

Power Generation with SAP

Michael Lutz, SAP May, 2018

CUSTOMER

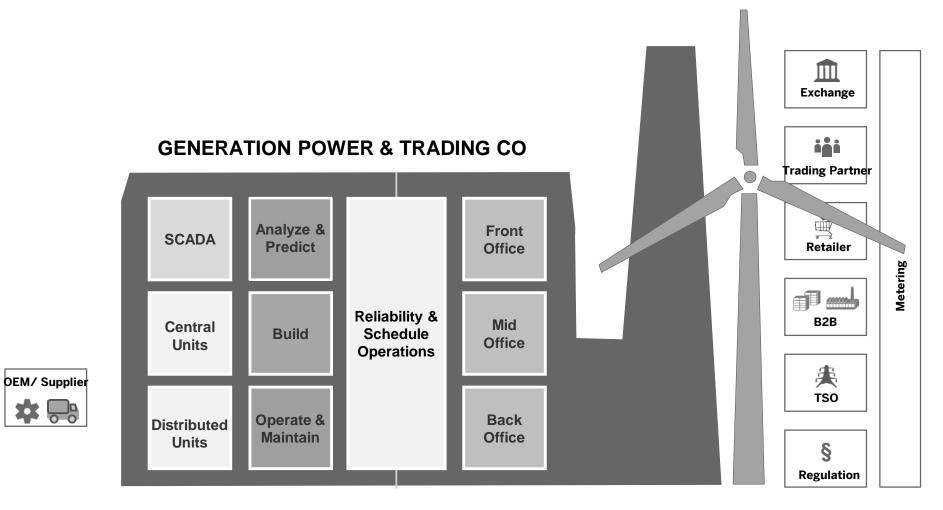
Legal Disclaimer

The information in this presentation is confidential and proprietary to SAP and may not be disclosed without the permission of SAP. This presentation is not subject to your license agreement or any other service or subscription agreement with SAP. SAP has no obligation to pursue any course of business outlined in this document or any related presentation, or to develop or release any functionality mentioned therein. This document, or any related presentation and SAP's strategy and possible future developments, products and or platforms directions and functionality are all subject to change and may be changed by SAP at any time for any reason without notice. The information in this document is not a commitment, promise or legal obligation to deliver any material, code or functionality. This document is provided without a warranty of any kind, either express or implied, including but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. This document is for informational purposes and may not be incorporated into a contract. SAP assumes no responsibility for errors or omissions in this document, except if such damages were caused by SAP's willful misconduct or gross negligence.

All forward-looking statements are subject to various risks and uncertainties that could cause actual results to differ materially from expectations. Readers are cautioned not to place undue reliance on these forward-looking statements, which speak only as of their dates, and they should not be relied upon in making purchasing decisions.

Agenda

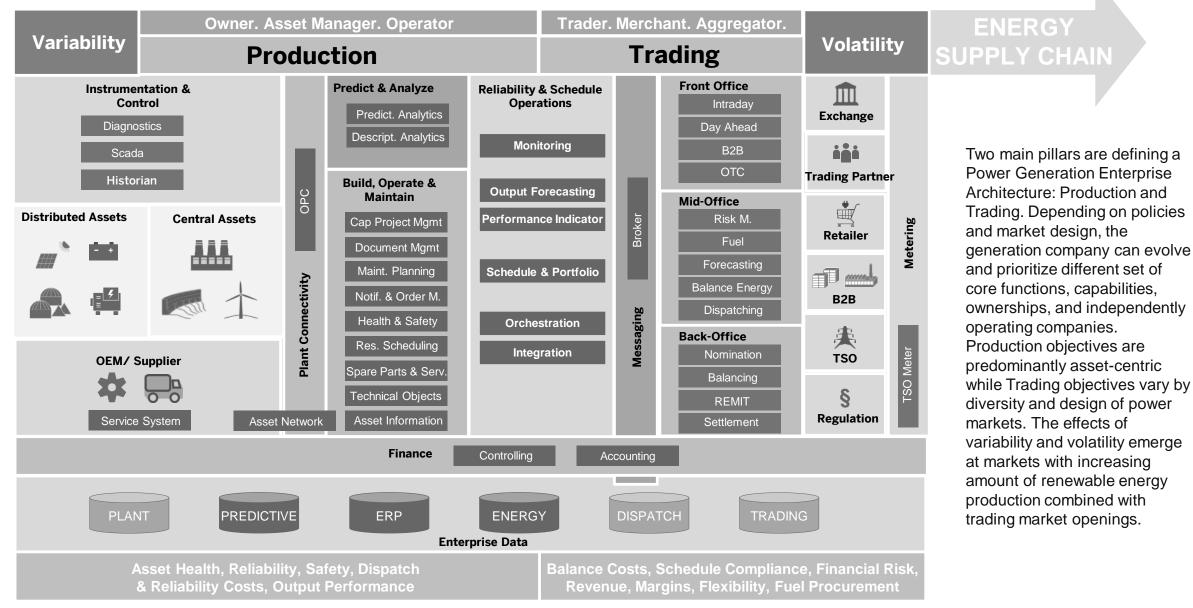
- (1) Market Observations in Power Generation
- (2) Evolution of Generation Roadmap
- (3) Excursions
 - a. Customer Project Examples
 - b. Integrated O&M Solution
 - c. Reliability Performance & Schedule Operation Prototype with Procom (Merchant & Industrial Energy Hub)
 - d. Pump Degradation Analysis & Prediction Prototype
 - e. Integrated Wind Turbine Event Cost Analysis

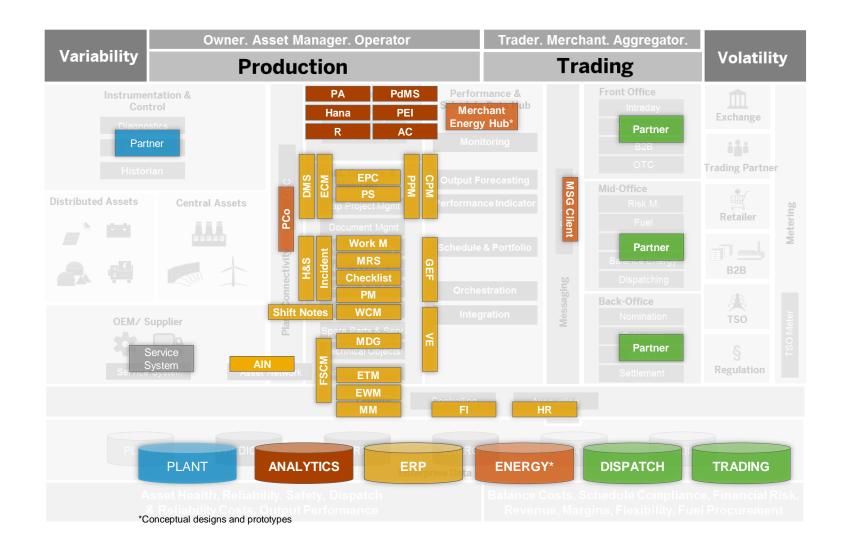

Market Observations

Change in Power Markets by Renewable Energy Additions

	Before	Now	Effects	Consequences
Spot Price	φ ↑ → t		No peak/off peak spread	Increasing non-economic operation of oil, gas, pumped-storage plants
Balance Price	φ ↑t	ľL, ľ	More balancing risk exposure	Continuous need for balancing plants Higher wear & tear of
	NH NH			conventional plants
Schedule	↑ _→ t		More variability	Call for Action
Spread	Y M M W G H → t		Contribution margin does not cover capex and fixed opex	Adapt portfolio strategy and operations more short-term
Missing Money	ω Demand Oil NG Coal Lignite Noclear GW RES	Demand Supply Marginal Plant	Reduced market clearing price	Adapt maintenance strategy Enter new decentralized energy business models

