Reflecting Quantifier Elimination: From Dense Linear Orders to Presburger Arithmetic

Tobias Nipkow
(jww Amine Chaieb)

Technische Universität München

Aims

General How to extend theorem provers safely with decision procedures (DP)
Application Linear Arithmetic (,$+<$, not *)
Focus Not just DPs but Quantifier Elimination

Which theorem provers?

Foundational Small trusted inference kernel
Extensible Logic or meta-language must be able to express proof procedures

Yes: Coq, HOLs, Isabelle, (PVS, ACL2)
No: E, Spass, Vampire, Simplify, zChaff, ...
Not considered: DPs as trusted black boxes
Unless they return a checkable certificate

Isabelle/HOL

Isabelle A generic interactive theorem prover and logical framework (Paulson,N.,Wenzel)
Isabelle/HOL An instance supporting HOL
HOL Church's Higher Order Logic:
a classical logic of total polymorphic higher order functions

HOL $=$ Functional Programming + Quantifiers

All algorithms in this talk
have been programmed and verified in Isabelle/HOL

Decision procedures for and in theorem provers

LCF approach

- program proof search in meta-language (ML)
- reduce proof to rules of the logic

Reflection

- describe decision procedure in the logic
- show soundness (and completeness)
- execute decision procedure on formulae in the logic

Comparison

LCF approach

- no meta-theory, just do it
- produces proof every time
- slow
- tricky to write, often incomplete
- hard to maintain

Reflection

- meta-theoretic proofs
- correctness proof only once
- fast (if executed efficiently)
- completeness proof
- easy to maintain

We focus on reflection

Quantifier elimination

QE takes quantified formula and produces equivalent unquantified formula.

$$
\exists x \in \mathbb{R} . a<x<b \quad \rightsquigarrow \quad a<b
$$

If ground atoms are decidable, QE yields DP:
(1) start with sentence
(2) eliminate quantifiers
(3) decide ground formula

Aims

- Present the essence of the algorithms and their formalization.
- Show similarities via a unified framework.
- Explain and demo reflection.

Related theorem proving work

- Norrish: Presburger in HOL (LCF approach)
- Harrison: Introduction to Logic and ATP
- Reflection in Nqthm (Boyer\&Moore) and Coq
- Locales (Ballarin, Kammüller, Wenzel, Paulson)

(1) Logical Framework

(2) Dense Linear Orders
(3) Linear Real Arithmetic
(4) Presburger Arithmetic
(5) Beyond
(1) Logical Framework Logic Quantifier Elimination

(2) Dense Linear Orders

3 Linear Real Arithmetic

4) Presburger Arithmetic
(5) Beyond
(1) Logical Framework Logic Quantifier Elimination

(2) Dense Linear Orders

(3) Linear Real Arithmetic
4) Presburger Arithmetic
(5) Beyond

Syntax

$\alpha \mathrm{fm}=$ TrueF \mid FalseF \mid Atom α
And ($\alpha \mathrm{fm}$) ($\alpha \mathrm{fm}$)
$\operatorname{Or}(\alpha f m)(\alpha f m)$
$\operatorname{Neg}(\alpha f m)$
$E x Q(\alpha f m)$
Quantifiers: de Bruijn notation!

$$
\begin{aligned}
& E x Q(E x Q \ldots 0 \ldots 1 \ldots) \\
& \approx \exists x_{1} \cdot \exists x_{0} \ldots x_{0} \ldots x_{1} \ldots
\end{aligned}
$$

Abbreviations: $A l l Q \varphi=\operatorname{Neg}(E x Q(\operatorname{Neg} \varphi)), \ldots$

Auxiliary functions

list-conj $:: \alpha$ fm list $\Rightarrow \alpha \mathrm{fm}$
list-disj $\quad:: \alpha \mathrm{fm}$ list $\Rightarrow \alpha \mathrm{fm}$
list-conj $\left[\varphi_{1}, \ldots, \varphi_{n}\right]=$ and $\varphi_{1}\left(\right.$ and $\left.\ldots \varphi_{n}\right)$
and TrueF $\varphi=\varphi$
and φ TrueF $=\varphi$
and $\varphi_{1} \varphi_{2} \quad=$ And $\varphi_{1} \varphi_{2}$

