Advances in molecular genetics of thyroid cancer: Impact on cancer <u>classification</u>, diagnosis and patient management

Yuri E. Nikiforov, MD, PhD Professor and Vice-Chair, Department of Pathology Director, Division of Molecular & Genomic Pathology Co-Director, Multidisciplinary Thyroid Center University of Pittsburgh Medical Center

Disclosures

- Own IP related to ThyroSeq through University of Pittsburgh (royalties)
- Consultant to Sonic Healthcare USA (consultant fees)

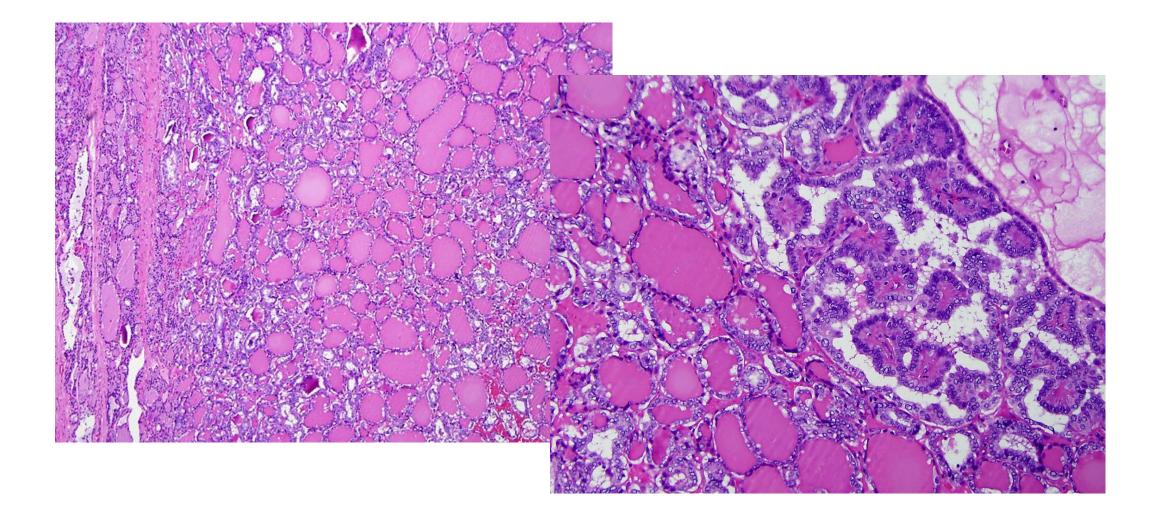
Objectives

- To provide an overview of molecular genetics of main types of thyroid cancer
- To discuss the impact of new genetic information on cancer classification
- To discuss the use of molecular markers for cancer diagnosis, prognostication, and targeted therapy

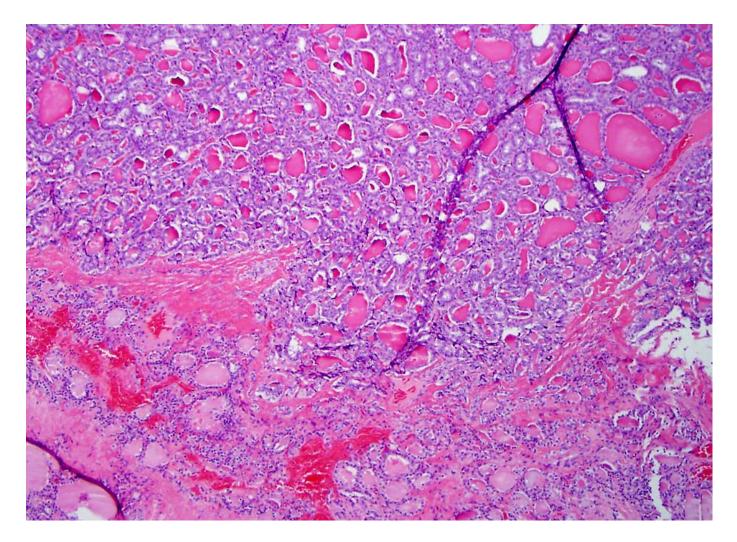
"No classification is more difficult to establish than that of thyroid carcinomas...Of all cancers, they teach, perhaps, the greatest lessons of humility to histopathologists."

Prof. Pierre Masson (1880–1959)

42 yo female with thyroid mass, FNA suspicious for cancer, BRAF mutation +


Enclosed are 17 recut slides and 1 block from the above patient's thyroidectomy.

By report this patient had a prior FNA interpreted as Bethesda category 5 at an outside institution, with molecular testing listed as pending. The thyroidectomy was performed at our hospital and we originally signed out the case as benign.


The molecular testing (ThyroSeq) was completed after the thyroidectomy and was reported as positive for BRAF V600E mutation. Based on this new finding we had the case reviewed by a consultant and a second diagnosis of NIFT-P was rendered. Given the misgivings with BRAF mutation in NIFT-P, your opinion is requested.

Thank you,

42 yo female with thyroid mass, FNA suspicious for cancer, BRAF mutation +

42 yo female with thyroid mass, FNA suspicious for cancer, BRAF mutation +

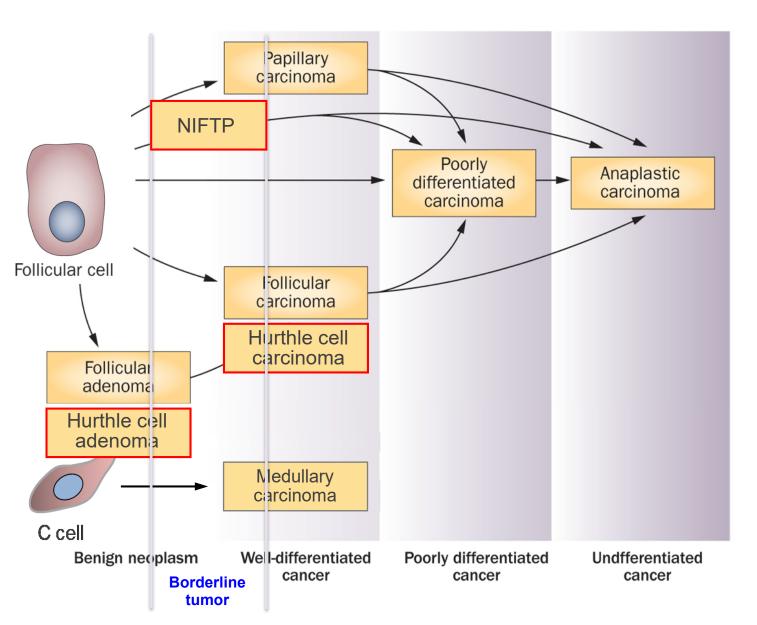
42 yo female with thyroid mass, FNA suspicious for cancer, BRAF mutation +

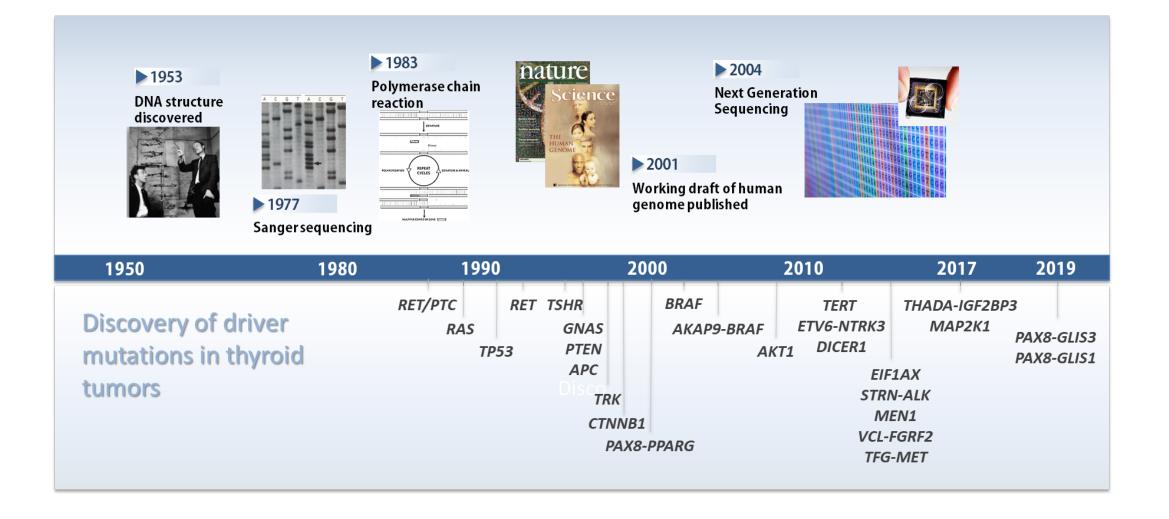

Pathology Diagnoses in this case:

