Accepted Manuscript

Clarireedia: A new fungal genus comprising four pathogenic species responsible for dollar spot disease of turfgrass

Catalina Salgado-Salazar, Lisa A. Beirn, Adnan Ismaiel, Michael J. Boehm, Ignazio Carbone, Alexander I. Putman, Lane P. Tredway, Bruce B. Clarke, Jo Anne Crouch

PII: S1878-6146(18)30065-5

DOI: 10.1016/j.funbio.2018.04.004

Reference: FUNBIO 919

To appear in: Fungal Biology

Received Date: 19 January 2018

Revised Date: 27 March 2018

Accepted Date: 3 April 2018

Please cite this article as: Salgado-Salazar, C., Beirn, L.A., Ismaiel, A., Boehm, M.J., Carbone, I., Putman, A.I., Tredway, L.P., Clarke, B.B., Crouch, J.A., *Clarireedia*: A new fungal genus comprising four pathogenic species responsible for dollar spot disease of turfgrass, *Fungal Biology* (2018), doi: 10.1016/ j.funbio.2018.04.004.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Clarireedia: A new fungal genus comprising four pathogenic species responsible for dollar
2	spot disease of turfgrass
3	
4	Catalina Salgado-Salazar ^{a,b,§} , Lisa A. Beirn ^{c,§} , Adnan Ismaiel ^a , Michael J. Boehm ^d , Ignazio
5	Carbone ^e , Alexander I. Putman ^e , Lane P. Tredway ^e , Bruce B. Clarke ^c and Jo Anne Crouch ^{a, *}
6	
7	^a Mycology and Nematology Genetic Diversity and Biology Laboratory, United States
8	Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Bldg.
9	010A, Beltsville, MD, 20705, USA
10	^b Oak Ridge Institute for Science and Education, ARS Research Participation Program, Oak
11	Ridge, TN 37831, USA
12	^c Department of Plant Biology, Rutgers University, 59 Dudley Road, New Brunswick, NJ,
13	08901, USA
14	^d Department of Plant Pathology, The Ohio State University, 2021 Coffey Road, Columbus, OH,
15	43210, USA
16	^e Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North
17	Carolina State University, Campus Box 7244-Partners III Building, Raleigh, NC, 27695, USA
18	
19	[§] These authors both provided significant original contributions and are acknowledged as the
20	joint first authors of this work by all members of this collaborative research team.
21	

22 *Corresponding author. Tel +1 301 504 6922

23	Current address of Lisa A. Beirn and Lane P. Tredway. Syngenta Crop Protection, Greensboro,
24	NC 27409.
25	
26	Current address of Michael J. Boehm. Institute of Agriculture and Natural Resources, University
27	of Nebraska-Lincoln, Lincoln, NE 68588.
28	
29	Current address of Alexander Putnam. Department of Plant Pathology and Microbiology,
30	University of California Riverside, Riverside, CA 92521.
31	
32	Email addresses: Catalina.Salgado@ars.usda.gov (C. Salgado-Salazar), lisa.beirn@syngenta.com
33	(L. A. Beirn), Ed.Ismaiel@ars.usda.gov (A. Ismaiel), mboehm3@unl.edu (M. J. Boehm),
34	ignazio_carbone@ncsu.edu (I. Carbone), aorshins@umn.edu (A. M. Orshinsky),
35	alexander.putman@ucr.edu (A. I. Putman), lane.tredway@syngenta.com (L. P. Tredway),
36	bruce.clarke@.rutgers.edu (B. B. Clarke), joanne.crouch@usda.ars.gov (J. A. Crouch).
37	
38	
39	
40	Keywords - Ascomycota, Leotiomycetes, molecular phylogenetics, Rutstroemia, Sclerotinia

41 Abstract

42 Dollar spot is one of the most destructive and economically important fungal diseases of amenity turfgrasses. The causal agent was first described in 1937 as the ascomycete Sclerotinia 43 44 homoeocarpa. However, the genus-level taxonomic placement of this fungus has been the subject of an ongoing debate for over 75 years. Existing morphological and rDNA sequence 45 evidence indicates that this organism is more appropriately placed in the family *Rutstroemiaceae* 46 47 rather than the Sclerotiniaceae. Here we use DNA sequence data from samples of the dollar spot 48 fungus and other members of the *Rutstroemiaceae* (e.g. *Rutstroemia, Lanzia, Lambertella*) 49 collected throughout the world to determine the generic identity of the turfgrass dollar spot 50 pathogen. Phylogenetic evidence from three nucleotide sequence markers (CaM, ITS and Mcm7; 51 1810-bp) confirmed that S. homoeocarpa is not a species of Sclerotinia; nor is it a member of 52 any known genus in the Rutstroemiaceae. These data support the establishment of a new genus, 53 which we describe here as *Clarireedia* gen. nov. The type species for the genus, *Clarireedia* homoeocarpa comb. nov., is described to accommodate the dollar spot fungus, and a neotype is 54 55 designated. Three new species in this clade, C. bennettii sp. nov., C. jacksonii sp. nov., and C. monteithiana sp. nov. that also cause dollar spot disease are described. Clarireedia homoeocarpa 56 and C. bennettii occur primarily on Festuca rubra (C3 grass) hosts and appear to be restricted to 57 the United Kingdom. Clarireedia jacksonii and C. monteithiana occur on a variety of C3 and C4 58 59 grass hosts, respectively, and appear to be globally distributed. This resolved taxonomy puts to rest a major controversy amongst plant pathologists and provides a foundation for better 60 61 understanding the nature and biology of these destructive pathogens.

