

Arpa-E Rewiring AD Workshop - Post-Conference Submission

October 27/28, 2016 Washington, DC

Michael R. Schuppenhauer, Ph.D.

U.S. Biogas Potential from Crops, Residues & Waste

- Significant biogas feedstocks include energy crops and crop residues, only to a lesser degree manure, organic waste
- ➤ Taking all feedstocks into account, the US can replace 51% of fossil transportation fuel through biogas (8.81 Quad or 77 billion GGE)
- ➤ From crop residues & waste alone, 33 states could generate >10% of their transportation fuel (4 Quad / 35 billion GGE)
- ➤ From crop residues and waste streams alone at least 8,300 plants would be needed, for a total of \$210 billion in investment, creating 2.5 million jobs
- Extending biogas to energy crops would add 5,000 plants, \$240 billion in investment, and 2.8 million jobs more
- Unique opportunity to replace 50% of fossil transportation fuel:
 - renewable, domestic, sustainable cellulosic biofuel: biogas
 - > proven technology with **compelling economics** for investors, consumers
 - reates significant number of domestic jobs in rural & city economies
 - > lowers the U.S. GHG footprint with low carbon fuels

In sum: Biogas can replace 51% of US fossil transportation fuel

US Potential = 8.81 Quad / 77 billion GGE

WWTP and Landfills offer only limited untapped potential

- > 351 untapped, feasible WWTP with 22.4 BCF / 196.5 million GGE potential
- > 349 untapped, feasible landfills with 106.4 BCF / 933.6 million GGE potential

Organic fraction of MSW is most challenging

Source Data, Methodology, Assumptions

- EPA's 2011/2012 MSW Facts & Figures: data only at national level
- Up to 55% of MSW likely digestible
- BioCycle/Columbia 2013 survey has state-level data only
- 2011 data by D. Shin
- Organic MSW fraction from landfilled MSW assumed to be 35%: 86.5 million tons per year

Food Waste

47.3%

Paper & Paper Board

33.1%

Yard Trimmings

19.6%

- US Potential = Only 210.7 BCF / 1,848 million GGE (net)
- **▶** Merely 1/10th potential vs. Crop Residues

Biogas potential from manure

- ➤ US Potential = 530 BCF / 4.6 billion GGE from 682 million tpy DM
- ➢ Significant GHG reduction potential: 247.5 million t CO₂e (3.7% of UStot)

Biogas potential from crop residues

- ➤ US Potential = 2,670 BCF / 23 billion GGE from 350 million tpy DM
- > Largest readily available untapped pool of feedstock

Unpublished data

Biogas potential from energy crops

- ➤ US Potential = 4,401 BCF / 38.6 billion GGE from 385 million tpy DM (7.5t/ac)
- Largest potential pool of feedstock 60% Miscanthus, 40% Sorghum,

From crops, the energy yield per acre is highest through biogas

Ideal feedstock characteristics for AD to biogas conversion differ significantly from cellulosic ethanol feedstock criteria

- > High specific biogas yield per organic dry matter content
- High fresh matter biomass yield per acre (more than 30t FM/ac)
- ➤ Dry matter content between 20% and 35%
 - **➤** Malolactic fermentable
- ➤ Low lignin content (less than 5-6%)
 - Easy hydrolyzation without the use of external enzyme addition
- > Low protein content, high fat content
 - > Favorable C:N ratio
- Wide, local, existing availability
 - > Dual purpose crop that has demand in energy, food and fuel
- > Perennial, low water use, drought resistant, low/no till requirement
- Easy harvesting protocol with field shredder or mower
- > Low cost or preferably revenue at digester gate
- > Sugar beet, corn/sorghum silage, energy cane, camelina, bana/napier grass