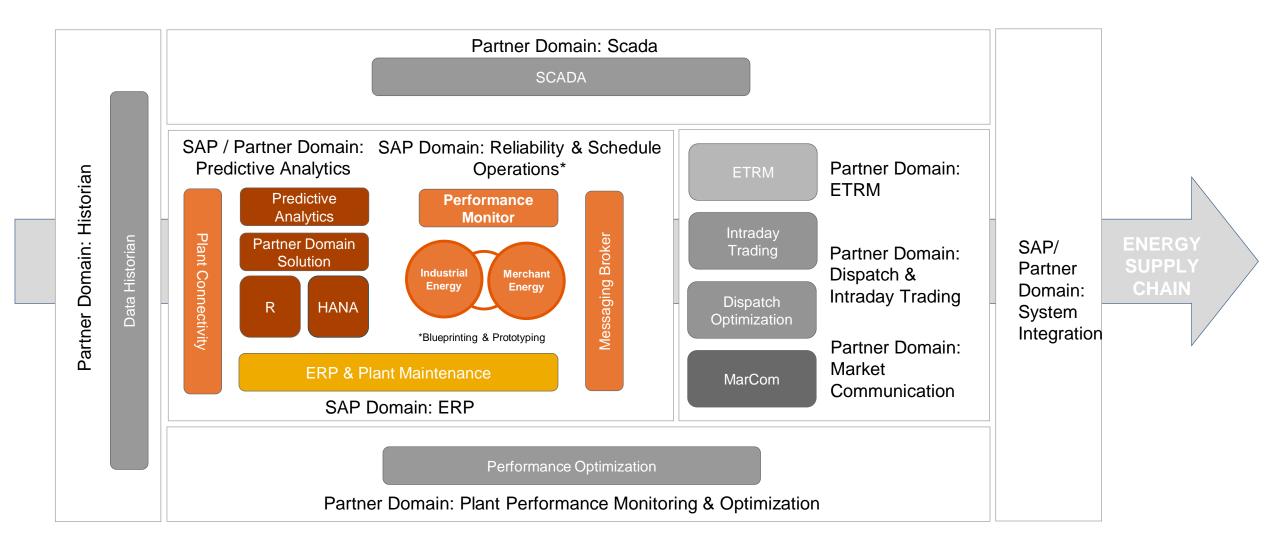
Evolution of Generation Roadmap


The Generation & Trading House

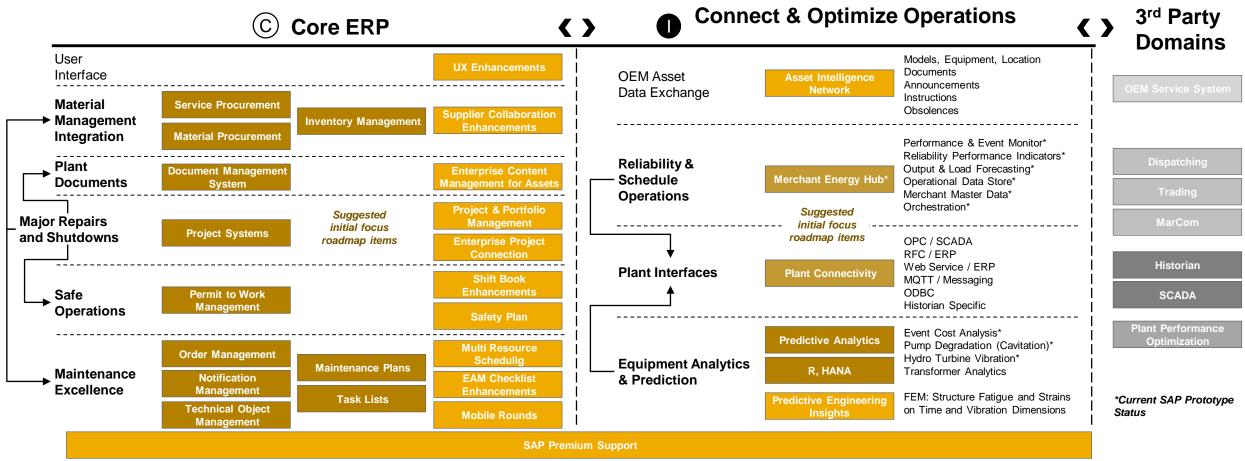

Owner. Asset Manager. Operator Trader.

Trader. Merchant. Aggregator

Power Generation Enterprise Architecture

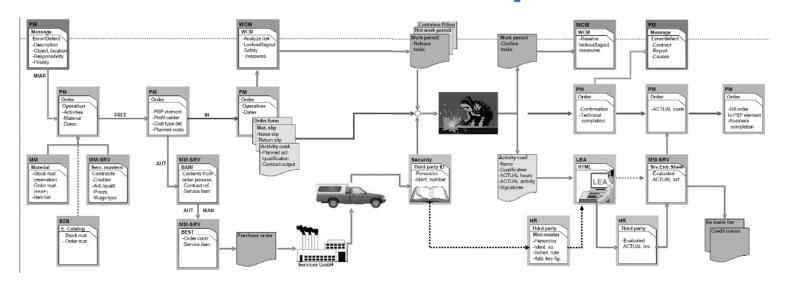


Solutions for Power Generation by SAP


- FI (Financials), MM (Material Management), HCM (Human Resources)
- PM (Plant Maintenance), WCM (Work Clearance Management), PS (Project Systems), DMS (Document Management System)
- MRS (Multi Resource Scheduling), Work Manager (Mobile Asset Management), Mobile Checklist (Mobile Inspections)
- CPM (Commercial Project Management), EPC (Enterprise Project Connection), PPM (Project & Portfolio Management)
- H&S, Incident (Health & Safety)
- GEF (Geospatial Enablement Framework)
- MDG (Master Data Governance)
- AIN (Asset Intelligence Network)
- PCo (Plant Connectivity), MSG (Messaging Infrastructure)
- ECM (Enterprise Content Management by OpenText)
- FSCM (Fuel Supply Chain Management), ETM (Equipment & Tool Management), EWM (Extended Warehouse Management)
- Merchant Energy Hub (prototyping real time commercial operations data hub)
- Hana, PA (Predictive Analytics), R, PdMS (Predictive Maintenance & Service), PEI (Predictive Engineering Insights), AC (Analytics Cloud)

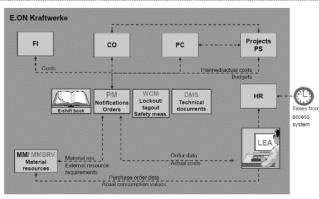
Domain Solution Ecosystem for Power Generation Companies

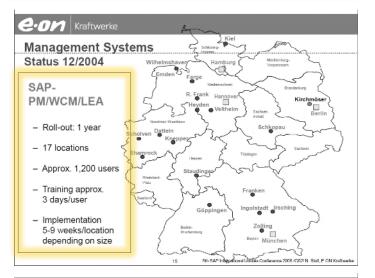
Generation Roadmap Scenario


We recommend a parallel evolution of a core EAM system as well as exploring operation optimization scenarios. The core EAM implementation may be driven by an **integrated shutdown management pilot** involving requirements of 5 initiatives: project system [Major Repairs and Shutdown], order-, notification-, technical object management, maintenance plans and task lists [Maintenance Excellence], permit to work [Safe Operations], material-, service procurement, inventory management [Material Management Integration], and document management system [Plant Documents]. Set-up would require 5 implementation project teams. Operation optimization scenarios may include prototyping of **integrated plant reliability performance indicators** [Reliability & Schedule Operations] as well testing a **pump degradation model** [Equipment Analytics & Prediction]. Both scenarios require the specification of **interfaces** [Plant Interfaces]. Set-up would require 2 PoC teams. Findings from designing, piloting, and prototyping initial focus roadmap items should lead to decisions on subsequent items including Enhancements/ Extensions for UX, Supplier Collaboration, Project Portfolio Management, Shift Book, Checklists, Mobile Rounds, Multi Resource Scheduling, as well as Reliability & Schedule Operation Hub, Equipment Prediction Models, and OEM Data Exchange. The process may discover also some yet unknown items.

Customer Project Examples

SAP EAM @ EON Thermal Generation (now Uniper), Germany

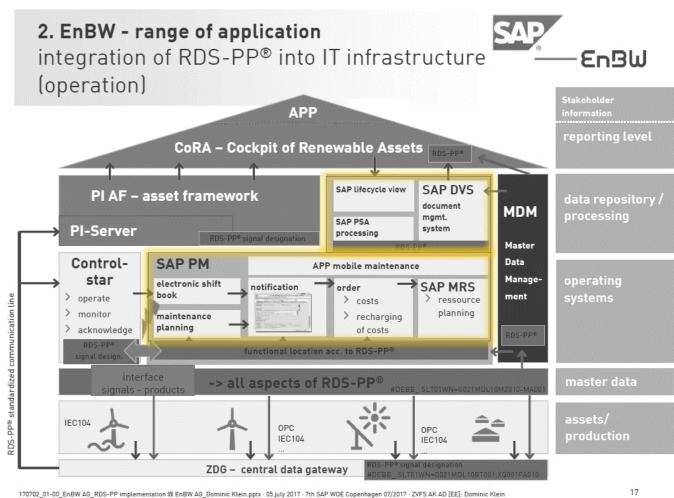

e.on uni


<u> </u>	<u>y</u> stem <u>H</u> i	lte												5AP	
Ø	2 4 8 0 0 0 1 2 3 12 12 12 12 12 12 12 12 12 12 12 12 12														
N	WCM: Vorgangsübersicht (Dispoliste)														
_															
3	AnwStatus			Kurztaxt Vorgang	Technischer Platz (Kopf)	FS	BE	HE	AS	Sonst	. DAE	AE zur	AE temp	Früh.Startdat.	Früh
				Wöchentliche Überprüfung nach WHG.	0340 0000TH60B001-APP									13.12.2004	10:4
	EING	75018743	0010	Sicherheitgeländer Kühlturm BI.3	0340 0330UC-SYS				0	0	1			13.12.2004	07:0
	EING	75022405	0010	Durchführung von Dreh-und Fräsarbeiten	0340 0110ZU01S203-ERB									06.12.2004	00:0
	EING		0020	Änderungsarbeiten GAVO Bläser	0340 0110ZU01S203-ERB									11.12.2004	00:0
	EING	76022699	0010	Sumpfpumpe austauschen,	0340 0330ZG21 D001-PVK	۰	۰		•	•	3			09.12.2004	07:0
	EING		0020	Sumpfpumpe Typ: KRT UK 100 - 350 / 304	0340 0330ZG21D001-PVK	٢				0				13.12.2004	07:0
	EING	75022941	0010	Kondensataufbereitung BI.4, Filter 4.1	0340 0440UB-SYS									10.12.2004	07:0
		75022981	0010	Doppelpendelschleuse 1.12 defekt	0340 0111NT70S202-TEG									10.12.2004	07:1
	EING	75023003	0010	Wechseln von einem kompl.Verschleißfeils	0340 0112NU12Q001-ARN									11.12.2004	00:0
	EING	75023008	0010	Wechseln von einem kompl.Verschleißteils	0340 0111NU120001-ARN									11.12.2004	00:0
		75023053	0010	Trichter unter Schleuse durchgestrahlt	0340 0111NT70S201-TEG									10.12.2004	12:4
	EING	75023182	0010	Schlammoumpe Flotäner 1: Pumpe sitzt fes	0340 0000UL12D003-LAE					0	1			13.12.2004	08:4
-	EINØ	75023203	0010	Waschwassereindüsung ohne Funktion.	0340 05HTT20-SYS					-				13.12.2004	08:0
-	EING			Kompensatoren Abschlämmpumpe tauschen	0340.0220ZE85D001-P\/k					٥	1			13.12.2004	13:0

