

FTPConnect User Guide
August 2020

FTPConnect User Guide - Page 2

Contents
FTPConnect Overview ... 3

Overview ... 3

How IT Works ... 4

Getting Started ... 5

Install FTPConnect .. 5

Configure FTPConnect ... 5

Configure Staging/Relay Service URL .. 5

Configuring Connections ... 6

Setting Up and Testing FTPConnect without Encryption 7

White Listing FTPConnect .. 12

Integrate With FTPConnect .. 12

FTPConnect API ... 13

FTPConnect Job Examples... 19

Importing data Using FTPConnect Jobs ... 19

Exporting Data With FTPConnect Jobs .. 24

Scheduled FTPConnect Jobs ... 24

Encrypt/Decrypt with FTPConnect ... 24

Manage FTPConnect Sessions .. 33

Session History, License Terms and Usage ... 34

Managing Sandbox License.. 34

Troubleshooting and Debugging ... 36

FTPConnect User Guide - Page 3

FTPConnect Overview

Overview

FTPConnect is a powerful tool to help you move data between your Salesforce.com instance and one or more
Secure FTP (SFTP) servers. Whether you need to import data from an SFTP site into Salesforce.com or export
data from Salesforce.com to an SFTP site, FTPConnect gives you the tools to do this in a secure, simple and
straightforward manner. FTPConnect gives you the ability now to securely and easily integrate your
Salesforce.com instance with SFTP. With it, you can easily:

■ Load delimited (comma delimited, pipe delimited, tab delimited) or fixed format files from an SFTP site into one
or more database objects in Salesforce.com

■ Export data from your Salesforce.com instance onto an SFTP site

■ Get files from an SFTP site to store as Attachments or as Documents on your Salesforce.com instance

■ Store Attachments or Documents from your Salesforce.com instance onto an SFTP site

In addition to handling the transfer of data between an SFTP site and your Salesforce.com instance, FTPConnect
also provides you with the ability to encrypt data you transfer to the SFTP site and to decrypt data that you pull into
Salesforce.com from an SFTP site. FTPConnect supports the following cryptography algorithms:

■ PGP

■ AES

■ DES

■ Blowfish

In addition, you can use FTPConnect to generate keys for AES, DES and Blowfish

Quick Start
All data transfers can now be initiated from within your Saleforce.com instance. There is no need to install
expensive and complicated ETL software on your servers. Within minutes of installing the FTPConnect
managed package onto your Saleforce.com instance, you can start moving data between Salesforce.com and
your SFTP site.

Steps to start Data Transfer:

 1 Install the FTPConnect managed package

 2 Configure FTPConnect

 3 With the very easy to use FTPConnect API and with the Apex programing language, quickly implement

processes to exchange data between your Saleforce.com instance and one or more Secure FTP sites

FTPConnect User Guide - Page 4

How IT Works

Before now, if you needed to integrate your Salesforce.com environment with an SFTP site, you may have started
by searching Salesforce user and developer forums for a way to do this, only to find out that the Force.com
platform does not provide an API for SFTP integration. This was a problem we came across when our own
customers asked us to help them integrate their Salesforce.com instances with SFTP sites. FTPConnect
leverages the communication protocol that Salesforce.com already supports very well – HTTPS. FTPConnect
handles for you the difficult processing issues related to Force.com limitations:

■ SFTP Communication.

■ Governor limit on total size of an HTTPS request.

■ Governor limit on database queries and manipulation.

■ Governor limit on heap memory.

■ Encryption and decryption.

FTPConnect solves this problem by utilizing a “Staging/Relay” service. The FTPConnect managed package
securely communicates with the Staging/Relay service using the HTTPS. The Staging service lives on the cloud
between Salesforce.com and your SFTP site. For large file transfers, the FTPConnect managed package
provides a batch process that sends/receives data from the Staging service in small chunks. All of the hard
parts then are handled by the FTPConnect staging service.

When sending data from Salesforce.com to an SFTP site, the relay server securely stores each chunk as it is
sent one at a time through the FTPConnect managed package on Salesforce.com. Once all data for a transmission
is staged, the FTPConnect Staging service assembles the data, encrypts it and writes it to your file on the SFTP
site. When getting a file from an SFTP site, the FTPConnect relay service disassembles the file into small
manageable chunks and then hands them to your application on Salesforce.com (via the FTPConnect managed
package) one manageable chunk at a time.

When receiving data from an SFTP site into salesforce.com, the Staging/Relay service reads the file from the
SFTP site, breaks it down into small manageable chunks and temporarily stages those chunks for retrieval by the
FTPConnect managed package running on Salesforce.com.

FTPConnect
Staging/Relay Service

FTPConnect HTTPS

Force.com
Database

 SFTP Site

FTPConnect User Guide - Page 5

Getting Started

Install FTPConnect

To get started, install the FTPConnect managed package onto
your Salesforce.com instance. This starts a 30 day free trial.
After 30 days, just purchase FTPConnect application licenses
to continue using FTPConnect.

Configure FTPConnect

Once you install FTPConnect, you can begin configuring it.

Open FTPConnect Admin App:

■ Click on

■ Search for FTPConnect in the App Lightning App Launcher Search and Select FTPConnect Admin

FTPConnect Admin Tab gives you access to all configuration and management features provided in the product.

Configure Staging/Relay Service URL

The Relay_Service_URL setting should only be set under the direction of the Equifax BusinessConnect support
team. It is used to override the default URL used by the application to connect to the production Staging/Relay
service. Do not configure this setting without consulting with the Equifax BusinessConnect support team.

It is possible to set up your instance to use an alternative Staging/Relay service. The first task is to set up your
connection to the FTPConnect Staging/Relay service:

Links to install the latest
version of the FTPConnect
managed package are
found on the FTPConnect
support site:

FTPConnect Support

https://www.equifax.com/support/ftpconnect/

FTPConnect User Guide - Page 6

■ Go to the FTPConnect Admin tab.

■ Click on the Settings link.