Primary case pathologist: *Benign*

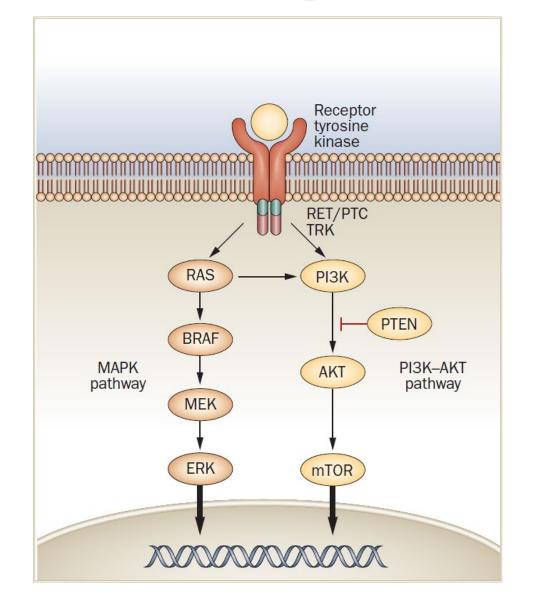
Consultant #1: *NIFTP*

Consultant #2: *PTC, classic papillary, partially encapsulate with infiltrative growth*

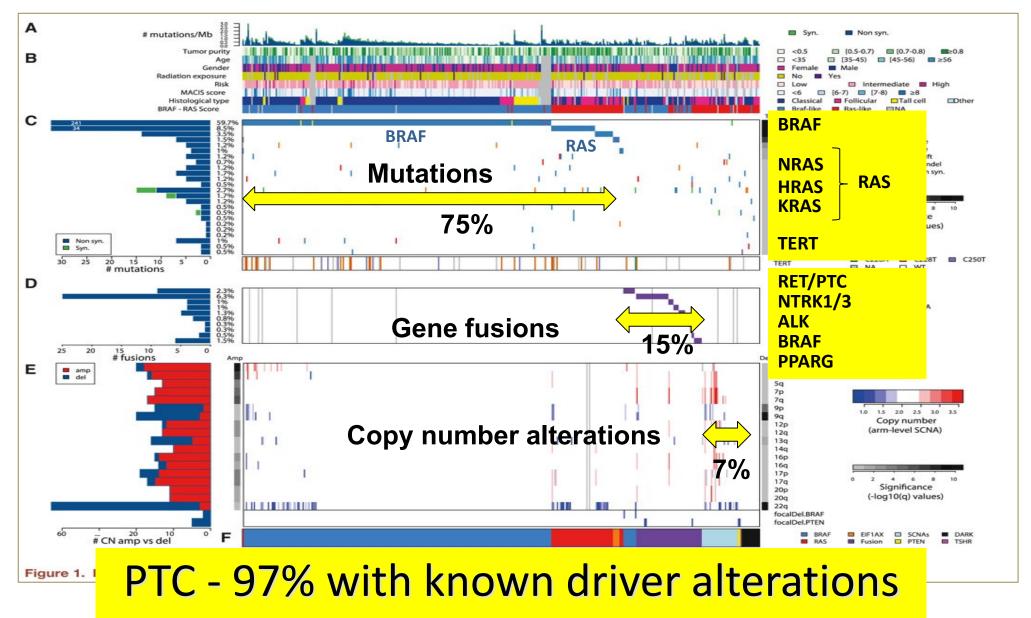

Thyroid Tumors


WHO Classification of

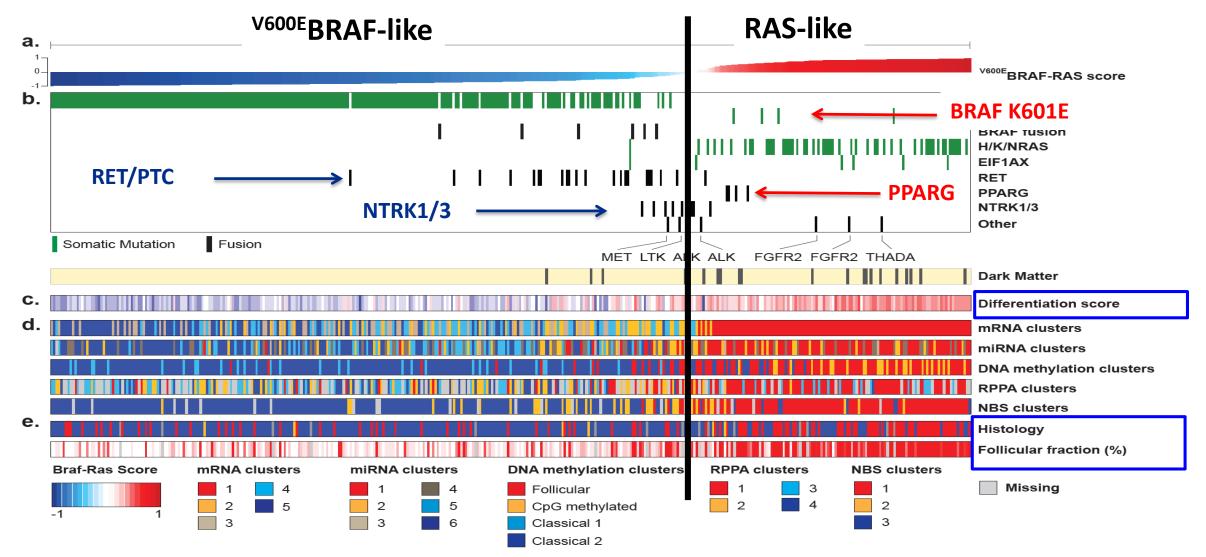
Tumours of Endocrine Organs


WHO Classification of Thyroid Tumors (2017)

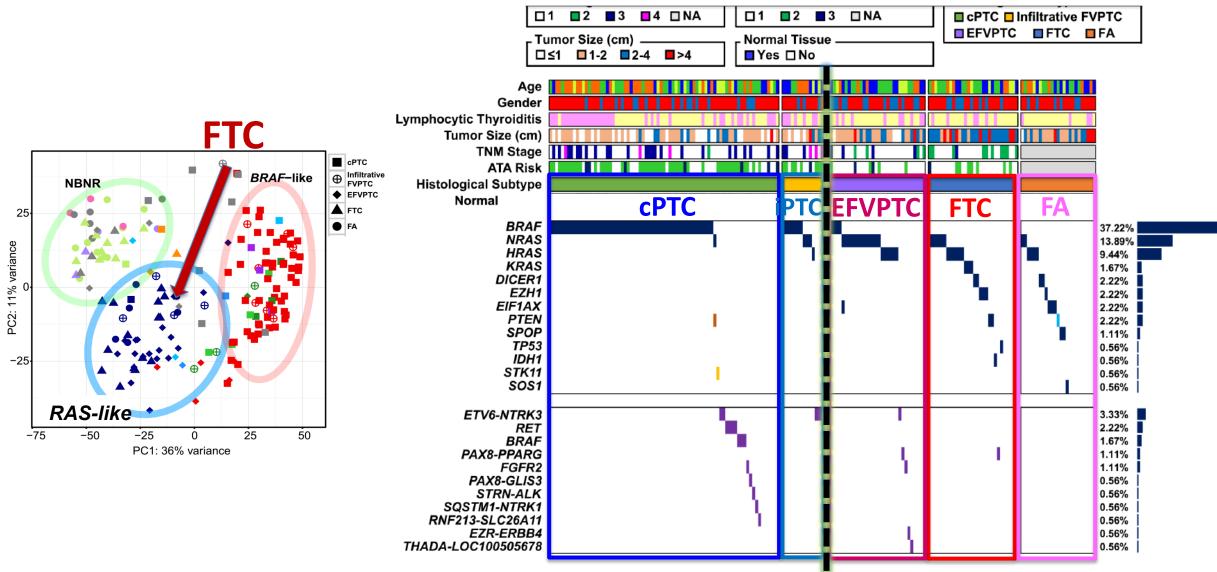
Progress in Understanding Cancer Genetics


