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Variational Inference with Normalizing Flows

Goal is to optimize the ELBO

L(x; θ, φ) = Eqφ(z|x)[log pθ(x, z)− log qφ(z|x)]

Create flexible q(z|x) in two steps

Inference network to get q(z0|x)

q(z0|x) ∼ N (z0|µ(x), σ2(x))

Normalizing flow to get zt = ft(zt−1; x))) , t = 1, . . . ,T

log q(zT |x) = log q(z0|x)−
T∑
t=1

log det

∣∣∣∣ dzt
dzt−1

∣∣∣∣
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Linear Vector Autoregressive (VAR) Models

Classical order k linear VAR model

yt = A1yt−1 + A2yt−2 + · · ·+ Akyt−k + c + et

yτ , c, eτ ∈ Rd

Aτ ∈ Rd×d

The error terms et are unbiased and uncorrelated

Unbiased: E[et ] = 0
Covariance structure: E[ete

T
t ] = Σ

Uncorrelated: E[ete
T
τ ] = 0, τ < t

For Gaussian errors, uncorrelated implies independent
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Non-linear (Deep) Autoregressive Models

Sample a noise vector ε ∼ N (0, I)
Autoregressive model with non-linear mean and variances

y0 = µ0 + σ0 · ε0
yi = µi (y1:i−1) + σi (y1:i−1) · εi

µi , σi can be non-linear (deep) functions

Sampling is sequential, scales with dimensionality

Not suitable for posterior sampling
Variational inference needs sampling, not suitable for VI
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Inverse Autoregressive Transformations

Inverse of autoregressive transformation

εi =
yi − µi (y1:i−1)

σi (y1:i−1)
Maps ‘signal’ yi , y1:i−1 to ‘noise’ εi

Inverse autoregressive transformation as normalizing flows

Given y, ε can be computed directly, non-sequentially

ε =
y − µ(y)

σ(y)

Has a simple Jacobian determinant

log det

∣∣∣∣dεdy

∣∣∣∣ =
D∑
i=1

− log σi (y)
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Inverse Autoregressive Flows (IAF)

Initial encoder network gives µ0(x), σ0(x), extra output h

With ε ∼ N (0, I), initial latent variable

z0 = µ0 + σ0 � ε

Flow consists of a chain of transformations

zt = µt + σt � zt−1

Autoregressive networks µt(z1:t−1, h) and σt(z1:t−1, h)

Overall model autoregressive w.r.t. z1:t−1
Jacobians dµt

dzt−1
, dσt

dzt−1
are triangular with 0 diagonals
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IAF Properties

Jacobians dzt
dzt−1

is triangular with σt on diagonals

Determinant is
∏D

i=1 σt,i

Final iterate is given by

log q(zT |x) = −
D∑
i=1

(
1

2
ε2i +

1

2
log 2π +

T∑
t=0

log σt,i

)
Numerically stable version

[mt , st ] = ARNN[t](zt−1, h; θ)

σt = sigmoid(st)

zt = σt � zt−1 + (1− σt)�mt

Reverse the ordering of variables after each step
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IAF Model

Instructor: Arindam Banerjee Flow based Models



9/24

IAF Algorithm

Instructor: Arindam Banerjee Flow based Models



10/24

ResNet VAE with Bidirectional Inference

Instructor: Arindam Banerjee Flow based Models



11/24

Results: Likelihoods, MNIST
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Results: Bits/dim, Cifar-10
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Neural Density Estimation

Two faimilies: AR models and NF models

Normalizing Flows

Sequence of invertible transformations of a base distribution
“... not well suited for density estimation ...”

Autoregressive density estimation

Chain rule p(x) =
∏

i p(xi |x1:i−1)
Sequential and sensitive to variable order
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Autoregression as Normalizing Flows

Autoregression with Gaussians

p(xi |x1:i−1) = N (xi |µi , (expαi )
2) , µi = fµi (x1:i−1), αi = fαi (x1:i−1)

Generating samples using ui ∼ N (0, 1)

xi = ui expαi + µi , µi = fµi (x1:i−1), αi = fαi (x1:i−1)

With x = f (u), u ∼ N (0, I), consider f −1

Given x, u = f −1(x) is easy to compute

ui = (xi − µi ) exp(−αi ) , µi = fµi (x1:i−1), αi = fαi (x1:i−1)

Jacobian of f −1 is traingular by design with diagonal exp(−αi )∣∣∣∣det
∂f −1

∂x

∣∣∣∣ = exp

(
−
∑
i

αi

)
, αi = fαi (x1:i−1)
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Masked Autoregressive Flows (MAF)

Use autoregressive model as a flow

Assess generative model by checking if u = f −1(x) is Gaussian

ui = (xi − µi ) exp(−αi ) , µi = fµi (x1:i−1), αi = fαi (x1:i−1)

Stack a set of AR models M1, . . . ,Mk

Implement {fµi , fαi} with masking, avoid sequential computation

Use MADE, autoregressive property implemented by masking

MAF is stacked MADE, each layer is a MADE
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Example: MADE vs MAF
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MAF and IAF

Both use flows based autoregression

IAF generates (µi , αi ) from past random numbers

xi = ui expαi + µi , µi = fµi (u1:i−1), αi = fαi (u1:i−1)

Generate samples and compute their likelihood in one pass
Likelihood of new x: sequentially generate u, needs D passes

MAF generates (µi , αi ) from past data variables

xi = ui expαi + µi , µi = fµi (x1:i−1), αi = fαi (x1:i−1)

Likelihood of any x in one pass
Sampling x is sequential, needs D passes

Instructor: Arindam Banerjee Flow based Models



18/24

MAF and Real NVP

Real NVP uses coupling layers

x1:d = u1:d

xd+1:D = ud+1:D � expα + µ , µ = fµ(u1:d), α = fα(u1:d)

Stack coupling layers by permuting variables
Special case α = 0 corresponds to NICE (NF1, first paper)

Special cases of MAF (and IAF), which have fine-grained control

xi = ui expαi + µi , µi = fµi (x1:i−1), αi = fαi (x1:i−1)

Generating samples, i.e., draw x ∼ p(x)

One pass for Real NVP and IAF, D passes for MAF

Likelihood computation, i.e., given x, compute p(x)

One pass for Real NVP and MAF, D passes for IAF
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Results: Likelihood
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Results: Likelihood, Cifar-10
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Results: Bits/dim, Conditional Models
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Results: Samples, MNIST
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Results: Samples, CIFAR-10
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