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Abstract
In order to improve learners' syntactic understanding and writing ability, thus effectively improving the
quality of English writing teaching, this paper explores the method of combining Sequential Matching on
Sliding Window Sequences (SMOSS) model with improved Long Short-Term Memory (LSTM) model in
English writing teaching to improve the effect of syntactic analysis. Firstly, this paper analyzes the
structure of SMOSS model. Secondly, this paper optimizes the traditional LSTM model by using
Connectist Temporal Classi�cation (CTC), and proposes an English text error detection model.
Meanwhile, this paper combines the SMOSS model with the optimized LSTM model to form a
comprehensive syntactic analysis framework, and designs and implements the structure and code of the
framework. Finally, on the one hand, the semantic disambiguation performance of the model is tested by
using SemCor data set. On the other hand, taking English writing teaching as an example, the proposed
method is further veri�ed by designing a comparative experiment in groups. The results show that: (1)
From the experimental data of word sense disambiguation, the accuracy of the SMOSS-LSTM model
proposed in this paper is the lowest when the context range is "3 + 3", then it rises in turn at "5 + 5" and "7 
+ 7", reaches the highest at "7 + 7", and then begins to decrease at "10 + 10"; (2) Compared with the control
group, the accuracy of syntactic analysis in the experimental group reached 89.5%, while that in the
control group was only 73.2%. (3) In the aspect of English text error detection, the detection accuracy of
the proposed model in the experimental group is as high as 94.8%, which is signi�cantly better than the
traditional SMOSS-based text error detection method, and its accuracy is only 68.3%. This paper veri�es
the effectiveness and practicability of applying SMOSS model and improved LSTM model to the
syntactic analysis task in English writing teaching, and provides new ideas and methods for the
application of syntactic analysis in English teaching.

Introduction
In English writing teaching, syntactic analysis has always been a key step for learners to understand and
use grammar rules, which is very important for improving English writing ability [1]. However, many
learners are often confused when faced with complex syntactic structures and grammatical rules, which
leads to the decline of their writing quality [2]. Therefore, seeking an effective syntactic analysis method
is helpful to improve learners' syntactic understanding and writing ability, which is of great signi�cance to
improve the quality of English writing teaching.

In order to improve learners' syntactic understanding and writing ability, this paper explores the method of
combining Sequential Matching on Sliding Window Sequences (SMOSS) model with improved Long
Short-Term Memory (LSTM) model in English writing teaching to enhance the effect of syntactic analysis
[3, 4]. SMOSS model is a matching method based on sliding window sequence, which can effectively
capture the local features of sentences and provide strong support for syntactic analysis [5]. As a kind of
recurrent neural network with memory unit, LSTM model also shows good performance in dealing with
natural language tasks [6]. Therefore, the combination of these two models is expected to overcome their
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respective limitations in syntactic analysis and achieve more accurate and comprehensive syntactic
analysis.

The research goal of this paper is to explore the organic integration of SMOSS model and improved
LSTM model, and apply it to the syntactic analysis task of English writing teaching [7]. In order to achieve
this goal, the structure of SMOSS model is deeply analyzed in this research method part. The traditional
LSTM model is optimized by using Connectist Temporal Classi�cation (CTC), and an English text error
detection model is proposed. The SMOSS model and the optimized LSTM model are combined to form a
comprehensive syntactic analysis framework, and the structure and code of the framework are designed
and implemented. In order to verify the effectiveness and practicability of the proposed method, two
experiments are used in this paper. SemCor data set is used to test the semantic disambiguation
performance of the model. Taking English writing teaching as an example, the proposed method is
veri�ed in the actual English writing teaching scene by designing a comparative experiment in groups.
The innovation of this paper is that in the process of improving the LSTM model, this paper introduces
the connection time series classi�cation model CTC and proposes an English text error detection model.
This model helps learners to better understand and apply grammar rules by correcting grammatical errors
in learners' texts. The introduction of this model provides new ideas and methods for syntactic analysis
in English writing teaching. The contribution of this study lies in exploring the combined application of
the two models in the �eld of syntactic analysis, which provides new ideas and methods for English
writing teaching.

