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1. Introduction

As stated in the introduction part, already Guglielmo Marconi experienced a reflection

of radio waves by the earth’s ionosphere. This is because the ionosphere (at altitudes 100-

500 km) contains an electrically-conducting layer, that reflects radio waves - much like a

mirror.

As we will shortly see, in plasma there are very many different types of waves.

2. Representation of waves; plane waves

By definition, a wave is an (oscillatory) perturbation of a medium, which is accompanied

by transfer of energy. Since the disturbance is moving, it must be a function of both position

and time, f(r, t). Any periodic motion of a fluid can be decomposed by Fourier analysis

into a superposition of sinusoidal oscillations with different frequencies ω and wavelength λ.

A simple wave contains only one of these components.

When the amplidue of the oscillation is small, the waveform is generally sinusoidal,

namely it has only one component, and is called a plane monochromatic wave.

Any sinusoidally oscillating quantity can be written in the form

f = A exp[i(k · r− ωt)] (1)

where (in Cartesian coordinates) k · r = kxx + kyy + kzz. Here, A is called the amplitude

of the wave, and k is called the propagation constant 2.

1Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel

2This is likely the same meaning as the wavevector used in other branches of physics that deal with

waves. In 1d, it is called the wavenumber.
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The spatial period is known as the wavelength, and denoted by λ (see Figure 1).

Clearly, λ has units of [length]. An increase of |r| by λ leaves the wave unaltered, as (in 1-d),

f(x, t) = f(x+ λ, t). This implies, via Equation 1, that |k| = 2π
λ

.

Similarly, after time τ = 2π/ω, one complete cycle passes through a stationary observer,

and thus f(x, t) = f(x, t+τ). The time τ is known as the temporal period of the wave, and

its inverse ν = 1/τ is the frequency (which is measured in units of [Hertz], or [cycles/s]).

The quantity ω = 2πν is the angular frequency.

Fig. 1.— Wave

By convension, the exponential notation means that the real part of the expression is

to be taken as the measurable quantity,

Re(f) = A cos(kx− ωt) (2)
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2.1. Phase velocity

The argument of the cosine function, k ·r−ωt is known as the phase of the (monochro-

matic) wave. A point of constant phase on the wave moves such that its phase is constant,

(d/dt)(kx− ωt) = 0, namely

0 =
dφ

dt
= k · dr

dt
− ω. (3)

This enables to define the phase velocity,

vφ ≡
(
dr

dt

)
φ

≡ ω

k2
k (4)

The phase velocity is a vector with magnitude vφ = ω/k. It has the same direction as the

wave vector, k.

2.2. Wave packets and group velocity

The phase velocity of a wave in plasma can exceed the speed of light, c. This does not

violates the theory of relativity, because an infinely long wave of constant amplitude cannot

carry information.

When dealing with simple waves as is done so far, there is no need to introduce another

velocity. However, often one encounters more complicated waves, such as waves that are

composed by superposition of several simple waves. When superposition of simple waves

occur in a localized position in space, the result is known as wave packet.

Wave packets are not difficult to analyze, due to the principle of superposition, from

which it follows that every wave - regardless of how complicated its shape is, can be written

as a superposition of simple (plane) waves. E.g., in 1d we get

ψ(x, t) =

∫
A(k)ei(kx−ω(k)t)dk. (5)

Note that we assume an explicit dependence of the angular frequency ω on the wavenumber

k, ω = ω(k). Such a dependence is known as dispersion relation3

3Equally, the dispersion relation can be written as the dependence of the speed of the wave, v = λ/τ on

the wavelength, λ, v = v(λ). Thus, waves of different wavelength, or different frequencies, travel at different

speeds.
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When treating wave packets, in addition to the phase velocity of individual waves defined

above, one can define the velocity of the overall shape of the wave’s amplitude (also known

as the envelope of the wave). This is known as the group velocity, defined by

vg ≡
(
dω

dk

)
k=k0

=

(
∂ω

∂kx
,
∂ω

∂ky
,
∂ω

∂kz

)
, (6)

where k0 is the wavenumber at the center of the wavepacket.

For a simple wave, vg = vφ. Consider, however, the simple example of two waves having

slightly different wavenumbers and angular frequencies that travel together as a wavepacket:

ψ1 = A sin ((k + ∆k)x− (ω + ∆ω)t) ,

ψ2 = A sin ((k −∆k)x− (ω −∆ω)t) .
(7)

We have

ψ1 + ψ2 = 2A sin(kx− ωt) cos (∆kx−∆ωt) , (8)

which can be thought of as a simple wave, with varying amplitude, 2A cos (∆kx−∆ωt). In

the limit ∆ω,∆k → 0, one retrieves the group velocity (Equation 6), which is the velocity in

which the “envelope” propagates (see Figure 2). The group velocity is the velocity in which

information travels, and is always vg ≤ c, for any physical wave packet.

Fig. 2.— Spatial variation of the superposition of two simple waves with the same amplitude

and slightly different wavenumbers reveals an “envelope” wave (red doted curve) on top of

the carrier wave (blue line). The envelope travels at the group velocity.

The differences between the group velocity and the wave velocity can be understood as

a property of the medium, which can be dispersive. In Figure 3, plotted is the dispersion

relation, ω(k) for a dispersive medium. The phase velocity is constructed by choosing a

point (ω,k) on the dispersion curve, and evaluating tanα = ω/k = vφ. On the other
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hand, the tangent to the curve at that point have a different slope, tan β = dω/dk = vg,

implyng that the phase velocity and the group velocity are different in that example. Thus,

a dispersive wave is a wave whose phase velocity changes with wavelength (or frequency).

In the example in Figure 3, short wavelength (with larger k), travel at a slower speed than

longer wavelengths. This is typical for most dispersive media. However, the opposite case

does exist as well, in which case it is called anomalous dispersion).