DNF

$d n f:: \alpha f m \Rightarrow \alpha$ list list
$d n f$ TrueF $=[[]]$ dnf FalseF = [] $\operatorname{dnf}($ Atom $\varphi)=[[\varphi]]$
$\operatorname{dnf}\left(\operatorname{Or} \varphi_{1} \varphi_{2}\right)=\operatorname{dnf} \varphi_{1} @ \operatorname{dnf} \varphi_{2}$ $\operatorname{dnf}\left(\right.$ And $\left.\varphi_{1} \varphi_{2}\right)=$
$\left[d_{1} @ d_{2} . d_{1} \leftarrow \operatorname{dnf} \varphi_{1}, d_{2} \leftarrow \operatorname{dnf} \varphi_{2}\right.$]
Assumes negation normal form!

More normal forms

in-nnf :: α fm \Rightarrow bool
"Does not contain Neg"
Note: $\not \leq \rightsquigarrow>$
qfree : : $\alpha \mathrm{fm} \Rightarrow$ bool
"Does not contain ExQ"

Atoms

- More than a type parameter α.
- Atoms come with an interpretation, a negation etc.
- Functions on atoms are parameters of the generic development.
- Parameters form a named context (Isabelle: locale)
- Parameters can be instantiated later on

Locale ATOM

Parameters:
I_{a}
$:: \alpha \Rightarrow \beta$ list \Rightarrow bool
aneg
$:: \alpha \Rightarrow \alpha \mathrm{fm}$
adepends $:: \alpha \Rightarrow$ bool "Depends on x_{0} ?"
adecr
$:: \alpha \Rightarrow \alpha$
" $x_{i+1} \mapsto x_{i}$ "

Interpretation

$l:: \alpha$ fm $\Rightarrow \beta$ list \Rightarrow bool
$I($ Atom $a) x s=I_{a}$ a xs
$I\left(\right.$ And $\left.\varphi_{1} \varphi_{2}\right) x s=\left(I \varphi_{1} x s \wedge I \varphi_{2} x s\right)$
$I(E x Q \varphi) x s=(\exists x . I \varphi(x \cdot x s))$
...

Example:

$I\left(E x Q\left(\right.\right.$ And $\left(\right.$ Atom $\left.a_{1}\right)\left(\right.$ Atom $\left.\left.\left.a_{2}\right)\right)\right) x s=$
$\left(\exists x . I_{a} a_{1}(x \cdot x s) \wedge I_{a} a_{2}(x \cdot x s)\right)$

Assumptions

Locale ATOM has assumptions:
$I(\operatorname{aneg} a) x s=\left(\neg I_{a} a x s\right)$
in-nnf (aneg a)

Must be discharged when locale is instantiated

NNF

$n n f:: \alpha f m \Rightarrow \alpha f m$
$n n f\left(\right.$ And $\left.\varphi_{1} \varphi_{2}\right)=$ And $\left(n n f \varphi_{1}\right)\left(n n f \varphi_{2}\right)$
$n n f(\operatorname{Neg}($ Atom $a))=\operatorname{aneg} a$ $n n f\left(\operatorname{Neg}\left(A n d \varphi_{1} \varphi_{2}\right)\right)=$
$\operatorname{Or}\left(\operatorname{nnf}\left(\operatorname{Neg} \varphi_{1}\right)\right)\left(\operatorname{nnf}\left(\operatorname{Neg} \varphi_{2}\right)\right)$
$n n f(\operatorname{Neg}(\operatorname{Neg} \varphi))=n n f \varphi$
Lemma I $(n n f \varphi) x s=I \varphi x s$
(1) Logical Framework Logic Quantifier Elimination

(2) Dense Linear Orders

(3) Linear Real Arithmetic

4 Presburger Arithmetic

(5) Beyond

Lifting quantifier elimination

If you can eliminate one of them, you can eliminate them all!