Literature review
SMOSS model is a method based on sliding window sequence matching, which can capture the local
features of sentences [8]. In recent years, SMOSS model has gradually attracted attention in the �eld of
natural language processing, and has been used in text classi�cation, sentiment analysis and other tasks
[9]. In the teaching of English writing, Czischek et al. (2022) began to try to apply SMOSS model to the
task of syntactic analysis [10]. The ability to capture local features of SMOSS model brings new
possibilities for syntactic analysis. Natraj et al. (2023) found that SMOSS model can effectively analyze
the local structure of sentences and help learners better understand the grammatical rules of sentences
[11]. For example, in the aspect of syntactic error detection, Ahmed et al. (2022) found that SMOSS model
can identify local errors in learners' sentences and provide targeted correction suggestions, thus helping
learners improve their writing expression [12]. LSTM is a kind of recurrent neural network (RNN), which is
designed with memory units, and can better deal with long-term dependence [13]. In the �eld of natural
language processing, LSTM model performs well in language modelling, machine translation, semantic
analysis and other tasks. In the teaching of English writing, Cabra Lopez et al. (2022) began to explore
the application of LSTM model to the task of syntactic analysis, in order to improve learners' syntactic
understanding and writing ability [14]. The advantage of LSTM model is that it shows better performance
when dealing with long text sequences [15]. Ciampelli et al. (2023) found that in English writing teaching,
learners often need to understand the structure and grammatical rules of complex sentences, and the
memory unit of LSTM model can help learners better capture the long-term dependence in sentences [16].
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At present, although the application of SMOSS model and LSTM model in English writing teaching is still
in the primary stage, some experimental studies have made some progress. Applying SMOSS model and
LSTM model to the task of syntactic analysis in English writing teaching is expected to improve the
accuracy and practicability of syntactic analysis. However, there are still some challenges, such as the
complexity of the model, the matching of data sets and the handling of error types. Therefore, it is
necessary to further study and explore the optimization and improvement of SMOSS model and LSTM
model in English writing teaching. Based on the literature review, this paper will continue the exploration
of SMOSS model and LSTM model in English writing teaching.

Research on syntactic analysis model

Structural analysis of SMOSS model
The core idea of SMOSS model is to extract local features from sentences by sliding windows, so as to
capture local semantic information of sentences [17, 18]. Its structure consists of the following key
components: input layer, sliding window, feature extractor, feature matching and output layer [19]. Among
them, the core of SMOSS model is matching function, which performs matching operation on sliding
window. Assuming that the sliding window size is w and the sliding window position is p, the matching
function  can be expressed as Eq. (1) [20].

1

 represents a word-oriented quantum sequence in a window of length w starting from
position p. The function f (·) is a nonlinear mapping function, which is used to map the words in the
window to the quantum sequence to the matching representation space.

In order to capture the relationship between matching representations in different positions, SMOSS
model introduces matching attention mechanism. Assuming that the attention weight between matching
representations is A, when the i-th matching representation  is considered, its weighted
representation is Eq. (2) [21].

2

 represents the attention weight between the i-th matching representation and the j-th matching
representation.

M (p)

M (p) = f (X[ p : p + w ])

X[p : p + w]

M (pi)

Mweighted  (pi) =
N

∑
j=1

Aij ⋅ M (pj)

Aij
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Input the weighted representation of the matching representation into a fully connected layer to obtain
the overall SMOSS representation, as shown in Eq. (3) [22].

3

W and b are the parameters of the fully connected layer, and ReLU represents the activation function.

The speci�c structure of SMOSS is shown in Fig. 1.

Based on the content in Fig. 1, the input layer of SMOSS model is responsible for receiving the text data
to be processed. In the task of parsing, the input layer transforms English sentences into word sequences
and embeds them, that is, each word is mapped into a dense vector representation. Such an embedded
representation can better represent the semantic relationship between words. Sliding window is one of
the core components of SMOSS model. It cuts the input word sequence into several sub-sequences with
�xed length, and then performs feature extraction and matching on each sub-sequence [23]. The size of
sliding window is an important super parameter, which determines the range of local features.

Optimization of improved LSTM model based on CTC
CTC is an end-to-end sequence learning method, which is widely used in sequence labelling tasks. The
basic structure of CTC is shown in Fig. 2.

In this paper, CTC is applied to the task of syntactic analysis, and the LSTM model is optimized by CTC
loss function to improve the syntactic analysis effect in English writing teaching [24].