In a non-dispersive medium, the dispersion relation is represented by a straight line

through the origin, and vg = vφ. All waves with different wavelengths travel at the same

speed.

As a final comment, in an anisotropic medium, such as a magnetized plasma, the direc-

tion of the group velocity is not necessarily parallel to the direction of the phase velocity.

We will discuss this situation below.

Fig. 3.— Dispersion relation in a dispersive medium (a) and non-dispersive medium (b). (a)

the phase velocity is given by tanα = ω/k. The slope of the tangent to the function ω(k) is

the group velocity, dω/dk = tan β. In a dispersive medium, vg 6= vφ. (b) In a non-dispersive

medium, vg = vφ. Figure taken from Ref. [2]

3. Review of electromagnetic waves

As we all know and love, Maxwell’s equations give rise to wave solutions. In the context

of plasma physics, we will consider the interaction of plasma particles and EM waves in terms

of dielectric medium: the response of plasma particles to the EM wave will be included in

the dielectric constant of the plasma medium.
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3.1. Basic concept

Let us begin by writing the set of Maxwell’s equations,

~∇× E = −∂B
∂t
,

~∇×B = µ0

(
j + ε0

∂E
∂t

)
.

(9)

Taking the curl of the induction law, we get

~∇× (~∇× E) = −~∇× ∂B
∂t

= − ∂
∂t

(
~∇×B

)
= −µ0ε0

∂2E
∂t2
− µ0

∂j
∂t
,

(10)

or - using µ0ε0 = 1/c2,

~∇× (~∇× E) +
1

c2
∂2E

∂t2
= −µ0

∂j

∂t
. (11)

The current is given by j = q(nivi − neve), while the velocities can be found by solving

the equations of motion for the ions and electrons, as done above. However, here, in order to

discuss the propagation of waves, we need an additional relation between the alternating

current j and the electric field, E. We make the assumption that, for a given wave frequency

ω, this relation is linear:

j(ω) = σ(ω) · E(ω). (12)

Here, σ(ω) is a frequency-dependent conductivity. In fact σ(ω) contains all the microphycis

of the plasma interactions.

The frequency-dependence of the physical quantities suggests that an easy way of writing

the wave solutions is by using Fourier representation,

E = Ê exp[i(k · r− ωt)],
B = B̂ exp[i(k · r− ωt)],
j = ĵ exp[i(k · r− ωt)].

(13)

where k is the wave vector.

In general, the amplitudes Ê and ĵ are complex quantities. This gives a simple way of

including a phase shift between the current density and the electric field. Both are functions

of frequency and wavenumbes, Ê = Ê(ω,k), ĵ = ĵ(ω,k).

Using the plane wave representation in Equation 13, the partial differential operators

become algebraic operations,

~∇× E→ ik× Ê , ~∇ · E→ ik · Ê ,
∂

∂t
E→ −iωÊ. (14)
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Maxwell’s Equations (9) become

ik× Ê = iωB̂,

ik× B̂ = µ0ĵ− iωµ0ε0Ê.
(15)

Here, the terms exp[i(k · r − ωt)], describing the phase evolution in spae and time, cancles

on both sides of the equations.

Before proceeding, I need to highlight a delicate point. When we discussed MHD equa-

tions, I argued that when writing Maxwell’s equations, it is correct to use the electric field

E and the magnetic flux density, B, rather than the dielectric displacement, D and the

magnetic field strength, H (of course, in vacuum those are the same).

I argued that in a static situation, the dielectric displacement D, is not a suitable

quantity to describe the plasma. The argument goes as follows: in the part about “single

particle motion”, we have seen that electric polarization of a plasma does only appear in

time-varying fields. Any static polarization charges can only exist at the plasma surface,

but the resulting electric field will be shielded in the plasma interior. Hence, the plasma

does not behave as a ferromagnet, and should the use of B rater than H is suitable.

When discussing waves, though, the situation is different: we now make explicit use of

the concept of a plasma as a dielectric medium. For example, consider the simplified picture

for electron waves in a low-temperature plasma. In this picutre, ions are essentially at rest

and the electrons react to the oscillating electric field. We can therefore group the plasma

particles into pairs of electrons and ions that form local oscillating dipoles. These induced

dipoles make the plasma a dielectric medium.

We can now give a different interpretation to the current density. When considering

plasma as a dielectric medium, we can think of the wiggling motion of electrons and ions as

a polarization curent, which is combined with the vacuum displacement current, εe(∂E/∂t).

In the limit of very high frequencies, only the electrons oscillate about their mean position,

while the (much heavier) ions can be considered at rest. Thus, we can describe the plasma as

a set of electron-ion dipoles. Such a plasma is characterized by the dielectric displacement,

D̂(ω) = ε0ε(ω)Ê(ω) (16)

where ε(ω) is known as the dielectric constant of the frequency ω.

For a given frequency, ω, the total displacement current is the sum of the vacuum

displacement current and the conducting current (j),

∂D

∂t
= ε0

∂E

∂t
+ j (17)
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Using ∂D
∂t

= ε0ε(ω)∂E
∂t

, we obtain a relation between the dielectric constant ε(ω) and the

electric conductivity, σ(ω),

ε0ε(ω)(−iω)Ê = ε0(−iω)Ê + σ(ω)Ê

or

ε(ω) = 1 +
i

ωε0
σ(ω). (18)

In an unmagnetized plasma, σ(ω) and ε(ω) are scalars (and functions of the frequency

ω). On the other hand, when the plasma is magnetized, it becomes anisotropic, because of

different motions along and across the magnetic field. In this case, the dielectric functions

and conductivity become tensors,

¯̄ε(ω) = ¯̄I +
i

ωε0
¯̄σ(ω) (19)

This implies that the electric field, E and the curent j may no longer be parallel to each

other.

