
Reflecting Quantifier Elimination:
From Dense Linear Orders to

Presburger Arithmetic

Tobias Nipkow
(jww Amine Chaieb)

Technische Universität München

Aims

General How to extend theorem provers safely
with decision procedures (DP)

Application Linear Arithmetic (+, <, not ∗)
Focus Not just DPs but Quantifier Elimination

Which theorem provers?

Foundational Small trusted inference kernel

Extensible Logic or meta-language must be able to
express proof procedures

Yes: Coq, HOLs, Isabelle, (PVS, ACL2)
No: E, Spass, Vampire, Simplify, zChaff, . . .

Not considered: DPs as trusted black boxes
Unless they return a checkable certificate

Isabelle/HOL

Isabelle A generic interactive theorem prover and
logical framework (Paulson,N.,Wenzel)

Isabelle/HOL An instance supporting HOL

HOL Church’s Higher Order Logic:
a classical logic of total polymorphic
higher order functions

HOL = Functional Programming + Quantifiers

All algorithms in this talk
have been programmed and verified in Isabelle/HOL

Decision procedures for and in
theorem provers

LCF approach

• program proof search in meta-language (ML)

• reduce proof to rules of the logic

Reflection

• describe decision procedure in the logic

• show soundness (and completeness)

• execute decision procedure on formulae in the
logic

Comparison
LCF approach
• no meta-theory, just do it
• produces proof every time
• slow
• tricky to write, often incomplete
• hard to maintain

Reflection
• meta-theoretic proofs
• correctness proof only once
• fast (if executed efficiently)
• completeness proof
• easy to maintain

We focus on reflection

Quantifier elimination

QE takes quantified formula and produces
equivalent unquantified formula.

∃x ∈ R. a < x < b a < b

If ground atoms are decidable, QE yields DP:

1 start with sentence

2 eliminate quantifiers

3 decide ground formula

Aims

• Present the essence of the algorithms
and their formalization.

• Show similarities via a unified framework.

• Explain and demo reflection.

Related theorem proving work

• Norrish: Presburger in HOL (LCF approach)

• Harrison: Introduction to Logic and ATP

• Reflection in Nqthm (Boyer&Moore) and Coq

• Locales (Ballarin, Kammüller, Wenzel, Paulson)

1 Logical Framework

2 Dense Linear Orders

3 Linear Real Arithmetic

4 Presburger Arithmetic

5 Beyond

1 Logical Framework
Logic
Quantifier Elimination

2 Dense Linear Orders

3 Linear Real Arithmetic

4 Presburger Arithmetic

5 Beyond

1 Logical Framework
Logic
Quantifier Elimination

2 Dense Linear Orders

3 Linear Real Arithmetic

4 Presburger Arithmetic

5 Beyond

Syntax

α fm = TrueF | FalseF | Atom α
| And (α fm) (α fm)
| Or (α fm) (α fm)
| Neg (α fm)
| ExQ (α fm)

Quantifiers: de Bruijn notation!

ExQ (ExQ . . . 0 . . . 1 . . .)
≈ ∃x1.∃x0. . . . x0 . . . x1 . . .

Abbreviations: AllQ ϕ = Neg(ExQ(Neg ϕ)), . . .

Auxiliary functions

list-conj :: α fm list ⇒ α fm
list-disj :: α fm list ⇒ α fm

list-conj [ϕ1,. . . ,ϕn] = and ϕ1 (and . . . ϕn)

and TrueF ϕ = ϕ
and ϕ TrueF = ϕ
and ϕ1 ϕ2 = And ϕ1 ϕ2

DNF

dnf :: α fm ⇒ α list list

dnf TrueF = [[]]
dnf FalseF = []
dnf (Atom ϕ) = [[ϕ]]
dnf (Or ϕ1 ϕ2) = dnf ϕ1 @ dnf ϕ2

dnf (And ϕ1 ϕ2) =
[d1 @ d2. d1 ← dnf ϕ1, d2 ← dnf ϕ2]

Assumes negation normal form!

More normal forms

in-nnf :: α fm ⇒ bool
“Does not contain Neg”

Note: 6≤ >

qfree :: α fm ⇒ bool
“Does not contain ExQ”

Atoms

• More than a type parameter α.

• Atoms come with an interpretation, a negation
etc.

• Functions on atoms are parameters of the
generic development.

