4; Irosichat, 1; Ioctylopius, 3 (including two of Mr. Newstead's species, abont to be published); Coccus, 1 (introduced); orthesiu, 1; Tachardia, 1; Eriochitom, 1; Pulvinaria, 1 (not published, described by Newstead); I'semdopultimaria, 1; Vinsoniu, 1 (I. stellifer", said to come fiom Siam, also Remion); Ceroplastes, 1: Vricenus, 1 ; Lectminm, 4 ; Aspidiotus, 4 (1 of Mr. Newstead's waiting pubheation); Chionuspis, 2.

A total of $3 s$, for such a region as the Oriental! It is less than half
of those known from Jamaica. Even adthing risht murecognizable species of "Cocus" (seven hy Auderson, one by W. F. Kirby) the total is only 36 ; still only about half the total for Jamaica.

The Jamaican total, however, includes species beliered to have been introducerl; so, to make the comparison fair, we should ard to the Oriental list Diaspis lanatus (in Ceylon), Iceryu retyptincel (Madras, possibly native), Ductylopius bromelior, as identified by Maskell (in Bengal on mulberry), and Chomospis braziliensis (in Ceylon), as well as the long established Cocous cocti, which I had ahrealy inchuded, thens bringing the Oriental list to a total of 40 .

Coming now to the several famme we may take tirst the islambs. The Malay region is almost totally mexplored for Cocridar, yet what a rich harvest it would smrely yield! From sumatra we hate the old Monophlebus dubius. Fabricius (fabrigii, Westwood), and from dava Monophlebus atripennis, Klug. We learn from Watt (I)ictionary of Economic Products of India) that ('oceres cocti has been introduced in Java, and are there refersed for further information on this point to at work I have not seen, "Veth's Woordenboek ron Sederdandsch IndieCochenille."

Beyond these records I can not recollect a single species as mentioned from any Malayan island; nothing fom Borneo, Celebes, or the Philip)pine Īslands.

For the Laceadive Islands we have Maskell's records of Itactylopins cocotis and Aspidiotus destructor: but for the dndamans. Nicobars, and Maldives I have seen nosrecords.

For Ceylon we have several records. In addition to the two above mentioned, we may refer to Whlkeriman floriger, Walker, "Coctus" lumiger, Kirby, Lectuium coffere, Walker, L. mungifere, Green, L. ciride, (ireen, Orthesill mucra, Buckton, Aspidiotus transporens, Green (? = A. nerii, says Mr. (ireen), Aspidiotus there, Green (which Mr. (ireen informs me consists of a female ('hiomospis bicharis, Comstork, and a male ('hioncespis sp.), and Aspidiotus flecescens, (ireen (which Mr. (ireen silys in a recent letter is a Diospis). The last three were fisured in a little book on Insect Pests, by E. E. (rreen, pubhshed in 1s 90 ; they all infest the tea plant. It may be well here to mention, also, that in 1886 Mr. Green published a four-page pamphlet, with a colored phate, treating of the three species of Lecunium infesting coftee, namely, L. nigrum, L. coffece, and L. viride. It is to be remarked that this publication of L. ciride considerably antedates that by Mr. Green in the Entomologists' Monthly Magazine (1859 , p. "4s), where it nevertheless appears as a new species.

It is most fortunate for Oriental cocroblolog that within the last year or so Mr. Green has commenced to work out the Coccide of Ceylon in earnest, so that inside of a reasonable time we may expect to be well informed regarding the species of that island. As might be expected, he has found many interesting new species, several of which he has
been so good as to send me. Such are a Mytiluspis with a bright lilac male; a bright reddish orange Monophlebus on Autidesmu; a Lecunium in nests on C'remustoguster dohrmi, Mayr; an ommvorous Pulvinurie reembling, but distinct from, P^{\prime}. cupaniot; a Ceroplastes on rocoannt, and others. In a letter dated April 3, 1894, Mr. Green states that he has ahready collected, figured, and described (in manuscript) more than 60 species. These, he adrls, include the following genera:

Wallecrian, Momophlebus, Iceryn, Eviococeus, Dactylopins. Pseudococous, Orthesia, Pulrimaria, Tinsonia, Veroplastes, Lecanium, 'arteria, Asterolecrnium, Aspidiotus, Diespis, Mytiluspis, C'hionaspis, Fiorimia, and Aonidia.

The mention of 1 sterolecunium reminds me that Mr. Green has sent me form species from Ceylon. Three are new and the fourth is A . bambuse, new to the Oriental region, but very probably really native there.

A Ceroplastes, which he finds on tea and other shrubs, is thought by Mr. Maskell to be C. rusci, but the inlentisy is perhaps open to duestion.

From Ceylon we naturally pass to India. Here we have several records, as in Ceylon, but no approximately complete information. In the last century (1 Fs $6-1759$) Anderson, in his letters to Banks, described the Corecida of Marlas, but unfortumately none of his species can now be recognized, exept the Ceroplastes ceriferus described in 1791. Perhaps some may yet be identitied when we know the Coccider of India better. For about a century the subject was allowed to drop in India, thongh we have Westwood's Malabar Momophlehws lemehi, aud references to the lad and wax prodncing species, and likewne to those infesting coffee. Mr. Atkinson, in 1889, gave us his Pseudopulrimoriot silikimensis from siklim, and most probably, had he lived, he would have by this time added considerably to our knowledge of Indan Coccide. From Mr. Atkinson and Mr. Cotes a few speres have been sent to Mr. Maskell, who has described and figured them.

Fimally, Mr. Newsteal has been studying some Indian Coccidie, and althongh his work has not, so far as I know, yet appeared, he has kiudly sent me photographe of some rery beantiful drawings which will accompany it.

In this summary of Indian coccidology I may have orerlooked some publications which have appeared in that conntry and have not been seen by me, hut I am failly confilent that nothing mportant, such as a new species, has been missed.

Ia Assam is found Aspidiotus there, Maskell. This is not (ireen's Cerlon A. there, but the name may reman, since the Ceylon insect is not an Aspiciotus.

In the Tramsactions of the New Zealand Institute for 1891, Maskell records ('hommspis uspidistra, Signoret tirom India (on Arece), a face which I had overlooked when writing the above, and also gives Chionaspis thro, Maskell, as from "the Kangra Valley, Assam." It does not appear, however, that ('. theu' is found 11 Assam at all, but in the

Kangra Valley, which, to the best of my knowledge is in Punjab. Aspidiotus there is tound both in Pminab and Assam.

Except the Beloochistan record previously alluded to, I tind no other information regarding Coceide of the oriental mainland, sate one or two from China.

Of course, the lat industry has quite a literature of its orm, and it is well known that all the lac does not come from India proper. I have a copy of a manuscript written in 1840 by William Jones, the Jamatican entomologist, alluding to the lac from Siam and Pegu.

From China we have Ericerus pe-la, the Chinese wax insect; Aspidiotus gossypii of Fitch, from Ningpo, apparently a Chionaspis; Drosichu contruhens (Walker) Signoret. reported also as fiom Ceylon, and Waker"s "Aspidiotus bictrimutus," which is a dried caterpillar!

AUSTRALIAN REGION.
Here we pass from darkness into light, thanks to the mutiring and faithful labors of Mr. Maskell.

Putting aside Australia and New Zealand, we may commence with the smaller islands, concernine which very little is known. From New Guinea I find no reards except that of Muxolecaminm libura, the description of which I have not yet had the good fortume to see. It dates from 187\%.

For New Caledonia we have another monotypic form, the Tissabolueles guerinii.

From the Fịi Islands Maskell has received some species, and so records Ductylopius cocotis, Lectuium chirimoliee (- Ionguhum). Diespis pimmuliferl, Ductylopius culceolurio, and Planchoniu bryoides. In Insect Life, III, p. 253, Mytilaspis citricoln is reported on oranges from: Fiji. From Tonga, Mr. Maskell records Chionuspis citri, found by Mr. Kochele. From Samoa Aspidiotus cydonice was received on orauges.

In Tahiti the Coccidar are not known; nevertheless, ('honuspis biclaris, Hytilaspis citricoln, and Aspidintus aurantii have heen reported as found on trees received from that island.

The Sandwich Islands, though singularly poor in insects, may be fomd to yield a fair number of Cocedide. Mr. Maskell has aheady given us some information abont Sandwich Iskud species, and one or two other writers have alluded to the subject, so that we know of at least the following species: Ductylopius citri, on orange trees from the Sandwich Islands, Lectuinm hesperidum, L. depuessum. L. olece, L. acuminatum, Asterolecumium pustuluns, Pulvinuria psillii, and siphurococcus bambuse. Only the last two were originally described from Sandwich Island specimens.

From Tasmana we know a few species in Monophlelus illigeri, Lspidiotus actecire, and Mytiluspis pomorum, the last, of course, introduced. There are probably some other Tasmanian records, as I have not so far made any great effort to distinguish them fiom those pertaining to Australia.
'The mumber of known species firm Australia and New Zealand, exchsive of those introduced fiom other comotries, is shown in the following table:

Summar! of natire species from Anstralia and Ver Zealand.

lienus.	Number Australia.	f species. New Zealand.
Coblostoma	3	5
Palieococens		1
Gossyparia	2	1
Rhizoencens	${ }^{1} 3$	6
Solenophora		2
Dactylopius	9	8
Ripersia...	1	3
Prosopophora	2	
Tathardia	3	
Opiothoscelis	2	
Frenchia	1	
Cylindrococcus	3	
Eriochiton..		2
Ctenochiton		11
Inglisia.	1	5
Lecanium	3	1
Diaspis .	1	1
Mytilaspis	7	8
Leucaspis.	1	
Poliaspis....	1	1
lionophlebns	22	

${ }^{1}$ One varicty is recognized.
${ }^{2}$ 'I'wo additional varjeties are recoguized.
${ }^{3}$ On a palm introduced from New South Wales.
${ }^{4}$ Another described by Pepper, is really a psyllid.
${ }^{5}$ One variety is recognized.
${ }^{6}$ Counting C. minor, which may not be natire of New Zealand, the number is increased to three.
${ }^{7}$ The uative species of the two countries being in every case except one distinct, we have a total of 184 species for the two islands.

The description of the New Zealand species has been entirely the work of Mr. Maskell; and except in the Brachyscelide, which have beeu discussed by Schrader, Froggitt, and Tepper, he has described nearly all the Australian species. The exceptions are a Itiespis deseribed by Tryon, a ('erophestes (unrecognizable) by Walker, Cullipuppus of GuérinHéneville, C'ocens blenchurdi (see Signoret's work), and Pulvinaria masrelli of Olliff. The Rhizecens was deseribed in 18 is by Kiinckel d'Herculais.
The late Mr. Frazer S. Crawford had collected a number of Anstralian Coccidar, and had given them mannscript names, but his death came before he could attempt publication. These species were afterwards described by Mr. Maskell, who duly eited Cratford's manuscript names.

In this comection, Mr. Koebele's rery surcessful second trip to Anstralia shomh not be forgotten, as showing what may be done by a good collector. In the Transactions of New Zealand Lustitute for 1892 Mr. Maskell desmibes the following new species, all collected in Aus. tralia by Mr. Keebele:

- Diespipis fimbriata. Mytiluspis crasurriner. Fiorinius synecr-pice, Ceroplastes rubens, Lectnium serobiculatum, l'rosopophorea encalypti, (iossyparia casuнгінк, (i. confluens, Eriococcus turgipes, E. conspersus, I'seudococcus
nicalis, Calostoma mhiginosum (also found by Mr. French). Monophlebues
 Total, 15 species.

NEOTROPICAL REGION.
I hare given a list of the neotropical Coceidat in the Jommal of the Trinidad Field-Naturalists" (lub for 1 s 94 . Previonsly, in the domrual of the Institute of Jamaica, a list of the West Indian speries harl appeared.

Dactylopius culceolarite, Maskell was aceidentally omitted from the first-mentioned list: it is from Jamaica, not Mexico, as stated by Mr. Maskell.* Aspidiotus bowreyi, Cockerell, Ceroplastes ulbolineutus, Cockerell, Lecunium urichi, Cockerell, Murgurodes vitium. Giard (= vitis, Phillippi, sub. Heterodera), Aspidiotus lutastei. Conckerell, and Mytilaspis philococous, Cockerell, have been described since the list was written; the first two are from Jamaica, the third from Trinidad, the fourth and fifth from Chile, and the last from Mexico.

Thus, all told, the neotropical list now stands at 124.
Anyone consulting the abore-mentioned lists will see how rery few species are known from the mainland comntries, with the exception of British Guiana and Mexico, and even for these the lists are extremely small in comparison to the presumably existing numbers. From Ecmador we know only the one (Ortoniu uhteri) found by Prof. Orton when (rossing the desert of Napo. This discovery was made on November 7, 1867, the locality being 6,600 feet above sea level. \dagger From Guatemala we know only one; from Peru apparently none; from Colombia only Icerya montserratensis at Colon. $\frac{\ddagger}{+}$

From the Argentine only Palcococous brasiliensis (Walker), found at Buenos Ayres. From Cruguay a couple of species found at Montevideo. From I'aragnay aud Bolivia none; from Brazil about half a dozen.

From Chile we knew nothing except the now lost Ceroplastes chilensis of Gray, and a few introdnced forms; but Mr. Lataste has becone interested, with the resulting discovery of two new species, mentioned above.

From Trinidad we now know quite a number of species, mostly collected by Mr. Urich.

Regarding the West Indian Islands I have already made some remarks in Insect Lite. VI, p. 100. From the Cayman Islands, We know Diuspis lunctus and C'homuspis minor from Grand Cayman, collerted by H. MacDermot.

No auldition has been made to the small list for Chba, and Hati is

* Trans. New Zeal. Inst. for 1893, p. 89.
t I have not here entered upou the question of the rertical distribution of Coceidae, the data being wholly insufficient. But I smppose that ortheire orcidentalis and l'ulrinaria bigeloria, from about 7,800 feet in Colorado. represent the highest Coccidie so far known.
\ddagger Insect Life, 1894, p. 327.
still without a record. In the Lesser Antilles we have one or two additional rerords due to Mr. Barber; thus Dominica now has two instead of one, Montsermat six instead of four. Martinique has a record of Ininspis lamotus (Insect Life, Vnt, 1. "2ss's). P'uerto Rico still seems to be without a record.

The rerent visits to the West Indies of Dr. Riley and of Mr. Hubbard who gave sperial attention to ('occidir, will no donbt in due time lead to many new records, for which we must wait matil the material can be worked over.

There now remains Mexico, which I will for convenience treat as a whole, although parts of it are handly neotropical. Until recently (and now, so far as published records go) the Mexican list stood at 2s, Laving gradually attained that figure in the following mamer:

Species known before Signoret's "Essai" (1818-1868)
Species added by Signoret in his "Essai" (1869-1876)3

Species added by Comstock (1883) ... 2
Species added by Riley and Howard in Insect Life... 3
Species found by Dr. A. Dugès (1886-1894) ... 5
Species found by the present writer on journey through Mexico in 1893......... 12
Total... 28
Maving in view this deplorable want of information as to Mexican Coceide, the Department of I griculture lately sent Prof. C. H. T. Townsemd into that comutry to collect these and other insects. I examined the Coceidie collected, and may remark that they add considerably to our knowledge; but beyond this, I do not now feel at liberty to go, since they are the property of the Entomological Division, Which has the right of first amomeng the discoveries made.

NEARCTIC REGION.
A catalogne of the nearctic species has appeared in the Canarlian Entomologist for February, 189), and I umderstand that Mr. Ashmead has in press a complete bibliographical list of all neatetic Heteroptera and Homoptera, including also those of the northern portion of the neotropical region.

In the Camadian Entomologist's list, I was so montunate as to aceidentally omit Dactylopius epherlore, Coquillett, 1 s!oo, Leconium tursule, Signoret, 18i3. and Oithesiu cutnphructn, Shaw (\%hiton, Zetterstedt). The last mentioned has, according to Hart. been found in dreenland, as well as in Treland and Scotland.

Furthermore, since my list appeared, it has been shown that Aspidionos comeresus is not a valid species, and that -1 . chictis and L. pini are syomyms of A. abictis (Schank) of Emope. I do not think Mr. Pettit: mannseript . . chictoides call be any better" distinguished firom whirtis, and motil he sets forth some reasoms for maintaining its validity, it ham better be left ont of acomont. Riley's mannseript A. corterelis must also be dropped matil we are informed what specifice characters it exhibits; likewise his. Ceroplastes artemisier. Leceniodiuspis. yucce' can
stand on the basis of Prof. Townsend's description, which, though short and informal, serves to distinguish it from anything else yet known.
Since the Canadian Entomologist's list appeared, the following species have been added: Eriococcus coccineus, Cockerell.(with form lutescens, Cockerell), from Nebraska, Lecanium phoradendri, Cockerell, from Arizona; L. insignicolla, Crawford (should be insigniicolu), from California; C'eroplastodes duleer, Cockerell, from New Mexico; Tachardia cornutu, Cockerell, from New Mexico; Ductylopins solani, Cockerell, from New Mexico; Bergrothia steelii, Cockerell. and Townsend, from New Mexico; Diaspis lanatus, Morgan and Cockerell, introduced in Florida and District of Columbia, also in Georgia; Diaspis amygdali, Tryon, introduced in California.* There have also been added two varieties (var. pruni, Cockerell and var. albus, Cockerell) of Aspiliotus juglens-regice. The description of a very interesting Ripersia, the first of its genus for our region, awaits publication.

With the above changes and leaving out the fossil species, the nearctic list now stands at 127. But if we exclude from it those species believed to have been introduced by man it is reduced to 94 or even less.

Examining the list from a historical standpoint, we see that practically nothing had been done up to the time of Fitch. About 10 of the Fitch species are now considered valid, but some of those in Lecanium are even now very imperfectly known. From Fitch to Comstock (18601850), that is, over a period of about twenty years, next to no progress was made, and the few descriptions that appeared were singularly imperfect. Prof. Comstock put the matter on a totally different basis. W:hen he commenced his studies the coccidology of North America was in about as chaotic a condition as could be imagined; when he left off in 1883 our knowledge, at least of the Diaspine, had increased enormonsly. No less than 29 ralid species are now credited to Comstock.

One might have supposed that after this revival many new students would have come forward; but from 1883 to 1893 was again a period of comparative stagnation, although we have isolated descriptions at the hands of Coquillett, Douglas, Riley and Howard, and Crawford. Nevertheless, during this period, the life histories and parasites of several species were elucidated, and almost every number of Insect Life has contained some new information.

At length in the present year, 1894 , more is being done, and in many places work is going on, which should, soou lead to valuable results. Students have ariseu in California, Illinois, Michigan, Massachusetts, and New York, while others in Colorado, Arizona, Nebraska, etc., have been on the lookout for material, though their studies did not include the Coccidre.

New Mexico Agricultural Experinent Station, Las Cruces, New Mexico, Oct. 27, 1894.

[^149]Proc. N. M. $94-40$

DESCRIPTION OF A NEW SPECIES OF ROCKFIST, SEBASTICHTHYS BREVISPINIS, FROM ALASKA.

By Tarleton H. Bean, M. D.,
Curator of the Department of Fishes.

In 1882 Capt. Henry E. Nichols, of the U. S. Navy, made a collection of fishes in Alaska and British Columbia for the U. S. National Museum. A catalogue of the species obtained by him mas published in these Proceedings,* and among the number is a rockfish (No. 32004 , U.S.N.M.) from Hassler Harbor. In the catalogne referred to the species was named "Sebustichthys proriger, Jordan and Gilbert, subspecies brecispinis, nov." After comparison with S. proriger it was found to differ from that form in having the peritoneum white and the second anal spine shorter than the third.

The next notice of the fish was published by Dr. D. S. Jordan in 1884. \dagger In that notice it was mentioned as a distinct species, with reference to the differential characters first brought to notice by the present writer.

This species is fully distinguished from S. proriger and other known forms of the genus, and may be characterized as follows:

SEBASTICHTHYS BREVISPINIS, Bean.

Sebastichthys proriger subspecies brerispinis, Bean, Proc. U. S. Nat. Mus., vi, p. $359,1883$.

The type of the species is No. 3200t, U.S.N.M., the specimen being 370 millimeters ($14 \frac{1}{2}$ inches) in length, including the caudal fin.

In spirits the back is pale rusty brown; the sides below the lateral line are paler; the belly is whitish. Traces of dark color on the membrane of the spinous dorsal; the soft dorsal, pectorals, ventrals, and anal pale. Some traces of brownish on the caudal membranes.

Body elongate, compressed, its greatest height two-sevenths of the length without candal; its greatest width one-third length of heal. The caudal peduncle is short, its least depth five-sixths of its length from end of soft dorsal to base of middle caudal rays. The head is similar to that of S. proriyer in shape, its length being contained two and tivo-thirds times in total without caudal.

[^150]Cranial ridges almost obsolete, except on the occiput, where the spines are long and depressed, nearly as long as the eye. Preocular and supraocular spines present; no tympanic spines.

Mouth large, the broadly expanded maxillary reaching beyond the middle of the eye. The length of the upper jaw (intermaxilla and maxilla) almost one half length of head. The lower jaw much projecting, its length equaling that of eye and postorbital part of head. The upper half of the maxilla is covered with very fine scales; the mandible also has fine seales along its middle and posterior portions. The mandible has a well-developed knob at the symphysis. The eye is three-fourths as long as the snout, rather more than one-fifth the length of the head, and about equal to the width of the nearly flat interorbital space. The width of the preorbital is less than one-half the length of the eye. The preopercular spines are short and sharp; the second longest, about one-third as long as the eye; the first, fourth, and fifth very small; the points of the fourth and fifth are directed obliquely downward and backward. The gillrakers are moderately long and sleuder; eleven above and twenty-three below the angle, the longest at the angle one-half as long as the snout or two-thirds as long as the eye. The scales are small-eighty-six or eighty-seven rows in a longiturlinal series, only fifty-one of which are pierced by tubes.

The spinous dorsal is low, the first spine two thirds as long as the second and rather more than two-thirds as long as the eye; the fourth to the sixth spines longest, rather more than one-third length of liead. The membrane of the soft dorsal and to some extent that of the spinous dorsal scaly. The longest soft ray of the dorsal is rather shorter than the longest spine; the last soft ray is as long as the first spine. The first anal spine is rery short, two-fifths as long as the second, or one-half as long as the eye; the second spine is shorter and stonter than the third, equal to the snout in length; the third spine is nearly one and one-half times as long as the eye. The longest soft ray exceeds the length of the longest dorsal spine and is nearly equal to the postorbital part of the head. The pectorals are shaped very much as in S. proriger; the lower four or five rays are slightly exserted at the ends; the middle rays longest, slightly longer than the head without the postorbital part. The rentrals do notextend as far back as the pectorals; their distance from the vent equal to half their own length, which is two-fifths the length of head. Peritoneum silvery white.

D. XIII, 14; A. III, 7.

In S. proriger the second anal spine is distinctly longer than the third; the peritoneum is black; a tympanic spine is present; the gillrakers 40 in number and many of them club shaped at the end, the longest rather more than one-half the length of the eye; the form and fifth preopercular spines are directed horizontally backward, and the scales are in seventy-five rows. These comparisons are drawn from the type of S. proriger, No. 26980, U.S.N.M.

DESCRIPTION OF A NEW SPECIES OF FISH, BLEEKERIA GILLI.

By Tarleton H. Bean, M. D.,
Curator of the Department of Fishes.

This species of sand-lance is described from eleven examples belonging to the U.S. National Museum. The locality is doubtful, the data being lost, but it is probable that they belong to Dr. Stimpson's collec. tions from the Pacitic. The largest example is five inches long, the smallest three inches.

BLEEKERIA GILLI, new species.

Diagnosis.-D. 47 ; A. 22 to 24 ; P. 15. Scales 97 , of which 90 are in the lateral line; transverse rows 3 to 14 . The scales are regularly imbricated aud the skin is entirely without longitudinal folds. The lateral line is wanting on the last six or seven scales; it asceuds abruptly over the pectoral and follows not far from the dorsal outline, terminating between the end of the dorsal and the origin of the caudal.

Gill-rakers numerous, smooth along posterior margin, long and slender, the longest about as long as the eye. Branchiostegals 7. Pseudobranchiat large, about 20 laminæ. The pectoral reaches to the thirteenth row of scales, its length equal to length of eye and snout combined. The maxilla exteuds to below the front of the eye; intermaxilla very protractile, forming about two-thirds of the length of upper jaw. Labial fold of mandible mell developed. Head naked. Dorsal and anal received in a deep sheath. A small, thin, ovate flap between the anal and the genital opening, this flap covering the latter opening.

Eye large, one-fifth of head, greater than interorbital space. Tip of preoperculum produced into a short, triangular flap. Suboperculum with three well-defined radiating strie. Angle of preoperculum with several raised tubular ridges. Many of the scales, especially posteriorly, with coarse denticulations around the exposed margin. Head one-fourth of total length without caudal; greatest depth one-half head, nearly one-eighth of the standard body length. The distance of the dorsal origin from the tip of snout nearly equals the length of the
head. Vent a little nearer root of candal than to origin of pectoral. Candal forked; the middle rays nearly two-thirds as long as the outer.

Back grayish brown; sides and lower parts silvery. General appearance of Ammodytes.

Type.-No. 45384, U.S.N.M.
The species is dedicated to Dr. Theodore Gill, thereby associating the names of two eminent ichthyologists, whose contributions to this branch of zoology have in many respects followed along similar lines.

DESCRIPTION OF GOBIOIDES BROUSSONETI, A FISH NEW TO NORTH AMERICA, FROM THE GULF OF MENICO.

By Tarleton H. Bean and Barton A. Bean.

Tirss species, originally described by Lacépède from Peru, and afterwards obtained by Brevoort from Para, South America, is now for the first time recorded from North America. The species can not be referred to the genus Amblyopus, which has for its type the A. hermamnicmus of Lacépède. The latter has rudimentary eyes, a short body, and the dorsal and anal many rayed.

Diagnosis.-I). vi, 17; A. I, 16.-The total length of the specimen is $14 \frac{1}{2}$ inches, the caudal fin being 23 inches long.

The greatest depth of the body (see fig. 1) equals one-half the length of the head, and is contained fouteen times in the total length without caudal. The greatest depth of the head equals the length of the upper jaw, or about one-half the length of head without snout. The body is compressed. Its greatest thickness is contained one and two-thirds times in its greatest depth. The teeth are in narrow bands in each jaw,

Fig. 1.
GOBIOIDES BROUSSONETI.
About two-serenth natural size.
some of those in the outer row enlarged, canine like, and curved inward. All of the teeth are more or less curved inward and depressible. The romer and palate are toothless. The mouth is oblique, the lower jaw projecting slightly beyond the upper. The maxilla extends well behind the eye; its length is slightly more than half that of head without the snout. It is not much expanded posteriorly. Eyes very small, their diameter equaling half length of snout, about equal to width of interorbital space. The snout scarcely equals more than a fifth of the head's leugth. Gill openings wide, the membranes wholly joined to the isthmes,

Branchiostegals much curved, four in number. The dorsal begins at a distance from the nape equal to the postorbital part of the head, the origin being about over the end of the extended pectoral. The ventral reaches fartber back than the pectoral, and is longer than that fin, its length equaling postorbital part of head. The distance of the vent from the tip of the snont equals somewhat more than three times the length of the head; it is under the interspace between the last spine and tirst ray of the dorsal, with a small genital papilla behind it. The candal is very long and tapering, one and two-thirds times as long as the head. The dorsal spines are long and slender, the fifth nearly as long as the post-orbital part of the head. The second dorsal ray is slightly longer. The anal rays are about as long as those of the dorsal. The scales are thin, not imbricated, except on the posterior part of the head, where they are long and elliptical in shape. The head and breast are naked.

Color.-The colors have faded out in alcohol; the ground color appears to have been light brown, with darker blotches on the median line of the borly under the spinous portion of the dorsal and the anterior part of the soft dorsal.

The specimen here described was obtained in the Gulf of Mexico and presented to the Museum by Mr. Robert S. Day, of New Orleans, La. It was received June 30, 1885, and is No. 38220, U. S. National Museum.

SCIENTIFIC RESULTS OF EXPLORATIONS BY THE U. S. FISH COMMISSION STEAMER ALBATROSS.

[Published by permission of Hon. Marshall McDonald, Commissioner of Fisheries.]

No. XXXIII.-DESCRIPTIONS OF TWO NEW FLOUNDERS, GASTROPSETTA. FRONTALIS AND CYCLOPSETTA CHITIENDENI.

By Barton A. Bean, Assistant Curator of the Department of Fishes.

The U. S. Fish Commission steamer Albutross obtained on Jannary 15, 1885, at station 2317, lat. $24^{\circ} 25^{\prime} 45^{\prime \prime}$ N., long. $81^{\circ} 46^{\prime} 45^{\prime \prime}$ W., being near Key West, Fla., in $4 \check{y}$ fathoms of water, two specimens of a handsome flounder, which appears to be new. The larger example, the subject of the illustration (fig. 1), is eight inches long, while the smaller one slightly exceeds six inches. A still larger specimen was obtained near Apalachicola, at station 2373.

GASTROPSETTA, new gemus.

This genus is closely allied to Ancylopsettu, from which it ciffers in form of body, and also in having entirely smooth scales, singularly branched and produced anterior dorsal rays, and very short and broat gill-rakers.

Dingnosis.-Body oblong-ovate, highly arched in front, covered with small, eycloirl, imbedded scales; lateral line arched in front, deftecterl downward on candal peduncle. Teeth small, in a single series in cach jaw. Dorsal fin beginning in advance of eye, its anterior rays produced, not comected by the irregular and broadly fringed membrane. Gill rakers very short, almost as broad as long, few in number. Ventral of eyed side produced, ending in a long filamentous ray in the young.

GASTROPSETTA FRONTALIS, new species.

Diagnosis.-Length of specimen, 209 mm. ; depth, 80 mm ; head, 44 mm ; middle caulal rays, 38 mm ; 1). 60 ; A. 48 ; V. $6 ;$ P. I, 10. Eyes large, $3 \frac{3}{4}$ in head; month of moderate size, maxilla $2 \frac{1}{2}$ in head, the jaws curved; interorbital ridge prominent, very narrow. The dorsal begins in front of eye on snout, its anterior rays singularly branched, the third and fourth longest, almost equaling length of head. Anal fin beginning at
vent, which is situated on blind side, its anterior rays scarcely produced. Ventral of colored side much produced. Middle caudal rays long.

Color in spirits light brown; three black spots on body, two along back, and one near anal base; fins with dusky blotches; several vertical stripes across eyes.

Fig. 1.
GASTROPSETTA FRONTALIS.
About one-ha! natural size.
The smaller specimen from station 2317 has D. 62 ; A. $52 ;$ V. 6 ; P. I, 11. The gill-rakers short, broad lamine, $2+7$. Teeth weak, uniserial. Anterior rays of dorsai greatly produced, the third being one and onehalf times as long as the head. Tentral of eyed side very long, ending in a thread-like filament. Color as in the preceding.

The example from station 2373 is 224 mm . long; its depth, 90 mm . The ray formula is as follows: D. $60 ;$ A. $49 ;$ P. I, $10 ;$ V. $6 ;$ C. 15. The vent is situated in a deep noteh, which forms the front margin of the abdomen, and not on the side, as in the other specimens. The color is darker than that of the Key West examples, being dark reddish-brown. Body spotted and fins blotched as in the preceding.

Type.-No. 37668, U.S.N.M.

Genus C YCLOPSETTA, Gill.

In the eleveath volume of these Proceedings* Dr. Gill gives the following diagnosis of a new genus of flounders, which he names Cyclopsettu:

Psettines with the body oblong rhombo-ovate, covered with regularly imbricated moderatecyeloid scales; lateral line nearly rectilinear on both sides; snout convex;

[^151]mouth very large; jaws squarely truncated behiml; teeth uniserial, those of the upper jaws moderate, of lower jaws cularged and largest at sides; dorsal aud anal almost symmetrical, dorsal commences in front of eye on snont, scarcely deflected on blund side; caudal slightly pedmuculate and convex ; pectorals subequal and with a subtruncate free margin; ventral nearly equal, the left on the preanal ridge, the right lateral, both with the inner rays connected by membrane to the body; interbrauchial membrane imperforate; gill-rakers tubercular and surmounted by blunt denticles.

Type C. fimbriata The scales on the eyed side are regularly eycloid with the nuclens some distance from the posterior margin and with numerous radiating strite. The gill rakers are quite characteristic.

The species about to be described is distinguished from the type of the genus by its shorter head, smaller and closely adhering scales, larger teeth, the little-produced anterior dorsal rays, and by the oblique posterior margin of the pectorals.

Fig. 2.
cyclopsetta fimbriata.
A bout tro-fifths natural size.

In C. fimbriata the scales are rather large and decidnous, the teeth small, the anterior rays of the dorsal considerably produced, and the posterior margin of the pectoral is subtruncate. It has been thought well to publish a drawing of the type of the genus (see fig. 2̈) in this paper.

CYCLOPSETTA CHITTENDENI, new species.
On April 4, 1892, the Museum received from Dr. John F. Chitteuden, of the Victoria Institute, Port of Spain, Trinidad Island, a single specimen of the species here described as new and named in his honor.

Diagnosis.-A single specimen. Extreme length, 197 mm . ((3 inches.) Greatest depth of body, not including vertical fins, 76 mm . (3 inches.) D. 82 ; A. 62 . Scales ca., 90 . Gill-rakers $8+3$ to 4 , very short, tubercular, almost as broad as long.

The length of the head is contained three and one-half times in that of the body, and the depth of the body two and one-fifth times in its length, without caudal. The diameter of the eye is contained five times in the head's leugth. The mouth is widely cleft, oblique, the jaws curved. The cleft of the mouth is contained less than twice in the length of head. The teeth of both jaws in a single series, those of the lower jaw are strong and sharp, curved inward and backward; those of the upper jaw are not so large, and are very irregular in size.

The ventral fins are well developed, that of the eyed side being on the abrlominal ridge, and about three-fourths as long as the pectoral. The pectorals are lialf as long as the head, their length equalling a little more than one-third of the body depth; posterior margin oblique.

Fig. 3.
CYCLOQSETTA CHITTENDENI.
Ahout one-half natural size.
Color brown; fins lighter, marked with blackish. Three small faint blotehes of black on the first half of the dorsal fin, and three rather distinct blotches on the second half, the last blotch extending to the caudal peduncle. Anal fin with three black blotches situated as and similar to those of the dorsal fin. The rentral of the eyed side is blackish, that of the blind side pale. Caudal fin with three black spots at its extremity. Pectoral fin of colored side blackish; quite a large bloteh of black on body under this fin.

Type.-No. 44100 , U.S.N.M.

NOTES ON SOME ERUPTIVE ROCKS FROM GALLATIN, Jefferson, and madison counties, montana.

By George P. Merrill, Curator of the Department of Geology.

The rocks described below were collected by Dr. A. C. Peale and the writer, mainly during the seasons of 1887,1888 , and 1889 . The writer's own observations were limited to two brief seasons in 1887 and 1889. The region covered is quite extensive, comprising upward of 200 square miles as shown on the Three Forks sheet of the U. S. Geological Survey, and much of it difficult of access. In many instances dondtful points regarding the occurrence and association of certain masses could have been decided ouly by a second visit to the locality, after the first series of specimens collected had been submitted to study in the laboratory and we were in a condition to avail ourselves of the knowledge thus gained. Unfortumately, this we have been mable to do, and while in many instances we are led to infer that somewhat variable rock types are but widely separated facies of the same magma, we have no absolute proof of the same. Eraptive rocks of a wide geological range and of widely varying character are abundant throughout the region. Here I shall attempt to describe only those of greatest petrological interest. A few of them have been noted in a preliminary way in Bulletin No. 110, U. S. Geological Survey, 1894.

In describing the rocks they will be taken up as found along the main rontes traveled, in the following order: (1) From the foothills north of Gallatin Peak, along the valley of the Gallatin and East Gallatin to the Horse Shoe Bend of the Missouri River; (2) from Three Forks southward, up the Madison Valley and into the foothills on either side as far as the Wedge and westward to Virginia City; (3) from the same point, southwestward, up the Jefferson River as far as South Boulder Creek. The numbers referring to specimens are those given in the catalogues of the U. S. National Museum.

Enstatite andesite.-Head of small creek west of Salesville, west side of Gallatin River. A dense, dark-brownish, nearly black rock, without macroscopic constituents of such dimensions as to be evident to the unaided eye. In thin sections, a dense, partially devitrified base filled with opaque grannles of iron ore, pyroxene, and feldspar microlites, and carrying abundant small elongated phenocrysts of nearly colorless pyroxenes. These without evident pleochroism, and orthorhombic in crystallization. Hence, doubtless, enstatite. larely small angites occur. In a few instances the latter mineral occurs in the form of a narrow zone about the enstatites, as described by Iddings.* The feldspathic constituents are confiued wholly to microscopic forms in the ground mass.

Basult (?).-Small outcrop in Cretaceous, some $2 \frac{1}{2}$ miles southeast from Bozeman, east side of Bozeman Creek.

Macroscopically the rock (No. 38598, U.S.N.M.) is compact, dull, darkgreen, almost black, thickly studded with rounded olivine in sizes up to 5 mm . in greatest diameter, and numerous smaller green angites; none of these porphyritic constituents are prominently noticeable, owing to the similarity of their colors to that of the rock containing them. A chloritic alteration has set in, attacking both the minerals mentioned as well as the groundmass, and this, together with the other features mentioned, imparts to the stone the appearance of an olivine rich peridotite in which the process of serpentinization has far advanced. The olivines in alteration have sometimes given rise to deep red ferruginous products which are visible to the unaided eye.

As viewed in the thin section and by ordinary light the rock consists of a clear, colorless, groumdmass with an illy defined radiate structure, often pierced in every direction by innmmerable minute needle like colorless forms, and bearing abmolant black gramules of iron oxides, through which are interspersed countless small, idiomorphic, very lightgreenish pyroxenes. Abundantly distributed throughout this groundmass are the larger olivines and less abundant augites already noted. A chloritic alteration has set in, attacking the angites, olivines, and colorless gromdmass alike, though the augites are the least attacked. The most striking feature of the rock is this colorless groundmass, which appears under a low power (80 diameters) and between crossed nicols, as illy defined fan-shaped aggregates of elongated erystals, over which the dark wave sweeps gradually as the stage is revolved. There is apparently little, if any, true amorphous. glassy, or felsitic base, or microlitic matter. The field, on the contrary, between crossed nicols, breaks up into somewhat illy defined polygonal areas, which become light and dark as the stage is revolved, but in no case give satisfactory extinction angles or interference figures. The strueture, in short, is that of an imperfect radial spherulitic aggregate, such as is common

[^152]in the quartz porphyries and liparites, but such as I have never seen in rocks so basic in composition as is this.

Under a power of 390 diameters the individual columns of the aggregate were found in some instances to be almost wholly without action or polarized light, or again polarized in light and dark colors, some of the better defined giving extinctions parallel with or ranging but a few degrees from the axis of greatest elongation, and eminently suggestive of feldspars; in a few instances indefinite interference figures were obtained, but only such as might be due to tensile strain ou isometric or amorphous bodies.
The results of purely optical investigation proving thus unsatisfactory, an attempt was made at a separation of the mineral by pulverization and pregipitation in the iodide of mereury and potash solution.
This proved a work of great difficulty, owing to inclusions of iron ore and the chloritic alteration which had set in. After repeated attempts a powder coming down at a density of 2.56 was obtained in sufficient quantity for analysis. This yielded Mr. Eakins, of the U. S. Geological Survey, results as follows:

	Pericent.	Iatio.
SiO_{2}	65. 23	1. 02
$\mathrm{Al}_{2} \mathrm{O}_{3}$	17.48	. 17
$\mathrm{Fe}^{\text {O }} \mathrm{O}_{3}$. 98	
CaO	3.08	. 05
MgO	2, 12	. 05
$\mathrm{K}_{2} \mathrm{O}$	4. 63	. 05
$\mathrm{Na}_{2} \mathrm{O}$	3.79	. 06
$\mathrm{H}_{2} \mathrm{O}$.	1.90	. 11

Such a composition is evidently that of a mixture, and may perhaps be explained on the assumption that it consists of two feldspars (sanidin and a soda-lime variety) and an aluminous pyroxene.
The pyroxenic constitnent, as above noted, oceurs both in porphyritic forms and as a constituent of the groundmass, sometimes in good idiomorphic forms and again as rounded and irregular granules scattered singly and in clustered aggregates. Exeept in the matter of size the individuals of the two generations are indistinguishable from one another, are of a light greenish color, not noticeably pleochroic, and give extinction angles on clinopinacoidal sections as high as 41°. The larger porphyritic forms are sometimes 3 or 4 mm . in diameter, while those of the groundmass are, as a rule, not over $0.0 \tilde{\mathrm{~J}} \mathrm{~mm}$., and at times sink to 0.02 mm .
By pulverization and separation by the iodide of mercury and potash solution, and subsequent digestion in hydrochloric acid and potassic carbonate, a sufficient supply of the pryoxenic constituent was obtained for a complete analysis. This, submitted to Mr. Eakins, yielded result. as given in column 1 , below. In columns II, III, and IV are given for
comparison, chrome diopsides out of the peridotites of (II) Lake of Lherz, (III) Dillgegend, and (IV) Piedmont, as given by Teall.*

	1.	II.	III.	IV.
SiO ,	52.50	53.63	50.443	54.25
$\mathrm{Al}_{2} \mathrm{O}_{3}$	2. 26	4.07	${ }^{5} 5.105$	6. 07
$\mathrm{Cr}_{2} \mathrm{O}_{3}$	1. 07	1.30	1.403	1. 48
$\mathrm{Fe}_{2} \mathrm{O}_{3}$ FeO	2.05	8.50	9.696	7.49
M110.	Trace.			
CaO	21.70	20.37	14. 629	17.75
MgO.	17.11	12.48	17.418	13.63
$\mathrm{K}_{2} \mathrm{O}$. 07			
$\mathrm{Na}_{2} \mathrm{O}$. 35			
$\mathrm{H}_{2} \mathrm{O}$. 64			
	100.22	100.35	98.694	100.67

A bulk analysis of the rock yielded Dr. Chatard as follows:

	Percent.		Percent.
SiO_{2}	46. 90	MgO	20.98
TiO_{2}.	0.41	$\mathrm{K}_{2} \mathrm{O}$	2.04
$\mathrm{P}_{2} \mathrm{O}_{5}$	0.44	$\mathrm{Na}_{2} \mathrm{O}$	1. 16
$\mathrm{Al}_{2} \mathrm{O}_{3}$	10. 17	$\mathrm{H}_{3} \mathrm{O}$ at $120^{\circ} \mathrm{C}$	$1.0 \pm$
$\mathrm{Cr}_{2} \mathrm{O}_{3}$	0.33	$\mathrm{H}_{2} \mathrm{O}$ at red heat.	4.38
$\mathrm{FeO}^{\text {c }}$	5.17		100.54
MnO	0. 10	Specific grarity	2.86
C'aO.	6. 20		

The composition, as above indicated, is quite unlike that of any rock I have yet seen described. So far as indicated by the silica percentage, the rock misht belong to the diabase or basalt gronp, but the magnesia percentage is for higher than I have ever seen reported in rocks of this class, and from either of which it differs structurally. It is equally difficult to consider the rock a peridotite, since not only is the silica percentage above that of a normal peridotite, but the high percentage of potash and soda (confined wholly to the minerals of the groundmass) indicate a very considerable quantity of sanidiu and soda-lime feldspar.

To gain a further insight into the composition of the rock, fragments from the same mass as that used in the above bulk analysis were subsequently sent to the laboratory with the request that an analysis be made of that portion soluble in hydrochloric acid. The results are given below.

Amount of rock soluble in HCL 48.7191 per cent. This yielded:

It is evident that this is essentially olivine with a mixture of iron oxides and decomposition products.

In the summer of 1859 , while working on Bear Creek, in the foothills just east of and overlooking the Madison Valley, some 45 miles in a direct line to the southwest, inconspicuous outcrops of an intrusive were discovered, which tere at once seen to be nearly identical. On returning to Washington thin sections were prepared, from an examination of which the first impressions were abundantly confirmed. Certain of the slides were indistinguishable from those of the Fort Ellis rock; others differ in showiug a groundmass more crystalline and a somewhat smaller proportion of the porphyritic olivines. The base proper is here a nearly colorless glass occurring only in the interstices of a crowd of small, lath-shaped feldspars, mainly a plagioclase variety, though certain nonstriated forms may be sanidin.

Throughout this groundmass are seattered innumerable black granules of iron ore and the olivines and angites as already described. The rock has an aspect more nearly like that of normal basalt, but differs in the character of its pyroxenic constituent and the abundance of its olivines. A bulk analysis of the rock by Dr. Chatard yielded results as in I below. II is the Fort Ellis rock reproduced for the purposes of comparison.

The close relationship of this rock to the dark eruptive between South Boulder and Antelope Creek is mentioned on page 673.

Argite andesite.-Hills east of Fort Ellis. As here displayed, this is a coarse, dark-gray rock (No. 38597, U.S.N.M.), full of vesicles and amygdules of all sizes up to an inch or more in diameter. Its only macroscopic constituent, aside from the secondary minerals comprising the amygdules, is a dark-greenish augite which occurs as scattering crystals, at times four or five millimeters in diameter.

Under the microscope the rock presents an exceedingly dense microlitic groundmass of lath-shaped plagioclases, augites and iron oxides in which are embedded widely-scattered porphyritic plagioclases, and more numerous angites with an occasional dusky apatite. The angites, although comparatively fresh appearing, are rarely in welldeveloped crystals, but occur as very irregularly corroded and rounded forms full of inclosures of the base and of magnetite particles. In the

Proc. N. M. $94-41$
section they are of a light-greenish color. The porphyritic plagioclases are small and widely scattered.

As already noted, the rock is quite vesicular, the vesicles being wholly or in part filled by white, dull red, and greenish zeolites. There is also a smoky-brown, undetermined mineral which occurs only as a narrow border of minute radiating tibers projecting inward from the cavity wall and visible only with the microscope. The white mineral is by far the most abundant of all the secondary coustituents. When viewed in the section and between crossed nicols this is in some cases quite isotropic, and in others polarizes faintly in dull colors, the field being divided into polygonal areas over which the shadows play, alternately as the stage is revolved. The appearance is such as to suggest at once the anomalous analcite described by Ben-Saude,* although in the present case the optical peculiarities are less pronounced. An examination of the hand specimen reveals in the larger cavities many small, nearly colorless trapezohedra of the mineral which have a specific gravity of 2.7 , as determined by a Westphal balance, and which fuse quietly to a clear, colorless glass at 2.5 of Dana's scale. These characteristics demonstrate the mineral as analcite beyond doubt. The dullred zeolite is quite colorless and isotropic in thin sections; examined in the hand specimen, with a pocket lens, it shows a rhombohedral cleavage, and the small splinters obtainable were found to give the blowpipe reactions of chabazite. Other of the amygdules, from 1 to 3 mm . in diameters are filled by a hard and very britite dull, dark-brown mineral which always breaks away during the griuding of the section, but which gives blowpipe reactions for hematite.

Hormblente andesite.-From small outcrops on ridge east of Fort Ellis. This is a compact, light-gray rock (No. 6u400, U.S.N.M.) with macroscopic brown hornblendes and whitish feldspars. Under the microscope it shows a compact groundmass of feldspar microlites and opacite grains carrying abundant porphyritic homblendes, plagioclases, and smaller light-green augites. The hornblende is by far the most abumdant of the polphyritic constituents, and is readily recoguizable by its well-defined crystallographic outlines, though in nearly every case its substance has completely changed to the characteristic opacite gramules. The plagioclases are very muddy through impurities and decomposition. The most interesting feature of the rock is the abundant sprinkling of large brick-red pleochroic apatites, as shown in fiss. $1-7$. These occur in all sizes up to 0.6 mm . The colors vary from colorless through yellow to brick-red, the deeper color being due to inmumerable inclosures, which are represented by black dots in the figures. The distribution of the color is not uniform through the whole mass of the crystal, but, as in figure 2, a crystal may be bright yellow at one end and red at the other, or, as in figure 6 , red in the center and fading out gradually to colorless at the ends. In the cross section shown

[^153]in figure the red color is zonal, while the interion is yellowish. Prismatic sections are all plainly pleochroic, being red when the light passes through parallel to the vertical axis and light yellow when at right angles to this axis. A not less interesting feature is the amount of corrosion from the fluid magma which the larger crystals have undergone and which is shown in the figures, especially Nos. $1,2,3$, and 5 . From the fact that the apatite is one of the first minerals to separate ont, such results are not unexpected, but, so far as I am
 aware, have before not been observed to the extent here indicated. This is presumably due to the small size of the crystals, as usually occurring.

The large forms, like figure 7 , show a faint cleavage parallel with the prism.