3.2. The general dispersion relation: normal modes

In order to proceed, we use the vector identity,

A× (B×C) = (A ·C)B− (A ·B)C

to write

k× (k× Ê) = (kk− k2I)Ê (20)

where

kk =

 kxkx kxky kxkz
kykx kyky kykz
kzkx kzky kzkz


is known as dyadic product4.

Equation 15 becomes [
kk− k2I +

ω2

c2
I + iωµ0σ(ω)

]
· Ê = 0 (21)

4A dyadic tensor is a second order tensor, written in a notation that fits with vector algebra. While

tensor multiplication is more general than dyadics, practically, we can treat dyadics as outer product of two

vectors.
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or [
kk− k2I +

ω2

c2
ε(ω)

]
· Ê = 0 (22)

Equation 22 can be written explicitely, as kxkx − k2 + ω2

c2
εxx kxky + ω2

c2
εxy kxkz + ω2

c2
εxz

kykx + ω2

c2
εyx kyky − k2 + ω2

c2
εyy kykz + ω2

c2
εyz

kzkx + ω2

c2
εzx kzky + ω2

c2
εzy kzkz − k2 + ω2

c2
εzz

 ·
 Êx

Êy
Êz

 = 0 (23)

For E 6= 0, the non-trivial solutions occur when the determinant of the matrix is 0.

This determinant condition defines an implicit relation between frequency and wave number,

which is called the dispersion relation,

D(ω,k) ≡ Det

[
kk− k2I +

ω2

c2
ε(ω)

]
= 0. (24)

Often one deals with a simplified case, in which D(ω,k) = 0 can be written in an explicit

form, ω(k). This explicit form is also called the dispersion relation of a wave.

The expression in Equation 23 is the most general expression that describes all possible

wave modes in a plasma. The specific properties of the plasma are all given by the dielectric

tensor, ε(ω).

In an unmagnetized plasma, the dielectric tensor reduces to a scalar function, which

makes the calculation much simplified. The inclusion of a magnetic field introduces anisotropy,

and requires the full tensorial notation.

4. Waves in unmagnetized plasma

Consider first the most simple case - that of waves in an unmagnetized plasma. We

further consider high frequency waves; for these waves, ion motion can be neglected, due

to the much larger ion inertia, relative to the electrons.

This can be proved as folows. The electron equation of motion is

me
dve
dt

= −qE = −qÊei(k·r−ωt). (25)

Note that when using the Fourier transform of E, we have explicitely used the linear wave

analysis assumption, by removing the DC (steady) part, E0, v0.
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We can integrate to write v̂e = −i q
meω

Ê. Thus, the alternating current at the angular

frequency ω is (using Equation 13)

ĵe = −ne,0qv̂e = i
ne,0q

2

meω
Ê. (26)

We could have carry a similar analysis for the ions, to find that the ion current is smaller

than the electron current by me/mi. Thus, at high frequencies, it is safe to consider the ions

as motionless. We will relax this assumption when we discuss low-frequency electrostatic

waves below.

4.1. Electromagnetic waves

We consider electromagnetic waves in the limit of cold plasma, namely we neglect the

pressure term. We further neglect here collisions. Without loss of generality, we choose the

wave vector in the x-direction, k = (kx, 0, 0). From Equations 25, 26, the current is parallel

to the electric field, j ‖ E.

The conductivity tensor σ has only diagonal elements, which, from Equation 26 are

σxx = σyy = σzz = i
ne,0q

2

meω
.

The dielectric tensor (Equations 18, 19) also has only diagonal components,

εxx = εyy = εzz = 1 +
i

ωε0
σ(ω) = 1−

ω2
p,e

ω2
, (27)

where

ωp,e =

(
n0,eq

2

ε0me

)1/2

(28)

is the electron plasma frequency which we encountered in the introduction part. In the

discussion about waves here, it is the natural frequency of the electron gas.

For the given geometry, we have kxkx − k2 = 0 and ky = kz = 0. The wave equation 23

takes the form
ω2

c2

(
1− ω2

p,e

ω2

)
0 0

0 −k2 + ω2

c2

(
1− ω2

p,e

ω2

)
0

0 0 −k2 + ω2

c2

(
1− ω2

p,e

ω2

)
 ·

 Êx
Êy
Êz

 = 0 (29)

We thus have two (well, 3) cases:
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1. Longitudinal waves, namely Êx 6= 0, while Êy = ÊZ = 0.

2. Transverse waves: Êx = 0, and either {Êy 6= 0 , Êz = 0} or {Êy = 0 , Êz 6= 0}.

Let us focus first on transverse waves, with Êx = Êz = 0. Equation 29 reduces to(
−k2 +

ω2 − ω2
p,e

c2

)
Êy = 0 (30)

Since Êy 6= 0, the term in parenthesis must vanish, namely,

ω2 = ω2
p,e + k2c2. (31)

The same of course it true for the Êz 6= 0 case, so overall, we obtain the dispersion relation

for the transverse electromagnetic waves,

ω =
(
ω2
p,e + k2c2

)1/2
. (32)

Note the following.

• We have explicitely assumed that k is in the x-direction, and Ê is in the y-direction.

Thus, from the induction Equation 15 (ik × Ê = iωB̂), there is a B field in the ẑ

direction associated with the wave. The transverse wave is thus an electromagnetic

wave mode.

• In the limit ne → 0, ωp,e → 0 and the wave dispersion relation takes the vacuum limit,

ω = ck. The transverse mode in an unmagnetized plasma is therefore a light wave

modified by the presence of a plasma, which is treated as a dielectric medium 5.

I show in Figure 4 a plot of the dispersion relation of a transverse electromagnetic wave.

The wave can only propagate for ω > ωp,e. The electron plasma frequency is thus called the

cutoff frequency of the electromagnetic mode.

In the limit of high frequencies, the dispersion curve approaches the dispersion of light

in vacuum. Physically, the increase of the frequency implies a decrease of the electric current,

as ĵ ∝ ω−1 (see Equation 26) due to the electron inertia. Thus, the electron current does

not influence the wave.