62 **1. Introduction**

Dollar spot is a debilitating fungal disease of cool- and warm-season turfgrass species (Smiley et 63 al. 2005). The disease is widespread and persistent, with more money and effort spent on its 64 control than any other disease affecting golf course turf (Goodman and Burpee 1991). Despite 65 the aesthetic and economic impact of dollar spot on turfgrass, the taxonomy and nomenclature of 66 the fungus responsible for the disease has been in a state of flux for almost eight decades. The 67 68 first report of dollar spot disease on turfgrass occurred in 1927, when John Monteith referred to it 69 as a 'small brown patch', characterized by straw colored patches that did not become larger than 70 a silver dollar (Fig 1A-D) (Monteith 1927). The term 'small brown patch' to describe the disease 71 was subsequently changed to 'dollar spot' to avoid confusion with another disease affecting turfgrass: 'large brown patch' caused by the fungus Rhizoctonia solani (Monteith and Dahl 72 1932). Bennett identified the causal agent of dollar spot disease on turfgrass as a new species, 73 74 Rhizoctonia monteithiana (Bennett 1935); however, the name was not validly published, as a Latin description was not provided in the protolog. The omission was almost certainly due to the 75 timing of new rules implemented by the Cambridge Code of the International Code of Botanical 76 77 Nomenclature, with the requirement for Latin descriptions only taking effect in January 1935, 78 and the description of *R. monteithiana* published in February 1935. The omission was never corrected, and as such R. monteithiana is not a valid basionym for the fungus. 79

In 1937, Bennett provided a valid name for the fungus responsible for dollar spot disease, withdrawing his earlier proposal for *R. monteithiana* based on new observations and describing the ascomycete *Sclerotinia homoeocarpa* (Bennett 1937). Three phenotypes were documented from four cultured isolates of the fungus, based on differences in spore production: a 'perfect strain', producing ascospores and conidia; an 'ascigerous strain', producing both ascospores and

85 microconidia; and two 'non-sporing strains' (Bennett 1937). Bennett observed that the structures from which sporophores arose resembled aggregates of microsclerotia, and classified the fungus 86 in the genus Sclerotinia (Sclerotiniaceae) (Bennett 1937). In the years following Bennett's 87 description, Whetzel reviewed the taxonomy of the family Sclerotiniaceae and, in doing so, 88 restricted the genus Sclerotinia to include only those fungi producing apothecia from tuberoid 89 sclerotia, a characteristic not exhibited by S. homoeocarpa (Whetzel 1945). Instead of sclerotia, 90 91 S. homoeocarpa produces an indeterminate substratal stroma. Whetzel concluded from this 92 morphological characteristic that S. homoeocarpa resembled species such as Rutstroemia and 93 *Lambertella* (Whetzel 1945) – organisms that would later be classified as part of a new family, 94 the Rutstroemiaceae (Holst-Jensen et al. 1997). Whetzel later proposed that S. homoeocarpa was 95 a species of *Rutstroemia*, but never formally reclassified the fungus (Whetzel 1946). As such, the 96 pathogen retained a generic name that was taxonomically incorrect, but valid from a 97 nomenclatural standpoint (Whetzel 1946).

In the years following Whetzel's exclusion of the dollar spot fungus from the genus 98 99 Sclerotinia, prospects for re-classification of S. homoeocarpa were limited by the absence of 100 fruiting bodies or other taxonomically informative morphological characters. The fungus exists 101 almost exclusively in the vegetative state, as sterile hyphae or substratal stromata. Spore 102 production is exceedingly uncommon, and apothecial fruiting bodies are rarely documented 103 (Smiley et al. 2005). For thirty-six years following Bennett's original description of ascospore 104 production by S. homoeocarpa, reproductive structures were not observed in vitro or in natural 105 populations of the fungus (Jackson 1973). Apothecia production was not reported from naturally 106 occurring North American populations of S. homoeocarpa until 1970; yet these structures were 107 sterile (Fig 1E) (Fenstermacher 1970). In 1973, ascospores were observed from a fresh collection

of *S. homoeocarpa* isolated from cool-season turfgrasses in the U.K. (Jackson 1973). The
fruiting bodies and spores observed from these newer collections closely resembled the *S. homoeocarpa* sexual state described by Bennett (Jackson 1973). Jackson believed that the
fruiting bodies resembled those of a *Rutstroemia* species (Jackson 1973), but because this genus
was deemed unacceptable by taxonomists at the time (Dumont 1971), he did not seek to reassign *S. homoeocarpa* to a new taxon.