In the sequence labelling task, given the input sequence , it is necessary to predict
the output sequence . T represents the length of the input sequence. Y represents
the length of the output sequence. However, because the sequence length of different samples may be
different, the traditional labelling data usually need to be strictly aligned, that is, the input sequence and
the output sequence are required to have the same length [25]. This will be a challenge for the task of
syntactic analysis, because learners' sentence structures are diverse, resulting in different sentences with
different lengths.

The key of CTC principle is to solve the sequence alignment problem by de�ning blank symbol Ø and
repeated symbol r. Assuming that the input sequence is "hello", the possible output sequences are "healo",
"helo" or "hello". The goal of CTC model is to �nd all possible alignments and calculate the probability of
each alignment. In order to achieve this, CTC introduces blank symbols in the output sequence Y,
indicating that there may be silent blank parts, such as "heØaØllo". The repetition symbol r is used to
represent the same characters in succession, such as "heØarØllo". By introducing blank symbols and
repeated symbols, CTC can �nd all possible alignment paths [26].

SMOSSoutput  = ReLU (W ⋅ Mweighted  + b)

X = (x1,x2, … ,xT )
Y = (y1, y2, … , yT )
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When calculating the CTC loss function, it is necessary to accumulate all possible alignment paths to get
the difference between the output sequence Y and the real output sequence [27]. Minimizing the loss
function will make the model better adapt to the mapping relationship between input sequence and
output sequence, thus optimizing the whole LSTM model.

Given the input sequence  and the output sequence , the
CTC loss function is de�ned as Eq. (4).

4

 represents the set of all possible alignment paths of the output sequence Y. 
represents the conditional probability of output sequence  given input sequence X. The goal of the loss
function is to minimize  to optimize the model parameters and make the difference between the
predicted output sequence and the real output sequence as small as possible.

By introducing blank symbols and repeated symbols, CTC's �exible sequence alignment mechanism
enables the improved LSTM model to learn without complete alignment labels and better adapt to the
diverse sentence structures in learners' writing expressions. This provides new ideas and methods for the
application of syntactic analysis in English writing teaching, and lays the foundation for the innovation of
this study.

In order to apply CTC method to improve the optimization of LSTM model, the CTC loss function is
connected with the output layer of LSTM. In the traditional LSTM model, the output layer usually maps
the hidden state of LSTM to the classi�cation label space through the fully connected layer. However, in
this paper, the output sequence of LSTM model is directly used as the input sequence of CTC without
introducing additional full connection layer.

In LSTM model, the hidden state sequence  is obtained by recursive calculation. 
 represents the hidden state at time T, and the output sequence  of LSTM

model. The traditional LSTM model will use the fully connected layer to map the hidden state to the
target label space, and then carry out the classi�cation task. However, in this paper, the output sequence
of LSTM model is directly used as the input sequence of CTC without introducing additional full
connection layers.

The combination mode of the improved LSTM model based on CTC is shown in Table 1 [28]:

X = (x1,x2, … ,xT ) Y = (y1, y2, … , yT )

LCTC = −log ∑
π∈B−1(Y )

P(π ∣ X)

B−1 (Y ) P(π ∣ X)
π

LCTC

H = (h1,h2, … ,hT )
hT O = (o1, o2, … , oT )



Page 7/21

Table 1
Combination steps of improved LSTM model based on CTC

Step
number

Speci�c content

1 Input the input sequence X into the LSTM model, and get the hidden state sequence 

 through recursive calculation.

2
The output sequence  of the LSTM model is associated with the

hidden state H, and the output sequence O is taken as the input sequence of CTC.

3 CTC model uses blank symbol Ø and repeated symbol r to �nd all possible alignment
paths and learn the corresponding relationship between output sequences and real labels.

4 Minimize the CTC loss function to optimize the parameters of the whole model, that is, 

, where  represents the parameters of the model.

The goal of the training process of the improved LSTM model based on CTC is to optimize the model
parameters by minimizing the CTC loss function to achieve better syntactic analysis effect. In the training
process, the whole model is jointly trained by using back propagation algorithm combined with CTC loss
function. Let  be the probability between the output sequence o of CTC model and the real
output sequence Y, and the CTC loss function is de�ned as . The parameters of
the whole model are optimized by minimizing CTC loss.