5A dielectric medium is a medium (typically, an insulator) that can be polarized by an applied electric

field.
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Fig. 4.— Dispersion relation for electromagnetic waves in an unmagnetized plasma. Waves

propagation is only possible for frequencies larger than the plasma frequency. For ω � ωp,e,

the dispersion relation approaches that of light wave in vacuum, ω = kc (dashed line). Figure

taken from Ref. [2]

The phase velocity,

vφ =
ω

k
=

(
ω2
p,e

k2
+ c2

)1/2

(33)

is always > c. However, the group velocity,

vg =
dω

dk
=

kc2(
ω2
p,e + k2c2

)1/2 (34)

is always < c, so relativity is not violated.
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4.1.1. The effect of collisions

So far, we have neglected collisions. This approximation can be justified as long as

the wave frequency is much greater than the collision frequency. When we add collisions,

the equation of motion (see, e.g., ”stochastic processes” part Equation 35, and compare to

Equation 25) becomes

me
dve
dt

= −qE−meνv,

where ν is the collision frequency. Fourier transforming, we get

me(−iω + ν)v̂ = −qÊ (35)

or

v̂ = −
[

ν

ω2 + ν2
+

iω

ω2 + ν2

]
q

me

Ê (36)

namely, the electron velocity now has a real and imaginary parts with respect to the electric

field, Ê.

The real part is due to collisions, and represents a resistance; the imaginary part is a

part that lags by 90◦ behind due to inertia (this part is similar to what we had previously,

in the limit ν → 0)

Mathematically, we can follow the steps of the collision-less plasma by defining an

effective mass, m?
e such that −iωm?

e = (−iω + ν)me, or

m?
e = me

(
1 + i

ν

ω

)
→ − iωm?

ev̂ = −qÊ (37)

When we replace me → m?
e, using Equations 31 (k2c2 = ω2 − ω2

p,e) with the help of the

definition of the plasma frequency in Equation 28, the (complex) wavenumber becomes

k =
1

c

(
ω2 −

ω2
p,e

1 + i(ν/ω)

)1/2

(38)

I show in Figure 5 the complex dispersion relation k(ω). For weak collision frequency,

ν � ωp,e, the real part of k becomes dominant at ω & ωp,e.

For waves at freqeuncies ω < ωp,e, the collisions make the plasma resistive. This explains

why plasma can be generated by radio-frequency discharge: although the frequency can be

much smaller than ωp,e, collisions imply quick dissipation of the waves, which transfer their

energy that is used in heating the electron gas in the plasma.

On the other hand, at high frequencies, ω > 2ωp,e, collisional damping becomes negligi-

ble.
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Fig. 5.— Complex dispersion relation for electromagnetic waves in an unmagnetized plasma

with collision frequency, ν/ωp,e = 0.1. Solid: real part of the wavenumber, dominant at

ω > ωp,e. Dashed: imaginary part, showing that the plasma becomes predominantly resistive

at ω < ωp,e. Figure taken from Ref. [2]

4.1.2. Refractive index and interferometry

In optics, the refractive index (or: index of refraction) of a transparent medium

is defined as the ratio of the speed of light in vacuum c to the speed in that medium. This

concept can be applied in a similar manner to electromagnetic waves in a plasma. We can

define

N =
kc

ω
=

c

vφ
(39)

For a transverse wave, we can use Equation 31, ω2 = ω2
p + k2c2 to write

N 2 =
k2c2

ω2
= 1−

ω2
p

ω2
= ε(ω).
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Thus, by measuring the refractive index - e.g., using an interferometer, one can deduce the

electron density.

For a collisionless plasma, the refractive index N is smaller than unity and becomes

zero at the electron plasma frequency and imaginary for lower frequencies. This explains

why an electromagnetic wave is reflected at the surface of a plasma when the wave frequency

is lower than the electron plasma frequency.

When thinking in terms of free electrons of the silver atoms in the conduction band,

this explains why a thin silver layer on a glass mirror can reflect visible light but becomes

transparent in the UV range.

5. Electrostatic waves

Let us now consider the case E ‖ k (follow Equation 29). By Faraday’s law (Equation

15), k× E = 0, and thus the magnetic field vanish. Such waves for which B = 0 are called

electrostatic.

From Equation 29, we have the relation

ω2

c2
ε(ω)Êx = 0 (40)

where ε(ω) = 1 − ω2
p/ω

2. Equation 40 thus implies that ε(ω) = 0, which is the defining

condition for the dispersion of an electrostatic wave. It further means that (in cold plasma),

electrostatic waves only exist at ω = ωp.

These are known as Langmoir’s plasma oscillations, in which the electrons oscillate

about their equilibrium at the electron plasma frequency. Note that as the dispersion relation

is independent on k, the group velocity is 0, and hence no wave packets can exist.

5.1. Electron acoustic waves

Another effect that can cause propagation of plasma oscillations is the electron thermal

motion.

Since electrostatic waves are one dimensional, we may write Newton’s equation of motion

(Equation 25) for electrons in 1-d,

nme
dve
dt

= −nqE −∇p (41)
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From the thermodynamic equation of state, for an adiabatic and reversible process (isentropic

process), we have p = Cnγ̂, and so ∇p = Cγ̂nγ̂−1∇n = γ̂ p
n
∇n. Adding the equation of state

for an ideal gas, p = nkBT , we have ∇p = γ̂kBT∇n.

The adiabatic index γ̂ depends on the number of degrees of freedom, N , as

γ̂ =
2 +N

N
.