■ Select RELAY_SERVER_URL in the Setting Name dropdown list.

■ In the Setting Value field, type or paste this URL setting: http://ftpconnectuatprivate.herokuapp.com

■ Click the Add Setting button.

Configuring Connections

To get started, you need to create and test connections with an SFTP site. To create an FTP connection, you
need the following information:

■ The domain name of an SFTP site you will be getting files from or putting files to

■ The username and password for your SFTP site

■ If the SFTP site requires Public Key Authentication, then you will need username, private key and optionally the
private key passphrase (if the private key is encrypted).

– For public key authentication: you need a valid SSH key pair (with public and private keys). Work with
your security team to obtain your key pair. The administrator of the SFTP site you are connecting to will
need to install the public key on the site and set it up for public key authentication. You will install the
private key and optionally a passphrase for that key in the FTP Connections setup pages.

– The easiest way to generate a key pair that works with SFTP is to use the ssh-keygen command which is
available in Linux and other versions of Unix.

■ If files on your SFTP site are to be encrypted at rest, then you also need the following:

– The name of the encryption algorithm you plan to use (i.e. AES, PGP, DES, Blowfish are supported)
– The encryption and decryption keys in PEM format
– Paths and file names on the SFTP site where files will be read and written.

http://ftpconnectuatprivate.herokuapp.com/

FTPConnect User Guide - Page 7

Setting Up and Testing FTPConnect without Encryption

The following bullets demonstrate setting up and testing connections in FTPConnect without encryption. See the
section titled Encrypt/ Decrypt with FTPConnect for details on how cryptography keys are stored and used with
an FTPConnect connection.

■ Click FTP Connections to view all configured connections

■ Click New to configure a new connection

■ For Simple Connections to SFTP sites that do not use public key authentication fill these fields out:

– Connection Name – Any name you want works.

– Service Type – Just select SFTP (SFTP is the only supported protocol).
– URL – Provide the domain name of your SFTP server.

– Username – Provide the user name you will use to connect to your SFTP server.
– Password – Provide the password you will use to connect to your SFTP Server.

FTPConnect User Guide - Page 8

■ For Public Key Authentication fill in these fields:

– Connection Name – Any name you want works.
– Service Type – Just select SFTP (SFTP is the only supported protocol).
– URL – Provide the domain name of your SFTP server.
– Username – Provide the user name you will use to connect to your SFTP server.
– SSL Private Key – Private key from the key pair.
– SSL Key Pass Phrase (Optional) – Provide this if the private key is encrypted with a pass phrase.

■ Encryption Settings:

– Encryption Algorithm: Select Encryption type:

• AES

• Blowfish

• DES

• DESede

• PGP: Special Stipulations for PGP Setup:

o When you edit or create a new connect PGP Connection you will see a checkbox called ‘Signature
Required’ which you will need to check

– Encryption Key: Lookup your Encryption Key

– Decryption Key: Lookup your Decryption Key

■ Press Save to take you back to Connections Page

FTPConnect User Guide - Page 9

Testing FTPConnect Connections

■ Once back on Connections page press the Test Action

■ This will bring you to the Test Connections Page

■ Two terms you will see on the FTPConnect Test Page are “Put…” and “Get…”. Both Put and Get are the
technical terms for the basic FTP operations.

– Put – is an operation where a file is written to an FTP site.

– Get – in an operation where a file is read from an FTP site.

■ First, test writing a file to the SFTP site. On the test page, you provide the name and path of the file that you
want to write to on the SFTP site and provide some data that you want written to that file.

– File Path – This is the Path and Name of the file.

– Input Data – Provide some data to write to that file. In the example shown in the screen shot, the user
just types a bunch of X’s and Y’s.

– Click the Put Data button to place the data into a file on the SFTP site

– You should see a success message at the top of the page.

FTPConnect User Guide - Page 10

■ Next, test getting data from the same file on the SFTP site.
– Just click on Get Data button under Connection Details Section
– You should see a success message at the top of the page
– The data that was retrieved from your SFTP site will show up in the Output Data box

FTPConnect User Guide - Page 11

■ Note that you might get errors and this is why you test. The error descriptions should be descriptive enough for
you to solve any problems. A likely error for example is:
– Incorrect domain name for the SFTP site
– Incorrect username or password for the SFTP site
– An incorrect file path in the File Path field
– Lack of permissions on your SFTP site to read or write on one of the directories in the file path

FTPConnect User Guide - Page 12

White Listing FTPConnect

If the SFTP site for a connection requires white listing of SFTP clients that connect to it, then have the SFTP server
administrator add these IP addresses to the SFTP site white-list:

■ 34.237.214.24

■ 34.204.23.183

■ 52.203.56.194

■ 34.204.30.215

Integrate With FTPConnect

FTPConnect provides three different API’s for transmitting data between a Salesforce.com instance and SFTP site.
The API you use will depend on how you want your application to work and on the size of the file to be written to or
read from the FTP site.

For files smaller than 3MB:

■ The FTPConnect API provides a single API call that can read/write the entire content of a file with one method
call.

For files larger than 3MB, FTPConnect provides two batch options:

■ FTPConnect Jobs – You configure a job and write a very simple APEX class to handle:

– Parsing/formatting of data

– Insertion/Updates of data or Selection of data to/from the Salesforce.com database. Your APEX class simply
extends a global FTPConnect class and then you write code to override a couple of methods. Then
FTPConnect job then handles all of the details related to the batch process.

■ Batch Class – You write your own APEX batch class that calls a lower level FTPConnect API.

FTPConnect User Guide - Page 13

FTPConnect API

The FTPConnect API provides two types of access. First, through the ftpconnect.FtpService class, you can write
APEX code that has access to the low level features of FTPConnect. Second, for importing or exporting large
amounts of data, FTPConnect provides an easy API that allows you to create classes that can be used with
FTPConnect Jobs.

This document provides two detailed examples of setting up and coding FTPConnect Jobs which is the easy and
recommended approach for using FTPConnect for sending or receiving large files to/from SFTP. The other approach
is to write your own batch job that uses the low level FTPConnect api.