Given $\quad q e:: \alpha f m \Rightarrow \alpha f m$
such that $I(q e \varphi)=I(E x Q \varphi)$
if \quad freee φ
Not qe $(E x Q \varphi)$, just $q e \varphi, E x Q$ and 0 implicit
Apply qe bottom up:

$$
E x Q \varphi \rightsquigarrow E x Q \psi \rightsquigarrow \psi^{\prime}
$$

QE via DNF

Put into DNF first:

$$
(\exists x \cdot \phi)=\left(\exists x . \bigvee_{i} \bigwedge_{j} a_{i j}\right)=\left(\bigvee_{i} \exists x \cdot \bigwedge_{j} a_{i j}\right)
$$

Apply qe to conjunction of atoms all of which depend on x :

$$
=\left(\bigvee_{i} A_{i} \wedge\left(\exists x \cdot B_{i}(x)\right)\right)
$$

QE via DNF
 formally

lift-dnf-qe $::(\alpha$ list $\Rightarrow \alpha \mathrm{fm}) \Rightarrow \alpha \mathrm{fm} \Rightarrow \alpha \mathrm{fm}$
lift-dnf-qe qe $\left(\right.$ And $\left.\varphi_{1} \varphi_{2}\right)=$
and (lift-dnf-qe qe φ_{1}) (lift-dnf-qe qe φ_{2})
lift-dnf-qe qe $(E x Q \varphi)=$
$($ let djs $=\operatorname{dnf}(n n f($ lift-dnf-qe qe $\varphi))$
in list-disj (map (qelim qe) djs))
qelim qe as $=$
(let $q f=q e[a \leftarrow$ as. adepends a];
indep $=[$ Atom $($ adecr $a) . a \leftarrow a s, \neg$ adepends $a]$
in and qf (list-conj indep))

Correctness

Theorem If qe eliminates one existential (while preserving the interpretation), then lift-dnf-qe qe eliminates all quantifiers (while preserving the interpretation).

Complexity

Conversion to DNF may (unavoidably!) cause exponential blowup

Problematic case: quantifier alternation:

$$
\begin{aligned}
& \forall \exists \bigvee \wedge=\forall \bigvee \exists \wedge=\forall \bigvee \wedge= \\
& \neg \exists \neg \bigvee \wedge=\neg \exists \wedge \bigvee=\neg \exists \bigvee \wedge
\end{aligned}
$$

Conversion to NNF is linear

QE via NNF

> lift-nnf-qe $::(\alpha f m \Rightarrow \alpha f m) \Rightarrow \alpha f m \Rightarrow \alpha f m$ lift-nnf-qe qe $(E x Q \varphi)=q e(n n f($ lift-nnf-qe qe $\varphi))$

More efficient, but trickier for qe

(1) Logical Framework

(2) Dense Linear Orders

Logic
Reflection
Certificates

(3) Linear Real Arithmetic

4 Presburger Arithmetic
(5) Beyond

(1) Logical Framework

(2) Dense Linear Orders

Logic
Reflection
Certificates
(3) Linear Real Arithmetic
(4) Presburger Arithmetic
(5) Beyond

Dense Linear Orders

without endpoints

Atoms: $x<y$
Axioms:
Dense: $\quad x<z \Longrightarrow \exists y . x<y<z$
No endpoints: $\exists x z . x<y<z$

Langford [1927] developed what has come to be known as the method of elimination of quantifiers to solve the decision problem for the first order theory of dense linear orders. However, despite this very important technical contribution, Langford remained badly confused.

Martin Davis. American Logic in the 1920s. JSL 1995.

Quantifier elimination
 informally

Example:

$$
(\exists y . x<y \wedge y<z)=(x<z)
$$

In general:

$$
\begin{aligned}
& \exists x \cdot\left(\bigwedge_{i} l_{i}<x\right) \wedge\left(\bigwedge_{j} x<u_{j}\right) \\
= & \left(\max _{i} I_{i}<\min _{j} u_{j}\right)=\left(\bigwedge_{i j} I_{i}<u_{j}\right)
\end{aligned}
$$

Atoms

formally

datatype atom $=$ Less nat nat

$$
\text { Less } m n \approx x_{m}<x_{n}
$$

Interpretation: $\quad I_{d l o}($ Less $i j) x s=\left(x s_{[i]}<x s_{[j]}\right)$

Quantifier elimination

formally

Input: list (conjunction) of atoms, all containing 0
qe-less as $=$
(if Less $00 \in$ as then FalseF else
let lbs $=[m-1$. Less $m 0 \leftarrow a s]$;
ubs $=[n-1$. Less $0 n \leftarrow a s]$;
pairs $=[$ Atom $($ Less $m n) . m \leftarrow I b s, n \leftarrow u b s]$
in list-conj pairs)