Molecular Pathogenesis of Thyroid Cancer

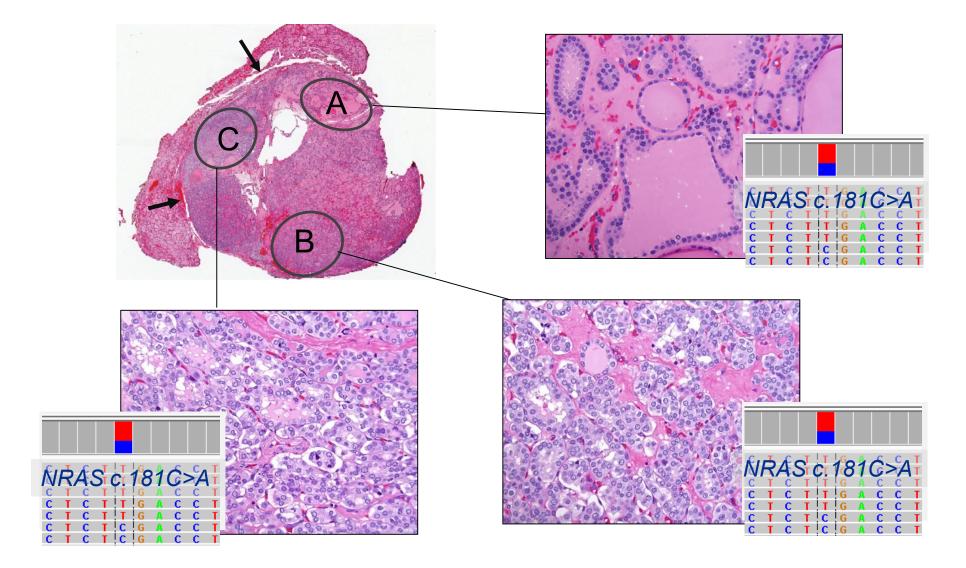
Types of genomic alterations in thyroid cancer:


- Point mutations
- Gene fusions
- Copy number alterations (CNAs)
- Gene expression alterations (GEAs)
- miRNA alterations

Papillary Thyroid Carcinoma


The Cancer Genome Atlas Research Network. Cell 159:676-690 (2014)

BRAF-like and RAS-like Papillary Carcinomas



The Cancer Genome Atlas Research Network. Cell 159:676-690 (2014)

Follicular Thyroid Carcinoma

Molecular changes precede histological changes

Gupta M et al. JCEM (2013)

NIFTP

Non-Invasive Follicular Thyroid Neoplasm with Papillary-like Nuclear Features

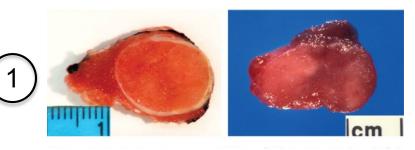
JAMA Oncology

Research

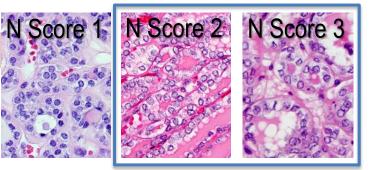
Original Investigation

Nomenclature Revision for Encapsulated Follicular Variant of Papillary Thyroid Carcinoma A Paradigm Shift to Reduce Overtreatment of Indolent Tumors

Yuri E. Nikiforov, MD, PhD; Raja R. Seethala, MD; Giovanni Tallini, MD; Zubair W. Baloch, MD, PhD; Fulvio Basolo, MD; Lester D. R. Thompson, MD; Justine A. Barletta, MD; Bruce M. Wenig, MD; Abir Al Ghuzlan, MD; Kennichi Kakudo, MD, PhD; Thomas J. Giordano, MD, PhD; Venancio A. Alves, MD, PhD; Elham Khanafshar, MD, MS; Sylvia L. Asa, MD, PhD; Adel K. El-Naggar, MD; William E. Gooding, MS; Steven P. Hodak, MD; Ricardo V. Lloyd, MD, PhD; Guy Maytal, MD; Ozgur Mete, MD; Marina N. Nikiforova, MD; Vania Nosé, MD, PhD; Mauro Papotti, MD; David N. Poller, MB, ChB, MD, FRCPath; Peter M. Sadow, MD, PhD; Arthur S. Tischler, MD; R. Michael Tuttle, MD; Kathryn B. Wall; Virginia A. LiVolsi, MD; Gregory W. Randolph, MD; Ronald A. Ghossein, MD



NIFTP

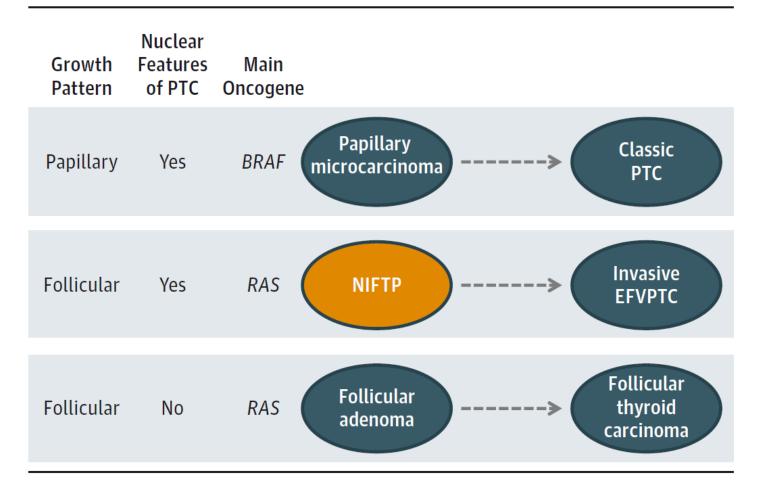

Non-Invasive Follicular Thyroid Neoplasm with Papillary-like Nuclear Features

Diagnostic criteria:

- 1. Encapsulation or clear demarcation
- 2. Follicular growth pattern
 - < 1% papillae;</p>
 - No true papillae!
 - No psammoma bodies
 - < 30% solid/trabecular/insular</p>
- 3. Nuclear features of PTC (nuclear score 2-3)
- 4. No invasion Entire capsule must be examined!
- 5. No aggressive histology (necrosis, mitoses)

Revised Diagnostic Criteria for NIFTP

Primary


- Encapsulation or clear demarcation^a
- Follicular growth pattern with:
 - No well-formed papillae
 - No psammoma bodies
 - <30% solid/trabecular/insular growth pattern</p>
- Nuclear score 2-3^b
- No vascular or capsular invasion^c
- No tumor necrosis or high mitotic activity^d

Secondary^e

- Lack of BRAF V600E mutation detected by molecular assays or immunohistochemistry
- Lack of BRAF V600E-like mutations or other high-risk mutations (TERT, TP53)

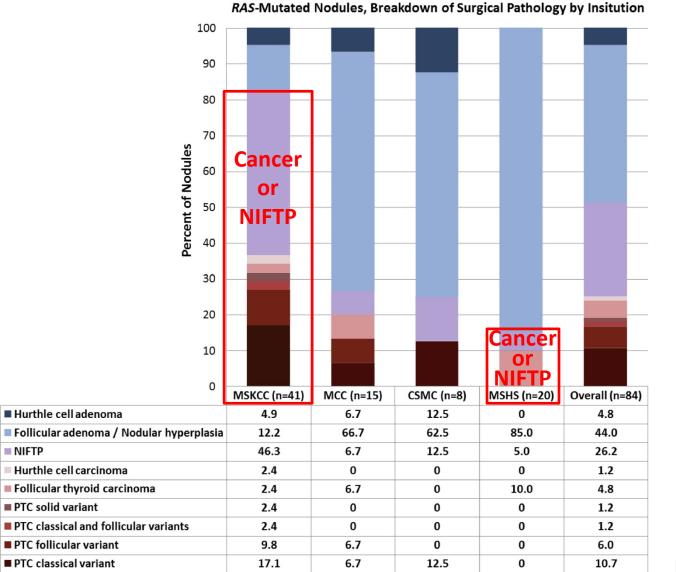
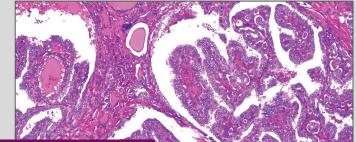

Multistep Cancer Progression and Existence of Borderline Tumors: NIFTP

Figure 2. Putative Scheme of Thyroid Carcinogenesis

Nikiforov et al. JAMA Oncology 2016; 2:1023-9.