■ For examples that demonstrate the lower level API (ftpconnect.FtpService), please see the FtpConnect
sample library found on the FTPConnect Support site.

FtpConnect Job API

As mentioned before, the preferred approach to exchanging large files between Salesforce.com and an SFTP server
with FTPConnect is to configure an FTPConnect job. With this approach, you configure the job in the FTPConnect
admin tab. In the job configuration, you must indicate if the job is a Get or Put job and you provide the name of a
custom class which implements one of these two packaged Apex interfaces:

■ ftpconnect.PutFileProcessor

■ ftpconnect.GetFileProcessor

With this approach, you focus solely on the high level code that manages the format of the data in your SFTP files
and manages the access to the database.

■ For Get jobs, you are required to provide on method that parses one chunk of data from your SFTP and

writes that chunk to some object(s) in your database.
– Note that for getting CSV delimited files from SFTP, the package also provides the

ftpconnect.CsvGetFileProcessor class.
– Your custom class can extend this class rather than directly implement ftpconnect.GetFileProcessor to

leverage features in that class that take care of record and field parsing.

■ For Put jobs, you are required to provide two methods:
– Define a SOQL query to select the data you want to send to SFTP
– Define a method that formats records from one batch (meaning Salesforce.com Apex batch).

• Note that with version 1.70 and later, the package now provides ftpconnect.PutFileProcessorBase
class which allows you to define headers and footers that can be written to your SFTP file.

• We recommend extending PutFileProcessorBase rather than directly implementing
PutFileProcessor interface

FTPConnect User Guide - Page 14

As mentioned above, with FTPConnect Jobs, you focus solely on writing code to access your database objects and
to handle the data format of the files sent or received to/from your SFTP server. Then FTPConnect takes care of the
rest of the tedious details.

Below are detailed descriptions of the interfaces and/or classes you might choose to implement or extend.

Ftpconnect.PutFileProcessorBase Class:
■ While you can instead choose to have your class directly implement ftpconnect.PutFileProcessor

interface, we instead recommend that you declare your custom class to extend
ftpconnect.PutFileprocessorBase. Extend this class if your FTPConnect job configuration has “Put File”
as the selected action.

■ global override Blob getData(Integer batchCount, List<SObject>scope) – Formats database records
provided in scope argument and returns formatted data as a blob.

– Returns – Formatted data.
– Parameters:

• Integer batchCount – Provides the count of the current batch being processed by the FTPConnect
job.

• List<SObject> scope – A list of database records to be processed by the current batch.

■ global override String getQuery() – Returns a valid SOQL query which specifies which records are to be
processed and exported by the job.

– Returns – A string containing a valid SOQL query.

■ Global override blob getFooter() – returns a string that the job will write at the very end of the file. If you

don’t want to write a footer to your file, then do not include this method in your extension class.

■ Global override blob getHeader() – returns a string that the job will write at the very start of the file. If you
do not want to write a header to your file, then do not include this method in your extension class.

ftpconnect.GetFileProcessor:

When defining an FTPConnect job, you must provide a class that implements ftpconnect.GetFileProcessor if the
action selected for the job is “Get File”. You can choose to declare your class to either directly implement
ftpconnect.GetFileProcessor or if your file format is csv (or delimited with other special characters) then you can
instead extend ftpconnect.CsvGetFileProcessor.

However, if your file has any other format, then your class should implement ftpconnect.GetFileProcessor.

The methods you need to implement for this interface are described below:

■ void processData(Integer batchCount) – This method is called by the FTPConnect job every time it
receives data from your file from the Staging/Relay service. You implement your business logic to
processes a chunk of data received from the file on the SFTP site. This method must handle all parsing of
data and handle writing the data to the Salesforce.com database.
– Parameters:

• Integer batchCount – The count of batches that have been processed.

■ void setData(String rawData) – This method is called by the FTPConnect job when it receives data from
the Staging/Relay service. This method prepares the data for processing by storing it in an instance
variable that can later be accessed by processData(Integer batchCount).
– Parameters:

• String rawData – Raw data that FTPConnect job obtained from the staging service.

FTPConnect User Guide - Page 15

Ftpconnect.CsvGetFileProcessor

Methods you override:

■ global override void processData(Integer batchCount) – you must override this method to process a
chunk of data sent back from the relay server. Use the getRecord(…) and getField(…) methods along with
other helper methods to get records and fields: and to process the data as defined by your requirements.
See description of specific helper methods in the next section below.

■ global virtual void init() – optional. Use this to initialize settings using

CSV Helper Methods:

■ String getRecord() – Reads the next record in the data chunk into a record buffer. It also returns the full
record as a string.

■ String getField() – Reads the next field in the record buffer.

■ String getField(String fieldname) – Reads a field in the record buffer using the related field name.

■ Void setTestData() – Initializes the data buffer with test data. This is convenient to use in your unit test
methods. Use this in unit tests methods to setup test cases with data that reflects all of your use cases.

■ Void setDelimiter(String delimiter) – Overrides the default delimiter (comma) with some other character.
Can be called from your init() override method to specify the character used as delimiter in your input files.

■ Void setNameBasedFieldAccess(Boolean value) – Turns on/off name based field mapping. Can be
called from your init() override method to specify if your file provides a header for each of the fields in your
records.

■ Void ignoreStartLines(Integer numberOfLinesToIgnore)Tells processor to ignore some number of lines
at the beginning of the import file.

■ Void writeErrorRecord(String errorMessage) – Writes current record being processed to an error file.
Appends error message to the record (separated using the record delimiter).

■ Void writeErrorRecord(Integer index, String errorMessage) – Writes record from your batch that
corresponds with the passed index value to an error file. Appends error message to the record (separated
using the record delimiter).

FTPConnect Low Level API

FtpConnectErrorException Class

The FTPConnect API will throw FtpConnectErrorException for fatal exceptions related to communication with the
FTPConnect Staging/Relay service and with FTPConnect configuration.

