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ABSTRACT

Most of methods for audio similarity evaluation are based
on the Mel frequency cepstral coefficients, employed as
main tool for the characterization of audio contents. Such
approach needs some way of data compression aimed to
optimize the information retrieval task and to reduce the
computational costs derived from the usage of cluster ana-
lysis tools and probabilistic models. A novel approach is
presented in this paper, based on the standardized vario-
gram. This tool, inherited from Geostatistics, is applied to
MFCCs matrices to reduce their size and compute compact
representations of the audio contents (song signatures), ai-
med to evaluate audio similarity. The performance of the
proposed approach is analyzed in comparison with other
alternative methods and on the base of human responses.

1. INTRODUCTION

The computation of the degree of similarity among songs is
one of the most demanded tasks in the field of multimedia
processing, and its interest is still growing with the increa-
sing popularity of on line services and databases. Music
Information Retrieval (MIR) stands for the tools to access
audio contents with the aim to reorder, search and classify
them [1]. In MIREX 2006 [3], the term ‘Audio Similarity’
was introduced for the first time in the tasks list and, conse-
quently, a human evaluation system (Evalutron6000) was
created to make quantitative evaluations of the proposed
algorithms.

The main task of audio similarity evaluation is based on
the definition of some form of representation of the songs
(signatures) to compare them and measure the closeness
of the signature songs. The base of most of the known
algorithms for audio similarity evaluation are the Mel fre-
quency cepstral coefficients (MFCCs) [10]. The spectral
information supplied by the MFCCs is proposed to be com-
pressed in a wide variety of different approaches by diffe-
rent authors [13] [4] [11] [1]. In this work, the standardized
variogram [8] is presented as a novel tool to conveniently
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compress the MFCCs vectors for sorting similar songs.

The outline of the paper follows: in Section 2, a gene-
ral description of the MFCCs is presented. In Sections 3
and 3.2, the details of the approach based on the variogram
and its application to signal processing are described. In
Section 4, the use of MFCCs matrices is presented and in
Section 5 the application of the variogram is discussed in
detail. Finally, in Section 6, the experimental results are
presented and in Section 7, the conclusions and future pro-
posals are discussed.

2. MEL COEFFICIENTS AND AUDIO
SIMILARITY

The MFCCs are short-term spectral-based features, origi-
nally developed for speech recognition and successfully
adapted to music information retrieval [10]. The compu-
tation of MFCCs follows some crucial steps [13]: 1) the
calculus of the short-term spectrum of the signal, 2) the
transformation of the spectrum into the Mel scale (through
a triangular filter bank), 3) the calculus of the logarithm
of the Mel spectrum and 4) the compression of the resul-
ting matrix through the application of the DCT (Discrete
Cosine Transform). MFCCs are widely used to generate
compact spectral representations of the song: the signal
is framed into short fragments (usually some tens of mil-
liseconds) and their coefficients are computed frame by
frame [13]. In order to conveniently represent the global
spectral behavior of the song in a compact way, the MFCCs
vectors have to be clustered. For this task, several ap-
proaches have been proposed by different authors. Pam-
palk [13] uses GMM and EM approach, by modelling the
probability distribution functions of the coefficients vec-
tors. Foote [4] proposes a supervised tree-structured quan-
tizer as discriminant approach for the sequential labeling
of the coefficients. Aucouturier and Pachet [1] present a
combination of GMM/EM and Monte Carlo approaches to
evaluate the likelihood between the MFCCs of two diffe-
rent songs. Finally, Logan and Salomon [11] propose the
popular K-means method for MFCCs clustering. In this
article, an alternative approach is proposed based on the
computation of the variogram of the MFCCs, allowing for
a computationally low-cost compression of the coefficients
and a simple calculus of the distance among the spectral
signatures.
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3. THE STANDARDIZED VARIOGRAM

Theterm ‘variogram’, inherited from Geostatistics, stands
for the function describing the evolution of the spatial de-
pendence of a random field [16]. Empirically used by the
mine engineer D.G. Krige in South Africa mines [9], and
later formalized by G. Matheron in its pioneer works [12],
the variogram or ‘semivariance function’ is widely em-
ployed in spatial statistics to perform uncertainty model-
ing in a spatial framework. It is often used as characteristic
weighting function for the spatial interpolation technique
known asKriging [9].