Adding "="

$$
(\exists x \cdot x=t \wedge \phi)=\phi[t / x] \quad \text { if } x \notin t
$$

qe-less-eq as =
(let bs = filter (λ a. $a \neq E q 00$) as in case filter is-Eq bs of []$\Rightarrow q e-l e s s ~ b s$
Eq ij \cdot eqs \Rightarrow
(let ineqs $=$ filter $($ not $\circ i s-E q) b s$;

$$
\begin{aligned}
& v=(\text { if } i=0 \text { then } j \text { else } i) \\
& c s=\operatorname{map}(\text { Atom } \circ \text { subst } v)(\text { eqs @ ineqs })
\end{aligned}
$$

in list-conj cs))

Instantiating locales

functions and thms

functions and thms

Intstantiating locale ATOM

DLO: ATOM $\left[\alpha \mapsto\right.$ atom, $\left.I_{a} \mapsto I_{d l o}, \ldots\right]$
Prove: $\ldots \Longrightarrow$ DLO.I (qe-less-eq as) $x s=$ $\left(\exists x . \forall a \in\right.$ as. $\left.I_{d l o} a(x \cdot x s)\right)$

Define: dlo-qe $=$ DLO.lift-dnf-qe qe-less-eq
Obtain: DLO.I (dlo-qe φ) xs $=$ DLO.I φ xs

(1) Logical Framework

(2) Dense Linear Orders

Logic
Reflection

Certificates
(3) Linear Real Arithmetic
(4) Presburger Arithmetic
(5) Beyond

Reflection in action

$$
\begin{aligned}
& \exists x . s<x \wedge x<t \\
& \quad \text { by def of } D L O . I(\text { reversed }) \\
= & D L O . I(\text { Ex }(\text { And }(\text { Less } 10)(\text { Less } 02)))[s, t] \\
& \quad \text { by } D L O . I(\text { dlo-qe } \varphi) \times s=D L O .1 \varphi \times s \\
= & D L O . I(\text { dlo-qe }(E x Q \ldots))[s, t] \\
& \quad \text { by evaluation of dlo-qe } \\
= & D L O . I(\text { Less } 01)[s, t] \\
\quad & \quad \text { by def of } D L O . I \\
= & s<t
\end{aligned}
$$

Reflection abstractly

form
by def of I (reversed)
$=$ I rep [subterms]
by correctness of simp
$=I(\operatorname{simp}(\mathrm{rep}))$ [subterms]
by evaluation of simp
$=$ / rep' [subterms] by def of I
$=$ form'

Evaluation

- by proof (e.g. rewriting) - slow
- by proof-free execution - fast
- compilation to abstract machine code (Coq)
- compilation to ML (Isabelle) or Lisp (ACL2)

Demo

Worst case complexity

Algorithm Exponential blowup for every quantifier alternation
\Longrightarrow non-elementary
Decision problem PSPACE complete
(Kozen, Theory of Computation, 2006)
Quantifier elimination $\operatorname{TIME}\left(2^{p(n)}\right)(?)$

(1) Logical Framework

(2) Dense Linear Orders

Logic
Reflection
Certificates
(3) Linear Real Arithmetic
(4) Presburger Arithmetic
(5) Beyond

Certificates for DPs

(1) Unverified computation of certificate C for formula ϕ (external, fast)
(2) Verified check that C indeed proves ϕ (internal)

Works well for problems in NP and more
Example Propositional unsatisfiability
(1) Find refutation proof (SAT solver)
(2) Check refutation proof (TP)

Certificates for DLO
 The idea

Certificate for unsatisfiability of $\bigwedge_{i} x_{l(i)}<x_{r(i)}=: \phi$

$$
\text { cycle } x_{k}<\cdots<x_{k}
$$

Soundness and completeness: $\mathrm{QE}(\exists \bar{x} . \phi)$ yields False iff it constructs a cycle $(x<x)$

DP for unquantified formulae: To prove ϕ, prove unsatisfiability of each disjunct of $\operatorname{DNF}(\neg \phi)$