Methods:

■ Global String getFTPConnectErrorMessage() – Gets a description of the error.

FtpConnect.FtpService Class

As described earlier, the FtpService class exposes the lowest level services that are available in FtpConnect. This
API can be accessed from any Apex class such as page controllers or a custom batch class.

Constructors:

■ FtpService(String fsName) – This is the preferred constructor for the FtpService class. Pass the name of
a connection that was defined in the Connection detail page in FTPConnect Admin tab.
– String fsName – Name of an FTPConnect connection that was defined using the FTPConnect admin

tab.

FTPConnect User Guide - Page 16

■ FtpService(Id FileTransferServiceId)

– Id FileTransferServiceId – Salesforce record id of an FTPConnect connection that was defined using the

FTPConnect admin tab.

■ FtpService(String svctype, String relayServerUrl, String ftpUrl, String ftpUserName, String
ftpPassword, String filePathName, String encryptionKey, String decryptionKey, String
encryptionAlgorithm)

■ This constructor can be used without doing any configuration. However, we highly recommend
using the FTPService(String fsName) constructor rather than this one to make trouble-shooting
and managing changes to your connection information easier.
– String svctype – This should always be ‘SFTP’.
– String relayServerUrl – The production relay server url (https://ftpconnectprod.herokuapp.com/).
– String ftpUrl – The domain name for your SFTP site (i.e. ‘bytebuckets.com’).
– String ftpUserName – The user name to connect to your SFTP site.
– String ftpPassword – The password to connect to your SFTP site.
– String filePathName – The path of the file to access on the SFTP site.
– String encryptionKey – The encryption key in PEM format.
– String decryptionKey – The decryption key in PEM format.
– String encryptionAlgorithm – The encryption algorithm. Valid options are “PGP”, “AES”, “Blowfish”

and “DES”.

Global Methods

■ void setFilePathName(String pathAndName) – Sets the full file path and name of file to be accessed on

the SFTP site.
– Parameters

• String pathAndName – Full path and name of a file.

■ void setSessionName(String sessionName) – Sets the session name to shown in the session monitor.
– Parameters:
• String sessionName – The session name to appear in the session monitor.

• String getall() – Submits a request to get the entire content of a file in a single request. This is not
recommended if the file size exceeds 3MB. After calling getall(), use getGetDataBlob() or
getGetDataString() to get the file content.

– Returns – Unparsed XML string which will contains status values, error values and content of the
requested file.

• String getrecordsstart() – Submits a request to the Staging/Relay service to initialize a session to
get a large file from an SFTP site. Subsequent getRead(…) method calls will retrieve groups of
records from the file.

– Returns – Unparsed XML string which will contains status values and error values.

• String getbytesstart() – Submits a request to the Staging/Relay service to initialize a session to get
a large file from an SFTP site. Subsequent getRead(…) method calls will retrieve chunks of data in
terms of bytes.

– Returns – Unparsed XML string which will contains status values and error values.

• String getread(integer numberOfUnits) – Called after either getrecordstart() or getbytesstart() to
get a chunk of content from the file.

– Returns – Unparsed XML string which will contains status values, error values and content of the
requested file.

– Parameters:

• Integer numberOfUnits – Specifies either the number of records or the number of bytes of content
that should be retrieved from the staging service.

FTPConnect User Guide - Page 17

• String putall(String content) – Writes a string to a file on the SFTP site.
– Returns – Unparsed XML string which will contains status values and error values.
– Parameters:

• String content – The data to write to the file on the SFTP site.

■ String putall(Blob contentBlob) – Writes binary content in passed blob argument to the file on the SFTP
site.
– Returns – Unparsed XML string which will contains status values and error values.
– Parameters:

• Blob contentBlob – The data to write to the file on the SFTP site.

■ String putstart() – Submits a request to the Staging/ Relay service to initialize a session to write a large
file to an SFTP site. Subsequent putwrite() calls will send chunks of data to write to the file.
– Returns – Unparsed XML string which contains status values and error values.

■ String putwrite(String content) – Submits a request to the Staging/Relay service to stage a chunk of
data to be eventually written to the file on the SFTP site.
– Returns – Unparsed XML string which contains status values and error values.
– Parameters:

• String content – A chunk of data to stage for writing to the file on the SFTP site.

■ String putwrite(Blob content) – Submits a request to the Staging/Relay service to stage a binary chunk
of data to be eventually written to the file on the SFTP site.
– Returns – Unparsed XML string which contains status values and error values.
– Parameters:

• Blob content – A chunk of data to stage for writing to the file on the SFTP site.

■ String putdone() – Submits a request to the Staging/Relay service to indicate that there is no more data to
be sent for the current session. This prompts the Staging/Relay service to assemble, encrypt and write all
staged chunks of data to the file on the SFTP site.
– Returns – Unparsed XML string which contains status values and error values.

■ String getStatusCode() – Returns the status of a previous request to the Staging/Relay service.

– Returns – status code

– -1 – indicates failure

– 0 – indicates success

■ String getStatusDescription() – Returns the status description of a previous request to the Staging/Relay
service.

– Returns – Description of the status.

■ String requestfiletranmitstatus() –Submits a request to the Staging/Relay service to obtain the status of
transmission of the resulting file to the SFTP server related to the current session. This method should be
called after the putdone() request. Note that putdone() prompts the Relay/Staging service to write the file to
the SFTP server. The writing of the file is executed asynchronously which implies putdone() returns without
knowing if the file transmission is successful or not.

– Returns –An xml response from the relay server that includes the status and a lot of other information.

■ String getfiletransmitstatus() –Should be called immediately after requestfiletransmitstatus(). Returns
the status of the file transmission. If pending is returned, then subsequent calls can be made until Success
or Failure is returned.

– Returns –‘Pending’, ‘Success’ or ‘Failure’

■ String getfiletransmiteerror() –If the status is ‘Failure’, then this returns the error description for the
related failure.

– Returns – Description of file transmission failure.