3.1 Some mathematical issues

A formal definition of the variogram is now provided. Let
zα, withα = 1, · · · , n represents a set ofn sampled obser-
vations of a spatial phenomenon. The variogram is defined
as half the variance of the increment[zα − zα+h] [16]:

γ(α, h) =
1

2
E{[zα − zα+h]

2} − {E[zα − zα+h]}
2 (1)

Assuming the intrinsic stationarity of order two [16],
the mean of the variableE[z] is invariant for any transla-
tion, that isE[zα] = E[zα+h], the second term of equation
(1) can be neglected and the variance of the increment is
said to be depending only on the distance vectorh and not
on the positionα [8]:

γ(h) =
1

2
E{[zα − zα+h]

2} (2)

wherezα andzα+h are two different samples of the ran-
dom variablez separated by a distanceh.

Given a set of spatially distributed samples, the vario-
gram can be estimated empirically [16]:

γ∗
(h) =

1

2N(h)

Nh∑
α=1

[zα − zα+h]
2 (3)

where the number of pairsN(h) depends on the value of
h. For its mathematical relation with the variance, the va-
riogram is also known as semivariance function (or semi-
variogram).

The variogram is strictly related with the auto-covaria-
nce function of the increment. In particular the covariance
of the incrementCov(zα, zα+h), in condition of transla-
tion invariance of the mean, can be expressed as follows:

Cov(zα, zα+h) = Cov(h) = E[zα · zα+h]−E[zα]
2 (4)

whereE[zα] = E[zα+h]. Whenh is zero,Cov(0) is max-
imum and it corresponds to the variance of the variable:

Cov(0) = E{[zα]
2} − {E[zα]}

2
= V ar(zα) (5)

Note that equation (2) can be written as:

γ(h) =
1

2
E{[zα]

2 − 2 · zα · zα+h + [zα+h]
2} (6)

and using equations (4) and (5), we can express the vario-
gram in term of the covariance function:

γ(h) = Cov(0)− Cov(h) (7)

The last equation shows the relation between the vario-
gram and the covariance function [14]. Under the condi-
tion of translation invariance of the mean, ath = 0, the
covariance is just the variance of the variable,Cov(0) =

V ar(z), and the variogram is zero,γ(0) = 0. Conversely,
when the pair of elements,zα andzα+h, are too far away to
show any kind of relation, their covariance is zero and the
variogram is the variance of the variable,γ(h) = V ar(z).
In general, the covariance function shows a behavior op-
posed to the behavior of the variogram (see Fig. 1).

The empirical variogram is usually fitted by a theore-
tical model to obtain a continuous function, modeling the
covariance exhaustively in the whole domain. The models
are chosen within a group ofadmissible models that must
be positive-definite [6]. Moreover, the theoretical models
can be characterized by few shape parameters [6]: theSill,
the asymptotic variance value the function tends to when
the lag distance,h, increases, theRange, the lag value at
which the theoretical variogram reaches the sill, and the
Nugget effect, the discontinuity of the function at the ori-
gin.

When semivariance values are normalized by the global
variance, the variogram is reported asstandardized vario-
gram [8] and its correspondence covariance function is the
correlation function. Both the empirical and its correspon-
dent theoretical standardized variogram are shown in Fig.
1. The correspondent correlation function is shown too.
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Figure 1. An example of a typical standardized variogram.
Theempirical variogram (dotted line) is fitted by the theo-
retical model (solid line). The correlation function (dashed
line) is shown too.

3.2 The variogram in signal processing

Many authors have dealt with the use of the variogram cou-
pled to classical signal processing techniques, as a tool
for periodicity analysis of signals and time series analy-
sis. Khachatryan and Bisgaard [8] employ the variogram
as tool for estimating the stationarity of industrial time se-
ries data. Haslett [5] proposes the use of the variogram
as a functional approach for time estimation in case of
fault of the stationarity conditions. Kacha et al. [7] ap-
ply the generalized variogram to the linear prediction in
disordered speech analysis.