Intrusive rocks: Lamprophyrs.-From the lower part of the Flatheard shales, north of the East Gallatin liver. The rocks described below outcrop) at the base of the sandy shales that lie just above the basal quartzite of the Flathead formation, as exposed in the hills about one mile north of the East Gallatin River. They have been traced eastward about three miles from the most mestern exposure, where they pass beneath the lake beds, but show again where the Flathead shales cross Dry Creek, three miles farther to the northwest. In all these outcrops they hold the same relation to each other. The upper rock is usually from six inches to a foot in thickness, but sometimes thins out to even less than six inches. It lies in close contact with the shales, is dark gray, nearly black, in color, tough, fine grained, and compact, and shows to the unaided eye only occasional small black crystals evidently belonging to a mineral of the proxene group, and numerous small reddish amygdules. This is succeeded hy, and seems to pass gradually into, a zoneof decomposed material, which carries numerous scales of black mica, and which is traversed in a direction parallel with the sheets by several reins from one to two inches in width of a light pinkish feldspar. The lower or underlying rock, which also seems to pass into this zone of decomposed material, appears to the unaided eye as a holocrystalline mass composed essentially of elongated light pink feldspars and abundant small, often radiating, folia of black mica. The microscopic and chemical properties of this rock are given below. Although the upper and lower rocks belong apparently to two quite distinct types, their constant association, even when in sheets but a few inches thick, is
somewhat confusing. (ieologically they appear as one ant the same body; from it petrographie standpoint they differ radically. It is useless to speculate on their possible relationships until further outcrops are foumd, or until, by disging or blasting, the nature of the intermediate zone of decomposed material is made apparent. The total thickness of the eruptive sheet or sheets is about 45 feet.*

Porphypite (.).-The upper sheet. Macroscopically, this (No. 38509, C.S.N.M.) is a very tough and hard dark gray, nearly black, aphanitic rock bearing abumdant small pseudo-amygelules of a dull red or yellowish green color, and with but rarely a black porphyritic mineral sufficiently developed to suggest a member of the pyroxene or amphibole group. In the thin section the rock was found so completely altered that it was only after repeated sections had been cut from samples from various portions of the outerops that anything like a satisfactory idea of its original nature could be learned. Sections of the freshest samples obtainable show under the microscope a nearly colorless devitrified base, impregnated with innumerable small, sometimes mere clust-like particles of opacite and elongated yellowish mica-like needles in places so abundant as to form a truly feltlike groundmass.

Scattered thickly throughout this groundmass are numerous psendoamygdules of calcite, chloritic, and ferruginous substances, and occasional badly shattered, imperfect, and greatly decomposed augites.

The amygdules are due wholly to the decomposition of porphyritic angites and olivines, as can be determined by occasional still quite perfect crystal outliues in the least decomposed portions of the rock, and are in $n o$ case true gas cavities filled with secoudary minerals. In a few instances the outlines of these cavities were such as to suggest that the decomposed mineral may have been a feldspar, but this can not be determined for a certainty. Sections from the more highly altered portions of the rock exhibit interesting changes. The groundmass here (No. 38599, U.S.N.M.), as above, consists of the colorless base so filled With the mica (?) needles as to be almost felsitic, but the porphyritic angites are replaced wholly by a light greenish-blue, faintly dichroic, somewhat fibrous hormblende. Although optically these secondary forms are undoubted hornblendes giving maximum extinctions on clinopinacoidal section of 15°, their outlines, when sufficiently perfect for measurement, are still, in part at least, those of angite. In a number of cases the prism outlines on cross sections were measured with results varying fiom 87° to 89 . The cleavage in such cases was somewhat imperfectly developed, but I was able to obtain measurements of the obtuse angle varying from $123{ }^{\circ}$ to 125.50 , which is, perhaps, as close as can be expected in sections cut at haphazard. Although the hornblendes are so plainly paramorphic, I have found in no case traces of an angitic nuclens, the change being in all cases complete.

Chemical analysis of so highly altered a rock can be regarded as

[^154]merely suggestive. The following results were obtained by Mr. Eakins on a sample in which the angitic alteration thus described was complete:

Making due allowances for the various changes attending decomposition, the rock, it will be noted, agrees closely with that from Cottoumood Canon (No. 38596, U.S.N.M.) and Boulder Creek (No. 6:409, U.S.N.M.), to be noted later (p. 670).

The association of this rock with that next to be described is peculiar and needs" further investigation.

Mica syenite.-Underlying the abore. In the hand specimen the rock (No. 38600, U. S. N. M.) appears to the mairled eye as a holocrystalline mass of pink lath-shaped feldspars interspersed with very numerous long, slender, and at times radiating needle-like folia of black mica. As seen under the microscope the structure is quite simple, consisting of a holocrystalline aggregate of badly kaolinized sanidins, lathshaped plagioclases, scales of mica, scattering granules of iron oxide, apatite needles, and in the interspaces, secondary calcite, plagioclase, and, rarely, quartz.

The most interesting feature of the rock is the almost constant intergrowth of the sanidins with plagioclase, the effect being in the section as if each crystal of plagioclase was set in a frame of orthoclase, as already described and figured in Bulletin 110, U. S. Geological Survey. Uufortumately, in the sample at hand, both feldspars are so badly decomposed that their optical properties are greatly obscured. The plagioclase alteration gives rise to immmerable minute flecks of a silvery white micaceons mineral, and in many cases the twin structures have become entirely obliterated; the potash feldspar has become brown muddy, and opaque, resembling the orthoclase of granitic rocks, and at times acts scarcely at all upon polarized light. A partial analysis of as fresh a sample of the rock as could be obtained, yielded Dr. Ohatard results as follows: Silica, 58.88 per cent; potash, $\bar{j} .18$ per cent; soda, 3.46 per cent. The rock is undoubtedly a phase of the syenitic lamprophyre, which was later found in the ricinity of Antelope Creek (p. 671).

Porphyrite.-Intrusive sheets between Dry Creek and Nixons Basin. The rock here is evidently identical with that of the lower sheet of Cottonwood Creek, thongh the sample collected by Dr. Peale is so badly decomposed that little can be made from it.

Augite porphyrite.-This rock (No. 38596 , U.S.N.M.) as displayed in the deep ravine of Cottonwood Creek is dark-gray and coarsely porphyritic, consisting of large and very perfect coal-black augites embedded in a dark-gray, almost holocrystalline feldspathic groundmass. Toward the central portions of the sheet the mass is much the more coarsely crystalline, and throngh a kaolinizing of the feldspars falls away to a coarse sand. From this sand were picked out in considerable number, still fresh augites in sizes up to eight mm. in length. These are usually elongated in the direction of the vertical axis, though sometimes in short and stout forms of a diameter fully equal to their length,
 Twin forms are also common, the more abundant form being that in which $\infty \mathrm{P} \frac{1}{\infty}$ is the twinning plane; more rarely occur knce-shaped and clustered forms, evideutly twiuned after - P 雨 and P .

Approaching both upper and lower contact, the rock gradually becomes firmer and more compact until at last the groundmass is quite aphanitic, though the porphyritic angites still retain their relative size caud abundance, appearing on a freshly broken surface of a light, sagegreen color. At the line of contact with the shale the rock has the appearance of a brownish, amorphous base, thickly sprinkled with porphyritic augites and feldspars closely cemented to the shale.

Under the microscope the coarser portion of the rock shows an almost holo-crystalline groundmass of lath-shaped feldspars, small augites, scales of brown mica, iron ores, and a large amount of secondary chloritic matter and calcite in which are embedded porphyritic plagioclase feldspars and the large idiomorphic angites already noted. The amount of mindividualized base is very small, and is represented only here and there by small, wedge-shaped areas of greenish, chloritic, decomposition products. In places these are wholly lacking, and the rock assumes the panidiomorphic structure of a diabase.

The porphyritic augites, as seen in the section, are of a very lightgreen color, not perceptibly pleochroic, and give extinction angles on clinapinacoidal sections as high as 43°. They carry inclosures of iron ore, brown mica, apatite, and glass. The feldspars belonging to the first generation, that is, the porphyritic forms, are all triclinic, with step-like ends and abundant twin striz. They are somewhat decomposed, giving rise to chloritic and other secondary products.

The only other porphyritic constituent is a rreatly decomposed olivine occurring in widely scattered forms, and evidently a nonessential constituent. The decomposition has gone so far that in the majority of cases the resultant forms are no longer recognizable. In a few instances the crystal ontlines are still preserved and show steep domal faces and irregular fracture lines, ummistakably those of olivine. The product of the decompsition is in some cases a dull green, chloritic mineral; in others, a dull red, ferruginous amorphous product, accompanied in both cases by abundant calcite. The latter forms are
frequently macroscopically evident on a freshly broken or a polished surface, appearing as dull red areas 1 to 2 mm . in diameter, surrounded by a narrow border of the white calcite. In none of the many sections examined am I able to find even a trace of maltered olivine.

The feldspars of the groundmass are, in part at least, a plagioclase variety, as shown by the numerous twin strice. There are, however, abundant clear glassy forms appearing in the section in the form of stout rectangular areas, which in some cases give extinction angles exactly parallel and in others inclined a few degrees from the axis of elongations. These are assumed to be orthoclase, an assumption apparently borne out by the large perceutage of potash shown in the analysis. The augites of the groundmass have the same color as the porphyritic forms, but occur in idiomorphic, and also in imperfect, and often sharply wedge-shaped and angular forms filling the interstices of the feldspars. The brownish mica occurs only in small and very irregular shreds associated with secondary chloritic material.

Approaching the line of contact the groundmass becomes more dense, but still retains its largely crystalline character. The porphyritic angites here are of a light sage-green color and show very perfect crystal outliues. They are, however, much more decomposed than those in the coarser and less compact portion, presenting a mass of rounded and angular pale angite fragments, interspersed with calcite, iron oxides and undeterminable decomposition products of a dirty white color. At the immediate line of contact with both over and underlying shales there is a narrow band, from 3 to 6 mm . in width, of a brownish color, consisting of the augites and feldspars of the first generation imberded in a wholly or partially devitrified base, which remains always light between crossed nicols, and shows a mass of illy defined rounded and elongated globules, over which play imperfect and distorted black crosses as the stage is revolved. Both the feldspars and augites are here replaced by calcite pseudomorphs. The shale itself is strongly iujected with calcite for the distance of a few millimeters from the line of actual contact. The line of separation between the shales and eruptive rock is in all cases perfectly sharp, the fused material having flowed over and around the particles of quartz and feldspar in a manner implying a high degree of fluidity. Contact metamorphism of even so large a mass injected in a highly fluid condition, and cooling so slowly as to become almost holocrystalline, is here reduced almost to a minimum, owing to the refractory nature of the materials of which the shales are composed. Thin sections show these to be made up of small fragments of quartz and feldspar with but a small amount of intersticial space now occupied by secondary silica having the same crystallographic orientation as the adjacent quartz granules, and by very minute, needle-like flecks of silvery white mica, evidently developed from the small amount of original amorphous cement. The shale is, therefore, no longer at this point an agglomerate of fragments adhering by means of an amorphous cement,
but is a true erystalline rock, the original fragments forming proportionally large nuclei to a mass of crystalline granules whose regular growth has been interrupted by mutual interference. How much or how little of this change is due to the injected rock it is impossible to say.

Chemical analysis of as fresh a sample of the eruptive as was obtainable from near the central portion of the sheet yielded Mr. Eakins results as follows:

Considering all the potash in the above as belonging to the orthoclase and the soda to the plagioclases, these results can be reduced readily to the following proportions:

Such calculations must, of course be accepted only with a considerable degree of allowance. It is probable that a portion of the potash belongs to the plagioclase feldspars, and, without doubt, a small amount to the mica, for which no allowance whatever has been made. This last amount would, however, be tritling. A safer but less definite calculation is as follows:

The above, I believe, represents the proportional qualities of the various constituents as nearly as it is possible to obtain them.

To the west of the outcroppings of the sheet oceur rather inconspicuous outcroppings of a darker, more compact rock with macroseopic olivines and angites in macroscopically recognizable forms. (No. 38516 , U.S.N.M.) This is described in detail in comection with the basic eruptive overlying the mica syenite between Antelope aud South Boulder creeks (p. 671).

During the season of 1886 Dr . Peale brought in from the northwest side of the lower valley of Cottonwood Creek, and labelled as from the "Upper dike," a small specimen of badly weathered, fine grained, light gray rock, thickly studded with small folia of black mica and minute augites. Under a low power the rock appears almost holocrystalline and composed of lath-shaperl, short, stout interlocking feldspars, light greenish augites, and scales of brown mica. The feldspars are all muddied through decomposition and optical determinations are very unsatisfactory. A portion of them show twin striee; others show none and are presumably in part sanidin.

The angites are all small (one-third mm. in greatest diameter), and as a rule in imperfect and fractured forms. Cross sections, however, frequently show quite perfect outlines. They are very light greenish in color in the section. The mica is reddish-brown, strongly dichroic, and occurs in irregular shreds, in very perfect hexagonal tablets, as a narrow border about the iron ores, and in a few instances was observed a like border about elongated augites.

A high porver shows the interstices of the feldspars occupied by a colorless isotropic substance or a very light green chloritic material evidently derived therefrom. When an uncovered slide is treated with hydrochloric acid there are shortly produced abundant cubes of sodium chloride. So abundant were these cubes that careful search was made for nepheline or sodalite, but with unsatisfactory results. The cavities left in the slide after treatment with hydrochloric acid presented in no cases the outlines of any crystallized mineral, but are in all cases irregular area: scattered promiscuously throughout the mass of feldspars. For the time being the true nature of the isotropic mineral which gave rise to these was a mystery, but in the light of subsequent observations there seems little doubt but that they are of sodalite and the rock a phase of the mica and augite bearing syenitic lamprophyres, described later (p. 671). A partial analysis of the rock jielded Mr. Eakins results as follows:

Augite porphyrite.-Intrusive sheet some sixty feet in thickness just above Horse Shoe Bend of the Missouri River. In strike and dip it follows the Cretaceous sandstone in which it lies, cutting across the beds only very slightly, if at all. It is well exposed in the bluffs on the west side of and facing the river. Both upper and lower contact are here readily found.

The rock (No. 62410, U.S.N.M.) is evidently identical with the main eruptive at Cotton rood Creek, Gallatin County, some 6 miles to the southeast, and which was called an augite porphyrite in Bulletin No. 110, U. S. Geological Survey. (See above.) Like that rock, it is dark greenish and at times nearly black in the least decomposed samples and thickly studded with stont idiomorphic augites of all sizes $\quad u p$ to 10 mm . in length. Near the line of contact the rock is almost aphanitic, but shows under the microscope abundant porphyritic angites and plagioclases in good idiomorphic forms in a felsitic base. Receding from the line of coutact the rock grows gradually coarser, and thin sections show the rate of cooling to have been sufficiently slow for an abundant development of a second generation of plagioclases. Whether any glassy base remained can not now be determined, as everything is obscured by decomposition products. As with the Cottonwood Creek rock, there are abundant iron oxides in large grains, numerous small scales of dirty brown mica and occasional apatites. The augites occur in simple, and twinned and in clustered glomero-por. phyritic forms.

Quite a number of the porphyritic feldspars show beautiful zonal structure and no twinning. Such are assumed to be sanidins, an assumption borne out in the Cottonwood Creek rock by the high percentage of potash shown in the analysis. The microstructure varies from hypocrystalline porphyritic to holocrystalline porphyritic with a panidiomorphic groundmass.

The only difference which can be considered at all essential between this rock and that of Cottonwood Creek lies in the development in the former of abundant olivines, which, however, are now recognizable only by the outlines of the dirty yellow brown chloritic decomposition products. A few of these were present in the Cottonwood Creek samples, but they were so scattering as to be deemed nonessential.

Hypersthene andesite.-Northwest of Red Bluff. This is a very finegrained and compact nearly black rock (No. 66929 U.S.N.M.) breaking with an irregular choncoidal fracture and in which none of the constituents are developed in such size as to be determined by the unaided eye.

In the thin section the rock shows an amorphous, glassy base so charged with opacite dust as to be itself almost black and opaque, and bearing very numerous irregularly lath-shaped plagioclases and abundant crystals of a colorless pyroxene. More rarely occur olivines which are in all cases altered to a greenish yellow chloritic product.

The plagioclases are many of them imperfectly secreted from the base and their borders are thickly charged with the black opacite. The pyroxenic mineral is in nearly colorless, very imperfectly outlined elongated forms, often broken transversely and rarely of such size as to show in basal sections prismatic cleavage lines cutting at nearly right angles.

The dichroism is very faint and in the larger forms only could it be
made out with any degree of certainty: e, very light greenish: à, very faintly reddish, and $\overline{\mathrm{b}}$, faint yellowish, scarcely at all reddish. The mineral shows extinction in all cases parallel and at right angle with the c axis; it is biaxial, negative, and sections cut at right augles to the a axis show the immergence of a bisextix with the plane of the optic axes in that of the a and c axes. Dispersion $\rho>v$. These characteristics alone are sufficient to demonstrate the true character of the mineral.

Mr. J. S. Diller, of the U. S. Geological Survey, has kindly loaned me sections of the hypersthene basalt described by him from Mount Thielson, Oregon,* from an examination of which I am able to mako the following comparisons: the two rocks have essentially the same structure, but differ in that the sample from Red Blutit shows a relatively smaller number of porphyritic plagioclases, a far larger proportion of hypersthene, and also a larger proportion of plagioclases in the groundmass, necessitating therefore a smaller proportional amount of glassy base. The feldspars of the Oregon rock are much better developed than in that of Red Bluff and the "opacite" particles much larger and more distinctly granular. Bulk analysis of the Red Bluff rock by Mr. Eakins yielded results as below. In column If is given that of the Mount Thielson rock, permission for the use of which has been kindly granted by Mr. Diller.

From this it would appear that the rock is much more nearly related to the andesites than the basalts, although on purely structural grounds it seems more like the latter.

Peridotite, var. Wehrlite.-Hills three miles northwest of Red Bluff. This rock (Nos. 70675 and 73162 , U.S.N.M.) occurs intrusive in the gneiss and forms on the present surface only several small, nearly circular, inconspicuous outcrops, standing but a few feet above the surrounding gneiss and broken into rongh, angular blocks weathering brownish. Two textural varieties are readily apparent. One, a somewhat coarse, distinctly crystalline rock, showing on fresh surfices

[^155]mottled, deep bright green clearage plates (sometimes 5 to 10 mm . across) of a mineral of the pyroxene group, and abundant small folia of brown mica. To the maided eye these two minerals form the chief constituents of the rock. This variety weather's with peculiarily knobbed and deeply pitted surfaces.

The second variety differs only in being of finer grained and more uniform texture, its mincralogical nature being barely evident even with a pocket lens.

Both varieties are, however, essentially the same. Under the microscope the rock is found to be beautifully fresh and unaltered-a holocrystalline granular aggregate of pale green diallage, deep reddishbrown mica, colorless olivines, rarely small irregular areas of a basic plasioclase, and seattering patches and streaks of black iron oxides, which are evidently wholly secondary. None of the constituents present anything like perfect crystal outlines.

The structure is peculiarly jumbled and almost cataclastic. It resembles more the hasty and interupted crystallizations characteristic of certain meteorites, like that of Estherville, Iowa, than that of terrestrial rocks. Diallages and olivines are crowded and jumbled together, the interstices of the larger forms being occupied by the same minerals in a granular condition.

The diallage has reached the most perfect stage of developement and often oceurs in broad plates inclosing olivines and shreds of brown mica, and with a very pronounced pinacoidal parting. Feldspars, when they occur, are in short broad plates sometimes polysynthetically trined or again showing broad faces without trace of cleavage or twining lines and filled with small colorless and yellow interpositions of mica. (?) The prevailing mica is deep brownish-red and strongly pleochonic. The following shows the composition of the rock according to analysis by Mr. L. G. Lakins, of the U. S. Geological Survey:

Diorites.-bumt Creek region. These rocks are apparently all diorites and presmmably portions of the same geologic body, though differing somewhat in composition and in details of structure. Some are fine and evenly granular dark-gray rocks, showing under the microscope a holocrystalline, panidiomorphic gramular structure, a portion of the plagioclases only showing idiomorphic developement. A green hornblende in very irregular plates and shreds is, next to the plagioclase,
the predominating constituent. Shreds of brown mica, abundant granules of iron ore, occasionally a little interstitial quartz, and a few inconspicious apatites with rarely an irregular sphene complete the list of determinable constituents. Others differ mainly in being of coarser texture and showing a tendency toward a porphyritic structure through the development of occasional large plagioclases.

Two sections show peculiar morlifications. The most abundaut constituent is a pale green angite which has gone over to a considerable extent to chlorite and a malitic hornblende. Both angites and plagioclases show a tendency to gromp themselves into granular agesregates, while the latter are in many instances so charged with globular, chubshaped or vermicular colorless inclosures as to almost obscure their true mineral nature.

The feldspar not infrequently appears as a ragged, irregular nucleal area, with or without twin strix, and surrounded by a zone of varying width of the inclusions so as to appear, by a low power, like a very fine grauular aggregate of colorless minerals. A single section shows all gradations from feldspars with no inclusions to areas no longer recognizable as such, but merely aggregates of the irregular inclusions described. The structure is at times pronouncedly cataclastic and the appearances such as to indicate that the above-mentioned peculiarities are due to dynamic causes.

Rhyolite and andesite.-Hills between North and South Meadow Creek, near Washington Bar. The eruptives here oceur mainly on the eastern side of the creek and form the steep hills lying between the north and south branches. The predominant rock is a liparite overlying the gueiss and forming the main mass of the hill. This varies fiom purplish to gray or nearly white in color, sometimes pinkish. The ordinary type is faintly porphyritic, though sometimes quite aphanitic, and with so even and pronounced a flow structure as to closely simulate a compact, thin bedded, argillaceots limestone. On the eastern and upper slope of the hills, and particularly at the western end of the range, always near the contact between the liparite and gneiss there occur limited outcrops of a dense almost coal black audesite. (No. 72850 , U.S.N.M). The contacts between the three rocks are never accessible, but the surface of the ground is simply covered with inummerable small joint blocks, rarely a foot in diameter, and which have been further reduced by the continual flaking off of small convex and concave chips by diurnal temperature variations. The rock on a weathered surface for perhaps the depth of a millimeter is of a brownish color. Beyoud this it is always fresh, of a beautiful dense black color and satiny luster, and with only rarely small white porphyritic constituents sufficiently developed to be visible to the unaided eye.

A slight mottling sometimes seen on the surface is due to a spherulitic development. The field characteristic of the rock was such that
it was supposed to be a basalt. The thin section, however, shows only a very deuse aggregate of small feldspars and other colorless microlites, often with strongly marked fluidal structure and innumerable small opaque specks, assumed to be iron oxides. None of the magnesian silicates are sufficiently developed to be recognizable, even with the highest powers. The white porphyritic constituents meutioned above as oceurring rarely, prove to be secondary segregations of quartz.

The microstructure of the rock is andesitic rather than basaltic; nevertheless, as I have never before seen any but the glassy andesites so dark in color and so compact, a test was resorted to which showed 64.42 per cent. of silica; specific gravity, 2.555.

IIornblende picrite.-North Meadow Creek. This rock (No. 73174, U.S.N.M.) in the hand specimen is of an iron-gray color and composed of very irregularly outlined crystal plates and fibers, from one to two centimeters broad, which to the maided eye merge into one another without sharp lines of demarkation. The larger plates inclose rounded blebs of a deep green mineral, whereby is produced an indistinct and irregular luster-mottling. The rock weathers brownish on the immediate surface, but is apparently fresh and unaltered and so intensely tough and hard that a two-pound hammer quite failed to detach chips of any size, and recourse was had to the sledge.

The outcrops are few and rather inconspicuous, projecting in thin wedges but a few feet above the scauty soil, and ringing like metal when struck with the hammer. Although no contacts were visible, the strike is directly across that of the gneiss in the vicinity, and in the field no doubt was felt concerning its eruptive nature.

In the thin section, under the microscope, the rock shows a holocrystalline aggregate of light greenish to colorless hornblendes, abundant, beautifully fresh, and colorless olivines, irregular grains of pleonast, the usual sprinkling of iron ores, and occasional very imperfectly outlined areas of a faint brown, dichroic mineral, showing in an indistinct basal section a very irregular and interupted nearly rectangular prismatic cleavage. Satishactory determination of this mineral was impossible. It is evidently hypersthene. The hornblendes occur in broad ophitic plates of a green color, inclosing the rounded clear and fresh olivines, and also in colorless frayed-ont asbestus-like forms. Were it not that the rock is so fresh and unaltered I would be disposed to regard such as secondary forms, perhaps after a rhombic pyroxene, but it seems scarcely probable that such an alteration could have taken place, leaving the olivines, which they inclose, so perfectly fresh and unchanged.

The rock belongs to the group of hornblende picrites, as defined by Bonney, and though a triffe more acid, seems to correspond fairly well with those described by him from Anglesea and figured by Teall on pls. V and vi, figs. 2 and 1, respectively, of his British Petrography. The rock is sufficiently rich in olivine to gelatinize readily in hydro-
chloric acid. Below is given the results of a bulk analysis of the rock as made by Mr. Eakins:

	Per cent.		Per cent.
SiO_{2}..................... 46.13 BaO ${ }^{\text {a }}$ Trace.			
TiO_{2}	. 73	$\mathrm{K}_{2} \mathrm{O}$.	Trace.
$\mathrm{Al}_{2} \mathrm{O}_{3}$	4. 69	$\mathrm{Na}_{2} \mathrm{O}$. 08
$\mathrm{Cr}_{2} \mathrm{O}_{3}$. $0+$	$\mathrm{H}_{2} \mathrm{O}$	1.38
$\mathrm{Fe}_{2} \mathrm{O}_{3}$. 73	$\mathrm{P}_{2} \mathrm{O}_{6}$. 07
Fe0			
NiO.			
CaO	4.41	Specific gravity.	3. 35
MgO.	25.17		

Saxonite; Harzburgite.-From dike between North and South Meadow creeks. This rock (No. 62402, U.S.N.M.) was first noticed on the western side of the divide between North and South Meadow creeks, where it cropped out by the roadside in the form of a sheet not over 50 feet in width, of a plainly laminated deep green serpentinous rock lying in the gneiss, and appareutly corresponding with it in dip and strike. The outcrop was traced in a southerly direction toward South Meadow Creek, finally disappearing at the lake branch of the creek. Everywhere the rock had the appearance of a highly tilted metamorphic schist, except at the extreme southern terminus, where it widened ont into a bulbous enlargement which was serpentinous on the margins, but showed a nucleus of a deuse dark gray, very tough, and hard rock made up of a macroscopically irresolvable groundmass thickly studded with imperfectly outlined phenocrysts of a pyroxenic mineral with a bronze luster. The couditions of the rock were such as to at once suggest that this nucleus represented the unaltered portion of an original eruptive mass from which the schistose serpentine had been derived by chemical and dynamic agencies. This suggestion was substantiated by chemical aud microscopic examination.

The rock from the southern end of the dike, in its least altered conditions, shows under the microscope a dense groundmass of finely granular colorless rhombic pyroxenes and pale brown almost colorless hornblendes, interspersed with a few olivines, the usual sprinkling of iron oxides, and small rounded forms of dull green pleonast. Thronghout this ground mass are scattered the bronzite phenocrysts above noted, more rarely irregular olivines, occasionally very irregular plate's of faintly brownish or greenish hornblendes and more rarely shreds of a deep red-brown mica which show extinction angles of about 3°, when measured against cleavage lines in cross sections. In but one or two instances were observed small granules of a basic plagioclase feldspar. Bronzite and olivines make up the main mass of the rock.

The structure of the rock is quite variable and complex, and difficult to describe intelligibly. With the exception of certain of the hornbleudes of the groundmass, none of the constituents show gooil crystal-
lographic forms, but occur in comparatively broad, very irregularly ontlined plates surrounding and inclosing blebs of olivine and portions of the gromdmass. The bronzite phenocrysts show a very platy, at times almost fibrons, structure, and have as a rule bronze clouded interior areas surrounded by colorless margins.
This type of the rock passes quite abruptly into serpentine, the olivines succmbing first and the bronzite next, the hornblendes remaining intact to the last but finally going over to fibrous tremolite forms. Accordingly as olivine or bronzite predominated in particular inst:nces, the sections show a serpentine of the well-known mesh, or bar and grating structure.

As the process of alteration is traced into the more schistose por. tions of the rock it is observed that the unaltered hornblendes assume an approximately parallel arraugement among themselves, their longer axes lying in one general direction, while a pale yellowish mica is in some cases developed, particularly in slides from specimens taken from near the contact with the gneiss. The appearance is such as to suggest that the apparent fissile structure is due to a lateral compressive or sheering force as in ordinary roofing slates, and that the force may have been produced by movements in the inclosing gneiss, or, as seems possible, to merely the expansion of the mass of rock itself during the process of hydration and while held firmly by the walls of gueiss. The sufficiency of this expansive force to produce a platy and slickensided structure in pyroxenic masses undergoing hydration the present writer has elsemhere alluded to.* The following analysis, by myself, shows the composition of the fresh, unaltered saxonite from the southern end of the dike, all the iron being determined as $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and the rarer elements not looked for:

	Per cent.
SiO_{2}	46.35
${ }_{\text {Al }} \mathrm{Al}_{2} \mathrm{O}_{3}$	16. 41
M	18.72
CaO	6.14
Ign.........................	3.01
	100. 54
Specticic gravit5..	3.21

Pyroxenite-Outcrop in gueiss. On divide between Meadow and Granite creeks. Macroscopically this (No. 73175 , U.S.N.M.) is a massive holocrystalline granular rock in which stout, deep dark-green, nearly black, crystals of a hornblendic mineral in sizes up to five and eight mm . in length are interspersed with larger indefinitely outlined areas, .sometimes 40 or 50 mm . in diameter, of a brownish eminently cleavable mineral, suggestive of a pyroxene. These two minerals, so far as can

[^156]be determined macroscopically, made up the entire mass of the rock. Its appearance may perhaps be better understood by comparing it to a conglomerate in which the large pyroxenic portions represent pebbles and the hornblendes the interstitial cement. The rock is rery massive, and I am inclined to believe an eruptive, though definite proof is lack$\mathrm{i}_{\mathrm{n} \text { g. }}$ Eruptive or otherwise, it seems to cover a very limited area. The country rock is gneiss with a pronounced banded or foliated structure. Passing along through the woods one comes suddeuly upon an exposure of this rock utterly different in mineral nature and structure, and occupying au area so far as exposed scarcely a hundred feet in diameter. Like so many other undoubted eruptives in the region, it occurred in the form of what we after a time dropped into the habit of facetionsly calling pustules. Inasmuch as I have never seen any such sudden transitions in gneissic rocks, but have observed basic undoubted eruptives occurring in just this manner, I am naturally inclined to regard this also as an eruptive, though contacts are wholly obscured. It is apparently the deeper lying portion of an old and very small volcanic neck.
Thin sections under the microscope show the rock to be made up wholly of large, irregularly outlined plates of hypersthene, pleochroic in faint reddish and brownish colors, and a light-green hornblende, as above indicated. These, with a seattering of opaque granules of iron ore, comprise the entire list of recognizable constituents. The rock is beantifully fresh and maltered. The crystallization of the two chief constituents must have been nearly contemporaneous. The hypersthenes never show good idiomorphic forms, but the borders are irregularly indented by the smaller hornblendes, which are also found in quite perfectly outlined forms wholly inclosed by the hypersthenes. As a rule, as noted above, these hornblendes sccupy the position of a binding constituent, but at times both hornblendes and hypersthenes occur intimately associated in small, imperfect gramular forms. Of the two minerals the hornblendes are the better developed. These show on cleavage plates parallel to $\infty \mathrm{P}$ io extinction angles as high as 14°. An analysis yielded results as below, all the irou being determined as $\mathrm{Fe}_{2} \mathrm{O}_{3}$:

The rock belongs evidently to the group of pyroxenites as described by Williams,* but can not be classed under any of the varietal names

[^157]Proc. N. M. $94-42$
as given by him. Iormblembte includes the closely related homblende angites forms and hignersthenite the jure hypersthene rock. The compound name hornhlembe-hypersthenite, while sufticiently descriptive, is too cumbersome, but it reems scarcely advisable to coin a new name until rocks of this type shall be shown to have a wider geographic distribution.

Below is given the results of a bulk analysis as made by Mr. Eakins (I). In II is given the eomposition of a bronzite diallage rock (Websterite) from near Webster, N. C., as described by (i. H. Williams.*

Between sonth Meadow and Mome Creek was fonnd a second ineonspicuous outcropeof what is evidently a varietal form of the same rock (No. fiefor, U.S.N.M.). Ns in the last case, the outerop is in the greise, nearly circular in outline, aud of very limited area, not over 100 fect in greatest diameter. The artual contact between the ermptive and the enneiss was obstured by a zone, some three or four feet wide, of decomposed material, and here again there may be some reason to doubt the eruptive nature of the rock. To consider it as ancruptive is certanly the easiest way out of the diflioulty, since it is more difforntt to explain how mineral aggregates of this matme conld segregate out of gneissic rocks of entirely different mineralogical composition than it is to areont for the coarse and miform erystallization in ernptive masses of so small size.

The rock in the hamd suecimen is dense, dark greenish in color with a serp ntinous look and flecked with abundant cleavage plates of darkgreen hornblende. On the immediate smeface the rock weathers to a rusty red and shows not infrequently small rombed garnet-like protuherances, which closer examination shows to be large hypersthenes left projecting, owing to their simperior durability.

In the thin section the rock shows plates of faintly greenish, to almost colorless hormblendes, interspersed with short, stont hypersthenes and occasionally olivines, and very abomdant, comparatively large, irregular deep green pleonasts with which is nearly always associated a magnetie iron ore which gives a chromimm reaction when tested in the borax bead.

The rock is rery fresh, although a slight serpentinization has begun

[^158]with the olivines. Thespinels are sonbumant as to he the most striking feature of the slide and are readily recognizable by the unaided eye, in the form of irregular opargue gramules a millimeter or so in greatest diameter.

From the powdered rock the spinel was separated ont by digestion with hydroflnomic acid. The material thas obtained yielded Mr. Eakins results as below:

This reduces readily to the spinel formmala (Mg, Fe) ($)$. $\mathrm{Al}_{2}()_{3}$, which is that of the variety plemast, to which the mineral has aheady been referierl.

A bulk analysis of the rock yielded me results as below, no attempts being made at determining the rarer constituents:

	Percent.
SiO_{2}	44. 01
$\mathrm{Al}_{2} \mathrm{O}_{3}$	11. 76
$\mathrm{Fe}_{2} \mathrm{O}_{3}{ }^{\text {²}}$	15. 01
MgO	25.55
CaO	4. 06
	100. 39

Diabose-Granite Creek, Madison Comity. These are coarsely crys. talline rocks (No. 62403 , U.S.N.M.), in most cases readily recognizaible in the field as diabases, though in some instances the uralitization of ${ }^{\circ}$ the angitic constituent had gone so far that in the hand specimen the rock might easily be mistaken for a diorite. In the thin section they present nothing of special interest. The ophitie structure characteristic of diabases is not prominently developed. There are broad areas of badly kaolinized plagioclases interspersed with angites, iron ore, and occasional quartz gramules and shreds of brown mica, together with more or less uralitic hornblende and clilorite.

Bascult.-The high flat topped platean northeast and east of Virginia City is composed exclusively of basalt with interbedded tuffs, the whole being underlaid by andesites, which are exposed only in the dry gulches down well toward the level of the town (Nos. 62405 and 62406, U.S.N.M.). The basalts vary in color from dull reddish to
nearly black, and in structure from coarsely vesicular to compact, and, as a rule, showing olivines developed in such sizes as to be recognizable to the unaided eye.

As a rule the samples collected present no points of exceptional interest, though from an outcrop on the divide between the two sonth branches of Moore Creek a quartzose variety was found which needs mention. Macroscopically the rock is dense, compact, of a dark gray color, and studded with numerous rounded or oval spots, 2 to 3 mm . in diameter, showing a whitish center surrounded by two narrow zones, the inner greenish in color, and the outer, an irregular and imperfect one, whitish. In the thin sections these spots show a rounded nucleus of quartz surrounded by a zone of pale-green augite, and these in turn surrounded by a zone of nonstriated feldspars (?). The nature of this last constituent could not be made out beyond doubt in the sections at hand. The mineral is biaxial and gives inclined extinctions, the general behavior being that of a potash feldspar. With the exception of this imperfect onter zone the occurrences are apparently in every way similar to those described by Diller* and Iddings,, and are to be accounted for in a similar manner.

Hornblende andesite.-Old Tollhouse on road leading from Postlewaite Creek toward Virginia City (No. 72867, U.S.N.M.). This is a gray andesite of ordinary type, showing to the unaided eye coal-black hornblendes, hexagonal folia of black mica from one to two mm . in diameter, and abundant small plagioclase phenocrysts. The microscope brings to light no points of unusual interest. The rock is finely exposed in the hillside at the tollhouse, and is found to underly the basalt forming the plateau to the west. The same rock occurs again at Virginia City, where it has been used in the construction of several buildings. On the east side of Alder Gulch, also underlying the basalt, a similar rock occurs, but in which the hornblende seems to have been wholly replaced by the black mica.

Liparites.-Cherry Creek on west side of Madison Valley. The only eruptives here (No. 72945 , U.S.N.M.) are liparites and diabases, the first occurring only in remnants of thin sheets on the slopes north of the creek, and in isolated patches for several miles to the southward. The prevailing type is a light reddish or gray and but slightly porphyritic rhyolite, sometimes coarsely spherulitic. The material is of such slight density as to have been transported by spasmodic streams clear to the opposite side of the valley in masses of even 10 feet in dameter. Wind blown sand has in many cases hollowed these out into a mere shell. Older eruptives in the form of dikes of diabase occur well down in the edge of the valley, outcrops running parallel with the prevailing schists. These in the hand specimens are holocrystalline granular rocks, dark gray in color, and in which an

[^159]abundant sprinkling of a dark-greenish black hormblendic mineral in a gray feldspathic base is readily recognized.

In the thin sections the most abundant constituent is hormblende, in broad plates of green color and fibrous aspect such as to at once suggest that they are wholly secondary, that is, uralitic; accompanying these are small, irregular tlecks of brown mica, which is also secondary. The groundmass of the rock is composed of badly kaolinized feldspars, in part at least plagioclastic, and granular quartz. Frequent patches of a dirty brownish amorphous matter, acting between crossed nicols like a gum, are evidently residual products from the decomposition of titanferous iron. Mineralogically the rocks may be classed as quart\% diorites, but I am inclined to regard them as altered diabases.

Porphyrite.-On the eastern side of the valley, in the upper valley of Bear Creek, the eruptives occur in the form of three sheets of porphyrite, a liparite, and two inconspicuous outcrops of a dense greenish basaltic rock closely related to that described as occurring near Fort Ellis. Between Bear and Indian Creek, to the sonthward, are extrusions of basalt. The most conspicuous eruptive on this side of the valley is that forming the mass of Lone Monntain, and which is found in the form of sheets and dikes in the Cretareous and older berls of the surounding hills. As exposed in the canon of Cedar Creek (Nos. 72866 and 72880 , U.S.N.M.), the mass is evidently laccolitic in Cretaceous sandstones. The entire thickness of the mass as exposed can not be less than 3,000 feet. In its most conspicuous development the rock is a compact light-gray horublende porphyrite, with both hormblende and feldspars sufficiently developed to lee recognizable by the unaided eye. Black mica is commonly present, and near the lower contact this mineral prevails, to the entire exclusion of the hornblende. (No. 72880, U.S.N.M.) This variety of the rock is further characterized by abundant rounded blebs of quartz.

In the thin section the prevailing type shows a groundmass varying from densely microlitic or felsitic in stmples firom near upper contact to finely microgranular in specimens more remote. Phenocrysts of striated feldspars and green hornblendes are abundant, and occasionally rounded blebs of quartz occur. The feldspars are in most sections opaque through decomposition, and an abundance of secoudary calcite indicates that they belong to a lime-rich variety. The mass, as shown by specimens collected at various points, is very uniform throughout in structure and mineral composition. Near the lower contact, as found in the canon of Cherry Creek, it becomes a dense, almost porcelain-like rock, breaking with a beatiful conchoidal fracture (No. 66928, U.S.N.M.). This variety snows under the microseope a dense felsitic groundmass, with many small, rounded, and welgeshape bits of quartz and feldspars. Through weathering, the upper portion of the peak has become hollowed out so as to resemble a volcauic crater broken down on the side facing the valley. The rock is
also exposed in the upper portion of Jackass ('reek, together with dikes of diabase.

I'yrornite: Welsterite:-Well mp on the hills north of the first basin of Jateass Creek was found another inconspienous outeroperof a dombtfully eruptive rock somewhat smimar in its mode of occurrence to the pyrosenites already deseribed. In the hamd specimen the rock (No. (ietto, I'S.N.M.) shows to the maided eye a gramular asgregate of dark bronze, gray, and green minerals suggestive at once of a proxenite. Thin bections moler the microseope show a tine gramulat aggregate of light-sreen diallage and colonless enstatite with included folia of bow mina, and oceasional interstitial areas of lime soda feldspars and mome rarely a colorlesshiasial mineral, showing in polarized light the Way handing characteristic of intergrowths of orthorlase and albite. An attempt at isolating this mineral for micorochemical tests proved msuceresful owing to its small quantity. The colorless mineral thus ohtamed gate alway, when evaporated with hydroflomsilicic acid, atmmant beatifully perfect hexagomal forms of sodium silico-fluoride and stellate groups of calcinm silieothoride, hat no potash salts so far as could beobserved. The pereentage of potash shown in the bulk amalysis is, howerer, suggestive of some other potash-bearing mineral than the mica. though it is of comse possible it may come in part from the pyoxemes. The diallage is but fantly green and at times almost colorles in the serotion, and with differnlty distingished at all times from the enstatite. Besules the msual prismatic cleavage it shows distinet
 it is at times quite fibrons, but carries no inclusions of note exeept the brown mica. The enstatite is almost perfectly colorless and never moticeably dionnic. Enstatite and diallage make up the main mass of the rock, the former being more conspicuous in the hand specimen.

The rock must evidently be classed with the pyroxenites, though showing transitional tendencies toward gabbro.

Ibulk amalysis yielded me results as below. The ignition with sodium carbonate indicated the presence of manganese, but which was not determined quantitatively. Chromium and other rarer elements not looked for. All iron calculated as FeO.

Diorite porphyrite.-About six miles nomethest fiom Three Forks, Jefferson Comuty. The ernptives occur here in the form of three approximately parallel ridges. The outcrops are not continuons, but form a series of rombled knolls covered with seanty soils throngh which project the angular or romuded fragments into which the rock weathers.

The most easterly of the three ridges shows outerops in large romuded masses of a coarse gray and pinkish granitic-appearing dionite in which blaek hornblende and pinkish or gray feldspars are easily recognized by the maded eye. This, separated by wide mathes and benches, is sucecedeal by a compact dark gray fine-grained micateons rock in which ouly small scales of harck mica in a very tinely wamular base are recognizable, amb this in its tum by a very typical diomite porplyrite, a dark gray rery compart rock thickly studded with black hornblendes of all sizes up to 15 or 20 mm . in length, and often in stellate clusters of radiating individuals some er. mm, in diameter. The fied relationships of the last two varinties were somewhat obscure, but although never observed grading into one another, little doult was felt at the time but that they were portions of the same mass.
 ite like rock, is fonad to consist of large plates of muddy and impure orthoclase and phagoclase feldspars with interstitial quart\%. deep green hornblembes, and oceasional light-green augites, seattering apmtites, sphenes, an. orcasional zircon (?), and the nsial irom ores. The second variety, the compact finely granular rock with micronseopicomica shows in the sertion a finely holocrystalline gromblmass of stont idio. morphic plagioclases and orthoclase in bowad plates with abmalant sprinklings of green hornblende, paler green angites, brown mica, iron ores, apatites and sphenes. A part of the homblendes are original and a part secondary after the angites. The rock is not distinctly porphyritie, aud the structure as a whole is panidiommphic. Occasional harge plates of a nomstriated feldspar inclosing small augites and phagoclases give rise to ophitic forms. The thind, the porployritic variety, shows a similar mineral composition, hat somewhat variable structure. Certain slides show a dense microgranular teldspathic base "arrying occasional rounded blebs of quartz and phenocresto of plagioclase and deep green hornblende and smaller angites in goon idiomornhic forms; others show a structure almost granitic and with interstitial quart\%. Hormblende oceurs both as phenoerysts and as a constitnent of the gromomass, hut in the latter case is always an alteration product of the angite. Mica in this varety of the rock is murch less abmulant than in the last, and is at times almost wholly lacking. All intermediate grades of structure exists from the elose-grained porphyritie to the granitic, and the mass as a whole, if as supposed all portions belong to the same magma, offers an interesting field for those who are disposed to make structural difterences a basis for rock classification.

Quartaose hornblende porphyrite.-Willow Creek at Lower Canon. The eruptive here occurs as an intrusive sheet or boss through the Potsdam quartzites. On the east side of the creek the mass is practically a boss, throwing the quartzites on the north far out of position. Near the canon the mass begins to narrow and passes westward as a broad sheet or dike dipping with the quartzites which appear both above and below.

In the canon the eruptive is finely exposed in vertical cliffs a.hundred or more feet in height and is broken by nearly vertical joints into rudely columnar masses from six to ten feet in diameter. By joints running parallel with the strike the rock is in places also broken into a series of sheets varying from an inch to a foot or more in thickness. East of Willow Creek the main sheet divides, forming two sheets, with the Potsiam quartzites and shales lying between them, and through which has been extruded a brownish coarsely porphyritic andesite.

The normal rock (No. 62407, U.S.N.M.) is a dense light gray, sometimes almost white or faintly yellowish, felsitic to microgranular mass with inconspicuous phenocrysts and imperfect needle-like hornblendes. No quartzes are microscopically apparent. Occasional bands are apparently holocrystalline, thongh this variety was so badly decomposed as to crumble and samples fresh enough for study were not obtained.
In the section the rocks show a very dense microcrystalline groundmass of quartz and feldspar particles, bearing abundat micro-phenocrysts in the form of dihexahedral quartzes and larger feldspars, a large portion of which are orthoclase, though a few striated forms are occasionally seen. The hornblendes, althongh recognizable macroscopically as fine needles, are scarcely visible at all in the section owing to a decomposition which has given rise to calcite and chloritic products. The only striking feature of the rock is the abundance of the small quartz phenocrysts and their peculiar skeleton-like forms, due to numerous empty cavities and inclosures. Partial analysis on a fresh compact sample yielded:

The hornblende andesite mentioned above (No. 62408, U.S.N.M.) is macroscopically a somewhat dense, brownish or gray rock thickly studded with white feldspar phenocrysts in all sizes up to ten mm. in greatest diameter. In the thin section it shows a dense feldspar microlitic groundmass with strongly marked fluidal structure, and which bears only the porphyritic feldspars above noted, and mumerous badly decomposed and corroded areas which form their outlines are assumed to have
been homblendes. Subjected to chemical test.s the rock yields 2.5 per cent. of potash ($\mathrm{K}_{2} \mathrm{O}$).

Lamprophyres.-Between South Boulder and Antelope creeks. The intrusives here are agray to pinkish micaceous syenite and a dark gray; basic porphyritic rock immediately overlying it. Both are intrusive in Cretaceous sandstones. The basie rock (No. 62409, L'. S.N..N.) ocemes in a sheet apparently fifteen to twenty feet in thickness, though this could not be determined for a certainty owing to lack of exposures. This rock in the hand specimen shows a gray and apparently erystalline groundmass thickly studded with deep greenish black very perfectly formed augites and olivines and very numerous minute flecks of brown mica. The augites in extreme cases are ten mm. in length and half as broad; forms five mm . in length are common.

As seen under the microscope and with a power of eighty diameters the rock presents a colorless feldspathic, holocrystalline (?) gromdmass, carrying scattering granules of iron ore, numerons greatly elongated dusky apratites, a ferr small augites, abundant elongated and very irregularly outlined shreds of brown, strongly dichroie mica and the porphyritic angites and olivines above noted. The rock is beautifully fresh and unaltered.

The prorphritic augites show very perfect crystal outlines of the ordinary type; twin forms are rare. Inclosures are minute and limited to what is apparently portions of the groundmass, iron oxides, and mica scales; a faint zonal structure is sometimes apparent. The olivines are also at times in very perfect crystal forms, thongh more frequently rounded with extremely irregularly toothed or etched outlines closely bounded by small shreds of the brownish mica. This feature is likerise occasionally shown by the angites. The mira itself never shows hexagonal outlines, but is always in very irregular and greatly elongated folia.
The groundmass.-Revolved between crossed nicols no portion of the field remaius entirely dark, but breaks up into irregularly bounded areas showing at times an almost granular structure, but more commonly one imperfectly columar-radiating, the dark wave merging from one portion to another, and in few cases showing crystal outlines sufficiently well defined for determination. Occasional elongated torms show a maximum extinction paralled and at right angles with the axis of elongation. In rare iustauces still others occur showing twin strike characteristic of plagioclase feldspars. but beyond this the microscope fails to give satisfactory results. No interference figures are obtainable nor are cleavage lines apparent. An attempt was made at separating the minerals of the gromudmass by means of specific gravitues, but results were not particularly satisfactory owing to inclosures of ${ }^{-}$ mica and iron ores. After repeated attempts a small amount comingdown at 2.6 and showing under the microscope no adniixture of angites, olivine, or iron ores was obtained, which yielded me on analysis as below.