FTPConnect User Guide - Page 18

■ String getFileStatus() – Returns status of the file after a getRead() request.

– Returns – Status of file after a getRead() request

– ‘EOF’ – Indicates you are done with reading the file.There is no more staged data remaining to read.
– ‘NOT_READY’ – The staging service has not yet staged the data from the file. (The staging of data after

getrecordsstart() or getbytesstart() is
performed asynchronously.) Ordinarily, you will repeat getread() until the ‘NOT_READY’ status goes away.

– ‘MOREDATA’ – Indicates that there is more data from the file to get from the Staging/Relay service.
– ‘ERROR’ – An error was encountered reading or processing the file.

■ String getErrorCode() – If the status indicates an error, then an error code is returned.
– Returns – If getStatusCode() returns ‘-1’, then getErrorCode() will return one of the following codes:
– FtpService. ERROR_CODE_GENERAL_ERROR

– FtpService. ERROR_CODE_TOO_MANY_SESSIONS

■ String getErrorDescription() – Returns a description of the error.
– Returns – Description of error from Staging/ Relay service.

■ String getGetDataString() – Returns the content from the previous getread() call as a string.

– Returns – String content from previous getread() call.

■ Blob getGetDataBlob() – Returns the content from the previous getread() call as a string.

– Returns – Binary content from previous getread() call.

FTPConnect User Guide - Page 19

FTPConnect Job Examples

FTPConnect Jobs is the quickest way to build an import or export process using an SFTP site. There are two steps:
1. Write a simple APEX class that implements either ftpconnect. GetFileProcessor or extends ftpconnect.PutFileProcessorBase.
2. Configure the job in the FTPConnect Admin tab.

Importing data Using FTPConnect Jobs

If the file to be imported from your SFTP site is a delimited file (with commas, tabs, pipes,…), then have your custom
GetProcessor class extend ftpconnect.CsvGetFileProceesor rather than implement ftpconnect.GetFileProcessor and then
leverage the rich library of methods that make it easy to access records and fields in your csv formatted data.

Some points about the example below that you should
understand include:
■ By default, the ftpconnect.CsvGetFileProceesor class

assumes comma’s are the delimiter and assumes the
file does not have a header record with column names.
You can override the init() method, as shown in this
example, to use a different delimiter and to use the
column names in the header record to map fields in
your records.

■ In this example, mapping of fields using column names

is accomplished with the statement
setNameBasedFieldAccess(true). Because the file
we want to read from the SFTP site uses the pipe
symbol (“|”) for the delimiter, the statement
setDelimiter(‘|’) is included in the init() method.

■ The processData() method, which you need to

implement, focuses on the task of extracting records
and fields from data mapping the values of these
records and to sObject records to be inserted or
updated in Salesforce.com database. It also takes care
of any database access that is necessary to save the
data.

■ In this example, the data is getting loaded into the

standard Account object. So there are statements for
creating account records, assigning data from fields in
the file to fields on the account record. Finally, there is a
statement to insert all account records in a batch.

■ In the processData() method shown in the example, the
code calls getField(string) passing a string which
contains the name for the field given in the header
record. We can use the field name in this way because
the file has a header record in it and because we
included the setNameBasedFieldAccess(true)
statement in the init() method.

■ At runtime, an FTPConnect job calls out to the
processData() method each time if receives a
chunk of data from the file on the SFTP site. When
you configure the job you will define how many
records FTPConnect should pass to this method at
one time. You should code this method in a manner
that allows it to process each batch of records
without reaching governor limits. Note that in this
example, the code is bulkified. Rather than perform
insert on each record, it adds each record to a list
of SObjects and then executes insert on the list,
thereby minimizing the number of inserts executed.

global class MyGetProcessor extends
ftpconnect.CsvGetFileProcessor {
 global override void init() {
 setDelimiter(‘|’); // override default delimiter (default is a
comma)
 //setNameBasedFieldAccess(false); //default is true
 //ignoreStartLines(3); //causes job to ignore first few
lines of file
 }
 global override void processData(Integer batchCount){
 String record = getRecord();
 List<Account> acctInsertList; = new List<Account>();
 while (record != null) {

 try {
 Account acct = new Account();

 acct.name = getField(‘Company Name’);
 acct.BillingStreet = getField(‘Billing Street’);
 acct.BillingCity = getField(‘Billing City’);
 acct.BillingState = getField(‘Billing State’);
 acct.BillingPostalCode = getField(‘Postal Code’);
 acctInsertList.add(acct);
 record = getRecord();
 }
 catch (Exception e) {
 // will write last read record to error log with error
message
 //appended
 writeErrorMessage(e.getMessage());
 }
 recordIndex++;
 }

 Insert acctInsertList; // note that if apex throws
exception here,
 // the job log will write all records in this
 // batch to the error attachment on the job
log.
 // the dml error will be appended to each
record.

 }

FTPConnect User Guide - Page 20

Create a Job in FTPConnect

Once you create a “Get Processor” class, you can create a job in FTPConnect from the FTPConnect Admin tab:

■ Select Jobs from the FTPConnect Admin tab.

■ Click New to define a new job.

FTPConnect User Guide - Page 21

On the Edit Job page, provide data for the following fields and then save:

■ Job Name – Provide a descriptive name for the import job.

■ File Path and Name – Provide the full path and name on the file. The path should begin with “/”. Note you can
also use special character sequences to look for today’s date (date at the runtime of the job) embedded in the
file.

– {YYYY} – Embed the full year of the current date into the file path/name string.
– {YY} – Embeds the last two digits of the year of the current date.
– {MM} – Embeds the two digit numeric representations of month (Jan -> 01).
– {DD} – Embeds the day of the month (will include leading 0 for days 1-9).
– {HH} – Embeds the hour of the day (will include leading 0 for hours 0-23).
– {MIN} – Embeds the minute of the hour (will include leading 0 for hours 0-59).
– {SS} – Embeds the second of the minute (will include leading 0 for hours 0-59)
NOTE: The wildcard character * is not supported.