• Parameters form a named context
(Isabelle: locale)

• Parameters can be instantiated later on

Locale ATOM

Parameters:

Ia :: α ⇒ β list ⇒ bool
aneg :: α ⇒ α fm
adepends :: α ⇒ bool “Depends on x0?”
adecr :: α ⇒ α “xi+1 7→ xi”

Interpretation

I :: α fm ⇒ β list ⇒ bool

I (Atom a) xs = Ia a xs
I (And ϕ1 ϕ2) xs = (I ϕ1 xs ∧ I ϕ2 xs)
I (ExQ ϕ) xs = (∃ x. I ϕ (x·xs))
. . .

Example:

I (ExQ (And (Atom a1) (Atom a2))) xs =
(∃ x. Ia a1 (x·xs) ∧ Ia a2 (x·xs))

Assumptions

Locale ATOM has assumptions:

I (aneg a) xs = (¬ Ia a xs)
in-nnf (aneg a)
. . .

Must be discharged when locale is instantiated

NNF

nnf :: α fm ⇒ α fm

nnf (And ϕ1 ϕ2) = And (nnf ϕ1) (nnf ϕ2)
nnf (Neg (Atom a)) = aneg a
nnf (Neg (And ϕ1 ϕ2)) =

Or (nnf (Neg ϕ1)) (nnf (Neg ϕ2))
nnf (Neg (Neg ϕ)) = nnf ϕ
. . .
Lemma I (nnf ϕ) xs = I ϕ xs

1 Logical Framework
Logic
Quantifier Elimination

2 Dense Linear Orders

3 Linear Real Arithmetic

4 Presburger Arithmetic

5 Beyond

Lifting quantifier elimination

If you can eliminate one of them,
you can eliminate them all!

Given qe :: α fm ⇒ α fm
such that I (qe ϕ) = I (ExQ ϕ)
if qfree ϕ

Not qe (ExQ ϕ), just qe ϕ, ExQ and 0 implicit

Apply qe bottom up:

ExQ ϕ ExQ ψ ψ ′

QE via DNF
informally

Put into DNF first:

(∃x .φ) = (∃x .
∨

i

∧
j aij) = (

∨
i ∃x .

∧
j aij)

Apply qe to conjunction of atoms
all of which depend on x :

= (
∨
i

Ai ∧ (∃x . Bi(x)))

QE via DNF
formally

lift-dnf-qe :: (α list ⇒ α fm) ⇒ α fm ⇒ α fm

lift-dnf-qe qe (And ϕ1 ϕ2) =
and (lift-dnf-qe qe ϕ1) (lift-dnf-qe qe ϕ2)

lift-dnf-qe qe (ExQ ϕ) =
(let djs = dnf (nnf (lift-dnf-qe qe ϕ))
in list-disj (map (qelim qe) djs))

qelim qe as =
(let qf = qe [a ← as. adepends a];

indep = [Atom(adecr a). a← as, ¬ adepends a]
in and qf (list-conj indep))

Correctness

Theorem If qe eliminates one existential (while
preserving the interpretation), then lift-dnf-qe qe
eliminates all quantifiers (while preserving the
interpretation).

Complexity

Conversion to DNF may (unavoidably!) cause
exponential blowup

Problematic case: quantifier alternation:

∀∃
∨ ∧

= ∀
∨
∃

∧
= ∀

∨ ∧
=

¬∃¬
∨ ∧

= ¬∃
∧ ∨

= ¬∃
∨ ∧

Conversion to NNF is linear

QE via NNF

lift-nnf-qe :: (α fm ⇒ α fm) ⇒ α fm ⇒ α fm

lift-nnf-qe qe (ExQ ϕ) = qe (nnf (lift-nnf-qe qe ϕ))

. . .

More efficient, but trickier for qe

1 Logical Framework

2 Dense Linear Orders
Logic
Reflection
Certificates

3 Linear Real Arithmetic

4 Presburger Arithmetic

5 Beyond

1 Logical Framework

2 Dense Linear Orders
Logic
Reflection
Certificates

3 Linear Real Arithmetic

4 Presburger Arithmetic

5 Beyond

Dense Linear Orders
without endpoints

Atoms: x < y

Axioms:

Dense: x < z =⇒ ∃ y. x < y < z
No endpoints: ∃ x z. x < y < z

Langford [1927] developed what has
come to be known as the method of
elimination of quantifiers to solve the
decision problem for the first order theory
of dense linear orders. However, despite
this very important technical contribution,
Langford remained badly confused.