The determinations were not duphicated, and can be regarded little more than suggestive.

	Percent.
$\mathrm{SiO})_{2}$	61.68
Al, O_{3} and $\mathrm{Fe}_{2} \mathrm{O}_{3}$	21.71
Caf).	3. $0: 3$
K.9)	7.31
$\mathrm{Na}_{2} \mathrm{O}$ (by dillerence)	6.63
	99.36

Evidently a mixtme of potash and sodia-lime feldspars. A bulk amalysis of the rock as made by L. G. Eakins, of the U. S. Geological Survey, yiedded the results given in column I, on p. 670.

In the dry davines and gulehes near by, and on the north side of the road leading fiom Antelope to South Boulder Creek were found obscure outcrons of what from its position was assumed to be the same rock, but which in a state suticiently fresh for examination could be found only in small romuled bowlders, the main mass of the rock having so thoroughly rotfed as to be easily dug out with the hand prek. The fieshest motules obtained showed on a broken surface a reep dark greenish gray indistinctly porphyritic rock in which olivines and ang. ites, with oceasional thecks of hown mica, are determinable by a poeket lens. In the thin section this variety is nearly if not quite bolocrys talline but its structure badly obsemed by decomposition. A clear glassy samdin intergrown with platioclase is readily made out, green angites, brown mica, and badly altered olivines.

Dutige a previons seasou (1 sisi) small outcrops of a somewhat similar rock were found near Cottonwood Creek and east of the Gallatin Raver in dablatin Comoty. 'These on comparison proved to be undoubtedly portions of the same magma, hut ofter some interesting peculiarities. I find these described as follows in my motes of the winter of 1886-97:
 aphanitice, dark gray or nearly black, sometimes brownish, groundmass in which are embedded ahmodant dark green porphyritic olivines and alloites of all si\%es up to five millimeters in greatest diameter.

Microserpically the rock is both muique and beantiful. In a dense gromblmasis of a light gray, sometimes brownish color, cousisting of a folorless on gray moterminable mineral, angite microlites, small scales of bown mica, and grams of iron ore, are embedded beantiful large clear grans of olivine and angite, these two minerals alone constituting the porphyritic ingredients.

The olivines ocrur in clear, colorless, romnded, and irregulaty corroded forms, scattered singly or in polysomatic gromps, as shown in figure 8 , and often in close juxtaposition with the angites. They are beantifully clear and feesh, with but few inclosures of magnetite and
glass cavities. A chloritic or serpentinons alteration has set in and the erystals are traversed hy the characteristic inegular canals of brightgreenish blue secondary matter and scattering grains of iron ore. The augites oceur in sizes fully equal to those of the olivines, and are of a clear light green or faint yellow color in section. They contain very numerous inclosures of the gromdmass, a brown dichroic mineral, evidently mica, grains of irou ore, and glass. As a rule, the crystal outlines are far from perfect, the mineral having suffered from the corrosive action of the magma even more than the olivine. The mineral is perfectly fiesh and clear, shows

Fis. 8.
POLYSOMATIC OLIVINES.
From spermen No. 3×345, Li S. N. M. sharply developed prismatic cleavages and gives maximum extinctions on climopinacoidal sertimes of $4: 5$. Like the olivine it orems both in seattered ame isolated single crystals and in groups. Twin forms are common after the

Fig. 9.
INTERGROWN OLIVINES ANL AUSITE.
a.-Olivines.
l,-Augite.
From specimen Nu. $3 \times 5 \mathrm{mb}, \mathrm{l}$. S. N. M. ordinary type. Augite and olivines often oecur in such close juxtaposition as to have mutually interfered in process of growth (see fig. we 9). So marked an interference between minerals belonging to the earliest stages of consolidation and occurring in widely scattered groups in an unindividnalized groundmass cau be accounted for only on the supposition that neither mineral is a direct secretion from the magma, but that they are residuals of an earlier erystallization in which consolidation had proceeded so far that free growth was no longer possible. The present romuled, scattered, clustered, or isolated conditions being due to
refusion, such as almost completely destroyed original structures without wholly obliterating the minerals belonging to the first stages of consolidation. The mere rounding alone of either mineral could not be considered as indicative of other conditions than are so frequently shown by those minerals which belong to the earliest generation and which, owing to reelevation of temperature or diminution of pressure have become again partially dissolved by the molteu magma. Among crystals which develop freely in a more or less viscid magma, however, no such interference as here shown could have occurred, and we must conclude that their first crystallization took place under more restricted circumstances.

The gray material constituting the greater portion of the groundmass is here not sufficiently erystalline for optical determination. Under a power of $\mathbf{1 7 0}$ diameters it shows only a scaly, granular aggregate of a colorless mineral or minerals, polarizing in light and dark colors, with the individual granules blending into one another as the stage is revolved; often an imperfect, spherulitic structure is developed. The appearance suggested that nepheline or melllite might be one of the constituents, but micro-chemical tests failed to show a trace of either mineral, though an analysis of the portion soluble in hydrochloric acid (1. 670) is very suggestive. From the high percentage of silica and potash shown by the complete analysis it must be inferred that an acid feldspar is a prominent constituent. Occasional areas of colorless glass are seen, but by far the greater part of the groundmass is composed of the white substance, presenting always the peculiar scaly-granular structure above described, and which is unlike anythingI now recall, excepting as sometimes displayed in rocks of the phonolite or trachyte groups. Very eveuly distributed throughout the entire groundmass are innumerable small flecks of brown mica and angite microlites. These last are peculiarly beautiful and interesting, showing every stage from mere skeleton outlines melosing areas of groundmass, elongated, needle-like forms with crenate and undulating borders, to quite perfectly outlined crystals.

As shown in the section they are faintly greenish, or nearly colorless. Between crossed nicols the larger forms show cores giving lively bluish or purple polarizations colors, while the borders are very faint yellow.

Althongh small and imperfect, the optical and crystallographic properties are readily determined, and agree with those of normal augite. No microlites were observed which could with certainty be referred to olivine. The abundant small seales of brown mica are scattered singly and in small clusters quite uniformly throughout the gromdmass. It is noticeable, however, that in the immediate vicinity of the corroded augites they often oceur in greater abundance, and in particular where angites and olivines lie in close juxtaposition. The space is then often filled with a perfect clond of the small mica scales, as I have attempted to show in figure 10. I think that there can be no doubt that these, and perhaps all the micas, and angite microlites as
well, result from a recrystallization of the material derived by refusion mainly from the older olivines and augites. The residual angites are not separated from the groundmass by a sharp line, as might be imagined from an examination of the figure alone, but pass into it by slight gradations.

The above-described minerals, together with small grains of iron ore and innumerable minute, greatly elongated, needlelike crystals of a brownish color, and which occur singly or radiating in every direction from an indefinite nucleus, complete the list of recognizable constituents.

A second variety, found in inconspicuous outcrops a few rods away, was described as follows:

Macroscopically this rock cousists of a compact aphanitic groundmass of dark brown color, carrying abundant greatly altered olivines and augites. Under the microscope the groundmass shows a brownish, partially devitrified base, traversed in

CORRODED OLIVINES, AUGITES, AND SECONDARY MCA.

$$
\text { a.-Ohvines. } \quad \text { b.-Augite. }
$$

c. -Mica. every direction by innumerable, short, thin, yellowish or brownish flecks of a dichroic mica-like mineral, which are light yellowish when the plane of vibration of the light is at right angles to the axis of greatest elongation and brownish when it is parallel. Between crossed nicols these give maximum extinctions and become almost completely obscured when their louger axes coincide with the plane of either nicol, and are of a light yellowish color at intermediate points. They are too minute and with too imperfect outlines for a more accurate determination of their opical properties, but are undoubtedly of biotite or an allied mica. These flecks, together with innumerable light greenish elongated augite microlites, are so abundant as to form a dense, almost felt-like groundmass, in which are embedded the abundant porphyritic augites and olivines.

As above noted, both these minerals are badly altered though the augite is still shown in a few sections in the form of broad, rounded plates of a light greenish color, with sharply defined prismatic cleavages, and containing very many large inclosures and embayments of the groundmass. The olivine has completely decomposed, and but for the characteristic crystal outlines of the psendomorphs would be unrecognizable. The product of this decomposition is in part a very light
greenish chloritic smbetance, and in part a colorless substance so thoronghly impregated with mimuterperks of opacite as to give it a bluish lue, remotely resembling hamyite. This serondary substance arets fantly on polarized light, and, being insoluble in boiling adids, is per sumably chalcedony. Were it not that the outlines of these psendomonples are plainly those of olivnes, and the amount of this insolnble substance increases proportionally with the alteration the ergstals have undergone, I should hesitate to designate them as olivine derivatives.

Althongh this rock shows certain structural pecoliarities, oliffering from that just described, I am at present disposed to regard it as a portion of the same flow solidifying, it may be, under shewtly different conditions, and having undergone grater changes since its ernption.

Below are given the results of analyses on the three types indicateri, Nos. I and If being by Mr. L. (x. Eakins, and No. 11 by I)r. Chatard, of the U.S. deological survey. No. 1 is the fresh pornhyritic variety from South Boulder and Antelope Creek (No. (B己ton, I.S.N.AI.); No. ir the variety collected in 1886 from near ('ottonwood Creck (No. 38596 , U.S.N.M.̈.) ; No. 1 If the variety found in nodular masses in decomposed material as just described, and No. Iv a rock from the Absaroka ramge, as described by Iddings.*

a An analysis of the portion of No. II soluble in hydrochloric acid subsequently yielded results as follows:

Per cent.

Soluble	33. 42
Insoluble	66. 58

The soluble portion yielded:

[^160]The rock, it will be observed, is somewhat anomalons as reginds both structure and chemical composition. There is apparanty little doubt but that the grommbmas is in all cases a mixture of potash and soda lime fellspars, as the minoseope showed to be the ease in the badly decomposed lut holocrystalline variety, and with the possible addition of sporadie nepheline. The most striking featme is. pee haps the high percentage of potash in basice rocks so rich in magnesia. I Both on structural and chemical grounds one would at fist be inclined to regard the rook as belonging to the lencite, nepheline, or melilite bearing series, hat most careful tests have so far failed to establish the presence of either mineral, beyond a possible doubt. If the powdered rock is freel from the iron magestan silicates by means of the electiomagnet, the residual white gamules yield erystals of sodium chloride when treated with hydrochloric aded, and minnte radiating crystals of gypum when treated whth sulphuric adid. It is prohable, however. that these reactions are produced by the presence of zeolitie alteration prohlucts which the micoscope shows to exist. but the exact nature of which can not be made out.

The underlying syenitio rock (Nos. F316s and Finl69, I'.S.N...I.) is a gray to pinkish, timely to coarsely crystalline granulan rock, consist ing essentially of orthorlase and aboudant spangles of blatk mioa readily doterminable by the matided eye, while on closer inspertion are seen abmulant small deep greenish nembe-like crystals of pyroxene. These last in forms not over one nim. broal hy ten mom. in lengoth.

In the thin section the rock is holocrystalline gramalar, and the feldspars so oparue and muddied that their optical properties are quite obscure. They resemble the orthoclases of the older syenitic and granitic rocks. Occasionally phagioclases ocem, but which in nearly every instance have gone over into a very light, ahonst colorless decomposition probluct, at times almost wholly withont action on polarized light and recognizable as a peudomorphous substance by their sharp erystalline ontlines. The mica ocents in broarl (five mm.) patches made up of a large number of inderendent folia, none of which show hexagonal outlines, and also in long (tive to tell man.) spangles radiating in every dirertion. Under the micoscope it is deep smoky brown in color, strongly dichroic, and shows extinction angles measured against the cleavage lines in cross sections as high as s? The folia are often crushed, bent, and distorted, and show between the nlates inclosures of a finely gramular colorless mineral aggregate, the mature of which can not be made out.

The angitic mineral occurs in beantifully perfect elongated forms, sometimes as much as ten mm. in length, as above noterl. In the section it is only faintly greenish in color, not perceptibly pleorlnoic and gives extinction angles, e on 5 , as high as 41°. Althongh the prismatic fates are well developed the terminations, so far as observed, are never perfect but often jagged and full of inclosures or even broken into several disconnected pieces which, though extinguishing simultaneonsly, are
separated from one another by narrow intervals of feldspathic groundmass. The usual prismatic cleavage is well developed.

Abundant long, needle-like light smoky crystals of apatite and the usual seatteringof irou ores are also present. Scattered throughout the slide are numerous irregular, triangular, or occasionally, nearly rectangular areas of a colorless, isotropic mineral, without cleavage and traversed only by an irregular network of fracture lines along which a faintly greenish cinloritic alteration had set in. The microscope alone proving insufficient for its exact determination, chemical means were resorted to. The powdered rock, treated on a slide with concentrated hydrochloric acid, shortly yielded abundant cubes of sodium chloride; when boiled with the acid it also yielded a jelly. That the mineral was not nepheline was indicated by its optical properties. A test was therefore made for chlorine by warming the powder in a platinum crucible with sulphuric acid and catching the fumes arising in a drop of water suspended on the underside of a covered glass. Tested with uitrate of silver this drop showed an ummistakably white cloud, proving beyond all doubt the presence of chlorine. The isotropic character of the mineral, together with its gelatinization and property of yielding sodium-chloride cubes with hydrochloric acid, and chlorine by the last test, all seem to point conclusively to a mineral of the sodalite group.

Although I have spoken of the rock as granitic this structure does not hold through all parts of the mass. Certain specimens (No. 38600, U.S.N.M.) from near the upper contact, and from distant outcrops (see p. 645), are fine grained and show in the thin section a groundmass with a pronounced plumose or dendritic structure more nearly like that of the trachytes.

Bulk aualysis of this rock (No. 73169, U.S.N.M.) yielded me the results given in column I, below. In column II is shown the composition of a sodalite syenite from Square Butte, Montana, as given by Lindgren.*

[^161]Assuming that all the chlorine belongs to the sorlalite, the above analysis indicates the rock to contain nearly six pereent of the mineral.

The composition of the two rocks just described, and their intimate association even in widely separated areas, are peculiarly interesting in the present state of petrographic knowlenge. It is evident that on structual grounds, such may be best classed with the lamprophyres, though they differ from any thus far clescribed in many important particulars. This is eminently true with regard to the more basie one of the two, and it seems impossible to give it a sperific name without coining one entirely new, a proceeding which, in my present frame of mind, is quite objectionable. Considered as a lamproplyyre it would seem to stand distinct from the monchiguites as described by Prof. Rosenbusch,* in the presence of a feldspathic rather than a glassy base, though such a clistinction can seareely be considered an essential. since such might result from merely slight differences in rates of cooling. On purely chemical gromuds it fisther separated from this group by the high percentages of silica aud magnesia, and the fact that the potash preponderates over the soda. From other memhers of the lamproplyyre group, as described by Chelins,t Goller, $+\frac{\text { J. F. }}{\text { g }}$ Williams, § Harker, || Doss, it and others, it differs in equally important particulars. Its closest homologue so far as shown by existing literature, appears to be among the rocks forming the "exceptional dikes and flows in the Absaroka range" of Wroming, as described by Iddings, and to which reference has bern made above. These are regarled by Professor Iddings as forming a part of a series "grading into the normal basalt of the region." So far as the Boulder Creek locality is concerned, there is nothing to suggest any such transition. It is, however, very probable that a further comparison of these with the rocks of Fort Ellis (p. 641), Cottonwood Canon (p. 666), Flathead Pass (1. 643), and Horse Shoe Bend (p. 649) might throw more light on the subject. Their general similarity in composition as well as association is certainly very suggestive.

At South Boulder the eruptives oceur in the form of successive sheets of which the lower is a compact homblende andesite which is succeeded by a semiglassy hypersthene andesite, and this, in its turn, by basalt followed by a small sheet of rhyolite.

> * Min. u. Pet. Mittheilungen, 1890, p. 445.
> \dagger Neues Jahrbuch für Min., etc.,1888, in. Band, 1. Heft, p. 67.
> \ddagger Ilid., 1889, vi. Beilage-Band, p. 485.
> § Vol. If, Ann. Rep. Arkansas Geological Survey. 1890.
> || Geological Magazine. May, 1890, p. 199.
> ff Min. r. Pet. Mittheilungen, xı. Band, 1. Heft, p. 17.

Proc. N. M. 94-43

SCIENTIFIC RESULTS OF-EXPLORATIONS BI THE U. S. FISH COMMISSION STEAMER ALBATROSS.

[Published by permission of Hon. Marshall McDonald, Commissioner of Fisheries.]
No. XXXIV.-REPORT ON MOLLUSCA AND BRACHIOPODA DREDGED IN DEEP WATER, CHIEFLY NEAR THE HAWAIIAN ISLANDS, WITH ILLUSTRATIONS OF HITHERTO UNFIGURED SPECIES FROM NORTHWEST AMERICA.

By Williair Healey Dall, Honorary Curator of the Department of Mollusks.

In the latter part of 1891 the Albatross was engaged in making soundings between the coast of California and the Hawaiian Islands, with the intention of obtaining a profile of the sea bottom for use in connection with plaus for laying a submarine telegraph cable. This work was performed as rapidly as possible, and no delays made for dredging or other work not strictly germane to the purpose of the voyage until on approaching Honolulu the archibenthal plateau about the islands was reached, and here, in between 300 and 400 fathoms, eight hauls of the dredge were made, of which a table follows. Half a dozen swall bottles, containing mollusks and brachiopods, were received in 1892, and the following account of their contents leads us to regret that more time could not have been devoted to dredging.

The material obtained is not only very interesting, zoologically, but wholly new, not a single species heretofore described, either from the deep sea or from the Hawaiian Archipelago, being found among the dredgings. A new subgenus of Pleurotomidæ, the hitherto unknown and very interesting soft parts of a species of Euciroa, regarded as belonging to the Verticordiidæ, but now necessarily raised to family rank, several new Brachiopods, etc., are among the material secured, and described in the following pages. To these are added a ferw new species from the northwest American coast, and a number of species described briefly without figures in 1891 are now suitably illustrated.

Table of stations of U. S. Str. Albatross, neat the Hawaiian Islants, December 3 to 6, 1591.

Station.	Latitude N .	$\begin{aligned} & \text { Long } \\ & \text { tude } \end{aligned}$		Fathoms.	Bottom temperature.	Character of bottom.
	- 1	-	'			Sand. Do. Do. Do. Do. Do. Do. Do.
3467	$21 \quad 13$	157		310		
3470	21 081	157		343	43.30	
3471	21 101	157		337		
3472	2112	157		295		
3473	2115			313	$43.8{ }^{\circ}$	
3474	$21 \quad 12$	157		375		
3475	2108		43^{2}	351		
3476	2109	157		298	...-......	

Proceedings of the U. S. National Museum, Vol. XVII. -No. 1032.

The "sand" revealed by so much of the bottom as adhered to several of the specimens is wholly composed of organic débris, minute fragments of echinoderms, shells, corals, foraminifera, ete., in which small particles of pearly shell counterfeit the appearance of mica. No mineral matter of a purely inorganic character was detected.

Mollusks were received from all the stations except 3467 and 3 tio. Station 3476 afforded eight species; station 3475 , seven species; station 3472 , four species; and the others two species each.

The Euciroa was obtained at five stations, one of the Pleurotomidie at three stations, and the two species of Inentelimm both occurred at stations 3475 and 3476 .

As it secmed desinable to keep together the scanty data belonging to to the Brachioporla, rather than to scatter them through several papers, the speries obtained by the Albutross at several stations along the eastern border of the Pacific, have been included with the others in treating of that group.

Class GASTROPODA.

Genus SCAPMANDER Montfort. Section Bucconia, Dall. SCAPHANDER ALATUS, new species.

Plate xxyir, fig. 2.
Shell pure white, with a pale straw-colored epidermis, polisherl, punctate, with a pervious axis; sculpture of faint lines of growth crossed by mumerous fine lows of punctures, with wider, pretty regular, interspaces; behind the pillar-lip a few of these rows are so impressed as to form grooves: form of the shell ovate, attenmated in the posterior third; aperture as long as the shell, narrow behind, rounded in front; outer lip sharp, produced behind the immersed spire in an alate manner; body with a thin wash of smooth pure white callus; pillar lip twisted about a pervious axis, stout, thick, with a narrow groove behind its anterior part, but no umbilical chink. Extreme length of shell 35 , maximum diameter 20 mm .

Station 3476, in 298 fathoms. No. 107161 , U.S.N.M.
This speceies belongs to the section Buccomir, Dall. It is nearest allied to the type of that section, S. nobilis, Verrill, from which it may be at once discriminated by its more attenuated posterior third and generally thicker shell and less inflated form, and by its alate outer lip. The gizand phates are somewhat less distinctly quadrate than in S. nobilis. The Chullenyer obtaned west of P'apua a speries of this group), S. mmolus, Watsou,* which is very like S. nobilis, but can not be confounded with the present species.

[^162]
Subgeuns Sabatia, Bellardi.

SABATIA PUSTULOSA, new species.
Plate xxvi, fig. 10.
Shell solid, large, subpyriform, with wholly immersed spure and gramular callous body lip; surface polished, sculptured by deen, rather wide, chameled grooves; punctate, but with the punctures overlapping one another so that the line presents an amulate aspert. There are a few intercalary, fine impunctate lines also. The form of the shell is rather rounded, smaller posteriorly, with an obscure constriction about the middle of the shell; apex dimpled, but imperforate; aperture narrow behind, wide and rounded in front; onter lip thin, raised above the apex, but hardly alate; inner lip thick, callons, with mumerous pustules, the axis barely pervious; pillar thick, pustular, its outer edge high, with a groove behind it, but no umbilical chink. Extreme length of shell, 33 ; maximum diameter, 20 mm .

Station $34{ }^{\circ}$, in 295 fathoms, one dead and riscolored specinen. No. 107012, U.S.N.M.

This species recalls the more inflated Scolphamler mixens, Wratson. from near the Philippines, but is readily distinguished by its more attemated Bullo-like form. It may, when older. exhibit a more prominent body callus than is shown by our specimen, the siamulation of the pillar being much like that of adoleserent specimens of siabuta buthymophilu, Dall, fiom the deeper waters of the Aatilles.

Genus PLEUROTOMA,Lamarck.
PLEUROTOMA (DRILLIA) MICROSCELIDA, new species.
Shell with six or more whorls (all the specimens decollate). solid. white, with an ashy pale-bown epidermis; aperture less than half the length of the shell; suture distinet, not chameled; anal noteh rather anterior, about as lleep as wide, separated from the suture hehind hy a somewhat excavater area; spiral sculpture of, in front of the suture a pain, strong threal, in firont of that three or fom anterionly diminishing threads; the anal fasciole, contrary to the molimat rule. projects. shoning two small distinct arljacent thredrs, which overtum ant some"lial nodulate mumerons short abrupt peripheral wavelets; in fiont of the fasciole three strong alternate with three feehle revolving threats. and still in front of these six or eight small threads ocrolpy the base: the siphomal part is decorticated. The tramserse sculpture is compused of the peripheral warelets before alluded to, which are lather dose sut and about 21 in mmber, on the penultimate whorl: there is no other transverse senlpture exeept lines of growth. which are not rery prominent; aperture narow, with a relatively wide canal: pillar solich, slemder, and somewhat twisted : body not callons. and with no subsutural callosity ; interior of aperture not lirate ; length of tive (llecollate) whorls,

22 ; diameter of shell at posterior end of aperture, 8.5 ; length of aperture, 9 mm .

Station 3475, in 351 fathoms. No. 127122, U.S.N.M.
This species has somewhat such a sculpture as the Autillean P.periscelida, Dall, which is a much larger shell, and not a Drilliu. The most closely allied form I have seen is one dredged in 50 fathoms in the harbor of Unalaska by the Albatross, but the latter is a shorter and stouter and probably a smaller shell when adult. The specimens of P. microscelida, though alive when collected, were much eroded, so that the description has been made up from the patches of uninjured surface. By an accident to the jar the alcohol had evaporated, and only the shell remained when received, so that nothing can be said as to the soft parts. It is probable, however, that the species should be referred to the genus Drillia.

Genus MANGILIA, Risso.
Subgenus Pleurotonella, Verrill.
PLEUROTOMELLA GYPSINA, new species.
Plate Xxx , fig. 10.
Shell small, subfusiform, moderately thick, white, covered with a well-marked, mpolished brown epidermis; whorls six beside the (decollate) nucleus, rapidly increasing; aperture slightly exceeding half the total length; suture distinct, but not channeled or marked by any elevated thread; upper portion of the whorl, directly in frout of the suture, somewhat excarated, forming a wide anal fasciole; spinal sculpture of, near the suture, fine, low, flattish, close-set threads, which, beyond the fasciole, are gradually more and more distant until, near the canal, the interspaces are thrice as wide as the threads; the sculpture, as usual, is stronger on the upper whorls; transverse sculpture of fine, even lines of growth, and (on the last whorl about 26) small, distinct, even, very oblique ribs, with slightly wider interspaces, beginning strong, but hardly nodular at the anterior edge of the fasciole, and becoming obsolete on the base; on the upper whorls they reach the suture; the last whorl is much the largest, the aperture and canal rather wide, the anal notch arched and shallow, the outer lip projecting below it; pillar lip but slightly callous, interior of the aperture smooth; pillar straight, attenuated in front, the canal obliquely cut off in front. Length of the shell, 23 ; width at the posterior angle of the aperture, 8.5 mm .

Station 3475, in 351 fathoms. No. 107015 , U.S.N.M.

The single specimen is a good deal eroded and has lost its nucleus. The species is not mulike I^{\prime}. gypsata, Watson, from 700 fathoms near New Zealand, but that species has only fifteen ribs, which do not reach the suture on the earlier whorls. There are no remains of the soft parts, but the shell looks like a small Pleurotomella.

PLEUROTOMELLA HAWAIIANA, new species.
Shell small, subfusiform, solid, polished, grayish white, with five or more whorls; suture distinct, the whorl in front of it somewhat excavated and appressed; spiral sculpture present only on the base, where it is faint, and on the pillar, where it is coarser, and composed of obscure close-set spiral threads; transverse sculpture near the apex of a few wrinkles, which are visible on the upper part of the anal fasciole, beginning at the suture, but these do not persist; the lines of growth are not generally perceptible without a glass; on the shoulder of the whorl are (on the last whorl about 17) numerous short oblique riblets with equal or wider interspaces, little raised, almost like nodules on the last whorl, but near the apex of the spire they are straighter, and extend from the anterior border of the fasciole to the suture, gradually becoming feebler as the shell grows; aperture rather narrow, the anal notch quite deep, reaching the suture above, while the lip below is produced forward; the pillar is stout and strong, the canal straight and rather shallow; length of (decollate) shell, 13; diameter of the last whorl at the posterior angle of the aperture, 5 ; length of last whorl, 10 mm .

Station 3475, in 351 fathoms. No. 107020 , U.S.N.M.
This shell recalls P. chariessa, Watson, but is much smaller and relatively much more solid; the wrinkled subsutural band is absent and the shell is smoother. P. chariessa is an Atlantic species, as far as yet known. The single specimen obtained is somewhat broken; the form of the outer lip is described above from the lines of growth. The nucleus and probably a whorl or two more have been lost from the tip of the spire.

\& PLEUROTOMELLA CLIMACELLA, new species.

Plate xxxi, fig. 14.
Shell slender, small, of five or more (decollate) whorls, covered with a pale straw-colored epidermis, underneath which the shell is porcellanous or chalky white; form elongated, slightly constricted in frout of the suture, which, especially in the earlier whorls, is bordered by a somewhat irregular nodulous elevated thread; spiral sculpture of subequal flattened threads, with wider, irregular interspaces; these threads are coarser and more distant near the canal, and absent on the anal fasciole; transverse sculpture of irregular, often prominent, lines of growth, and thin, sharp, low, narrow, irregular riblets, with much wider interspaces, more prevalent on the earlier whorls and more or less obsolete on the last; these ribs tend to nodulate the shoulder and sutural thread when present; aperture less than half the length of the shell, rather narrow, with a wide, short canal, which is not, or but slightly, recurved; pillar lip not callous, pillar obliquely truncate in front, rather stout above; outer lip thin, not reflected, the anal notch almost obso-
lete. Length of the shell (decollate), 18.5; diameter at the posterior angle of the aperture, 6 ; length of the aperture, 8.5 mm .

Station 3475 , in 351 fathoms. No. 127123, U.S.N.M.
Two somewhat eroded specimens were obtained, one of which contained the dried remains of the animal, which could not be extracted. There was no trace of any operculum, and the species can not therefore be referred to Bela, while it lacks the deep sutural sinus of Daphmellu. Its resemblance to certain Atlantic species of Pleurotomella is sufficient to indicate the systematic place it should probably occupy.

The species is near Bela climakis, Watson, but has a proportionally longer ap erture and larger last whorl. It is quite likely that Watson's species should be referred to the same group. Clionella quadruplex, Watson, is nearly allied by the shell characters.

Spergo, new subgenus.

Shell large, thin, nearly destitute of sculpture, with an unrecurved pillar, a short, wide, straight canal, a wide shallow emargination representing the amal notch, and generally feeble anal fasciole, except in the very young; a sharp outer lip, marmed aperture, and Sinusigera nucleus.

Animal with the muzzle formed by a stout squarely truncated rostrum opening into a capacious pharynx, provided internally with a degenerate proboscis not capable of extrusion beyond the oral orifice, with a poison gland and a degenerate radula. Eyes present and functional; tentacles low-seated, stout, aud clavate; operculum absent; dentition resembling that of Bela.

This form resembles Pleurotomella, Verrill, from which it differs in the character of the rostrum and pharyux, in the possession of eyes, in its straight wide canal, and in having a feebler type of verge, anal notch and fasciole.

SPERGO GLANDINIFORMIS, new species.
Plato xxiv, figs. 1, 2.
Shell large, slender, glandinitorm, with a typical brown Simusigera maclens of three and a half whorls, followed by eight normal whorls; color pale madder brown, more or less zoned in hamony with lines of growth, and with a peripheral and basikl spiral paler band feebly indicated; the pillar in the young staned with a darker brown, or pinkish white in the full-grown shell; spire rather pointed, the apical whorls sculptured with incised spiral grooves below the shoulder and with mumerous small ohlique riblets over which the grooves rum; the space between the shoulder and the suture behind it slightly impressed, smooth, or crossed by distant low sharp wrinkles, very narrow and not comesponding to the ribs. All this sempture becomes rapidly obsolete, and on the greater part of the shell the sculpture is confined to silky
lines of growth, faint traces of obscure spiral lines, and a few feeble narrow threads on the base and canal undera a pale thin epidermis. The last whorl is compressed at the periphery, as in Glemedine purallela, giving the body whorl a subeylindric aspect; sutureappressed; aperture long, rather marrow, internally smooth, and with very little callus on the pillar or body; onter lip sharp, emarginate before and hehind and arched forward in the middle; pillar obscurely thickened hehime. attenuated anteriorly, as long as the canal, straight, but slightly twisted; canal and anal emargination wide and shallow; length of an adult, is; of the aperture, 45; width of the shell at the posterior angle of the aperture, 20 mm.; length of the figured specimen, 45 mm.
Stations 3471, in 337; 3174, in 375; and 3476, 298 fathoms, southeast गf Honolulu. Nos. 107013, 107019, and 107160, U.S.N.M.
The animal is of a yellowish color, the columellar muscle attached very deeply within the shell. The foot is strong. In the alcoholic specimen it is transsersely wrinkled below, wrinkled and more or less granose at the sides above, the posterior end obtusely pointed: anteriorly it is wider, with the lateral avgles produced and the anterior margin double. The rostrum is quite peculiar, dilate, and squarely cut offi at the end. which exhibits a flat, circular face concentrically wrinkled, with a very large rounded month, the edge of which is deeply radially wrinked, giving it a papillose aspect extermally. The horizontal line joining the bases of the tentacles will pass below the central axis of the rostrm, which is also distinctly constricted behind the tentarles. The surface of the rostrim is smooth, its dorsal line arched. The tentacles are shont, stout, transersely wrinkled, and distinetly larger distally. There is a slight enlargement near their hases, where a small, blackpigmented eyespot is clearly visible on both. There is no trace of an operculum or opercular lobe, nor any epipotial processes. Raising the mantle, which has a slightly thickenel, smooth enge, we find, rather far back, the verge, which consists of a rather stont, recurved hasal portion, above which it is constricted, the remainder being more slender, subeylindrical. slightly enlarged distally, but beyond this tapering to a point. The organ is smaller in proportion to the size of the animal than in most Plemeomide. Above, on the dome of the mantle, is attached the rectum, with an evenly tapered adherent temmation and a longitudinally wrinkled suber lindrical lumen. To the left of this the muciparous gland and kidney cover a broad strip of the mantle. Far ther to the left we find a ctenidium composed of a single series of leallets.nf the ordinary type, succeeded on the left by a well developed spmengel's organ, as usual, of a dark-olive color. Thee siphom, which is musely arljacent, is of rery substantial tissue, with an external tinge of olive brown. It presents nothing unusual.

Internally the anatomy offers several pointion inierest. Within the
 wen examined), which, from the (leep longitudinal wrinkles of its sur-
face, is evidently capable of being greatly distended. It has a smooth, rather tough, lining without any horny appendages, and is lubricated by the discharge of several muciparous glands of rather small size. Its inner end is abrupt, and at the left of the middle line is the opening of the œsophagus, very much smaller than the pharynx in diameter. 'The proboscis proper is very short (in spirits), only about one-sixth as long as the pharynx, and therefore, unless capable of great extension in the living state, probably can not be extruded from the oral opening. The pharynx of the specimen examined was partly filled with a dark-greenish matter, apparently of a mucous character, which showed no traces of organization, leading to the supposition that the pharynx was adapted to the engorgement of large masses of protoplasmic matter rather than the pursuit of living animals of a higher order, as in most Toxoglossa. The modification is analogous to that by which Turcicula, a derivative from a phytophagous stock, has become adapted to gorging itself with large quantities of foraminifera, algre being absent from its habitat. The tooth sac opens near the end of the proboscis, but being filled with coagulated mucus, and extremely reduced in size by degeneration, could not be discovered until the mass was boiled in caustic potash in the hope of finding some traces of teeth.

The teeth are set regularly in a single row on each side of an epithelial strip of rather horny (not chitinous) consistency, the points of the tecth inclined obliquely inward and overlapping a little. The width of the radula from base to base of the opposite teeth is $\frac{1}{1} \frac{1}{5}$ of an inch. The length of the developed radula is about $\frac{1}{20}$ of an inch. There are forty or more developed teeth in each row, besides ten or twelve undeveloped germs of teeth. The fully developed teeth are玉 ${ }^{1} 00$ of an inch in length and about one-fourth as wide as long. This, for a creature over 4 inches long wheu extended, seems very minute. The form of the teeth is much like that of Bela; they are sharply pointed, translncent, and composed of a plate like the die for a steel pen folded closely upon itself with a U-shaped section. The shaft is set in a chitinous yellow socket, which is extended on the back of the tooth so as to form a little hooked knob; opposite this many of the teeth show a small sharp basal denticle. The anterior arm of the U is shorter than the other and obliquely trimmed off toward the apex of the fang. There is a well marked oval poison gland, about 2.5 mm . long, with a slender duct folded twice upon itself, very tortuous, and abont 15 mm . long. Behind the proboscis the alimentary canal contimes of moderate size for nearly a whorl, when there is an inconspicuous enlargement corresponding to a stomach, with its inner walls longitudinally wrinkled and no marked pyloric curve. It contained merely mucus, and resembled a slight enlargement of the esophagus rather than a well differentiated stomach.

The upper portion of the animal could not be extracted from the spire in spite of all efforts, and so great an advantage in this respect is
given by the deep insertion of the columellar muscle, I was unable to withdraw any part of the animal in good condition until after cutting into the penultimate whorl with a file and severing the muscle with a fine scalpel. This is a very interesting form, evidently related to some of Verrill's Pleurotomella, but differing in important respects as may be seen by the generic diagnosis. It should be remembered that Verrill's type is P. packardi, which differs considerably from most of the species afterwards referred to the group. An examination of specimens of Pleurotomella agassizii, Verrill, showed that the oral opening in that species did not markedly differ from other species of Pleurotomide and the tentacles were eyeless and cylindrical. The specimen being a female, the forms of the verge, which often offer good characters, could not be compared, but Verrill describes it in P. puclurdi as "very large and long, round, nearly cylindrical, except near the tip, where it tapers; in alcoholic specimens it is nearly as thick as the neck, from which it arises."* It will be observed that this description does not accord closely with the characters in Spergo.

The shell figured is a young one with uneroded apex. It is less than half the size of the largest collected, but was chosen for figuring because it showed the characters more clearly.

SPERGO DAPHNELLOIDES, new species.

Plate Xxxi, fig. 11.
Shell small, thin, polished, with a pointed Simusigera nucleus of three and a half whorls and six subsequent whorls; uncleus bright yellow brown, ofteu caducous, leaving the white internal callus to represent it, which being molded on the interior of the nuclear whorls, is polished and smooth, while the original nucleus has oblique reticular curved sculpture; sculpture much like that of S. glandiniformis, but having the whorls appressed at the suture lower on the antecerlent whorl, the riblets more prominent, less oblique, and higher on the whorl, the fasciole more deeply impressed and its sculpture indicating a deeper sinus, and the fine spiral grooving continuous and uniform over the whole surface of the shell; whorls rounded, the last inflated with the outer lip greatly produced, as in Daphnella, and the sinus pronounced; pillar straight, brown tinted, canal shallow, narrow; outer lip thin, smooth and glassy within, sharp edged. Length of shell, 23; wilth at the periphery of the last whorl, 10 ; length of last whorl, 17.5 mm .

Station 3476, in 298 fathoms. No. 107015 a, U.S.N.M.
Two specimens of this pretty little shell were obtained, which have so much the general color and surface of S. glandiniformis, that at first they were passed over as the young of that species. When both came to be studied carefully it was evident at once that they were distinct. The present species is more acnte, more drawn ont in coil, and more

[^163]rounded than the young of the other, and has none of its cylindrical appearance.

The soft parts resembled those of S. glandiniformis, though the rostral disk was less conspicuous, but the eyes were very large and black, and the tentacles placed low on the side of the head, as in that species. The augles of the anterior edge of the foot were markedly produced.

It seems not unlikely that Depphella limucince, Dall (Plewrotoma (Defrancia) hormophora, Watson), from the deep water of the North Atlantic, may be referable to the smbgenus spergo, as there is much similarity in many of the conchological characters, as well as the absence of an operculum and the presence of eyes.

> Gemus P OLYNICES, Montfort.
> Subgenus Lunatia, Gray.
> LUNATLA SANDWiChensis, new species.
> Plate xxvi, fig. 8 .

Shell small, thin, white, with a thin straw-colored epidermis and about five whorls; surface polished, with faint spiral markings and tine delicate lines of growth, which, between the shoulder of the whorl and the suture behind it, are irregularly elevated into fine, sharp, oblique wrinkles; suture appressed with a faint spiral impression in front of it; form recalling in miniature that of Nratica russu, Gould, or N. clunsa, Broderip; whorls well rounded, slightly flattened in fiont of the suture; aperture with a morlerate callus on the body reaching, but not obscuring, a narrow deep umbilicus. Height of shell, 15.7; maximumdiameter, 15 mm .

Station 3466 , in 298 fathoms, one dead specimen. No. 107(017, U.S.N.M.

Thongh this modest little species has no very marked characters, I have compared it with all our deep-water species described or inedited, and find none with which it can be miterl. The wrinkles are an interesting feature, as they recall the grooves or wrinkles so frequently fomm on typural species of N'ution: but the mombical characters show that it must be refered to Lamatia, in the vicinity of L.grönlandica.

Genus MARGARITA, Leach.
Suldgens Solariella, A. Adams.
SOLARIELAA RETICULINA, new species.

$$
\text { P'late xxvi, tig. } 9 .
$$

Shrll thin, frosted-ueally white; depmessell-conic, with a (lost) muclens and five subsergunt whorls; suture incomspicuons, appressed, undulated by the seuphture of the whorl upon which it is applied ; senpeture of the spire very uniform, spiral sculpture of (on the upper whorls two or three and on the last whorl five) sharl, narrow, spiral ridges increasing
in strength peripherally, and with much wider interspaces; on the base are five more beside the monhilical carina. The jeripheral ridge is the highest and the sutme is applied agatust it, the interspate below the peripheral ridge is a little wider than the others; on the spire the transrerse sculpture comprises ummerous obliquely radiatings shont rilges which cross the spirals at regular intervals and extemb more than half way across the adjacent interspaces; these radii are not contimmons over any two spirals but alternate on the sureessive single spiral ridges. rising to a sharp point where they cross, the upper series beginning close to the suture; on the base the umbilical "arina is marked hy at strap-like that rib across which lie close-set rectangular knols fiom which radii extend continuonsly or nearly so to the outer basal spiral, with an intercalary set of radii appearing somewhat irregularly as the interspaces widen toward the periphery; inside the wide sealar um! iticus the radii are continued as vertical, close set lime, only interrupted by an obscure spiral ridge just below the internal sutural line: aperture oblique, subquadrate, crenulated by the sculpture, the marains sharp and thin, the body with a thin Wash of callus, the throat pean! y and smooth where not angulated by the sedpture; the pillar lip not. differentiated; epidermis pale strat color, extremely thin with a slightly silky luster; height of shell, 7 ; maximum diameter, 10; minor diameter, 8 mm .

Station 3475 , in 351 fathoms; temperature $43^{\circ} \mathrm{F}$. No. 12. $1: 1$, U. S.N.M.

The sculpture is something like that of Trochus illotus, Tl atson,* hut the form of the shell is different. It belongs to the group of To. cegle"̈s Watson and Solariella actinophora, Dall.

Genus EMARGINULA, Lamarck.
EMARGINULA HAWAIIENSIS, new species.
Plate xxvi, tig. 7.
Shell large, thin. recurved conical, slightly wider behind than in front; of an ashy cream color, but probably white when fresh; uncleus lost; apex small, recurved, pointed, somewhat laterally compressed; anterior slope gently arched; posterior slope straight or possibly a little concare, shorter than the anterior; outline of the base evenly rounded; simms narrow, one-fourth as long as the whole anterior slope, set in to the right of the middle line of the shell, its limhs tendimg to approach anteriorly; fasciole narrow, marked by closeset semicircular elevated ripples, concave formard; sculpture of close, even, regularly distributed, elevated threads, radiating from the apex with smaller intercalary threads toward the margin; these are crossed by even, regular, elevated concentric lamellie, slightly nodulous at the intersections: at the margin of the shell the major radials are slightly more than a millimeter apart
from center to center; in the other direction there are about three concentric lamellæ to a millimeter; interior of the shell smooth; an obscure impressed rib marks the course of the fasciole; the margin is slightly radially grooved in harmony with the external radial sculpture. Length of the base, 23 ; width, 17 ; height of the shell, 11 mm .

Station 3473, in 313 fathoms. No. 107011, U.S.N.M.
This species has a good deal such sculpture as Cranopsis asturiana, Fischer, but the latter has the radii and concentric lines less elevated. On the plane of the base the apex is 17 mm . behind the anterior margin. Only one dead specimen was obtained.

Class SCAPHOPODA.

Genus DENTALIUM, Linn Lous.
DENTALIUM PHANEUM, new species. Plate Xxvi, fig. 1.

Shell rather thin, pale straw color, glistening, nearly straight, the curve chiefly in the earlier third; the shell originally is smooth or with few, feeble elevated lines, which in traversing the distance from the apex to the aperture revolve one-fourth of a turn to the right; surface marked by delicate annular lines of growth and longitudinally by about twenty-five very fine, sharp, little-elevated threads, which are strongest about the middle of the shell and more or less obsolete in front and behind; between these are faint obscure longitudinal striæ; both orifices of the shell are simply circular, the anterior sharp-edged and a little oblique. Leugth of the shell, 35 ; anterior diameter, 2.2; apical diameter, 0.5 ; maximum deviation of the curve from achord drawn between the ends, 3.2 mm .

Stations 3475 and 3476, in 351 and 298 fathoms. Nos. 107025 and 107026, U.S.N.M.

This species is perhaps most nearly allied to D. antillarum, Orbigny, of the Antilles, a species which differs in its sharper and more numerous ribs, which become more prominent toward the apex instead of obsolete. Of Pacifie species I. numerosum, Dall, a form which oceurs in very deep water from the Galapagos to California abundantly, has the most general resemblance to the present species; but it grows to nearly twice the length, and when closely examined is seen to have a sharply pentagonal posterior section with a conspicuous ventral slit. D. numerosum is a somewhat straighter and longer shell than D. phuneum.

DENTALIUM COMPLEXUM, new species.
 Plate Xxvi, fig. 3.

Shell large, solid, thick, normally white (?), but discolored by sediments after death, so that the specimens received are a pale, rusty brown; surface glossy, sharply grooved, with wider flat interspaces, varying finer or coarser in different specimens; orifices circular, one
specimen showing indications of a wide, shallow ventral sinus at the apex; shell little curved, and the sculpture shows no rotary tendeney. Length of shell, 78; diameter anteriorly, 8.5 ; posteriorly, 1.3 ; maximum divergence from a chord connecting the extremities, 8.5 mm .

Stations 3472 and 3476 , in 295 and 298 fathoms. Nos. 107022 and 107023, U.S.N.M.

This shell differs from D. candidum, Jeffreys, by being more cylindrical and, so far as my present specimens go, without the long, slender ventral slit of that species. From D. ceras, Watson, as figured, it is distinguished by being straighter and less sharply seulptured, besides being much larger, but Watson's specimens were young. With a few specimens it is easy to separate species of Dentalium, but if one has numerous specimens from various kinds of bottom the difficulty increases greatly. D. solidum; Verrill; D. ceras, Watson, and D. cundidum, Jeffreys, appear to merge into one another, yet individual specimens appear very distinct when one has not a connecting series. The present species, by its somewhat more cylindrical form, seems sufficiently distinct to be named, but, with that exception, is very closely related to the group of forms abore enumerated.

All the specimens were dead, discolored, and occupied by annelid tenants.

Class PELECYPODA.

Family Euciroide.

Genus EUCIROA, Dall.

When first proposed,* this group was supposed to be sufficiently distinct from Verticordic as defined in the text-books, but later \dagger a careful study of numerous species of Verticordia, including the type species of that genus, led to the belief that it could at most form a section of the older group, and as such it was included in my final report. \ddagger It was ouly known from separated valves of the type species T. (E.) elegantissima, Dall, dredged in $300-750$ fathoms in the Antilles. Since then a related and very elegant species has been dredged in the Indian Ocean by the Investigutor, and has been described § by WoodMason and Allcock under the name of Terticordia (Euciroa) eburnea. ||

I have now the pleasure of adding a third and very beautiful species from the Pacific, which, being taken with the soft parts intact, enables me to complete my description of the group aud establish it as even more than generically separate from the typical rerticordia.

[^164]It may be well to recall here the essential characters of the anatomy of the Ferticordia acuticostuta, the type of that gemus. It has two siphomal openness with their orifices finged with several rows of papille; the anal siphon opens into a closed chamber, the floor of Which is formed by a muscular fleshy septum imperforate except for the passage of a short, stout, stopper like foot, around which the septum fits closely; the lower surface of this septum is devoid of any appendages; on cach side of the foot lies, adnate upon its surface, a small elongate triangular gill resembling one of the oral palpi of ordinary pelecypods, but separated by some distance from the oral aperture. This sill is withont doubt functional as a ctenidium, but may be homologous with the posterior palpus (a view suggested by the presence of palpi in Eucirou), a possibility which requires further investigation; at all events no other organ (unless it be the general surface of the septum and hranchial chanber) is present for purposes of respiration. There are no palpi about the mouth. The edges of the mantle are separated only by a narrow opening sufficient to give passage to the foot. 'The septum was homologized by me with the siphomal septum of ordfuary pelecypods, which was supposed to be extembed forward to the visceral mass as it is in Lophocardiom, though in the latter genus the usual functional gills are present.

In Euciroa the following differences may be noted: The opening between the lobes of the mantle is ample, the foot laterally compressed, though small, more nearly resembles the same organ in the arerage pelecypod; both pairs of labial palps are present and free; while a septum exists, the posterior part of which is obviously formed by an extension forward of the siphonal septum, yet a large part of it is formed by lamellar gills which extend backward from the visceral mass near the mouth enclosing the foot, and have their edges connected with each other on each side and with the tissue of the mantle laterally, so that, as in Verticordiu, a complete separation between the anal and the brancitial chamber is insmed. These differences, which will be described in full detail under the species about to be named, are quite sufficient to justify the assignment of generic rank to the group separated by me under the name of Euciron.

EUCIROA PACIFICA, new species.