Cancer incidence in RAS-positive nodules

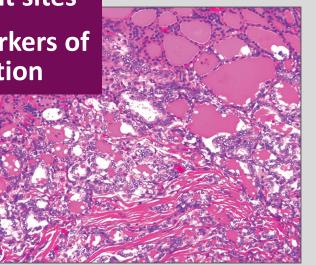
NIFTP


PTC solid variant

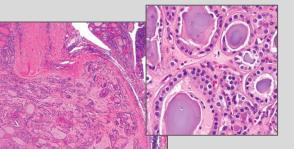
Nuclear features of Papil ary Carcinoma Clearly absent Clearly present

Marcadis AR et al. Surgery (2019)

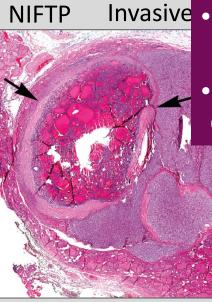
BRAF-like tumors


cPTC

VPTC

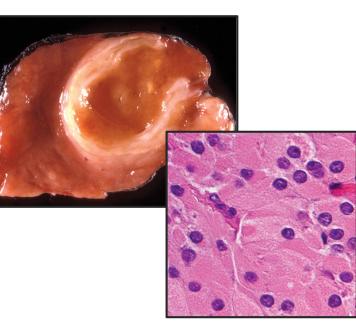

• Nuclear features of PTC

- Infiltrative
- Spread to lymph nodes first, later to distant sites
- Prone to loose markers of thyroid differentiation


RAS-like tumors

FTA/FTC

• Nuclear features of PTC absent/present


Encapsulated

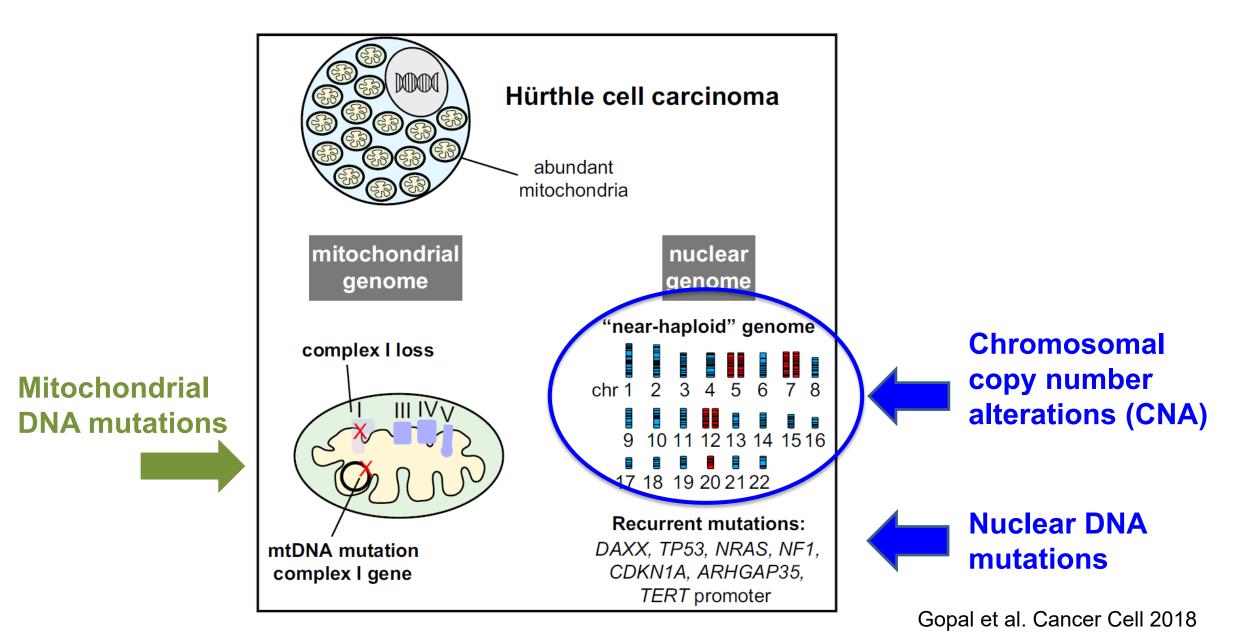
Invasive • Spread to distant sites, rare to lymph nodes

• Retain markers of thyroid differentiation

Genetics of Hurthle cell carcinoma

Integrated Genomic Analysis of Hürthle Cell Cancer Reveals Oncogenic Drivers, Recurrent Mitochondrial Mutations, and Unique Chromosomal Landscapes

Ian Ganly,^{1,2,*} Vladimir Makarov,^{1,3} Shyamprasad Deraje,¹ YiYu Dong,¹ Ed Reznik,^{4,5} Venkatraman Seshan,⁴ Gouri Nanjangud,⁶ Stephanie Eng,¹ Promita Bose,¹ Fengshen Kuo,¹ Luc G.T. Morris,^{1,2} Inigo Landa,¹ Pedro Blecua Carrillo Albornoz,^{1,3} Nadeem Riaz,^{1,3} Yuri E. Nikiforov,⁷ Kepal Patel,⁸ Christopher Umbricht,⁹ Martha Zeiger,⁹ Electron Kebebew,¹⁰ Eric Sherman,¹¹ Ronald Ghossein,¹² James A. Fagin,¹ and Timothy A. Chan^{1,3,13,*}


Ganly et al. Cancer Cell 2018

Widespread Chromosomal Losses and Mitochondrial DNA Alterations as Genetic Drivers in Hürthle Cell Carcinoma

Raj K. Gopal,^{1,2,6,8,9,11,19} Kirsten Kübler,^{2,8,11,19} Sarah E. Calvo,^{6,8,9} Paz Polak,^{2,4,8,11,16} Dimitri Livitz,⁸ Daniel Rosebrock,⁸ Peter M. Sadow,^{2,4,11} Braidie Campbell,^{1,2} Samuel E. Donovan,^{1,2} Salma Amin,^{2,5} Benjamin J. Gigliotti,¹ Zenon Grabarek,^{6,8,9} Julian M. Hess,⁸ Chip Stewart,⁸ Lior Z. Braunstein,^{8,17} Peter F. Arndt,^{8,18} Scott Mordecai,⁴ Angela R. Shih,^{4,11} Frances Chaves,⁴ Tiannan Zhan,⁷ Carrie C. Lubitz,^{2,5,7,11} Jiwoong Kim,¹⁴ A. John Iafrate,^{4,11} Lori Wirth,^{1,2,11} Sareh Parangi,^{2,5,11} Ignaty Leshchiner,⁸ Gilbert H. Daniels,^{1,2,3,11} Vamsi K. Mootha,^{1,6,8,9,10,20} Dora Dias-Santagata,^{4,11,20} Gad Getz,^{2,4,8,11,20,*} and David G. McFadden^{1,3,12,13,15,20,21,*}