■ Connection – Select the connection (Which you created in the Connections area of the FTPConnect admin
tab).

■ Action – Choose “get file”.

■ Number of Batches – You must estimate the number of batches in the file you are going to read. The
number of batches is determined by the size of the file and the number of records in each batch. (see
Records Per Batch field below). This will set up the batch size in the salesforce.com batch process. Take
the number of records in your file, divide by your batch size and then add a safety buffer. It is ok to put in a
number that is too big. You want the batch job to process all records in your file.

■ Records Per Batch – The size you choose here should be based on the usage of governed resources in the
processData() method that you created in your GetProcessor. If you execute one or more SOQL (select…) or
DML (insert, update, delete) statements for each record, then you will need to choose a fairly small batch size.
However, if you took care to Batchify your processData() method, then you can choose a relatively large
number (hundreds). Also, you must take into consideration the amount of heap space each record uses. The
total heap usage cannot exceed 3mb. Multiply the size of each record by the batch size to estimate the amount
of heap storage that is needed for a given batch size.

FTPConnect User Guide - Page 22

■ Process Class Name – Put in the exact name of your Get Processor class. In our example, it is
“MyGetProcessor”.

■ Delete File Upon Completion – Applies to data import jobs only. Check the box to make the job delete the
file upon a successful completion.

Once saved, you can submit the job manually or you can schedule it to run at specific times daily, weekly, monthly
and at a variety of other intervals. To simply run the job right now, click on the Submit link in the job list.

A success message will appear if the job was successfully submitted. THIS DOES NOT MEAN THAT THE JOB
COMPLETED SUCCESSFULLY. After it is submitted, click on the Jobs Monitor button to go to the Apex Jobs
monitor and view the status of the job.

By refreshing the Apex Jobs page, you can view progress (total batches, batches processed, status). You will also
only see fatal errors on this page under the Status Detail column.

After the job is complete, you can view results in the File Transfer Results tab. By clicking on the detail record for
a job, you can view processing details such as warnings and non-fatal errors.

In the list shown above and in the detail record below, the Had Errors checkbox indicates that a job had errors
and the Had Warnings checkbox indicates that a job had warnings.

FTPConnect User Guide - Page 23

Details about errors and warnings are stored in an attachment (FileTransferResults…). Additional details about
specific records that cause errors are also stored in an attachment (RecordsWithErrors…).

In the Related tab, click on the attachment link to download it and view with WordPad.

FTPConnect User Guide - Page 24

Exporting Data with FTPConnect Jobs

FTPConnect Jobs can also be built to export data from Salesforce.com to an FTP site. The example below shows
the simple code required to export a large amount of data to a file on an SFTP site using an FTPConnect job. The
class extends ftpconnect.PutFileProcessorBase.

Minimally, you must override two simple methods:
■ getQuery().
■ getData().

First, override the getQuery() method. In getQuery(), your apex needs to return a string that defines a SOQL query
that selects the database records you want to export.

Second, override the getData() method. In getData(), you write Apex code that formats the records you are
exporting into the format needed for the output file. In the example that follows, the getData() method we define
formats the records into output records that are delimited with a pipe (“|”) symbol. The getData() method also takes
care of creating a header record.

Note how it checks the batch count before it adds a header record because we only want the header record to
appear once at the top of the file rather than repeated with each batch.

Global Sharing Class:

global with sharing class MyPutProcessor extends ftpconnect.putFileProcessorBase {

 public override String getQuery() {
 return 'select id, name, billingStreet, billingCity, '
 + 'billingPostalCode, billingState '
 + 'from Account';
 }

 public override Blob getData(Integer batchCount, List<SObject> scope) {
 String dataBuffer = '';
 if (batchCount == 0)
 dataBuffer += 'ID|CompanyName|BillingStreet|BillingCity|BillingState|BillingPostalCode';

 for (Sobject obj : scope) {
 Account acct = (Account) obj;

 dataBuffer += '\n'
 + acct.id + '|'
 + acct.name + '|'
 + acct.billingStreet + '|'
 + acct.billingCity + '|'
 + acct.billingState + '|'
 + acct.billingPostalCode;
 }

 return Blob.valueOf(dataBuffer);
 }
}

FTPConnect User Guide - Page 25

Public with Sharing class:

public with sharing class MyPutProcessor implements ftpconnect.PutFileProcessor {

 public Blob getData(Integer batchCount, List<SObject> scope) {

 String dataBuffer = '';

 if (batchCount == 0)

 dataBuffer += 'ID|CompanyName|BillingStreet|BillingCity|BillingState|BillingPostalCode';

 for (Sobject obj : scope) {

 Account acct = (Account) obj;
 dataBuffer += '\n'
 + acct.id + '|'
 + acct.name + '|'
 + acct.billingStreet + '|'
 + acct.billingCity + '|'
 + acct.billingState + '|'
 + acct.billingPostalCode;
 }

 return Blob.valueOf(dataBuffer);

 }

 public String getQuery() {
 return 'select id, name, billingStreet, billingCity, '

 + ' billingPostalCode, billingState '
 + 'from Account';
 }
}

You configure this export job in FTPConnect similarly to how the import job was configured. The required fields in
the job definition are slightly different from the import job that we looked at earlier.

FTPConnect User Guide - Page 26

■ Job Name – Provide a descriptive name for the export job.

■ File and Path Name – Provide the full path and name of the file. The path should begin with “/”. Note you can also
use special character sequences to look for today’s date (date at the runtime of the job) embedded in the file.

– {YYYY} – Embed the full year of the current date into the file path/name string.
– {YY} – Embeds the last two digits of the year of the current date.
– {MM} – Embeds the two digit numeric representations of month (Jan -> 01).
– {DD} – Embeds the day of the month (will include leading 0 for days 1-9).
– {HH} – Embeds the hour of the day (will include leading 0 for hours 0-23).
– {MIN} – Embeds the minute of the hour (will include leading 0 for hours 0-59).
– {SS} – Embeds the second of the minute (will include leading 0 for hours 0-59).
NOTE: The wildcard character * is not supported.