In spite of the different origins of the spatial variogra-
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phic approach and the time series analysis in signal pro-
cessing,the former can be successfully applied as an alter-
native tool for spectral analysis. In the case of time-signal
processing, the parameterh is unidimensional and it repre-
sent the time lag among the samples.

If we take a signal and we add an uncorrelated noise
component with known mean and variance (see box inside
Fig. 2(a)), we can observe that it is well reflected both in
the waveform and in the frequency spectrum. In the va-
riogram, the added signal leads to a very small change in
the general shape of the curve (Fig. 2(b) and 2(c)), while
a marked increase of the variance at the origin (nugget
effect) is noticeable. Such value corresponds to a contri-
bution of about the 31% of the total variance of the dirty
signal. However, in the frequency spectrum, this change
is mainly reflected in central-high frequency bands, where
only a diffused increase in amplitude is apparent (Fig. 2(a)).
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(a) Spectra of original (darker thick line) and dirty signal (lighterthin
line). Inner box: raw signal.
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Figure 2. Spectra and standardized variograms of a clean
signal and of the same signal corrupted with additive noise.
Experimental variograms are represented with a dotted line
and the theoretical fitted model with a solid line.

The variogram can also be conveniently used as tool for
sound analysis applications. Dillon et al. [2] noted as the
variogram fluctuations, once reached the sill, are strictly
related with signal spectrum. He remarks that the vario-
gram can be especially useful for fundamental frequency
detection, by taking into account the variance pseudope-
riodic pattern known ashole effect [6].

4. COMPRESSION OF MATRICES

The standardized variogram described in Section 3 is pro-
posed here as a novel method for reducing the dimensiona-
lity of the MFCCs matrices. It is computed on each vector

of coefficients throughout the frames of the song, to ob-
tain a function describing the evolution of the covariance
through the time. With the aim to compress the MFCCs
information, the variogram is computed only on a reduced
number of lags (values of distanceh for which the vario-
gram is calculated). As shown in Fig. 1, the variogram
typically presents a logarithmic-like rising behavior at the
lowest lags and an asymptotic trend to the global variance
(equal to one in the case of standardized variogram) from
lags approaching the range, forward. Taking into account
these two factors, a total amount of ten lags values are sam-
pled logarithmically from 1 to half the length of Mel coef-
ficients.

For each row of the MFCCs matrices, the semivariance
is computed for all the pairs of samples located at distances
equal to the lags selected, and the values are normalized
by the variance of the MFCCs row data. The outcome is
a compact function keeping enough information to charac-
terize the signal.

The experimental standardized variogram can be chara-
cterized on the basis of two parameters extracted from its
correspondent theoretical function (although the latter is
not explicitly calculated in this application): the range and
the nugget effect. In this case, these parameters can be
interpreted on the base of their spectral meaning.

The range can be interpreted as the time scale at witch
the periodicity of the signal begins to be evident. Up to the
range, the structured variability of the variable masks its
periodicity, while, when the pairwise covariance starts to
be weak enough (from range forward), that periodic beha-
vior rises and it becomes evident. Clearly, due to the strong
reduction of lags, sometimes the range can be poorly de-
tected by the reduced variogram.

The nugget effect is very important to understand the
small-scale behavior of the Mel coefficients. The discon-
tinuity at lagh → 0 explains the variation of the signal at
very small-scale. In terms of spectral analysis, it stands for
the high frequency contribution to the total variance in the
Mel spectra.

An example of the application of the variogram to the
MFCC spectra is shown in Fig. 3. The first song (Fig.
3(a)) is a piece from the genre ‘Classic’ [3], its spectrum
shows a rather clear periodicity, with some peculiar pat-
terns repeating with a certain regularity. The second song,
belonging to the genre ‘Heavy metal’, shows a more fuzzy
spectrum with higher frequency variations and a less evi-
dent periodicity. Such differences are well reflected in their
correspondent variograms.

The clearer regularity of the classic piece is reflected by
a certain degree of periodicity in the variogram (although
not exhaustively revealed by the reduced number of lags).
Moreover, the very low nugget variance value reflects the
high degree of regularity with reduced high frequency os-
cillations (Fig. 3(b)).