2.01 Kraftwerke

SAP Architecture with PM/WCM/LEA

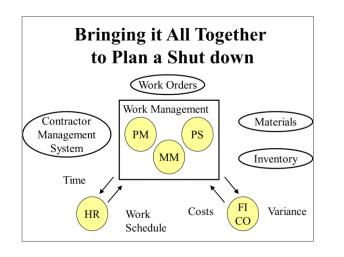
End-to-End EAM incl. Contractor integration 17 locations in 1 year


C-011 Kraftwerke

Advantages of Implementing SAP-PM/WCM/LEA

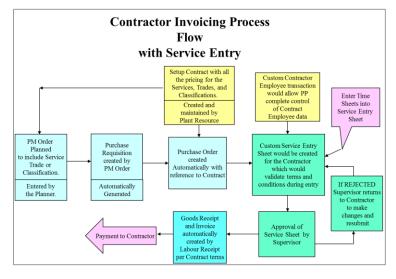
- No integration gaps → No duplication, no interfaces
- Integrated support for technical and business processes
 →Improvement in planning → Optimization of procurement
- · Automation of order processing and billing for services
- · Inclusion of third party companies in the process
- · High saftely levels in all power plants
- The implementation of SAP-PM/WCM/LEA for E.ON Kraftwerke enables consistent and continual support for both technical and commercial processes within integrated plant maintenance

SAP EAM @ EnBW Wind Unit Generation, Germany



Core Maintenance & Mobile Workforce Management on industry standard RDS-PP asset structure

Techn.Platz Strukturdarstellung: St	rukturliste
🕄 🖉 🏗 🖪 🔚 🎦 🗛 🖓 🔹 🖓	8
achn. Platz EEE	Gobig ab 07.11.2016
zzeichnung EnBW Erneuerbare Energien	
EEE	EnDN Erneverbare Energien
* # DEBB_	Deutschland, Berlin-Brandenburg
DEBBALZOIPG	Externe Netzinfrastruktur (ALZO1) MB-WN 🗗 🕏
DEBBALZOIWN	Alt Zeschdorf NB-WN av V
 DEBB_, CHR.03WB 	Christinendorf 3 ND-WN 🖉 🦉
· a DEBB_, GOROLEG	Externe Netsinfrastruktur (GORD1) ND-WN 🛷 😵
· JEBB GOROIWN	Görike NB-WN 🗗 📎
BEDSGOROIWN=G	Erzeugungsanlagen Görike MD-WOI 🔐 😽
DEBBGORO1NN-GO15	WEA 15 MB-NRI 🔐 🐯
DEBBGORDIWN-GOISAJA	MS-Energieverteilungssysteme 20 - 30kV MB-NN 💣 🕏
 DEBBGORD1WN-G015BFA 	N3-Mauptstronversorgungssysteme MB-WN 🧬 😵 Unwelinessavatene MB-WN 🛷 😵
DEBBOORDIWN-G015CKJ	
DEBSGORDIWN=G015MDA	
 DEBBGORDIWO-GOISMDK # DEBB .GORDIWO-GOISMDL 	
DEBBGORDIWN=G015MDX	benerate alarmente le la
 DEBBGORD1WN=G015MDY DEBDGORD1WN=G015MEA 	
 DEBDGORDIWN=SUISMEA DEBB .GORDIWN=GUISMSC 	
 BEBS_IGGRDIWN=GDISNSC BEBS_GORDIWN=GDISNSC 	
 DEBS_GORDIWN=GUISMSE DEBS_GORDIWN=GUISMSS 	Unvichtersystem MB-WN 💣 😽 Kompensationssystem MB-WN 🌌 😵
DEBS_CORDINN=G015NSS	Maschinentransformatorsystem MB-NN av
DEBSCORDIWN=GDISMUP	Maschineneinhausung MD-WN av
 DEBDGORDIWN-GOISMOD DEBB .GORDIWN-GOISMOD 	Femüllerwachungssysteme MB-WM ar V
DEBS_GORDIWN=GOISHIN	Tunsysteme MS-WK av
 DEBDGORDIWG=G0150HD DEBD .GORDIWG=G015WBA 	Arbeiteschutzsysteme MB-NN av V
 M DEBS_GORDIMN-GDISKFS 	Potentialausgleichs- / Erdungssysteme MB-NN # 5
DEBS_GORDIWN-GOISKPC	Blitzschutzaysteme MB-WW ar V
- A DEBB .GORDIWN-GDISKIC	Feuerlöschaystene MB-NN de V
* PDESS . GORDINN=GOISXGMI	
· PDEBB .GOROIWN-G015X	
* @ DEBB .GORO1MN-GO	
· E 40000407	Feuerlöscher
	DDW execution machine CAP DM [EE] technical location


screen dump: EnBW operating machine SAP PM [EE] - technical location

Shutdown Planning with SAP @ SASK Power, Canada

- 80% of our Overhaul work is generated from Maintenance Plans
- Work Orders are scheduled to be called to coincide with plants shutdown interval
 - during the first week of the year at Poplar River;
 - to match 18 month interval at Boundary Dam
- Shutdown Revisions are created and Work Orders are assigned to the appropriate Revision

- 2005 December
 - BDPS Sends a large contingent to a hear the results of the Poplar River pilot - most were convinced, some still skeptical
- 2006 January
 - BD Management Team commits to using PS for scheduling
 - BDPS Plant Manager establishes a 9 person project team to develop job plans and schedules for major overhauls on two identical 150 MW units
 - BD 4 Fall of '06
 - BD 3 Spring '07
 - OBJECTIVE: Deliver a completed shutdown plan and schedule to the Production Supervisor 3 months in advance of the unit coming off-line
- Plant Manager makes a strong statement of commitment
- 2006 February Team pulled together
 - Planners, Coordinators and Supervisors. Trades people are moved up to fill the roles - training and development is a major spin-off benefit.
 - 9 full time team members
 - 6 people support the team while continue there regular duties
 - Central Process Team provides support and training
- 2006 March Project begins
 - Process team is now in demand here and at three other sites who also liked what they saw on December 13
- PM/PS Integration Project (IT Initiatve) is launched in parallel a race to keep pace with plant work
- Check lists developed
- What do you do on every shutdown?
- What do you do every 3yrs, 5yrs, 7yrs, etc
- Existing work orders are updated
 - Operations as detailed as possible reference written job plans if applicable
 - Job Plans Doc linked to equipment or WO
 - Materials planned (BOMs created)
 - Designate as OH, MO or xY (Overhaul, Major Overhaul or every x Years.
- Sort fields used to create calls in the future

SAP EAM @ Macquarie, Australia

Where is Macquarie Generation?

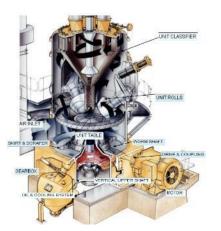
Bayswaler Power Station
Commenced operation in 1985
4 x 660MW units

Liddell Power Station

Commenced operation in 1971

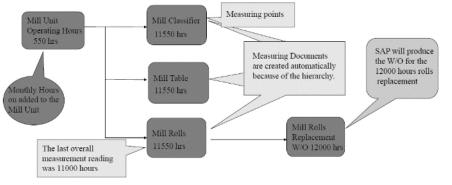
4 x 500MW units

The Key Changes when using SAP


- The operating hours no longer need to be monitored manually.
- Work orders and scheduled calls have to be monitored.
- The hours can be reported and will show operating trends.
- The monthly hours will be added to a collective entry sheet.

Counter-Based Maintenance at Coal Mills. Automation thru asset structure. Reporting on Activity Codes.

Functional Locations updated


• The revised Functional Location structure allowed for improved visibility and consistency.

200	incy.	
	PunctLocation L.2.PFMILS_ Description 26 PF MILL	
	contraction 20 PP Hite	
	L.2.PFMIL6_	26 PF MILL
	OIL.2.PFNILGFDR- OIL.2.PFNILGDNP-	26 MILL COAL FEEDER 26 MILL DAMPERS
	- C L.2.PFMILGMIL-	26 MILL UNIT
	L.2.PF- MIL6MILCLASSIF	
	L.2.PFMILGMILROLLS	
	L.2.PF-MILG_MIL-TABLE	
	L.2. PF- MILG_MIL- SCRAPEF	
	L.2.PF-MILG_MIL-VERTSHA	
	L L 2 PF- MILG_MIL- DRIVECO	
	L.2.PF- MILG_MIL- GEARBON	
	L.2.PF- MILG MIL- MOTOR	
	L.2.PF— MILG_MIL—.OILCOOL	
	L.2.PFMILGMILVANEWHE	EEL 26 MILL UNIT VANE VHEELS
	D L 2 PF- MILG INST	26 MILL INSTRUMENTATION
		LER 26 MILL UNIT DIL CODLER SYSTEM ET 26 MILL UNIT KIN INLET,FLOOR & EXP JOI EEL 26 MILL UNIT VANE VHEELS 26 KILL PIPING 26 KILL PIPING

How SAP will piece it all together....