Martin Davis. American Logic in the 1920s.
JSL 1995.

Quantifier elimination
informally

Example:

(∃y . x < y ∧ y < z) = (x < z)

In general:

∃x . (
∧
i

li < x) ∧ (
∧
j

x < uj)

= (max
i

li < min
j

uj) = (
∧
ij

li < uj)

Atoms
formally

datatype atom = Less nat nat

Less m n ≈ xm < xn

Interpretation: Id l o (Less i j) xs = (xs[i] < xs[j])

Quantifier elimination
formally

Input: list (conjunction) of atoms, all containing 0

qe-less as =
(if Less 0 0 ∈ as then FalseF else
let lbs = [m−1. Less m 0 ← as];

ubs = [n−1. Less 0 n ← as];
pairs = [Atom(Less m n). m ← lbs, n ← ubs]

in list-conj pairs)

Adding “=”

(∃x . x = t ∧ φ) = φ[t/x] if x /∈ t

qe-less-eq as =
(let bs = filter (λa. a 6= Eq 0 0) as in
case filter is-Eq bs of [] ⇒ qe-less bs
| Eq i j · eqs ⇒
(let ineqs = filter (not ◦ is-Eq) bs;

v = (if i=0 then j else i)
cs = map (Atom ◦ subst v) (eqs @ ineqs)

in list-conj cs))

Instantiating locales

functions and thms
↓

Locale
↓

functions and thms

Intstantiating locale ATOM

DLO: ATOM[α 7→ atom, Ia 7→ Id l o, . . .]

Prove: . . . =⇒ DLO.I (qe-less-eq as) xs =
(∃ x. ∀ a ∈ as. Id l o a (x·xs))

Define: dlo-qe = DLO.lift-dnf-qe qe-less-eq

Obtain: DLO.I (dlo-qe ϕ) xs = DLO.I ϕ xs

1 Logical Framework

2 Dense Linear Orders
Logic
Reflection
Certificates

3 Linear Real Arithmetic

4 Presburger Arithmetic

5 Beyond

Reflection in action
∃ x. s < x ∧ x < t

by def of DLO.I (reversed)

= DLO.I (ExQ (And (Less 1 0) (Less 0 2))) [s,t]

by DLO.I (dlo-qe ϕ) xs = DLO.I ϕ xs

= DLO.I (dlo-qe (ExQ . . .)) [s,t]

by evaluation of dlo-qe

= DLO.I (Less 0 1) [s,t]

by def of DLO.I

= s < t

Reflection abstractly
form

by def of I (reversed)

= I rep [subterms]

by correctness of simp

= I (simp(rep)) [subterms]

by evaluation of simp

= I rep’ [subterms]

by def of I

= form’

Evaluation

• by proof (e.g. rewriting) — slow
• by proof-free execution — fast

• compilation to abstract machine code (Coq)
• compilation to ML (Isabelle) or Lisp (ACL2)

Demo

Worst case complexity

Algorithm Exponential blowup
for every quantifier alternation
=⇒ non-elementary

Decision problem PSPACE complete
(Kozen, Theory of Computation, 2006)

Quantifier elimination TIME(2p(n)) (?)

1 Logical Framework

2 Dense Linear Orders
Logic
Reflection
Certificates

3 Linear Real Arithmetic

4 Presburger Arithmetic

5 Beyond

Certificates for DPs

1 Unverified computation of certificate C for
formula φ (external, fast)

2 Verified check that C indeed proves φ (internal)

Works well for problems in NP and more

Example Propositional unsatisfiability

1 Find refutation proof (SAT solver)

2 Check refutation proof (TP)

Certificates for DLO
The idea

Certificate for unsatisfiability of
∧

i xl(i) < xr(i) =: φ

cycle xk < · · · < xk

Soundness and completeness: QE(∃x .φ) yields False
iff it constructs a cycle (x < x)

DP for unquantified formulae: To prove φ,
prove unsatisfiability of each disjunct of DNF(¬φ)

Certificates for DLO
Formally

Certificate checkers:

cycle [a1, . . . , am] [i1, . . . , in]
iff [ai1, . . . , ain] forms a cycle.

cyclic-dnf [as1,. . . ,asn]
iff ∃ is1,. . . ,isn. cycle as1 is1 ∧ . . . ∧ cycle asn isn

Correctness theorem:
qfree ϕ ∧ cyclic-dnf (dnf(DLO.nnf ϕ)) =⇒
¬ DLO.I ϕ xs

Demo

1 Logical Framework

2 Dense Linear Orders

3 Linear Real Arithmetic
Fourier-Motzkin
Ferrante and Rackoff
Quantifier free case

4 Presburger Arithmetic

5 Beyond

Works for . . .

