Math Logic: Model Theory \& Computability
Lecture 14

Noustardurd models of arithmetic.
Def. Call $\underline{N}:=(\mathbb{N}, 0,5, t,:)$, as well as any other $\sigma_{\text {aken-stractire }}$ isomorphic to N, the standard model of PA or Th (N). Call a macle l M of PA nonstandard otherwise, i.e. it M is not isomorphic to N.

The weak upward Löwenheim-Skdem theater implies Ut PA ace even Mu (N), when $\underline{N}:=(\mathbb{N}, 0, S,+, \cdot)$, has unctbl models. In particular, these would be nonstandard.

Def. For a urdel $\underline{M} \vDash P A$, denote by $\mathbb{N}^{\underline{M}}:=\left\{\dot{n}^{\underline{M}}: n \in \mathbb{N}\right\}$ where tor each $n \in \mathbb{N}, \dot{n}:=\underbrace{S(S(S(\ldots S}_{n}(0))))$. We call the clearatio of $\mathbb{N}^{M} \operatorname{stan}^{\mathcal{S}}$ dare and hose in $M \backslash \mathbb{N}^{M}$ nonstandard. We call the set \mathbb{N}^{M} the standard part of M.

Obs. A model $M E P A$ is standard if and all if $M=\mathbb{N}^{M}$.
Plot \Leftrightarrow If $M=\mathbb{N}^{\underline{M}}$ then $h: \underset{n \rightarrow M}{\mathbb{N} \rightarrow \dot{n}^{M}}$ is an isomorphism, hence M is standard.
\Rightarrow Trivial.
Prop. There are countable nonstandard models of Th($\underline{N})$ (hence of PA). Proof. Lt $\sigma:=\sigma_{\text {arthim }} \cup\{c)$, where c is a constant symbol. Then the theog

$$
T:=\operatorname{Th}(\underline{N}) \vee\{c \neq \dot{n}: n \in \mathbb{N}\}
$$

is finitely satisfiable: indeed, if $T_{0} \subseteq T$ is finite, then $T_{0} \subseteq T h(N) \cup\{C \neq \dot{0}$, $c \neq \dot{1}, \ldots, c \neq \dot{u}\}$ hor sone $u \in \mathbb{N}$, hence, $\underline{N}^{\prime}:=\left\{\mathbb{N}, 0, s,+, \ldots c^{N^{\prime}}\right\}$ satisfies
T_{0}, where $L^{N^{\prime}}=n+1$. By compreftuen, T is satisfiable, hence has a constable model \tilde{M} b) the weak downward L-S. The reluct M of
 all $n \in \mathbb{N}, \quad$ i.e. $\quad c^{\tilde{M}} \in M \backslash \mathbb{N}^{\underline{M}}$.

What do ctbl nonstandard models of arihnactic look like? For a model $\underline{M} \neq P A$, clefince \leq on M by setting $a \leq b: \Leftrightarrow$ there is $m \in M$ such that $a+m=b$. We rill prove in homework had chen \underline{M} is nonstandard, this order is not a well-order, moreover, M looks like his:

the ocher on the \mathbb{Z}-lines is isomorphic to \mathbb{Q}.
the voider on the \mathbb{N}-line and \mathbb{D}-lines together is isomorphic to $\mathbb{C D} \geqslant 0$.

Nonaxiomatizable danes of stenctues.
We already saw examples of nonaxaiondizchle clones as a wansegnesce of the wank upward L.S theorem. We give a ore examples of differrent kinds here.

When is a class e of s-structines and its complement axiomatizable? For example, when e is finitely axionatizable, he ce by a single sentence φ, Keen the complement of e is also axiomatizatile $b s \rightarrow \varphi$. The following says hat this is the only possible scenario:

Thus. If a dam e of σ-straches aud its couplewent ane both axiomatizable, then they we tinitely axionatizable.
Pcoof. This is just a rephrasing of $Q 6$ of HWS. Incled, lefting T, T_{c} be axsomatitctions for τ anl e^{c}, we see $h a t ~ T$ and

$$
S:=\left\{\neg \varphi: \varphi \in T_{c}\right\}
$$

satisty the hypothesis of QG HWS.
Example. The dans of nou-bipatrite giaples is not axiountizable beane the clan of bipartite saphs is not tividels axiouatizable.

Clanses defined by intivite disjunctions.
Instead of a geneal statcounts, let's considue a couple at exauples.
Exauples. (a) The clam of all torsion groups, i.e. ycoups in hich eving element has tinite order, i.e. The groaps Ge satistying

$$
\forall g \in G \bigvee_{n \in \mathbb{N}} \underbrace{g \cdot y \cdot \ldots \cdot y}_{n}=1 \AA
$$

(b) The dom of wonnected ycuphs. Indaed a graph $\underline{G}:=(V, E)$ conacted iff

$$
\begin{aligned}
& \forall u, v \in V \bigvee_{n \in \mathbb{N}}(\underbrace{\left.\begin{array}{l}
\text { there is a path in } \underline{G} \\
\text { of locgth } n \text { botween } u \text { and }
\end{array}\right)}_{\left.\varphi_{n}(n, v)\right)} \text {, }\left(x_{i} E_{x_{i+1}}\right) \wedge \bigwedge_{i=0}^{n-1}\left(x_{i} \neq x_{i+1}\right)) .
\end{aligned}
$$

It is lett ay an exercixe the shor $h t(a)$ is not cxienctizuble, and we show (b).

Popp. The clan C of woucched sraphs is not axiomatizable.
Proof. Suppose the vantrary und let T be a $\sigma_{\text {grph }}$-theory axiouatizing e. We extend the signctire to $\sigma:=\sigma_{\text {grph }} \cup\{a, b\}$ shere a, b are constact syubols. let

$$
\tilde{T}:=T \vee\left\{d_{2 n}(a, b): n \in \mathbb{N}\right\} \text {, }
$$

where $d_{2 n}(x, y)=7 \bigvee_{i=0}^{n} \varphi_{i}(x, y)$, where $\varphi_{i}(x, y)$ are as in Exaple (b) above, so $\ell_{n}[x, s]$ wilds $i=0$ iff the graph cistacee between x al y is $>n$. Then F is tinitec satistiable: letting $T_{0} \subseteq \tilde{T}$ be a finite subet, we see the $T_{0} \subseteq T \cup\left\{d_{0}(a, b), d_{1}(a, b), \ldots, d_{n}(a, b)\right\}$ for sone $n \in \mathbb{N}$, so the graph
 satifies T_{0}.

By cocpation, \tilde{T} is satisticuble by a model \tilde{M}, whose rechat to the $\sigma_{y i p h}$-stecchre is discocrected bewe there is no path lectreen $a^{\tilde{\underline{\mu}}}$ and $b^{\underline{\underline{\mu}}}$
 a sraph satisties T ift it is caneched.