■ Connection – Select the connection (Which you created in the Connections area of the FTPConnect admin tab).

■ Action – Choose “put file”

■ Records Per Batch – Choose a size that allows your getData() to operate on the full batch without exhausting
your governed Apex resources (memory, SOQL statements, DML statements).

■ Processor Class Name – Put in the exact name of your Put Processor class.

■ File Termination String – A fixed string that the job will write to the end of the export file.

Once your PutProcessor class is deployed and you have configured the Put Job that uses the new class, you
can submit the job by clicking Submit from the FTPConnect Jobs list page or you can schedule the job.

After the page indicates that the job was successfully submitted wi th a message at the top, you can click the
Jobs Monitor button to view go to Salesforce’s Apex Jobs page to view the progress.

On the Apex Jobs page, refresh until you see that the Status field indicates the job Completed.

Review File Transfer Results after the job is completed:
■ Go to the File Transfer Job Results tab to see if the job was successful.

■ First, in the list you can immediately see if the job encountered errors by viewing the Had Errors checkbox.

FTPConnect User Guide - Page 27

■ To see more details, open up the detail record. For a put job, it is also very important to check the File
Transmission Status field as shown below.

■ Upon completion of the FTPConnect PutBatch job, all data processed by your job is staged on the Relay

Server, but final transmission of the data is queued on the relay server to be executed asynchronously.

■ The Apex job before final completion queries the relay server for status of the transmission which may be

either ‘Pending’, ‘Success’ or ‘Failure’. If it is Pending, it re-queries a limited number of times.

Often, with smaller transmissions, the job knows the transmission status before it completes and the File
Transmission Status field will indicate either Success or Failure. However, with bigger jobs that transmit a
lot of data, the job may finish with File Transmission Status still pending. If you open File Transmission
Result detail page and see that File Transmission Status is pending, you can click on the Get File
Transmit Status button to invoke a request to the relay server for an updated status.

FTPConnect User Guide - Page 28

Scheduled FTPConnect Jobs

Further, if you have FTPConnect jobs that are scheduled to run on a regular basis, you can schedule
ftpconnect.

■ PutJobFileTransmissionChecker - This is a schedulable Apex class that updates the status of all
result records with pending file transmission status. Schedule it at intervals that make sense for your
application.

■ For automatic notifications of jobs that fail or have status other than Success, we recommend you setup
standard Salesforce.com workflow on the File Transfer Job Results object to notify any user who
needs to be aware of failures or problems.

Note that the File Transfer Job Results list view can be modified to include File Transmission Status as shown
here. See Salesforce.com documentation for instructions on modifying tab views.

Also note that you may need to edit the page layout of the File Transfer Job Results detail page to include the
Get File Transmit Status button and the File Transmission Status field as show below. See Salesforce.com
documentation for instructions on modifying page layouts.

FTPConnect User Guide - Page 29

Encrypt/Decrypt with FTPConnect

Incorporating encryption in your FTPConnect implementation is easy. FTPConnect supports several
cryptography algorithms and even provides tools for generating encryption keys. The steps are easy:

■ Install your encryption keys into FTPConnect or use FTPConnect to generate your keys.

■ Assign an encryption algorithm and related encryption keys to your FTPConnect connection.

That’s all! Once your connection is defined with an encryption algorithm and with valid encryption keys, then
FTPConnect will encrypt outbound data (from salesforce.com to your SFTP site) and will decrypt inbound data
(from your SFTP site to salesforce.com) on any file transfer using that connection.

For example, let’s say the owner of the SFTP site where you need to place your data, agrees the data will be
encrypted with AES using a key that you will provide him, then you can use FTPConnect to generate an encryption
key as follows:

■ Go to the FTPConnect Admin tab and select Encryption Keys

■ Generate the key by selecting AES for the Encryption Algorithm, giving a name (for instance “My AES
Key”) and pressing the Generate button

■ If the key is successfully created, you will see success messages at the top of the page and you will see

the key listed in your list of encryption keys. Click on the Edit link for the newly listed key to see the key
string that was generated.

FTPConnect User Guide - Page 30

■ You can cut and paste this key to share with the SFTP site owner but take care to get it to the owner in a

safe and secure manner.

■ You may prefer to generate your key using a tool outside of FTPConnect or to use a key that the SFTP
site owner shared with you. If this is the case, then just add the key to FTPConnect. Start by navigating to
the main encryption key page.

■ On the Encryption Keys Page click the New button to create a new key.

FTPConnect User Guide - Page 31

■ Give the key a name, paste the key into the Key field and click Save. Notice the key itself is in a format

called PEM. This format is required. The PEM format usually starts and ends with comments “ -----BEGIN
….” and “-----END…” as shown here.

■ Once you have your keys, then you change your connections to use encryption. First navigate to your list
of FTPConnect connections.

■ Click Edit on the connection that you need to modify.

■ On the detail page, select an encryption algorithm, select a key for encryption and select a key for
decryption.

FTPConnect User Guide - Page 32

■ Click Save

FTPConnect User Guide - Page 33

Manage FTPConnect Sessions

When conducting large data transfers with FTPConnect, the FTPConnect Staging/Relay service maintains a
session. With every FTPConnect session that you start, a measured amount of system resources are allocated in
the Staging/Relay service. In order to keep the usage of resources under control, a specific Salesforce.com
instance is allowed a limited number of simultaneous sessions. When the limit is reached, you are no longer
allowed to begin new sessions until your existing sessions have completed or have been cleared by you. When
transferring a large file to an SFTP site, your salesforce. com application, using FTPConnect, initializes a session
with Staging/Relay service by calling the FtpService.putstart() method. After the session is initialized, then the
application sends data for that session to the Staging/Relay service by calling the FtpService.putwrite() method.
The session does not end until your application calls the FtpService.putdone() method.