In the training process, the Stochastic Gradient Descent (SGD) algorithm is used for optimization, and the
learning rate adjustment strategy is used to speed up the convergence of the model. In addition, in order
to prevent over-�tting, techniques such as Dropout and L2 regularization are introduced. Speci�cally, for
each sample (X, Y), the gradient  of its CTC loss function with respect to parameter 
is calculated. Then, the learning rate  is used to update the parameters, and the updating formula is
shown in Eq. (5) [29].

5

 is the learning rate, which is used to control the pace of parameter update.

In order to prevent the model from over-�tting, Dropout technology is introduced, which can randomly set
the output of some neurons to zero, thus reducing the dependence between neurons and enhancing the
generalization ability of the model [30]. Meanwhile, L2 regularization is also adopted, and the L2 norm of
parameters is introduced into the loss function to suppress the situation that the parameters are too
large, thus further preventing the model from over-�tting the training data [31]. Dropout technology
reduces the dependence between neurons and enhances the generalization ability of the model by

H = (h1,h2, … ,hT )

O = (o1, o2, … , oT )

minθLCTC (θ) θ

P(Y ∣ X)
LCTC = −logP(Y ∣ X)

∇θLCTC(X,Y ; θ) θ

α

θ ← θ − α ⋅ ∇θLCTC(X,Y ; θ)

α
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randomly setting the output of some neurons to zero. Let  represent the output of the ith neuron, and in
the training process, a retention probability p is used to control the retention and discarding of neurons,
that is, Eq. (6):

6

 is a random number that obeys the uniform distribution U (0,1). During the test, the output of all
neurons is kept instead of using Dropout.

R_i is a random number that obeys the uniform distribution U (0,1). During the test, the output of all
neurons is kept instead of using Dropout.

L2 regularization suppresses the condition that the parameters are too large by introducing L2 norm into
the loss function, thus further preventing the model from over-�tting the training data. The calculation
process is shown in Eq. (7).

7

 is the model parameter.  is the total number of model parameters. The L2 regularization term is
added to the original CTC loss function to obtain the regularized loss function, as shown in Eq. (8).

8

 is a regularization parameter used to control the regularization intensity.

Design and implementation of comprehensive syntactic
analysis framework
In the framework of comprehensive syntactic analysis, the SMOSS model is integrated with the optimized
LSTM model. Speci�cally, �rstly, the SMOSS model is used to capture the local features of the input text
and obtain the coded representation of the sliding window subsequence. Then, these encoded
representations are input into the optimized LSTM model, and the encoded representation of the whole
text is obtained by LSTM encoder.

In order to make better use of the context information between SMOSS model and LSTM model, a
matching layer is introduced into the framework. The matching layer adopts attention mechanism, and

hi

hi = {
hi ⋅ ri, with probability p

0, with probability 1 − p

ri

R (θ) =
N

∑
i=1

θ2
i

θ N

Lreg = LCTC + λ ⋅ R (θ)

λ
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Analysis of the evaluation results of syntactic analysis model effect

Data set introduction
Firstly, the SemCor data set is selected as a main evaluation data set in this study. SemCor is a semantic
contextual tagging corpus created by Princeton University, which contains a large number of semantic
tagging of English sentences and words. This data set is widely used in natural language processing
tasks such as word sense disambiguation and syntactic analysis. This article uses 1,000 data in the
SemCor dataset.

realizes the interaction between local features and global features by calculating the similarity between
each sliding window subsequence and other subsequence. Speci�cally, assuming that there are N sliding
window subsequence in the input text, the output of the matching layer can be expressed as Eq. (9).

9

 respectively represent the local features of SMOSS model output, the global features of LSTM
model output and the features that need to be fused, and  is the feature dimension.

In order to better cope with the task of error detection in English writing teaching, the LSTM model is
extended and a sequence-to-sequence (seq2seq) model is constructed. The model includes an encoder
and a decoder, which are used to encode the input text and generate the corrected text respectively.

In the encoder part, the improved LSTM model is used to encode the input text, and the coding
representation C is obtained. In the decoder part, another LSTM model is used to generate the corrected
text step by step. Assuming that the target text is Y, the goal of the decoder is to maximize the conditional
probability of generating the target text, that is, Eq. (10).

10

T represents the target text length.

In the implementation of the comprehensive parsing framework, the SMOSS model and the improved
LSTM model are realized by using Python programming language and TensorFlow, a deep learning
framework. Batch training and optimizer are used to train the model, and cross entropy loss function is
used to measure the difference between the prediction results of the model and the real label.