• R
• Q
• Ordered, divisible, torsion free Abelian groups

(divisible & torsion free =
has division by positive integers)

1 Logical Framework

2 Dense Linear Orders

3 Linear Real Arithmetic
Fourier-Motzkin
Ferrante and Rackoff
Quantifier free case

4 Presburger Arithmetic

5 Beyond

Linear real arithmetic

Atoms: s < t (and s = t)

where s and t are expressions involving

• constants

• variables

• addition

• multiplication with constants

Eg: 2.7(x + 0.5y) < x + 3.1

Normal form

r < c0x0 + · · ·+ cnxn

where r , c0, . . . , cn ∈ R

Fourier-Motzkin elimination
by example

∃x . 3 < 2x + s ∧ 5 < −3x + t
= ∃x . 9 < 6x + 3s ∧ 10 < −6x + 2t
= 19 < 3s + 2t

Lower/upper bound view:
∃x . 3 < 2x + s ∧ 5 < −3x + t

= ∃x . 9− 3s < 6x ∧ 6x < 2t − 10
= 9− 3s < 2t − 10

Combine +/− atoms (lower/upper bounds)
by unifying leading coefficients

Fourier-Motzkin elimination
in general

∃x . (
∧
i

ri < cix + ti) ∧ (
∧
j

r ′j < c ′jx + t ′j)

where ci > 0, c ′j < 0

= max
i

((ri − ti)/ci) < min
j

((r ′j − t ′j)/c
′
j)

=
∧
ij

c ′j ri − ci r
′
j < c ′j ti − cit

′
j

Formalization

Atoms: Less r [c0,. . . ,cn]

Note:

• Variables are indexed by de Bruijn notation

• Conversion into normal form omitted

Lists as vectors

Addition and subtraction
[c0, . . .]+[d0, . . .] = [c0+d0, . . .]
[c0, . . .]−[d0, . . .] = [c0−d0, . . .]

Multiplication with scalar
r ∗s [c0, . . .] = [r∗c0, . . .]

Inner product
[c0, . . .] � [d0, . . .] = c0∗d0 + . . .

Interpreting atoms

IR :: atom ⇒ real list ⇒ bool

IR (Less r cs) xs = (r < cs � xs)

Instantiating ATOM:
R: ATOM[Ia 7→ IR , . . .]

Fourier-Motzkin elimination
formally

qe-less :: atom list ⇒ atom fm

qe-less as =
(let lbs = [(r,c,cs). Less r (c·cs) ← as, c>0];

ubs = [(r,c,cs). Less r (c·cs) ← as, c<0];
pairs = [Atom(combine p q). p←lbs, q←ubs]

in list-conj pairs)

combine (r1, c1, cs1) (r2, c2, cs2) =
Less (c1 ∗ r2 − c2 ∗ r1) (c1 ∗s cs2 − c2 ∗s cs1)

Adding Eq r cs

As for DLO:

qe-less-eq as =
(case filter is-Eq as of [] ⇒ qe-less as
| Eq r (c·cs) · eqs ⇒ . . . subst . . .

Correctness

As for DLO:

Prove: . . . =⇒ R.I (qe-less-eq as) xs =
(∃ x.∀ a ∈ as. IR a (x·xs))

Define: lin-qe = R.lift-dnf-qe qe-less-eq

Obtain: R.I (lin-qe ϕ) xs = R.I ϕ xs

1 Logical Framework

2 Dense Linear Orders

3 Linear Real Arithmetic
Fourier-Motzkin
Ferrante and Rackoff
Quantifier free case

4 Presburger Arithmetic

5 Beyond

Prolegomena

• For simplicity: only <

• View all atoms involving x as l < x or x < u
(x not in l or u)

