CS 598: Deep Generative and Dynamical Models

Instructor: Arindam Banerjee

October 5, 2021

1/24

Instructor: Arindam Banerjee

Variational Inference with Normalizing Flows

@ Goal is to optimize the ELBO
L(x;0,8) = Eq,(zx)[log po(x, 2) — log q,(z[x)]

o Create flexible g(z|x) in two steps
o Inference network to get q(zo|x)

q(z0lx) ~ N (zo]u(x), 0*(x))

o Normalizing flow to get z; = fy(z;—1;x))), t=1,..., T
T dz
lo z7|x) = lo Zo|x) — log det £
g q(z7[x) = log g(zo|x) ; gdet| o —

2/24

Instructor: Arindam Banerjee

Linear Vector Autoregressive (VAR) Models

@ Classical order k linear VAR model
Ye = Arye—1 + Adyro + -+ Aryi—k + €+ e

° yr,C,er €]Rd
o A, € RIxd

@ The error terms e; are unbiased and uncorrelated
o Unbiased: E[e;] =0
o Covariance structure: E[e;e]] = &
o Uncorrelated: Ele;e] =0, 7 <t

@ For Gaussian errors, uncorrelated implies independent

3/24

Instructor: Arindam Banerjee

Non-linear (Deep) Autoregressive Models

@ Sample a noise vector € ~ A/(0,1)

@ Autoregressive model with non-linear mean and variances
Yo = Mo + 00 - €0
Vi = pilyri-1) +oilyri-1) - €

@ uj,0; can be non-linear (deep) functions

@ Sampling is sequential, scales with dimensionality

o Not suitable for posterior sampling
e Variational inference needs sampling, not suitable for VI

4/24

Instructor: Arindam Banerjee

Inverse Autoregressive Transformations

@ Inverse of autoregressive transformation

Vi — piy1:i-1)
oi(yri-1)

e Maps ‘signal’ y;,y1.;—1 to ‘noise’ ¢;

€ =

@ Inverse autoregressive transformation as normalizing flows
o Given y, € can be computed directly, non-sequentially

_y—uly)
P S)
a(y)
e Has a simple Jacobian determinant

D

de
S gty

i=1

log det

5/24

Instructor: Arindam Banerjee

Inverse Autoregressive Flows (IAF)

e Initial encoder network gives po(x), oo(x), extra output h
e With e ~ N(0,1), initial latent variable
Zo = lo +og©e€

@ Flow consists of a chain of transformations
Zp =pr + 0Oz
o Autoregressive networks pi;(z1.t—1,h) and o¢(z1.t—1, h)

@ Overall model autoregressive w.r.t. z1.4_1

B le«t doy
e Jacobians i

are triangular with 0 diagonals

6/24

Instructor: Arindam Banerjee

IAF Properties

Jacobians -2t is triangular with o+ on diagonals
dzi1 g g

Determinant is [2., o¢.;

Final iterate is given by
D /4 1 T
log g(z1|x) = — z; (26,2 + 5 log 27 + tzg log 0t7,->
Numerically stable version
[mt, St] = ARNN[t](thl, h, 9)
o = sigmoid(s;)
Zt :UtQZt_1+(1—Ut)®mt

Reverse the ordering of variables after each step

7/24

Instructor: Arindam Banerjee

IAF Model

Approximate Posterior with Inverse Autoregressive Flow (IAF)

IAF Step

Figure 2: Like other normalizing flows, drawing samples from an approximate posterior with Inverse
Autoregressive Flow (IAF) consists of an initial sample z drawn from a simple distribution, such as a
Gaussian with diagonal covariance, followed by a chain of nonlinear invertible transformations of z,
each with a simple Jacobian determinants.