Attention(Q,K,V ) = softmax( )V
QKT

√dk

Q,K,V
dk

P(Y ∣ X) =
T

∏
t=1

P (yt ∣ y1, y2, … , yt−1,C)
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In addition to SemCor data set, in order to be closer to the actual scene of English writing teaching, an
English writing teaching data set is also built. This data set contains sentences and paragraphs written
by learners in English writing teaching, including examples with different grammatical di�culty and
writing level. The sentences in the data set include all kinds of grammatical errors, such as inconsistent
subject and predicate, tense errors, improper use of articles and so on. A total of 500 self-built datasets
are collected.

Analysis of model performance evaluation results
The test set and test set of SemCor data set are divided into 8:2, and the comprehensive syntactic
analysis framework model constructed in this paper is trained and evaluated. Taking the traditional
SMOSS-based text error detection method as the control group and the comprehensive syntactic analysis
framework model in this paper as the experimental group, the evaluation results of the model
performance are compared, and the results are shown in Table 2 for three experiments.

Table 2
Model performance evaluation results

Number of experiments Group Accuracy Recall rate F1 score

1 Experimental group 0.890 0.870 0.882

Control group 0.730 0.711 0.721

2 Experimental group 0.891 0.870 0.882

Control group 0.731 0.712 0.723

3 Experimental group 0.890 0.873 0.884

Control group 0.732 0.711 0.720

The visualization result is shown in Fig. 3.

Figure 3 shows that the accuracy of the experimental group is between 0.890 and 0.891, the recall rate is
between 0.870 and 0.893, and the F1 score is between 0.882 and 0.884. The accuracy of the control
group is 0.7030 at the minimum and 0.732 at the maximum, and the recall rate and F1 score are also
around 0.710. According to these data, it can be concluded that the experimental group performs better in
syntactic analysis tasks than the control group.

Analysis of experimental results of word sense
disambiguation
SemCor data set is used to test the semantic disambiguation performance of the model to evaluate the
effect of the improved SMOSS-LSTM model in disambiguation. Several ambiguous words are selected as
test samples, including "bank", "plant" and other common ambiguous words. By embedding these words
into sentences, test data with different contexts are constructed and input into the improved SMOSS-
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LSTM model for disambiguation. The comparison of disambiguation accuracy between the experimental
group and the control group is shown in Table 3.

Table 3
Experimental results of word sense disambiguation

Number of experiments Group 3 + 3 5 + 5 7 + 7 10 + 10

1 Experimental group 0.821 0.870 0.890 0.831

Control group 0.760 0.811 0.852 0.780

2 Experimental group 0.792 0.850 0.881 0.812

Control group 0.753 0.791 0.841 0.763

3 Experimental group 0.810 0.862 0.901 0.820

Control group 0.741 0.780 0.851 0.772

The diagram is drawn according to Table 3, as shown in Fig. 4.

According to Fig. 4, by comparing the results of the experimental group and the control group, it can be
found that the improved SMOSS-LSTM model in the experimental group is superior to the benchmark
model in the control group in disambiguation accuracy. The improved SMOSS-LSTM model makes better
use of contextual information, especially in a larger context, and can understand sentence context more
comprehensively, thus eliminating ambiguity more accurately. However, the benchmark model in the
control group is not as sensitive to the use of context information as the improved SMOSS-LSTM model,
resulting in low accuracy.

Validation of syntactic analysis effect and analysis of
comparative experimental results
In the veri�cation and comparison of syntactic analysis effect, the control group is set as the traditional
dependency parser. The experimental group is the improved SMOSS-LSTM model. The experiments are
still carried out with sentences in SemCor data set, and different sample sizes (50, 100, 150) are selected
to investigate the generalization ability and effect of the model under different data sizes. The results are
shown in Table 4.
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Table 4
Validation of syntactic analysis effect and comparison of experimental results

Number of experiments Group 50 100 150

1 Comprehensive analysis framework 0.850 0.895 0.821

Traditional dependency parser 0.711 0.741 0.721

2 Comprehensive analysis framework 0.860 0.882 0.820

Traditional dependency parser 0.732 0.711 0.722

3 Comprehensive analysis framework 0.870 0.891 0.840

Traditional dependency parser 0.732 0.720 0.712

The diagram is drawn according to Table 4, as shown in Fig. 5.