Gopal et al. Cancer Cell 2018

Genetics of Hurthle cell carcinoma


RESEARCH

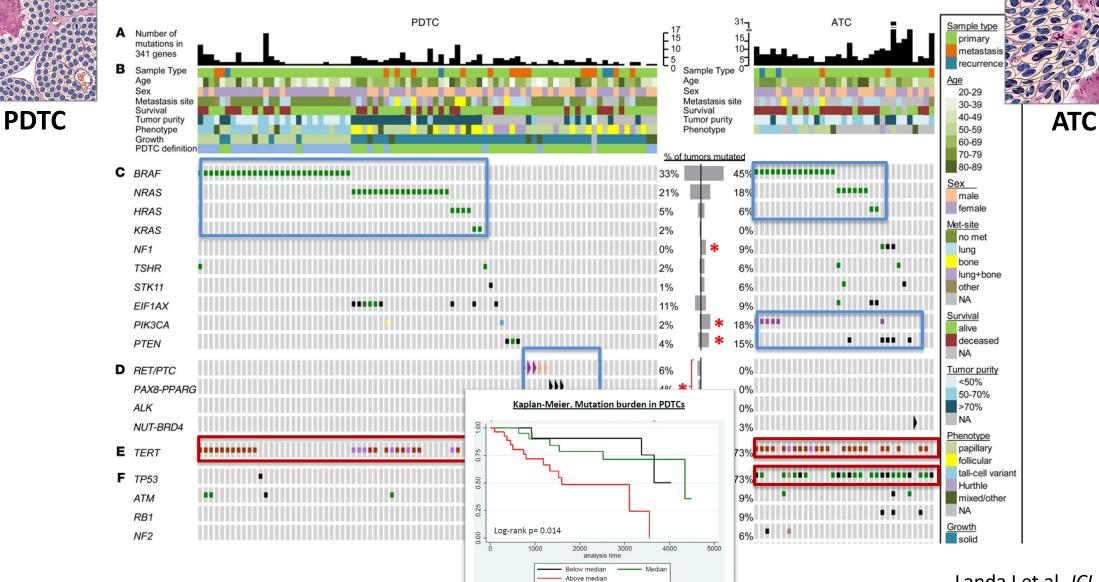
Molecular alterations in Hürthle cell nodules and preoperative cancer risk

William R Doerfler¹, Alyaksandr V Nikitski², Elena M Morariu¹, N Paul Ohori², Simion I Chiosea², Michael S Landau², Marina N Nikiforova², Yuri E Nikiforov², Linwah Yip³ and Pooja Manroa^{1,4}

¹Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennysylvania, USA ³Popartment of Pathology, University of Pittsburgh, Pittsburgh, Pennysylvania, USA ³Division of Endocrinology, University of Pittsburgh, Pittsburgh, Pennysylvania, USA ⁴Division of Endocrinology, University of Texas Medical Branch, Galveston, Texas, USA

Correspondence should be addressed to P Manroa: pomanroa@utmb.edu

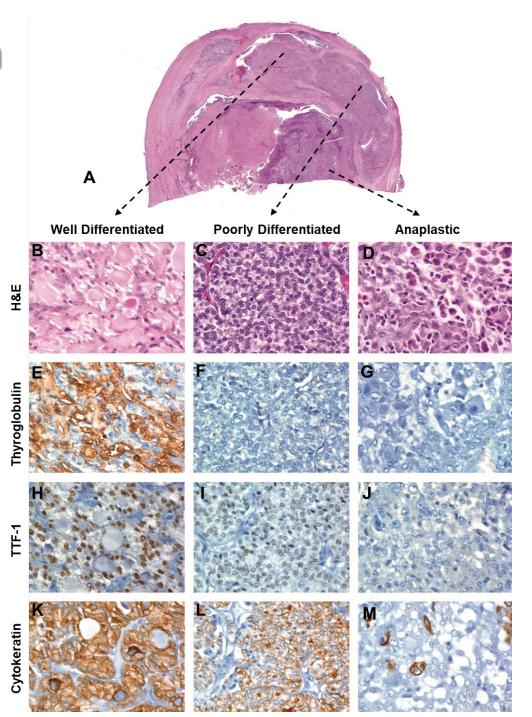
Importance of thorough capsule examination in an encapsulated nodule


TERT Promoter Mutation as an Early Genetic Event Activating Telomerase in Follicular Thyroid Adenoma (FTA) and Atypical FTA

Na Wang, MD¹; Tiantian Liu, MD²; Anastasios Sofiadis, MD, PhD¹; C. Christofer Juhlin, MD, PhD¹; Jan Zedenius, MD, PhD^{3,4}; Anders Höög, MD, PhD¹; Catharina Larsson, MD, PhD¹; and Dawei Xu, MD, PhD²

	Mutation					Follow-Up								
Case No.	<i>TERT</i> Promoter	RAS Gene	Age at Diagnosis, y	Sex (M/F)	Primary Tumor	Disease Recurrence	Patient Outcome	Time, e mo	Final Diagnosis					
FTA-1	wt	-	55	F	FTA	no	DWOD	172	FTA					
FTA-2	wt	-	40	F	FTA	no	AWOD	316	FTA					
-TA-3 -TA-4	wt	-	52 32	TABLE	1 Mutati	ons and F		In for the	S Dationt	s With a Pr	imary FTA			
TA-4	wt wt	_	46	IADL	- Flutati		0100-0	pror the s	o Fatients		innary i IA			
TA-5	wt	_	40											
TA-7	wt	_	46			Mutation					F	Follow-Up		
TA-8	wt	_	50											
-TA-9	wt	_	25											
-TA-10	wt	-	61	Case	TEDT	D	10	Ago of	Cov	Drimon	Disesso	Detient	Time	Final
FTA-11	wt	-	55	Case	TERT		4S	Age at	Sex	Primary	Disease	Patient	Time,	Final
-TA-12	wt	-	50	No.	Promote	r Ge	ene	Diagnosis, y	(M/F)	Tumor	Recurrence	Outcome	mo	Diagnosi
-TA-13	wt	-	32											Č
FTA-14	wt	-	64						_					
-TA-15	wt	-	37	FTA-21	C228T	NRAS	Q61R	69	F	FTA	yes, FTC	DOD	250	FTC
TA-16	wt	-	62	F	FTÁ	no	AWOD	303	FTÁ					
TA-17	wt	-	43	м	FTA	no	AWOD	303	FTA					
-TA-18	wt	-	54	F	FTA	no	AWOD	303	FTA					
-TA-19	wt wt	-	49 78	M	FTA FTA	no	AWOD	302	FTA					
FTA-20						no	DWOD	198	FTA			N, et al. Can		

Genetics of Dedifferentiated Thyroid Cancer


Progressive accumulation of mutations

Landa I et al. JCI. 2016.

Poorly Differentiated Carcinoma Anaplastic (Dedifferentiated) Carcinoma

(Nikiforov YE, Biddinger PW, Thompson, LDR; Editors. *Diagnostic Pathology and Molecular Genetics of the Thyroid*, 3rd Ed. 2019)

Follicular Adenoma vs Hyperplasia

Atlas of Nontumor Pathology

AFIP 2002

Table 3-2

DIACMOSTIC EEATIDES DISTINCTICUINC UVDEDDIASTIC NODULES EDOM ADENOMAS

Finding a clonal (somatic) molecular alteration is diagnostic of a neoplasm, irrespective of microscopic appearance

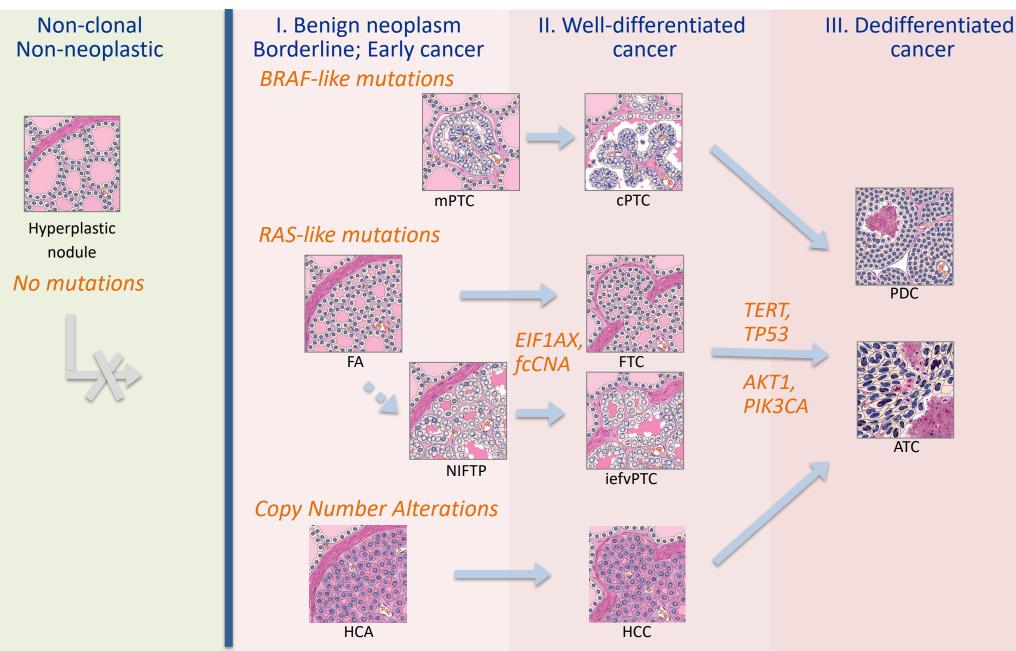
Variable cells in nodules without compression and similar to those outside nodule