Thus, in 1-d, γ̂ = 3. Overall, we get

me
dve
dt

= −qE − 3
kBT

n

∂n

∂x
(42)

We will further use the continuity equation,

∂n

∂t
+

∂

∂x
(nve) = 0. (43)

We split the density and velocity into an equilibrium part, and a fluctuating part, in

the form

n = n0 + n̂ei(kx−ωt) , ve = v0 + v̂ei(kx−ωt). (44)

Without loss of generality, we can take v0 = 0. The wave amplitudes, n̂, v̂ as well as Ê

are first order quantities. Moving to Fourier space (see Equations 13, 14), the equation of

motion (44) takes the form

−iωmev̂ = −qÊ − ik3kBT

n0

n̂ (45)

while the continuity equation becomes

−iωn̂+ ikn0v̂ = 0 (46)

(recall that the term ikv0n̂ = 0 since v0 = 0, and other terms are second order). Thus,

v̂ =
ω

k

n̂

n0

. (47)

For the electric field, Ê, we use Poisson’s equation, ε0~∇·E = q(ni−ne), and note that to

0th order, ni,0 = ne,0; assuming the ion density is fixed, only first order term in the electron

density contributes, and we get

ε0ikÊ = −qn̂

Using this result as well as Equation 47 in Equation 45, we get

−iωmev̂ =

[
q2

ikε0
− ik3kBT

n0

]
kn0

ω
v̂,
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or

ω2 =
q2n0

ε0me

+ k2
3kBT

me

= ω2
p,e +

3

2
k2v2th (48)

where we used (1/2)mev
2
th = kBT .

Equation 48 is the dispersion relation for electron aoustic waves in a warm plasma. The

group velocity is given by

vg =
dω

dk
=

(
1

2

)
2k × (3/2)v2th

ω
=

3

2

k

ω
v2th =

3

2

v2th
vφ

(49)

The dispersion relation ω(k) of the electron plasma waves is plotted in Figure 6. The

slope of the curve at any point P gives the group velocity, which is clearly less then the

asymptotic value of
√

3/2vth. For non-relativistic plasma, this is always much smaller than

c.

Fig. 6.— Dispersion relation for electron plasma waves. Figure taken from Ref. [1]

5.2. Ion acoustic waves

So far, we have assumed that the ions are steady, and not taking part in the wave

motion. Let us now relax this assumption.
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5.2.1. Sound waves

Let us first briefly review the theory of sound waves in ordinary (neutral) matter. Ne-

glecting viscosity, the equation of motion (Navier-Stokes equation) is

nm

[
∂v

∂t
+ (v · ~∇)v

]
= −~∇p = −γ̂ p

n
~∇n (50)

and the continuity equation (see Equation 43)

∂n

∂t
+ ~∇(nv) = 0.

Linearizing about a static equilibrium with uniform p0 and n0, we have

−iωn0mv̂ = −ikγ̂ p0
n0

n̂ (51)

and

−iωn̂+ in0k · v̂ = 0 (52)

Assuming that the waves propagate in the x̂ direciton, k = kx̂ and v = vx̂, we get

−iωn0mv̂ = −ikγ̂ p0
n0

n0kv̂

ω
(53)

or
ω

k
=

(
γ̂p0
mn0

)1/2

≡ cs (54)

where cs is the speed of sound.

The sound waves are pressure waves, that propagate by collision of the (neutral) molecules.

5.2.2. Ion waves

In the absence of collisions, ordinary sound waves will not occur6. Ions can still transmit

vibrations to each other because of their charge - the acoustic waves occur through the

intermediary of an electric field. Since motion of massive ions is involved, these waves will

be low frequency oscillations.

6While we did not include the energy loss by collision term directly in Equation 50, the pressure gradient

term implicitly assumed the existence of a random-walk motion of the particles.
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When considering low frequency modes, we may approximate the electron mass me → 0.

This assumption is justified as, being very light (relative to the ions), the electrons mobility

is huge; however, they cannot leave the region where the ions are, as this will result in strong

electrostatic force, which is then balanced by the pressure gradient force. Furthermore, the

huge mobility of the electrons implies that their heat conductivity is almost infinite, and we

may therefore assume they are isothermal, and take γ̂e = 1.7

The ion and electron equations of motion are thus

nimi

[
∂vi
∂t

+ (vi · ~∇)vi

]
= niqE− ~∇pi,

0 = −neqE− ~∇pe
(55)

Linearizing (using Fourier transformation), we get

−iωmiv̂i = qÊ − ik
ni,0

(γ̂kBTi)n̂i

0 = −qÊ − ik
ne,0

(kBTe)n̂e
(56)

To these we add the continuity Equation for ions, in the form of Equation 46, (or 47 or 52),

−iωn̂i + ini,0kv̂i = 0

to write
n̂i =

ni,0kq

−iω2mi+ik2γ̂kBTi
Ê

n̂e = − ne,0q

ikkBTe
Ê

(57)

We next use Poisson’s Equation ( ε0~∇ · E = q(ni − ne); see below Equation 47),

ikÊ =
q

ε0
(n̂i − n̂e) (58)

to write

ikÊ =

(
ni,0q

2

ε0mi

)
k

−iω2 + ik2 γ̂kBTi
mi

Ê +

(
ne,0q

2

ε0kBTe

)
1

ik
Ê (59)

Recall that the ion plasma frequency is

ωp,i =

(
ni,0q

2

ε0mi

)1/2

7In a polytropic process, the plasma transits from one thermodynamic equilibrium state to another, under

constant specific heat. The polytropic equation relates the plasma density n and temperature T or pressure

p via p ∝ nγ̂ or T ∝ nγ̂−1. An isothermal process occurs at constant temperature, hence γ̂ = 1; for adiabatic

process, γ̂ = 5/3, and there is no heat exchange. γ̂ = 0 characterizes an isobaric (=constant pressure)

process. In a process that occurs at constant volume (=isochoric), the density does not change, and γ̂ =∞.
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and the electron Debye length is

λD =

(
ε0kBTe
ne,0q2

)1/2

We may thus write Equation 59 as

1 =
ω2
p,i

ω2 − k2 γ̂kBTi
mi

− 1

k2λ2D
(60)

from which we obtain the dispersion relation for the ion acoustic mode,

ω2

k2
=

(
γ̂kBTi
mi

+
ω2
p,iλ

2
D

1 + k2λ2D

)
(61)

The dispersion curve for the ion acoustic waves is plotted in Figure 7. It is fundamentally

different than the dispersion relation for the electron plasma waves (Figure 6).