According to the data in Fig. 5, compared with the control group, the accuracy of syntactic analysis in the
experimental group reaches 89.5%, while that in the control group is only 73.2%. With the increase of
sample size, the accuracy of the experimental group and the control group �uctuated, but the overall
trend showed good stability. Because of the combination of SMOSS model and improved LSTM model, a
comprehensive syntactic analysis framework is formed, which makes full use of their advantages and
improves the effect of syntactic analysis.

Analysis of experimental results of English text error
detection
In this paper, the traditional SMOSS-based text error detection method and the improved SMOSS-LSTM
are used to carry out the comparative experiment of English text error detection, and the self-built data set
is used to carry out the experiment for three times. The results are shown in Table 5.

Table 5
Experimental results of English text error detection

Number of experiments Group 50 100 150

1 Comprehensive analysis framework 0.930 0.942 0.948

Text error detection based on SMOSS 0.661 0.651 0.683

2 Comprehensive analysis framework 0.922 0.930 0.944

Text error detection based on SMOSS 0.633 0.651 0.667

3 Comprehensive analysis framework 0.911 0.931 0.947

Text error detection based on SMOSS 0.600 0.632 0.681

The diagram is drawn according to Table 5, as shown in Fig. 6.
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In Fig. 6, in the aspect of English text error detection, the detection accuracy of the proposed model in the
experimental group is as high as 94.8%, which is signi�cantly better than the traditional SMOSS-based
text error detection method, and its accuracy is only 68.3%. In the experiment of English text error
detection, the proposed SMOSS-LSTM model has a high detection accuracy in the experimental group,
which is signi�cantly better than the traditional SMOSS-based text error detection method. It also shows
that with the increase of sample size, the accuracy of the experimental group tends to be stable, while the
accuracy of the control group changes little. This further veri�es the stability and effectiveness of
SMOSS-LSTM model in dealing with complex sentences and long texts.

Discussion
From the experimental results, whether the sample size is 50, 100 or 150, the accuracy of the
experimental group (using SMOSS-LSTM model) remains at a high level, and the highest is 94.8%. This
shows that the proposed SMOSS-LSTM model has obvious advantages in English text error detection,
and veri�es its application potential in English writing teaching. In contrast, the control group of the
traditional text error detection method based on SMOSS has a low accuracy, and the highest accuracy is
only 68.3%. This further veri�es the signi�cant improvement of the proposed model compared with the
traditional method. From the experimental results, it is also observed that the accuracy of the
experimental group changes little under different sample sizes, which shows that the proposed SMOSS-
LSTM model is stable when dealing with data of different sizes. This shows that the model has good
adaptability to English texts with different lengths and complexity, and can be applied to a variety of
practical scenarios, including English writing teaching for learners, natural language processing and other
�elds. The experimental results also show that the accuracy of the experimental group tends to be stable
with the increase of sample size. This phenomenon may be related to the characteristics of LSTM model,
which has advantages in dealing with long-term dependence.

Conclusions
In this paper, the method of combining SMOSS model with improved LSTM model is explored and
applied to the syntactic analysis task in English writing teaching. The experimental results verify the
effectiveness and advantages of the proposed SMOSS-LSTM model in English text error detection. By
comparing the results of the experimental group and the control group, it is observed that the accuracy of
the experimental group is signi�cantly higher than that of the control group. The experimental results
show that with the increase of sample size, the accuracy of the experimental group tends to be stable,
which shows that the proposed SMOSS-LSTM model is stable when dealing with data of different sizes,
and has the advantage of adapting to different text lengths and complexity. However, it is also noted that
there are some shortcomings in this paper. First, the sample size of experimental data is relatively small,
so people can consider expanding the sample size in the future to enhance the reliability of experimental
results. Secondly, although the experimental data set covers common types of grammatical errors, there
may be other types of errors that need further consideration. In addition, this paper focuses on English
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text error detection, and the model can be applied to other natural language processing tasks for a more
comprehensive evaluation in the future.

Declarations

Data availability
All data generated or analyzed during this study are included in this published article [and its
supplementary information �les].
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Figures

Figure 1

Basic structure of SMOSS model
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Figure 2

Basic structure of CTC model



Page 18/21

Figure 3

Comparison chart of model evaluation results
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Figure 4

Comparison chart of word sense disambiguation results
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Figure 5

Comparison chart of syntactic analysis effect and result
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Figure 6

Comparison chart of English text error detection results
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