Uniform lesion with compression of adjacent dissimilar thyroid

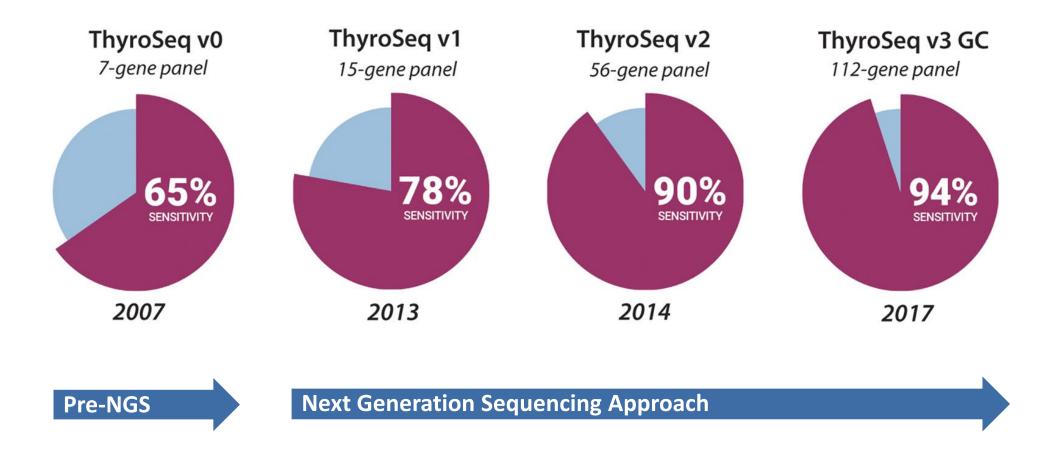
Polyclonal cell population

Monoclonal cell population

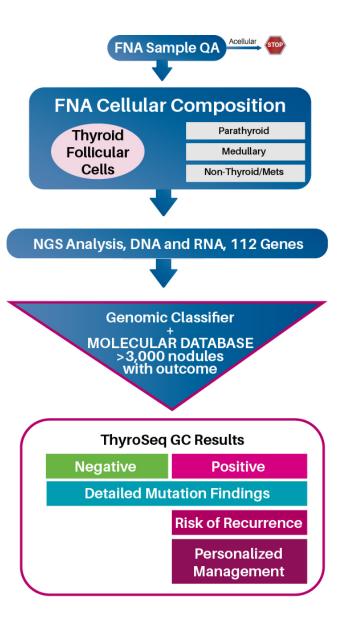
Hyperplasia



FA


Clonal gene mutation

Molecular Classification of Follicular Cell-Derived Thyroid Cancer


Molecular Markers for Thyroid Nodules

Evolution of ThyroSeq Test

ThyroSeq v3 Genomic Classifier (GC)

- Next-generation sequencing of DNA and RNA
- **Determine FNA cellular composition** (follicular cells, MTC, parathyroid, mets to thyroid)
- Analysis of 112 thyroid-related genes for:
 - Point mutations (>12,000 variants) and small indels (>500 variants)
 - Gene fusions (>150 types)
 - Copy number alterations
 - Gene expression alterations
- **Test result interpretation** based on molecular database of >3,000 FNAs results with known surgical outcome
- Every case evaluated and **reported by a licensed molecular pathologist**
- Reports:
 - Positive or Negative, plus all detected alterations
 - Provides assessment of specific cancer probability and risk of cancer recurrence
 - Provides potential clinical management

Performance of ThyroSeq v3 Test in Thyroid Nodules

JAMA Oncology | Original Investigation

Performance of a Multigene Genomic Classifier in Thyroid Nodules With Indeterminate Cytology A Prospective Blinded Multicenter Study

David L. Steward, MD; Sally E. Carty, MD; Rebecca S. Sippel, MD; Samantha Peiling Yang, MBBS, MRCP, MMed; Julie A. Sosa, MD, MA; Jennifer A. Sipos, MD; James J. Figge, MD, MBA; Susan Mandel, MD, MPH; Bryan R. Haugen, MD; Kenneth D. Burman, MD; Zubair W. Baloch, MD, PhD; Ricardo V. Lloyd, MD, PhD; Raja R. Seethala, MD; William E. Gooding, MS; Simion I. Chiosea, MD; Cristiane Gomes-Lima, MD; Robert L. Ferris, MD, PhD; Jessica M. Folek, MD; Raheela A. Khawaja, MD; Priya Kundra, MD; Kwok Seng Loh, MBBS; Carrie B. Marshall, MD; Sarah Mayson, MD; Kelly L. McCoy, MD; Min En Nga, MBBS; Kee Yuan Ngiam, MBBS, MRCS, MMed; Marina N. Nikiforova, MD; Jennifer L. Poehls, MD; Matthew D. Ringel, MD; Huaitao Yang, Md, PhD; Linwah Yip, MD; Yuri E. Nikiforov, MD, PhD

- Prospective double-blind multicenter study
- Bethesda III-V cytology with surgical outcome
- 10 study centers; patient recruitment 01/2015-12/2016
- Central pathology review by a panel of 3 pathologist
- Primary outcome: accuracy of detection of cancer+NIFTP

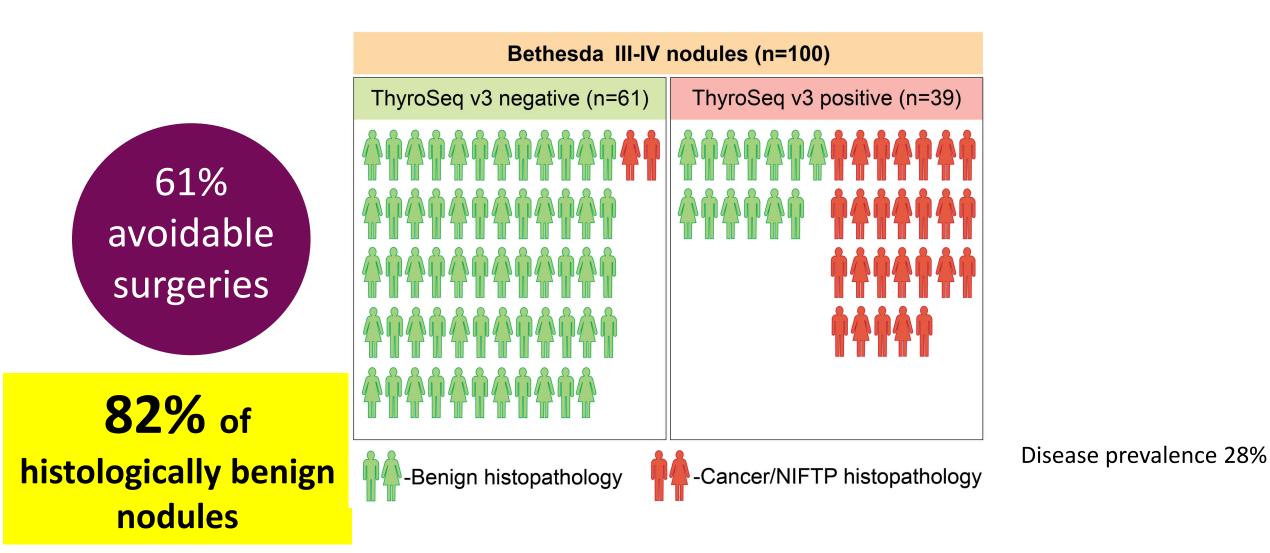
Performance in Bethesda III and IV nodules (n = 247; disease prevalence 28%)					
Result	Cancer+NIFTP (n = 68)	Benign (n = 179)	Result		
Positive	64	33	Sensitivity, 94 (86-98)		
Negative	4	146	Specificity, 82 (75-87) NPV, 97 (93-99) PPV, 66 (56-75)		