8/24

Instructor: Arindam Banerjee

IAF Algorithm

Algorithm 1: Pseudo-code of an approximate posterior with Inverse Autoregressive Flow (IAF)
Data:
x: a datapoint, and optionally other conditioning information
6: neural network parameters
EncoderNN(x; 0): encoder neural network, with additional output h
AutoregressiveNN|[«|(z, h; 0): autoregressive neural networks, with additional input h
sum(.): sum over vector elements
sigmoid(.): element-wise sigmoid function
Result:
z: a random sample from ¢(z|x), the approximate posterior distribution
I: the scalar value of log ¢(z|x), evaluated at sample "z’

[p, o, h] « EncoderNN(x; 6)

e~ N(0,I)

Z—oOetp

I+ —sum(log o + 3€* + 3 log(27))

fort <+ 1toT do
[m, s] + AutoregressiveNN|[t](z, h;0)
o sigmoid(s)
z+—o@®z+(l—0)Om
I < 1 —sum(log o)

end

9/24

Instructor: Arindam Banerjee

ResNet VAE with Bidirectional Inference

FesNet Block FesNet Block

Layer Posterior
2~ a(zfe)

@<]

Deep Bidirectional VAE with
generative model inference model bidirectional inference (» = dentiy = = Convelution = Nonlearty)

Figure 3: Overview of our ResNet VAE with bidirectional inference. The posterior of each layer is
parameterized by its own IAF.

10/24

Instructor: Arindam Banerjee

Results: Likelihoods, MNIST

Table 1: Generative modeling results on the dynamically sampled binarized MNIST version used
in previous publications (Burda et al., 2015). Shown are averages; the number between brackets
are standard deviations across 5 optimization runs. The right column shows an importance sampled
estimate of the marginal likelihood for each model with 128 samples. Best previous results are repro-
duced in the first segment: [1]: (Salimans et al., 2014) [2]: (Burda et al., 2015) [3]: (Kaae Sgnderby

et al., 2016) [4]: (Tran et al., 2015)

Model VLB log p(x) ~
Convolutional VAE + HVI [1] -83.49 -81.94

DLGM 2hl + IWAE [2] -82.90

LVAE [3] -81.74

DRAW + VGP [4] -79.88

Diagonal covariance -84.08 (£0.10) -81.08 (£ 0.08)

IAF (Depth = 2, Width = 320) -82.02 (£ 0.08)
IAF (Depth = 2, Width = 1920) -81.17 (& 0.08)
IAF (Depth = 4, Width = 1920) -80.93 (£ 0.09)
IAF (Depth = 8, Width = 1920) -80.80 (£ 0.07)

-79.77 (£ 0.06)
-79.30 (£ 0.08)
-79.17 (£ 0.08)
-79.10 (£ 0.07)

11/24

Instructor: Arindam Banerjee

Results: Bits/dim, Cifar-10

Table 2: Our results with ResNet VAEs on CIFAR-10 images, compared to earlier results, in average
number of bits per data dimension on the test set. The number for convolutional DRAW is an upper
bound, while the ResNet VAE log-likelihood was estimated using importance sampling.

Method bits/dim <
Results with tractable likelihood models:

Uniform distribution (van den Oord et al., 2016b) 8.00
Multivariate Gaussian (van den Oord et al., 2016b) 4.70
NICE (Dinh et al., 2014) 4.48
Deep GMMs (van den Oord and Schrauwen, 2014) 4.00
Real NVP (Dinh et al., 2016) 3.49
PixelRNN (van den Oord et al., 2016b) 3.00
Gated PixelCNN (van den Oord et al., 2016¢) 3.03
Results with variationally trained latent-variable models:

Deep Diffusion (Sohl-Dickstein et al., 2015) 5.40
Convolutional DRAW (Gregor et al., 2016) 3.58
ResNet VAE with IAF (Ours) 3.11

12/24

Instructor: Arindam Banerjee

Neural Density Estimation

@ Two faimilies: AR models and NF models

@ Normalizing Flows
e Sequence of invertible transformations of a base distribution

e “... not well suited for density estimation ...