 Plate xxiri, figs. 2, 4; plate xxiv, figs. 4, 5, 7, 8.Shell rombded, intlated, solid, brilliantly pearly within, of a frosty dull White extemally, covered with a very thin pale brownish epidermis, under which the shell is everywhere minutely granular and scupptured with dine radiating lines of large, sometimes sharp-pointed and recurved, gramules, the rows being very close set posteriorly but with wider interspares toward the middle and anterior part of the valves; concentric seulpture only of feeble incremental lines, visible chiefly near the basal matgin of the valves; beaks prominent, full, much'incurved, anteriorly
twisted; in the jomg slell a prominent thead dadiates fiom the heak, setting off a posterior area over which the erambes do mot have a dis. tinct linear arrangement, but as the shell grows this thread berones obsolete, thongh the difference in the distribution of the granules cons tinues; internal surfae of the valres polished, pearly, with obsente radiating and some remicular impressions, the internal matwin of the ralyes finely grooved radially; muspula impressions small. somewhat obscure, the pasterior larger; extermal ligament thin. short, hardly fonctional; intermal resilime short, stronge, set ohlignely muler the domsal margin and reenforced below by a calcareous litherlesma, thick, deltiform, rombled below with a short, pointerl process on eath side hehimd: there is a small, nearly smonth, cleeply impressed lumule mostly attarbed to the right valve, the margin here projecting. while in the left valre a similar projection is so depmessed as to pass for the most part below the projection of the right valve and perform the function of an anterion lateral tooth; the left valre behind the heak shows a long, almost linear, depression, which must be taken as the escutcheon, the most positerion part of which passes below the margin of the right valve, while on the edge of the latter, close to the resilimm, is a small, little-eleraterl, narrow lateral tooth; in fiont of the resilime in the right valve is a large, stout, pointed, recurved cardinal tooth arising from the valle umler thelumule amb hooking into a funioubar cavity belon the beak of the left valve. Behind this in the left ralve is a marrow little ele rated ratinall, easily mistaken for a mised edge of the cartilage pit, and serving to defend the lithorlesma from pressure by the right cardinal. I singe for the cartilage and / for the lateral teeth, the stemmann formula for the hinge would be as follows: $\frac{\mathrm{L} l o \operatorname{colol}}{\mathrm{R} \text { o } l \operatorname{co1} o}$; thongh the laterals do not enter actual sockets in the ophosite value. Height of the shell, e.s: lemsth. 2s: diameter, 21 mm . A dead valve reaches a length of :3S amb a height of 35 mm .

Stations $3471,340,3474,3475$, and 3476 in 29.5 to 37.5 fathoms: tem-
 107030 , and 107031 , U.S.N.M.

This fine species differs from E. elomone ly its reeurved, smaller, and more delieate and more numerons grammes. It is more like li. eleynntissime, thom which it differs in the rounder form of the fonmes shell and in the full grown by its thimer and anteriorly more pordmeed valves. The minor details of the hinge, and the position of the pallial and muscular impresisions on the valve also serve, when earefully eompared, to discriminate the species.

The soft parts offer several points of interest already alluded to. The tissue, intermal to the mantle and extermal to the viscera, esperally on the ventral surface, is remarkably thirk, almost jelly like, and full of connective fibers. The margin of the mantle appears smooth and somewhat thickened by peripheral muscular fibers form-

Proc. N. M. $94-44$
ing a band; within the margin is a little elevated reduplication of the inner layer, the edge of which appeared to be minutely papillose, and which in life can probably be extended to several times its length as preserved in spinit. In front the lobes are separated in front of the anterior adductor and continue distinct three fourths of the way to the incurent siphon, when they are joined; aromed the oral area occupied by the papillie about the siphonal orifices the border of the mantle, dividing again, forms a thickened frame which is united in front of the posterior adductor. The sides of the mantle in front of the incurent siphon-below the middle line of the valves (drawn horizontally) and on each side of the pedal opening forward to the vertical of the anterior adductor-present rounded-triangular areas with their apices anterior, where the tissue of the mantle between the inner and outer lamine of each lobe is thickened by the presence of a quantity of colummar muscular tissue perpendicular to the surfaces of the laminae and very muiformly distributed. These areas are crossed by numerous branches (more or less bifurcated) given out by the pallial nerve, and the onter face of the area thus modified is attached to the valve, upon which it leaves somewhat vermicular surface markings.

Several longitudinal or radiating fibers or bands parallel to the sufface of the mantle are also observable by transmitted light, the chief of which extend toward the base of the incurrent siphon or in the direction of the anterior adductor. These masses of muscle have no obsions function; they occupy the area of the radiating retraciors of the siphons in ordinary simpulliuta, but they are not comected with the siphonal septum or the sphincter of the incurent siphon and, with few exceptions, the columnar fibers simply connect the inner and outer lamine of the lobe of the mantle in which they are respectively situated. Over the surface of the mascular mass near the median line behind the commissure of the mantle edge is distributed a quantity of glandular tissue which reaches up to and partly around the lower portion of the sphincter of the branchial siphon between the lamine of the mantle lobe. The aggregation of glamdular cells is so arranged as to leave chamels which lead toward the vicinity of the sphincter, where they probably open to the surface, though I was not able to zetect the orifices. The intermal face of the incurrent siphon is concentrically wrinkled by the contracted sphincter, which below seems to merge with the pallial marginal band and above is overshadowed by a broart, smooth siphonal septum. The orifice itself, as retracted, from an internal point of view, presented a vertical smooth-edged slit, of which the margin projected internally to a marked degree. Extermally the perisiphonal area is papillose, the papillie not seemingly arranged in regular ranks, but the outer ones larger and the size diminishing focally toward each orifice. One papilla, larger than any of the rest, is situated in the median line above the exemrent orifice, but there is no medial papilla ventrally. The excurrent siphon, as usual, is
smaller than the other, and its valve or orifice in the alcoholic sperimen does not project internally; both are surrounded with about the same relative amount of papillx, which seem to be of about the same series of sizes for each orifice. The intestinal canal passes over the posterior adductor aud terminates near the excurrent siphou, internally, but has no projecting free portion.

The outer lamina of the mantle when removed from the shell sloows a band of short fibers less than 2 mm . in length and diminishing downward; they extend anteriorly from the mantle margin, and are disposed over the space in front of the siphonal area from the adductor above downward as far as the area extends. These are, without doubt, the retractor muscles of the siphons, and correspond to the slight concave curve below the adductor sear, which may be traced in the pallial impression. The mantle is remarkable for its large blood simuses, and the pericardium is musually large, as well as the ventricle of the heart. The latter is a thin, semitranslucent pear-shaped sac, dorsal to the rectum and not pierced by it. It is slightly asymmetrical, lying a little more to the right on the median line. The auricles enter the base laterally, being set off by a marked constriction, and are muscular and of a darker color than the ventricle, apparently having a thin glandular coating. Laterally from each auricle a funcular muscular tube extends to a capacions sinus in the wall of the mantle. There is a single anterior aorta starting from the base of the ventricle. The pericurdium and its contents lie behind the cardinal teeth and beaks. The visceral mass below the latter seems but moderately supplied with Lepatic lobules, and, superficially, exhibits the ramifications of the ovary. The male glands are lower down and of a pale color. The foot resembles that of Terticordia in being somewhat constricted above, but is much more like that of the average pelecepord. It is pointed and produced moderately in front, compressed, the lower part somerhat keeled, the posterior more swollen, with a slight "heel," and no trace of a byssal groove or gland. The retractor muscles of the foot form a slender, solid cord below, which ascends and bifureates behind the middle of the shell and is attached on each side above the main body of the adductor, but forms an almost indistinguishable part of the same impression on the shell. The protractors, howerer, make separate scars a little behind and above the anterior adductor scar.

Reversing the animal and separating the lobes of the mantle, we find the foot closely embraced above by the ctenidia, which extend forward and are attached firmly to the mantle at their onter edges, and anteriorly reach to a point close to and just outside of the rentral pair of palpi. In looking down upon the reversed animal the most anterior part of the ctenidia is concealed by the foot and palpi. Leaving a fuller description of the gill mitil later, atteution may be directed to the parts about the mouth. Just behind the anterior adductor are perceptible two or more pouch like sacs on each side in front of the
domsal palpus, which is more or less attarhed to this blister-like body. On cotting the tissues so as to expme the parts it is seen that the sates form part of the donsal palpi which are largely adnate upon the posterion fanes of the sales, with the free extremity recorved and coiled as in the figure* The sats when opened appear empty and thin Walled, resembling hood sinmses. The palpi are not distinctly cross striated, but are more or less folded, like a book, mon themselves. The rentral palpi are long, slenter, and nearly smooth. Between the bases of these projects a sont of lappet of cuticular tissue, broad, flattish, hifurate behind and lying against, but not attached to, the anterior edge of the upper part of the foot. Ahove it the month is visible as a narow slightly areuate slit. I have not observed before anything exactly corresponding to this lappet in any pelecypod I have examined or fombl mentioned in the literature. What the oftice of the sacs in connection with the palpi may be I can not imagine, mule:s, when filled with thaid, their contraction may erect the tissue of the palls.

The most interesting part of this investigation relates to the ctenidia. These resemble in construction the archaic gills of Yoldia, solemyn, etc., with interesting differences. Behind they are firmly attached to and continnous with the broad siphonal septum; on each side and in front their outer edges are firmly soldered to the mantle. The inner edges on each side of the foot are confluent near the base of insertion and bordered by a smooth band of comertive tissue which is closely appresised to. hut not organically comected with the foot, which passes between them. These edges behind the foot, however, are united to each other by delicate yet firm tissue not easily ruptured. Looking down mpon this surface, beside the median line of juncton it is seen to be marked by two impres ed grooves on each side between which, obliquely waved, extend the edges of closely appressed plate-like lamellie. On cutting the gills transversely it is found that these plates present much the appearance of the same organs in Ioldia limutula as figured by Mitsukuri, \uparrow but with important differences. The fibrous suspensory tisine, by which the ctenidia are comnected with the mantle, forms a narow band extendiug obliquely at an angle of 35° to 45° from the vertical plane of the borly, when it is perforated by a large vessel ruming longitudinally. Morphologically below this, but actually oblignely outward, is a band of smouth tissue separating two sets of lamellie. These lamellir are not equal and symmetrical as in Nocule, nor are they set at right angles to the stem of the gill, but trend obliguely barkward on each side like the vanes of a feather. The outer set of lamellir are wider from side to side and shorter vertically than the inner set. The latter are separated by a narrow membranous hand from a thind set, forming an ascending or reffected lamina, for which I was mable to detect any main blood vessel comparable to that of the main stem of the gill. The upper surface of

[^165]the gill is furnished with mmerous longitudinalmuscular fibers, at about equal distances apart, which firmly connect the upper edges of the lamellse. The border of the inner lamina where it lies against the foot is defended, as above stated, by a thin band of smooth tissue, and where the plates join this band their edges are coufluent. The same is true of the edges of the outer set where they impinge upon the mantle. The connection is very brief and just at the appressed edge of the gill. Each plate appears to form a single blood sinus or sac, as in Nucula, with numerous radiating muscular fibers, as figured by Mitsukuri in Yoldiu (Tab. cit., fig. 11). The main sur. face is composed of con-

Fig. 1.
MICROTOMIC SECTIONS OF ECCIROA PACIFICA AND Callocardia stearnsil * spicuously cellular epithelium, as in Nuculu; the edges are abuntantly ciliated. The plates

[^166]are distinctly marginated, as in Nuculn, but are connected together by small patches of what appeared to be tibrous tissue. which proves to be interlocked giant rilia (see tig. \because, ra). Owing to the oblirgue mamer in which the plates are set on the stem, and the manner in which they are tied together, it is difficult to get a section which will show the whole face of any single lamella and determine exactly how many riliary bridges exist to each plate but the distal margins of the plates were free from each other for some little distance inward. The outer erlges of the lameller appeared to be furnished with a small rimeular hand of muscular tibers by which the periphery might be contracted, but no rigid rhitinous framework could be detected. Along the chamels between the series of plates were accmunations of dark-colored organic gramules, indicating that the etenidia perform the function of collecting food material.

After using a low-power lens in dissecting in the ordinary way, serial sections with the microtome, after hardening and staining, were resorted to, in or-

Fig. 2.
microtomi section of portions of the gill of ecciroa pacifica.* der to get at the structure of these and other organs. Dr. Gray, microscopist of the Army Medical Museum, kindly undertook the manipulation a:d mounting. It was found that the processes required, as preliminary to sectionizing, were destructive of many delicate features which with the dissecting microscope are easily observed in fresh material. On the other hand, the sections (shriveled and distorted as they are, compared with fiesh specimens) exhibited a number of

[^167]points of structure which were not observable otherwise. It is evident that both methods are required for complete results. In the present instance, in examining the gills in water with low powers, it was observed that the close set oblique plates, or lamellie, are connected at their dorsal edges by a delicate series of connective fibers ruming in an antero posterior direction and recalling the threads which connect the dorsal edges of the lamine in Poromya, but more numerous, and laterally, near the attachment to the mantle, forming a sort of fascin, or layer of fibres. Beside this, the dorsal portion of the plates near the arterial stem of the gill show a few reticulations carrying blood ressels, and a good many which appeared purely fibrous. The vascular connectives, except close to the stem as above mentioned, were not observed, though here and there a fibrous link united the faces of two plates near their dorsal margins, but without any regularity of situation or succession. The arterial stem, which anteriorly has a roughly triangular section, near the posterior ends of the gills is produced vertically, so that the short laterally extended plates of this part of the gill, instead of hanging below the stem, are projected from its opposite sides, and are not all of the same vertical width. This appeared very clearly in the microtomic sections, in which, however, no trace of the longitudinal dorsal fibers could be recognized, the latter having been apparently destroyed by the contraction induced by chemical treatment used in staining, with many other more delicate features. The sections therefore show the lamellie as more isolated than they are in reality, except near their ventral edges, where they are bordered by a narrow band of giant cilia, which interlock between the plates, this holding the ventral margins quite firmly together. These junctions were well shown in the sections, and also, though less clearly, the distal margins of the plates showed patches of smaller cilia, not continuous with the band above, but projecting into the peripedal cavity, and donlotless serving, as in other pelecypods, the purpose of collecting and propelling grains of edible matter toward the mouth.

The nephridia lie below the pericardium and are distinctly limited by the connective tissue made up of a radial network of fibers which constitutes the lamina to which the outer edges of the gills are attached. The nephridia have a common cavity (fig. 1, iv) more or less occupied by thin folds of very delicate tissue of a more or less glandular nature, upon and around which are clustered large numbers of spherical nucleated or concentric concretions similar to those already described in Lyonsiella and other Anatinarea. These concretions stain deeply and are very varied in size, the largest exceeding any of those noticed in Halicurdia. The nephridia do not extend laterally into the lobes of the mantle as they do in Halicardia.

The character of the gills above described is such that it seems not unreasonable to regard them as intermediate between the foliobranchiate gills of such a mollusk as Solemya and the plicated reticulate gills of a more modern type of bivalves, such as Lyonsiella or Halicardia. They
are meither typically foliohranchate nor mormally reticulate. Hitherto those who would separate the filibanchs ordinally from the modern setioulate forms have been ohliged to institute an intermediate order: "psedelo lamellibranchs," to receive those peleeypods with a "filihanchiate" orsanization whish persist in developing reticulate gills. 'The evidence of the ancestry' of the filibranchiate types atforded by paleontology is suflicient!y weighty to show how artificial is any such :Hrangenent, aut how lit tle in areord with the phylogeny of the forms: concerned. But while the transition between the filibranchiate and reticulate gills has always been sufficiently obvious, there has been a rey marked gap between the foliobranchs and any of the others. This the present type does something to bridge, or, at least, to indicate how it might be and probably was bridged in the past. It adds something also to the testimony for archaicism in the Anomalodesmacea which the present writer, in conformity with paleontological evidence, has pointed out.
dfter the above was written the writer was mexpectedly enabled to examine the gill in two species of Cullocardia, dredged in the Pacific Ocean by the Alhutross off the coast of Central America, in about 400 fathoms. Contrary to the known Cardium-like type of reticulate gill which characterizes the shallow water Isocardia (with which Callocurdia has hitherto been associated as a subgenns), the ctenidium proves to be even nearer to the typical foliobranch gill (such as that of Solemy(a) than is the gill of Euciroa. The single ctenidium in Callo(rurdiu steurnsii, Dall, is composed of the central stem and two sets of ribhon-like lamellie, which spriag from either side. These lamellie are thick aud fleshy (relatively to their size), and are attached to each other at their proximal ends by the common adhesion to the stem, and at their distal ends by a narrow fibrous strip, which may possibly contain a vascular channel, but did not show any in the present condition of the specimens. There are indications of a lateral band of rilia; at all events, the edges of the lamellie are distinctly marginate and yet not organically connected. The inner limb of the ctenidium is murh the larger, rounded triangular in outline and with a bluntly rombled keel helow, the distal portion of the mass of lamelle being reflected and closely appressed to the direct limb, and reaching upward about two-thirds of the way from the point of reflection to the arterial stem. The outer limb is very much smaller than the inner one, but has the reflected part longer and larger than the direct, so that the donsal edge of the reflected portion extends toward the middle line of the body wor the stem, covering the dorsal edge of the direct part. (See figure $1, \Lambda$, в.)

The shell of Cullocherlia closes so tightly that the preservative used had punetrated slowly and the specimens are not in a condition to use for sections. It can be positively stated, howerer, that there are neither fibrons nor vascular comectives between the lameller, except as above montionel, and the chief difference between the etenidium of Callocordin and that of Solemya is obviously that the lamella are united by
a narrow band distally and retlected in the former, while they are comparatively free and not reflected in the latter. It may he adder that the entire ctenidium is solid and tleshy as in Noculn, and when lifted separates from the body in a single mass. The two cotenidia are united to the siphonal septum behind the foot, bat not to each other, so there is no complete anal chamber. The palps in C'rllocerdia we very small, the fo it is flatiened and solelike below anteriorly and rounded behind. The siphous are complete and papitlose, longer than in Isocurdin, but still short.

The discovery of this type may be said to practically complete the series uniting the foliobranch with the reticulate gill and give the quietus to the classification based solely on the divergencies of the ctenidia.

It can hardly be doubted that the gills of Euciroa are represented by the degenerate small gill of Terticordia acuticostate, as formerly described by me. It seems possible, as will appear under the next species, that the fleshy septum of the so-called Septibranchia may be partly a modification of such an inwardly-directed lamina of the mantle as in Euciroa lies below the visceral mass; and iu Halicordio has free edges; which in Euciroa is merely connective, but in Halicardia contains an extension of the nephridia. What part in Terticordia the siphonal septum plays remains to be decided by further researches, but it also contributes more or less extensirely to the total septum. Geologically the Terticordiider are au ancient group, and the fossil Pecchiolia would seem to be very nearly related to Euciron. At all events the latter, in its dorsal heart not pierced by the rectum, its single aorta, and archaic type of gills, adds ar very interesting member to the small list of pelecypods of varying affinity, which retain in their organization indisputable traces of archaic origin.

In this connection I was led to examine the following species, also dredged by the Albatross, but on the northeastern coast of the United States, a specimen of which recently came into my possession. Owing to its large size the characters of this mollusk are very plain and mmistakable. Hoping to obtain some light on the rexed question of the origin of the fleshy septum of Terticordin, I examined it with a good deal of interest, and found, as will be seen, a type of septum which seems wholly distinct from either of those hitherto described. The species referred by its describer to Mytilimerid and by the writer to Verticordia s. s., must evidently form the type of a new genus.

> Genus HALICARDIA, D all.

HALICARDIA FLEXUOSA, Verrill and Smith.
Plate xxirf, figs. $1,3,5,6$; plate xxiv, fig. 3.
Mytitimeria flexuosa, Vembill and Smith, Trans. Comn. Acad., v., 567 , pl. 58 , fig. 38 ; Am. Journ. Sci., Xxif, 1881, p. 302; Trans. Conn. Acad,, vi, 1884, p. 258.
Ferticordia flexuosa, Dall, Blake Pelecrpoda, Bull. Mus. Comp. Zool., Xir, p. 286, Sept., 1886.
The specimen was dredged east of Georges Bank, in the Gulf of Maine, in 67 fathoms, brown sand; bottom temperature, $39 \circ \mathrm{~F}$, by the
U. S. Fish Commission in 1 Sis. . The shell measured 45 mm . wide and high by 39 mm . long. No. 50785 , U.S.N.M.

The shell is wide and angular, resembling a large Ifemicardium, with a gramular ashy-white or pale brown gramulose surface, showing laint traces of radiating ridges. The hinge is obsolete, an obseure swelling represents the sublumbar footh in the right valve and a still feepler one in the left valve. In Euciron the left portion of the lumule is the most mominent; in IInlicordin the opposite is the case. The lithodesma is an astmmetrical slender, solid, shelly areh, with the right limh) decidedly longer than the left one. The immer margin of the shell is smooth, the valles are a very trifle unequal and shot closely.

To facilitate comparison the rharacters of the soft parts are given in the same prder as under Euciroa.

The mantle, in its thickness and consistency, resembles that of Eucirou. Its margin is thick and solid, and the inner ridge more distinctly papillose than in Euciron, but mot conspienously so. The lobes of the mantle are first separated in front of the middle of the anterior adkuctor and contime so, backward, abont halfway to the siphon, thus leaving a shorter pedal opening than in Eucirou. The thickened mantle edge fames the perisiphonal area, and its two sides are mited above and a little in liont of the posterior adductor. In the lobes of the mantle behind the siphon there is mothing corresponding to the muscular areas of Eucirot. Thesiphons recall those of Ioromya. 'Tho excurent siphom is small, shont, sumomuded by insignificant granmar papille iracgularly distributed sparsely over the perisiphonal surfare; a single larger but still very small papilla is visible in the median line above the siphon, aml distant half the diameter of the orifiee. The edges of the siphon are thin and entire; between it and the incument siphon the surface of the perisiphonal area is finely gramular and someWhat impressed. The branchial siphon is enormons, its longest diamcter externally about one-sixth the total cireumference of the mantle. It is sumommled by a single row of long, strong tentacular pocesses, flattened on their inner fares, rommed and inflated outwardly, and cosered with a distinctly gramular epithelinm. There are fonten on earll side, and one in the median line above, not differing from the rest. Extomally these tentacles (as contracted in alcohol) are as long as onefifth the greatest diametor of the whole siphon, and are of neaty equal size and length. They are sumounded by a ringulum rising from the proisiphonal area elevated and constricted; fiom within, the wall of the siphon is seen to be formed by patallel eylindical promineness Which continue the tentamba forward to the base of the siphonal tube The siphonal ralse is ciroular, broal, amt with a thin edge finely cremulaterl. The valve ocempies the base of the siphon like a preforated diaphragm, and does mot popect inwarl. Above it the siphonal septum is narow, smooth, and a little produced forward in the median line. There is no special set of muscolar fibers inserted upon the valve
for the retration of the siphoms; this is dombtass pertormed by the eontractility of the thiek amd whele musenlar mantle edese. The mande, owing to its thicliness, affords abmadant space for blood simses, but they are less marked than in Eucirog. The peridardinm, proportionally, is much smaller than in Fitcirote, and the ventorele of the heate is pedted to as small, rombed friangular body, whirh is perforated by the rectum, gives off an antorior andat and foro mompal tatroal anricles, either of which is as large or latere than the hear itself, and the right. atride distinetly latere than the other. The pesition of the preverar dinm with respeet to the hinge is about the samo in hoth generat. Below and aromal it, orexpying a very late pat of the "pper porton of the visceral mass, is the ovary, easily diseriminated from adjacent. structures by its deep purplo eolor. This is due, not to the ovary itself, apparently, but to the presence of the mephridime more or less closely interamified with it. A seedion of the latter just behind the perieardimm shows that it ocenpies, not only neaty the whote space between the dome of the mantle and the pool' of the anal chamber, but extemds on each side downwam, oeempying the laleat walls as well as the roof, and is then podered inwad trom the mantle as at thick, longitmelinally pleate, and varionsly reentred lamina, forming egnally patoof the foom of the anal chamber (into which its fere edges project) and of the roof of the peri peetal or hathehial ehamber. If. Hhas eontributes to lorm abont lati the septem between the two chambers, and, moless the fleshy septum of the typical levteondin poves on teexamination to be of this chatacter, we have here all example of an mexpered and wholly now clement contributing to the bilding ep of that pat of the organzation. Investigaton shows that an amalogons but less conspicuous instance may bo found in somo species of Iyonsiclla.

Internally the mephridimm is iregularly eavermons in its thiclier pats, traversed by maltifudimons colmmat fibers eotered with at ghandalar endothelime. Where the walls of the orgath are close together as they are laterally, and in the reeurved lamina, the fibers rom almost direesty from one wail to the other. In the thieker portion they bass madially in every direetion. The substance of the ovarian gland is whitish, and from its suffee projeet in various stages of protrusion and perlmentation the growing ova, which are extemally smooth and oparme, but in the free ripe ova are covered with a hin, perfeetly transparent layer. The nephridta, or organs of Bojanns, carpet moth of the peripheral and part of the internal surfare with a rich deep purple glantalar tissue, giving rise to multitules of cirenlar, somewhat, compressised, calcateons gramules, which, by tramsmithed light, appear of a rich amber color with a stongly marked muclems. The ova are discharged in laree mumbers into the anal chamber, where they lie immersed in at transparent glairy mucos, which does not seem tobe:affected by water. I was unable to find any eges which showed signs of segmentalion. The walls of the laminar portion of the nephridia are donble, externally smooth,
and show the marlled whitish and pmple coloration of the interior. The purple matter tinges fiesh water of a yellowish amber color.
The anterior purtion of the foot resembles that of Encirou, and it shonis: a smath bysal groove, from which an extremely slemder byssal thesen or two proceeds, and was observed hy Vervill. But behind the hassal groove, on the median line of the risceral mass, is prodnced a thin, compressed, fin-like body, which I promese to name the opisthopodium. and which in life may be nearly that verticalls, but in alcolol is so contracted as to cockle the distal margin, giving the organ a pecouliar aspect, entirely milike that of any pelecypon foot I have erer examined, and strikingly like a fin. Something analogons was described by Owen in I'holudomya. The retractors of the foot are double on each side for more than half their length. The attachment is hehind and some what separated from the anterior adductor in the case of the protractors, while the retractor scar tonches the upper angle of the posterior adductor.

On separating the mantle lobes and examining the roof of the peripedal carity we observe a large risceral come of oblong section, at the anterior lower extremity of which is the functional foot, while behind the latter is the fin-like expansion I have already referred to. Closely embracing the base of the pedo-visceral cone, and extending forward to the mantle at the sides of the mouth, partly covered by the free elges of the palpi, and backward to the siphonal septum, are the ctenidia. These are the morphological equivalents of a single gill stem on each side, with lateral expansions; on the one hand closely appressed to the side of the foot, on the other to the lower face of the longitudinally plicate in wardly extended nephridial lamina. The stem containing the main venous trunk is not perceptible from below, except under magnification, when a parting between the surface cremulations of each lateral portion is visible, but very inconspicuous. The whole of the gill except the stem is of extreme thinness, like a canopy of lace, and the portions on each side of the stem are full and irregularly pendulous. There is no vertical gill lamina, but the canopy, between its attached edges, balges downward in an irregular longitudinal prominence, as if not drawn sufficiently tant. By careful scrutiny on the prominence corresponding to the inner lamina a very slender longitudinal raphe may be detected, probably conrespmong to the morphologically lower edge of the inner refleceted lamina of the gill in normal cenidia. On the outer prominence corresponding to the outer lamina there is no raphe. The lower or respinatony sumfe of the gill resembles in miniature that of the so called Turkish bath thwel, the tramsverse lamelle being disposed in rather regular zigzaln, extremely minute, elevater bands, frespently intermpend, but often continuons across the whole lamina. The edge next the foot is defended by a namow membranoms margin, which is firmly attantred to the medran line of the foot behind, but only closely anprescel elsewhere. The stem of each gill curves round behind the foot about midway of the ctenidial surface, and the two are joined in
the median line, recurving to the point of attachment to the foot, thus showing that the gill, if normal, would not be attached (ats in so many (ases it is) to the siphonal septum, but to the font. 'The structure of the gill comprises large lateral branches, given out from the sides of the stem at intervals (which grow smaller postariorly); below these are close-setsmaller longitudinal tubesextending fiom one end to the other, below which again is a reticulate surface of cellular epithelinm, from which are given out the very narrow, ziszay, transwerse lamella already referred to, hardy projecting from the epithelial earpet. The portions corresponding to the outer lamina of each gill are more bellied downward than the inner lamina, but both are otherwise alike in tenuity and structure, excent for the presence of the raphe on the inner one.

The oral palpi are thin, muscular, and smooth, except for wrinkles radially directed toward the periphery from the mouth, but the surface is not regularly striated. The palps are contimous in the median line above and below and adnate to the surface of the mantle except at the extreme edge above and partially to the front edge of the visceral mass below. The abseuce of the regular rhannels on the gills and of striations on the palps leads to the inference that the ciliary action of the gill surface plays a smaller part in the collection of food in this form than in ordinary pelecypods. There is nothing corresponding to the peculiar bifid lappet noted in Eucirou.

Serial stained sections of a part of this specimen, including the onter limb and stem of the left ctenidim, the fiee, infoided lamina, and part of the mantle lobe above and below the point from which the lamina is given off inwardly, show that, in staining, the comective and glandular tissue of the mantle and nephridium contract out of all proportion to the denser tissues of the gill, foot, muscles, etc. The delicate columnar fibers transverse to the lumen of the nephridium are almost wholly lost, ruptured, or distorted out of recognition. By way of compensation, however, the sections showed conclusively that the free lamina, though comnected with the outer edge of the gill, is absolutely distinct from it organically, and is continuous with aud an undivided part of the tissues of the mantle lobe from which it springs. The ramification of the nephridimm, which extends between the walls of the mantle and ont into the lamina, does not extend rentrally between the mantle walls below the point where the lamina arises. The space below this point, between the walls of the mantle, is filled with commective tissue. The nephridial concretions, which are abumdant in the recesses of the gland, are apparently of two sorts. One, which was noticed before the sections were made, is translucent, pale, or brownish and stains feebly. The other sort in the fresh animal has a more purple color, is more deeply embedrled in the glandular epithelium, and, in the sections, stains black. The presence of free ova in the cavities of the nephridium I am umble to account for, but is unde-
niable. None of them seems to have undergone segmentation. The orifices of the geuital glands are situated on the surface of the visceral mass, close to but not coalescent with each other, a pair on each side symmetrically above the opisthopodimm. A large number of ova existed in the suprabranchial chamber, embedded in a large mass of transparent jelly, the oftice of which may be surmised to be their retention in the chamber during the ejection of water from the anal siphon. The ovary is distributed rather superficially anterior to and outside of the nepherial mass. The ova are spherical, covered with a transparent layer of epithelimu distinctly pedunculated at the point where it separates from the ovary, but which is soon lost. The eggs are relatively large and perfectly visible to the naked eye. In the specimen the contents had been hardened and whitened by the alcohol, but showed $n 0$ indications of segmentation. The jelly-like mass in which they were embedded after leaving the ovary was very posterior, gathered in and over the folds of the mantle lamina, chietly on each side of the opening of the anal siphon, and not at all over the dorsal surface of the gills. Some of the jelly was taken ont and put in a receptacle full of water, where strong currents of water directed upon it with a small syringe fated to dislodge the ova. This explains how, in species which incubate the eggs in the anal chamber, they may be retaned there when the water in the chamber is expelled, a matter which otherwise would be something of a puzzle.

The differences between this genns and Eucirod and Verticordia are sufficiently conspicuous. No doubt the relation is more close with Lyonsiella. If the thick fleshy imperforate septum of Terticordia is in any way homologous with the reflected nephridial lamina of Halicardia, the relationship might be regarded as quite close. But the impression derived from the dissection of Terticordia acuticostata was that the septum there is an extension of the siphonal septum. I have endeavored without suceess hitherto to obtain another specimen of Terticordin acuticostata for the purpose of making microtomic sections which would probably settle the question. The most important result of these comparisons at present is the light it thows on the mutalility of the breathing organs within relatively narow systematic limits. No one who has studied many of the recent and fossil Verticordialde can doubt that the three genera above mentioned are related, and descended fiom the same ancestral stock. Yet we find in one an archaic lamellar gill, in the second, a fleshy septum and a degenerate alnate gill, and in the thind a gill which, morphologically, is homologots with the gill of A luatinacele, but here is specialized in a way to which no parallel is yet linown, and with a septum partly made up of a roflected nephitial lamina. Is the result of the presentation of these facts to be the rreation of three alleged "orders," or the recognition of the mutability of an organ which never should have been used as a sole basis for the higher systematic divisions? I believe the latter to
be the true answer, whatever the morphological equivalents of the septum may prove to be in any given case. The proposed order "Scptibranchia" seems to me founded merely on extreme specialization of organs which may be expected to vary almost infinitely and of which the intermediate and comnecting stages will probably be found fully exemplified in the various genera of Auntinacea when exhanstively investigated. Toward that desirable state of our knowledge the preceding notes will contribute data of importance.

Genus LYONSIELLA, Sars.
LYUNSIELLA ALASKANA, new species.
Plate xxv , fig. 2.
Shell thin, large for the genus, inequilateral, the anterior end shorter and more vertical, the posterior end more rounded; covered with a pale, yellow, silky epidermis considerably infolded around the margins of the valves; sculpture of fine, distant, radiating, elevated threarls about half a millimeter apart near the margin; the interspaces crossed by silky lines of growth which are occasionally emphasized as if at resting stages of growth; interior faintly pearly; hinge line edentulous, with a large lithodesma shaped like a llattened shell of V'aginella, with a deep sinus in the wider (posterior) end; beaks moderately prominent, much incurved; linule larger on the right valve, small, heart-shaped, polished; a narrow polished strip on the posterior dorsal edge of the valves may represent an escutcheon. Length of shell, $\check{2} 4$; height, $\because 4$; diameter, 16 mm .

Station 2859 , in 1,569 fathoms green ooze, southwest from Sitka in the Gulf of Alaska; bottom temperature, 34.90 F . No. 123500 , U.S.N.M.

This species closely resembles esterually L. radiata, Dall,* from the Straits of Magellan, but is larger, with the anterior end more vertically truncate, the posterior end and base more evenly rounded, and the beaks more central and inflated.

For the purpose of comparison with Halicardia the soft parts of this species were examined. In a general way the arrangement of the parts is not unlike that in L. papypucen, Smith, as figured in the Challonger report (Antomy of mollusks, pl. nI, fig. S). The anal siphon is short aul smooth edged, with a somewhat granular exterior; the branchial siphon is surounded by a single row of large tentacular papillie, each tentacle being subtriangular, with a projecting barb-like point at each side near the base of insertion, the whole surface distinctly villous and slightly compressed in the same plane as the valves; there are ten of these papille on each side, climinishing in size anteriorly, with a small one in the median line in front; these and the anal siphon are surrounded by an area of nearly bare membrane (which I call the perisiphonal area) extending to the mantle margin; behind the anal siphon

* Proc. U. S. Nat. Mus., xir, p. 276, pl. VIII, fig. 7, 1889.
on this area are thee targe eonical papillae, the largest and uppermost atanding in the median line. The outer mantle margin is thin amb smonth edged. covered in the matural state by a wide infold of the epidermis. The secreting margin of the mantle is thickened with a single mow of conical short papillar inst whthin the edge; behind abont cery fifth, amb in font alout every eighth papilla is distinctly larger than the a verage and a little mone set back from the ellge. The pedal opening is shont and anterim. The font, as in the I. papyracen, is relatively large, glandifom, and hysiferous. The inmer opening of the branchial siphon is furnished with a cirenlar smonth membranous valve. The month is very large and funcular, the opening radiately striate; the anterior palpi are indistinguishably merged with the membrane above them, and their outlines can not be traced; the posterior pair are adnate, shont, wide and apron-like, not separated by a median sinus below. From muler them start the gills, which are attached by their outer margins to an infolded nephridial tamina, as in Itaticardia; their imer margins are bordered by a rather wide smooth membrane, with crennlated edge, which appeats to be attached in each case to that of the opposite gill behind the foot, but the attachment is so delicate as to rupture at the slightest strain, so that it leaves a doubt as to whether the junction all along the line is complete or not. Above the opposite border is a narow recurved free membrane corresponding to the ascending limb of an ordinary gill, but which has no lamellie, and is perfectly smooth. The main arterial stem of each gill extends to the siphonal septum to which both are anchored, not, as in Ifalicardiu, being recurved to join each other mid way between the keel of the foot and the siphonal septum. The imer edges of the gills at their commissure behind the font are united firmly to the foot as in Inclicardic. The heart is small, with insignificant anricles, and the rentricle is pierced by the rectum, which is large. Theovary, as in Itelicurdia, is enormons, of a yellowish color, crammed with ova, which are diselarged in a glairy muens which accmmatates in the anal chamber. The strncture of the gills recalls that of Indienrdin, but they are thicker, with fewer and more projecting lamellar, more or less rigzag in their course. Above it is seen that the longitulinal elements of the reticulum predominate over the transverse hamehes, the contrany heing the case in Itelicardia. The infolded lamina of the mantle in this species is longitudinally folded, and has at free edge and suberlindrie posterion free end almost exactly as in Inalicotedin. All parts of it are irregularly caternous and tilled with lobes of the warian glaml hearing ora in all stages, which appear to be discharged into the amal chamber by a passage opening near the median line on each side of the visceral mass behind close to the nephridial orifice.
In Pelseneer's areonnt of the rations species of Lymonsiella, deseribed in the Challenyer report, no such free lamina of the mantle is described, and the gills are represented distinctly, both in text and figures, as
attached to the mantle in the ordinary way. It is hardly credible that he could have overlooked so prominent a feature, but there is nothing resembling it described by him. He tigures an oval glandular spot on the mantle, of which he says, "There is on the mantle a glandular swelling comparable in its position to the hypobranchial gland of gastropods." But this statement in no way expresses the condition or relation of the parts in the present species, or in IFalicardin, and hence we must suppose, if reliance is to be placed on Pelseneer's account, that the species he examined differs from L. alaskana and IFalicardin in wanting the free lamina to which in these species the onter edges of the gills are attached, and in having the gills attached directly to the mantle.

The lithodesma of the very young Halicardia is shown by a specimen in the National Museum to be shaped like that of L.alaskana and L. papyracer, but in the adult Malicardia it has assumed a totally different form. The character of the branchial siphon, pedal opening, lithorlesma, and details of the shell are sufficient to separate Halicardia from the Lyonsiclla of the type of L. alaskiona and, if we accept Pelseneer's account, the latter can not be united with L. aby/ssicola, Sars, which is the type of the geuus Lyonsiella, but mustbe separated to form a separate group, which might be placed as a subgenus under Halicardia. But I must confess to doubts as to Pelseneer's accuracy, in this particular,* sufficiently strong to make me feel it inadvisable (until his account is confirmed by new evidence) to name and separate the species allied to L. alaskana. In case they prove to agree with L. abyssicola, Halicurdia will have to take its place as a subgenus under Lyonsiella as the older name.

Genus PECTUNCULUS, Lamarek.
PECTUNCULUS ARCODENTIENS, new species.

$$
\text { Plate xxvi, fig. } 6 .
$$

Shell small, rather inflated, thin, high, and sculptured with about sixteen rounded, prominent ribs, with very uarrow interspaces crossed by fine elevated threads; area small, wide, subtriangular; hinge line narrow, evenly arched with about eight teeth on each side of the beaks; basal margin uarrow, indented by the sculpture, with obscure interlocking dentations on the inner face opposite the interspaces between the ribs; adductor scars distiuct, on a slight raised area extending into the umbonal cavity. Height of shell, 21.5 ; breadth, 20 ; diameter, 13 mm .

Station 3472, in 295 fathoms. No. 107014 , U.S.N.M.
Although the single valve obtained is deat and has lost its color, and the surface is somewhat eroded, yet its characters will not permit us to reter it to any described species. None of the coarsely ribbed species combine transverse reticulation with so thin and rounded a shell, and it is quite peculiar in the evenly-rounded arch of its hinge plate.

[^168]The species nearest allied to this is probably P. gealei Angas, from Australia, but it has more numerous ribs and differs otherwise.

This concludes the series of Hawaiian mollusks, the following species being chiefly from the northwest coast, especially from the great plateau of Bering Sea, which is remarkable for having, at comparatively moderate depths, a fauna which seems entirely distinct from that of the shores, and yet is not an abyssal fauna, properly speaking. Members of this fama, as will be observed in the notes on distribution, often reach a remarkable distance to the southward in water of the temperature normal to them, and, in fact, there are one or two species which may prove to extend from Bering Sea to Cape Moru when sufficiently full explorations are completed.

NORTHWEST AMERICAN SPECIES.

These were mostly described in the Proceedings of the United States National Museum, xiv, pp. 186-190, July, 1891, and are now figured with a few additional notes. Some errors in the details of habitat as given in the original are here corrected, and a few new species are added to the list.

Genus B UCCINUM, Linnaus.
BUCCINUM STRIGILLA'IUM, D a 11.
Plate xxvii, fig. 9.
Buccinum strigillatum, Dall, Proc. U. S. Nat. Mus., xiv, 1891, p. 186.
Station 3076, off Tahwit Head, State of Washington, in 178 fathoms; temperature at bottom, 43.4° F.; and south to station 3170, off Bodega Head, California, in 167 fathoms, muddy bottom. No. 122550, U.S.N.M. Other specimeus were dredged off Guadelupe Island, Lower California.

BUCCINUM ALEUTICUM, new species.
Plate xxvir, fig. 7.
Station 3219, south of Unimak Islaud, Alentians, in 59 fathoms, sand; bottom temperature, 38° F. No. 122591, U.S.N.M.

Shell thin, six whorled, covered by a thin sparsely pilose, dehiscent epidermis; of a livid pinkish color with a white pillar and margin to the outer lip and a dark chestunt nucleus; sculpture of extremely fine, regular, close-set grooves, with equal or wider interspaces, regularly spaced on the last, but tending to pair on the earlier whorls; spire short, rather pointed; whorls full; suture deep, but not channeled; aperture moderate; pillar with a white callous ridge incurved upon it; siphonal fasciole distinct, bounded by a groove behind; outer lip slightly thickened, hardly reflected; throat livid brown; operculum small, subcircular with a subcentral nucleus and fan-shaped scar of attachment. Length of shell, 35 ; maximum diameter, 21 mm .

The very tine, even striation recalls that of B. tenue Gray, but the form is more like B. cyaneum.

BUCCINUM OVULUM, new species.

$$
\text { Plate } \mathrm{xxx} \text {, fig. } 6 .
$$

Station 3491, near Amukhta Pass, Aleutians, in 248 fathoms, sand. No. 106997, U.S.N.M.

Shell small, thin, of about four and a half or five whorls; surface smooth, or with faint irregular spiral threads mostly obsolete; covered with a vernicose adherent olive-green epidermis; substance of the shell livid pinkish purple, with a white margin to the pillar and aperture; last whorl much the largest; suture deep but not channeled; nucleus eroded in all the specimens; pillar nearly straight, thin, with a deep, very short, hardly recurved canal; borly sometimes with a thin wash of yellowish callus; operculum small, nearly circular, the nucleus subcentral, surface of attachment faushaped, reflected by a depression in the concave outer surface. Length of shell, 25 ; maximum diameter, 20 mm .

This interesting and elegant species recalls Volutharpa, but seems more nearly related to the preceding species.

Subgenus Sulcosinus, Dall.
Shell thin, with a deeply channeled suture, strongly reflected lip, and thick parietal callous deposit. Type Buccinum taphrium, Dall.

BUCCINUM (SULCOSINUS) TAPHRIUM, Dall.
Plate xxix, fig. 6 .
Buccinum taphrium, Dall, Proc. U. S. Nat. Mus., xiv, 1891, p. 186.
Station 3330, in Bering Sea north of Unalaska, in 351 fathoms, muddy bottom; temperature 37.8° F. No. 122548 , U.S.N.M.

In the absence of the operculum and soft parts this remarkable shell can be only provisionally classified. It appears buccinoid, but differs from all true Buccinum by its channeled suture and prominent body callus. It may prove to be a wholly distinct genus, but for the present it seems best to refer it to Buccinum as a subgenus. Only a single specimen is known.

Genus CHRYSODOMUS, Swainson.
CHRYSODOMUS INSULARIS, new species.
Plate xxix, fig. 3.
Station 3459 , in Bering Sea near the Pribilof Islands, in 184 fathoms, muddy bottom; temperature $38.5^{\circ} \mathrm{F}$. No. 107000 , U.S.N.M.

Shell large, solid, rather thin, with about six whorls exclusive of the (decollate) nucleus; whorls full, rounded, slightly excavated in front of the appressed suture; sculpture of, on the last whorl, three sizes of flattish rounded threads, alternating regularly in size, but on the upper whorls of only two alternated sizes separated only by shallow grooves; transverse sculpture of moderately prominent incremental lines; aperture ample, the pillar lip blotehed with livid pink
and white the pillar twisted, with a solid white immer edge and strong siphonal fasciole; canal moderate, slightly recurved; outer lip sligLtly cremulated by the seuppure, sharp, very slightly expanded; throat smooth, pinkish; epidermis rery thin and translucent, closely adtherent to the surface; operculum normal, light brown. Length of shell (decollate), 100 ; of last whorl, so; maximum diameter, 56 mm .

This fine shell belongs to the typical group like C. formicatus and Clirutus, but by its compact, even, and uniformly constant sculpture and details of form, seems sufficiently distinct. No male specimens were obtained, but the characters observed in the soft parts were normal.

CHRYSODOMUS PERISCELIDUS, Dall.

Plate xxvir, fig. 6.
Chrysodomus periscelidus, Dall, Proc. U. S. Nat. Mus., xiv, 1891, p. 187.
Station 2S42, off the coast of Akutan Island, Aleutians, in the Pacific, in 72 fathoms pebbly bottom; temperature $41^{\circ} \mathrm{F}$. No. 122643, U.S. N.M.

CHRYSODOMUS PHGENICEUS, Dall.

Plate xxix, fig. 1.
Chrysodomus phceniceus, Dall, op. cit., p. 187, 1891.
Station 2866°, off the British Columbian coast, in latitude $50^{\circ} 49^{\prime}$ north, in 238 fathoms, sand; bottom temperature, 44.7° F. No. 12265̃7, U.S.N.M.

CHRYSODOMUS ITHIUS, Dall.

Plate xxix, fig. 4.
Chrysodomus ithius, Dall, op. cit., p. 188, 1891.
Station 3202 , off Santa Cruz, Cal., in 382 fathoms, mud; temperature 41.1° F. No. 122649 , U.S.N.M.

CHRYSODOMUS (SIPHO) HYPOLISPUS, Dall.
Plate xivir, fig. 1.
Chrysodomus (sipho) hypolispus, Dall, op. cit., p. 188, 1891.
Station 3254, in Bering Sea, north of Unimak Island, Aleutians, in 46 fathoms, mud; bottom temperature $36.2 \circ \mathrm{~F}$. No. 122606 , U.S.N.M.

CHRYSODOMUS (SIPHO) ACOSMIUS, Dall.
Plate xxvir, fig. 3.
Chrysodomus (Sipho) acosmius, DalL, op. cit., p. 188, 1891.
Station 3329, in Bering Sea north of Unalaska, Aleutians, in 399 fathoms, sand; bottom temperature $37.7^{\circ} \mathrm{F}$. No. 122635, U.S.N.M.

CHRYSODOMUS (SIPHO) HALIBRECTUS, D all.

Plate xxix, fig. 9.
Chrysodomus (Sipho) halibrectus, Dall., op. cit., p. 188, 1891.
Station 3330, in Bering Sea, north of the island of Akutan, in 351 fathoms, muddy bottom; temperature $37.8^{\circ} \mathrm{F}$. No. 122603, U.N.N.M.

Subgenus Ancistrolepis, D a 11.

Shell buecinoid, with a short twisted canal; operenlum straight, clawshaped, coucave, with apical uucleus; penis on a stout stalk with the distal extremity enlarged, foot-shaped, solid, withont curved or attenuated point; dentition like Chrysodomus; laterals with a larger outer and two smaller inner curved cusps; median with three rather long, slender, subequal cusps, the anterior edge of the base concavely sinuate; the radula disproportionately small. Type Chrysodomus cucosmius, Dall.

This group differs from Chrysodomus in its shorter canal, peculiar operculum, and degenerate radula; from Liomesus and Beringius in its cuspidate rhachidian tooth and narrow claw-like operculum. It seems a characteristic Aleutian type.

CHRYSODOMUS (ANCISTROLEPIS) EUCOSMIUS, D all.
Plate xxix, fig. 7.
Chrysodomus eucosmius, Dall., Proc. U. S. Nat. Mus., Xiv, p. 187, 1891.
Station 2919, near Cortes Bank, California, in 984 fathoms, mud; bottom temperature $38^{\circ} \mathrm{F}$.; stations 3227 and 3502 north of Unalaska in Bering Sea, in 225 and $36 s$ fathoms, muddy bottom; temperature $38.6^{\circ} \mathrm{F}$., and in several other localities on the Alaskan coast, in 60 to 350 fathoms, and off the coast of Oregon and California; south to station 2923, off San Diego, Cal., in 822 fathoms. No. 122670, U.S.N.M.