Similarly, when transferring a large file from an SFTP site, your salesforce.com application, using FTPConnect,
initializes a session with the Staging/Relay service by calling either FtpService.getrecordsstart() or
FtpService.getbytesstart(). It then pulls chunks of data from the Staging/Relay service using
FtpService.getread(…). The relay service then stages the file by reading it, decrypting it, breaking it up into
manageable chunks and storing those chunks in a temporary holding area. Your ftpconnect application then calls
the getread() method repeatedly until there are no more chunks of data to get from the Staging/Relay service.
When the EOF status (see FtpService.getFileStatus()) is reached, the Staging/Relay service then clears the
session.

If either type of session terminates prematurely, then unfinished sessions sit in limbo on the Staging/Relay service
until someone clears them.

FTPConnect provides an interface you can use to view current sessions and to clear them if necessary. To view
your existing sessions, navigate to the Sessions page.

On the Sessions page, you can view current sessions and clear old sessions that failed to complete.

FTPConnect User Guide - Page 34

Session History, License Terms and
Usage

Your FTPConnect installation is subject limits on
usage which vary with the type of license assigned to
it. The limits apply to the number of sessions allowed
per month, the number of bytes transferred per month
and the amount of data transferred in a single session.
To view your session history, the limits associated with
the terms of your license, and the usage of resources
against your limits, go to the FTPConnect Sessions
History Page.

Usage and limits are displayed at the top of the
page. The most recent history of your sessions are
shown below the limits.

Managing Sandbox License

You can install the FTPConnect managed package on
any Salesforce.com instance and try it out for 30 days
free of charge. After 30 days, your instance must have
a production licensed to continue using FTPConnect.

From the FTPConnect Admin tab, you can navigate to
the License page to view the FTPConnect licensing
status.

When first installed on a production/sandbox instance,
the instance’s license status is ‘Trial’ as shown below.

FTPConnect User Guide - Page 35

Managing Sandbox License (continued)

After purchasing a license, on your Salesforce.com
production instance, the license page will indicate that
the license status is active. Also, notice that the limits
are increased.

On the production instance page shown above, notice
that the sandbox limit is currently 1, but in the
Sandboxes Assigned to the License list at the
bottom of the page, we can see that there are no
sandboxes using the license. To assign the license to a
sandbox, take the license key, shown in the page
above, and enter it into the License page on the
sandbox as shown below.

Now, back on the production instance, you can see
that a sandbox is using one of your licenses.

Notice that on the page above, that the production
administrator has the ability to de-assign the license
by clicking Clear.

FTPConnect User Guide - Page 36

Troubleshooting and Debugging

Common sources of problems and errors include:

■ Incorrect configuration of FTPConnect Staging/Relay Service URL.

■ Incorrect configuration of an FTPConnect connection.

■ Incorrect configuration of an FTPConnect job.

■ Encryption/Decryption issues:

– Wrong encryption algorithm

– Wrong or invalid key

– Decrypting unencrypted data.

– Neglecting to decrypt encrypted data.

■ Hanging sessions.

■ Apex programming errors.

Common Troubleshooting steps:
■ Test your connections:

– For almost any problem, the first item to check is the connection. If your job or program cannot connect to your
SFTP site, then nothing works. Use the connect test page (discussed earlier in this document) to confirm that
you can send and receive data to and from your SFTP site.

– To get additional debug information on the test page, you can turn on debug mode. Go to the FTPConnect
Admin tab. Select the Settings link. Select “Debug” in the Setting Name drop down list. Type “True” in the
Value field. Click the Add Setting button.

■ Test encryption and decryption:

– After configuring your connection with an encryption algorithm and keys, transport a simple one line file to the
SFTP site using the connection test page. Confirm with the party consuming your data that they are able to
decrypt your file using their key. On the reverse, have the SFTP site owner place a small encrypted file on the
SFTP site. Then use the test page to get that file from the site. Confirm that the data read from the site is
readable.

■ For FtpConnect jobs, verify the following:

– Check status of job in the Apex Jobs Monitor (Setup->Monitoring->Apex Jobs). Sometimes errors will be
shown under the “Status” column.

– If the Status indicates the job completed, check the Sessions Page. If the job completed with no errors, then
there should be no pending sessions. If the job failed and left a pending session showing on this page, then
the page might also show an error status. After viewing the error status, clear the session.

– Check the Sessions History and Usage page. If the Staging/Relay Service encountered errors, then they
will be shown here.

– Check the File Transfer Job Results tab. This is where the FTPConnect Job batch class writes all error and
log information that it traps.

■ Test and debug your Apex code:

– First, use the tools that the force.com platform gives you.

FTPConnect User Guide - Page 37

• Write unit tests to assure you code performs as expected.

• Use the Apex Debug Logs (Setup->Monitoring->Debug Logs).

– If you have a class that extends ftpconnect.

– CsvGetFileProcessor, include try/catch blocks to catch and report exceptions that might be thrown by

ftpconnect layers.

– If using the FtpService api, catch and report FtpErrorException.

– If using the FtpService api, check the results and status of all service requests. See getStatusCode(),
getStatusDescription(), getFileStatus(), getErrorCode() and getErrorDescription(). Also see use of
these methods in sample classes.

By default, the FTPConnect managed package connects to our production relay server using this endpoint:

https://ftp.ftpconnectrelay.com/

However, in some cases working in
troubleshooting issues, our support team might
ask you to override the default endpoint with
another endpoint. This is done by creating an
entry for the RELAY_SERVER_URL setting on
the settings page:

■ Go to the FTPConnect Admin tab.
■ Click on the Settings link.
■ Select RELAY_SERVER_URL in the

Setting Name dropdown list.
■ In the Setting Value field, type or paste

this URL setting:
https://ftp.ftpconnectrelay.com/

■ Click the Add Setting button.

Copyright © 2018, Equifax Inc., Atlanta, Georgia. All rights reserved. Equifax and EFX are registered trademarks of Equifax Inc. 18-102176

https://ftp.ftpconnectrelay.com/
https://ftp.ftpconnectrelay.com/