Key metrics for biogas, CHP, renewable energy production

➤ CapEx for energy AD to electricity: \$2.7 – \$3.5 / W_{el}

➤ CapEx for organics MSW to biogas: \$250 – \$500 / t/a

➤ Unsubsidized biogas cost: \$3.5 – \$7.5 / MMBTU

 \triangleright including crop cost: \$10 – 18 / MMBTU

➤ Unsubsidized biogas electricity cost: \$0.10 – \$0.15 / kWh

Typical range of biogas plants: $0.5 - 2 \text{ MW}_{el}$

 \triangleright MSW / organic waste plants: $2-6 \text{ MW}_{el}$

➤ Large Scale biofuel/biogas plants:
12 – 36 MW_{el}

Economics of CNG from energy crops, crop residues, waste

Case	Food Waste CA	Dairy Manure	Energy Crop	Stover & Manure	Sugar Beet	Ethanol
Feed [t/d]	600	287	730	290	707	6,400
Feed [t/y]	156,000	104791	266,667	105,939	258,000	2,333,333
Biogas [scfm]	1,520	550	3,135	692	1,900	12,300
CNG [GGE/y]	4,204,927	1,520,179	8,672,812	1,914,542	5,257,047	33,986,582
Name Plate [MW]	6.40	2.3	13.5	2.9	8.2	53.0
CapEx [\$]	\$ 32,000,000	\$ 10,200,000	\$ 50,000,000	\$ 10,200,000	\$ 24,100,000	\$ 110,000,000
Revenues	CNG	CNG	NG	CNG	CNG	CNG
	\$30/t tip fee		\$10/t FM crop cost	\$50/t FM stover cost	\$40/t FM beet cost	\$200/t FM DDG cost
Credits	MACRS	MACRS	MACRS	NMTC, MACRS	NMTC, MACRS	NMTC, MACRS
	CNG @2.30 / GGE	CNG @ \$14/MMBTU	CNG @ \$20/MMBTU	CNG @ \$15/MMBTU	CNG @ \$20/MMBTU	CNG @ \$21/MMBTU
NPV [\$]	\$ 73,000,000	\$ 4,460,000	\$ 47,195,000	\$ 3,300,000	\$ 8,377,000	\$ 39,400,000
IRR [%]	35%	15.2%	22%	14.3%	14.8%	15.9%
Methane [\$/MMBTU]	(\$8.97)	\$10.85	\$13.60	\$11.55	\$17.08	\$19.17
CNG [\$/GGE]	(\$1.00)	\$1.21	\$1.52	\$1.71	2.28	2.39
Carbon Intensity [g CO ₂ e/MJ]	-15 to -80	13 45				

> Biogas is the cheaper and GHG negative alternative to fossil fuels

Farmatic US, Inc., unpublished data

Significant economic impact: converting crop residues, organic waste, and manure to biogas

<u>Source</u>	GGE	<u>Scenario</u>	# Plants Ca	<u>Jobs</u>	
Energy Crops	38.6 bn	Max Yield with BTS2 acreage; 12 MW Plants	5,013	\$ 239.3 bn	2.88 mn
Crop Residues	23.4 bn70	0% collected; return digestate; 12 MW Plants	3,041	\$ 145 bn	1.7 mn
Ethanol Stillage	2.9 bn	All DDGS		\$ 14.7 bn	0.18 mn
Biodiesel Glycerin	0.36 bn	All glycerin		\$ 1.9 bn	0.02 mn
Organic MSW Fraction	1.8 bn	BioCycle w/ 35% organic	981	\$ 21.5 bn	0.26 mn
Manure	4.6 bn	2012 Census Dairy & Feed; 2MW Plants	3,620	\$ 28.8 bn	0.35 mn
Total	71.7 bn		12,656	\$ 451.3 bn	5.4 mn

➤ With crop residues & energy crops: >12,700 plants, \$450bn investment, creating 5.4 million jobs

Basis: Average cost per plant = \$3.5 / W CapEx or \$300/t organic waste treated; 12 jobs per \$1 million invested

What happened in 2014?

- ITC/PTC expired end of 2013, reactivated for two weeks in 2014
- EPA rules biogas to be a cellulosic biofuel with D3 RIN, but does not assign RFS2 requirements
- Biogas Roadmap only marginal, waste driven potential considered
- Crude oil drops below \$50/bbl, natural gas below \$2.80/MMBTU, gasoline below \$1.80/gal at spot market
- Germany flip-flops on renewable energy, biogas industry goes Ch. 7/11, players abandon the US
- ARPA-E invests \$61 million in 25 projects to convert methane (<2.5mil/proj)
- ➢ Biogas 2.0 → needs to be financially self sustainable, at larger, stable, secure margin, through stable take-off partners

3 Obvious Starting Points to Reformulate Chemical Intermediates

Glucose (Sugar)

- Agricultural commodity with increasing (high) price and supply limits
- High solubility in water
- Yeast based genetic engineering well established
- IP space crowded
- Biomass deconstruction still challenging

Carbon Dioxide

- Low cost when taken from exhaust
- High solubility in water, requires sparging
- Requires photosynthetic system (plants, algae)
- Light diffusion limiting
- Highly dilute culture requires costly dewatering

Methane

- Commodity price currently very low, especially from waste
- Low solubility in water, but may not be needed
- Methanotroph biology is only emerging
- Requires different codons, sequences from yeast
- Wide open field, few players

Degradation of Substrates to Biogas Kinetics Polymere Carbohydrates Inorganic Substances Proteins Fat Hours Hydrolyse to Days Monomer **Long Chain Amino Acids** Carbohydrates **Fatty Acids** Minutes **Acidogenesis** to days $CO_2 + H_2$ Propionate Valeriate Acetate Butyrate Ethanol Minutes **Acetogenesis** to Days $CO_2 + H_2$ Acetate Seconds to Methanogenesis Minutes $CH_4 + CO_2$ H_2O

Upgrading biogas: Better spread than sugar-based processes

Carbon Conversion Spread

Take Home

- ➤ The US could replace 51% of fossil transportation fuel through renewable biogas (8.81 Quad or 77 billion GGE)
- Biogas from energy crops, crop residues, and waste is cheaper and GHG neg. compared to current fossil fuels
- Upgrading biogas to biointermediates provides a better spread than comparable sugar based processes
- > Biointermediates provide a better margin than the fuel alternative
- Methane is a comparatively attractive feedstock from a cost, biology and IP perspective
- ➤ A smaller foot print of such biorefineries, their lower substrate need matches the smaller market size/demand of intermediates and works well with the logistics of biomass substrates