The figured type is only 33 mm . in length, but specimens less well preserved reach over 50 mm . The area by which the operculum is attached to the body, as in Strombus, is quite small and the point of the operculum stands off from the body.

CHRYSODOMUS (ANCISTROLEPIS) MAGNUS, new species.
Plate xxix, fig. 5.
Station 3.54 , in Bering Sea north of Unimak, in 46 fathoms, sand; and station 3255 , near by, in 43 fathoms, sand; bottom temperature 37° F. Nos. 122674 and 12.675 , U.S.N.MI. Also near the Pribilof Islands, in 59 fathoms; temperature $35^{\circ} \mathrm{F}$.

Shell rather thin, with six whorls, covered by a thick pilose epidermis; whorls flattened or chameled near the suture and with a single strong keel at the shoulder, the sufface covered with fine spiral threads crossed by rather prominent lines of growth; pillar short, normally much twisted and the coil pervious for one whorl, but some specimens attacked by annelids have it nearly buccinoid; aperture ample, the body with more or less callus laid over it, the onter lip not reflected; siphonal fasciole rather indistinct; operculum solid, black, rather short, concare, its outline like that of a half-shnt fan. Height of shell, 75; maximum diameter, 50 : length of aperture, 47 mm . Auother specimen is 90 mm . in total length.

The substantial accordance of a second species in those characters which seemed to differentiate the first from Chrysodomus proper, decided me to institute the subgenus for them. The nucleus is more or less worn in all the specimens, but seems to be globular, regular yet swollen, and flattened at the summit.

STROMBELLA MELONIS, D a 11.

$$
\text { Plate xxviil, figs. 2, } 3 .
$$

Strombella melonis, Dall, Proc. U. S. Nat. Mus., xiv, p. 187, 1891.
Station 3227, in Bering Sea north of Unalaska, in 225 fathoms; mud; bottom temperature 38.6° F. No. 122714, U.S.N.M. Also in 46 fathoms.

For those who reject the name Strombella the species here referred to it will, of course, be placed in the genus Volutopsius, Mürch.

> STROMBELLA FRAGILIS, D all.
> Plate xxviir, fig. 4.

Strombella fragilis, Dall, op. cit., p. 187, 1891.
Station 3252, in Bering Sea north of the Aleutians, in $29 \frac{1}{2}$ fathoms, muddy bottom; temperature 44.8° F. No. 122710 , U.S.N.M.

This species has since been received from stations $3251,3253,3254$, and 3300 , all in the eastern part of Bering Sea, in 15 to 50 fathoms, muddy bottom. It is very variable in its irregularities of plication and contour, but preserves a tolerably constant general aspect.

STROMBELLA MIDDENDORFEII, D all.
 Plate xxviif, fig. 1.

Strombella middendorffii, Dall, op. cit. p. 186, 1891.
Station 3253 , in Bering Sea north of the eastern Alentians, in 36 fathoms near the Pribilof Islands; bottom temperature $35^{\circ} \mathrm{F}$.; also on the south side of the Aleutians in the Pacific south of Unimak Island, in 61 fathoms, sand. No. 122709, U.S.N.M. This species is probably that which Middendorff referred to under the name of Tritonium nornegicum, to which the present shell bears a superficial resemblance.

Genus BERINGIUS, D a 11.

> Beringius, Dall, Sci. Res. Expl. Alaska, 1879, pl. ni, legend. Proc. U. S. Nat. Mus. 1886, p. 304.
> Jumala, Friele, Norwegian N. Atl. Exp. r, p. 6, 1882 (Type J. Turtoni Bean); Amn. N. Hist., Nov. 1893, p. 352, olim.
> Ukio, Friele, in Norman, Ann. N. Hist., ser. 6, xif, p. 352, Nov. 1893.

The name Beringius was used by me in 1879 for the Strombella with edentulons rhachidian tooth, my type being Chrysodomus erebricostatus, Dall (1877). It was not defined until 1886, while in 1882 Friele applied and properly defined his name Jumala. In 1893, finding that Jumala is the word used by the Christian Lapps to designate the Deity, at Dr.

Norman's suggestion the name was withdrawn and Uli\%o proposed in its place. But, as I fully defined my geuus Beringius in 1886, if Jumala for any reason fails, Beringius is prior to any subsequent name, and I therefore adopt it. It seems that when Herr Friele used the name Jumala he was under the impression that it was applied solely to one of their ancient pagan deities by the Lapps.

The following species probably belong to the genus Beringius, but I have not yet been able to examine the dentition.

BERINGIUS FRIELEI, new species.

Plate xxvir, fig. 8.

Station 3497, in Bering Sea near the Pribilof Islands, in 86 fathoms; temperature $38.7^{\circ} \mathrm{F}$. No. 106988 , U.S.N.M.

Shell resembling B. Turtoni in size, but with a more regularly tapered spire and deeper suture; the epidermis of a redder brown and not polished; very adherent; the sculpture is of close-set pairs of flattened spiral threads, each pair separated by a sharp channeled groove, as wide as a thread, from the next pair, and a very narrow but sharp groove between the two threads composing the pair; transverse sculpture only of fine incremental lines; nucleus lost; aperture snow white within; not lirate, though the external sculpture is reflected slightly close to the edge of the outer lip, which is slightly expanded; canal very short and wide; whorls six and one-half without the nucleus; operculum normal, very large, closing the aperture. Length of shell, 124; whorl, 80; maximum diameter, 55 mm .

This splendid shell differs trom Tritonium schantaricum, Middendorff in being larger, in its paired sculpture and nonlisate throat. I suspect T. schuntaricum belongs rather to the group of sipho spitzbergensis than to Beringius. It is named in honor of Mr. Herman Friele, of Bergen, Norway.

BERINGIUS ALEUTICUS, new species.

Plate Xxix, fig. 2.

Station 3481, near Amukhta Pass, Aleutian Islands, in 248 fathoms, sandy bottom. No. 106999 , U.S.N.M.

Shell of about five whorls (the nucleus is lost), solid, heavy, smooth, except for faint incremental lines and occasional obscure spiral streaks; whorls rounded, covered with a yellow-brown epidermis above the suture; the pait anterior to the sutural line on the last whorl is marked by paler, opaque straw color; suture deep, not channeled; the pillar heavy, white, short; the siphonal fasciole, if any, removed by crosion; canal hardly differentiated from the aperture; pillar lip white, callous; outer lips smooth, simple, slightly expanded; length of (decollate) shell, 65 ; of last whorl, 48 ; maximum diameter, 36 mm . The operculum rather narrow, normal, and yellowish amber color.

This splendid species may prove not to be a Beringius, but I have not had an opportunity to examine the dentition, and it seems conchologically more like that genus than like Sipho.

MOHNIA FRIELEI, Dall.

Plate xxix, fig. 8.
Mohnia Frielei, Dall, Proc. U. S. Nat. Mus., xiv, p. 186, 1891.
Station 2stio, in the North P'acific off Queen Charlotte Sound, British Columbia, in 576 fathoms, green mud; bottom temperature $36.5^{\circ} \mathrm{F}$. No. 122656 , U.S.N.M.

This is the serond species of Friele's interesting genus.
TROPHON (BOREOTROPHON) DISPARILIS, D all.
Plate xxvir, tig. 4.
Trophon (Borcotrophon) disparilis, Dall, op. cit., p. 189, 1891.
Station 3048 , in the Pacific off Gray's Harbor, Washington, in 52 fathoms; botom temperature $41^{\circ} \mathrm{F}$. No. 122559 , U.S.N.M.

This species has also been dredged in the Aleutian region; off San Dieso, Cal.; at station 3431, in the Gulf of California off Mazatlan, in !95 fathoms, murl, bottom temperature $37 \circ \mathrm{~F}$.; aud station 3392 , in the (inlf of Panama, in 1,270 fathoms, hard bottom, temperature 36.4° F. (Nos. $123021-2$, U.S.N.M.) This very remarkable range of distribution is explained by the temperature and the absence of any marked ridges in the sea bottom which might serve as barriers to southward migration. I see no reason why it might not be found all the way south to Cape Horn in water of the proper temperature.

TROPHON (BOREOTROPHON) SCITULUS, D all.
Plate xxvir, fig. 5.
Trophon (Boreotrophon) scitulus, Dall, op. cit., p. 188, 1891.
Station 322 Z , in Bering Sea north of the eastern Aleutians, in 225 fathoms, green mud; bottom temperature 38.6° F. No. 122557, U.S. N.M.

PUNCTURELLA MAJOR, Dall.
Plate xxvi, fig. 4.
Puncturella (galeata, Gould, var. I) major, DALl, op. cit., p. 189, 1891.
 sand; temperature 41° F. No. 122543 , U.S.N.M.

SOLEMYA JOHNSONI, Dall.
Plate xxv, fig. 1.
Solenya Johnsoni, Dall, op. cit., p. 189, 1891.
Stations 33999, on the coast of Eeuador, in 1,740 fathoms; 2799, 3360, 3 SN1, and $333^{\circ}-$, in the Gulf of Panama, in 1,672-1,793 fathoms; 3010 and 343.4, in the Gulf of California, in $1,000-1,585$ fathoms, the temperature in all cases ranging between $35 . s^{\circ}$ and $36.4^{\circ} \mathrm{F}$. No. 106886 , U.S.N.M.

This species has since been dredged in the deep water of the Pacific as far north as the Straits of Fuca. It is named in honor of Prof. O. B. Johnson, of Washington University, Seattle, Wash.

CRYPTODON BISECTUS, Dall.

$$
\text { Plate xxvi, figs. 2, } 5 .
$$

Cryptodon bisechus, Dall, Proc. U. S. Nat. Mrns., xiv, p. 189, 1891.
Venus bisecta, Conrad, Geol. U. S. Expl. Exp., p. 724, pl. 17, fig. 10, 1850.
Thyatira? bisecta, Meek, S. T. checklist Mio. fos., p. 8, 1864.
Conchocele disjuncta, Gabb, Pal. Cal. II, p. 27, pl. 7, fig. 48, 1869.
Station 2855 , in the Pacific off the south coast of Aliaska Peninsula, in 69 fathoms, mud; temperature $44^{\circ} \mathrm{F}$; also in Puget Sound in deep water, Prof. O. B. Johnson; and in the Miocene and Pliocene beds of Oregon and California. No. 122556, U.S.N.M.

CALYPTOGENA PACIFICA, Dall.
Plate xxv, figs. 4, 5.
Calyptogena pacifica, Dall, op. cit., p. 190, 1891.
Station 3077, in Clarence Strait, Alaska, in 322 fathoms, mud; bottom temperature 42.4° F. 122549 , U.S.N.M.

This shell is also found in the Tertiaries of California.

LIMOPSIS VAGINATUS, Dall.
 Plate xxv , figs. 3, 6, 7.

Limopsis vaginatus, Dall, op. cit., p. 190, 1891.
Station 3330, in Bering Sea north of the eastern Aleutians, in 351 fathoms, sand; temperature $38.2 \circ \mathrm{~F}$. Also in the Pacific south of Unimak Island, in 1865, at a depth of 80 fathoms, by W. H. Dall. No. 122547, U.S.N.M.

A rather eroded valve retaining the epidermis of this extraordinary shell was obtained with a sounding cup by me in Alaska about thirty years ago. The hinge being destroyed, I felt so much doubt as to its true character that it was left undescribed, and only when the fresh specimens of the Albatross were obtained was it possible to identify the earlier find.

Class BRACHIOPODA.

With the species obtained at the Mawaian Islands I have included a few dredged by the Albatross elsewhere in the Pacific to avoid scattering data on this very interesting group.

Family RHYNCIIONELLIDA.

Genus FRIELEIA, Dall.

Shell resembling Hemithyris, Orbigny, from which it is distinguished by having the inuer upper margins of the crura extended toward each
other and mited to the upper edge of a rather prominent median septum, forming a spondylium, and in having the brachia consisting of a much smaller number of coils. Type Frieleia halli, Dall.

FRIELEIA HALLI, new species.

$$
\text { Plate xxiv, figs. 6, 9, 10, 11, 12, } 13 .
$$

Shell of moderate size, thin, translucent, yellowish gray, dorsorentrally somewhat compressed, slightly impressed in the median line below, but the basal margin hardly, if at all, flexuous; surface smooth, polished, except for faint, irregular radial markings and delicate incremental lines, occasionally modified by accidents of growth; pedicle valve pointed above, rounded at the lower corners, with a sharl, short beak slightly recurved, below which is a nearly circular peduncular orifice, bounded below by two well-marked subtriangular deltidial plates, which do not quite meet in the median line; cardinal margin below them evenly arched and passing without an angle into the lateral margins of the valve, which for some distance are almost straight; the margins then round evenly into the base, which in many specimens is nearly straight, in others slightly excavated mesially; the whole of the margins are nearly in one vertical plane; teeth much as in Hemithyris psittacea, short, stout, projecting at right angles to the plane of the valve margins, and slightly recurved, below supported by slender buttresses, which rise from the valve and extend upward into the cavity of the beak, leaving narrow recesses between the buttress and the side of the valve; in the interior of the beak there is no mesial septum, and the thinness and translucency of the polished valve are such that hardly any trace of muscular impressions is left on the shell; these impressions, if visible, would extend only three-fourteenths of the distance from the cardinal margin toward the base of the valve, while in H. psittacea the proportion is about eight twenty-firsts; the interior of the valve under moderate magnification shows with great clearness the reticulated outlines of the prisms of shelly matter forming the internal layer of the shell, but there are no other internal markings; brachial valve hardly less inflated than the other, roundly pointed above, with a well-defined, slender, sharpelgerl medial septum extending six-fifteenths of the distance from the cardinal apex toward the base; teeth long, diverging at an angle of about 120°, obliquely transversely striated, the sockets behind them derp, internally tramsversely grooved; lamella supporting the teeth deep seated, extending obliquely from the sides of the valve; crura starting from the cardinal margin at the imer ends of the teeth, extending in a straight line obliguely downward and forward, united to the teeth for about half the whole length by an excavated lamina; the free ends of the crura slightly wedge shaped, parallel sided, and abruptly truncate at the ends. From the upper part of the inner edges of the crura on each side an excavated lamina is given off, which
reaches the median line above the septum, to which and to each other the laminie are solidly attached, forming a narrow spondylium. The front edge of the spondylium is indented mesially and there is an impressed mesial liue extending upward, on each side of which, in old specimens, the laminie are made prominent by a callous deposit. Behind the spondylimm the attached surface of the septum is widened, so as to support part of each lamina as well as their line of junction. On either side of the septum, between it and the supporting dental lamina, a pointed recess extends below the spondylium toward the cardinal margin. The surface of this valve, like that of the other, is too polished to retain much of the muscular impressions. The muscles, however, are inserted on each side of the septum and above its lower end, much as in H. psittacea. An average specimen measures 17 mm . high, 16 mm . wide, and about 10 mm . in antero-posterior diameter.

Stations $2871,2919,2923$, and 2929, in 559, 984, s22, and 623 fathoms, from latitude 47°, off Grays Harbor, Washington, to the Pacific Ocean off San Diego, Cal., on a bottom of fine mud and sand, attached to dead Echinus spines. Bottom temperature 35° to 39° F. No. 123148, U.S.N.M.

The species is named in honor of Prof. James Hall, State geologist of New York, whose contributions to our knowledge of the brachiopoda are second in importance only to those of the late Thomas Davidson. The name which I have adopted for the genus is given in honor of Herman Friele, esq., of Bergen, Norway, to whom we owe the proof of the remarkable features which characterize the development of the long looped Terebratuloids.

The anatomy of Frieleia when compared with that of Hemithyris presents fer essential points of difference. The brachia are very delicate and make only about four turns. The base upon which they are inserted is circular, forming, when dilated, a cylindrical tube. The cirrhi alternate, as in Hemithyris. The number of coils is abont four, which is very much fewer than in H. psittacea. The attachments of the muscles are relatively much the same in the two groups, but in Frielein the muscles are smaller and their points of insertion on the body of the valve rather posterior, none exceeding the limit indicated by the point of the septum. The ovaries recall those of H. psittacea, but are less exteusive. They are of a yellowish-white color. The nephridia are four in number, situated essentially as in Hemithyris, but more delicate, smaller, and paler than in H. psittucec. The end of the intestine forms a small bulb, slightly inclined to one side, but not as lax or as large as in H. psittacca. The blood sinuses are quite narrow, but in general distributed much as in the last-mentioned form. The mantle edge is very thin, very sparsely furnished with short setie, which appear perfectly smonth, transparent, and very sharply pointed, but under a high power show regular transverse markings. The pedmele is short and of a brownish color. There were several of the specimens dredged alive
which had closed their valves on the tips of the brachia, confirming the observations of Morse that these organs may be protruded beyond the valves. Fischer reports the same fact with regard to Hemithyris cornea, dredged off the African coast by the Talisman.
The differences which separate this group from Hemithyris are suffiriently obvious, though perhaps they would have been regarded formerly as of not more than subgeneric rank. When the closeness with which the lines have been drawn among the fossil genera are consid. ered, the relative rank of this one seems fully generic. The nearest relative of Frieleia among fossil Rhynchonellider is probably to be found in the genera Comarotechia and Leiorhynchus, Hall, a plicated group of forms which flourished in the middle and later Devonian and early Carboniferous periods. In the former the crural laminæ, separate in the young state, are united by the deposit of callus on a cup-hke expansion of the medial septum in the old individuals. In the very young Frieleia the crura lie ou the summit of an arch of which one limb joins the side of the valve and the other unites with the keel of the septum, leaving a triangular surface of which the apex is on the septum, the base formed by the cardinal margin and the sides by the inner limbs of the two arches. As the shell grows this condition is modified, so that the anterior edge of the incipient spondylim is free from the septum and overhangs it. In well-developed full-grown specimens the suture of the spondylium is entirely coalescent and the separation indicated only by the notch in the front edge and the groove on the upper surface. In young or imperfectly developed adolescent specimens the notch may be, and frequently is, deeper; but in none, young or old, does the connection with the septum fail or is the suture fully open to the cardinal border. The thickening due to age sometimes almost develops a cartinal process on the apex of the brachial valve. As inall articulate brachiopods, the comparative elongation aud iuflation, or widening and compression, varies with different individuals. One specimen has the peduncular foramen completely closed in the median line below. Another, owing to some accident in youth, has a deep mesial groove in both valves from about the middle of the shell, giving the specimen almost the look of a Bilobites. Another has repaired the damage done by an extensive fracture with a sheet of shell substance, which shows that the secretion of shelly matter is not confined to peripheral parts of the mantle. The prismatic structure of the new shell deposit is similar in all respects to that of the old. Many of the shells are bored by an ageney which produces results like the borings of Cliomu. The shells are very free from sessile organisms, only a few Polyzoa or arenaceons foraminifera being observed. A few dead ralves were moticed which seemed to have been pierced in the viseeral region by some carnivorous gastropod, a misfortune from which brachiopods as a rule are remarkably free.

Genus HEMITHYRIS, Orbigny.

HEMITHYRIS BEECHERI, new species.

$$
\text { Plate xxxi, fige. 1, 2, 3, } 4 .
$$

Shell nearly white, smooth, marked only by faint lines of growth, much inflated. wide, short, with a very deep wide median sinus in the front margin of the brachial valve and a correspouding projection of the pedicle valve; brachial valve with a much incurved apex and no median septum, though in an old specimen the deposit of shelly matter between the muscular impressions may give rise to an obscure prominence simulating a septum; teeth strong, the sockets long, (leep, deeply transversely grooved, crural plates excavated, divided to the apex in the medial line; height of brachial valve, 15.5 to 16 ; width, 16.5 to 19 mm . The depth of this valve is about 12 mm .

Station 3473 , in 313 fathoms ofl' Honoluln, Hawaiian Islands. No. 107009 , U.S.N.M.

Although only three brachial valves and some fragments of this species were collected, from which the slender crural processes were broken, there is no doubt that the material represents a new species. The ouly species with which it need be compared is H. lucida, Gould, which is a relatively much narrower, more compressed, and less tlexuous shell of a very much smaller size. It is Japanese in habitat, as far as yet known, and is peculiar in having, normally, the foramen completely closed below by deltidial plates. Judging by the lines of growth, which agree on all the specimens, the proportional width of H. Beecheri is quite as great in the young as in the adult, but the young of the size of adult H. lucida would exhibit no mesial flexure worth mentioning.

The species is named in honor of Prof Charles E. Beecher, of Yale University, whose contributions to our knowledge of brachiopoda are well known.

> HEMITHYRIS CRANEANA, new species.
> Plate XXXI, tigs. 5,6 .

Shell small, translucent gray, very thin, with a flexuous anterior margin and almost smooth surface; lines of growth faintly indicated and by close inspection with a leus occasional irregular, radiating, very slightly elevated markings (such as oceur more or less on all shells usually called smooth) may be discerned on the polished surface; pedicle valve pointed above, with the sides slightly rounded and the basal margin slightly concave; this valve is rather more inflated than the brachial valve, but not extremely so; foramen subtriangular, wide below, the deltidial lamellie obsolete; teeth small, very short, crossstriated, and close to the foramen; cavity of the valve smooth; the muscular impressions have left no trace, but they are crowded close up under the foramen; there is no indication of a septum. Brachial valve rounded-triangular, the basal margin gently, evenly arched upward; a feeble mesial septum about one third as long as the valve separates
the hardly visible muscular impressions, which are all above the lower rond of the septum; armature of the hinge diminutive and feeble; teeth strong for their size, with very short sockets behind them; crural lam. max concave, the crura short, thin, spatuliform, with their broad sides parallel with the antero-posterior plane of the shell, their distal euds bromer, rounded, not denticulate; the crura are separated clear to the cardinal margin; there is no obvious cardinal process. Length of shell, 16 ; width, 14 ; antero-posterior diameter, 9.25 mm .

Station 3362, in 1175 fathoms, mud, off Cocos Island, Gulf of Panama; bottom temperature 36.8° F. No. 122861, U.S.N.M.

A single specimen of this modest little species was obtained. The only species with which it need be compared is Rhynchonella cornea, Fischer, which is regularly finely striated and has a more angular outline and less flexuosity at the base. The minor details of the crural plates and cruma are also different. Hemithyris lucidn is much more flexuons in front than the present species. In short, although its characteristics are in no respect striking, this little form can not be united with any other yet described. It is respectfully dedicated to Miss Agnes Crame, the editor of Dr. Davidson's posthmmous papers on Brachiopoda, to whose care and energy the students of Brachiopodia are much indebted.

Family Terebratulide.

> Subfamily Terebratuline.

Genus TEREBRATULA (Llhwyd) Auctornm.
Subgenus Liotifrina, Oehlert.
LIOTHYRINA CLARKEANA, new species.

$$
\text { Plate xxxy, figs. 9, } 10 .
$$

Shell small, thin, perfectly smooth, polished, of a very pale translucent straw color, rather convex, of suboval outline, conspicuously punctate; pedicle valve with a short beak and rather large not quite complete foramen, on either side of which is a wide, subtriangular deltidial area ; the inner slopes of these triaugles form the lower edge of the foramen, their bases the cardinal border, their inner angles nearly tonch and are united by a cartilaginous deposit; teeth short, strong ; cardinal border arched; sides rounding evenly into the rounded basal margin which recedes slightly from the plane of the lateral margins, but is not flexuons ; cavity of the valve without any septum, the muscular impressions not conspicuons, situated in the upper fifth of the valve ; brachial valve flatter, with a minute but distinct cardinal process, strong teeth and small short incomplete loop; in the cavity of the valve is a very feeble elevated line which may be regarded as a median septum, but which does not reach the apex of the valve and extends forward only as far as the adductors. Height of the shell, 12; width, 10 ; diameter, 6 mm .

Station 3362, in 117.5 fathoms, mud, off Cocos Island in the Gulf of Panama; bottom temperature, $36.8^{\circ} \mathrm{F}$. No. 107275 , U.S.N.M.

A single specimen of this modest little shell was obtained. It differs from L. davidsoni, Adams, in its incomplete foramen and less flexuous margin ; it is less inflated and somewhat smaller. From the young of L. uva, Broderip, which is (notwithstanding it has been called "smooth") a finely regularly microscopically striate shell, it may be distinguished by its smooth surface. L. aretica, Friele, is less like it than Davidsoni is; and, in short, while the shell has no very marked characters, it can not be safely referred to any described species. Thongh small, by the solidity of its hinge armature and the manmer in which the foramen is worn by the peduncular motion, it would seem to be an adult shell.

Though the shell was in a dry condition when taken up for study, the soft parts were well preserved, and present the peculiarity of having the lateral bands of brachia quite close to one another and rather long; the space between them is smooth and occupied by a stretch of membranous tissue, while the central whorl of brachia is below, and, looking vertically down upon the valve placed horizontally, is invisible, the cirrhi, of course, being contracted by drying. It is only on looking sidewise at the valve that the coil is seen under the membrane above mentioned and lower than the lateral brachial loops. On soaking the remains in fresh water they expanded considerably and assumed a fairly natural elasticity, but the relative position of the median brachial coil remained the same. The external appearance of this shell is almost exactly like that of Macandrevia cranium of the same size. The species is named in honor of J. M. Clarke, esq., associate of Prof. Hall in the revision of the Paleozoic Brachiopoda.
It is not likely that this species can be related to Liothyrina stearnsii, Dall and Pilsbry, which is a native of Japan (pl. xxx, figs. 8, 9, 11), as that species has a complete foramen, but the figures are given for comparison with the other species.

Genus TEREBRATULINA, Orbigny.

TEREBRATULINA CAPUTSERPENTIS, Linnæus.
Plate Xxxir, figs. 2, 5.
Terebratulina caputserpentis var. unguicula, Davidson, Mon. Rec. Brach. Pt. I, p. 25, 1886.
Terebratula unguicula, Carpenter, Proc. Zool. Soc., 1865, p. 201, figs. 1-4.-Dall, Am. Journ. Conch., vi, 1870, p. 102.
Stations $2849,3311,3330,3350$, and many others, in from low water to 500 fathoms, temperature 40° to $44^{\circ} \mathrm{F}$., from the southern part of Bering Sea southeast to the coast of California in latitude $33^{\circ} \mathrm{N}$., and southwest to Japan and Korea. Also the North Atlantic, the upper Tertiary rocks of Europe, etc. Figured specimen No. 123155 , U.S.N.M.
For some time I was disposed to regard the North Pacific form as
distinct from that of the Atlantic, following Carpenter, like whom I had only the stmated specimens from shallow water. But the deepWater dredgings of the Albutross having supplied a sufficient series of nomally grown specimens of all ages and sizes, I have convinced myself, after a thorough comparison of many specimens from each region, that there is no good ground for a separation of them, even Varietally. The Pacific form is the trpical T. caputserpentis not the eastern American septentrionalis) and neither in the shells nor in the soft parts does there apmear to be any marked or constant difference. They could not be separated if once mixed in the same tray.

> TEREbRATULINA KIIENSIS, Dall and Pilabry.

$$
\text { Plate xxxif, figs. 8, } 9 .
$$

Terebratulina (unguicula, Carpenter var.?) kiiensis, Dall and Prlsbry, Nautilus, v, p. 18, pl. 1, figs. 4, 5, 1891.
Stations $2571,3: 316$, and 320.5 , in fra 9 fathoms, off the entrance to Fuca Strait; in 309 fathoms off the island of Unalaska in Bering Sea; and in 240 fathoms off Santa Cruz, Cal.; temperature, 38° to $44^{\circ} \mathrm{F}$. Also from the coast of the province of Kii, Japan, Stearns; and from the Philippine Islands, NE. from Mindanao, in Š fathoms, Challenger expedition. Figured specimen No. 128463, U.S.N.M.

This fine brachiopod, which when young approaches closely some broad varieties of T. coputserpentis, is shown by the Albutross material to be a distinct species. It may be known by its rounder outline, larger size, and the fact that the sculpture of the peripheral parts of the shell becomes obsolete, and is represented by grooves with flattened, much wider interspaces, instead of the rombled threads, characteristic of the surface of T. copputserpentis at all ages, and T. Tiiensis when young. 'The extension of its range, made known by the Albatross dredgings, is very remarkable and interesting.

Family TEREBRATELLID里.

Genus EUDESIA, King.
This name was proposed at the same time as Waldheimia, King (=Mu!ellumin, Bayle), which was discarded as preoceupied. Subsequently it has been treated as a subgenus of the newer name Muyellumic. Beecher has shown that the austral forms typified by Maffllania, on account of their different development, must be sepabated in a different sulfamily from those of the northern hemisphere. Eudesia belougs with the latter. These again are separable into at least two generic groups, Dallina, of Beecher (apparently a descendant of Autiptychinu, Zittel), which includes those with a continuous cardinal plate, strong median septum in the brachial valve, and no buttresses to the teeth of the pedicle valve. The other group comprises Eudesia and Mucomdrerin. and has the cavity of the pedicle valve under the hinge separated into three cavities by two buttresses which support
the teeth. In the brachial valve the cartinal plate is divided medially by a sinns. The cardinal process is obsolete, and the merlial septum either wholly absent or represented only by a short, low ridge not attached to the cardinal buttresses, and not extending forward into the cavity of the valve between the buttresses. As Eullesill is much the older name it must be retained for these forms, unless. Inacomdrevia exhibits characters strong enough to give it generic independence. So far as known, the only differences betreen them consist in the smouth surface of the ralves and the feebleness of the brachial septum in Macandrevin. These can hamlly raise the latter above subgenerie rank, as the plication of the ralves is often inconstant in the same species, while the same species (and doubtless the same individual) at different ages will show a septum more or less dereloped, from quite obsolete in the young, to quite perceptible in the senile stage. I have rerified this on the type of . Mramdrevin, thongh the septum is never prominent. If the beak of the brachial valve of an old individual were to be ground off, a septum would be pareptible there rery much as figured by Oehlert for the beak of Eulesin curdium. C'onsequently I feel obliged to regard . Incoudrerin. at least for the present, as forming merely a subgeneric group muler the genus Eudesin. As regards the partly anstral species about to be described, since there is no means of deciding whether their derelopment agrees with those forms referable to Magellanime or not.and as the adult shells exhbit no characters which could he regarded as diagnostic of a gemus different from Eurlesia. I teel obliged for the present to refer them to that group. It may be observed that there is nothing to prevent the free migration of northern forms into the sonth Pacific along the coast of the Americas. The writer has already the evidence to show that several species, in (leep) water, do extend from Bering Sea south to the vicinity of the Galapagos Islands and, in the case of one species. Nolemya johnsoni, Dall, more than a thousand miles farther sonth, with the known great range of many brachioporls, there would be no apparent reason why speces of the Panamie region, for instance, belonging to the northern type of development should not extemd their range sonthward, if opportunity arose. I regard it then, as quite likely, that the species I refer to may be Macandrevian in their development as well as in their adult state, though, for the mass of chararteristically austral species, the reverse might be the case.

> Subgenus Macandrevia, King.
> Type Terebratula cranium, Miiller. MACANDREVIA AMERICANA, new species.
> Plate Nxini, figs. 1,4, 7.
> Eudesia fontaineana, Dall (not Orbigny) Proc. U. S. Nat. Mus., xir, 1889, p. 231.

Shell of moderate size, rombled ovate, brownish white, smooth extermally except for mumerons incemental lines best visible under a lems; margins not flexmous; pedicle valve morlerately arched, thin, with a Proc. N. M. $94-46$
rewareal short beak，rather large foramen incomplete below to the extent of abont mareforth its circumference，with a small obsolete deltidial phate whe rath side；teeth strong，short，supported each by a stron응 hotress with a recess hehind it，and in old specimens with a smooth deposit of callus on the surface of the valve between the two huttresies： 110 median septum，the mus．onlar impressions faint，situated in the upere fourth of the valve；brachial valve flatter，orbicular，with a small rey low＂ardinal process produced downward，three times its width，on the surface of the beak between the crumal plates，as a low ridge rombled above；crural phates strong，supported by huttresses lor half their length，rather close together，supporting a thin delicate brachidimm．longitudinally gronved near and at the recomvation，with a few spimules on the outer edge，the hemal boreler of the bight of the lowp showing a small propection opposite the crmal process of each side．the hrachidium rearhing three fonmthe of the distance from the cardinal border to the basal margin and over all one－third as wide as the valve；pallial simuses following much the same course as in ．M．cenosa but straighter，less branched．and of a whitish instead of reddish brown color．Height of shell，ב！；width，19；diameter， 9.5 mm ．

Station こTが3，in 122 fathoms mud，bottom temperature $4 \mathrm{~S}^{\circ} \mathrm{F}$ ． ，of the West coast of Patagonia，in latitude $510{ }^{\prime}$＇sonth；and station 3360，in 16 G：fathoms，sand，temperature 420 F．，iu the Gulf of Pamama．Nos． 87547 and 122859 ，U．S．N．M．

When first examined one of these sperimens was erroneously sup－ posed to be the foung of Terebratula fontainema，orbigny，a species Which should donbtless be refersed to Muycllamia cemosn，solander，as a symonym．Later and more careful study of a second specimen has emabled me to correct my mistake．From the young of D．renose the incomplete foramen enables it to be discriminated，without examining the interion of the shell．In a general way this spee ies looks very much like an arlolescent specimen of Latuous jefireysii，in general outline，but is flatter．

MACANDREVIA CRANIELLA，new species．

Plate xxx fig． 1.

Shell much rescmbling in siza and form the specimen figured by Wavilson．＊helow refered to，but rather more rectangular with a less prominent beak，and a narrower and mote slemter brachidium，Surface of shell smonth．except for mumerous strong concentric lines of growth and prominent putctation．Under a lens a microscopic radial seupp－ twe is visible on bats of the shell，resembling the fibrous surface of a Worn lihynchonellarather than resularstriation．Form of shell romuded， rextangular，with a low beak and large foramen；pedicle valve rather inflated，the side and basal matrins shghtly exeavated，the basal cor－ ners rombled but slightly prominent，from which the obscme rectan－
＊See Macandrevia sp．，Davidsor，Mou．Rec．Brach．，i，pl．xir，fig．13， 1889.
gularity of the shell arises; teeth strong, foramen large, incomplete, the deltidia almost linear, but long; dental buttreses strong, receding as they approach the arch of the valve; brachial valve flatter; teeth strong, with very oblique buttresses; brachidium four-fifteenths the length of the valle, barely one-third as wide as the valve, slender, with a single spine at the point of recurvation, and a slight thickening, but no septum, at the cardinal apex; muscular impressions small and confined to the ulper fourth of the valve. IFeight of shell, 17; width, 12; diameter, 9 mm .

Station 3362 , in 1,175 fathoms, mud; temperature, 36.8° F.; in the Gulf of Panama. No. 122858, U.S.N.M.

This species resembles Mragellania (Waldheimia) wyvillei, Davidson, but wants the septum and cardinal process of the brachial valve of that species, which also has less oblique, shorter, and wider deltidia. It has much resemblance also to Macandrevia craninm, but is a more rectangular, plump, and compact shell, and appears not to reach the size of M. crunium. NI. tenerv has a shorter loop and more obrious septum in the apex of the brachial valve. It is also a smaller species wheu adult.

MACANDREVIA DIAMANTINA, new species.

Plate xxx , fig. 5; plate xxxif, figs. 3, 6.
Shell smooth polished, dorso-ventrally compressed, flexmous, of a rounded lozenge or "diamond"-shaped outline; surface with faint incremental lines, but no radial sculpture, waxeu white; pedicle valve subpentagonal, widest near the middle, the converging sides below produced, the basal margin concave; beak short, wide, the foramen incomplete below, with well-developed deltidia on each side; teeth strong, supported by wide buttresses, forming wide recesses on each side; muscular impressions indistinct, situated in the upper thind of the shell; no median septum exists in this valve. The genital glands are of a reddish brown color, shining through the shell ás two short parallel streaks on each side of the adductor impressions; brachial valve wider than high, with the base flexuous upward; teeth stroug, with very oblique buttresses hiddeu under the dental plates and forming small foveole; cardinal process short, stout, prominent, but not produced into a septum; brachidium very slender, extending to the basal third of the valye, the transverse limb at the bight of the loop being wider than any part of the lateral limbs, the bight itself being, of course, narrower, as usual; there are two or three spinules at the recurvation; the genital glands in this valve show as single brown streak on each side of the attachment of the adductors. It is, howerer, longer than the paired streaks of the perlicle valve. Height of shell, 18 ; width, 17 ; diameter, 7 mm .

Station 330^{3}, in $1,17 \%$ fathoms, mud; temperature, $36.8^{\circ} \mathrm{F}$.; in the Gulf of Panama. No. 122860, U.S.N.M.

This elesant little species recalls Liothyrina voyvillei, Davidson, in its form, though more lozenge-shaped and less shamply flexuous.

It is suliciently distinct from all reseribed recent species to make no romparisons necessiny. Only two sperimens were obtained.

? MACANIOREVIA ——.

It station 3 tifi, in 39) fathoms, near the port of Monoluln, a single specimen of a brachiopod in the cistelliform stage was obtaned. It is, of conme, too formg to determine the species or even the genns to which it belongs. Howerer, it may pretty cortainly be stated that it is not a yomns stage of the common Hawaian species usually linown as Ismemin or Muh!fidtim som!uinen, Ohemmitz.* and probably indicates the presence of a speries in the Hawaian fama which has not yet been emmerated from it. In this comertion an apparent misapprehension may be corrected. The name Fremula was proposed by me in 1871 for a brathioporl. which I mamed subsequently Ismemia jeffireysi, and which hats since proved to be the ismeniform stage of Latueus conconverensis, Davidson. I joined with it the Ismenien songmined (Chemuitz) Gray, healnse of the identity of form of the brachidinm in both. Gray had refermed Anomin semmine"r. ('hemnit\%, to Ismenta, King (part). But it appears that the original Ismenin of King is not of this chanacter, and the name must be kept for Terebratula pectuncelus., Schlotheim. for which it was proposed. Erenula having been proposed for a young stage of my earlier subgemus Laturns (type Terebratnla californica, Koch) (an mot be applied to the sueries somguineo, which represents in its adult condition the stage which in Fremula poper is only a phase of development. Both the lonp and surface of the sangumer differ dis-
 same gemus the former requires to be separated subgenmiablly. I Fould therefore propose for the Amomin sangminea, Chemmitz, the subgeneric name of lremulim, a conclusion in which the late Dr. Davidson areeded in letters recejved from him before his premature and lamented decease. By a lapsus, in a footnote to Beecher's Revision of the Framilies of Loop-hearing Bramiopods, t it is stated that "Mefrelimu ieflire!si was givento a stage of Luqueus," ete. Were Fremula
 (hanmps. It has also been stated hy Oehlert \ddagger that Fremula was applied to a " stage of I smenin sun!nime"." an error doubtless inherited from an ohscure remak by I estongehamps to the same effect. These misapprehensions, I hope, will he cleared up ly the statement of facts I have just givell.

Genus LA A UEUS, Dall.

To the speries belonging to this group may be added T. blanfordi, I Honkr! of Japan. I have received some very fine adult specimens which show eonclasively that this species has the loop of Laqueus.

[^169]Others ohtained by Mr. Frederick Stearns in Japan showed the same features. The loop is a rery solid me as a whole, but the connecting bands which mite the upper with the lower branches of the brardidium are narow and rather frail: they had probably been lost in the specimen figured by Tan Iterson in Part It of I avidson's Mouograph, pl. x V , fig. 12.

LAQUEUS CALIFORNICUS, Koch.
Laqneus californicus (KOCH), Dall, Am. Journ. Conch., vi, p. 123, p1. vir, fig. f; pl. vili, figs. 9, 10, 1870.

Off San Pedro in 30 fathoms, Oldroyd.

The original locality of this speries is the coast of (alifmaia. Cooper dredged specimens in the ricinity of the Santa Barlana Chamnel in 90 fathoms. It was on one of these that my earlier observations were based. Subsernently. from moderate depths of water, a smaller, somewhat stunted form was collected from the (?ueen Charlotte Islands and the coast of British Columbia. The color of the sonthern form is of a warm reddish brown and the shell is quite thin. the foramen small and delicate. The northern form is of a dirty livid yellowish white. or pale brown: usually it has a large foramen and heavier shell than the Santa Barbara shell. The latter, too, when compared with a large serirs, is wider near the carlinal border giving it a more rectangular form. While the northern shell is more attennated, and the sides slope to the umbo in a straighter line from the point of greatest width.

The Queen Charlotte Island shell was separated by Davidson as a Variety rancontricusis (more correctly remeonerensis). hut his suecimens were stmuted, being from relatively shallow water. The dredgings of the Albutross have shown that the northern shell alsonocurs in the south in the same rewion and depth as the typical colifornious and without transitions in color and form. It will, therefore, be necessary to separate the two forms as distinnt though allied species.

LAQUEUS JEFFREYSI, Dall.

> Frenula jeffreysi, Dall, Am. Nat., v, p. 55,1871 (ismeniiform stage). Am Journ. Conch., vi, p. 65, pl. גI, figs. $7-10,1871$.
> Megerlia jeffreysi, Dall, Sci. Res. Expl. Alaska, p. 48, 1877 .
> Laqueus californious var. vancoucriensis, Davidsos, Mon. Rec. Brach., p. 113 , pl. Nvir, figs. 10-13b, 1887 (ardult).

Stations 2.stie. 3194, 3:3:39, 3:30). ete., in 75 to $2: 38$ fathoms from the Aleutian Islants to a peint off Estero Bay near San Luis (ohispo. Cal.. the hottom tempratmes rarying from 37° to $45^{\circ} \mathrm{F}$. The depth at which the species is fomd increases sonthrard, but the temperature Was highest off Point Arena. ('al. where several sperimens were dredged in 75 fathoms. Fine specimens have alsa been collected in P'uset sommd.

The small size of the specimens, first separated as a variety hy Dr. Daridson, is due to their station. The Albutross in deeper water got specimens eren larger than the original colifornicus, and from that to the earliest stages. These showed eonclosively that the shell which I
had described moler the specific name of jeffreysi is the ismeniform stage of the shell afterwards named vancouveriensis.
The fact that specimens of Tevebratalia transiersa become more reddish and hright colored when living in the sonthern part of their range, and the stmuterl size of the first adult specemens of ieffireysi collected in the north, led me to regard them as belonging to a northern race of the ruddier culiformie?s: but since specimens of jeffreysi from the vicinity of san Lais Obispo show no tendency to take on ruddy tints and preserve the chanacters of the noremern specimens, thongh attaining an equal or eren greater size than culifornions, it is evident that the expectel transition does not take place, and the form may properly be separated as a species (thongh nemly related to culifornicus) muder the first mane by which it was deseribed and figmed. Before the development of the loop in Teredratellide was fully understood, the similarity of certain specimens of the ismeniiform stage of Dallina sepptigera to those of L. jeffireysi led me to question whe ther the latter might nut be common to the two oreans, but later when the varions stages through which 7). septigeren pasises became better known this sugsestion was ohvionsly mot required to explain the presence of the supposed Frenula in the Atlantic Ocean.
The wenns. or subgemus. Lenquens appears to be strictly confined to the shores of the north Pacific, where the following species oceur:

JAPAN.
Laqueus pictus, Chemnitz.
Laqueus blanfordi, Dunker.
Laquens rubellus, Sowerby.

NORTHWEST AMERICA.
Laquens jeffivensi, Dall.
Lequeus californicns, Koch.

Genus TEREBRATALIA, Boechor.
TEREBRATALIA OBSOLETA, Dall.
Plate xxx, fig. 7.
Terehratella occilentalis var. obsoleta, Dall, Proc. U. S. Nat. Mus., xiv, 1891, p. 1816.

Terebratalia obsoleta, Dall, in Beecher, Dev. T. obsoleta, Trans. Conn. Acad. ix, p. 392,1893 ; type of genus.
 Cerros Istaml, Lower California, and 304t in is fathoms off Abreojos Island, Lawer ('alifornia; hottom temperatures, 50° to $56^{\circ} \mathrm{F}$. Nos. 122545, 123140-' 33 , U.S.N.M.

Shell seallet, radiately streaked with pale yellow, especially in the chamels between the ribs: sumfere polished, smooth except for rather distinct incremental lines and, in adult sperimens more or less distinct, partially whonlete ramial ribs, which appear near the margin, but do) mot extemd to the carlier half of the shell; in senile specimens a larger propertion of the shell is ribbent pedicle valve with a rather low heak and wike. incomplete foramen: deltidial phates well derenped but widely separated; valve wider (as a rule) below the midde, the
areh of the base cut into three subequal parts by two especially strong ridges (corresponding to channels on the brachial valve), between which the surface of the valve may he more or less ribbed radially, but is always flattened or depressed, corresponding to an upward flexure of the basal margin : teeth strong, supuorted by deeply receding buttresses; no medial septum: the adductors with widespread ends, rather distant from the medial line, confined to the upher thind of the valve: paliial sinuses large, divariating near the margin from five principal trunks on each side: the genital glands yellowish, extending in narrow hands along the sinuses nearly to their fureation : peduncle short, dark brown; brachial valve flatter, with a wide, low cardinal process, little prominent: teeth strong without buttresses, medial septum short, very thin and high, subtriangular: brachidium musually slender; pallial simuses numerons. muth branched with a medial trunk nearly reaching the margin. Height of areage specinen 30 : width 30 , diameter 17 mm . Old specimens attain a larger size. One dead pedicle valve measmes 47 mm . high, 43 wide, and 20 mm . deep.

The raried forms which the brachidium assumes during development have heen fully illustrated and described by Beecher in the paper alreat! cited. The first specimens remered were in poon condition, and it was thought possible that the sueces might be identieal with T. accinentalis. Subsequently a fine lot of material from the vicinity of Curos Lstand showed that the two speries were pertectly distinct. T. ohsoleta has no rery near relative in :he North P'alitic. The colors
 quite distinct as to form. In form the nearest speces is the T. rubigimose, Dall, which is only known from the type in the National Museum, collected by the United States Exploring Expedition, and labeled as from the Cape of cood Hope. It is possible that this loceality is erroneous, but the species has a different senpture from T. obsolete, and has only a taint reddish sutfusion in the general brownish coloration. The peenliarly slender, rather wide, and arched brachidinn is someWhat simila in the two species. It should be said that an oecasional specimen of T. whsoleta has the foramen completed by a junction of the deltidia. T. rehtiginose is figured for eomparison. Pl. xxx, tigs. 3, t.

TEREBRATALIA TRANSVERSA, Sowerby.
Plate xxxi, figs. 12, 13.
Terebratula transversa, Sowermy, Thes. Conch., I, p. 261, pl. Lxtif, figs.114-115, 1846. Not of Golld, 1860.

Terebratelle transversa, Dall, Sci. Res. Expl. Alaska, p). 17, 1877; Proc. Acad. Nat. Sci. Phila., 1877, p. 1577 ; Davidson, Mon. Rec. Brach., p. 79, pl. xvı, figs. 6-12, 14, 14a, 1887 (ex parte).
Terebratüla caurina, Gould, Proc. Bost. Soc. Nat. Hist., III, p. 347, 1850; Moll., U. S. Expl. Exp., p. 468, pl. xliy, fig. 582, 1852.
Stations 己ins, 2961. 2964 , etc., in 10 to 230 fathoms, from the Alentian Islands to Catalina Island, C'alifornia. Oregon, United States Exploring Experlition.

This is the most eommon and variable specem of the Northwest coast and attains a motable size, esperially in the deep, yuiet waters of P'uget somal. The original tronserse was described from a rather smooth serement while (imuldis type was strongly radiately ribbed. Dr. David. soll womld use louth mames in a varietal semse, retaining the older for the sperees. hut the grades of variation are sommerous that it is doubt ful lom lar this would be justitied. as it sometimes happens that one-half the shell is smonth and the other half ribhed. One feature, howerer. is constant in all the multitule of specimens I have examined; the Hexure of the mithle of the values. thongh often feehle, is always roncave in the hathial valve and comber in the perlicie ralve. The
 Ioralities are fieguently suffusel with reddish or crimson about the matsin and on the hades of the ribs. The ribs. when well developed and normal, vary from is to 40 , bifmeating or interalary towath the materin. The sperimen figured is young, amd chosem becallse it is of the -alme widthas the specimen of T. occidentulis, with which it is intended to he eanplated, and also is, for the sperem, rery strongly ribleri. These specimens are often fonme neare extreme low-water mark, but it is probar We that they never attain thein fall growh in such situations. The (o) mpletely adult sperimens appeat combined to deeper water: They sometimes reath the size of $\overline{\text { se }} \mathrm{mm}$. high and is mom. wide, with a diameter of : 31 mm . This speceres is figmed in the Proceredings of the

 which refer to the digures of T. acecomblelis. As in the text refered to. the attemph was marle to separate the present species form T. oceirlentalis. which hat become contused with it, this was doubly unfortunate. but as the writer saw mo ponf of the plate it was beyond his power to remely: The pesent refigmine it is loped, will finally clear up the confusion.
 sate if amy attention he siven to the diagnostic characters, but there are whers fom which it is less sharply distingished. From Dullimu
 extemally are with dibioulty distingusherl. In fart, one might fancy
 1enson, in dilpan contimud its evolution to the IMAllina stage, while those in Ameriad mased when they arrived at the Terebratalia stage. l). !fityi in the alult stage has hamly any flexure, and in the vallety frensersen. Davidson, the flexare is donble, but in the young, and in stell of the adnets as show the Hexure clearly, the two medial riblets are convex in the brathial valve, complemented in the pedicle valve by
 Hexime is witer, and the comberse of what oreme in I). (froyi. There is anmother Terfbiclalin in Jalant with math the same senlpture as T.
transversa which has the flexure, though obscure, in the same sense as T. transversa. This is the T. gouldii, Dall,* of which, for comparison, figures are given (pl. SXx, fig. 2; pl. XXXIr, fig. 10). T. gouldii was first described from a specimen in the Magasella stage, in 1871 , but a comparison of specimens twenty years later showed that the adult form was a Terebrutuliu. But T. gouldii is a thimer and flatter shell, with the ribbing finer and more regular, as well as more distinctly marked, than in T. transversu. It is possible that future search may reveal T. gouldii on the American shores of the Pacific, as Terebratulina liiensis has been fomd so distributed. At present only a few specimens are known. The color is of a livid grayish white, much like many specimens of T. transversa.