”

@ Autoregressive density estimation

o Chain rule p(x) = []; p(xi|x1:i—1)
e Sequential and sensitive to variable order

13/24

Instructor: Arindam Banerjee

Autoregression as Normalizing Flows

@ Autoregression with Gaussians
p(xilxa:io1) = N (xilwi, (exp i)?) ;i = fu;(x1:i-1), @i = fo (x1:i-1)

e Generating samples using u; ~ N(0,1)
xj = ujexpaj + i, pi = fu(xeio1), 0 = fo,(xwi-1)

o With x = f(u),u ~ N(0,I), consider f~1

o Given x, u = f~1(x) is easy to compute
ui = (x; — pi)exp(—a;i) , i = fu(xwi-1), o = fo,(x1:i-1)
o Jacobian of f~1 is traingular by design with diagonal exp(—a;)

= exp (ZQI>) Qp = f(x,(xl:i—l)

of 1

ox

det

14/24

Instructor: Arindam Banerjee

Masked Autoregressive Flows (MAF)

@ Use autoregressive model as a flow

Assess generative model by checking if u = f~1(x) is Gaussian
up = (xj — pi)exp(—a;) , pi = fu(xei-1), @i = fo,(x1:i-1)
Stack a set of AR models My, ..., M,

Implement {f,,, f,;} with masking, avoid sequential computation
o Use MADE, autoregressive property implemented by masking

o MAF is stacked MADE, each layer is a MADE

15/24

Instructor: Arindam Banerjee

Example: MADE vs MAF

(a) Target density (b) MADE with Gaussian conditionals (c) MAF with 5 layers

Figure 1: (a) The density to be learnt, defined as p(z1, 72) = N (22]0,4)N (21 | 323,1). (b) The
density learnt by a MADE with order (21, z2) and Gaussian conditionals. Scatter plot shows the train
data transformed into random numbers u; the non-Gaussian distribution indicates that the model is a
poor fit. (¢) Learnt density and transformed train data of a 5 layer MAF with the same order (z1, z2).

16/24

Instructor: Arindam Banerjee

MAF and IAF

@ Both use flows based autoregression

o IAF generates (1,) from past random numbers
X = ujexpa; + pj , pi = fu(usi-1), o = fo,(uri-1)
o Generate samples and compute their likelihood in one pass
o Likelihood of new x: sequentially generate u, needs D passes

e MAF generates (u;, ;) from past data variables
Xi = vpexpai+ i, pi = fu(xei-1), o = fo,(x1:i-1)
o Likelihood of any x in one pass
e Sampling x is sequential, needs D passes

17/24

Instructor: Arindam Banerjee

MAF and Real NVP

@ Real NVP uses coupling layers
X1:d = U1:d
Xd+1:D = Ud4+1.p O eXpa+pu, p= fu(ulzd)-/a = fa(”l:d)

e Stack coupling layers by permuting variables
e Special case ae = 0 corresponds to NICE (NF1, first paper)

@ Special cases of MAF (and IAF), which have fine-grained control
xi = ujexpaj + i, pi = fu(xui-1), @ = fo,(xwi-1)

o Generating samples, i.e., draw x ~ p(x)
@ One pass for Real NVP and IAF, D passes for MAF

o Likelihood computation, i.e., given x, compute p(x)
e One pass for Real NVP and MAF, D passes for IAF

18/24

Instructor: Arindam Banerjee

Results: Likelihood

Table 1: Average test log likelihood (in nats) for unconditional density estimation. The best performing
model for each dataset is shown in bold (multiple models are highlighted if the difference is not
statistically significant according to a paired t-test). Error bars correspond to 2 standard deviations.

POWER GAS HEPMASS MINIBOONE BSDS300
Gaussian —7.74+0.02 —3.58+0.75 —27.93+0.02 —37.24+1.07 96.67 £0.25
MADE —3.08 £0.03 3.56+£0.04 —20.98+0.02 —15.59+0.50 148.85+0.28

MADE MoG 0.40 +£0.01 847+£0.02 —15.15+0.02 —12.27+047 153.714+0.28

Real NVP (5) —0.02+0.01 4784180 —19.62+£0.02 —13.55+0.49 152.97+0.28
Real NVP (10) 0.1740.01 833+£0.14 —18714£0.02 —1384+052 153.284+1.78