Certificates for DLO
 Formally

Certificate checkers:
cycle $\left[a_{1}, \ldots, a_{m}\right]\left[i_{1}, \ldots, i_{n}\right]$ iff $\left[a_{i_{1}}, \ldots, a_{i_{n}}\right]$ forms a cycle.
cyclic-dnf $\left[a s_{1}, \ldots, a s_{n}\right]$

$$
\text { iff } \exists i s_{1}, \ldots, \text {, is } n_{n} . \text { cycle as } s_{1} \text { is } \wedge \ldots \wedge \text { cycle as } s_{n} \text { is }
$$

Correctness theorem: qfree $\varphi \wedge$ cyclic-dnf $(\operatorname{dnf(DLO.nnf~} \varphi)) \Longrightarrow$
\neg DLO.I φ xs

Demo

(1) Logical Framework

(2) Dense Linear Orders
(3) Linear Real Arithmetic Fourier-Motzkin
Ferrante and Rackoff
Quantifier free case

4) Presburger Arithmetic

(5) Beyond

Works for ...

- \mathbb{R}
- \mathbb{Q}
- Ordered, divisible, torsion free Abelian groups (divisible \& torsion free $=$
has division by positive integers)

(1) Logical Framework

(2) Dense Linear Orders
(3) Linear Real Arithmetic Fourier-Motzkin Ferrante and Rackoff Quantifier free case
(4) Presburger Arithmetic
(5) Beyond

Linear real arithmetic

Atoms: $s<t$ (and $s=t$)
where s and t are expressions involving

- constants
- variables
- addition
- multiplication with constants

Eg: $2.7(x+0.5 y)<x+3.1$

Normal form

$$
\begin{aligned}
& r<c_{0} x_{0}+\cdots+c_{n} x_{n} \\
& \text { where } r, c_{0}, \ldots, c_{n} \in \mathbb{R}
\end{aligned}
$$

Fourier-Motzkin elimination

by example

$$
\begin{aligned}
& \exists x . \quad 3<2 x+s \quad \wedge 5<-3 x+t \\
= & \exists x . \quad 9<6 x+3 s \wedge 10<-6 x+2 t \\
= & 19<3 s+2 t
\end{aligned}
$$

Lower/upper bound view:
$\exists x . \quad 3<2 x+s \quad \wedge 5<-3 x+t$
$=\exists x .9-3 s<6 x \wedge 6 x<2 t-10$
$=9-3 s<2 t-10$
Combine $+/$ - atoms (lower/upper bounds) by unifying leading coefficients

Fourier-Motzkin elimination

in general

$$
\begin{aligned}
& \exists x \cdot\left(\bigwedge_{i} r_{i}<c_{i} x+t_{i}\right) \wedge\left(\bigwedge_{j} r_{j}^{\prime}<c_{j}^{\prime} x+t_{j}^{\prime}\right) \\
& \text { where } c_{i}>0, c_{j}^{\prime}<0 \\
= & \max _{i}\left(\left(r_{i}-t_{i}\right) / c_{i}\right)<\min _{j}\left(\left(r_{j}^{\prime}-t_{j}^{\prime}\right) / c_{j}^{\prime}\right) \\
= & \bigwedge_{i j} c_{j}^{\prime} r_{i}-c_{i} r_{j}^{\prime}<c_{j}^{\prime} t_{i}-c_{i} t_{j}^{\prime}
\end{aligned}
$$

Formalization

Atoms: Less $r\left[c_{0}, \ldots, c_{n}\right]$
Note:

- Variables are indexed by de Bruijn notation
- Conversion into normal form omitted

Lists as vectors

Addition and subtraction

$$
\begin{aligned}
& {\left[c_{0}, \ldots\right]+\left[d_{0}, \ldots\right]=\left[c_{0}+d_{0}, \ldots\right]} \\
& {\left[c_{0}, \ldots\right]-\left[d_{0}, \ldots\right]=\left[c_{0}-d_{0}, \ldots\right]}
\end{aligned}
$$

Multiplication with scalar

$$
r *_{s}\left[c_{0}, \ldots\right]=\left[r * c_{0}, \ldots\right]
$$

Inner product

$$
\left[c_{0}, \ldots\right] \odot\left[d_{0}, \ldots\right]=c_{0} * d_{0}+\ldots
$$