TEREBRATALIA OCCIDENTALIS, Dall.
Plate xxil, figs. 7, 8.
Terebratella occidentalis, Dall, Proc. Cal. Acad. Sci., iv, p. 182, pl. I, fig. 7, 1871; Proc. Acad. Nat. Sci. Phila., 1873, p. 184, and 1891, p. 173, pl. iv, figs. 8, 9 (not 6 and 7).
Terebratella transversa, var. occidentalis, Davidson, Mon. Rec. Brach., p. 79, pl. xyr, fig 13 (only), 1887.
Stations $29 \div 2$ and 2951 , in 45 to 47 fathoms, sand, off Sin C'lemente Island, California, in 1859. Monterey, C'atalina Islaud and ricinity, Dall, Cooper, and Cantield, chietly from the beach. Nos. 401, 12:314, and 95850, U.S.N.M.

This species is not known from north of Monterey. It seems to be a rare shell, and all the specimens yet examined are radiately riboed with about ten rery conspicunns ribs, more or less tinged with carmine, while the chamels between them (and the borly of the shell) are pure white. The mesial flexure is exactly the reverse of that in T. かomsrerse, the brachial ralve having it strongly convex, and the pedicle valye concave. The extreme dimensions yet observed are thone of the specimen figured here; height 26 , width 30 , diameter 22 mm. The figmes representing this species in the paper referred to under the last speries were transposed with those representing T. transversa, as indicated in the synonymy.

Explanation of Plates.

Plate xxiif.
Fig. 1. Halicardia flexuosa, Verrill, about trice natural size; diagram of the body from below; the mantle, $i, i, i^{\prime}, i^{\prime}$, serered and turned back to expose the parts; a, position of the anterior adductor; p, p^{\prime}, aduate palpi; f, pedo-visceral mass, supporting the functional foot with byssal groove and the fin-like opisthopodinm belors (behind) it, aud surrounded ly the branchial septum; s, siphonal septum; v, circular valve of the incurrent siphon; x, cavity of the siphon; c, posteriur commissure of the inantle lobes. Drawn by W. H. Dall; page 697.

[^170]Fig. ㄹ. Encirm pucifica, Dall, about twice natural size; diagram showing a vertical cross section of the animal behind the font; 0,0 , subumbonal parts of the visceral mass, showing the superticial region oceupied by the genital glands, between which are seen the dorsal mantle margin and the proliferations which antold the teeth; c, periardial chamber, with h, the ventricle of the heart lying over on the right side and partly hiding v^{\prime}, the right auricle, while v, the left auricle, is fully exposed; below the ventricle is seen the rectum r, which here passes throngh the floor of the pericardimm and is cut throngh in the nephridim below; s, s, cross section of the thick comective tissue formed by an infolding of the mantle below the pericardium, from the lower internal wall of which fine retimbated fibers radiate upward ; this lamina would seem analogous to the free nephridial lamina in Ualicardian (lig. .3, $s^{\prime} n^{\prime}$?, but is attached to the visceral mass and shows a jelly-like solidity into which no ramifications of the ovary extend; below this descend the stems of the gills (with two tubular blood passages), supporting the trausverse gill-laminie, on the faces of which the radiatine lines reperent, not plications. hat ratiating muscular fibers seen through the transparent opithelium of the plates; the gill plates are represented as if laterally extended, but in life they extend obliquely backward so that an exact section would cut through a number of plates without showing their outline; the darkl y-shaded spaces above the gills are the anterior portions of the anal chamber; f, the foot, above which is seen the circular section of the retractor muscle ; m, m^{\prime}, lobes of the mantle, showing columnar muscular fibers in section. Drawn ly W. H. Dall; page 688.
Fig. 3. Italicarda flexuosm, Vmanm, magnified about four diameters, diantam of tho vertical cross section of part of the boly and gills, taken behind the foot looking toward the siphons; d^{\prime}, dorsal junction of the mantle, below which is r, the rectum in section; d, subumbonal visceral mass; $o v$, the cavernous nephridium in which are secn p, q, the branches of the retractor muscles, and $c v$, cavities in the general mass of the partly glandular and partly fibrous tissue ; $c r$, roof of $a p$, the posterior part of the anal chamber ; s, downward continnation of the nephridium; s^{\prime}, point where the free lamina is given off internally; $t \mathrm{~m}$, part of the downward continuation of the mantle lobe of the left side, cut away below m; n, free vermiform posterior termination of the lamina; u^{\prime}, free edge of the lamina, more anteriorly; below and to the right of this is seen the junction of the lower surface of the lamina and the outer margin of e the outer lamina of the left gill; z, papilla on upper surface of the siphonal septum; b, severed stem of the left gill with homed vessill in section, the stem recurves and joins b^{\prime}, that of the right gill near j, the point where both are soldered to the posterior keel of the foot; c, inmer lamma of the left gill, extending between j and l, and forming part of the roof of the peripedal clamber. Drawn by W. H. Dall; page 697.
Fig. 1. İnciron pucitice, Dall, ahmut three times natural size; diagram of the animal from below, with $i, i, i^{\prime}, i^{\prime}$, the mantle severed and turned back to expose the parts; a, pusition of the anterior adductor: p, p, the pal $p^{\prime} ;$; f, the footsurrounded by the coalescent gills; s, the siphonal septum; x, cavity of the incurrent siphon; below which are outlined the areas occupied by columnar muscular tissue and by dotcol hading the glandular region of the mathe in front of the siphon. Drawn by W. 11. Dall; page 688.
 for comparison with that of Euciroa (fig. 2, h, v, v^{\prime}); a, the rectum passing through r, the ventricle, with, l, the left and, r, the larger right auricle. Drawn by W. H. Dall ; pago 697.
Fig. 6. Haticardik flexuosa, Verrill, slightly enlarged; diagram of the soft parts removed from the shell, side view; c, median papilla above b, the anal siphon; $c-e$, the extremities of the perlal opening between the mantlo lobes; the ends of the muscles are shaded. Drawn by W. H. Dall; page 697.

Plate xiry.

Fig. 1. Spergo glandiniformis, Dall; diagrans, u, b, d, natural size; e, slightly enlarged ; f, about twice natural size; h, much magnified; a, front view of muzzle, showing reladve position of tentacle; b, side view of animal crawling; d, front edge of foot from below; e, verge as it lies on the back of the animal with the point turned away from the head; h, teeth, the upper pair are placed in the natural position as they appear on the radula; the base of the tooth is shaded with dots; outside of it is a narrow fibrous band by which the teeth are attached to the radula; the blades are unshaded; from camera lucida sketehes by W. H. Dall; page 680.
Fig. 2. Spergo glandiniformis, Dale, shell, alt. 46 mm ; page 680.
Fig. 3. Ifalicurdin flexuosa, Vehbile, slightly enlarged; diagram of the soft parts as removed from the shell, showing the siphonal extreme of the body; b, end of the left branch of the retractor of the foot; d, lett end of the posterior adductor muscle. Drawn by W. H. Dall; page 697.
Fig. 4. E'uciroa pucifict, Dacl, ahout natural size; diagram of the soft parts remored from the valves; a^{\prime}, right end of anterior adductor muscle with e above it, being the end of the right branch of the protractor of the foot; c, area shaded to show the genital gland or ovary as seen through the mantle; m, surface of the area occupied by columnar muscular tissue between the surfaces of the mantle; $g-g$,extent of pedal opening between the mantle lobes; a, posterior adductor with below it at the mantle-edge the short siphonal retractor muscles. Drawn by W. H. Dall; page 688.
 the double sacs above p, the auterior palpi; l, the dleshy median lappet; p, the posterior palp, folded on itself. Drawn by W. H. Dall; page 692.
Fig. 6. Frieleia halli, Dall: view of the valves from the side, alt. 20 mm ; page 714.
Fig. 7. Euciroa pacifica, Dall, mmbonal view of valves; page 688.
Fig. 8. Euciroa pacifica, Dall; sicle view; lon. $28 \mathrm{~mm} . ;$ page 688.
Fig. 9. Frieleia halli, Dall; basal view of brachial valve, showing crura, buttresses, and septum in profile; page 714.
Fig. 10. Frieleia hulli, Dall; basal view of pellicle valre, showing buttresses; page 714.

Fig. 11. Frieleia halli, Dall; interior of pedicle valve; alt. 20 mm ; page 714.
Fig. 12. Frieleia halli, Dall, enlarged view of cardinal region of brachial valve, showing crura, spondylium, and septum; page 714.
Fig. 13. Frieleia halli, Dall, view of hamal side; alt. 20 mm ; page 714.
Plate xxv.
Fig. 1. Solemya johmsomi, D.mb; longest dimension of the specimen figured, 115 mm . See page 712.
Fig. 2. Lyonsiella alaslana, Dall; 24 mm . ; page 703.
Fig. 3. Limopsis vaginatus, Dall, internal view of a right valve with the pilose epidermis removed by potash to show the inflected posterior margin; 25 mm ; page 713.
Fig. 4. Calyptogena pacifica, Dall, interior of right valve; 48 mm ; page 713.
Fig. 5. Calyptogena pacifica, Dall, exterior of the same valve; 48 mm ; page 713.
Fig. 6. Limopsis vaginatus, Dall, internal view of left valve retaining the pilose epidermis; 34 mm . ; page 713.
Fig. 7. Limopsis vaginatus, Dall, external view of left valve; 34 mm ; page 713.

Plate xxvi.

Fig. 1. Dentalium phaneum, Dall; 35 mm ; page 686.
Fig. 2. Cryptodon bisectus (Conrad), Dall; side view; 50 ram. ; page 713.
Fig. 3. Dentalium complexum. Dall; 78 mm . ; page 686.

Fig．4．Puncturella major，Dall； 57 mm ．page 712.
Fig．5．Ciyptodon bisccus，Dall，umbonal view；page 713.
Fig．6．Pectunculus arcodentiens，Dall； $21.5 \mathrm{~mm} . ;$ page 705.
Fig．7．Emargimula hewaiiensis，DAlL； $23 \mathrm{~mm} . ;$ page 685.
Fig．8．Lunatia sandwichensis，Dall； 15.7 mm. ；page 684.
Fig．9．Solariella reliculina，Dall； 10 mm ．page 684.
Fig．10．Sabatia pustulosa，Dall； 33 mm ；page 677.

Plate xxyif．

Fig．1．C＇hrysodomus（Sipho）hypolispus，Dall； 55 mm ．；page 708.
1’ig．2．Sctphander alatus，Dall；35 mm．；page 676.
Fig．3．Chrysodomus（Sipho）acosmius，Dall； 60 mm ；page 708.
Fig．4．Trophon（Boreotrophon）disparilis，DAll； $15 \mathrm{mm}$. ；page 712.
Fig．5．Trophon（Boreotrophon）scitulus，DaLL； 17.5 mm ；page 712.
Fig．6．Chrysodomus periscelidus，DALL； 46 mm ．；page 708.
Fig．7．Buccinum aleuticum，Dall； 35 mm ；page 706.
Fig．8．Beringius frielei，Dall； $124 \mathrm{mm}$. ；page 711.
Fig．9．Buccinum strigillatum，Dall； $42 \mathrm{mm}$. ；page 706.
Plate xiviif．
Fig．1．Strombella middendorffi，Dali．； 110 mm ；page 710.
Fig．2．Strombella melonis，Dall； 137 mm ．；page 710.
Fig．3．Strombella melonis，Dall，from behind； 137 mm ．；page 710.
ドig．t．Strombella fragilis，DALL； 100 mm ．；page 710.

Plite didx．

Fis．1．Chrysodomus phomiceus，Dall； 56 mm ；page 708.
F゙is．2．Beringius aleuticus，Dall；the apical whorls are eroded；65 mm．；page 711.
Fig．3．Chrysodomus insularis，Dall； 100 mm. ；page 707.
Fiщ．4．Chrysodomus ithius，Dall； $70 \mathrm{mm}$. ；page 708.
Fig．5．Chrysodomus（Ancistrolepis）magmus，Dall； 75 mm ；page 709.
Fig．6．Buccimum（Sulcosimus）taph inm，DAll： 40 mm ；page 707.
Fig．7．Chrysodomus（Ancistrolepis）encosmius，Dall； 33 mm ；page 709.
 16 mm ．；page 712.
Fig．9．Chrysodomus（Sipho）halibrectus，Dall；35 wm．；page 708.

Plate：XXN．

Fig．1．Macandrevia craniella，Dall，hemal view； 17 mm．；page 722．

Fis．3．Terebratella rubiginosa，Dall，hemal riew； 28 mm ；page 727.
Fig．4．The same，basal view，showing flexure； 27 mm ．；page 727.
Vis．5．Macandreria diamantina，Dall，basal view，showing flexure；page 723.
Fi！．6．Buccimum ovulum，Dall； 25 mm．；page 707.
Fig．7．Terebratalia obsoleta，Dall； 30.5 mm ．page 726.
 page 719.
Vig．9．Liothyrina stearnsii，hæmal view； 48.5 mm ；page 719.
Fig．10．l＇lewotomella gypsina，Dall； 23 mm．；page 678.

Plate xxif．

F＇is．1．Ihmilh！ris bechrri，Dill；interior of hrachial valve（the crura are broken off）；width $16 \mathrm{~mm} .$, page． 717.
Yig．2．B：asal view of a whrn valve of Itmilh！！ris beerhri showing the impressions made by the attachments of the muscles，page 717.

Fig. 3. Memithyris beccheri, Dall, sirle view of a somewhat asymmetrical brachial valve, the same specimen as that figured at figure 1, page 717.
Fig. 4. Basal view of the same; page 717.
Fig. 5. Hemithyris craneana, Dall, hemal view; $16 \mathrm{~mm} . ;$ page 717.
Fig. 6. Side view of the same shell; page 717.
Fig. 7. Terebratalia occideutulis, Dall, basal view, showing convex flexure of brachial valve; width 31 mm . page 729.
Fig. 8. Hæmal view of the same shell; page 729.
Fig. 9. Liothyrina clarkeana, Dall, hemal view; $12 \mathrm{~mm} . ;$ page 718.
Fig. 10. Side view of the same shell; page 718.
Fig. 11. Spergo daphnelloides, Dall; 23 mm . p. p. 683.
Fig. 12. Terebratalia transversa, SowErby, var. caurina, Gould; bæmal view (for comparison with T. occidentalis, figure 8); width 30.5 mm . ; page 727.
Fig. 13. The same, basal view (for comparison with tigure \bar{i}); 30.5 mm ; page 727 .
Fig. 14. Pleurotomella climacella, Dall; 18.5 mm. ; page 679.

Plate xxxif.

Fig. 1. Macandrexia americana, DALL, hæemal view; height 22 mm ; page 721.
Fig. 2. Terebrutulina ctput-serpentis, Liñet's (uriguicula, CARPENTER), hatmal view of full grown Alaskan specimen; height 27 mm ; page 719.
Fig. 3. Macandrevia diamantina, Dall, hemal view; height 18 mm . ; page 723.
Fig. 4. Macandrevia americana, Dall, side view; 22 mm., page 721.
Fig. 5. Terebratulina caput-serpentis, Linneus, basal view; page 719.
Fig. 6. Macandrevia diamantina, ${ }^{\circ}$ Dall, side view; page 723.
Fig. 7. Macandrevia americana, Dall, basal view; page 721.
Fig. 8. Terebratulina kiiensis, Dall aud P'ilsbry, basal view; page 720.
Fig. 9. Terebratulina kiiensis, Dall and Pilsbry, hemal view; height 42.5 mm .; page 720 .
Fig. 10. Terebratalia gouldii, Dall, hæmal view; 37 mm . ; page 729.

2

3

4

5

ANATOMY OF Halicardia and Euciroa.
For explanation of plate see page swa.

Pacific Shells and Bradhiopods.
For explanation of plate see page 731 .

\because

:

PELECYPODS FROM THE PACIFIC COAST.
For explanation of plate see page $\approx: 31$.

For explanation of plate see page 31 .

9

Shells from the Pacific Ocean.
For explanation of plate see page 73\%.

1

ALASKAN SPECIES OF STROMBELLA.
For explanation of plate see page ri3).

ALASKAN SPECIES OF CHRYSODOMUS.
For explanation of plate see page 73%.

5

i;

11

For expianation of plate see page $\% 2$.

PacIfic Brachiopods.
For explanation of plate see page 733.

INDEX.

Page.Abaster erythrogrammus $3:{ }_{2}^{2}$Abbott, W. L., birds collected by .- $371,601,602$birds' nests and eggs col-lected by39
crustaceans collected 21,495
man 1
porpoises collected by 33
rodents collected by 341,343
Acantharchaster, new genus 268
dawsoni 209
Acanthina 1 17
Acanthochites exquisitus 202
Acanthonotus nasus $45 \tilde{1}$
Acanthonychinæ 65
Acanthonyx petiverri 72
Acanthorhynchus 304, 305, 308
tenuirostris 302, 305, 306
Acantonotus 45
Acer macropterum 22̃, 234
rubrum 416,41~, 418
saccharum $416,417,418$
trilobatum patens 231
productum 只 $7,234,240$
Acerina 124, 125
Achæus japonicus. 4π
lacertosus 4
trituberculatus, new species $43,4 \pi$
tuberculatus. $43,4 \pi$
Aclerda (ilt
Acrara asmi 19%
atrara 197, 20:3
dalliana 196
discors 197 :03
fascicularis 197,203
patina 19 ก
pediculus 197, 203
seabra 197
vespertina 19%
Acmæidæ 196
Acontias 346
Acontindre 345
Acris gryllus 338
Acrulocereus 31.5
Actæa palmeri, new species 85
Acutomentum $378,385,380,40 \pi$
alatum 40π
alutum 384,345
alutus 406
maccionaldi.. $383,384,401,406,40 \tilde{\imath}$melanostomum - 3S3,35t, 40t, 417
Adams, C. B 141,426
Page.
Adams, C. F., birds collected by 35%
Adamsiella $431,433,435,437,445$
grayana var. aureolabra 449
Adelonycteris serotinus 15, 16
Egotheles norœ hollandiœ 50
Aenasius 613
Aesche 1突
Esculus glabra 410,419
octandra 41.
Aëtobatidæ, nomenclature of 111
Aëtobatinæ 113
Aëtobatis $112,113,114$
Aëtobatus 111,11:
diagnosis of 114
sp 113
Africa, birds from 601
fresh-water cralos from :
Agaronia testacea 175
Agassiz, Alexander $424,4 \pm 2,489,534,5 \pi 4$
Agassiz, Louis 110, 11:
Agkistrodon contortrix 336
piscivorus $330,336,33 i$
Agriculture, Department of, shells pre- sented by 163
Alaska, fossil flora of 20π
rockfislı from 62π
Albatross, birds collected by 365
crabs collected by - $43,52,53,58,83,479$
dredging stations of 6.5
explorations by 451,
$45 \pi, 4 \pi 1,4 \% 9,489,6333,6 \pi 5$
fishes collected by 404, 633
fossil plants collected by 21
mollusks and brachiopods collected by. 141,
$148,149,153,154,159,170$,
$171,193,198,199,200$, (120
ophiurans collected by :34
starfishes collected b5 ... 215, 249, 253
Allulide. 11.
Alcadia $431,430,435,445$
Aldabra Id., hirds from $3 \% 1$
birds' nests and eggs from 39
crabs from. 22
Aldrich, J. M., insects collected by C07. 612
Alepocephalida 11%
Aleyrodes 610
Alyas -11
Alima 5tt
bidens 5 4,545
sracilis)
quadridens is
Alime 5+1.546

Page.		Page.
Archasteridæ.-...-..............- $245,266,268$	Astroschema intectum..	29%
	Astrostomus.	56%
Arctogæean lampreys.................... 10 .	Atkinson, G. F	$6: 0$
	Atlantic, Northwestern, fishes from .	471
Argyrosomus.--------------------------121	Auctospina 3 3\%6,378,385,	404, 40\%
Aricia aralicula- 189	auriculatus .-.-. - - - - . . to	405. 407
	aurora -------......-.--- 404 ,	406,40\%
loevis 158.160	Augite andesite..............................	641
pandora------------------------15 158	olivines and	667
	porphyrite	646,649
reatchii .-......................- 158	Augites, corroded.	669
Aristolochia tomentosa ...-------------- 421	Aulacaspis.	616
Arkansas, salamander from .-.--- --- -- 597	Aulopidæ	117
Armstrong, Frank B.................-. - - - - - .	Auriculida	429
Aromochelys odorata-- 320	Australia, scale insects from	621.6%
	Avicula peruriana	144
Arricola 1	Ariculida	144
albicauda, new species........ 12,16	Axinæa giganteus	14%
blanfordi..................... 11. 12. 10	maculata	14\%
fertilis, new species....-....-. 10, 11,16	tenuisculptus	14%
roylei 12.13 .16	Azeca	437
montosa, new species .-....-- 11,16	Bache, steamer, crals collected by-....	49
wynnei-.---.............-...--- 11	Bahamas, land snail fauna of	439
Asio -.---------------560, 561, $562,563,56 \%, 56 \cup, 569$	stomatopoda from	500,511
occipitrinus - 559, 561, 56:, 56\%	Baird, Spencer F	303, 321
	Baiera palmata.	215,232
Asimina triloba .-....-.-.... 410, 416, 417, 418, 419	Bailey, Vernon, shells collected by .-....	163
	Baione	119
abietoides....................-	Baker, L. D	449
abietus - 6.	Baker, Marcus	208
асасіœ 6 . 61	Baldwin, A. H	490
aurantii.--------------.......- 616,621	Balistan, mammals from	
licarinatus 6	Barbour, Erwin H	123,133
bowreyi-.....................- 6 - 0^{2}	Basalt	638, 659
convexus .--------------------- 624	Bascanion constrictor	327.336
	flagelliforme-......... 595,596,	206, 333 3
cydoniœ........................- 621	Batrachia	33%
destructor-......-.-.-...- 619	Batrachians from Florida	31%
flavescens---.------------ 619	Batrachonotus brasiliensis	5
	fragosus	5
	nicholsi, new species...	54
- var. albus- 6×5		2. ${ }^{6}$
var. pruni....- 6:5	pallidus	250
latastei........................	robustus	236
		584,585
	on Lacertilian genus Anniella.-	345
thee ---------------------619,600,601		35
	Bean, Barton A., on descriptions of two	
	new flounders -.....	633
Asplenium dicksonianum. .-............- 213, 23.2	and Tarleton H., on	
foersteri --------------------213,232	Gobioides brousso-	
Aspro . - 1:4. 12.	neti....................	631
Assumption Island, new birds from...- 3 \% 1	Bean,Tarleton H., on Alaska rockfish ...	6
	on Bleekeria gilli	629
	and Barton, A., on a	
	fish new to North	
Asterolecanium-. .-.......... $615,616,600$	America,-.-.-.-	631
bambusce .-............ 620	and Barton A., on	
pustulans.-...--.------- 6	Gobioides brusso-	
Astralium inermis ..--.- 198	neti.-.--..-.-......-.	(231
	and Goode, G. Brown,	
	on bathybial fishes-	451
americanus .------	and Goode, G. Brown,	
arcticus....---............- 25.	on Harriotta	4.1
mesactus-.....---.....- 255	and Goode, G. Brown,	
	on Heteromi.......-	4.3
Astroschema clavigera, new species...- 295	Bear River, mollusks from	135

Page.
Bears, Himalayan black Isabelline
6:9
Beekeria gilli, new species.
Beeson, Charles H., on Sebastinæ of Pacific coast 3\%5
Bela climakis 680
Belding, L., lizards collected by 17, 18
shells collected by 141
Bendire, C. E., mammals collected by 2t:
on nests and eggs of African birds 34
490
Benedict, James E
on Lithodidæ 479
38
Benthopecten
spinosus 25
Benthopectinina, new subfamily 245, 203
Berg, C 110 110
Bergrothia 615
steelii (6)
Beringius 709, 710, 711
aleuticus, new species ก11, \%3:
frielei, new species. 711, $3 \times$
turtoni 11
Bermuda, stomatopoda from 500
Bernadou, J. B., stomatopoda collected by 539
Berthold, A. A 549
Betula alaskana ~
grandifolia 2in 1,234
nigra. 414, 417prisca - -.......................................
Bigelow, Robert Payne, on Crustacea ofthe order Stomatopoda489
Bignonia capreolata 4~1
Bilobites 716
Binney, W. G $162,165,44: 3$
Bimini Islands, stomatopoda from 489
Birds, Coerebidæ, and other American 29
new species, from Aldabra $3 \% 1$
Assumption. Galapagos $3 \pi 1$ 3ัก $3 \% 1$
Gloriosa Island
from Mount Kilima-Njaro 601
Birds' nests and eggs from Aldabra Island 39
Bivonia compacta 193
Black Sea, fishes from $1: 3$
Blresospira $429,431,43:$
Blainville, H. M. de $111,112,114$
Bland, Thomas 161, $426,4 \%$
Blandiella431
filicosta 431
lirata +31
Blue mineral from New Mexico. 19-:2)
Borneo, stomatopoda from 536
Boreotrophon disparilis ~1~, 13%
scitulus (12, \%3:2
Borus 46
Bothriothoracine insects of U.S. 60%
Bothriothoracini, new tribe (0) 5
Bothriothorax
californicus, new species 60.5, 60!"lavir(rnis.................. lifl.nigripes, now species.... 607,610noveboracensis, new spe-cies 605, 607, 609paradoxus.6
Page.
Bothriothorax peckhamii 611
peculiaris 605,607
planiformis, new species 607,611rotundiformis, new spe-cies-. 60 . 60 , 610
virginiensis 607,6018
Box tortoises of North America 5
Brachiopoda 6i5, 713
Brachymystax 119, 120
Brachyscelidze (哭
Brevispinis, new subspecies 62π
Bridges, Thos., shells collected by $1 \% 1$
Brimley, H. H. and C. S 599
Brisinga 287
americana 279
costata 280
elegans 283
multicostata, new species 280
verticillata. 283
Brisingidre 279
British Columbia, fishes from 62
fossil flora of 23
fossil plants from 203
Brooks, W. K $489,545,546,549,550$
Bruner, J. D 5π
Bryant, W. E., shells collected by 163
Bubo virginianus 559
Buccinum i(1)
aleuticum, new species ก06, $\%$ \%
cyaneum i11.
elongatum 169
minus 1%
ovulum, new species (07, 73 3
roseum 172
strigillatum 206, 73:
taphrium \%07, 733
tenue $\pi 16$
Bucconia biit
Buchanga aldabrana 39,371
Bufolentiginosus 2334
quercicus :335
Bulimulidæ 1143
Bulimulus $140,430,435,437,446$
alternatus 164
auris-sileni 46
baileyi $163,16 t$
californicus 1(hi)
dormani 40,42
exilis 443,444
fraterculus $\ddagger \ddagger 3$
liliaceus 438.44
lilacinus 443
multilineatus $440,44^{\prime}$
maculatus 4!
marielinus $4+11$
nitidulus 44
pallidior 164
var. striatula 16
patriarchus 164
pilula $16{ }^{\circ}$
schiedeanus 164
serperastris 165
suflatus 164
vegetus 1tit
vesicalis 164
virgulatus 413
xantusi 163

Page.
Catalpa speciosa 412, 41\%
Candata-.. 33%
Caves, stalactites and gypsum incrustations in
7%
Celastracere
Celastrus borealis
Celtis mississippiensis.
occidentalis.
412,419
$\begin{array}{r}45 \\ 45 \\ \hline\end{array}$
Central America, crabs from 45

coccinea 321,336
Centropomes .-... 126
Centropomas 126. 12 N
toulou-..................-. $3 \pi 3$
insularis, new species.-.- $3 \pi 3$
Cephaloptera
Cephalentherinæ -.................................... 113
Cephalentherus 112, 113
occidentalis.............. 420
Cepolis 430, 431, 432, 43\%, 445
Cercis canadensis .-.............---..-- 416, 417, 419
Cerion -.............-......- 430, 431, 432, 435, 439, 445

striatella_-................................... 44

Cerithidea albonodosa ------------------- 192
mazatlanica--...---....-.....-- 191
Cerithiida ... 191
Cerithium incisum 203
maculosum --.-.-................-191,2013
stercus-muscarum- 191
Ceroplastes
$616,618,620,622$
albolineatus
artemisiœ .--...................... 624

major. .-...........................-
mimosø --...-. .-...-............ 616

rubens ---...-..................-- 620

Ceroplastodes dalece 625
Certhidia, anatomy and affinities of 309
Certhidea albemarlei, new species 360
bifasciata, new species 359

359
luteola, new species- 360
mentalis, new species- 359
olivacea $358,359,360$
salvini..............................-- 309, 358
Certhiola bahamensis .-.-...-...............-. 301,302
caboti .-............................. 301, 30थ

tricolor
Cervus cashmerianus 16
Cetomimidæ, new family 451
Cetomimus gillii, new species.-........... $45^{\circ} \mathrm{m}$
new genus 45%
storeri, new species........ 453
Cylindrella_-...- 445

Chalcaspis, new genus..................- 605, 6066,611
pergandei, new species..... 606
Challenger, fishes collected by-............ 464

Page.
Challengor, mollusks collec
Chama frondosa.....-. 150
panamensis :............................ 150
Chamæcyparis alaskensis.-................- 215
thyoides ------ --.......... 420

Chameleon from Florida-..................-. $\quad 3 \geqslant 0$
Chamidæ... 150

mydas .-..............................- 317
Chelydra serpentina- 330
Chicoreus palma-rosæ mexicana......... 183, 203
Chile, stomatopoda from

China, jadeite from .. 29,30
mammals from .-.......................- $\quad 9$
Chione columbiensis 153

neglecta-............................. 153

Chionaspis- $616,618,620,621$

braziliensis 619
citri-....................-. 621
minor-...................-- 623

sp --..................................... 619

Chionanthus virginica -.....-........-------- 417

Chiton albolineatus 202
Chitons. .. $1 \& 1$
Chittenden, John F..................................
Chlorida .-...... ... 509
Chloridella-.......................................- 490, 509, 544
Chlorophanes atricilla --.....-................ 301
Chlorostoma aureotinctum .-............... 199
fuscescens---.-....---- 199
gallina -........................ 199
rar. multifilosi... 199

Choanopoma $431,432,435,437,445,446$

liasinu. 211
sp - 211
targionii -...-.................... 211
Chondropoma 431, 43: $2,435,43 \pi, 445,446$
dentatum 42n, 4 40
Chordeiles_............ $552,55 \pi, 56 \pi, 568,569,5 i 0,5 \tilde{1} 1$
henryi -............................. 558
texensis............................ 5.58

Chrysodomus.....-... 0 , 009

crebricostatus $\quad 10$
eucosmius 09,732
fornicatus $\quad 708,732$
hypolispus-....... $08,73 \geqslant$
Page. Chrysodomms insularis, new species 707,783ithius .-..-:-.....----....... 708, 73:liratus-................... $\quad 08$magnus, new species..... \%09, te700. 3 :
periscelidus 705, 73:
phoeniceus 708, 732
Cinnyris abbotti, new species 37,
aldabrensis, new species. 3ヶ2
bifasciata 310
sonimanga 372
Cionella 429,430
Cissus ampelonsis $1: 1$
Cistuda 5 50
carolina 578
carolinæ 578
Cistudo 575
carinata 578
carolina $5 \% 4,5 \% 8,580$
var. carolina 5ั8
cinosternoides 550
kinosternoides 57t
major 574,576
mexicana 574, 580
triungius 24,500
clansa $\pi 7$
clausa 574,578
triungius 574, 580
major 584,575
mexicana รัะ9
ornata 5\%4,581
triungius 5\%3,580
virginea 5.3. 5 ม.
Cistula $431.43 \%, 435,43 \pi, 445,446,45$
Clams, little neck 98Clark, Hubert Lyman, on pterylogra-phy of goatsuckers and owls.5.51
Clarke, F. W 29. 31
Clarke, J. M 719
Clathodon 90
Clathradon90
cuneataClathrodon9%
Claus, C 92
Clausilia $4: 9.43:$
Clava gemmata 203
gemmatus 191
incisum 191
Cliona 716
Clionella quadruplex 680
Clorostoma gallina 203
Clupeidre $11 i$
Clymene punctata 36
Coachwhip snake i95
Coccidæ 615,619
Coccothraustes 305
Coccus 618,619
blanchardii 6
cacti 616, 6119
ceratiformis 618
diosmatis 618
laniger 619
Cockerell, T. D. A. $430,573,5588,610$
Codakia tigrina 615 149
Cœlostoma 6:2)
rubiginosum 63

Page。Copper，overlaying with，by Americanaborigines475

Coquillett，D．W610
Coralliophila nux 18 \％costata
18 i
Coralliophilinæ18%
Corbicula 136
Corbiculidx． 438
Corbula bicarinata 15%134
crassitelliformishicksii，new species134,138
Corbulidro $134,15 \%$
Cordya． 430
Coregonidr $117,120,121$
Coregoninæ，synonymy of 120
Coregonini $1: 0$
Coregonus 117
Coregonus，synonymy of 120
thymallus 1：3
Cormus florida 416,41 r， 418,419
orlifera 206，234
l． paniculata $4: 0$
Coronida $490,492,493,544$
Coronis 490，504
Corylus macquarrii
var．macrophylla ．． $20,23 \%$
Coryrhynchus riisei 48
Crabs from Antillean region 83
of the family Inachidx 43new genera and species of
49fresh water，new species of
new species from Indian Ocean． ＊1$\because 5$
Crassatella gibbosa $1+8$
Crassatellidæ． 148
Crategus arborescens 416
rocrineril
cordata 4： 1
crus－galli $411,418,419$
mollis 419
spathulata $415,4: 20$
tomentosa 419
Crane，Agnes 618
Cranopsis asturiana 686
Crawford，Frazer S．，insects collected by 6：2
Cremastogaster dohrni $6: 0$
Crepidula dorsata rar．lingulata 194． 203
rugosa 194
unguiformis． 194，20：3
Crotaceous，Potomac division of 87
Cribrella 20%
pectinata，new species 278sanguinolenta
279
Cricetus fulvus． 16
isabellinus 16
phaeus 16
Cristiromer 119
Crocidopoma 431，43：
Crocidura aranea． 15,16
murina 14， 16
Crossaster helianthus，new species 2～ 4
（＇rotalus arlamantens 33．5．23iti
Crucibulum imbricatum 193， 203
spinosumı 194． 203
Crustacea 479
of order Stomatopoda 489
Cryptococcus 615

Page．
（＇tenochatom

Ctenopoma ．－．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．431，433，435，445
Cnemidophorus sexlineatus－－－－－－－－－－－－－－ $3 刃 1$

Cyclemmys amboinensis ．－．．－．－．－．．．．．．．．．．．．．． 585

chittendeni，new species．．． $0: 33,635$
Cyon dukhunensis．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 15

controversa ．－．．．．．－．．．．．．．．．．．．．．．．－．－ 189
isabella－mexicana ．．．．－．－．－．－．－．－．－ $189, \ldots 03$

radians 190
sanguinea－．．．．－－－－．．．．．．．．．．．．．．．．．．．．．．．．． 189

440
poeyana ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．－ 440

cyprzeide．．．

Cyprinodont ．－．．． 115
Cyprinodontes．－．．．115，116
Cyprinodontidæ limnophogæ．．．．．．．．．．．．．．．． 11 i

Cyprinodontoidei－．－．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 116

Cyrena．．．105゙，134
carolinensis ．．．．．．．．．．．．．．．．．．．－ 93
foridana－－－．－－－－－－－－－－－－－－－－－－－－－－ $93,9 \frac{-}{1}$

chonæа ．．．．－．－－－－－－－－．．．．．．．－．－－ 153

liewcombiana－．．．．．．．．．．．．．．．．．．．．－ 15 －
petichialis．－－－－－－－－－－－－－－－－－－－－－ 153

vulnerata＿－．．．．．．．－．．．．．．．．．．．．．．．．．．．．．．． 154
bromelice
calceolarice ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．621，6：3

Dactylopius ephedrce $6: 4$
graminis 618
solani 625
Dakota formation, invertebrate fauna of 131
Dale, T. Nelson, fossils collected by - 313
Dall, W. H.... 68, 149, 204, 211, 23T, 239, 402, 435, 448crabs collected by .-.......- 142,48 rfossil flora collected by 209,212on genus Gnathodon......-- 89on Mollusea and Brachi-opoda6%
Dallina 2
grayi \% 2
Dana, Jas. D 549
stomatopoda collected by 530
Daphnella 680,683
limacina 651
Dasybatus 111
Dasybatidæ 111
Davidson, George, shells collected by 164,166
Davidson, Thomas 715, 718, โ24, 728
Dawson, William 238,240
Day, Robert S (3)
Decapoda 479
Deckenia 21
cristata, new species 23
imitatrix 23
Defrancia hormophora 684
Deirochelys reticularia 318
Dellina septigera 726
Delphinidæ 33,36,3~
Delphinus punctatus 34
pseudodelphis 36
Dendroica 304
aureola 310
coronata $304,305,306,307$
discolor 304
maculosa 304,305
pennsylvanica 304
tigrina 303, 305
vigorsi 304
Dentaliidæ $15{ }^{2}$
Dentalium 6\%6,686
antillarum 686
candidum 68%
ceras 687
complexum, new species 686, 731
fisheri 15%
numerosum 686
phaneum, new species 686, 731
semipolitum 158
solidum 65\%
Dentellaria 445,446
Dermaturus 48
Dermochelys coriacea 31 ri
Dermoptères 118
Dermopteria 118
Desmognathus 597,598
brimleyorum, new spe- cies 33π 59%
fusca 59
nigra 598
ochrophoea 598
Enarta perlerseni
Page. litiEhnoracearEcaudata筫 1
338
Echinasteridso 2\%8Echinœecus, new genus
66pentagonus, new species66
Echinocerus184
Echinoplax 64
Eckman, C., reptiles collected by $3 \% 4,32$
Eclipse Expedition, shells collected by. 183
Ecuądor, stomatopoda from 518
Edwards, Henry, shells collected by $140,1 \%$
Eggs of new birds from Aldabra Id 39
Eigenmann, Carl H., on Selaastinæ from Pacific coast 35
Eigenuann, Mrs. Carl H
Eisen, Gustar, shells collected by $16 t$$3 \pi$
Elæodendron helreticum
Elaps fulvizu 2, 234,33$2 \geqslant 8,234$
Ells, R. W
Elopida 313 313 11 I
Emarginula 685
hawaiiensis, new species ..
Emmons, G. T., Indian relics presented
by 4π
Emyoides รับ
kinosternoides 550
Emys carolince 5%
cinosternoides 580
clausa 5%
kinosternoides 5\%3,580
schneideri กัก
virgulataรั\%
Enaetal cumingiiliii
Emertine
Engina carbonaria (1.) $1 \% 9$var. fusiformis
Engystoma carolinense 338149
Enstatite andesite
Eoplacophora 633 633
Epialtus bituberculatus 201 6π
dentatus 69
dilatatus 0π
longirostris (67)
marginatus 69
minimus6π
nuttallii 69
productus 68sulcirostris
6
Epinephelus ciliatus 358,405
Epitomynis 119
Equisetaceæ 212
Equisetum globulosum 212,232
Erato columbella 191
Erethmerhelys imbricata 31,
Ericacea20\%
Ericerus 618
pe-la 621Erichthalima54
Erichthoidina $5+3$
Erichthus 543
Ericoccus turgipes 6\%)
Erimetopus, new genus 26
spinosus, new speciesEriochiton618,622
Eriococcus 615, 630$6: 5$
Page.
Eriocnccus conspersus ${ }_{6}^{6}$
Eriopeltis: 616
lichtensteinii 617
Eruptive rocks from Montana 637
Esocids 116
Ethiopian region, scale insects of 617
Enciroa 687, 689
elegantissima 657,659
pacifica, new species 688 ,
693, 694, 730,731
Euciroidx 687
Eudesia T20
cardium 721
fontaineana \% 21
Eumeces fasciatus 321
Euonymus atropurpureus 415, 419
Euparypha areolata 155
lrevis (6i)
Eupetaurus cinereus 16
Eupleura muriciformis 18
Euprognatha 55
gracilipes 56
rastellifera 55
spinosa, new subspecies 55
Eurycratera 430,445
jamaicensis var. cornea 419
Eurypodius latreillei 59
Eutæenia butlerii 591
flavilabris 593
Eutrochatella $431,43 \times, 435,437,45$
Exceretopus 616
Exomegas 110
Fagns antipofii. $218.23: 2$
atropunicea 417, 418
deucalionis 219, 232
emarginata. 219
feroniæ. 219,232
lancifolia 19
macrophylla 219, 23:
pristina 219
Fairmairia 616
Fario 119, 120
Farrington, Oliver C., on jadeite from Burma 29
Farancia abacura $323,336,337$
Fasciolaridæ 177
Fauna, invertebrate, of Dakota forma- tion 131
Faxon, Walter 489,550
Felania serricata 149
Felistorquata 3,15
uncia 15
Ferussacia 437
Feylinia 346
Ficus alaskana 223,234
membranacea 233,234
Filices 212
Filicites hebridica 239
Fillippia 615
Fiorinia 616,617, 6 20
sulci 617
syncarpice 62
Fischer, Paul 92, 95, 429
Fish Commission, collections from. 43,83,
Page. Page.
Fringillidæ 299, 304
Furuhjelm, Hjalmar, flora collected by - 208
Fusus ambustus 178
cinereus 179
dupethithonarsii 178.179
multicarinatus 178
nova-hollandice 178
reevianus 178
Gabb, Wm. M., shells collected by 140
Gage, S. H 10 \%
Galapagos Islands, new birds from $3 \overline{1}$
Galeommidse 149
Galeus canis 467
Galerus mamillaris 194. 203
Gallatin County, Mont., locks from 637
Gardner, J. Starkic 238
Garman, H., tortoises collected by 573,5\%9
Garter suake, Butler's 593
Gasteropoda $134,158,66^{6} 6$
Gastropsetta 633
frontalis, new species 633
Gatherer, Schnr., fishes collected by ... 482, 464
Geomelania $431,43: 2,435.455$
Georgia, stomatopoda from 518
Geospiza 357
abingdoni 361
acutirostris, new species 363
albemarlei, new species 362
assimilis 361
barringtoni, new species 361
bauri, new species $36:$
conirostris 361
debilirostris, new species 363
dubia 362
fortis 363
fratercula, new species 363
fuliginosa 363
intermedia 361
media $36:$
parvula 303
propinqua, new species 361
scandens 361
strenua 36.
Geostilbia 430,437
Geothlypis 304
Geotria 110
Gerstaecker, A
Giard, M 616
Gibleś, Lewis R 549
Gibbula varians 199
Giglioli, E. H $6:, 464,467$
Gigliolia, new genus 456,464
moseleyi, new species 457, 465
Gilbert, Charles H 18
fishes collected by- 377
Gill, Theodore 377,634
on nomenclature of lam- preys 107
Pœeciliidre or Cypri- nodontidæ 115
Salmonidæ and Thy- mallidæ 117
Stizostedion or Luci-
operca $123,346,388,630$
Friday, J. A., jadeite collected by
-pora 215,233
Ginkgo adiantoides
215,232
215,232
multinervis
multinervis 239

Harpa rosea crenata
Page. 17
Hess, W 549
var. kiener1\%
scriba. 175
testudinalis. 1%
Harpactes 60:
Harpidæ 175
Harpiocephalus tubinaris 16
Harrintta, new genus 471
raleighana, new species 4%
Harris, G. D. 93,211Harttexplorations, craios collected by .- $4 t$,$54,65,67,7 \sim 3$
Haswell, W. A 550
Hawaiian Islands, brachiopoda from (j) 5
mollusca from 615
Hayden, F. V., fossils collected by 131,136
Hay, O.P 333.584
tortoises collected by $5{ }^{\sim}$
Hedera auriculata 206,234
Helicidæ $158,431,43 \%$
Helicina. 431
phasianella 444
subglobulosa 427,440
Helicodiscus lineatus 162
Helix acutedentata 161
areolata 158.159
aspersa 425
behri 161
bicruris 161
desertorum 159
hirsutum $16:$
hindsii. 161
lactea 4%
læris 160
nemoralina 44
pandora $16!$
platyglossa 161
similaris 425
reatchii 159
ventrosula 161
Helocodiscus lineatus sonorensis 162
Heloderma $34!$
Helodermatidæ 316
Heller, C 549
Hemicardium 698
Hemignathus $304,30: 305$
olivaceus. 312.31%
Hemisinus $429,431,435,437$
Hemitragus jemlaicus. 16
Hemitrochu $430,431,432,43 \sim, 439,445$
varians 440
Hemithyris 713, 15,717
beecheri, new species 717, 732, \%33
cornea. 716
craneana, new species 71\%, 733
Iucida 718
psittacea 714, 115
Hemphill, Henry W., shells collected by 141
stomatopoda col-lected by508
Henderson, John B., fossils collected br - 43
Herbst, J. F. W 519 519
Herpestes auropunctatus 15
mungo 15
thysanurus 15
Herrick, F. H 210
Hesperomys toltecus $1 \div 9$
Heterodera 5;
Heterodon platyrhinos 3~3, 336
niger $3: 9$
Heterodonax bimaculatus 155
Heteromi, revision of the order 45
Heterotrogon, new genus 601,602
rittatus 602,603
Hicks, L. 134,13 亿
fossils collected by 131
Hicoria alba $416,41 \%, 418$

glabra ---------------.-. $412,416,41 \tau, 418,419$

minima $413,416,41 \%, 418$
myristicæformis $41 \approx, 416$
orata $416,41 \%$
pecan 413. 43
sulcata $41 \stackrel{\circ}{2}, 416,419$
Hilgendorf, Franz 45
Himalayan Mountains, mammals from. 4,7
Himatione $304,30 \mathrm{~s}$
parva 300
sanguinea 300,304
Hindu Kush Mountains, sheep from 5
Holland. W. J 5.51
Holoplites, new genus 64
armatus 64
Holorhinus. 110
Holzner, F. X.. mammals collected by- $1: 9$
Hornblende andesite 64\%,660
apatites in 64
picrite 634
Howard, L. O., on Bothriothoracine in sects of the United States 605
Hucho 119
Huenia brevirostrata 66
simplex 66
Hurter, Julius 5%
Hyalinia 430
Hyalina binneyana 16
Hralosagda 430
Hyastenus 62
longipes 62
Hybris flammea 520, 506
Hydrasterias ophidion $2 \% 9$
Hydrobia 431
mobiliana 101
Hyla femoralis 339
squirella 338
Hymenaster modestus 2%
Hypersthene andesite 650
Hypocoelus 21
abbotti, new species 21,23
diverticulatus 21,23
granulatus 21
punctatus 21
Hypsiglena 3.4
Hystrix leucura 16
Hyodontidx 11
Ibex from Batistan 6,7
Siberia
Thian Shan Mountains \%
Ibis abbotti 3.1
Icerya 618,6:0
ægyptiaca 616,619
koebelei 6
I'age.
Icerya montserratensis $6: 3$
sacchari 61^{8}
seychellarum 618
Ichtlyyomyzon 109
Icterus icterus 308
Hex decidua 419. 420
insignis 20,2,234
ораса 416, 41 \%, 418
rerticillata 410, 420
Ilicinere 2.0
Illinois, trees from 409
Ilyaster 266
Inachidr 43
Inachinre 5
Inachoides intermedins, new species..lævis58
obtusus. 5π
Indiana, trees from 409
Indian Ocean, porpoises from 33
stomatopoda from 495
crabs from21
Indo-Pacific waters, mollusks from 140
Inglisia $6^{* 20}$
Iniomi 451
Insects of United States 605
Insects, scale, geographical distribu- tion of. 615
Intrusive rocks 643
Invertebrate fauna of Dakota forma- tion 131
Investigator, mollusks collected by
Iridacere 68%
Irites alaskana 216.232216
Isaster, new genus 25
hairdii 只
Ischnochiton acrior 201
clathratus 201
macaudrei 201
Ischnochitonidre 201
Ismenia T2t
jeffreysi 704
sanguinea 724
Isocardia 91,696
tenuidens 106
Isocardiidæ 106
Isomeria 46
Isospondyli 117
Italy, stomatopoda from 506
Ives, J. E 550
Ixocincla madagascariensis rostrata, new subspecies 39,3*1
Jadeite from Burma 29
Jamaica, new species of shells from 44
Jamaicia 431, 43:
Janira dentata 144
Japan, crabs from 21, 48, 71
shells from 178
stomatopoda from 539
Japanese species of reed warbler 205
Jeanneretia 430
Jefferson County, Mont., rocks from 637
Johns Hopkins University 502
laboratory
Jones, W. H 525
stomatopoda collected by .. 508, 518
Jordan, D. S 111, 112, 123, 125, 331,627crabs collected by49, 68
Jordan, D. S., fishes collected by age. 377 stomatopodacollected
Jouy, P. L.,stomatopoda collected by. 539
Juglandacere 2
Juglans acuminata 2029, 234
egregia $\stackrel{22}{2} 3$
nigra 417, 418
nigella 220, 231
picroides $222,223,234$
townsendi, new species $2,234,210$
woodiana 220,234
Jumala 710
Juniperus communis 41 ั, 419,420
virginiana $414,418,419$
Kaj Nag, mammals from 1,10,11
Kansas, fossils from 131
Kashmir, mammals from 1
Kermes 615
Kilima-Njaro, Mount, birds from 601
Kinnehan, J. R 313,314
Kinosternon baurii 319
pensilvanicum 319
Kirk, T. WV 549
Kirsch, P. H., snakes collected by 593
Knowlton, F. H., on fossil flora of Alaska 207
Koebele, Albert $609,610,611,62 \ldots$
Kohn, Gustave $5{ }^{5} 3$
Korea, birds from 305
stomatopoda from 539
Kossmann, R 519
Krause, Dr., fossil plants collected by 210
Kraussina lamarckiana \% 2
Labrax $1 \because 4$
Labiosa undulata 157
Labyrinthus 446
Lacanium $6: 0$
Lacertilia 347
Lagomys griseus 14,16
macrotis 14,16
roylei 13,16
Lampetra 107, 109, 110
Lampropeltis calligaster $3 \% 4$
getulus 324, 336
Lamprophyres 665
Lamprophys 643
Lampusa vestitum 188
Lamprey, larva of 108
Lampreys, families of 109
menclature and char acteristics of 107
Land snails of Antillean region 439, 443,444
West Indian region. 423
plants in Dakota formation 137
Lapworth, Charles 313
Laqueus 724
blanfordi 726
californicus 7ัั, $\uparrow 26$
var. rancouveri- ensis 725
jeffreysi 720゙, 726
jeffreysii 7×2
pictus. \% 26,727
rubellus 726
vancouverensis 724
Larkin, R. R 573,588

149 14Larvæ of Stomatopoda
Lasea rubra var. subriridis 149
Lates $1: 3$
Latirus ceratus $178 \cdot 2(3$
cingulata 1\%
cingulifera 17
Latreille, P. A 549
Lecanopsis $61 t i$
Lecanium 616
nigrum 619
Leda lanceolata $14 \tilde{1}$
Ledidæ 14%
Lecaniodiaspis. 615
yucco $6 \% 4$
Lecanium $618,620,62$
$6: 21$
acuminatum $6: 3$
asparagi 6115
chirimoliœ $6: 1$
coffece 619
depressum 621
hesperidum 621
insignicolla. 6
oleœ $6 \% 1$
mangiferoe 619
phoradendri 695
scrobiculatum 6
tarsale 6\%t
urichi $6: 3$
viride619
Le Conte, J. LLee, Leslie A., shells collected by347141
Leia
Leia 430
Leiobatus 111
Leiolopisma laterale 321,33\%
Leiorhynchus 716
Lepeopus, new genus 48π
forcipatus, new species 489
Lepidopleurus pectinulatus 201
Lepidoptera 503
Leptinaria $430,43 \pi$
antillarum 443
Leptolithodes, new genus 4St, 486
aculeatus 484
asper. 484, 485
longipes $48 \pm$
multispinis, new species 484,485
papillatus, new spe- cies 48.$)$
Leptoperca 125
Jeptopodia calcarata 45
delilis 44,14
modesta 45
sagittaria 44
Leptopodiinse 44
Leptoptychaster arcticus 255
Leptosquilla 480, 492
Lepus tibetanus 13,16
Leslie, C. C., stomatopoda collected by 518
Lesquereux, Leo 209,213, 237
Les Sandres 126
Lesser Antilles, fresh-water mollusksof ----.-.-...................land snails of443443
Page. Page.