For long wavelength (short wavenumber), kλD � 1, the oscillations are basically con-

stant velocity waves, while for electrons the oscillations are essentially constant fre-

quency.

Ion acoustic waves exist only when there is a thermal motion. At short wavenumber,

kλD � 1, vg = vφ.

There is a key physical difference between electron plasma waves and ion acoustic waves.

In electron plasma oscillations, the ions remain essentially fixed. As opposed to that, in

acoustic waves, the electrons are pulled along with the ions, and tend to shield out the

electric field arising from the bouncing of the ions. The shielding is not perfect, though, due

to the electron thermal motion.

The ions form regions of compression and rarefaction, similar to ordinary sound waves.

The compressed region expands into the rarefaction region, by two mechanisms: 1. The ion

thermal motion (the first term in Equation 61). 2. The positively charged ions disperse by

the electric field, which is only partially shielded by the electrons. This leads to an interesting

phenomenon, which does not exist in neutral plasma: even if the ions are cold, Ti = 0, ion

waves still exist. In this case, the sound speed depends on the electron temperature and

the ion mass, as ωp,iλD =
(
ni
ne

)(
me
mi

)
kBTe
me

. Furthermore, reducing the electron density (or

increasing the ratio ni/ne) increases the phase velocity (”dusty ion acoustic waves” in Figure

7)

For most gas-discharge plasmas, Te � Ti. In this limit, for short wavelength, k2λ2D � 1,

we have, from Equation 61, ω2 = ω2
p,i.



– 21 –

Fig. 7.— Dispersion relation for ion acoustic waves (solid) and dusty ion acoustic waves

(dashed). Figure taken from Ref. [2]

6. Waves in magnetized plasma

Let us now consider the influence of an (external) magnetic field on the propagation of

plasma waves. For simplicity, we restrict the discussion to cold plasmas.

We start by Newton’s equation of motion for ions and electrons,

∂vi,e
∂t

=
±q
mi,e

(E1 + vi,e ×B0) (62)

where we already linearlized the equation (i.e., neglected 2nd order terms in velocity, etc.):

E1 is the electric field associated with the wave and B0 = (0, 0, B0) is the static magnetic

field.



– 22 –

6.1. The dielectric tensor

Using Fourier transform we have

v̂x = Si
q

ωm

(
Êx + v̂yB0

)
, v̂y = Si

q

ωm

(
Êy − v̂xB0

)
(63)

Here, I used S = ±1, where +1 is for ions, and −1 is for electrons; similarly, m = mi,e,

pending on whether we discuss ions or electrons. The reason for the use of this notation is

to avoid confusion in what follows.

The simple way to describe the gyromotion of the particle is to use rotating vectors for

the velocity and electric field:

v̂± = v̂x ± iv̂y , Ê± = Êx ± iÊy (64)

Equation 63 becomes

v̂± = Si
q

ωm

(
Ê± ∓ iv̂±B0

)
(65)

We may use the cyclotron frequencies for ions and electrons,

ωc,i =
qB0

mi

, ωc,e =
|q|B0

me

to write Equation 65 as

v̂± = Si
q

ωm
Ê±

1

1∓ S ωc
ω

(66)

We may transform back to Cartesian coordinates, using

v̂x =
1

2

(
v̂+ + v̂−

)
, v̂y =

1

2i

(
v̂+ − v̂−

)
to write

v̂x = Si
q

ωm

Êx + Siωc
ω
Êy

1−
(
ωc
ω

)2 , v̂y = Si
q

ωm

−Siωc
ω
Êx + Êy

1−
(
ωc
ω

)2
We may write this in a matrix form: v̂x

v̂y
v̂z

 = Si
q

ωm


ω2

ω2−ω2
c

Si ωωc
ω2−ω2

c
0

−Si ωωc
ω2−ω2

c

ω2

ω2−ω2
c

0

0 0 1

 ·
 Êx

Êy
Êz

 (67)

We may proceed by using the definition of the oscillating current, ĵ =
∑

α nαqαv̂α, where the

summation of the index α is over the electrons and ions. Furthermore, recall the definition
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of the plasma frequency, ω2
p = nq2/ε0m, so that Si q

mω
×nq = Siωε0(ω

2
p/ω

2). Using Equation

12, ĵ(ω) = σ(ω)Ê(ω) we obtain the conductivity tensor,

σ(ω) = iωε0


∑

α

ω2
p,α

ω2−ω2
c,α

i
∑

α S(α)
ω2
p,α

ω2−ω2
c,α

ωc,α
ω

0

−i
∑

α S(α)
ω2
p,α

ω2−ω2
c,α

ωc,α
ω

∑
α

ω2
p,α

ω2−ω2
c,α

0

0 0
∑

α

ω2
p,α

ω2

 (68)

We may thus write the dielectric constant, ε(ω) = ¯̄I + i
ωε0

¯̄σ(ω) in the form

ε(ω) =

 S −iD 0

iD S 0

0 0 P

 (69)

where the parameters S, P and D are

S = 1−
∑

α

ω2
p,α

ω2−ω2
c,α

D =
∑

α S(α)
ω2
p,α

ω2−ω2
c,α

ωc,α
ω

P = 1−
∑

α

ω2
p,α

ω2

(70)