In the case of the heavy metal piece, the very high fre-
quency oscillations (Fig. 3(c)) are well reflected by a no-
table nugget variance (about the 50% of the total variance)
and by a larger range indicating the lack of a structured
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(a) The second Mel coefficient of a
classical music song.
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gramof the signal in fig. 3(c) (dot-
ted line).

Figure 3. A comparison between the variograms of the
MFCCs spectra of two very different songs, a classical mu-
sic song (top) and a heavy metal song (bottom). Fitted
theoretical model (thick lighter line) and global variance
(dashed line) are shown too. The pieces are 35 seconds
length.

variability. Note that, although poorly reflected by the re-
duced availability of lags, some degree of non-stationarity,
expressed as the lack of a well definite asymptoticity of the
variogram [16], is present in this case.

5. STANDARDIZED VARIOGRAM FOR AUDIO
SIMILARITY ASSESSMENT

As mentioned before, the variogram has been employed
for audio similarity assessment. For each piece, the Mel
coefficients are calculated and the standardized variogram
is computed for each coefficient, obtaining a compact sig-
nature of the track. Successively, the signatures are com-
pared, by computing a weighted difference of their ele-
ments.

After computing the standardized variogram (10 lags)
of the 19 Mel coefficients for each song (the first one has
been neglected [13]), the resulting10 × 19 matrices (sig-
natures) are compared by averaging the weighted absolute
value of their difference, according to the following equa-
tion:

D =
1

I · J

10∑
j=1

19∑
i=1

ωj |Va(i, j)− Vb(i, j)| (8)

whereVa andVb are the signature matrices for songa and
b, respectively and the indexesi andj are referred to the 19
coefficients and the 10 lags, respectively. Differences are
linearly weighted in order to give more importance to the
small-scale lags of the variogram vectors. The vectorΩ =

[ω1, . . . , ω10] contains the10 linearly decreasing weights
ωj , such that

∑10
j=1 ωj = 1. Eachj-th weight is computed

as follows:

ωj =
11− j

D
(9)

whereD =

10∑
j=1

j. Audio similarity is simply evaluated by

sorting the songs with respect to a reference piece, accord-
ing to their reciprocal distance, computed using equation
(8).

6. EXPERIMENTAL RESULTS AND DISCUSSION

An objective evaluation of the sorting capability of the me-
thod is very hard to achieve because of the subjectiveness
of the concept of ‘audio similarity’. Actually, one song
can be judged as more similar to another one depending on
a series of parameters (rhythm, spectral content, melody
etc.) that are subconsciously evaluated by the listeners.

In order to obtain a robust and objective estimate of the
performance of the method, a series of tests performed by
a group of users, have been carried on. A total of 5 lists
of songs have been submitted to 10 users who sorted them
with respect to a set of reference songs, without any pre-
vious knowledge about any tagging or taxonomy of the
dataset. The test songs are sampled by the Audio Descrip-
tion Context database of the ISMIR2004 [3] and belong to
all the genres presented in the database.

Successively, the lists created manually have been com-
pared with the outcomes of 4 automatic methods, the va-
riogram-based method and other three methods that can be
found in the literature:

1. Fluctuation Patterns [13]

2. MFCCs with GMM/EM clustering approach [13]

3. MFCCs with K-means clustering approach

The fluctuation patterns, describing the amplitude mod-
ulation of the loudness of the frequency bands, are used by
Pampalk [13] to briefly characterize the song spectral con-
tent. The Gaussian Mixture Models coupled with Expec-
tation/Maximization approach are employed by the same
author to cluster the Mel coefficients in 30 vectors (G30)
of 19 elements. The third method is the same approach
used by Logan and Salomon [11], based on the calculus of
the MFCCs clustered by the popular K-means, with the Eu-
clidean distance instead of the Kullback-Leibler distance.

A total amount of some tens of lists have been obtained
by the manual sorting by the users. A rapid look at these
lists reveals a strong lack of homogeneity among them. It
is related to the high subjectiveness of the sorting process
and the variability of the human perception of the ‘audio
similarity’. This leads to the lack of a representative list for
each reference song. Instead of trying to extract a unique
reference list among the users, the authors turned to derive
a measure of the agreement among the users.