Q-free P(x) in NNF can be put into DNF:
∨

i

∧
j aij

=⇒ P(x) is a finite union of finite intersections of
intervals (l ,+∞) and (−∞, u)
=⇒ For each valuation of the other variables,
{x | P(x)} looks like this:

-�))((()() (

Every interval has upper/lower bound in P(x)
Problem: ls and us are symbolic

Ferrante and Rackoff
idea

• Put formula into NNF P(x) — no DNF!
• If P(x) for some x , then either

• there is no lower bound (P(−∞)), or
• there is no upper bound (P(+∞)), or
• l < x < u for some l and u in P(x)

such that P(y) for any l < y < u
=⇒ P((l + u)/2)

Ferrante and Rackoff
informal

(∃x .P(x)) = (P(−∞) ∨ P(+∞) ∨
∨

l ,u∈P

P((l + u)/2))

P(−∞) replace l < x by False, x < u by True

P(+∞) replace l < x by True, x < u by False

Example
P(x) = x < y ∧ y < z =⇒ P(−∞) = y < z

P(+∞) = False

Ferrante and Rackoff
optimized

Consider three sets of terms:

lower bounds l in l < x

upper bounds u in x < u

equalities t in x = t

Ferrante and Rackoff
formalized

fr ϕ =
(let as = atoms ϕ;

lbs = lbounds as; ubs = ubounds as;
bet = [subst (between p q) ϕ . p←lbs, q←ubs];
eqs = [subst p ϕ . p ← ebounds as]

in list-disj (inf− ϕ · inf+ ϕ · bet @ eqs))

fr-qe = R.lift-nnf-qe fr

R.I (fr-qe ϕ) xs = R.I ϕ xs

Worst case complexity
of algorithms

Fourier-Motzkin Exponential blowup
for every quantifier alternation
=⇒ non-elementary

Ferrante&Rackoff Quadratic blowup
for every quantifier
=⇒ 22cn

Worst case complexity
of problems

Decision problem
NTIME(2cn) < DP(R,+) ≤ SPACE(2dn)
[Fischer & Rabin 74] [Ferrante & Rackoff 75]

Quantifier elimination
SPACE(22cn

) ≤ QE(R,+) ≤ SPACE(22cn

)
TIME(22cn

) ≤ QE(R,+) ≤ TIME(22cn

)
[Weisspfenning 88]

Certificates
general case

Corollary There are no short (≤ 2cn) certificates
(proofs) that can be checked quickly (in polynomial
time).

1 Logical Framework

2 Dense Linear Orders

3 Linear Real Arithmetic
Fourier-Motzkin
Ferrante and Rackoff
Quantifier free case

4 Presburger Arithmetic

5 Beyond

Applications

• Most theorem provers

• Proof Carrying Code

• Certified program analysis

Quantifier free case

Remember:
φ true iff each disjunct of DNF(¬φ) is unsatisfiable.

Lemma
∧n

i=1 ai is unsatisfiable iff
there is a non-negative linear combination∑n

i=1 ci ∗ ai that is contradictory (eg 0 ≤ −1).

Example ¬(2 ≤ x ∧ 1 ≤ −3x)
because 3(2 ≤ x) + (1 ≤ −3x) = (7 ≤ 0)

Certificate: (c1, . . . , cn)

Finding the certificate

• By Fourier-Motzkin elimination (⇒ Lemma)

• By Linear Programming:
∧n

i=1 ri ≤ csi � xs
 Ax ≥ b with b ∈ Rn,A ∈ Rn×m, x ∈ Rm

Lemma (Farkas)

• Either ∃x . Ax ≥ b

• or ∃y ≥ 0. ATy = 0 ∧ bTy < 0.

The system has no solution (x)
iff there is an unsatisfiability certificate (y).

Find certificate by (eg) Simplex

Complexity

Corollary Implications (
∧n

i=1 ai)→ a of linear
inequalitities can be proved in polynomial time.