(this is known as ”Stix notation”). We can now use the dielectric constant inside the general

form of the wave equation (23). For that, we multiply Equation 23 by (c/ω)2, and use the

definition of the refractive index, N = kc
ω

. Furthermore, we assume that the wave propagates

in the x − z plane (due to the rotational symmetry around the direction of the magnetic

field, this is a general form), so k = (k sinψ, 0, k cosψ). The wave equation 23 takes the form S −N 2 cos2 ψ −iD N 2 cosψ sinψ

iD S −N 2 0

N 2 cosψ sinψ 0 P −N 2 sin2 ψ

 ·
 Êx

Êy
Êz

 = 0 (71)

6.2. Circularly polarized modes

Consider first propagation of waves along the magnetic field, namely ψ = 0 (k ‖ B0, or

k = kẑ). The wave Equation 71 becomes S −N 2 −iD 0

iD S −N 2 0

0 0 P

 ·
 Êx

Êy
Êz

 = 0 (72)

We distinguish between two cases:
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1. Êx = Êy = 0, Êz 6= 0: We get a longitudinal wave, that is described by the dispersion

relation P = 1 − ω2
p,e+ω

2
p,i

ω2 = 0. We have encountered this before - this is the plasma

oscillations that appear in the non-magnetized case (section 5, Equation 40). The

magnetic field has no effect on the wave, as the oscillations are aligned in the direction

of the magnetic field, and the Lorentz force vanish.

2. Êz = 0, and Êx 6= 0 6= Êy. We get a transverse EM waves, that are described by 2× 2

system of equations, (
S −N 2 −iD
iD S −N 2

)
·

(
Êx
Êy

)
= 0 (73)

In this case of transverse waves, again it is best to introduce the rotating electric field,

Ê± (see Equation 64) which correspond to a circular polarization of the wave. This enable

to decouple the two equations (simply write them explicitly, multiply the second equation

by i and add / subtract):

(S −D −N 2) Ê+ = 0,

(S +D −N 2) Ê− = 0.
(74)

When Ê+ 6= 0 and Ê− = 0, we have a left-handed circularly polarized wave (in short:

L-wave), with a refractive index NL =
√
S −D.

When Ê+ = 0 and Ê− 6= 0, we have a right-handed circularly polarized wave (in

short: R-wave or R-mode), with a refractive index NR =
√
S +D. With the definitions of

S and D (Equation 70), we have

NR =
(

1− ω2
p,e

ω(ω−ωc,e) −
ω2
p,i

ω(ω+ωc,i)

)1/2
,

NL =
(

1− ω2
p,e

ω(ω+ωc,e)
− ω2

p,i

ω(ω−ωc,i)

)1/2
.

(75)

For ω = ωc,e, the refractive index of the R-mode becomes NR →∞. The R-mode is said to

have a resonance with the electron cyclotron frequency.

We can easily understand this resonance by looking at the rotation of the electric field,

as is presented in Figure 8. In the rotating frame of reference, the electron experiences a DC

electric field, and can therefore gain energy indefinitely.

Similarly, the L-mode has a resonance at the ion cyclotron frequency.

Plotting the refractive index as a function of frequency visualize the regimes in which

the R- and L-modes can propagate, and where there will be cutoffs. This is seen in Figure 9,

where an artificial ratio of me/mi = 0.4 is used. Above the respective cyclotron frequencies,
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Fig. 8.— Decomposition of a linearly polarized wave into a pair of circularly polarized waves,

and comparison of the L- and R-mode rotation with the gyromotion of the electrons and

ions. Figure taken from Ref. [2]

the L- and R-waves are in cutoff, N 2 < 0 (shaded region for the R-mode). At high enough

frequencies, N 2 > 0 and the modes can propagate. At very high frequencies, the refractive

indices of both the L- and R-waves approach the asymptotic value N → 1 (similar to

vacuum).

6.2.1. Experimental consequence: Whistler waves

Early investigators of radio emissions from the ionosphere, encountered various whistling

sounds in the audio-frequency range, at 1- 30 kHz. There is typically a series of descending

glide tones, which can be heard over a loudspeaker.

We can easily explain them by means of propagation of the R-modes, which is the only

propagating mode at the frequency range between ωc,i < ω < ωc,e, in the case of ω2
p,e � ω2

c,e,

as is seen in Figure 9.

The origin of these waves is in lightning flashes, which (for an observer in the northern

hemisphere) occurs in the southern hemisphere. The lightnings generate radio noise at all
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Fig. 9.— The square of the refractive index for wave propagation along the magnetic field,

k ‖ B as a function of frequency. An artificial mass ratio me/mi = 0.4 is assumed. The

R-mode has a resonance NR →∞ at ωc,e, while the L-mode has a resonance at the (lower)

ion cyclotron frequency, ωc,i. In the high density limit, ωp,e � ωc,e (as is considered here),

only R-waves can propagate in between the ion and electron cyclotron frequencies, while the

L-wave has a cutoff, N 2
L < 0. The cutoff of the R-wave is shown by the shaded region. As

ω increases, NL,R → 1. Figure modified from Ref. [2]

frequencies, including R waves that travel along the earth’s magnetic field (see Figure 10).

Both the phase and the group velocities increase with frequency; for ω2 � ω2
c,e � ω2

p,e,

we have NR ≈ ωp,e√
ωωc,e

, and therefore low frequencies arrive later giving rise to the ”chew”

sound.

Several whistles can be produced by a single lightning flash, because of propagation

along different tubes.
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Fig. 10.— a A lightning between cloud and ionosphere in the southern hemisphere triggers

a whistler wave that travels along the magnetic field. b Sonogram of whistler wave events

in the northern hemisphere. The strong whistler starting at 4 s is followed by a weak echo

of much larger dispersion. c The evaluation shows that the first is a one-hop Whistler and

the second a three-hop whistler. Both signals follow a f−1/2 law, which extrapolates to a

common starting point. Figure taken from Ref. [2]

6.2.2. Faraday rotation

The small differences between NR and NL at high frequencies, namely that the R-waves

travel slightly faster, gives rise to a rotation of the plane of polarization of the traveling

electromagnetic wave as it propagates along the magnetic field line. This rotation is known

as Faraday rotation.