A weighted matching score has been computed, taking
into account the reciprocal distance of the songs (in terms
of position index in the list). Such distances have been line-
arly weighted, such that the first songs in the lists reflected
more importance than the last ones. Actually, it is easier to
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define the order of few very similar songs, than to sort the
very different ones.

Let Lα andLβ represent two different lists ofn songs,
for the same reference song, the matching scoreS has been
computed using the following equation:

S =

n∑
i=1

|i− j| · ωi (10)

wherei andj are the indexes for listsLα andLβ , respec-
tively. In particular,j is the index of thej-th song in list
Lβ , such thatLα(i) ≡ Lβ(j). In practice, thei-th song
in the list Lα is searched inLβ and their correspondent
indexes are compared. The absolute difference is linearly
weighted by the weightsωi as referred in equation (9).

Finally, the scores are transformed to be represented as
percentage of the maximum score attainable.

For each reference song, the matching scores have been
computed among all the available lists, both among the
users lists and among the users lists and the ones returned
by the automatic methods. Thus, two different sets of scores
have been obtained: the inter-users scores and the users-
automatic scores. The measure of the performance of the
automatic method is drawn by the degree of similarity of
the two sets, that is, how close are the scores computed
among the users lists and the lists returned by the automatic
method. In order to have an estimation of such closeness,
the coherence among the two sets of scores is computed
by a statistical test. The Kolmogorov-Smirnov test [15]
has been used to measure the correspondence between the
two distributions of the two sets of scores, before and after
the inclusion of the automatic list.

In Table 1, the basic statistics for both the distributions
of the inter-users scores set and the users-automatic scores
sets are shown. The results of the statistical test (H) is
shown too.

The degree of similarity among the songs is a very sub-
jective response and only a high number of cases can gua-
rantee a reliable response. Nevertheless, the statistical re-
sults are enough to have an idea of the performance of the
automatic methods. The response of the users can be seen
as some form of quantifying the difficulty level of the sort-
ing task. When the songs are easily sortable, the users
show a high degree of agreement (high mean scores). Con-
versely, when the similarity among the songs is not very
clear, the discrepancy among the users increases and, to-
gether with a decrease of the centrality measures (mean
and median), an increase of the variance is appreciable.
Actually, the standard deviation is an index of the disagree-
ment among the users and can be related with the complex-
ity of the sorting procedure.

In the test results, the discordance among the users is
well reflected by high values of the standard deviation in
most of the cases. The mean standard deviation for the 5
cases is about the 14% of the mean score.

In general, a wide variety of performances are shown by
the different methods. The method based on the clustering
of the Mel coefficients by the GMM/EM approach reaches
the best score in 3 cases, for songs B,C and D, while it fails

Ref.song Method Mean Median Min Max Skewness St.Dev. H

Song A

Users 72.3 74.9 33.4 90.9 -1.0 13.2 -

MFCC-Var 71.5 75.2 42.8 82.5 -1.8 11.3 0
FP 71.2 72.5 43.5 85.3 -1.3 11.6 0
MFCC-EUC 70.8 71.8 41.8 84.8 -1.4 12.1 0
MFCC-G30 55 54.3 41.3 69.4 0.1 9 1

Song B

Users 81.8 83.9 52.7 99.2 -1 9.6 -

MFCC-Var 75.4 76.8 54.4 87.8 -1.2 8.7 1
FP 66.6 66.1 58 81.8 0.9 6.9 1
MFCC-EUC 67.5 66.6 61.5 72.9 0.1 4.3 1
MFCC-G30 76.7 82.3 41.5 99.2 -0.7 14.2 1

Song C

Users 84.3 85.6 66.6 96.2 -0.2 6.6 -

MFCC-Var 71.3 70.8 66.1 76.2 0.2 3.5 1
FP 70 69.9 58 82.8 0.1 6.5 1
MFCC-EUC 81.8 83.2 71.4 90.9 -0.4 6.1 0
MFCC-G30 86.9 89.1 73.7 92.9 -1.1 6.2 0