543
Page
30
Leucozonia $1 \% 8$
cingulata
Lerenia coarctata $188.2(1: 3$
Lia $4 ; 3$
Lichtensia 616
Licina 431, 432
Lignus $430,431,432,435,4+5$
fasciatus 440
Limnæa 430
culuensis 438
Limnæidæ 166
Limopsis vaginatus 713
Linurea cubensis 44
Liocardium elatum 1.1
apicinum 151
Liocerithium incisum 191
Liomesus (199
Liothyrina. r18
arctica 719
clarkeana, new species 718, 733
stearnsii. 719, 73\%
ura 719
xvyvillei ${ }^{2}(2) 3$
Liparites 660
Lipogenyidæ $456,45 \%, 469$
Lipogenys, new genus $455,457,469$
gillii 469
Liquidambar europæum 206,234
styracillua $411,116,418,420$
Liriodendron tulipifera $410,416,41 \%, 418,430$
Lispognathus thomsoni 64
Lithodes 485
æquispinus 481
agassizii 479
brevipes 484
notes on young of 479
californiensis, new species 483
camtschaticus 483,484
notes on young of 479
couesi 481
diomeder, new species 480
goodei, new species 4\%9,480
granulatus $48 t$
maia 481
rathbuni $48^{\prime \prime}, 483$
spinosissimus 483
Lithodidæe 4.9
Lithophagus aristatus 140
Lithyrina daridsoni $\because 19$
Littorina aspera 193
conspersa 193,203
Littorinidæ 193
Lizard, new species from California 17,559
Locustella fasciolata 205.206
hondoensis, new species 205,206
ochotensis 30.5
pleskei 205,206
Lcennberg, Einas, on reptiles and batra- chians. 31%
Lolab, monkeys from 2
Loomis, H., crabs presented by 71
Lophocardium 688
Lophyridæ 202
Lottia gigantea 19%
Page.
Lovett, Edward, stomatopoda pre- sunted ly 515
Loweia 43%
Loxin currirostra 344
Loxioides 308
Loxorhynchus crispatus $\%$
grandis it
Lucas, Frederic A 551,561
on Corebidre andother Americanbircls299
Lucerna 445
Lucidella $431,435,433,434,435,445$
aureola 449
var. interrupta 449
costata, new species 449,450
Lucina bella148
californica 149
childreni 176
dentata 148
nuttalli 149
tigrina 149
Lucinidæ 148
Lucioperca canadensis 123
marina $1 \approx 3,125$
relations and nomencla-
ture of 123
Luciotrutta $120,1 \geqslant 1$
Luidia 20\%
Lunatia 684
grönlandica $68 t$
otis 203
sandwichensis, new species $196, \stackrel{2}{2}$
Luponia albuginosa 189
isabella-mexicana 189
sowerbyi 189
Luquillia $430,43 *, 445$
Luray, Va., caverns of 78
Lutodiridze 115
Lutra vulgaris 16
Liodytes allenii 330,33i
Lygosoma propeditum 345
Lynx isabellinus 15
Lyonsiella 695, 699, ส02, శ03, 704
abyssicola. \% 05
alaskana, new species ส03, 731
papyra (0)
papyracea ร03, \%0t
radiata T03
Lysioerichthi 54
Lysioericthus 54
Lysiosquilla $489,492,502,503,544$
acanthocarpus $503,504,50:$
var. septem spinosa. 503
armata $503,50 \%$
brazieri $50{ }^{\prime}$
biminiensis 503, 504
desaussurei 50t
eusebia $50: 3$
excavatrix. $50 \pm$
glabriuscula 504, 5018
inornata 508
latifrons $50: 3$
maculata $504,508,54$
miersii 504
Page.
Lysiosquilla polydactyla 504
saracinorum 503
scabricauda 504, 508
scolopendra $50 t$
spinosa 503
Macacus assamensis 2
rhesus villosus, new subspe- cies 2,15
Macandrevia $7 \% 0,1 \geqslant 1,70,724$
americana, new species . . $7 \boldsymbol{7} 1,{ }^{*} 33$
cranium \%19, $7 \sim 3$
craniella, new species. 7202, 733
diamantina, new species. \% 23
$73 \%, 733$
tenera. \%23
MacDermot, H., insects collected by $6: 3$
Macdonaldia, new genus 455, 457, 464, 467rostrata.467
Macon, G. H., stomatopoda collected by 518
Macoma viriditincta 156
Macroceramus $430,431,433,435,437,440,445$
gossei 438,440 438,440
pontificus 433,440
signatus 445
Macrocheira kaempferi 479
Macrochires 559
Macron æthiops 179
kelletii 179
Macrurus rhesus 15
Mactra clathrodonta 99
corbuloides $10 t$
donaciformis $10 \pm$
guadelupensis 104
lateralis 93
mendica 102
planulata 157
polynyna 93
rostrata 104,106
similis 93
Mactride $92,93,94,95,103,157$
Madagascar, birds' nests and eggs from 39
porpoises from 33
Madison County, Mont., rocks from 637
Magarodes vitium $6 \% 3$
Magellania 720
venosa 72
Magerlina 7%
Magnolia acuminata $4: 0$
glauca 418
nordenskiöldi. 230,234
Magnoliacex 230
Maine, starfishes from 218
Maja camtschatica 483
Malaclemys centrata 319
Malacostraca 491
Malea rigens 189
Mammals of Balistan. 1
Kashmix 1,15
Mammals, New North American 21
Mangilia 678
Manculus quadridigitatus 33%
Mantidre 111
Mantis chiragra 495
scyllarus 496
digitalis. 535
marina baribadensis. 495 495Page.

	Pa
Margarita	684

Margarita 684
Margaritana 136
Margaritiphora fimbriata $145,20 \%$
Margarodes 618
Marisa 446
Maria Madre, shells from 143
Maryland, list of trees of 418
Mason, Otis ' T ., on overlaying with cop- per 4\%)
Mastacembelus 465
Mauritius, crabs from 21,23
stomatopoda from 495,500
Maxwell, S.S 5\%3, $5 \% 9$
Mazatlan, shells from 140
McConnell, J. C 693, $69 \pm$
McDonald, Marshall 46%
MeGuire, J. D 470
McNeil, J. A., shells collected by 146
Mearns, Edgar A 589,591
on cotton rat from New Mexico $1: 9$
Mediaster 25
Meek, F. B 136
Megascops $560,564,565,567,568$, 569
asio. 559, 564
kennicotti 565
Megaderma lyra 16
Megalomastoma $431,432,433,437,445$
Megellania wyvillei 623
Megerlia jeffreysi \% \%j
Megerlina jeffreysi Ti?4
Melaniella $430,431,432,437$
gracillima 440
Melaniidz 135
Meleagrina fimbriata 150
Melia 430,436
Meliornis 306
Meliphagidæ 299,305
Melongena modificata 176
Melospiza fasciata 304
melodia 304
Menæthius incisus \%1
quadridens 71
INerrill, G. P 19
on eruptive rocks from Montana 637
on formation of sandstone concretions 87
on stalactites and gypsum incrustations π
Merula aurantia 312
migratoria $300,302,311,31,2$
Meta cedonulli 183,203
Metoporhaphis calcarata 45
forficulatus 46
Mexico, crabs from 45
Gulf of, fish from 631
mollusks from' 97, 165
stomatopoda from 530
Mica, secondary 669
syenite 645
Micropallas $560,561,562,567,57$
graysoni 561
whitneyi 561
Microrhynchine i3

Page.
Mopaliidæ .. 109
Morgan, A. C.F 616
sects collected by 616
Moschus moschiferus
131,13\%
Muhlfeldtia sanguinea路
Iuir Glacier, fossil wood from01,95
lateralisvar. corbuloides
muller, August 108314Murex affinis183
ambigat184,185
bicolor185
erinæceoides185
nitidus ~
palma-rosea 18318
185
(18. 183
Muricidx185
hexagonus 1851851,88,169,16
musculus9,16
sublimus 168,9
Mustacembelus16
foina 16(1)
finities of 310
Mychostoma 30
Myliobatidx, nomenclature of 111,113
Myliobatides111,113
Myliobatina 13
My
$1: 3$
Myliobatis 112filicaudatus111
flagellum 111
Myliobatis forsteri
Page.
hamatus 112
lobatus 111
narinari 112
nichofii 111
nieuhofi 111,112
obtusus 111
ocellatus 112
rhinoptera 111
sinensis 111
synonymy of 113
vulgaris 111
Myliobatoidæ 113
Myliobatoidei 113
Myodes 2 ± 2
nigripes, new species 242
Myrica asplenifolia 2×2
banksirefolia 221,234
californica $2 \sim 1$
cuspidata 221,234
præmissa 222, 234
vindobonensis 202,234
Myricacere 221
Mytilaspis 616, 620, 6:2
casuarinœe 6
citricola 621
philococeus $6: 3$
pomorum 616,621
Mytilidæ 1 to
Mytilimeria 69%
flexuosa 697
Mytilus humatus 98
multiformis 145,203
Myurella variegata 169
Narcobatus 111
Nassa brunneostoma 181
complanata 181
var. major 181
corpulenta 181,203
lirata 181
luteostoma 181,203
scabriuscula 181
tegula 180
tiarula 180
viber. 181
Nassidæ 180
Natica 684
catenata 192
chemnitzii 19.5
clausa - 8
excayata. 195, 203
maroccana 195
pritchardi 195. 213
russa 684
somice 196
unifasciata 195
zonaria. 19ั, 203
Naticidre 195
Natrix compressicauda 330,332
cyclopion $33:, 337$
fasciata 331, 33:, 332
flagelliformis 33) 595
taxispilota 332,337
Navigator Island, shells from 170

Notacanthus bonaparti
Page. 460
bonapartii..... $457,460,46 t, 465,469$
challengeri...-..............-. 468
chemnitzii .-............ 458, 459,464
mediterraneus 460,463
nasus 45 T, 459, 464
phasganorus $45 \pi, 462$
rissoanus 466.468
rostratus 46π
sexspinis 464
Notacantini 45)
Nucula 693, 69%
Nyctea nyctea 559
Nyctidromus 5ॅ3, 556, 567,550
albicollis 55%
merrilli 55 กิ
nyctomis æthereus 55 ²
Nymphaster
Nyssa aquatica 41.5
aretica 226,23!
sylvatica 416, 417, 418
Ocinebra erinaceoides 18.
lugubris 185
nux 18\%
squamulifer 185
Odinia_ 279
americana $2 \div 9$
Odontodactylus, new genus. 489 ,
$492,493,495,496,543,514$
bleekerii 490
brevirostris 496
carinifer 496
cultrifer 496
elegans 496
hanseni 496,516
havanensis 496, 497, 546
japonicus 496
scyllarus 496,498
subgenus 495
trachurus 496
Odontaster 26
hispidus 263
Odonterichthus 543
larva 54,546
Odontosagda 430
©dignathus, new genus 487
gilli, new species 48%
Orthalicus undatus 426
Oldhamia in America, genus of 313
antiqua 313,314
fruticosa 313
occidens, new species 314
radiata 313,314
Oleaceæ 224
Oleacina 430.436
Oliva araneosa 174
angulata $174,1 \% 5$
cumingii $1 \pi 4$
elegans 174
intertincta 174
irisans $17 t$
melchersi 174
obesina 174
pindarina 174
polpaster 174, 175
porphyrea 175
Page．
Page． Page． Page． Page． Page． Page． Page． Page．
Osceola elapsoidea
Osceola elapsoidea
Osceola elapsoidea
Osceola elapsoidea
Osceola elapsoidea
Osceola elapsoidea
Osceola elapsoidea 325，336 325，336 325，336 325，336 325，336 325，336 325，336
Osmunda doroschkiana
Osmunda doroschkiana
Osmunda doroschkiana
Osmunda doroschkiana
Osmunda doroschkiana
Osmunda doroschkiana
Osmunda doroschkiana 208，212，2022 208，212，2022 208，212，2022 208，212，2022 208，212，2022 208，212，2022 208，212，2022
Osmunda torelli
Osmunda torelli
Osmunda torelli
Osmunda torelli
Osmunda torelli
Osmunda torelli
Osmunda torelli 212 212 212 212 212 212 212
Ostrea
Ostrea
Ostrea
Ostrea
Ostrea
Ostrea
Ostrea 137 137 137 137 137 137 137
megadon
megadon
megadon
megadon
megadon
megadon
megadon 14 14 14 14 14 14 14
palmula
palmula
palmula
palmula
palmula
palmula
palmula 143 143 143 143 143 143 143
Olivancillaria testacea 1.5 1.5
Olivella cyanea
Olivella cyanea 1デ5，203 1デ5，203 1デ5，203
Ostreidæ．
Ostreidæ．
Ostreidæ．
Ostreidæ．
Ostreidæ．
Ostreidæ．
Ostreidæ． $1+3$ $1+3$ $1+3$ $1+3$ $1+3$ $1+3$ $1+3$
dama 175
gracilis 175
undatella 175
puelchana 175
julietta 174
Olividæ 173
Olivines，corroded 669
and augite 667
Omphalius aureotinctum 199
canaliculatus 199
fuscescens 199
globulus 199，203
Onagraceæ 2206
Onchidella binneyi 165
Onchidiidæ 165
Oncorhynchus 119，120
Oniscidia tuberculosa 189，203
Onoclea sensibilis 239
Onychotria 575
mexicana 573，579
Opalia crenatoides var．insculpta． 188
Opeas $430,433,437$
caracasensis 438
goodalli 443，444
striata 433
subula 443，444
Opheodrys æstivus． 3 35,336
Opheosauri 346
Ophioglypha bullata 295
confragosa 290
grandis，new species 293
saurura，new species 88
tessellata，new species 290
Ophisaurus ventralis 320
Ophiurans，new species of 245
Ophiuridæ 288
Ophiuroidea 288
Opiothoscelis 62
Opsichitonia 202
Orcutt，Charles R 204
Oregon，wood rats from 35
Oregonia gracilis 59
hirta 59
longimana 59
Oreomyza $304,305,306$
bairdii 308
Oriental region，scale insects of ． 618
Orthalicideo 163
Orthalicus 430，435̆， 436
melanocheilus 163,440
undatus 16：2，203， 440
Orthezia $615,618,6: 0$
cataphracta 694
nacrea 619
occidentalis 6
Orthography of lampreys 110
Orthotomium sufflatus $16 t$
Ortonia natalensis 618
uhleri 68
O－T＋0）lia 32
Ostrya virginiana 414，419
Otago University Museum，crabs pre－ sented by 65
Otonycteris hemprichi 16
Oudablis 615
Overlaying with copper by American aborigines 475
Ovis cycloceros 5.
vignei 5， 16
Owls，arrangement feathers of wing 569
pterylography of 551
Oxystomata 21
Pachycheilus 431，435， 437
Packard，R．L．，on blue mineral 19
Palæococcus $615,6 \%$
brasiliensis 63
Palearctic region，scale insects of 615
Paleozoic brachiopoda 719
Paliurus colombi $218,230,234,240$
Pallochiton lanuginosus 20%
Palmer，Edward 67
crabs collected by 83，85
shells collected by 162
Palmer，Wm．，crabs collected by 484
Palos，U．S．S．，stomatopoda collected by 535， 539
Papyridea aspersum 150
bullatum 151
Paradoxichthys 465
garibaldianus 466
Paragonaster 257
cylindratus 257
formosus 257
Paralomis． 484
formosus 486
Paramuricea 297
Pararchaster $2 \dot{8} 8$
armatus 245
semisquamatus var．occi－ dentalis 245
Pararchasterinæ 26
Parascalops，new genus 24
Parathelpusa campi，new species \because
pœeilei 20
Parthena $430,435,445$
Parthenopidæ ：3
Parula americana 314
Patagonia，stomatopoda from 518
Patamopyrgus $4: 31$
Patella mexicana 198，202，203
saccharina $16{ }^{3}$
Patellidæ
Peale，A．C．，rocks collected by 637，619
Pecchiolia 69%
Pecopteris denticulata 212,2
Pectenidæ 144
Pecten dentata 144
subnodosus 144
ventricosus 144
Pectumenlus $r 05$

Page.
Pectunculus arcodentiens, nem species. \% \% \% 2 ,
Pelecypoda 143,687
Pellicula 45
Peltella 430
Peltellas 429
Penfield, Benjamin B 573,579
Pentagonaster eximius, new species 264
granularis 265
Pentagonasteridæ 257, 260, 268
Pentelicus, new genus 605, 606,611
aldrichi, new species 612
Perca $124,1.25$
salmonea 126
variabilis 388,389,405
Percarnia 124,125
Percidæ 124
Pergande, Theodor 609
Peridotite var. wehrlite 651
Periploma alta 15%
argentaria 157
excurva 15%
lenticularis 157
planiuscula 154
Perisoglossa 306
Perissodon 90,92
clathrodonta 99
minor 99, 105
subgenus 99
Perna chemnitziana 145
janus 145
Peru, shells from 148
Petaloconchus macrophragma 192,203
Petromyzon 108, 110
branchialis $10 \pi, 1118$
fluriatilis 108
macrostomus 110
marinus 108
planeri 107, 108
sp 109
Petromyzontidæ 109
Petrosaurus 589
Petunculus gealei Z01
giganteus 147
maculata 147
tenuisculptus 147
Pfeffer, G- 550
Philadelphia Academ5, shells in $15 \pm$
Pholadomya r00
Phoxaster 256
pumilus $25 ะ 6$
Phragmites alaskana 216, 232
Phyllites arctica, new species $230,234,240$
Phyllonotus ambiguus 185
bicolor 183
brassica 184,185
erythrostoma 184
nigritis 184
princeps 184
radix $18 t$
Physa 431
Physokermes 616
Phænicophilus 305
Phænodiscus 605, 6016 611.612
æneus 605,612
Phrornis, affinities of 310
obscura 302,311
Phainopepla nitens, aftinities of 312
Phalænoptilus

nuttalli 555
Phenacoccus 615
Phenacomys 24
Phasianella perforata 198,203
Phasianellidx. 198
Picea sitchensis $210,215,232$
Pike, N., stomatopoda collected by 495,500
Pike-perches, proper name of 126
Pillsbury, Samuel, shells collected by- 141
Pilumnus diomedeæ, new species 85
gracilipes 86
Pineria $430,431,432,446$
viequensis 143
Pinites pannonicus 215,232
Pinnaspis 616
Pinus echinata 420
rigida 418
sp. 213,232
staratschini 213, 出
virginiana 418
Pipilo erythrophthalamus 304
Pisa incisus 71
quadridens $\% 1$
Pisania gemmata 179
insignis. 179
Pisidium 431
abditum 438
consanguineum 438
Pituophis melanoleucus 398,336
Pityoxylon inæquale 215, 23:
Placunanomia 146
cumingii 14
Plagioptycha 430, 434
Plagiostomes 111
Planchonia bryoides $6 \geqslant 1$
Planera aquatica 415
ungera 294,234
Planorbis 430
albicans 44
bicarinatus 166
caribreus $4: 38$
circumlineatus 414
corpulentus 166
guadaloupensis 443,444
haldemani 44
havanensis 438
lucidus 443,44
macnabianus 44
refulgens 44
rissii 44
schrammi 443
tumidus $438,440,414$
Plants, fossil, from Dakota formation. 136
Plastic clays of New Jersey 106
Platanites hebridica 239
Platanus nobilis 234, 239
occidentalis $16,41 \pi, 418,4^{2}(0)$
primæva 13:
Platypeltis ferox 31%
Platystoma 431
Plecotus auritus 16
Plectrophanes 305

Page.

uarginata.
44
Plenrotoma

funiculata.

gibuosa

hormophora .-....-.-.-.-.-.-.-. $68 t$
incrassata. 173

maculosa 1%

microscelida, new species. $6 \% \sim \sim, 6 \% 8$

periscelida------................. 678
picta - --------------------- 171
tuberculifera...................... 17%
Pleurotomella
678,680

chariissa-....-...-............ 679
climacella, new species_- 679,733
gypsata------------- $6 \pi 8$
gypsina, new species.... 678,73\%
hawaiiana, new species. 679
packardi------------------ 683

bifrons -----------------------. 248
intermedius .-..................... 248

lamelligera........-.-................. 49,51

riisei
50
spatulifrons.......-.................. 48
spinifrons, new species.-.... 51
Podonema lypoglypha
40
lamelligera
riisei
49

Podozamites latipennis .-..................... 216,203
Pœeiliidæ, nomenclature of- 115
Poecilini.

Pollinia
grandis
615
------------................. 617
Polyacanthonotinx -.....-....................... 45%
Polyacanthonotus .-.......---.-.-.-.-. -- $456,45 \%, 465$
rissoanus.--...-........ 466

Polygyra.
$430,435,437$
acutedentata -----........................ 161
behri... 161
bicruris 161
cereolus_--.---...-....................... 440
hindsii .. 161
platyglossa-....................... 161
ventrosula

Page.
Polymita........................... 429, 430, 431,43シ, 445

Polynices .-.. 18!

var.fusca- 196

Polysomatic olivines 66 ĩ

forcipatus ...-............................ 217

Pontasterinæ, new subfamily----------- 246,268
Populusarctica ----------------- 217, 232, 239, 240
balsamoides..................................217, 23:)

grandidentata .-....-.-.-.-. - $414,417,418$
heterophylla............................... 417

leucophylla _--.--......................... 217,23\%
monilifera------------------------- 417, 420
richardsoni .-....-....-.-...-. 217, 232,239

Porcellanaster-.-....................................... 2 .

Porpoises from Indian Ocean..........-.-- 33
Potamopyrgus coronata 438,443, 444
Pricus............-. .-.................................. 109

entomelas.---.--.....-.-. -- $385,386,40 \%$
mystinus .-...-............... $385,406,407$

Pristiophoridæe .--...--................................... 111

verrilli, new species .-.-.---- 486

attenuatus.-.----------------- 34
measurements of 35

Providence Island, porpoise from....-- 34
Prunus americana .-................ $411,416,417,418$

serotina - -.-........-. $411,416,417,418,419$
variabilis
226,234
Prussia, east, fossil flora of .-.............. 23 .

rubroradiata -.-...-.............. 156

Pseudarchaster ..2668
concinnus, new species $\quad 250$
तiscus ------...-............ 249
intermedius 249,254
tessellatus --................. 250
Pseudarchasterinre.-....................................

Page.	Page
Pseudemys concinna..................-- 318	Puucturella galeata major................ 712
rubriventris-.-.-..... 31 -	
	contracta--------------.----------- 438
	hexodon- 414
dominguensis............-- 44	pellucida .-------..............- $438,443,44$
Pseudococcus- (6in)	Purpura liserialis......................... .
	bitubercularis_.....-.......---- 186
	costata_-...........-------------- 187
Pseudosquilla.-.......... 489, 492, 498, 499,543, 516	
cerisii .-..-----.--...------ 499	hippocastaneum 155, 186
	kiosquiformis-....-- .-..-- 186
empusa --------...-....--- 498	
ensiger----.--------------- 499	
lessouii---.--------- 499,502	
marmorata .-.-.------.--- 50:	Purpurinæ------.-.....---................- . 185
megalophthalma ..--....-. 499,500	
monodactyla -..------..- 499	
oculata -----------.------.- 499, 500	
ornata -....----------...-. 499, 500	
pilaensis .-....-.-------..- 499	canigula--------.....-...-- 4.16
	erminea -----------.........-- 16
	subhemachalanus...---------- 16
audromeda......................	Pygopus-.-......................- 319
	Pyrgulifera................................. $13.13,13 \%$
Ptelea trifoliata...--......----------------- 415	humerosa-. .-...---..-- 135
Ptenoglossa--....-.................... 188	meekii, new species......... 135, 138
Pteraster hexactis, new species........- 275	Pyroceplalus abingdoni, new species.- 367
	carolensis, new species.- 365,
	366,36\%
Pteromys albiventer-..........----------- 7,16	dubius .------------------ 368
Pteropodus-............. $378,385,396,407$	intercedens, new spe-
atrovirens .-.--- --. $398,400,406,407$	cies .---------------..--- 366
brevispinis........... 398, 401, 406,407	minimus .-----.-......... 368
carnatus .------..... 399, 403, 406, 407	nanus -------...------ 365, 366, 368
caurinus .----------- 399,403, 405, 407	
chrysomelas- $399,403,406,407$	
dallii ----.---..-...... 399, 401, 406, 407	
elongatus 398, 400,407	
maliger-. $399,401,402,406,407$	coronaria-.-...-........ 411, 417, 118
nebulosus .-..... 399, 403, 405, 406,407	
proriger .-....--....- 398, $400,406,407$	
rastrelliger .-------- $399,402,406,407$	schneideri-....---------- 588
saxicola......... 397, 400, 401, 406, 407	
sinensis-.....-------397, 400, 406, 407	
vexillaris .-....-...- $399,402,406,407$	Quartzose hornblende porphyrite.-.... 664
zacentrus..........- 398, 401, 406, 407	Quebee, fossils from- 313
	Quercus alba .-------------------413,416, 417, 418
Pterylography of goatsuckers andowls. 551	
Ptychocochlis-.....--...- $431,433,434,435$	coccinea --------------....- 416, 417, 420
bakeri-.-------...--- 449,450	
Puerto Rico, fresh-water mollusks of.- 443, 444	digitata .-.................- 413, 417, 418
land mollusks of .-.-.----- 443, 444	furuhjelmi .-....................- 219, 23 2
	imbricaria
gracilis ..-.-------.---... .-... 0	
	macrocarpa_................ 4i6, 417, 420
lordii .----..-........-----...... 69	michauxi --..-......--.-.-.- 414, 418, 419
quadridens .-----...---.-....-- 71	minor -------------.---.....- 414, 418, 419
var. gracilis- 69	muhlenbergii............ 413, 414, 415, 419
	nigra...----------------------414, 417,418
bigeloviœe -.---- .-. - .-.------- 633	palustris .-------.-- ---- 416,417,418,419
cupanico .--------------------- 620	phellos .-------.............. 41π, 418,420
	platanoides .-...---------.- 416, 417, 418
psidii-.-.-.-.-...-...........-- 621	
Puncturella major .-....-.-.-.............- \%12, \%3刃	pseudocastanea ------------..-. 219,238

	Page.
Salmonacei	118
Salmones	118
Salmonidæ.	121
differential characters of.-	117
Salmonides	118
Salmonoidei	118
Salmonoides	118
Salmonidi.	118
Salmoniformes	119
Salmoninæ.	118
Salmonina	119
Salmonini.	119
Salt from Carmen Island Works	140
Saltator atriceps	306
Salvelini.	119
Salvelinus	119
Samoa, stomatopoda from	497,508
Sandat.	126, 127
lucioperca	127
Sandre	127
Sandrus.	126
coro	128
lucioperca	$1 \geqslant 8$
Sandstone concretions, formation of .	87
Sanguinolaria kindermanni	156
Sapindacero.	29
Sapindus diversifolius	13:
	,417,418
Sauri-	300
Sauridre.	117
Saxonite	655
Say, Thomas.	549
Scale insects, geographical distribution of	615
Scalidre	188
Sicalops breweri	2\%
Scaphander.	6%
alatus, new species	676,732
mundus	676
niveus	67
nobilis	676
Scapanus dilatus	242
Scapharea labiata	146
multicostata	146
Scaphopoda..	157, 686
Sceloporus undulatus	$3: 0$
Schasicheilus	439
Schilus.	128
Schneck, J	409
Scidmore, Miss E. R., fossil plants collected br	捡 1
	346,349
Scintilla cumingii	149
Sciuropterus fimbriatus	\%,16
Sciurus aberti.	241
concolor, new subspe- cies \qquad	241
fossor	241
Sclater, P. L	5
Scolecosoma	109
Scops asio.	56.5
Scorprena -	376,377
Scorprnidæ	3\%5,401
Scorpæninæ	376
Scotiaptex cinerea	5.9
Scurria mesoleuca.	197,203
var. vespertina.	203

Page.
Sebastomus constellatus $\ldots-\ldots . . .-376,394,406,407$
elongatus .---- -............. $3 \pi 6,3 \pi 9$
eos 3:6, 306, 40t, 40ĩ
genus allied to...............- 389
gilli -.-................. 392, 395, 406, 40%
levis $376,390,301,391,406,40 \pi$
macdonaldi $3 \pi 6$
melanostomus- $3 \pi 6,406$
miniatus .-------.... $390,393,406,40 \%$

pinniger - .-....-----. $390,393,405,40 \mathrm{z}$
proriger............................ $3 \pi 6$

rhodochloris 392, 395, 406, 40
rosaceus $3 \pi 6,37 \pi, 391,395,405,407$
ruber......... $376,390,393,396,405,407$
rubrivinctus....................... $3 \% 6$
rufus .-............ $3 \pi 6,390,393,406,40$ \%
rupestris .-.........--- $392,395,406,40 \%$
serriceps.........-.....-........... 376
umbrosus $-\ldots$......... $391,391,406,407$
Sebastosomus........................ 376, $378,385,386,407$
ciliatus .-------..- $387,388,405,407$
flavidus .-.......... 387, 390, 405, 407
melanops..... $377,387,388,405,407$
pinniger $377,393,405$
ruber -.......................... 375
serranoides $387,406,40$ \%
simulans .-.----...-........ 388, 405

xyris 405, 406, 407
Secondary mica 669

Selenites ... 430
Semelidx -.. 156

Semnopithecus schistaceus.-..............- 1,15

Septilranchia - \quad. 03
Septifer cumingianus .-.........-.-........... 145

acicularis....................-------- 214
langsdorfii.-.-.------------- 213, 232, 240

Serpulorbis pellucidus .-......................... 192
squamigerus .-......-.......... 192
Seychelles, crabs from .-....................... 24
Shells from Jamaica, new species of.... 448
Lower California----------- 139
of the Tres Marias_-.................. 139

Siberia, fossil flora of 236

Sigaretus debilis........-............................ 197
perspectiva 196
Sigmodon fulviventer-............................ 129
hispidusarizonæ............... 130
texianus .----------- 130
toltecus .-............-. 129
minima, new species 129
Signoretia ...-. 615

Simonds, F. W.................................... 502
Simpson, Charles Torrey, on mollusks of West Indian region.
Page. 423
Simpulopsis
Sinusigera 680,683
Sipho acosmius 708, 73:
halibrectus 708, 73:~
hypolispus 708,732
spitzbergensis 711
Siphonalia modificata 176
Siphonaria 169
æquilirata 166
brunnea. 169
costata 168
ferruginea 168
lecanium 166,203
var. requilivata 167 166, 167
palmata
palmata
leucopleura 169
maura 168
palmetta 168
pica 166
Siphonariida 166
Siren lacertina 338
Sistrurus miliarius 335,336
Sistrum ferrugineum 18:
Skulls of porpoises from Indian Ocean 33
Skulls of terrapene 586
Sminthus concolor. $1,9,16,311,313$
flavus, new species 341,342
in Kashmir 311
leathemi 341,342
subtilis 342
Snake, Butler's garter 593
Smith, Miss M. MI 453
Smith, S. I 4\%9,550
Smith, William S.,squirrels collected by - 241
Solariella 684
actinophora, new species 684, 685
reticulina 729
Solariidro 193
Solarium granulatum 193
Solaster 267
benedicti, now species 273
endeca 271
syrtensis, new species $2 \pi 1$
Solasteridæ 271
Solecurtus aftinis 156
californianus 156
Solemya 692, 695, 696
johnsoni 712,731
Solenolambrus decemspinosus, new species $8 t$
typicus 84
Solenophora 603
Solenosteira modificata 176, 203
Soleomya johnsoni ${ }^{7} \times 1$
Soletellina rufescens 156
Somniosus brevipinnis. 464
Soridia lineata 345,347
South Carolina, mollusks from 97
stomatopoda from 518
Spærium 431
cubense 440
Spenocarcinus corrosus 66
Speotyto $560,561,562,564,56$ 568,569
cunicularia559, $56{ }^{2}$
Speotyto cunicularia hypogæa Page.
56Spergo, new subgenus
daphnelloides, new species680,683
glandiniformis, new species 680
683, 681, \%31
Spermococctus 616
Sphærium cubense 438,440
Spilotes corais :3;
couperii $3 \approx i$
Spiræa andersoni 2206, 2i3t
tomeutosa 206
Spisula parva 10 kj
polynyna 93
quadricentennialis 105
similis 93
Spitzbergen, fossil flora of 236
Spiraxis. 430,437
paludinoides 444
subula 438,440
Spoerococcus bambusae $6 \% 1$
Spondylidx 144
Spondylus princeps $1+4$
Squirrel, Abert's. : 11
Squalus 111
Squatina 111
Squilla $489,491,492,502,509,544$
aculeata 510, 5 .33
affinis 511,537,538
alba 511, ころ39
arenaria 496
armata $503,509,513,515$
bidens 547
biformis $511,530,532,544$
cerisii 50%
chiragra 495
chlorida 510
ciliata 499
costata 511
decorata 510
desmarestii $509,513,515$
digitalis 337
dubia $509,510,518$
dufresnii $510,5: 1$
edwardsii 535
empusa
52
fasciata 510
ferussacii 511
glabriuscula 508
gracilipes 509
hoeveni 508
indefensa 503
intermedia 510,530
lævis 503,511
lata $510,51 \%$
latreillei 509
leptosquilla 510
lessonii $50: 2$
mantis $491,510,518,521,526,536$
mantoidea $510,5 \% 1$
massavensis 535
microphthalma 5)?
miles 509
monoceros 50%
multicarinata 511
neglecta 510
nepa $511,519,5 \stackrel{\sim}{\sim}, 535,53 \pi, 538$
Page.
Squilla oculata 500
oratoria 535, 537, 538
panamensis $510,515,518$, 6,530,544
parva 510,518
polita 509,513
prasinolineata. 510, 520
quadridens 509,511,541
metamorphosis of 546
quinquedentata 511
raphidea 511,535
rhetorica 536
rotundicauda 509
rubrolineata 518
rugosa 511,511
scabricauda 508
scorpio 510
scyllarus 496
spinifrons 50
stylifera 499
supplex 511
trapues 498
tridentata 503
vittata 508
Squillæ parallelæ 498
Squillidæ 491.49:
Stalactites in caves, formation of 7
Standella planulata 157
Stanton, T.W., fossil mollusks collected by 135
Starfishes, new species of 245
Staphylea trifolia 420
Stearns, Frederick, mollusks collected by 725
Stearns, Robert E. C 204
on shells of Tres Marias and Cali- fornia 139
Stearns,Silas,stomatopoda collected by 508
Steatornis $55 \cdots, 572$
Steinberger, A. B., stomatopoda col- lected by 497,508
Stejneger, Leonhard......... 311, 32n, 323,3:2, 348crabs collected by. $\quad 48 t$on Butler's gartersnake
on the coachwhip 595snake
on the Japanesereed warbler...205
on a new lizardfrom California. 1T,589on a salamanderfrom Arkansas.
597
Steno capensis 36,3~
Stenodontinæ 121
Stenodus. 120, 121
Stenogyra 430,437
terebraster 44
Stenogyridx 436, 443
Stenoradsia acrior 201
Stenotrema hirsuta 162,160
Stephens, F ., wood rats collected by 354
Stichasteridxo 269
Stilosoma extenuatum. $323,236,33 \pi$
Stimpson, W.,stomatopoda collected by. 535, 539Stizostedium128
Page.
Stizostedium canadense 124
lucioperca $12 \pm$
marinum 125
relations and nomencla- ture of 123
vitreum 124
wolgense 124
Stizostethium 128
Stoasodon 114
Stoastoma 445
Stomatopoda, crustacea of the order 489
Stomatopod larvæ 543
Storer, David Humphreys 453
Storeria dekayi 332,336
occipitomaculata 333,336
victa 333
Streptostyla 438
Strigatella tristis 177
Striges 551,559
aftershafts, oil gland, and down. 570
comparison with Caprimulgi 566
feathers in the tail. $5 \% 0$
Strix. $560,565,567,568,569,570,571$
asio 559
brachyotis 559, 564
cunicularia 559
lapponica 559
nyctea. 559
practincola 559, 566
virgianiana 559
Strobilops 429,430
hubbardi 440
Strombella 710
middendorffi 710,732
fragilis 710, 73
melonis 710,732
Strombidæ 190
Strombina maculosa 183,203
Strombus galeatus 190,203
gigas. 190
gracilior 101
granulatus 190
Stroplima 430
Subulininæ 437
Subulina 430,437
octona $6,438,443,444$
octonoides $440,443,444$
Succinea 430,433
approximans 443
latior 433
riisii 44
Sula abbotti 371
Sulc, K 617
Sulcosinus 707
taphrium 707, 732
Surcula funiculata 172
maculosa 122
tuberculifera 172
Swan, J. G., crabs collected by 488
Switzerland, fossil flora of 237
fossil plants from 228
Synatomys 242
Synotus darjelingensis 16
Syrnium $560,562,567$
nebulosom 563
Syrphas sp 605

Page.
Torinia rariegata 193, 203
Tornatellina 43%
Torpedinidæ 111
Tortoises, box, North American 573
Towne, J. W., shells collected by 141Townsend, C. H., birds collected by- 36 4 ,
fossil plants collectedbymammals collected byshells collected by211211241
ToxoglossTownsend, C.H. T
Trachymaia cornuta
349
Trachysaurus 24,234
Trapa borealis
Trapa borealis
461
lected by419
Trees, classified measurements of
indigenous to Lower Wabash Valley415
list of, from Maryland 418from Virginia417
of the Lower Wabash Valley 409
Tres Marias, shells of 139,203
Trichoplatus huttoni 65
Tripteronotus 120
Triton vestitum 188, 203
ง Tritonidæ 188
Tritonidea gemmata 179
Turdus swainsoni 312
Turner, L. M., mammals collected by 243Turritella gouiostoma
133
tigrina 193193
Turretellidæ3
Tursiops
$3 \pi 1$
Turtur saturatus 1
Tritonidea insignis 179
Tritonium norvegicum 710
schantaricum 711
Trivia pulla 190,20:3
radians 190,203
sanguinea 189, 203
solandri 189
Trochida 199
Trochus ægleës 685illotusTrogons, new genusTropidonotus ordinatus329var. butleriTropidorhynchus685601
329594
30571: 78Trophon disparilis.712,732True, Frederick W., on mammals fromBalistan andKashmiron now NorthAmerican mam-mals241
on porpoises fromIndian Ocean.
on rodents of genusSminthus
341on undescribed
wood rats 35
Trumeatella $4: 3$
Truites 118
Trutiformes rage.Trutta121
Trygonobatus 111,114
Tsuga mertensiana 215,
Tyliqua 34
Typhlophthalmi 345
Typhlosaurus 346
Tyrannus 310
Tudora311
Turbinide 198
Turbinellide 176
Turbo assimilis. 198
depressus 198
Huctuosus. 198
funiculosus 198
fokkesi 198
moltkianus 198
sfuamiger 198
tessellatus. 198
Turcicula 682
Turdus fuscescens. 312
musicus 300
mustelinus 312
pallasii 311,312
Ukko 710
Ulmus alata 412
americana $416,41 \%, 415$
plurinervia $2: 4,234$
pubescens. $41 \approx, 416,41 \%$
racemosa 416
sorhifolia 224,234
Ultramarine from New Mexico $1!$
Unavilla regina $1!5$
Unio 13π
alatus 134
anodontoides 133
barbouri, new species. 13:3, $1: 38$
doubtful species 133, 133
gundlachi 438
scammatus 435
Unionidx $133,1: 36$
Urolophus 111
Uroxis $11:$
Ursus arctos. t
isabellinus. 4, 16
thibetanus 4,16
Urticacere 迸 3
U'ta. 509
mearnsi, new species 589
thalassina 589. 591
Uranilla inermis 198
Vaccinium arboreum 415
friesii 225,234
reticulatum 2202,234
Vaginula 430
Valvata 443.44
Taricella 430.430
Vasey, George 11:
Vendreysia 45
Venericardia crassa 148
flammea 148,203
Tenerida 151
Vemus bisecta 113
columhonsis 153
crenifera 151
Veuus fluctifraga 152
gnidia 153
kellettii 15
mobiliana 100
multicostata 151
neglecta 158
puerpera 1.1
reticulata 151
simillimia 15
subimbricata 15
subrugosa 151
succincta $15:$
undatella 15;
Vermetidæ 192
Vermetus macrophragma 192
pellucidus 19:
var.eburneussquamigeras
19:192
Verrell, A. E., on new species of star- fishes and ophiurans 245
Verticaria 1.
beldingi, new species 17
hyperythra 1*, 18 ־, 18
Verticordia 687,688, 691,
688, 697, \%0\%
acuticostata
eburnea 687
elegantissima 687
flexuosa 697
Verticordidæ 675
Vertigo 430
ovata 438
Vespertilio longipes. 16
megalopus 16
murinus 15, 11
Vesperugo borealis 16
discolor 16
pipistrellus 15,16
serotinus 15,16
Vestiaria 301, 305, 308
Viburnum dentatum 415
nordenskiöldi 225. 234
prunifolium 411,416, 418
Vinsonia 618,620
stellifera 618
Virginia, insects from (H0), 603
Vitaceæ $\cong 8$
Vitis 231
æstiralis 421
cordifolia 421
crenata 228,23t
riparia 421
rotundifolia 208,234
Vivipara 429,431
Viviparidæ 125
Viviparus 134
hicksii, new species 135
Voles, new species
Vollum, E. P., wood rats collected by - 355
Volvarina varia 176
Voluta cumingii 16
Volutaxis $430,435,436,438$
Volutharpa 70%
Volutidæ 116
Vulpes montanus 3,16
Page Page
Wabash Valley, Lower, native trees of 409Wachusettlected byWalcott, Charles D., on discovery of Old508
hamia in America 313
Waldheimia 720
wrvillei \%
Walker, S. T., reptiles collected by 32
Walkeriana 618,620
floriger 619
Wallace, M., stomatopoda collected by - 508
Ward, Lester F 236, 5:1
Websterite 663
West Indian region, mollusks of 423
Weyers Care, Va., stalactites from 78
White, Charles A., on invertebrate fauna of Dakota formation 131
Whitehurst, Dr.,stomatopoda collected by 508
Wickersham, James, jadeite obtained from 2
Williams, G. H 658
Williamson, Mrs. M. B 201
Wisconsin, fossils from 313
Wittfield, Wm., reptiles collected by 32:
Wood, coniferous, from Alaska 20 T
Wood-Mason, J 549
Wood rats, diagnosis of undescribed 353
Woolfe, H. D., fossil plants collected by 210
Wyandotte Cave, stalactites in \%
Wyoming, fossil mollusks from 137
Xantus, J., wood rats collected by 35
Xenopoma 429, 431, 43:
Xylococeus 615
Yates, L. G 204
Yoldia 392,693
lanceolata 14%
limatula 692
Young, M. C., schmr., star fishes collected by 27
Zamites alaskana 215,23:
Zanotacanthus 465
Zanzibar, crabs from 24
Zaphysema 2
Zizypinus japonica シ29
meekii 230
cinnamomoides 229
hyperboreus 229
paradisiacus 29
serrulatus 229
townsendi, new species $218,209,234,240$
Zonites arboreus 438
gundlachi 438,44
indentatus 438
minuscula 438,44
Zonotrichia albicollis 304
Zosterops aldabrensis, new species 3 3 1
madagascariensis 3%gloriosæ,new sub-species.-- 3π
palpebrosa $3 \pi 1$37
Zygobates 114
Zygobranchiata 200
\approx

39088014208979

[^0]: * Ursur torquatus, Wagner.

[^1]: * The same remark applies to the figure pulblished by Dr. Sclater in 1860. (Proc. Zool. Soc., London, 1860, pl. 79.) It does not agree with the diagnosis which it accompanies.

[^2]: * Radde, Reisen im Siiden von Ost-Siberien, 1, 1862, p. 244.
 \dagger Sterndale, Mammalia of India, 1884, p. $444 . \quad \ddagger$ Op. cit., p. 504.

[^3]: * Proc. Z/aol. Soc. London, 1881, 548.

[^4]: * These measurements wero made on the fresh specimens by Dr. Abbott; the rest are from the dry akins.
 \dagger Dr. Abbott gives 1.625 inches for the tail and hairs, but I think this must be an error, and have aubstituted a measurment of the vertebra from the dry skin.

[^5]: * Iron, London, Jan. 2, 1892: "A New Discovery of Ultramarine."