Interpreting atoms

$I_{R}::$ atom \Rightarrow real list \Rightarrow bool
$I_{R}($ Less $r c s) x s=(r<c s \odot x s)$
Instantiating ATOM:
R: $\operatorname{ATOM}\left[I_{a} \mapsto I_{R}, \ldots\right]$

Fourier-Motzkin elimination

formally
qe-less :: atom list \Rightarrow atom fm
qe-less as =

$$
\begin{aligned}
& \text { (let lbs }=[(r, c, c s) . \text { Less } r(c \cdot c s) \leftarrow a s, c>0] ; \\
& \quad \text { ubs }=[(r, c, c s) . \text { Less } r(c \cdot c s) \leftarrow a s, c<0] ; \\
& \quad \text { pairs }=[\text { Atom }(\text { combine } p q) . p \leftarrow l b s, q \leftarrow u b s] \\
& \text { in list-conj pairs) }
\end{aligned}
$$

combine $\left(r_{1}, c_{1}, c s_{1}\right)\left(r_{2}, c_{2}, c s_{2}\right)=$ $\operatorname{Less}\left(c_{1} * r_{2}-c_{2} * r_{1}\right)\left(c_{1} *_{s} \operatorname{cs}_{2}-c_{2} *_{s} c s_{1}\right)$

Adding Eq r cs

As for DLO:
qe-less-eq as $=$
(case filter is-Eq as of []\Rightarrow qe-less as
Eq r (c.cs) \cdot eqs $\Rightarrow \ldots$ subst \ldots

Correctness

As for DLO:
Prove: $\ldots \Longrightarrow R . I$ (qe-less-eq as) $x s=$

$$
\left(\exists x . \forall a \in \text { as. } I_{R} a(x \cdot x s)\right)
$$

Define: lin-qe $=$ R.lift-dnf-qe qe-less-eq
Obtain: R.I (lin-qe φ) xs $=$ R.I φ xs

(1) Logical Framework

(2) Dense Linear Orders
(3) Linear Real Arithmetic

Fourier-Motzkin
Ferrante and Rackoff
Quantifier free case

4 Presburger Arithmetic
(5) Beyond

Prolegomena

- For simplicity: only <
- View all atoms involving x as $I<x$ or $x<u$ (x not in / or u)
Q-free $P(x)$ in NNF can be put into DNF: $\bigvee_{i} \bigwedge_{j} a_{i j}$ $\Longrightarrow P(x)$ is a finite union of finite intersections of intervals $(I,+\infty)$ and $(-\infty, u)$
\Longrightarrow For each valuation of the other variables, $\{x \mid P(x)\}$ looks like this:

Every interval has upper/lower bound in $P(x)$ Problem: Is and us are symbolic

Ferrante and Rackoff

idea

- Put formula into NNF $P(x)$ - no DNF!
- If $P(x)$ for some x, then either
- there is no lower bound $(P(-\infty)$), or
- there is no upper bound $(P(+\infty))$, or
- $I<x<u$ for some I and u in $P(x)$ such that $P(y)$ for any $I<y<u$ $\Longrightarrow P((I+u) / 2)$

Ferrante and Rackoff

informal

$$
(\exists x . P(x))=\left(P(-\infty) \vee P(+\infty) \vee \bigvee_{I, u \in P} P((I+u) / 2)\right)
$$

$P(-\infty)$ replace $I<x$ by False, $x<u$ by True $P(+\infty)$ replace $I<x$ by True, $x<u$ by False

Example

$$
P(x)=x<y \wedge y<z \Longrightarrow P(-\infty)=y<z
$$

$$
P(+\infty)=\text { False }
$$

Ferrante and Rackoff optimized

Consider three sets of terms:
lower bounds $/$ in $I<x$
upper bounds u in $x<u$
equalities t in $x=t$

Ferrante and Rackoff

formalized
fr $\varphi=$
(let as = atoms φ;
$l b s=I b o u n d s$ as; $u b s=u b o u n d s a s ;$
bet $=[$ subst (between $p q$) $\varphi . p \leftarrow l b s, q \leftarrow u b s]$;
eqs $=[$ subst $p \varphi \cdot p \leftarrow$ ebounds as]
in list-disj (inf_ $\varphi \cdot \inf _{+} \varphi \cdot$ bet © eqs))
$f r-q e=$ R.lift-nnf-qe fr

$$
R . I(f r-q e \varphi) x s=R . I \varphi x s
$$

Worst case complexity
 of algorithms

Fourier-Motzkin Exponential blowup for every quantifier alternation
\Longrightarrow non-elementary
Ferrante\&Rackoff Quadratic blowup for every quantifier
$\Longrightarrow 2^{2^{c n}}$