Steward DL et al. JAMA Oncology (2019)

Performance of ThyroSeq v3 Test in Thyroid Nodules

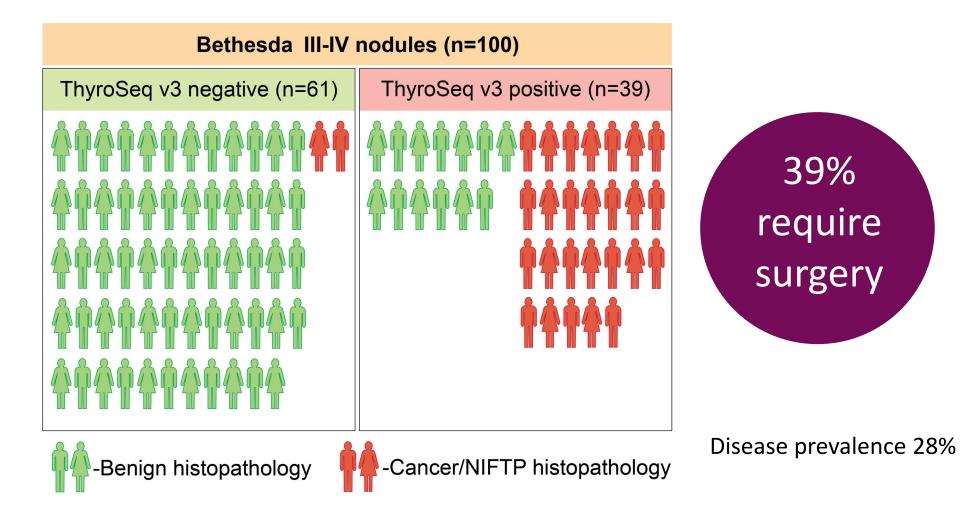
JAMA Oncology | Original Investigation

Performance of a Multigene Genomic Classifier in Thyroid Nodules With Indeterminate Cytology A Prospective Blinded Multicenter Study


David L. Steward, MD; Sally E. Carty, MD; Rebecca S. Sippel, MD; Samantha Peiling Yang, MBBS, MRCP, MMed; Julie A. Sosa, MD, MA; Jennifer A. Sipos, MD; James J. Figge, MD, MBA; Susan Mandel, MD, MPH; Bryan R. Haugen, MD; Kenneth D. Burman, MD; Zubair W. Baloch, MD, PhD; Ricardo V. Lloyd, MD, PhD; Raja R. Seethala, MD; William E. Gooding, MS; Simion I. Chiosea, MD; Cristiane Gomes-Lima, MD; Robert L. Ferris, MD, PhD; Jessica M. Folek, MD; Raheela A. Khawaja, MD; Priya Kundra, MD; Kwok Seng Loh, MBBS; Carrie B. Marshall, MD; Sarah Mayson, MD; Kelly L. McCoy, MD; Min En Nga, MBBS; Kee Yuan Ngiam, MBBS, MRCS, MMed; Marina N. Nikiforova, MD; Jennifer L. Poehls, MD; Matthew D. Ringel, MD; Huaitao Yang, Md, PhD; Linwah Yip, MD; Yuri E. Nikiforov, MD, PhD

- Prospective double-blind multicenter study
- Bethesda III-V cytology with surgical outcome
- 10 study centers; patient recruitment 01/2015-12/2016
- Central pathology review by a panel of 3 pathologist
- Primary outcome: accuracy of detection of cancer+NIFTP

Performance in Bethesda III and IV nodules (n = 247; disease prevalence 28%)					
Result	Cancer+NIFTP (n = 68)	Benign (n = 179)	Result		
Positive	64	33	Sensitivity, 94 (86-98)		
Negative	4	146	Specificity, 82 (75-87) NPV, 97 (93-99)		
			PPV, 66 (56-75)		


Steward DL et al. JAMA Oncology (2019)

Clinical Utility: Avoidance of Diagnostic Surgeries

Clinical Utility:

Individualizing Approach to Test-Positive Nodules

Test-positive Nodules: Specific molecular alterations predict cancer type and risk of recurrence

Table 3. Probability of Cancer/NIFTP in Specific Molecular Alteration Groups Histopathologic Diagnosis, % Prevalence in Molecular **Test-Positive** Cancer/ Cancer Type/ Alterations, No. Samples, No. (%) NIFTP Benign NIFTP (%) Group High-risk TERT (and HRAS) (1) 2 (2) 100 0 **High-Risk Cancer** TP53 (and MEN1) group (1)**BRAF**-like BRAF V600E (9) 13 (12) 100 0 NTRK3 fusions (2) group Classic PTC RET fusions (1) BRAF fusions (1) RAS-like NRAS (21) 60 (57) 62 38 group HRAS (18) KRAS (5) Cancer/ Benign EIF1AX (5) NIFTP tumors EFVPTC, BRAF K601E (3) (not HN!) Follicular **NIFTP** PTEN(1)IDH2 (1) DICER1(1) PPARG fusions (4) THADA fusions (4) 22 (21) Copy number Copy number 59 41 alterations alterations group HCC Gene expression Gene expression 8 (8) 75 25 alterations alterations group MTC, mets

Thyroid Cancer Risk Stratification

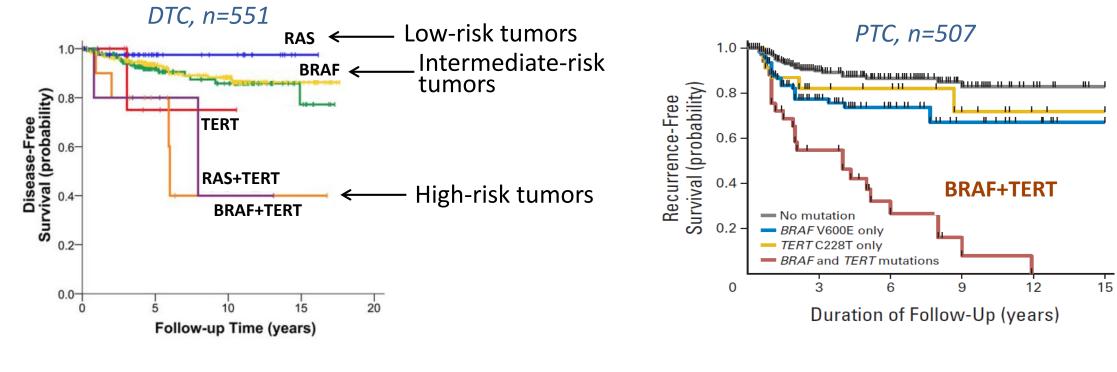
Risk of Structural Disease Recurrence

(In patients without structurally identifiable disease after initial therapy)

High Risk

Gross extrathyroidal extension, incomplete tumor resection, distant metastases, or lymph node >3cm

Intermediate Risk


Aggressive histology, minor extrathyroidal extension, vascular invasion, or > 5 involved lymph nodes (0.2-3 cm)

Low Risk

Intrathyroidal DTC $\leq 5 LN$ micrometastases (< 0.2 cm)

FTC, extensive vascular invasion ($\approx 30-55\%$) pT4a gross ETE (≈ 30-40%) pN1 with extranodal extension, >3 LN involved ($\approx 40\%$) PTC, >1 cm, TERT mutated ± BRAF mutated* (>40%) pN1, any LN > 3 cm ($\approx 30\%$) PTC, extrathyroidal, BRAF mutated* (≈ 10-40%) PTC, vascular invasion ($\approx 15-30\%$) Clinical N1 (≈20%) pN1, > 5 LN involved (≈20%) Intrathyroidal PTC, < 4 cm, BRAF mutated* (~10%) **pT3 minor ETE (≈ 3-8%)** pN1, all LN < 0.2 cm ($\approx 5\%$) pN1, \leq 5 LN involved (\approx 5%) Intrathyroidal PTC, 2-4 cm ($\approx 5\%$) Multifocal PMC (\approx 4-6%) pN1 without extranodal extension, ≤ 3 LN involved (2%) Minimally invasive FTC ($\approx 2-3\%$) Intrathyroidal, < 4 cm, BRAF wild type* ($\approx 1-2\%$) Intrathyroidal unifocal PTMC, BRAF mutated*, (~1-2%) Intrathyroidal, encapsulated, FV-PTC (~1-2%) Unifocal PMC ($\approx 1-2\%$)