Checking the certificate

check as y = ((∀ c ∈ y. c ≥ 0) ∧
(let b = map lhs as;

A = map rhs as;
by = b � y;
Ay = [cs � y. cs ← A];

in (∀ c ∈ Ay. c = 0) ∧
(by < 0 ∨ (∀ a ∈ as. is-Eq a) ∧ by 6= 0))

Lemma check as cs =⇒ ∃ a∈as. ¬ IR a xs

1 Logical Framework

2 Dense Linear Orders

3 Linear Real Arithmetic

4 Presburger Arithmetic
Presburger’s algorithm
Cooper’s algorithm
Complexity and more

5 Beyond

Atoms

i ≤ k0 ∗ x0 + · · · kn ∗ xn

d | i + k0 ∗ x0 + · · · kn ∗ xn

where d , i , kn, xn ∈ Z

1 Logical Framework

2 Dense Linear Orders

3 Linear Real Arithmetic

4 Presburger Arithmetic
Presburger’s algorithm
Cooper’s algorithm
Complexity and more

5 Beyond

Presburger’s algorithm
by example

∃i . l ≤ 2i ∧ 3i ≤ u

= ∃i . 3l ≤ 6i ≤ 2u

= ∃j . 3l ≤ j ≤ 2u ∧ 6|j

=
5∨

n=0

3l + n ≤ 2u ∧ 6|3l + n

Presburger’s algorithm(?)
informally

Input P(x): Conjunction of atoms (DNF!)

• Set all coefficients of x to the lcm of all
coefficients of x (by ∗) Q(m ∗ x)

• R(x) := Q(x) ∧m|x
• Let δ be the lcm of all divisors d (d | ∈ R(x))

• If x has lower bounds ls in R(x):
∨

t∈T R(t)
where T = {l + n | l ∈ ls ∧ 0 ≤ n < δ}

• Otherwise
∨

t∈T R ′(t) where
R ′ is R w/o ≤-atoms and T = {n | 0 ≤ n < δ}

Presburger’s algorithm
The core, formally

qe as =
(let d = lcms(map divisor as); ls = lbounds as in
if ls = []
then let ds = filter (not ◦ is-Le) as in

Disj [0..<d] (λn. [list-conj(map (subst n []) ds)])
else
Disj [0..<d] (λn.

Disj ls (λ(li,lks).
list-conj(map (subst (li+n) lks) as))))

Disj is f = list-disj (map f is)

1 Logical Framework

2 Dense Linear Orders

3 Linear Real Arithmetic

4 Presburger Arithmetic
Presburger’s algorithm
Cooper’s algorithm
Complexity and more

5 Beyond

Cooper’s algorithm

No DNF, just NNF

∃i .P(i)

(
d−1∨
n=0

P−∞(n)) ∨ (
d−1∨
n=0

∨
l

P(l + n))

[Cooper 72] [Ferrante & Rackoff 75]

1 Logical Framework

2 Dense Linear Orders

3 Linear Real Arithmetic

4 Presburger Arithmetic
Presburger’s algorithm
Cooper’s algorithm
Complexity and more

5 Beyond

Worst case complexity
of algorithms

Presburger Exponential blowup
for every quantifier alternation
=⇒ non-elementary

Cooper 222cn

[Oppen 73/78]

Worst case complexity
of problems

Decision problem
NTIME(22cn

) < DP(Z,+) ≤ SPACE(22dn

)
[Fischer & Rabin 74] [Ferrante & Rackoff 75]

Quantifier elimination
QE(Z,+) ≤ TIME(222cn

) [Oppen 78]

One exponential up from R

Quantifier free case

φ is unsatisfiable over Z
if it is unsatisfiable over R

Popular!

Alternatives

QE(Z,+) Omega [Pugh 92]

DP(Z,+) Finite automata
Solutions to Presburger formulae
(viewed as bitstrings) are regular sets

Reflection?

1 Logical Framework

2 Dense Linear Orders

3 Linear Real Arithmetic

4 Presburger Arithmetic

5 Beyond

Beyond

Mixed integer/real linear arithmetic (b c)
Algorithm: Weisspfenning
Reflection: Chaieb

(R,+, ∗)
Algorithms: Tarski, Cohen/Hörmander,
Collins (CAD)
LCF tactic: McLaughlin&Harrison
Reflection: Mahboubi (CAD, partial!)

The future is bright for reflection

But optimization is of the essence

	Logical Framework
	Logic
	Quantifier Elimination

	Dense Linear Orders
	Logic
	Reflection
	Certificates

	Linear Real Arithmetic
	Fourier-Motzkin
	Ferrante and Rackoff
	Quantifier free case

	Presburger Arithmetic
	Presburger's algorithm
	Cooper's algorithm
	Complexity and more

	Beyond