Worst case complexity
 of problems

Decision problem
$\operatorname{NTIME}\left(2^{c n}\right)<\operatorname{DP}(\mathbb{R},+) \leq \operatorname{SPACE}\left(2^{d n}\right)$ [Fischer \& Rabin 74] [Ferrante \& Rackoff 75]
Quantifier elimination
$\operatorname{SPACE}\left(2^{2^{c n}}\right) \leq \operatorname{QE}(\mathbb{R},+) \leq \operatorname{SPACE}\left(2^{2^{c n}}\right)$ $\operatorname{TIME}\left(2^{2^{c n}}\right) \leq \mathrm{QE}(\mathbb{R},+) \leq \operatorname{TIME}\left(2^{2^{c n}}\right)$
[Weisspfenning 88]

Certificates
 general case

Corollary There are no short ($\leq 2^{c n}$) certificates (proofs) that can be checked quickly (in polynomial time).

(1) Logical Framework

(2) Dense Linear Orders
(3) Linear Real Arithmetic

Fourier-Motzkin
Ferrante and Rackoff
Quantifier free case
4) Presburger Arithmetic
(5) Beyond

Applications

- Most theorem provers
- Proof Carrying Code
- Certified program analysis

Quantifier free case

Remember:

ϕ true iff each disjunct of $\operatorname{DNF}(\neg \phi)$ is unsatisfiable.
Lemma $\bigwedge_{i=1}^{n} a_{i}$ is unsatisfiable iff
there is a non-negative linear combination
$\sum_{i=1}^{n} c_{i} * a_{i}$ that is contradictory (eg $0 \leq-1$).
Example $\neg(2 \leq x \wedge 1 \leq-3 x)$
because $3(2 \leq x)+(1 \leq-3 x)=(7 \leq 0)$
Certificate: $\left(c_{1}, \ldots, c_{n}\right)$

Finding the certificate

- By Fourier-Motzkin elimination (\Rightarrow Lemma)
- By Linear Programming: $\bigwedge_{i=1}^{n} r_{i} \leq c s_{i} \odot x s$ $\rightsquigarrow A x \geq b$ with $b \in \mathbb{R}^{n}, A \in \mathbb{R}^{n \times m}, x \in \mathbb{R}^{m}$
Lemma (Farkas)
- Either $\exists x . A x \geq b$
- or $\exists y \geq \overline{0}$. $A^{T} y=\overline{0} \wedge b^{T} y<0$.

The system has no solution (x) iff there is an unsatisfiability certificate (y).

Find certificate by (eg) Simplex

Complexity

Corollary Implications $\left(\bigwedge_{i=1}^{n} a_{i}\right) \rightarrow a$ of linear inequalitities can be proved in polynomial time.

Checking the certificate

check as $y=((\forall c \in y . c \geq 0) \wedge$
(let $b=$ map lhs as;
$A=$ map rhs as;
by $=b \odot y$;
$A y=[c s \odot y . c s \leftarrow A] ;$
in $(\forall c \in A y . c=0) \wedge$
$(b y<0 \vee(\forall a \in a s . i s-E q a) \wedge$ by $\neq 0))$
Lemma check as cs $\Longrightarrow \exists a \in a s . \neg I_{R} a x s$

(1) Logical Framework

(2) Dense Linear Orders
(3) Linear Real Arithmetic
(4) Presburger Arithmetic

Presburger's algorithm
Cooper's algorithm
Complexity and more

5 Beyond

Atoms

$$
\begin{gathered}
i \leq k_{0} * x_{0}+\cdots k_{n} * x_{n} \\
d \mid i+k_{0} * x_{0}+\cdots k_{n} * x_{n}
\end{gathered}
$$

where $d, i, k_{n}, x_{n} \in \mathbb{Z}$

(1) Logical Framework

(2) Dense Linear Orders
(3) Linear Real Arithmetic
(4) Presburger Arithmetic

Presburger's algorithm
Cooper's algorithm
Complexity and more

5 Beyond

Presburger's algorithm
 by example

$$
\begin{aligned}
& \exists i . I \leq 2 i \wedge 3 i \leq u \\
= & \exists i .3 I \leq 6 i \leq 2 u \\
= & \exists j .3 I \leq j \leq 2 u \wedge 6 \mid j \\
= & \bigvee_{n=0}^{5} 3 I+n \leq 2 u \wedge 6 \mid 3 I+n
\end{aligned}
$$

Presburger's algorithm(?)
 informally

Input $P(x)$: Conjunction of atoms (DNF!)