Use the scenario of a Rolls replacement @ 12000 hours

Reporting the Activities on Notifications – IW65

D	Display activities: List of Notifications										
C											
Г											
Ē	S	Τ.	. Notifetn	Defect Text	D	escription of functional location	1	Activity code text	Activity text		
T		MC	2 10133601	#2C mill, blocked PF burner corner 3/8.	2	D MILL PIPING		Repaired (Specify in text)	Cnr3horizontal pipe above Riffle,blocked		
		MC	2 10133601	#2C mill, blocked PF burner corner 3/8.			1	Inspection carried out	Line checked from nozzle to flap valve.		
T		MC	2 10133601	#2C mill, blocked PF burner corner 3/8.			1	Service (General work)	Cnr 3 Line cleared, no improvement.		
Ι				18" pipe bfore Corner 5&8 flapbox				Temporary Repair	Requires staging for full repair access.		
				18" pipe bfore Corner 5&8 flapbox			1	Repaired (Specify in text)			
T		MC	2 10004408	2# D Mill Hot air reg. damper	2	MILL HOT AIR DAMPER		Tested	Tested		
		MC	2 10134030	#2D mill, blocked PF burner corner 1/4.	2	D MILL PIPING	1	Service (General work)	Pipes hosed out burner to mill.		
				#2D mill, blocked PF burner corner 1/4.				Inspection carried out	Burners not fully blocked.		
Τ		MC	2 10132819	#2D mill, devcon repair transition chute	2	D MILL UNIT	1	Repaired (Specify in text)	Devcon repair to transition chute.		
		MC	2 10003999	Mill DP line leak	2	MILL INSTRUMENTATION	1	Repaired	Repaired		
				Mill DP line leak			1	Dirt/dust ingress	Dirb/dust ingress		
Τ		MC	2 10003999	Mill DP line leak			1	Leakage	Leakage		
		M	3 101 3 201 0	2F MILL COAL FEEDER 12000 HR ROUTI	2	MILL COAL FEEDER		Inspection carried out			
1				2F MILL COAL FEEDER 12000 HR ROUT					Repaires to coal OfL chute.		
1				2F MILL COAL FEEDER 12000 HR ROUTI				Service (General work)	General inspection by L Shift.		
Τ		MC	2 10132869	#2F mill, replace 12*seal rubber to pipe	2	MILL PF PIPING TO CORNER 1		Replaced (Specify in text)	PPW replaced seal on 24/6/08.		
T		MC	2 10133337	#2F mill, blocked PF burner corner 5/8.	2	MILL PIPING	1	Inspection carried out	Lines cleared to cnr 5/8,blocked nozzles		

Other reports IW30 - Notification Multi Level list & MCI5 - Object Damage analysis

SAP EAM @ CS Energy, Australia

Plant Maintenance Process

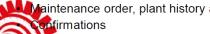
- Work Management
 - Corrective Maintenance
 - Preventive Maintenance
 - Overhaul / Outage / Opportunity Maintenance
 - Modification Management
 - Permit to Work and JSEA
- To support work management
 - Plant Register Predominately functional locations with few equipment
 - Bills of Materials linked to the functional locations in the plant register
 - Work Centres representing maintainers
 - Task Lists to represent standard Jobs
 - Preventive Plans to trigger preventive work orders cs energy

Interface between Plant Control system and SAP PM

Creating efficiencies through automation of functions including:

- · Monitoring of Hours run information and triggering routine maintenance
- · Creating PM notifications based on plant condition
- Displaying real-time and historical plant performance metrics in the portal
- Providing a Plant-centric reporting dimension to PM reporting delivered in the SAP portal

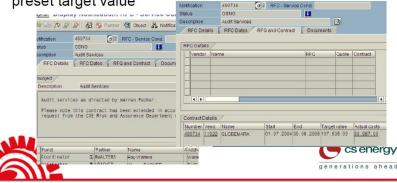
Kogan ck Site Layout


 Delivery of Maintenance Transactions via Mobile

- •Device details, "ruggedised", RF capable, Intrinsically safe
- Selected ECC6 transactions delivered on the device to increase the efficiency of the PM group

Functions include

- · Barcode functional location to ensure correct selection of plant item
- Notification, create/change

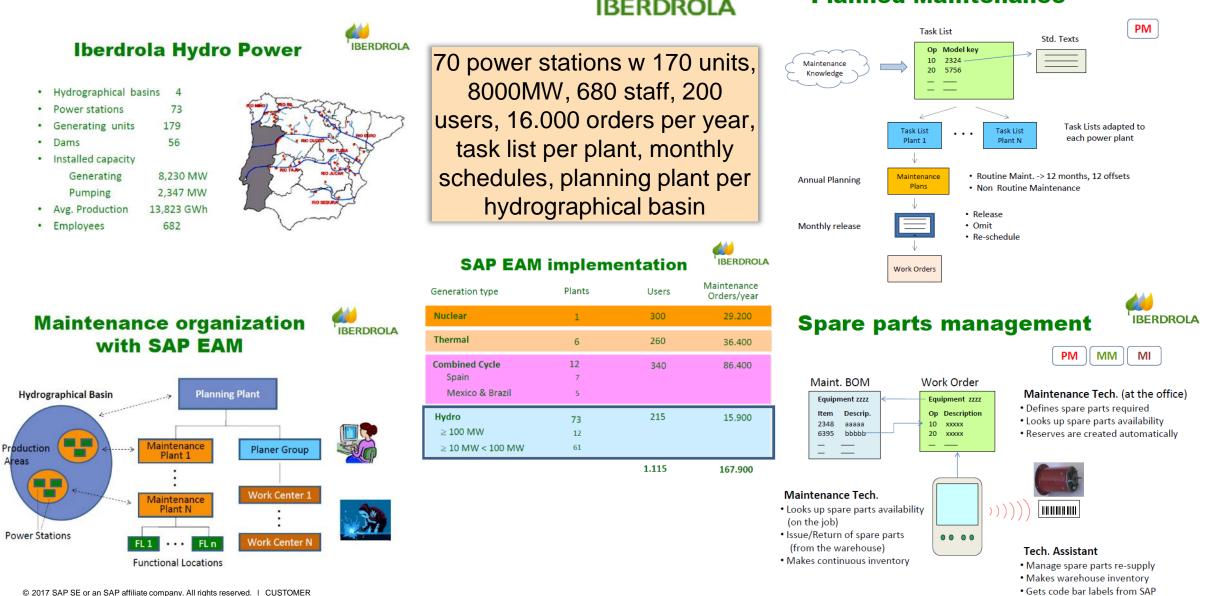


Maintenance order, plant history and shop papers

Materials Management cont'

 The CS Energy contract register was developed and implemented to hold information on a material or service contract or agreement and monitor the spend against a preset target value

SAP EAM @ Iberdrola, Spain/LA


eas

Planned Maintenance

and labels spare parts

SAP EAM @ West Burton CCGT EDF Energy, UK

eDF

Outage

Score ID

PAS55 Asset Management Standard at CCG. Core EAM. Scada interface.

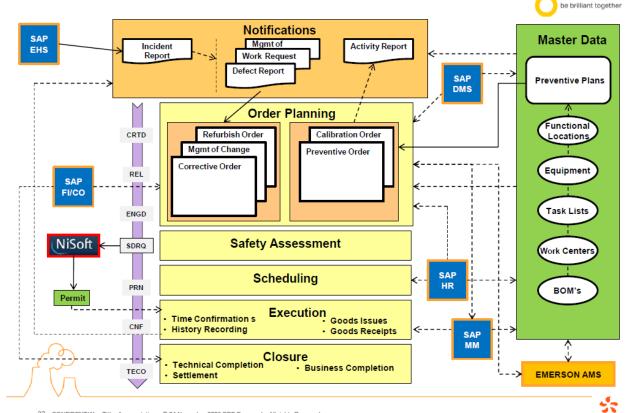
Combined Cycle Gas Turbine -West Burton B

EDF Energy West Burton CCGT

About West Burton A new 3 unit 1440MW Combined Cycle Gat Turbine (CCGT) plant on land next to the current West Burton coal fired power station

The power station is served by a 20 km gas pipeline connection to the National Grid National Transmission System (NTS) at Gravingham Lincolnshire.

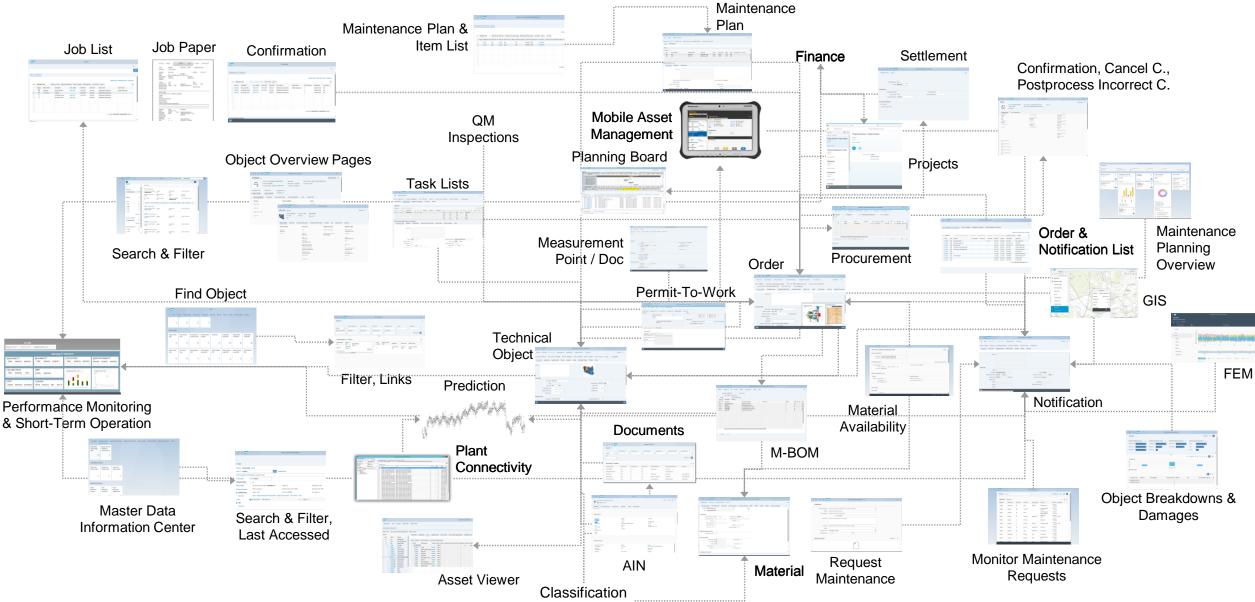
6 CONFIDENTIAL - Title of presentation @ 24 November 2000 EDF Energy plo. All rights Reserved



Asset Management Process Design & Construct Operate/Maintain the Asset Procurs ife cycle cr Design Operate Operate Monitor SAP Equipment Strategy Specific DEFECT quipment Proactive Plans Maintenance Corrective Ρľ Maintenance Asset are Parts Stud erformance Data 🛉 Outage Strategy EOUIPMEN CRITICALITY Trainin