Molecular Markers for Cancer Risk Stratification

Song YS et al. Cancer (2016)

Xing M et al. JCO (2014)

Molecular Markers for Cancer Risk Stratification

Risk of Structural Disease Recurrence

(In patients without structurally identifiable disease after initial therapy)

High Risk

Gross extrathyroidal extension, incomplete tumor resection, distant metastases, or lymph node >3cm

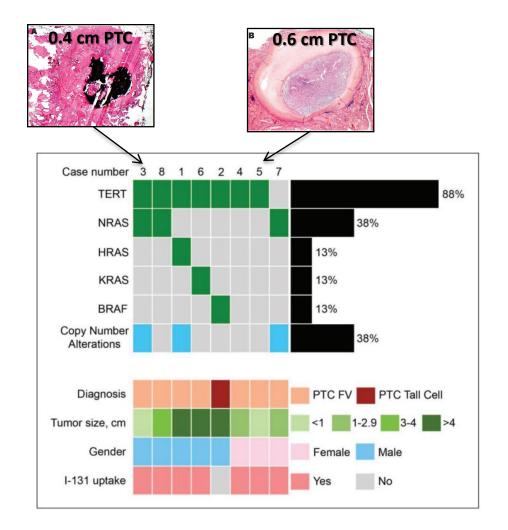
Intermediate Risk

Aggressive histology, minor extrathyroidal extension, vascular invasion, or > 5 involved lymph nodes (0.2-3 cm)

Low Risk

Intrathyroidal DTC $\leq 5 LN$ micrometastases (< 0.2 cm) FTC, extensive vascular invasion ($\approx 30-55\%$) pT4a gross ETE (≈ 30-40%) pN1 with extranodal extension, >3 LN involved (≈ 40% PTC, >1 cm, TERT mutated ± BRAF mutated* (>40%) pN1, any LN > 3 cm ($\approx 30\%$) PTC, extrathyroidal, BRAF mutated* (≈ 10-40%) PTC, vascular invasion ($\approx 15-30\%$) Clinical N1 (≈20%) pN1, > 5 LN involved ($\approx 20\%$) Intrathyroidal PTC, < 4 cm, BRAF mutated* (~10%) **pT3 minor ETE (≈ 3-8%)** pN1, all LN < 0.2 cm ($\approx 5\%$) pN1, \leq 5 LN involved (\approx 5%) Intrathyroidal PTC, 2-4 cm ($\approx 5\%$) Multifocal PMC (\approx 4-6%) pN1 without extranodal extension, ≤ 3 LN involved (2%) Minimally invasive FTC ($\approx 2-3\%$) Intrathyroidal, < 4 cm, BRAF wild type* ($\approx 1-2\%$) Intrathyroidal unifocal PTMC, BRAF mutated*, (≈ 1-2 Intrathyroidal, encapsulated, FV-PTC (~1-2%) Unifocal PMC ($\approx 1-2\%$)

	Genetic Prof	ile	ThyroSeq 5-year risk of distant metastasis
%) %)	BRAF+TERT, RAS Multiple driver n (eg. NRAS and TERT		High-risk profile (20-35%)
	ALK fusions NTRK1 fusions NTRK3 fusions BRAF V600E RET/PTC	BRAF V600E- like mutations	Intermediate- risk profile (5-10%)
%) -2%)	RAS BRAF K601E PAX8/PPARG	RAS-like mutations	Low-risk profile (<1%)

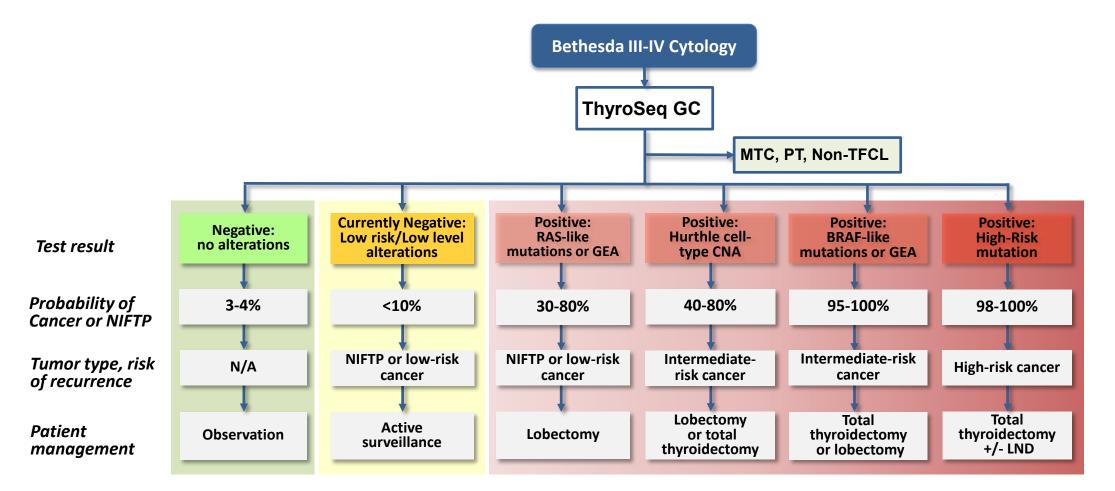

Are high-risk thyroid cancers large and clinically apparent?

MOLECULAR PROFILE AND CLINICAL OUTCOMES IN DIFFERENTIATED THYROID CANCER PATIENTS PRESENTING WITH BONE METASTASIS

Nilma Malik, MD¹; Alyaksandr V. Nikitski, MD, PhD²; Elie Klam, MD³; Jason Hunt, MD⁴; Benjamin Witt, MD⁵; Barbara Chadwick, MD⁵; Yuri E. Nikiforov, MD, PhD²; Devaprabu Abraham, MD, MRCP (UK)¹

Malik N et al. Endocr Pract. 2019

- 8 patients presented with symptomatic bone metastasis from unknown primary
- Bone biopsy thyroid cancer
- Thyroid surgery: 7 follicular variant PTC; 1 tall cell variant PTC
- Primary tumor size 0.4-7.5 cm


Molecular Markers for Therapeutics of Advanced Thyroid Cancer

Genetic Alteration	Tumor Type	Available Targeted Therapeutics
BRAF V600E	PTC, ATC	Vemurafenib, Debrafenib+Trametinib*
HRAS	PTC, FTC (OFTC), PDTC, ATC	Farnesyltransferase inhibitor tipifarnib
PAX8/PPARG	FTC (OFTC)	Pioglitazone
ALK fusions	PTC, ATC, PDTC	Crizotinib, ceritinib
NTRK1/2/3 fusions	PTC, ATC, PDTC	Entrectinib*, Larotrectinib*
RET	MTC, PTC, other	Vandetanib, cabozantinib, Selpercatinib*

*approved by the FDA

Bible KC and Ryder M. 2016 Nat Rev Clin Oncol with modif.

Individualized Patient Management Informed by ThyroSeq Testing

Abbreviations: MTC, medullary thyroid cancer; PT, parathyroid; Non-TFCL, non-thyroid follicular cell lesion; GEA, gene expression alterations; CNA, copy number alterations; LND, lymph node dissection

Based on data reported in Steward et al. JAMA Oncology (2019)


Summary

- Genetic drivers for most types of thyroid tumors have been uncovered
- Thyroid nodules carrying clonal (somatic) genetic alterations are neoplasms (adenomas or carcinomas) and not hyperplasia
- Many thyroid cancers develop from pre-existing benign or borderline tumors through multiple stages
- Molecular alterations define biological properties of thyroid tumors/ tumor lineage and clinical behavior
- Histopathology is essential to determine stage of tumor progression

Summary

- Molecular testing:
 - ✓ Allows for safe avoidance of diagnostic surgeries
 - ✓ Provides prognostic information preoperatively tailored surgery
 - ✓ Detects therapeutic targets for advanced thyroid cancer
- Informs more individualized management of patients with thyroid nodules and cancer

Thank you!