[^6]: *Miers, Crustacea H. M. S. Alert, p. 206, pl. Xix, fig. B, 1884.

[^7]: * Nouv. Arch. Mus. ITist. Nat. Paris, 1, 1865, p. 295.

[^8]: * Geology of India, Part Iv, p. 94.

[^9]: * Dif Nephritoide des mineralogischen mul des ethographisch-präehistorischen Musenms der Universitait Freiburg im Breisgau. Inaug. Dis., Berlin, 1885.
 \dagger Bull. Soc. Min., IV, 1881, 157.

[^10]: * Proc. U. S. Nat. Mus., xi, 1888, 115.

[^11]: ${ }^{*}$ L. c., 1). 45.

[^12]: * By refering to Dr. Liitken's illustrations I find that he apparently includes the metacarpals with the phalanges proper. In quoting his formule, therefore, I have subtracted one from the number given for each digit.
 † Bull. U. S. Nat. Mus., No. 36, 1889, p. 67.
 \ddagger Schreber's Siiugethiere, pl. 358.
 § Proc. Zool. Soc., London, 1865, p. 522.
 || Loc. cit., p. 738.

[^13]: * Schreber's Situgethiere, 7 er Th., 1816, p. 332.
 + Waguer states (Schrober's Singethiere, $7 \times r$ Th., 1846, preface) that Weigmann died before completing his work on the cetacea for the Sïngethicre. The plato must have been issued as early as 1811 , however, as Schlegel refers to it in his Ahboullungen aus dem Gchicte der Zoologie, of that date, and assigns to the species a skull in the Leyden collection.
 \ddagger Described in 1865.
 If Catalogue of Seals and Whales, 1866, p. 398, fig. 101.
 || Note.-In my Revision of the Delphinidie, p. 61, I make the statement that the genus Prodelphimus is distinguished from Tursiops by its less mumerous teeth. The opposite, of conrse, is intended.

[^14]: * Proc. Acad. of Nat. Sciences, 1886, p. 351.
 f"The Pillared Palace is entered by a broad doorway, flanked by stalacto-stalagmites, while within, ceiling, cornices, and shelves are fringed with stalagmites adul frosted with a never ending medley of strange, crooked, writhing, twisting unsymmetrical sprigs of white limestome, pushed out of the solicl rock, aud still growiug by propulsion from the bottom; one chaster is a realization in stome of the horrible, snaky tresses of Medusa." John Collett, in Rep. Geol. Sur. of Iud., 1878, p. 475-76.

[^15]: [Advance sheets of this paper were published March 30, 1894.]

[^16]: *See Newton, Brit. Oligocene and Eocene Moll., p. 321, 1891. Since writing this note the researches of Mr. C. Davies Sherborne, kindly undertaken at my snggestion, show that No. Xxxyi was received and entered on the donation book of the Linnean Society, London, Jannary 4, 1832; from which it may bo inferred that the number in question was printed in the last days of December. 1831.

[^17]: *The after life of the species is, however, quite different.
 "The brook lamprey does not apparently increaso in length after transformation, for many of the transformed ones at the spawning season are of less size than the just transformed ones."
 "The lake lamprey upon transforming is only about one-half to one-fourth the length and probably not one-tenth bulk of the spawning ones." (fiage, op. cit., pp. $452,453$.

 A lamprey half the length of another would equal an eighth of the bulk, and one a fourth the length would only reach one-sixty-fourth the bulk, if the propertions corresponded.

[^18]: < Petromyzon, Linneus, Syst. Nat., ed. 10., v. 1, p. 230, 1758.
 <Petromyzon, (Duméril) Cuvier, Règne Animal, t. 2, p. 118, 1817.
 on larval form).
 $=$ P'etromyzon, (iray, Proc. Zool. Soc. London, pt. 19, pp. 235, 236; List Specimens Fish Brit. Mus., pt. 1, p. 137, pl. 1, f. 1 (mouth), 1851.
 $=$ Lampetra, Malm, Forhandl. Skand. Naturf., 8. möde, p. 580, 1860.
 <Petromyzon, (iし̈ntubi, Cat. Fishes Brit. Mus., v.. \&, 1). 500, 1870.

[^19]: * The specific identity of either the European Lampetra planeri or L. fluriatilis with an American species is very doubtful and at least requires verification.

[^20]: *Anales del Museo de la Plata [etc.]. Seccion zoologrica I. Geotria macrostoma (Burm.) Berg y Thalassophryne montevidensis Berg.-Buenos Aires-1893.

[^21]: * President Jordan was perfectly logical in his conclusions. Actobatur was prior to Myliobatis and covered exactly the same group. Remembering this, but not having Blainville's memoir on hand at the time, temporarily forgetting the entire course of reasoning which had previously influenced me (herewith outlined), and fearing that prejudice in favor of accepted usage might have unduly prevailed in my mind. I noted the change, intending to consult Blainville's papers before publication, but the work could not then be found. The only reason why Aetobatus had not been revived before was because it was supposed to be subsequent to Myliobatis. (See Gray's List, p. 128, and synonymy, where Myliobatis is erroneously attributed to "Dum. Zool. Anal., 1806.")
 \dagger Leiobatus BI. was anticipated by Leiobatus Raf. (Car., p. 16, 1810) = Rhinobatus.
 \ddagger The initial capitals are repeated from Blainville's memoir.

[^22]: * A less equivocal expression would be that Myliobatis was a synonym of detobatis since the former name (1817) was subsequent to the latter (1816).

[^23]: <Hucho, Günther, Cat. Fishes B. M., v. 6, p. 140, 1866. (Provisional name for subdivision of Salmo).
 <Hucho, Jordan, Man. Vertebr. N. U. S., 1. ed., p. 260, 1876.
 $=$ Epitomynis, Schulze, Fauna Pisc. Germ., p. 38, 1890. (Subg. of Salmo.)
 Salmo sp. auct. pl.

[^24]: * The identity of Salmo (or Salar) obtusirostris of Heckel and Thymallus microlepis was recognized by Dr. Steindachner in 1882 (Sitz. K. Akad. Wiss., 1. Abth., v. 84; Ich. Beitr. xii, p. 15). Nevertheless, in 1886, Dr. Seeley in "The Fresh-water Fishes of Europe," retamed the two nominal species, Solmo obtusirostris (p. D86) and Thymallus microlepis (1 , : Siss). If the genus lirachymystax is acepted the speeies in question should apparently be referred to it.

[^25]: $>$ Coregonus, Agassiz, Lake Superior, p. 336, 1850.
 $>$ Argyrosomus, Agassiz, Lake Superior, p. 336, 1848.
 $=$ Coregonus, Günther, Cat. Fishes in Brit. Mus., v. 6, p. 172, 1866.
 $>$ Prosopium, (Milner) Jordan, Man. Vertebr. N. U. S. 2. ed., p. 381, 1878,
 $>$ Allosom.s, Jordan, Man. Vertebr. N. U. S. 2. ed., p. 361, 1878, (subg. of Argyrosomus).

[^26]: * (v. Xos $\eta \gamma \varepsilon 6$, ich fiihre den Chor an.)
 \dagger The name Choregon is distinct etymologically and in form from Coregonus. Artedi, the author of the name, in his Philosophia Ichthyologica (p. TV), gave the following etymology:
 "Conetionts a simp pupilla muli d jwzu urgulus quia pupilla anteriore parte in angulum acutum procurrit."

[^27]: ${ }^{*}$ Proc. Zool. Soc. London, 1892, pp. 411-113, p1. 25.
 \dagger Bull. U. S. Nat. Mus. 10.
 Proceedings National Museum, Vol. XVII-No. 093.

[^28]: * Gymnocephalus (Bloch) Blkr. Arch. Néerland Sc., vi. 11, p. 266,=Leptoperca (Gill Proc.Acad. Nat. Se. Philit, 1861,$]^{2} 502$) is distinguished from Icerina by the slender body, prolonged snout, and longer, many-spined (17-19) dorsalis. Its species are G. schratzer (ex Linn) and G.tanaicensis (ex Güldenstedt).

[^29]: *See Proc. Acad. Nat. Sc. Phila., 1861, p. 47.

[^30]: * Nouveau Dictionnaire d'Histoire Naturelle, 11. ed., vol, 30, pp. 126, 129.
 \dagger Dictionaire des Sciences Naturelles, v. 47, p, 173,
 \ddagger Elements of Natural History, vol. 1, p. 465.

[^31]: * Bull. Amer. Mus. Nat. Hist., II, No. 3, p. 180, October 21, 1889.
 \dagger Alleu. L. c., III, 1891, p. 207.

[^32]: * See The Flora of the Dakota Group, hy Leo Lespuereux; Monog. Xvir, U. S. Geological Survey. Washington: Government Irinting ()fice, 1891. This is a posthumous publication, edited by Prof. F. H. Knowlton.

[^33]: * For descriptions and figrues of these species, see Vol. ix, U. S. Geol. Surv. Terr., pl. 1, pp. 92, 114, 159, 206, 251.

[^34]: * These remarks are hased upon my recollection of a personal statement made to me by Dr. Hayden.
 †Vol. ix, U. S. Geol. Surv. Terr., pl. 2, pp. 80, 92, 109, 120, 163, 164, 170, 174, 195, 202, 253, 300, and 333; Proc. U. S. Nat. Museum, vol. 2, pl. 5, pp. 295, 296.
 \ddagger See Bull. U. S. Geol. Survey, No. 82, p. 122.

[^35]: * Proc. Cal. Acad. Sciences, July, 1872.

[^36]: *A. Agassiz.

[^37]: * Catalogue Iv, Museum Godeffroy, May, 1869.
 t Marine Mollusks S. E. coast of the Uuited States, 1889.

[^38]: * Whatever may be the subgeneric or sectional value of Eupurypha, I do not believe that any of the West American species can properly be assigued to it. Envirommental influences have brought about certain external facies aualogous to those exhibited hy some of the terrestrial species that inhabit the Mediterranean region, the C'anaries and Madeira, where, to a certain extent, similar envirommental factors exist.

 I regard all of the west coast forms to which the names of Tigoni, wreolatu, Teutchii, pandora, levis, ete., have been given as physiographical aspects or modifications of Arionta, as this gemus is represented on the west coast by the more northerly and characteristic forms of central California, generally placed by systematists in II and A. Adams's section Lysince.

 Proceeding southerly from the regions of maximum or moderate rainfall or humidity the extremes of external characters, exhihited by the Helices of southerm California and the peninsula, in color, solidity, elevation. ete., and general facies, when compared with their congeners of the central region, seem to me, wheu a large geographical series is examined, to be gradually approached. We should

[^39]: * West American Scientist, September, 1889.

[^40]: * Mr. Fisher's specimens, though numerons, were, as a whole, rather small; a lot of about 70 not exceeding an average of .49 inch in length.

[^41]: * S. lecanium, with variety palmata, was plentiful at Cape St. Lucas. (X゙antus Collection.) B. A. Report 1863, p. 621.
 †Maz. Cat., p. 182.
 \ddagger Brit. Assn. Rept., 1863, p. 545.
 §B. A. Report, 1863, ए. 626. Id. 664, 666, and 676.

[^42]: * Hinds, in Proc. Zool. Soc., 1843, p. 160.
 \dagger Proc. Cal. Acad. Sciences.

[^43]: * Proc. Cal. Acad. Sci., March 19, 1877.
 \dagger Manual of Conch, vol. H1, pp. 58-64.

[^44]: * Proc. Zool. Society, London, June, 1863.

[^45]: * In connection with this species attention is called to Dall's paper iu the Proc. U. S. National Museum, Vol. XIV, pages 173-191, 1891.

[^46]: * Previously noterl by me in Proc. U. S. Nat. Museum, Vol. xvi, 1893, 1P. 347.

[^47]: STROMBUS GRANULATUS, Swainson.

[^48]: *Described and figured in Vol. xvi, Proc. U. S. Nat. Mus., 1893, p. 351. Preliminary description in "The Nautilus," 1892.

[^49]: * Dall in Proc. U. S. Nat. Museum, Vol. xiv, p. 197-198.

[^50]: * Proc. U. S. Nat. Mus., xvi, 1893, No. 957, p. 633.
 † Proc. Zool. Soc., London, 1888, p. 455.
 \ddagger Proc. U. S. Nat. Mus., xVi, 1893, p. 635.

[^51]: * Beitrag zur Kennt. ^. Orographischen u. (reognostischen Beschaffenheit d. NordWest Kiiste Amerikas mit Anliegenden Inseln. Verhandl. d. Russ-Kais. Mineralog. Gesell. St. Petersb. 1848-1849, St. Petersb., 1850, pp. 41, 93, 97, 124

[^52]: *Heidlb. Jahrb. Lit., 1851, p. 235.
 +For the modern designations and orthography of Alaskan localities I am ereatly indebted to Mr. Marcus Baker, of the U. S. Geological Survey.
 \ddagger Ueber d. Tertiärf. d. Polargegenden: Abhandl. d. Schles. Gesell. f. VaterländCult., 1861, Heft. II, pp., 201-20t.

 This paper is also published umber the same title in Melanges Physigue et Chimiques tirés du Bulletin de l'Acad. Imp. des sc. de St. Petersbourg. 'Tome iv, 1860-61, St. Petersb., 1861, pp., 695-712.
 §This name is written Doroschkin by (iouppert, but is an obvious German rendering of the Russian Doroshin.
 $\|$ This is pobably from a bay of this name on the northwest coast of Kadiak, but as there are several mmamed islands in this bay it is possible that it may be one of them.

 T'This was written Atha by Göppert, but Atka is the modern spelling.
 ** (iiven as Hudsnoi by (xöppert, which is one of the earlier of the many renderings of the word hootznahoo.
 $\dagger t$ Abhandl. d. Schles. Gesell. f. Vaterliind-Cult. 1865-'66. Breslan, 1867, p. 50.
 $\ddagger+1$ thlag ur ett beef af l'rofessor Oswalal Heer rovande fossila vexter frall Nordvestra Amerika, insamlade af Bergmiistaren Hj. Furuhjelm. Ofversigt at Vetens-aps-Akad. Förhandl. 1868. No. 1, pp. 63-68.

[^53]: * Written Kuju by Heer.
 \dagger Geognostisch-Palanontologische Bemerknngen forer die Halhiusel Mangischlak u. die Aleutischen Inseln. St. Petersb., 1871, pp. 107-116, Pl. IV.
 \ddagger Proc. U. S. Nat. Mus., vol. v, 1882 (1883), pp. 443-449, Pl. vi-x.
 § Often called Chugachik Bay and so written by Lesquerenx.
 || Proc. U. S. Nat. Mus., vol. v, 1882 (1883), pp. 502-514.
 TT This is presumably an orror for Admiralty Island, there being no inlet of this name in Alaska.

[^54]: * Proc. U. S. Nat. Mus., Vol. x, 1887, pp. 21-16, pl. I-IV.
 \dagger I am informed by Mr. Nelson that he never visited Nitka and did not hring back any fossil plants from Alaska. This throws donbt on the specimens so recorded, and their locality, and collector remains unknown. I have retained them, however, as recorded by Lesquereux.
 \ddagger Proc. U. S. Nat. Mus., Vol. xi, 1888, pp. 31-33, Pl. xvi, Figs. 1-6; x, Fig. 4.
 § Zeitschr. A. D. geol. Gesell. Vol. xxxvin, 1886, pp. 483-485.
 $\|$ Fifty miles north of the hear of Lymu canal, in Sonthwestern Alaska.
 If This is really extra-limital, but has been incheded as being more nearly related to the Alaskan province than to any other.
 * * National Geographic Magazine, Vol. 1v, 1893, pp. 75-78, figs. 4, 5.

[^55]: ${ }^{*}$ Bull. U. S. Geol. Survey, No. 84, pp. 232-268, Pl. iII.
 \dagger The hibliographical citations refer exclusively to the ocenrence of the various species in Alaska, and are not to be regarded as indicating the synonymy.

[^56]: * Fl. Foss. Arct., Vol. 1r, Mioc. Fl. u. Fauna Spitzbergens, p. 90, Pl. xvr, fige. 57, $59 f$.

[^57]: * Heer: Öfversigt af Kongl. Veteuskaps Akat. Förhaudl. 1868, p. 64.
 †Saporta: Flore de Manosque; Ann. d. Sci. Nat., 1867, p. 69, Pl. Vi, figs. 1-3.

[^58]: *Mem. Mus. Comp. Zool. Vol. Vi., No. 2, p. 36, Pl. Ix, fig. 12.

[^59]: * Fll. 'Tert. Helv. IH, p. 82, Pl. Cxxyr, figs. 5-11.

[^60]: *Types of the Laramie Flora, p. 73, Pl. xxxif, figs. 3, 4.

 + Tert. Fl., p. 277, Pl. LiI, figs. 7, 8.
 \ddagger Cf. Pilar, Foss. Fl. Susedana, p. 107, Pl. xiv, fig. 14.
 § Fl. Foss. Arct. Vii, p. 130, Pl. Lxvii, fig. 6.

[^61]: * Tert. Fl., p. 275, Pl. 11, tigs. 10-14.
 † Fl. Foss. Aret. I, Pl. xix, tig. 3.

[^62]: * This species is extra-limital.
 †This species comes from south of Janatkn, in southeastern A laska.

[^63]: * From Topanica beds of Norton Sound (cf. Dall and Harris, Bull. U. S. Geol. Surv., No. 84, p. 246).

[^64]: *The ('ape Lishmrn plants will be treated by Prof. Lester F. Ward in his forthcoming paper on the correlation of the fossil plants of the Lower Cretaceous.

[^65]: * Jritish Eoceno Flora, Part i, 187!), p. R.
 †Trans. N. Y. Acad. Sci, vol. IX, p. 1 of reprint.
 \ddagger Trans. Roy. Soc. Canada, 1887, p. 36.

[^66]: *Nouvelles Archives du Museum d'Hist. Nat., Ser. 2, vol. 6, p. 251, pl. vir, figs. 1, 2; pl. Iv, fig. 4, 1884.

[^67]: * Voyage of the Challenger, xxx, pp. xxviif-xxxy, 1, 174, 260, 1889.

[^68]: *It seems desirable to have special terms to designate these varions forms of dermal ossicles, which are generally included rather iudefinitely under the terms paxille and pseudopaxillze. As understood by me, true paxille are columnar or hour-glassshaped ossicles with narrow, usually isolated, bases, which bear at summit a group of small spiuules, of which the marginal series are usually different from the rest and divergent, so as to cover the intervening spaces hetween the spines. These are highly developed in most species of Astropecten.

 Spinopaxille are of the same general structure, but the center of the summit is occupied by a distinct spine, or by more than one. Such forms occur on Laidia, Pontaster, etc.

 Parapaxille are lower and broader, rounded ossicles, or angular plates with a raised central portion, or like a low column; they may be either isolated or articulated by their bases; the summit is covered with small, short, differentiated spinules, much like those of true paxille. Those on the dorsal surface of Plutonaster are examples. They sometimes bear a central spine.

 Protopaxillce are similar, but less elevated convex ossicles or plates, covered with round or angular granules, with the marginal series differentiated and more or less covering the grooves between the plates. As in the preceding, there may be a central spine in some cases. This form occurs on Plutonaster, and on many species of Pentagonasterida. The transition from this last kind to simple, uniformly granulated plates is easy, when the grooves between the plates become obsolete.

 Pseudopaxille are plates with tlattened, often lobed or branched, and mostly overlapping bases, which bear a group of slender, fascicled spinules, on the more or less raised central or subcentral area. These have no differentiated marginal series of spinules. This form is well seen in Solaster, Cribrella, etc.

[^69]: * Report of Prog., Geol. Survey of Canada, 1878-1879.

[^70]: * Also crania of C.tricolor and C. portoricensis. This last has the angle of jaw most produced of any species of Certhiola examined.

[^71]: It makes a decided difierence whether the tongue is examined in a moist or dry condition, for in drying the outer edges curl upwards and render the tongue more tubular, or gutter-like, than in its natural state. The specimens from which the figures in this paper were made wre all kept wet while they were being drawn.

[^72]: * That is, in the species which have come under my observation.
 + The following species have a palato-maxillary: Dendroica maculosa, vigorsi, astira, 'ardinalis virginiumus, Hubia ludoriciana, I'lectrophenax nixalis, Calearias lapponicus.

[^73]: * Canadian Organic Remains, Decade if, 1865, p. 49.
 \dagger Trans. Royal Irish Acad., xxili, 1859, p. 547.
 \ddagger Trans. Roy. Soc. Can., iv, 1877, Table A, p. 183.
 Proceedings of the U. S. National Museum, Vol. XVII-No. 1002.

[^74]: * Journ, Geol. Soc. Dublin, 1848, VII, p. 184.
 \dagger Trans. Royal Irish Acad., xxiri, 1859, pp. 547-561.
 \ddagger Mem. Geol. Soc. Great Britain; Geology of North Wales, 2d ed., 1881, pp. 471, 472, pl. 26.
 § Geol. Mag., II, 1865, p. 6.
 \|Trans. Geol. Soc. Dublin, 1848.

[^75]: * Henry Hubbard, Science, xxif, August 4, 1893, 11. 57-58.

[^76]: * Catalogue of North American Keptiles, I, Serpents, p. 118.

[^77]: *Garman, S., Mem. Mus. Comp. Zool. Cambr., yi, p. 78 (1883).
 † Iconographie des Ophidiens, livr. 11, pl. v, fig. 3.
 \ddagger Loc, cit., fig. 1.
 § Loe, cit.

[^78]: * Brown, A. E., Proc. Phila. Acad., 1890, p. 199.

[^79]: * Proc. U. S. Nat. Mus., xiv, 1891, p. 595 (1892).

[^80]: * From Savannab, Ga., I have a specimen of Callopeltis spiloides but I have not seeu this species in Florida.

[^81]: * Holbrook, J. E., North Americau Herpetology, 2 ed., iv, pl. i.

[^82]: *Tropidonotus ordinatus, Holbrook, North American Herpetology, ¿2 erl., IV, pl. xii.

[^83]: ${ }^{4}$ Proc. U. S. Nat. Mus., Xiv, 1891, p. 666 (1892).

 + Since presented to the U.S. National Musemm and catalogued as No. 21388.
 \ddagger Proc. U. S. Nat. Mus., XIv, 1891, p. 669 (1892).

[^84]: * Jordan, D. S., Manual of the Vertebrate Animals of the Northern Lnited States. 5 ed., Chicago, 1888. p. 144.

[^85]: * See Holbrook, J. E., North American Herpetology, „e ed., iv, pl. xiv.
 + Science, xix, April 8, 1892, p. 199.
 \ddagger Baird and Ghard, Catalogue of North American Reptiles, i, Serpents, p. 131.

[^86]: * Proc. U. S. Nat. Mus., xiv, 1891, p. 680 (1892).

[^87]: * Proc. U. S. Nat. Mus., Xvii, 1894, p. 9.
 \dagger Bull. Acad. Sci. St. Petersburg, new ser., ini, 1892, p. 107.
 \ddagger Ann. and Mag. Nat. Hist., 6th series, Xi, 1893, p. 184.
 Proceedings of the U. S. National Museum, Vol. XVII-No. 1004.

[^88]: * Branitt, J. F.-Untersuch. Craniolog. Entwickelungsstufen der Nager, pl. ii, figs. 15-21.
 \dagger The description of this species was not at hand when I revised my article on Dr. Abbott's Kashmir collection for publication, and I was led into the mastake of regarding the Chinese and Kashmir species as identical.

[^89]: * Cops, E. D.-On the homologies of some of the cranial bones of Reptilia and on the systematic arrangement of the class. Amer. Assoc. Adv. Science, Xix, 1871, p. 237.

 Core, E. D.-Check-list of North Amertean Batrachia and Reptilia. Bull. U.S. Nat. Mus., I, p. 44. 1875.
 \dagger Bovlenger, (r. A. - Synopsis of the families of the existing Lacertilia. Ann. Mag. Nat. Hist. (5), xiv, London, 1884, pp. 117-122.
 \ddagger Bovlenger, G. A.-Catalogue of Lizards in the British Museum, if, pp. 299-300.
 § (ifle, Th. - Annual Report of the Board of Regents of the Smithsonian Inst. to July, 1885, Part 1, pp. 799-801. 1886.
 || Core, E. I).- (Catalogue of the Batrachians and Reptiles of Central America and Mexico. Bull. U. S. Nat. Mus., NXxif, 1887, pp. 25-26.

[^90]: * Cope, E. D.-Synopsis of the families of Vertebrata. Am. Nat., Oct., 1889, pp. 19-20.
 †Cope, E. D.-Syllabus of lectures on (ieology and Paleontology. Philatelphia, 1891, p. 48.
 \ddagger Core, E. D.-The Osteology of the Lacertilia. Proc. Amer. Philos. Soc., xxx, May 10, 1892, pp. 215-217, Pl. if, fig. 4; Pl. vi, fig. 43.

 Cope, E. D.-On Degenerate Types of Scapular and Pelvic Arches in the Lacertilia. Journ. Morphol, VII, No. 2, p. 240, Pl. XIII, fig. 7. Boston, 1892.

[^91]: * Cope says-."The prefrontal is above the eye, aud is cut off from the postfrontal by an entrant angle only." Osteol. Lacert., 1. 215. Instead of postfrontal it ought to read parietal.
 †SiEbenrock, Friedrici-Kur Kenntniss des Kopfskelettes der Nicincoiden, Anguiden und Gerrhosanriden. Ann. K. K. Naturhist. Hofmus., Vin, 3, 1, 181, Wien 1892.
 \ddagger The description of these elements and the figures given by Cope are not correct. He states, p. 186, that the jugal in Auniellamay include the lachrymal; and, 1.215 , "No jugal." No mention is made of the supraorbital. In the drawing it scems to bo indicated, but the prefrontal is not figured. All the drawings given on Pl. In are very poor and quite useless.
 §Cope states-No distinct supratemporal [quadratojugal] or paroccipital [sfuamosal].

[^92]: * I call catapophysis the lower process in the cervicals, to which the intercentra (hypapophysis) are attached; the lower processes in the vertebrat of snakes, for instance, are catapophyses and not hypapophyses.

[^93]: * Proc. Biol. Soc. Washington, VilI, p. 112, 1893.

[^94]: ${ }^{*}$ Proc. U. S. Nat. Mus. Xif, No. 767, p. 104, February 5, 1890 (Abingdon Island, Galapagos).

[^95]: * Proc. U. S. Nat. Mus. Xif, No. 767, p. 103 February 5, 1890 (Hood Island, Galapagos).

[^96]: * Proc. U. S. Nat. Mus., XiI, No. 767, p. 105, Feb. 4, 1890.

[^97]: *The specimens from Albemarle and Cowly Bay, East Albemarle, being young birds, are very doubtfully placed here.
 the National Museum collection contains the following specimens of this form: Charles Island (10 specimens) ; Iudefatigable (6); Chatham (1?)-the last doubtfully referred here.
 \ddagger Proc. U. S. Nat. Mus. גI, No. 767, p. 106, Feb. 5, 1890 (Hood Island, Galapagus).

[^98]: * The extreme measurements of a series of 5 adult males are as follows: Wing, $2.95-3.15$; tail, $1.85-1.95$; culmen, $0.82-0.90$; width of unter mandible at angle, $0.23-0.26$; of upper at notch, $0.22-0.26$; tarsus, $0.90-0.95$; middle toe, 0.68-0.75.
 \dagger Proc. U. S. Nat. Mus., Xir. No. 767, p. 107, Feb. 4, 1890.

[^99]: * A little darker and warmer than "clove-brown."

[^100]: * Much "warmer" than sepia.

[^101]: * The molt is nearly completed, but the longest prmaries and rectrices may not be fully grown.

[^102]: * Proc. U. S. Nat. Mus., XVi, pp. 597-600, No. 953, published August 16, 1893.
 \dagger Ixocincla madagascariensis rostrata, Buchanga aldabrana, Foudia aldabrana, Rougetius aldabranus, Ibis abbotti, Sula abbotti, and Turtur saturatus.
 \ddagger Rougetius abbotti.
 §The Auk, January, 1894, 1". 74.

[^103]: *Proc. U. S. Nat. Mus. III, 1880, 1. 287 (1881). † Bull. U. S. Nat. Mus., XVi, 1883.

[^104]: * Cat. Fish. N. Am., 1885; Rept. U. S. Comr. of Fish and Fisheries, 1881 (1885).
 \dagger Proc. Cal. Acad. Sci., 2nd ser., ini., p. 12, 1890.

[^105]: * See Sebastomus ereus and elongatus.
 \dagger Except in areus and sometimes in elongatus.

[^106]: * Sebrestomus crpensis (LINNEUS).

 Sebastes capensis, Linneus Gmelin, mif, 1219.-Cuvier amd Valenciennes, Hist. Nat. Poiss., IV, p. 341.-Quoy \& Gamand, Λ strol. Poiss., p. 690, pl. ii, fig. 3.Smith, S. Afr. Pisc., pl. 22, fig. 1.-Güither, Cat. Fish. Brit. Mus., II, 96, 1860 (Cape seas).-Steindaciner, Ichthyol. Beitr., x, 38, 1881 (Chilian and Jape seas).
 Sebastes oculatus, Cuvier and Vadenciennes, Hist. Nat. Poiss., ix, p. 466, 1833 (Valparaiso).-Jenyns, Zool. Beagle Fishes, p. 37 (Valparaiso).-Gay, Hist. Chil. Zool., II, p. 178 (Coast of Chili).-Cuvier, Regue Anim., Ill. Poiss., pl. 23, fig. 3.-Güntifer, Cat. Fish. Brit. Mus., if, 105, 1860 (copied).
 Sebastes maculatus, Smin, l. c., fig. 2 (not of Cuvier and Valencienues).
 Habitat.-Chilian and Cape seas.
 Dr. Steindachnor has, after direct comparison of specimens from (hili and from the Cape seas, identified the S. oculatus with S . capensis.

 Head 3 in the total length ; depth about 3 ; D. XIII, 14; A.III.6. The interocular space equals rather more than half the diameter of the eye, is concare, with two longitudinal ridges. Second anal spine longest and strongest. Red. back brownish, with five round, red spots.

[^107]: * Proc. U. S. Nat. Mus., v. 1882, p1. 49-88, (1883). (Actual date of publication of edition of "separates," June 12, 1882.)
 \dagger Additions and corrections to the list of native trees of the Lower Wabash Valley. Botanical Gazette, viif, No. 12, Dec. 1883, pp. 345-352.
 \ddagger Sargent, Charles S.-A Catalogue of the Forost Trees of North America; Tenth Census of the United States, Govt. Printing Office, Washington, 1880.
 §Sargent, Charles S.-Report on the Forests of North America (exclusive of Mexico); Tenth Census of the United states, Ix, Gopt. Printing Ufitee, Washington, 1884.

[^108]: * Reise in das innere Ford-amerika, 1, p. 209.

[^109]: * See American Naturalist, December, 1872, p. 728.

[^110]: *In the following pages the term Lesser Antilles or Windward Islands will be used to include all the islands sonth of the Anegata Channel, beginning with sombrero, Anguilla, and St. Martin, and including Trinidad. The islands lying north of and along the coast of Venezuela will be called the Leeward Group. Cuba, Haiti, Jamaica, Puerto Rico, the Isle of Piues, and the Virgin Islauds are included in the general term Greater Antilles.

[^111]: *'The hollow stems of dead bamboos are a favorite retreat for many species of terrestrial and arboreal snails. These gigantic tufts of grass are particularly aboudant along the streams in tropical conntries, and are often washed out in time of floods, and scattered aloug the banks. Between rainy seasons the upper joints become more or less broken and decayed, and peopled with mollusks, and another freshet sweeps them with their living cargo into the sea. The lower joints, being more solid are perhaps air-tight, and serve to hoy up the whole mass; the roots weighted with earth and stones depress the lower end of the clump, and throw the upper and inhabited end out of water. I have seen just such floating rafts, and nothing could we more admirably contrived for transporting land suails safely across the sea.

[^112]: * Contributions to Conchology, MII, p. 48.
 \dagger Land and fresh-water mollusks may be often carried from one country to another in the cargoes or ballast of vessels. Ampullarias are frequently imported alive into Enrope or North America in the crevices of mahogany logs and several African Achatinas have been carried with coffee plants to Mauritius and other islands of the Indian Ocean, where they flourish as vigorously as the native suails. No doubt many species are introduced on plants. It may be well to mention that it is known that the young of some of the Unionida attach themselves by hooks to the fins and gills of fishes, where they become encysted, and in this coudition may be transported long distances.
 \ddagger Small fresh-water bivalyes have been found attached to the legs of flying aquatic insects and they may thus be borne from one body of water to another.
 §On the (ieographical Distribution of the Genera and Species of the Land Shells of the West India Islands; with a Catalogue of the Species of each Island. Aun. Lyc. N. Y., VII, p. 335, 1861.

[^113]: * Haiti-and under this name I include the whole island-has an area of 28,000 square miles, yet only about one-half as many terrestrial and fluviatile mollusks are known to belong to it as are found in Jamaica. With a very diversified surface, au abundance of forest and rainfall, and a large area of limestone, it is probable that when it is fully explored the number of its land and fresh water mollusks will be doubled, and many interesting points of geographical distribution will be brought to light.

[^114]: * It is quite probable that at this time Mexico and most of Ceutral America formed an island; that the seaflowed through what is now the Isthmus of Panama; and that there was comection by a strait from the Gulf of Mexico throngh or around to the northern end of the Gulf of California. In using the expression "a landway across to the continent" I mean to what is the continent now.
 f"Goographical distribution of the West India land shells." Am. Lye. Nat. Hist. of N. Y., vıı, p. 346 .

[^115]: * Manuel de Concholiologie, p. 269.

[^116]: * Manual of Conchology, second series, x , p. 60.

[^117]: *Jour. de Couch., Nxxi, 1891, pp. 195, 197.

[^118]: * Miss. Sci. au. Mexique, 7th part, p. 585.

[^119]: *'The north-east trade winds, and the drift of the water of the Atlantie to the westward, force a strong current along between Haiti and the small, sonthermmost islands of the Bahamas. Part of this is carried through the windward passage between Haiti and Cuba into the Caribhean, the rest is pressed on past Great Inagna, and up the old Bahama Chamel, and finally it mingles with the gulf stream. No doubt part of tho water of that great ocean river, crowiled in between C'uba, the Bahama Bank, and Florida, spreads out more or less to the eastward among the islands. Thus land snails washed into the sea on the north side of Cuba or Haiti would probably in some cases be carried ont and landed among the Bahamas.

[^120]: *The following is a list of the species: Thysanophora cace, Gnp., Trinidad; Thysanophora rorter, Pfr., Cuha, Haiti, Puerto Rico, St. Croix, St. Thomas, Bermuda; Thystmophora dioscoricola, C. B. Adams, Jamaica, Puerto Rico, Mexico, Vieque; Strobilops, huhbardi, Brown, Jamaica; Hemitrochus rariuns, Mke., Bahamas; Polygyra cereolus, Muhl, Bahamas, Bermuda, Cuba?; Cuppyye gundluchi, Ffr., Cuba, I'uerto Rico, St. Thomas; Orthulicus undulus, Brog., Mexico, Jamaica, Trinidad, Central.America; Orthulicus melunocheilus, Val., Mexico; Liguns fasciutus, Mull., Comba; Melaniella gracillimu, Pfr., Cuba, St. Thomas, Bahamas; Subulina octonoides, Orb., Cuba, Jamaica, I'urto Rico, Vieque, st. John, Barbados, (iremada, St. Thomas; spiraxis subula, I'fr., Jamaica, ('uha, Barlados, Antigua, Puerto Rico, St. John, St. Thomas; Macroceromus gossei, Pfr., Cuba, Jamaica, Texas, Mexico; Macrocerames pontificus, Gld., Cuba, Mexico; Bulimulus marielinus, Poey, Cuba; Bulimulus dormani, W. G. B., New Grenada?; Bulimulus multilineatus, Say, Yucatan, Guatemaha, northern South America; Cylindrella poeyana, Orb., Cuba; Cylindrella jejuna, Gld., Cuba; Cerion incana, Binn., Cuba; Helicinu subglobulosa, Poey, Cuba; Chondropoma dentutum, Say, Cuba; Ctenopoma rugulosum, Pfr.?, Cuba; Planorbis tumidus, Pfí., Cuba, Mexico, California: Ampullaria caliginosa, live., Mexico; Gundlachia ancyliformis, Pfr., Cuba; Spherium cubense, More., Cuba; Mexico, Texas.

[^121]: * It may be claimed that the contimal addition of fresh individuals from Cuba by the currents has kept the species already landed in Florida from becoming specitically changed. But the same addition of fresh specimens must have oceurred in the Bahamas and yet we there find a number of new species and countless varieties.

[^122]: *'Three cruises of the Blake, I, p. 57.
 \dagger Bulimulus dormani, W. G. Binney, is thought to be the same as B. maculatus, Loa of Cartagena, Colombia, but this is not certain. L. multilineatus, Say, formerly believed to be an immigrant from Sonth America, is now known to be found in Central America and Yucatan.

[^123]: * Helix nemoralina is common to Haiti, St. Thomas, St. John, Tortola, and the Virgin Islands, but is not found in Puerto Rico.
 \dagger I follow essentially Pilsbry's arrangement of the West Indian Helices, in ix., series 2, pp. 54 and 84, and v., p. 5, Manual of Conchology.

[^124]: *One species M. signatus is found in Anguilla. This island and it. Bartholomew having each only a few species, though south of the Anegada Channel, have a somewhat mixed land-snail fauna, partaking of the characters of those of hoth the Greater aud Lesser Antilles. That a few species might have drifted to these islands froun the abundantly stocked Northern Archipelago is not strange. Bland groups the two with Puerto Rico.
 †One species is found in Curaçoa, one of the Leeward Islands.

[^125]: *The latter is a Glabaris no doubt. Ihering has shown (Archiv fuir Naturgeschichte Jahrg 59, 1 Bd., 1 Heft., p. 52), that all the South American Anodons, so called, are anatomically quite distinct from the Unionider, and that they belong to the Mutelidir. This form, A. Teotandi, Guppy, is no doubt derived from some of the continental species.
 \dagger Introduced into the more northern islands, probably on coffee trees,

[^126]: * Cistula, which has its metropolis in the Greater Antilles, has a somewhat similar distribution. Several speries are found in Mexico, Central aud northern South America, with one species in Trinidad, hut not north of that until we reach Antigua, near the upper end of the chain. Neocyclotus, with a great development in the more northern archipelago, is also abundant on the continent, and is found in the Lesser Antilles as far north as Martinique; and Colobostylus, with a similar distribution, extends northward only into Trinidad.
 t Just how extensive this disturbed area was can not now be told. It is well known that along the north shore of Cuba, back of Matanzas and Harana, there are raised beaches, some 1,200 feet above the sea, which have been supposed to be recent, but Mr. R. T. Hill, of the U. S. Geological Survey, who has recently visited the island

[^127]: has brought shells from these beaches and submitted them to Dr. Dall, who pronounces them to be Miocene, and probably of the same general age as the Bowden beds of Jamaica. It would seem most likely that the elevation and subsidence wonld extend to some extent through the Bahamats amd into the Sonth Floridian regions.

[^128]: Fik. 1. Neocyclotus (Ptychocochlis) bakeri, new species; from above.
 F'ig. ... Ncocyclotus (I'tychocochlis) bakeri, new species; dorsal view.
 Fig. :3. Plewrodonle bowdeniana, now species; aperture, front view.
 1’!. :. Plewrodonte bowdeniana, new species; base.
 Fig. . . Plenrodonte bovdeniana, new species; upper view, fragment.
 Vig. 6. Luridella costalu, new species; front view ; upper portion of outer lip broken.
 1ig. 7. Áayda maxima, now species; front view.
 Fig. 8 . Sagta muxima. new species; basal view.

[^129]: * Challenger Report, xxir, p. 243-8.

[^130]: *Voyage Erebus and Terror, Fishes, p, 5t, pl. xxxir, figs. 4-11.
 +Voyage of the Challenger, xxi, p. 243, pl. LXI, fig. a.

[^131]: * Report of the Peabody Museum, Cambridge, Mass., 1881.
 † Op. cit., 1883, p. 171.
 \ddagger Am. Anthropologist, I, 1894.
 Proceetings of the U. S. National Museum, Vol. XVII-No. 1015.

[^132]: * Bull. Mus. Comp. Zool., Xxiv; p. 164, 1893.

[^133]: * All of thespecies in this key, except havanensis, have been described prevously as species of Gonoductylus.

[^134]: * Voyage of the Challenger, xvi, part 45, 1886.

[^135]: * Jour. Limnean Soc., xx, pp. 299-394.
 \dagger Proc. Zool. Soc., 1873, p. 526.

[^136]: * Used in the sense of being equidistant at all points.

[^137]: * Journal of the Liunean Society, xx, p. 299.

[^138]: * Jour. Linu. Soc., xx, p. $3 \not 41$.
 \dagger Jour. of Morph., June, 1889.

[^139]: * See Dr. Gadow's interesting article in Proc. Zool. Soc., 1888, p. 65 5.

[^140]: *Proc. Kool. Soc., Loudon, 1873, 1. 526.
 †Opp. cit., 1889, p. 161.

[^141]: * This is the generic name, which has to be used for the American box tortoises. Cistuda, Fleming, 1822, is a synonym of Terrapene, Merrem, 1820.
 \dagger The anthor is under special obligations to Dr. G. Baur, Assistant Professor, University of Chicago, for material aid in the preparation of this paper, tho synonymies being, for the greater part, prepared from his manuscripts, and to the authorities of the U.S. National Museum for the loan of valuable specimens. He has also to thank the following gentlemen for specimens from various parts of the country, viz: Prof. H. Garman, Prof. S. S. Maxtell, Prof. Benjamin B. Pentield, Dr. O. P. Hay, Mr. Gustave Kohn, Mr. Julius Hurter, Mr. Roy R. Larkin, Prof. Theo. D. A. Cockerell, Prof. H. B. Duncanson, Dr. Adolph Meyer, and Prof. J. D. Bruner.

[^142]: *Catalogne of the Lizards in the British Museum, iI, p. 205.
 Proceedings of the U.S. National Museum, Vol. XVII-No. 1020.
 [Advance sheets of this paper were published November 30. 1894.1

[^143]: Proceedings of the U. S. National Museum, Vol. XVII-No. 1021.

[^144]: *Shaw, Gen. Zool., iII, pt. ii, p. 475 (1802).

 + Srnopsis Reptilium, 1768, p. 79.
 \ddagger Above uniform blue, below greenish; head angular; snout produced, tetrahedral; back separated on either side from belly by a white line; tail pentahedral.
 § By the more greenish blue color.

[^145]: * Hist. Nat. Rept., vi, 1803, p. 380.
 \dagger Above light green, below whitish.

[^146]: *The name Harpuctes, Swainson, Class. Birds, If, 1837, p. 337, commonly applied to this genms of trogons, is preoceupied by Lrpactus, Jurine, I ymen., 1807, and Harpactes, Templetou, Arachn., 1834. Cabanis and Heine (Mus. Hein. No. Iv, part 1, $1863, \mathrm{p} .154$) long ago pointed out the untenability of the name Harpacles as used in ornithology, but this fact has been quite generally ignored. 'Two other names, having priority over I'yrotrogon, lut preocenpied in other branches of zoology, are Hapalurus, Reichenhach, 1850 (nee Hapulura, ('abanis, Weigm. Arch., 1817, 1. 252), and Jurrucelius, Bonaparte, 1854 (nec Durauceliu, Risso, [- - ? 1826, and Duvaucelia, Desvoidy, Dipt., 1830).

[^147]: * Proc. U. S. Nat. Mus., xv, 1892, p. 361.
 \dagger This seemingly unnecessary statement of the number of the tarsal joints is rendered necessary by the discovery hy Aurivillius of a true Encyrtine with four-jointed tarsi (Arrhenophagus).

[^148]: *Jourual Linmaan Society, XXY, 1884, p. 88.

[^149]: * Insect Life, vi, p. 290.

[^150]: * Proc. U. S. Nat. Mus., vr, 1883, pp. 353-361.
 †Rept. U. S. Commr. of Fish and Fisheries, 1884, p. 107.

[^151]: * Proc. U. S. Nat. Mus., Xi, 1889, p. 601.

[^152]: *Eruptive Rocks of Electric Peak and Sepulchre Mountain. Ann. Rep. U. S. Geol. Survey, 1890-91.

[^153]: * Neues Jahrb. Vol. II. 1882, p. 41.

[^154]: * Bull. U. S. Geol. Survey No. 110, pp. 49, 50.

[^155]: * Am. Jour. Sci., XxVIII, 1884, p. 252.

[^156]: * On the Serpentine of Montville, New Jersey. Proc. U. S. Nat. Mus., xi, 1888, p. 105.

[^157]: * Am. Geologist, July, 1890, pp.40-49.

[^158]: -..-Am. Geologist, July, 1890, p. 44.

[^159]: *Am. Jour. Sci., xxxiif, Jan., 1887, p. 45.
 † Am. Jour. Sci., xxxvi, Sept., 1888, p. 208.

[^160]: *The Origin of Igneous Rocks, Bull. Philos. Soe. of Wrashington, Vol. גıI, 1892, p. 169.

[^161]: * Eruptive rocks from Montana. Proc. California Academy of Scieuce, Vol. In, pp. 45-47.

[^162]: * Challewger Giastr., pl. Xlvirr, fig. 2.

[^163]: *Verrill, Trans. Conn. Acad., v, p. 454.

[^164]: * Bull. Mus. Comp. Zool., v, pp. 61, 62, 1878.
 † Op. cit., 1x, p. 106, 1881.
 \ddagger Op. cit., XII, pp. 196, 291, Sept., 1886.
 \oint Ann. Mag. N. H., Dec., 1891, p. 447, fig. 14.
 || Sowerby, overlooking this description and figure, redeseribed this species under the name of Γ. optima in Proc. Mal. Soc., Lond., I, p. 39, pl. v, fig. 3, Mar., 1894.

[^165]: * Compare pl. xxiv, fig. 5, p.
 †Studies from Biol. Lab., Johns Hopkins Univ., II, pl. XIx, fig. 11, 1882.

[^166]: Figure 1. Microtomic section of Eucirou pacifica, Dall, taken through the middle of the foot, the lower part of the mantle lobes heiug omitted. From camera lucida drawing from the original by J. C. McConnell, $\frac{i t}{1}$.

 1. Dorsal commissure of the mantle; II, II, blood sinuses connected with the auricles of the heart; III, the rectum; IV, cavity of the nephrida; V, V, reticulated connective tissue; VI, VI, direct outer limhs of the ctemilia; VII, VII, muer reflected laminar, and VIII, VIII, inner direct lamina of the inner limb cut in a slightly ohlique section across the single plates; IX, $1 \mathbf{X}$, the palpi; \mathbf{X}, the foot, more or less surrounded by loose epithelial matter; XI, XI, lobes of the mantle; XII, XII, beginning of the muscular region of the mantle lobes; incomplete below.

 Figure 1, A. Section of left ctenidium of Callocardia stearnsii, Dall, $\frac{4}{1}$.
 A. XI, Callocardia, stem of the gill with blood vessel; XII, inner direct and reflected limb; XIII, outer direct and reflected limb in section.

 Eigure 1, B. Sidie view of left ctenidium of Callocardia stearnsii, showing outline of the inner and outer limhs; the dotted line showing the limit to which the imer reflected lamina of the inner limb rises on the side opposite that of the observer.
 B. XIV, point where the ctenidium is attached to the siphonal septum; XV, ventral extreme of the inner direct limb; XVI, outline of the outer direct and reflected limb; the imer reflected laminar on the side next the body rises to the height indicated ly the dutred line. The single plates of which the gill-mass is composed are not indicated.

[^167]: - Figure 2 : section of the plates of the inner retlected lamina of the gill of Eucirou pacifien. greatly anlarged. from microtomic section at a tangent to the anterior surface of the posterior adductor, camera lucida drawing by J. C. McConnell.

 I, II, combined plates at tho point of reflection, defective abore; III, IV, mass of conmective tissim, etre, formmg the junction of the right and left ctenidia hehind t! e foot; V. V, V, plates which have been torn by the knife in cutting, simulating Vasconlar conncetions; VI, siant cilia counecting the plates distally; VII, VIII, plates connected by a true rascular junction.

 For a proper comeption of the real relation of the parts hefore shriveling by the staining process, the reader shonld refer to pl. xxiri, fig. 2.

[^168]: * Pelseneer has since admitted the incorrectness of his first account of the attachments of the gill in Lyonsiella. Compare Arch. de Biol. xi, 1891, p. 215, foot note 5.

 Proc. N. M. $94-45$

[^169]: * As Chemnitz was nut strictly binomial in his nomenclature, it is probable that Gmelin's name of sangninolenta shonld be adopted for this species.
 \dagger Trans. Conn., Acad., 1x, p. 383, March, 1893.
 \ddagger Fischer, Man. de couchyliologie, p. 1321.

[^170]: * Proc., Phil. Acad. Sci., 1891, p. 167.