Data Analysis to Determine Fliminate Determin Prioritise based Root Understand the Defect Learning System What and on Business across How Value defect Asset Health Review - to identify improvement and replacement projects

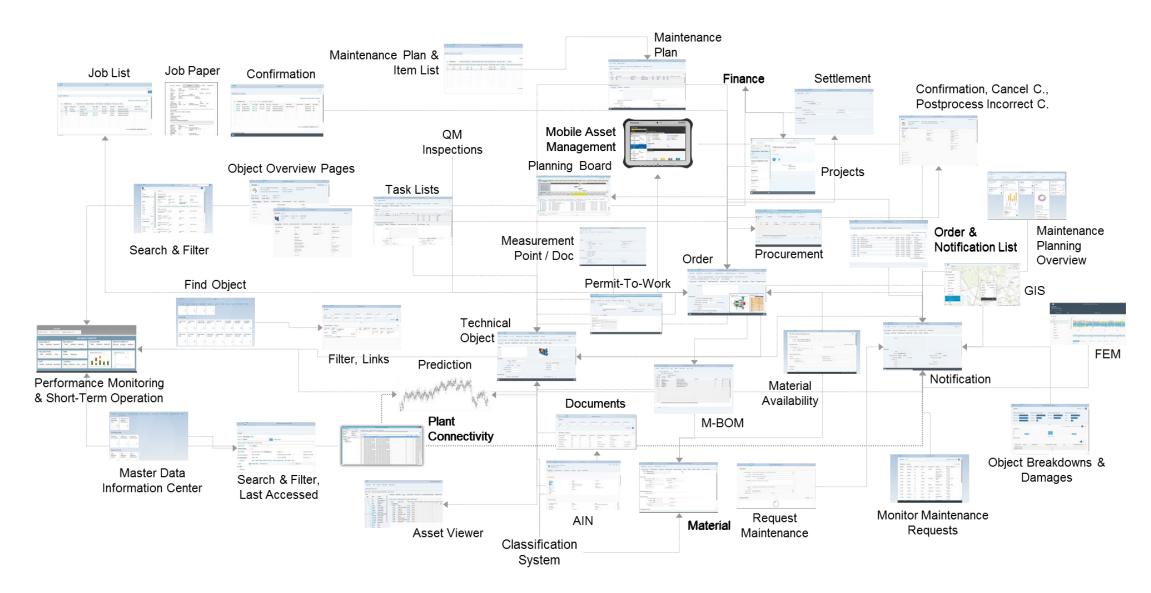
Maintenance Solution Overview


edf

Example of Shift Book Project Implementation at Thermal Power Plant

Schichtnotizen					• Schichtinfor	mationen Schichtprotokolle			
Create Shift Noti	fication				Work Center	Shif	t Start 14.09.2016 19	57:55	
					M Role Me	Name			
					Schichtleiter				
					Schichtmitarbeiter				
Shift Events	Ma <mark>Defects</mark> n	Shift Notes	Safety Cert	AW Permit	<mark>Aeasure</mark> Links M	eldungssuche			
reate Notif 🗈 Meldur	ig drucken 🛛 🕹 viewer							0	29 24
Notification	Description	Coo Code stext	Code Group	s <mark>Sys Stat</mark>	To KKS Platz	Tool Description	GDate or Gewinschios	Dox.	Langtout
11205093	Generaltest Schichter	Zustandsmeidung	Freischaltungen	MOFN	180-LI-AD PAE20 AA	Durchgangsventil (allg)	14.0 9.2016		
11206089	Nico ist schuld	Feuer aus	GuD -Betrieb	MOFN	180-LI-AD QKN14 AP	Pumpe VL RLT GEA 1 Verborgung	09.0 9.2016		09.09.2016
11206087	Birgers Test	Freischaltung	Freischaltungen	MOFN	180-LI-AD QKN14 AP	Pumpe VL RLT GEA 1 Versorgung	07.0 9.2016		07.09.2016
11205084	Speisewasserpumpe	Freischaltungsauftrag	Freischaltungen	MOFN	180-LI-AD QLB20	Speisewasser	04.0.9.2016		05.09.2016
11205082	Test 19 Uhr 48	Störung	GuD -Betrieb	MOFN	180-LI	Heizkraftwerk Lichterfelde - Neubau	05.0 9.2016		05.09.2016
11205079	Kühlwassertemp. sch	Störung	GuD -Betrieb	MOFN	180-LI-AD NDC10 AP	Kühlwasserpumpe 1	05.0 9.2016		05.09.2016
11205076	Test 15 Uhr 08	Probelauf	Freischaltungen	MOFN	180-LI	Heizkraftwerk Lichterfelde - Neubau	05:09:2016		
11205074	Test Melder	Feuer aus	GuD -Betrieb	MOFN	180-LI	Heizkraftwerk Lichterfelde - Neubau	05.0.9.2016		05.09.2018.
11206070	Dokumententest	Feuer aus	GuD -Betrieb	MOFN	180-LI-A2 CB	Funktionsgruppensteuerung, Teilste	05.09.2016	0	
11206065	Kühlwasser zu hoch	Aniageninformation	GuD -Betrieb	MOFN	180-LI-AB NDC10 AP	Kühiwasserpumpe 2	03.0 9.2016	0	03.09.2016
11205062	Test anlegen Dokum	Zustandsmeldung	Freischaltungen	MOFN	180-LI-AD GMA10 A	Rückschlagklappe.	02.0.9.2016	8	02.09.2016
11205060	Peter Sartig ist da	Störung	GuD -Betneb	MOFN	180-LI-AD GMA30 A	Flüssigkeitspumpe, allg.	02.0.9.2016		
11205055	Test 13 Ultr 31 Kowalski	Feuer aus	GuD -Betrieb	MOEN	180-LI-AD GHC10 AP	Flüssigkeitspumpe, allg.	02.0.9.2016		

Integrated O&M Solution


An Integrated O&M System for Power Generation Companies

System

Animated

An Integrated O&M System for Power Generation Companies

Core EAM with SAP

					SAFE	Y PLAN		REVISIONS		FUNCTIONAL LOCATION
Maj	or Repair	s an	d Shutd	owns	PEF	RMITS		TASK LISTS		EQUIPMENT
	PR	OJEC	т		SAFETY CI	ERTIFICATES	MAI	MAINTENANCE ITEM		MEASUREMENT POINT
		WBS			Shif	Shift Book		MAINTENANCE PLAN		
	NE	TWOF	ĸĸ		SHIFT	NOTES	N	AINTENANCE STRATEGY	Tools / QM	
Procurement	Integratio	on	НСМІ	Integration	SHIFT	REPORT				
AGREEN										
			CAPACI		Sea	arch & Informat	ion Cente	ers		
PURCHASE	ORDER		QUAL	LIFICATIONS		ORDERS			De	
SERVICE M	IASTER		RESPO	ONSIBILITIES		ORDERS			Do	cumentation
SERVICE ENT	RY SHEET					NOTIFICATION	IS			MENT INFO RECORD
Materials In	tegration	Or	g. & Fina	ance Integration		TECHNICAL OBJ	ECTS	ļ		ORIGINALS
COMPON	ENTS		CON	ITROLLING		Reports	6	l		OBJECT LINK
MAINT E	вом		BUSINE	ESS PARTNER		ORDER HISTO	RY		С	lassification
SERIAL	NO		L	OCATION			YSIS			CLASS
	MASTER								CF	IARACTERISTICS
MRF	2					SIDE PANEL CON	ITENT			
INVENT	ORY					PROJECT STRUC	TURE			
PRT	-									
						Core Ma	aintenanc	e Processes		

РМ, СВМ

Procure S&P

Inventory

Document.

Work Safety

Reg. Maint.