Song D

Users 77.2 77.7 57.5 96.2 0 8.2 -

MFCC-Var 60.8 60.1 57.2 71.1 1.4 4.5 1
FP 57.3 54.6 50.9 73.4 1.3 7 1
MFCC-EUC 66.1 65.1 59.7 84.6 1.9 7 1
MFCC-G30 77.8 83.0 63.0 86.6 -0.5 8.8 0

Song E

Users 65.7 66.1 22.8 93.2 -0.4 15.4 -

MFCC-Var 67.8 68.5 56.2 82.3 0.1 8.1 0
FP 59.2 60.6 42.3 70.1 -0.5 9.8 0
MFCC-EUC 34.1 34.2 11.6 62 0.1 15.4 1
MFCC-G30 49.9 49.4 30.9 63.3 -0.4 9.7 1

Mean

Users 76.3 77.6 - - - 10.6 -

MFCC-Var 69.4 70.3 - - - 7.2 -
FP 64.9 64.7 - - - 8.4 -
MFCC-EUC 64.0 64.2 - - - 9.0 -
MFCC-G30 69.3 71.6 - - - 9.6 -

Table 1. Basic statistics of the distributions of the inter-
usersscores set and the users-automatic scores set. Val-
ues are in percent. Results of statistical test are shown
too: H = 0 means that the two distributions are coher-
ent, whileH = 1 stands for a distributions mismatch. The
codes for the automatic methods stand for: MFCC/Var =
MFCCs clustered by standardized variogram, FP = fluc-
tuation patterns, MFCC-EUC = MFCCs clustered by K-
means, MFCC-G30 = MFCCs clustered by GMM/EM me-
thod. Best results in bold.

the test for song B. The method based on the clustering of
the Mel coefficients by the variogram returns the highest
scores for songs A and E. It also returns the second highest
score for song B, although failing the test, but with the
highestp-value (not shown in the table).

The best results are attained for the song A, where three
of the four methods pass the test, while, for song B, none
of them return a sufficient matching with the inter-users
distribution. This last issue is basically related with the
high agreement shown by the users (about 82%) that is
hardly attained by the automatic methods. Quite the same
situation occurs for song C and D, with high mean scores
among the users lists (more than 84% and 77%, for songs
C and D, respectively) approached by only two of the four
methods proposed. Finally, the song E reveals a very low
mean inter-users score (about 66%), well reflected by all
the methods. Globally, all the methods show a good perfor-
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mance, with averaged mean values higher than 64%. The
variogram-basedapproach shows the highest mean value,
with 69.4%, very close to the result by the GMM/EM based
method.

7. CONCLUSIONS AND FUTURE WORKS

A new approach based on the use of the standardized va-
riogram for the clustering of the Mel coefficients for audio
similarity evaluation has been proposed. The variogram
is calculated on a reduced vector of ten lag elements and
it is standardized by the global variance, in order to ob-
tain comparable signature matrices for different songs. The
method capability is evaluated on the base of a statistical
comparison among the distributions of the matching scores
computed among a set of users lists and the ones returned
by the automatic method. Moreover, for a more complete
assessment of the method performance, other three known
methods employed in literature for audio similarity eval-
uation are computed, and their correspondent scores are
compared.

Performances vary from quite poor to very good for all
the methods, with mean matching scores varying from the
lowest mean value of about 34% for the method based
on the Euclidean distance and the highest value of about
87% for the method based on the clustering by GMM/EM.
The averaged mean values reveal a good global perfor-
mance of the method based on the variogram and on the
GMM/EM approach, with quite poorer results by the other
two ones. In practice, the variogram-based method pro-
posed here works quite well and its performance can be
compared with the one of other more popular methods that,
in some cases, show a higher degree of computational com-
plexity.

The capability of the method can be improved, by opti-
mizing some calculation parameters, as the sampling of the
distance lags values. Moreover, the theoretical variogram
can be evaluated and its shape parameters can be taken
into account to optimize the modeling of the spectral con-
tent of the song to improve the audio similarity assessment
task. The evaluation task can be improved by increasing
the number of users and broadening the test samples.
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