MAF (5) 0.14 £0.01 9.074+0.02 —17.70+£0.02 —11.75+0.44 155.69+0.28
MAF (10) 0.24+£0.01 10.08+0.02 —-17.73+£0.02 —12.244+045 154.93+0.28
MAFMoG (5) 0.30+0.01 9.59+£0.02 —17.394+0.02 —11.68+0.44 156.36 +0.28

19/24

Instructor: Arindam Banerjee

Results: Likelihood, Cifar-10

Table 2: Average test log likelihood (in nats) for conditional density estimation. The best performing
model for each dataset is shown in bold. Error bars correspond to 2 standard deviations.

MNIST CIFAR-10

unconditional conditional unconditional conditional
Gaussian —1366.9 £ 1.4 —1344.7+ 1.8 2367 +29 2030 + 41
MADE —1380.8 4.8 —1361.9+1.9 147 £ 20 187+ 20
MADE MoG —1038.5+1.8 —-1030.3 +1.7 —397 + 21 —119 420
Real NVP (5) —1323.2 +6.6 —1326.3 +£5.8 2576 + 27 2642 + 26
Real NVP (10) —1370.7 £ 10.1 —1371.3 £43.9 2568 + 26 2475 £ 25
MAF (5) —1300.5 + 1.7 —1302.9 4+ 1.7* 2936 + 27 2083 + 26*
MAF (10) —1313.1£2.0 —1316.8 £ 1.8%* 3049 + 26 3058 + 26*
MAF MoG (5) —1100.3 £ 1.6 —1092.3 £ 1.7 2911 + 26 2936 + 26

20/24

Instructor: Arindam Banerjee

Results: Bits/dim, Conditional Models

Table 7: Bits per pixel for conditional density estimation (lower is better). The best performing model
for each dataset is shown in bold. Error bars correspond to 2 standard deviations.

MNIST CIFAR-10

unconditional conditional unconditional conditional
Gaussian 2.01 £0.01 1.97 +£0.01 4.63 £0.01 4.79 +0.02
MADE 2.04 +£0.01 2.00 £ 0.01 5.674+0.01 5.6540.01
MADE MoG 1.41+0.01 1.39+0.01 5.934+0.01 5.80+0.01
Real NVP (5) 1.93 +£0.01 1.94 +0.01 4.53 +£0.01 4.50 £0.01
Real NVP (10) 2.02 +£0.02 2.02+£0.08 4.54 £0.01 4.58 £0.01
MAF (5) 1.89 £0.01 1.89 +£0.01* 4.36 £0.01 4.34 £0.01%
MAF (10) 1.91+0.01 1.92 +£0.01% 4.31+0.01 4.30 £0.01*
MAF MoG (5) 1.524+0.01 1.51+0.01 4.37+0.01 4.36 +0.01

21/24

Instructor: Arindam Banerjee

Results: Samples, MNIST

Eﬂﬂﬂlﬂlﬂ

0/010/0/0]
/A [\]
EXEIEZPIETE
>l3[3(3323/3
EIEIEI =
WC|66/6]6|6
7|7]7|217]7
718(8]8|2 |8
9191919199

(b) Real images

Figure 3: Class-conditional generated and real images from MNIST. Rows are different classes.
Generated images are sorted by decreasing log likelihood from left to right.

22/24

Instructor: Arindam Banerjee

Results: Samples, CIFAR-10

oy
Iﬂﬂlﬂﬂﬂh
AR DN E

VY SN DR

e

T EﬂE
7esE thueen

(a) Generated images (b) Real images

Figure 4: Class-conditional generated and real images from CIFAR-10. Rows are different classes.
Generated images are sorted by decreasing log likelihood from left to right.

23/24

Instructor: Arindam Banerjee

References

@ D. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, M.
Welling. Improved Variational Inference with Inverse Autoregressive Flow.

NeurlPS, 2016.

@ G. Papamakarios, T. Pavlakou, I. Murray. Masked Autoregressive Flow
for Density Estimation. NeurlPS, 2017.

24/24

Instructor: Arindam Banerjee