Repair

Revision

Inspection

Technical Object

Order

ORGANIZATION

OBJECTS COSTS DOCUMENTS

PERMITS

Confirmation

JOB LIST

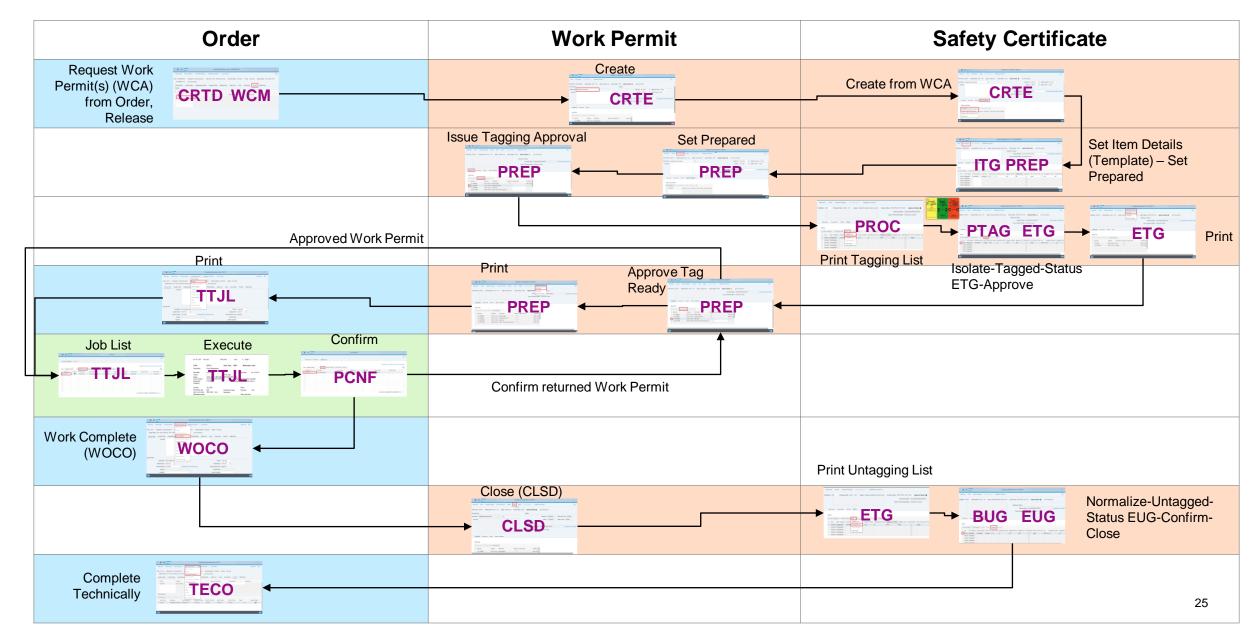
CONFIRMATION

Notification

ORGANIZATION MALFUNCTION TASK ACTIVITIES

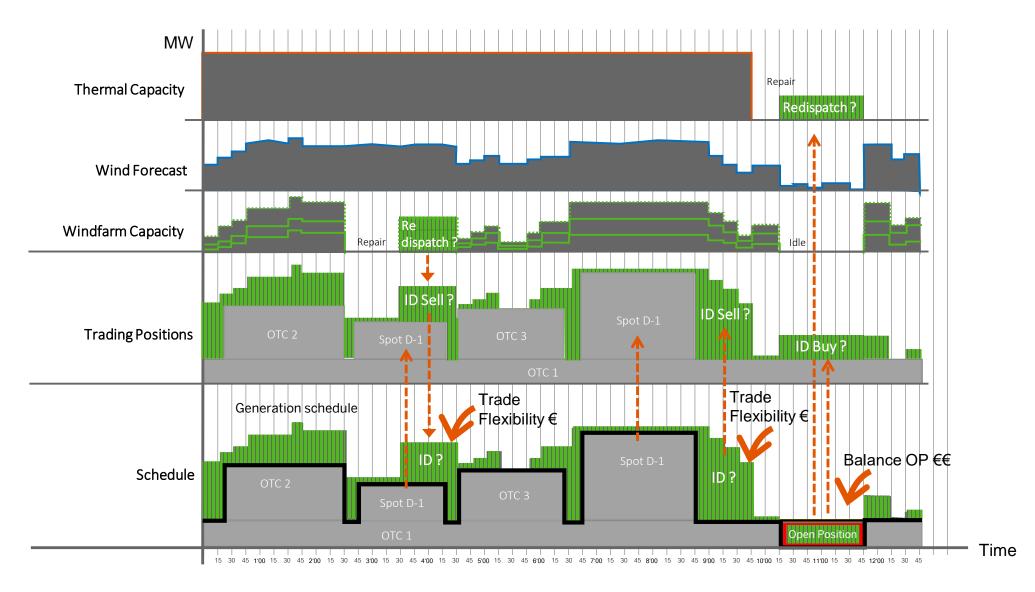
DOCUMENTS

Asset

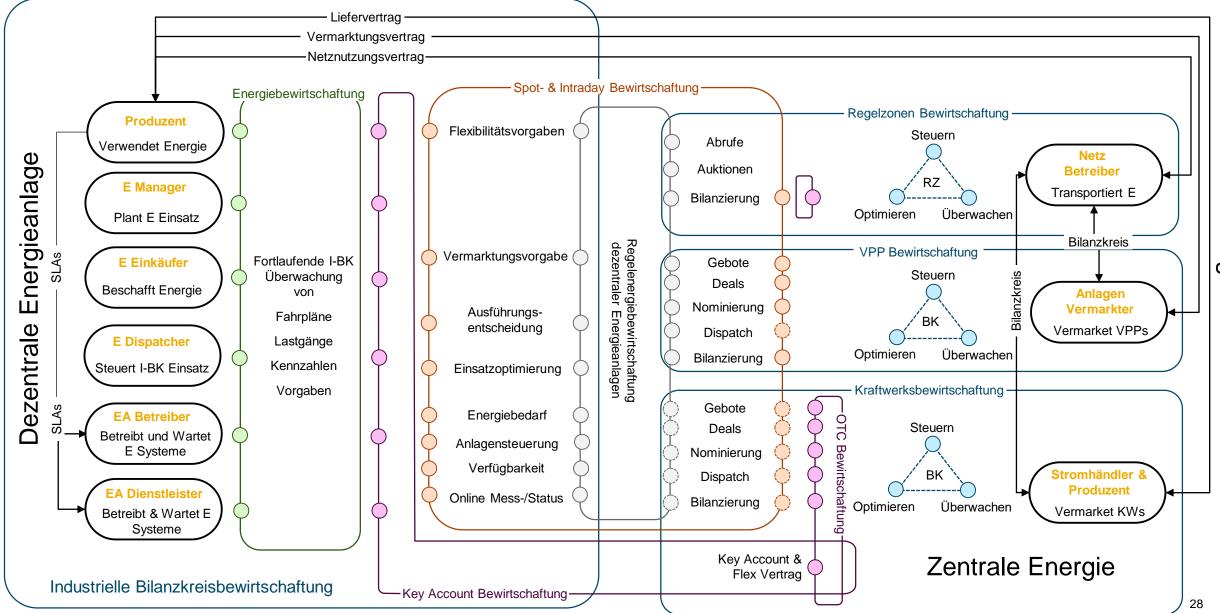

Information

Report &

. Analysis

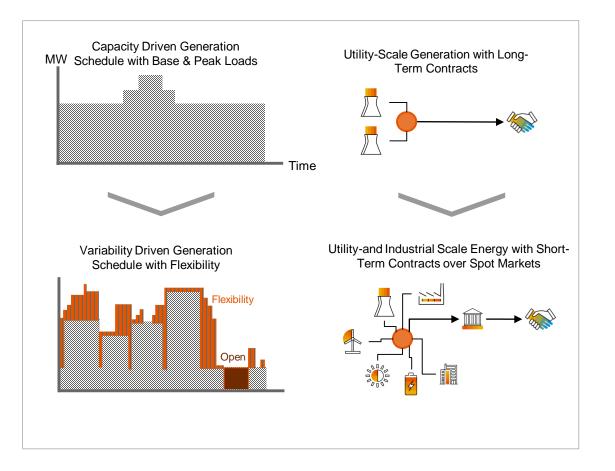

Maintenance Planning

Permit To Work Scenario



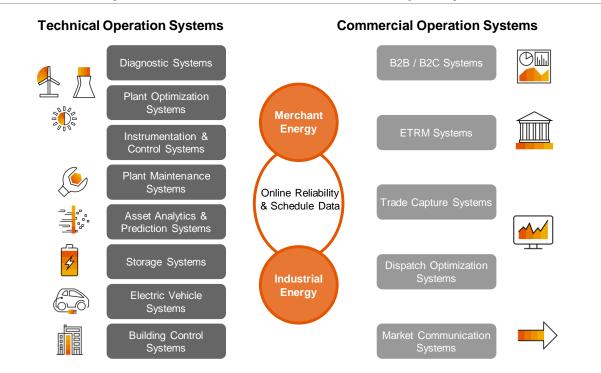
Reliability & Schedule Operations Prototype (Merchant & Industrial Energy Hub)

Illustration of Short-Term Optimization


Aspects of Balance Group Management

Energiewirtschaft

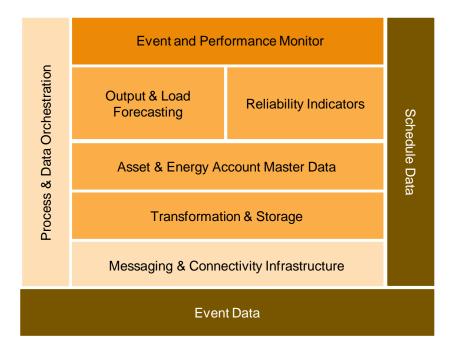
Economic Short-Term Operation and Market Integration of Utility- and Industrial Scale Energy Resources



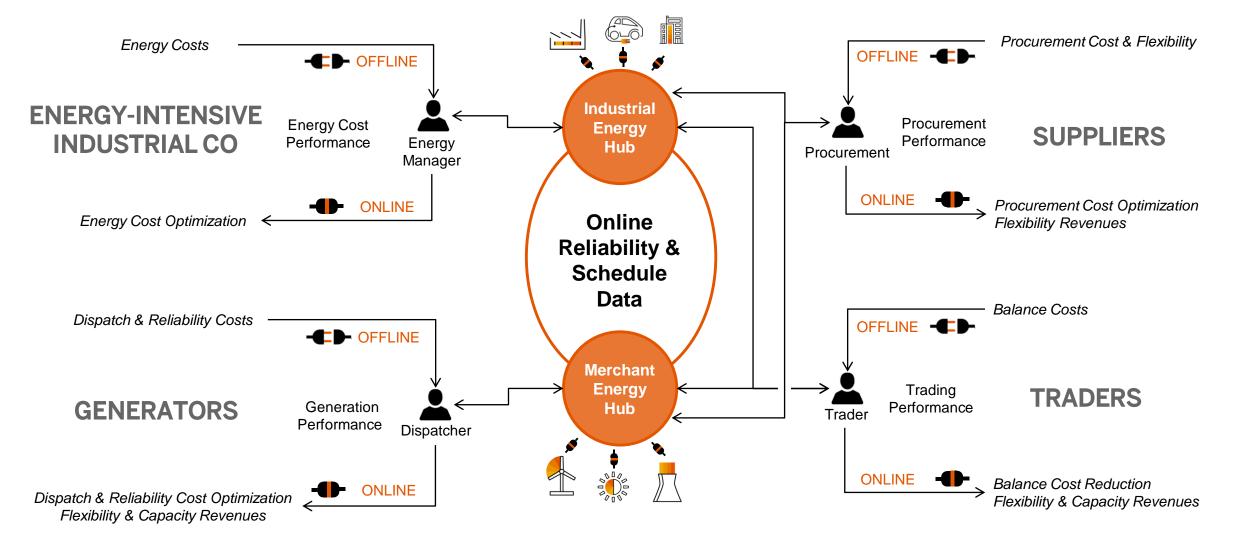
Continuous balancing of reliability, schedule and trading data in order to commercially integrate and operate utilityand industrial scale energy resources

Decarbonization is the main driver for renewable support policies. Large-scale wind and solar additions are changing the economics and mechanisms of power markets. Same time as they add new market capacity, they are also adding generation variability and price volatility, and due to policy-support achieve favorable margins. This is leaving capacity-designed generation units with insufficient full load hours moving them beyond the merit order clearing price.