A linearly-polarized transverse wave propagating along the magnetic field can be de-

composed into a pair of R- and L-mode (see Figure 8). Consider a field that is initially along

the x̂ direction, Ê = Êx. Using Equation 64, we have Ê±(z = 0, t = 0) = Êx(z = 0, t = 0).

As the wave propagates along the magnetic field, we have Ê±(z, t) = Êx(z = 0, t =

0) exp(i(k±z − ωt)), where k± are the wavenumbers of the R- and L-modes.

We may write k± = k0 ± δk, where k0 = (k+ + k−)/2, δk = (k+ − k−)/2. We then have

Êx(z, t) =
(
Ê+(z,t)+Ê−(z,t)

2

)
= Êx(z = 0, t = 0)ei(k0z−ωt) cos(δkz)

Êy(z, t) =
(
Ê+(z,t)−Ê−(z,t)

2i

)
= Êx(z = 0, t = 0)ei(k0z−ωt) sin(δkz)

(76)

We thus find that the plane of polarization, which, at z = 0 was aligned along the x̂
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axis, is rotating at a rate α(z) = δkz about the magnetic field direction (the ẑ-axis).

In the high-frequency limit, ω � {ωp,e, ωc,e}, we have from Equation 75,

NR,L ≡ N∓ ≈ 1−
ω2
p,e

2ω(ω ∓ ωc,e)
(77)

Using N = kc/ω, we have

α(z = L) ≈
ω2
p,eωc,eL

cω2
∝ nBL (78)

where the proportionality comes from n ∝ ω2
p,e and B ∝ ωc,e.

Thus, measuring the polarization direction for different frequencies, provides a direct

measurement of the quantity nBL; thus us a standard techniques used in studying the

magnetic fields in galaxies.

6.3. Propagation across the magnetic field

Let us now consider propagation of waves across the magnetic field: k ⊥ B0 or ψ = π/2

(or k = kx̂).

In this case, the electric field vector may be aligned along the static magnetic field,

E ‖ B0, or perpendicular to it. When E ‖ B0, the wave is called ordinary mode, or O-

mode. In this mode, the electron and ion motion are along the magnetic field, and therefore

the refractive index of the O-mode is not affected by the presence of the B-field (hence the

name “ordinary mode”).

If E ⊥ B0, the wave is called extraordinary mode, or X-mode. Using Equation 71,

it is described by a 2× 2 system of equations,(
S −iD
iD S −N 2

)
·

(
Êx
Êy

)
= 0 (79)

As usual, non-vanishing solutions for E are found when the determinant of the matrix be-

comes 0, giving a referactive index

NX =

(
S2 −D2

S

)1/2

. (80)

A resonance occurs when the index of refraction becomes infinite (namely, the wave-

length becomes 0, since N = kc/ω). For X-modes, resonance appears when S = 0. For very
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high frequencies, we can neglect the ion contribution in Equation 70, and write

ωuh =
(
ω2
c,e + ω2

p,e

)1/2
(81)

This is known as the upper hybrid resonance (“hybrid” due to the fact that it combines

both the cyclotron and plasma frequencies).

A second zero of S may be found close to the ion cyclotron frequency, by using the fact

that ωp,e � ωp,i and ωc,e � ωc,i (both correct due to me � mi). One finds

ωlh =

(
ω2
c,i + ω2

p,i

ω2
c,e

ω2
p,e + ω2

c,e

)1/2

(82)

which is known as the lower hybrid resonance. In the limit of high electron density,

ω2
p,e � ω2

c,e, the lower hybrid frequency approaches ωlh ≈ (ωc,iωc,e)
1/2 (the second term in

Equation 82 becomes dominant). The behavior of the refractive index for the X- and O-

modes as a function of the wave frequency is shown in Figure 11.

Fig. 11.— The square of the refractive index for waves propagating perpendicular to the

magnetic field, as a function of frequency. An artificial mass ratio me/mi = 0.4 is chosen.

The X-mode has resonances at the lower and upper hybrid frequencies, ωl,h , ωu,h. Figure

taken from Ref. [2]
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7. Summary: elementary plasma waves

Let us summarize the elementary plasma waves in the following table.

Mode Electron wave Ion waves

Electrostatic waves: k ‖ E, or B0 = 0

B0 = 0 or k ‖ B0 Electron acoustic waves: Ion acoustic waves:

(Langmoir waves / plasma oscillations)

ω2 = ω2
p,e + 3

2
k2v2th ω2 = k2

(
γ̂kBTi
mi

+
ω2
p,iλ

2
D

1+k2λ2D

)
k ⊥ B0 upper hybrid resonance lower hybrid resonance

ω2
uh = ω2

c,e + ω2
p,e ω2

lh ≈ ωc,iωc,e
Electromagnetic waves

B0 = 0 Electromagnetic (light) waves: None

ω2 = ω2
p,e + k2c2

k ‖ B0 R- (whistler) and L-modes Alfvén waves,

N 2
R,L = c2k2

ω2 = 1− ω2
p,e

ω(ω∓ωc,e) ω2 = k2v2A
k ⊥ B0 E1 ‖ B0: O mode Magnetosonic wave

ω2 = ω2
p,e + k2c2 (didnt discuss)

E1 ⊥ B0: X mode (Eq. 80) ω2

k2
= c2

v2s+v
2
A

c2+v2A

N 2
X = c2k2

ω2 = 1− ω2
p,e

ω2

ω2−ω2
p,e

ω2−ω2
p,e−ω2

c,e

Note that electrostatic (longitudinal) waves do not exit in vacuum; they cannot be

obtained from Maxwell’s equations in vacuum. However, they do exist in plasma, and, being

longitudinal, they are similar in nature to sound waves.
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