- Set all coefficients of x to the Icm of all coefficients of $x($ by $*) \rightsquigarrow Q(m * x)$
- $R(x):=Q(x) \wedge m \mid x$
- Let δ be the lcm of all divisors $d\left(\left.d\right|_{-} \in R(x)\right)$
- If x has lower bounds Is in $R(x): \bigvee_{t \in T} R(t)$ where $T=\{I+n \mid I \in I s \wedge 0 \leq n<\delta\}$
- Otherwise $\bigvee_{t \in T} R^{\prime}(t)$ where R^{\prime} is $R \mathrm{w} / \mathrm{o} \leq$-atoms and $T=\{n \mid 0 \leq n<\delta\}$

Presburger's algorithm
 The core, formally

qe as =
(let $d=$ Icms(map divisor as); Is = Ibounds as in if $\mathrm{l}=$ = []
then let $d s=$ filter (not \circ is-Le) as in
Disj $[0 . .<d](\lambda n .[$ list-conj(map (subst n []) ds)])
else
Disj $[0 . .<d](\lambda n$.
Disj Is ($\lambda(\mathrm{li}, \mathrm{lks})$.
list-conj(map (subst (li+n) Iks) as))))
Disj is $f=$ list-disj (map f is)

(1) Logical Framework

(2) Dense Linear Orders
(3) Linear Real Arithmetic
(4) Presburger Arithmetic

Presburger's algorithm
Cooper's algorithm Complexity and more

5 Beyond

Cooper's algorithm

No DNF, just NNF

$$
\left(\bigvee_{n=0}^{d-1} P_{-\infty}(n)\right) \vee\left(\bigvee_{n=0}^{d-1} \bigvee_{l} P(I+n)\right)
$$

[Cooper 72] \rightsquigarrow [Ferrante \& Rackoff 75]

(1) Logical Framework

(2) Dense Linear Orders
(3) Linear Real Arithmetic
(4) Presburger Arithmetic

Presburger's algorithm
Cooper's algorithm
Complexity and more
(5) Beyond

Worst case complexity
 of algorithms

Presburger Exponential blowup for every quantifier alternation
\Longrightarrow non-elementary
Cooper $2^{2^{2^{c n}}}$ [Oppen 73/78]

Worst case complexity
 of problems

Decision problem
$\operatorname{NTIME}\left(2^{2^{c n}}\right)<\operatorname{DP}(\mathbb{Z},+) \leq \operatorname{SPACE}\left(2^{2^{d n}}\right)$
[Fischer \& Rabin 74] [Ferrante \& Rackoff 75]
Quantifier elimination

$$
\mathrm{QE}(\mathbb{Z},+) \leq \operatorname{TIME}\left(2^{2^{2^{2 n}}}\right)[\text { Oppen } 78]
$$

One exponential up from \mathbb{R}

Quantifier free case

ϕ is unsatisfiable over \mathbb{Z}
if it is unsatisfiable over \mathbb{R}

Popular!

Alternatives

QE($\mathbb{Z},+$) Omega [Pugh 92]
DP $(\mathbb{Z},+)$ Finite automata Solutions to Presburger formulae (viewed as bitstrings) are regular sets
Reflection?
(1) Logical Framework
(2) Dense Linear Orders
(3) Linear Real Arithmetic

4 Presburger Arithmetic
(5) Beyond

Beyond

Mixed integer/real linear arithmetic (\rfloor)
Algorithm: Weisspfenning
Reflection: Chaieb
$(\mathbb{R},+, *)$
Algorithms: Tarski, Cohen/Hörmander, Collins (CAD)
LCF tactic: McLaughlin\&Harrison Reflection: Mahboubi (CAD, partial!)

The future is bright for reflection
 But optimization is of the essence