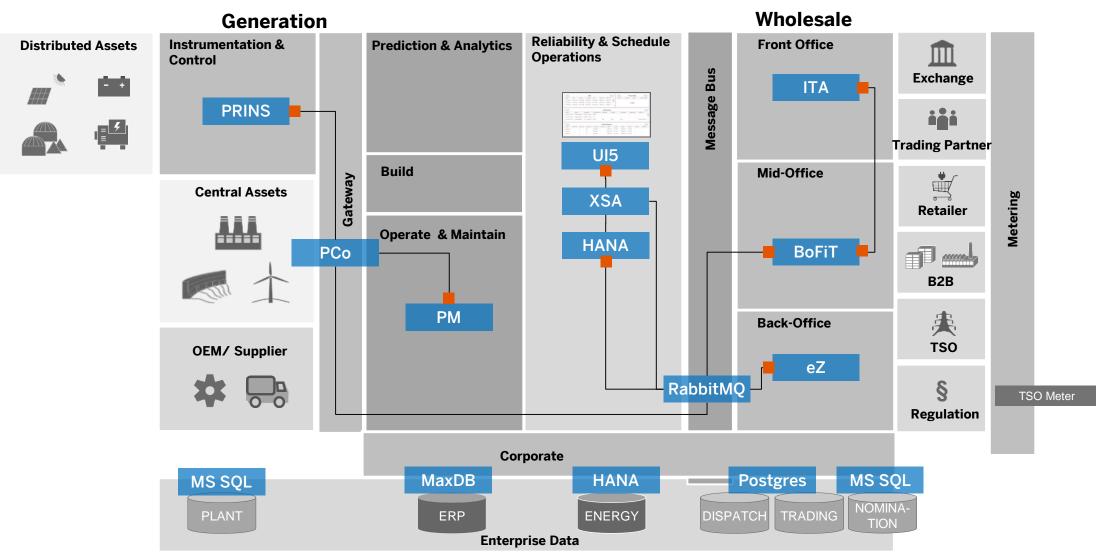
Over time, industrial-scale decentral energy resources will be integrated into energy markets and become active portfolio positions of traders and merchants – virtual power plant portfolios combined with utility-scale generation portfolios. Consequently, generation and trading schedules are transforming from simple base-peak load shapes into highly variable curves with flexibilities and open positions. As response, short-term operation and market integration strategies need to be put in place. They require a continuous balancing of reliability, schedule and trading data in order to commercially integrate and operate utility- and industrial scale energy resources.


Interfaces & Building Blocks

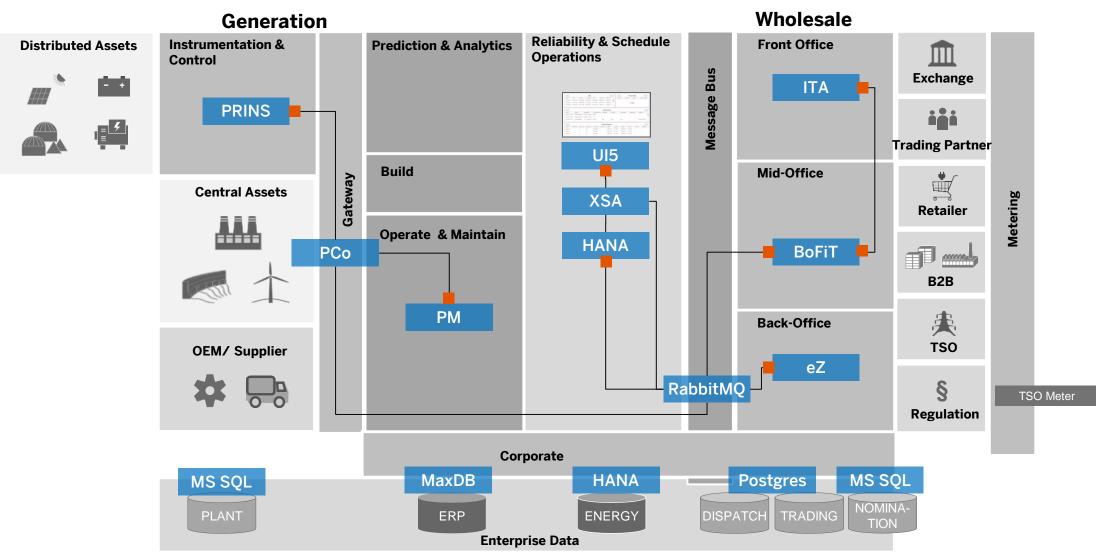
Online Reliability & Schedule Data between Domain Expert Systems


Building Blocks

Key ONLINE capabilities include a messaging enabled display of event and performance data, calculation of reliability indicators from event to portfolio level, short-term output and load forecasting on machine and maintenance data using predictive technologies, matching of asset with energy account domains, transformation of control, maintenance, weather, plant, deal, and energy data into reliability and schedule time series, messaging and connectivity to technical and commercial domain expert systems, as well as an overall process and data orchestration.

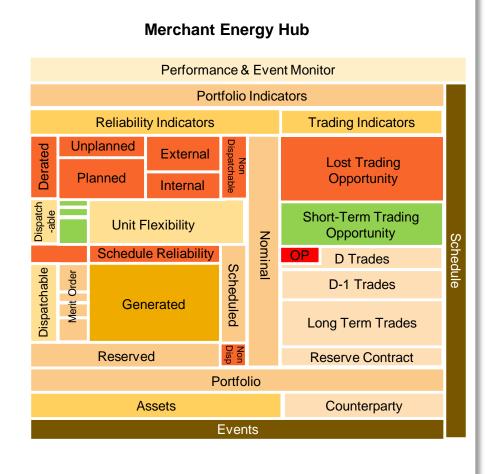

Blueprinting & Prototyping

Online Reliability and Schedule Data for Economic Short-Term Operation and Market integration of Power Production and Energy Facilities


Data Flow

Data Flow

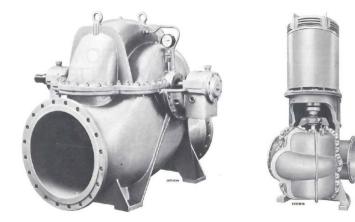
Example: VGB Indicators



Avai	ilability indicators		Reliability	/ & dispatchabilit	y indicators	Utilization			
Time availability	$k_t = \frac{t_v}{t_N} = \frac{t_N - t_{nv}}{t_N}$	t_N Reference period t_v Available time t_{nv} Unavailable time	Time reliability	$w_t = \frac{t_B}{t_B + t_{nvun}}$	t_B Operating time t_v Available time $t_{nv un}$ Unplanned not postponable unavailable time	Time utilization	$n_t = rac{t_B}{t_N}$ t_B Operating time t_N Reference period	bd	
Time availability peak times	$k_{tPe} = \frac{t_{\nu Pe}}{t_{NPe}} = \frac{t_{NPe} - t_{n\nu Pe}}{t_{NPe}}$	t_{NPe} Peak time ref. per. t_{vPe} Avail. peak time t_{nvPe} Unavail. peak time							
Energy availability	$k_W = \frac{W_v}{W_N} = \frac{W_N - W_{nv}}{P_N \cdot t_N}$	W_N Nominal energy W_ν Available energy $W_{n\nu}$ Unavailable energy P_N Nominal capacity	Energy reliability	$w_v = \frac{W_B}{W_B + W_{nv un}}$	W_B Generated energy t_v Available time W_{nvun} Unplanned not postponable unavailable energy	Energy utilization/ w neg. balancing energy	$n_W = \frac{W_B}{W_N} = \frac{W_B}{P_N \cdot t_N} n_W = -$	$\frac{W_B + WRd}{W_N} = \frac{W_B + WRd}{P_N \cdot t_N}$	W_B Generated energy W_N Nominal energy t_N Reference period P_N Nominal capacity W_{Rd} Balancing energy
Market-assessed availability	$k_m = \frac{\sum_{i=1N} (W_{Ni} - W_{nv,i}) \cdot DB}{\sum_{i=1N} W_{N,i} \cdot DB_i}$	W_N Nominal energy $\frac{i}{DB_i}$ W_{nv} Unavailable energy DB_i Contribution margin	Market-assessed reliability	$r_{m} = 1 - \frac{\sum \left(\left W_{Bi} - W_{Fpi} \right \right)}{\sum W_{Fpi} \cdot DB_{i}}$	 → DB_i W_{Fp} Schedule energy W_B Generated energy DB Contribution margin 	Market-assessed utilization	$n_{Wm} = \frac{\sum_{i=1N} (W_{B,i}) W_B}{\sum_{i=1N} W_{N,i} + i}$	$\frac{i \cdot DB_i}{DB_i}$	 <i>W_B</i> Generated energy <i>W_N</i> Nominal energy DB Contribution margin
Time UA Base/peak	$k_{tn} = 1 - k_t$ ($k_{tnPe} = 1 - k_{tPe}$)	k_t Time availability k_{WPe} Time avail peak	Dispatch reliability	$p_{v} = \frac{W_B}{W_B + W_{nvun} + Wns}$	W_B Generated energy $W_{nv un}$ Unplanned not postponable unavailable energy W_{ns} Available unproducible energy (external)				
Energy UA Base/peak	$k_{Wn} = 1 - k_W$ ($k_{WnPe} = 1 - k_{WPe}$)	k_W Energy availability k_{WPe} Energy avail peak	Schedule constancy	$f_{Fp} = \frac{W_B}{W_{Fp}}$	W_B Generated energy W_{Fp} Schedule energy		Failure ra	ate	
			Dispatchability	$k_b = \frac{W_b}{W_N} = \frac{W_N - W_{n\nu} - Wns}{W_N}$	W_N Nominal energy W_b Dispatchable energy $W_{n\nu}$ Unavailable energy W_{ns} Available unproducible energy (external)	Time failure rate	$p_t = \frac{t_{nvu}}{t_{nvu} + t_B}$	t_B Operating time $t_{n\nu u}$ Unplanned unavailable time	
			Market-assessed dispatchability	$k_{bm} = \frac{\sum_{i=1N} (W_{N,i} - W_{n\nu,i} - \sum_{i=1N} W_{N,i} - \sum_{i=1N} W_{N,i}$	$\frac{Wns_{i} \cdot DB_{i}}{DB_{i}} + \frac{Contribution margin,}{only positive,}$	Energy failure rate	$p_w = \frac{W_{nvu}}{W_{nvu} + W_B}$	W_{nvu} Unplanned unavailable ene W_B Generated energy	rgy
© 2017 SAP SE or	an SAP affiliate company. All rights reserved	d. I CUSTOMER	Start-up reliability	$z = \frac{s_e}{s_e + s_n}$	s_e # successful starts s_n # unsuccessful starts	Dispatching (energy) failure rate	$p_l = \frac{W_{nvun}}{W_{nvun} + W_{ns} + WB}$	$W_{nv\ un}$ Unplanned not postponable unavailable energy W_{ns} Available unproducible energy (external) W_B Generated energy	34

Performance Indicators

NOMINAL POWER	Highest continuous output capability of a unit without damage at certain operating conditions. Provided by manufacturer specification
DERATED_POWER	A partial reduction in the output capability of a unit due to planned und unplanned events. Derated output value is assessed and captured in maintenance notification (independent from Live Portfolio Hub).
DISPATCHABLE_POWER_I	Output capability of the unit considering calculated schedule deviations from produced power (+/-) and deducting reserved power. Online model "agnostic" of derated power values captured in maintenance notification. Deviations includes derating events. Difference between Dispatchable Power I and II expresses the unit capability to follow the schedule.
DISPATCHABLE_POWER_II	Output capability of the unit deducting derated power captured in maintenance notification and deducting reserved power. See also Dispatchable Power I
NON_DISPATCHABLE_POWER	Amount of non-available unit output capability consisting of negative Schedule Reliability and Reserved Power (Dispatchable I) and Derated and Reserved Power (Dispatchable II).
UNIT_FLEXIBILITY_POWER	Amount of available unit output capability not yet scheduled, non-available, and reserved. View depending on Dispatchable I and II. May represent short-term trading opportunity.
SCHEDULED_POWER	Planned output capability of a unit according to trading needs (short/mid/long-term). Economically optimized for merit-order.
SCHEDULE_RELIABILITY_POWER	Difference between produced and scheduled power. Target = "0". + more / - less power is produced than scheduled. Effect to balancing and grid connection costs.
GENERATED_ANTICIPATED_POWER	Produced (measured) and forecasted output capability of a unit. Forecast based on online event, proximity, and machine learning methods.
RESERVED_POWER	Power which is not available for open trading and economic scheduling. Reserved power are stored as Deals.


Exploring District Heating Pump Degradation & Revision Cycles

Plant Analytics & Prediction: Exploring District Heating Pump Degradation and Revision Cycles

SAP is currently exploring data-driven analytics and prediction for a heating pump scenario in order to evaluate degradation and revision cycle related useful life hours.

Parallel Operation of Dual Stream Axially Split Casing Pump

Customer Business Case

- Optimize Number of Major Revisions over Pump Lifetime
- Reduce Pump Degradation Occurrences
- Minimize Costs for Infrastructure Extension and External Services
- Capture Pump Operation Knowledge

10 Min Schema

Expressing pump sensor values and physical pump formulas over 10 minute timestamps

Q Schema

Expressing 10 Min Schema over volume flow sections on daily values

Heat Map

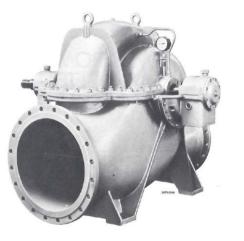
Expressing useful life hours over volume flow sections and years

Targets

- Revision Cycle on Useful Life Hours
- Degradation Factor per Volume Flow Section
- Gap Loss Factor

Input Parameter

Sensors	UoM
Volume Flow	m3/h
Revolutions	1/min
Inlet Flow Temperature Water	°C
Return Flow Temperature Water	°C
Pressure In Front	bar
Pressure After	bar
Vibration (e.g. bearing)	m/s
Operation Hours	h


Historic Data

At least 1 year

1 minute equidistant resolution

PoC / Exploration

Formulas		UoM
NPSH _{REQ}	Regression on Pump Curve NPSH = $f(Q)$	m
NPSH _{AVAIL}	Pressure suction, Density, Gravity	m
Q _{IDEAL}	Regression on Pump Curve $H = f(Q)$	m3/h
Density	Regression on Density Curve	kg/m3

Pump Specifications NPSH = f(Q) H = f(Q) Maintenance Events

Revision

Repairs

Regular

Inspection

Thank you.

Contact information:

Michael Lutz Solution Expert, IBU Utilities SAP SE Dietmar-Hopp Allee 16 69190 Walldorf +49-6227-7-46391 mi.lutz@sap.com

© 2017 SAP SE or an SAP affiliate company. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of SAP SE or an SAP affiliate company.

The information contained herein may be changed without prior notice. Some software products marketed by SAP SE and its distributors contain proprietary software components of other software vendors. National product specifications may vary.

These materials are provided by SAP SE or an SAP affiliate company for informational purposes only, without representation or warranty of any kind, and SAP or its affiliated companies shall not be liable for errors or omissions with respect to the materials. The only warranties for SAP or SAP affiliate company products and services are those that are set forth in the express warranty statements accompanying such products and services, if any. Nothing herein should be construed as constituting an additional warranty.

In particular, SAP SE or its affiliated companies have no obligation to pursue any course of business outlined in this document or any related presentation, or to develop or release any functionality mentioned therein. This document, or any related presentation, and SAP SE's or its affiliated companies' strategy and possible future developments, products, and/or platform directions and functionality are all subject to change and may be changed by SAP SE or its affiliated companies at any time for any reason without notice. The information in this document is not a commitment, promise, or legal obligation to deliver any material, code, or functionality. All forward-looking statements are subject to various risks and uncertainties that could cause actual results to differ materially from expectations. Readers are cautioned not to place undue reliance on these forward-looking statements, and they should not be relied upon in making purchasing decisions.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of SAP SE (or an SAP affiliate company) in Germany and other countries. All other product and service names mentioned are the trademarks of their respective companies. See http://global.sap.com/corporate-en/legal/copyright/index.epx for additional trademark information and notices.

© 2017 SAP SE oder ein SAP-Konzernunternehmen. Alle Rechte vorbehalten.

Weitergabe und Vervielfältigung dieser Publikation oder von Teilen daraus sind, zu welchem Zweck und in welcher Form auch immer, ohne die ausdrückliche schriftliche Genehmigung durch SAP SE oder ein SAP-Konzernunternehmen nicht gestattet.

In dieser Publikation enthaltene Informationen können ohne vorherige Ankündigung geändert werden. Die von SAP SE oder deren Vertriebsfirmen angebotenen Softwareprodukte können Softwarekomponenten auch anderer Softwarehersteller enthalten. Produkte können länderspezifische Unterschiede aufweisen.

Die vorliegenden Unterlagen werden von der SAP SE oder einem SAP-Konzernunternehmen bereitgestellt und dienen ausschließlich zu Informationszwecken. Die SAP SE oder ihre Konzernunternehmen übernehmen keinerlei Haftung oder Gewährleistung für Fehler oder Unvollständigkeiten in dieser Publikation. Die SAP SE oder ein SAP-Konzernunternehmen steht lediglich für Produkte und Dienstleistungen nach der Maßgabe ein, die in der Vereinbarung über die jeweiligen Produkte und Dienstleistungen ausdrücklich geregelt ist. Keine der hierin enthaltenen Informationen ist als zusätzliche Garantie zu interpretieren.

Insbesondere sind die SAP SE oder ihre Konzernunternehmen in keiner Weise verpflichtet, in dieser Publikation oder einer zugehörige Präsentation dargestellte Geschäftsabläufe zu verfolgen oder hierin wiedergegebene Funktionen zu entwickeln oder zu veröffentlichen. Diese Publikation oder eine zugehörige Präsentation, die Strategie und etwaige künftige Entwicklungen, Produkte und/oder Plattformen der SAP SE oder ihrer Konzernunternehmen können von der SAP SE oder ihren Konzernunternehmen jederzeit und ohne Angabe von Gründen unangekündigt geändert werden. Die in dieser Publikation enthaltenen Informationen stellen keine Zusage, kein Versprechen und keine rechtliche Verpflichtung zur Lieferung von Material, Code oder Funktionen dar. Sämtliche vorausschauenden Aussagen unterliegen unterschiedlichen Risiken und Unsicherheiten, durch die die tatsächlichen Ergebnisse von den Erwartungen abweichen können. Dem Leser wird empfohlen, diesen vorausschauenden Aussagen kein übertriebenes Vertrauen zu schenken und sich bei Kaufentscheidungen nicht auf sie zu stützen.

SAP und andere in diesem Dokument erwähnte Produkte und Dienstleistungen von SAP sowie die dazugehörigen Logos sind Marken od er eingetragene Marken der SAP SE (oder von einem SAP-Konzernunternehmen) in Deutschland und verschiedenen anderen Ländern weltweit. Alle anderen Namen von Produkten und Dienstleistungen sind Marken der jeweiligen Firmen.

Zusätzliche Informationen zur Marke und Vermerke finden Sie auf der Seite http://www.sap.com/corporate-de/legal/copyright/index.epx