114 As the number of *Sclerotinia* species described in the mycological literature soared to 115 over 250 by the late 1970s, a new generation of researchers set out to make sense of the taxonomic confusion within the genus and related taxa (Kohn 1979a,b). Kohn's seminal 116 117 monographs of the Sclerotiniaceae provided additional evidence for the exclusion of S. 118 homoeocarpa from the genus Sclerotinia. From assessments of morphological and cultural characteristics, Kohn suggested that S. homoeocarpa might be placed within the genus Lanzia or 119 120 the genus *Moellerodiscus* (Kohn 1979a,b). Stromal histology supported this theory (Kohn and 121 Grenville 1989), however, in the absence of definitive evidence aligning the species with a single genus, formal reclassification of S. homoeocarpa was once again deferred (Kohn and Grenville 122 123 1989). More recent investigations have drawn the use of stromatal characters for family level 124 distinctions into question (Baral and Bermann 2014; Zhao et al. 2016). With the advent of molecular technologies in the 1990s, researchers set out yet again to 125 126 pinpoint the taxonomic identity of S. homoeocarpa. These studies produced a series of 127 contradictory results. Electrophoretic analysis of stromatal proteins showed isolates of S. 128 homoeocarpa sharing similarity with fungi in the Rutstroemiaceae genus Poculum (Novak and 129 Kohn 1991). In contrast, sequence analysis of rDNA markers showed that the relationship of S.

130 *homoeocarpa* isolates with other *Rutstroemiaceae* genera could be quite variable, with generic

131	affinities differing from one study to the next. The first DNA-based phylogenetic analysis of this
132	group of fungi using rDNA internal transcribed spacer (ITS) sequences showed clustering of S.
133	homoeocarpa isolates with fungi in the genus Rutstroemia (Carbone and Kohn 1993).
134	Subsequent analysis of DNA sequences from the ITS and portions of the rDNA large and small
135	subunits grouped S. homoeocarpa isolates with fungi in the genus Poculum (Holst-Jensen et al.
136	1997). However, type specimens of the genus Poculum were not included in this study, and
137	reclassification of S. homoeocarpa was deferred for the fifth time (Holst-Jensen et al. 1997).
138	Subsequent analysis of the ITS1 region grouped S. homoeocarpa isolates with two fungal
139	isolates from the genus Rutstroemia (Powell 1998). Phylogenetic analysis of the ITS1 dataset
140	using parsimony tests showed S. homoeocarpa isolates clustering into two subclades
141	corresponding with geographic origin, although the sample size was small $(n = 7)$. Powell
142	suggested reclassification of S. homoeocarpa into two new species of Rutstroemia: R. festucae as
143	a new species limited to the U.K., and R. floccosum as a new species found outside the U.K.,
144	however, these conclusions were not validly published in accordance with fungal nomenclature
145	requirements (http://www.iapt-taxon.org/nomen/main.php).
146	Despite more than 70 years of accumulated evidence that the dollar spot fungus is not a
147	true Sclerotinia species, in the absence of a valid taxonomic and nomenclatural revision, this
148	economically important plant pathogen continues to be referred to as S. homoeocarpa, the only
149	legitimate name currently available. Due to morphological and molecular variation and possible
150	host specialization between isolates of S. homoeocarpa associated with symptoms of dollar spot,
151	some researchers have proposed the idea that more than just a single organism may cause this
152	disease (Jackson 1973; Baldwin and Newell 1992; Putman 2013; Espevig et al. 2015, 2017). In
153	this study, we use multi-locus molecular phylogenetic analysis, expanded taxon sampling, and

- morphological evaluations to resolve the identity of the fungi responsible for dollar spot diseaseon cool- and warm-season turfgrass.
- 156

157 2. Materials and Methods

158

159 *2.1 Fungal isolates*

160 Sixty-seven cultured fungal isolates were used in this study. The samples included members of 161 the Rutstroemiaceae (e.g. Lambertella, Rutstroemia, Lanzia) and Sclerotiniaceae (e.g. Ciboria, 162 Monilinia, Sclerotinia) families. Exemplar isolates of Sclerotinia homoeocarpa were selected for 163 inclusion through preliminary variation screening of a worldwide sample of ~ 1,170 dollar spot isolates using ITS sequence data and SSR genotypes (Putman 2013). Three living samples of S. 164 homoeocarpa deposited in the CBS culture collection by Bennett in 1937 (CBS accession 165 166 numbers CBS 309.37, CBS 310.37, CBS 311.37) were also included. No known documentation 167 directly connects the Bennett CBS isolates to the S. homoeocarpa protolog. However, the fact that these three isolates were deposited at the same time as the publication suggests that they may 168 169 be the same three isolates described in the publication, but this cannot be concluded with 170 certainty. A complete list of isolates used in the present study is found in Table 1.

- 171
- 172 2.2 Apothecia production and morphological examinations

173 A subset of isolates of *S. homoeocarpa* were evaluated for the production of apothecia *in vitro*,

- both individually and in crosses performed between isolates of different mating types ($MAT1-1 \times$
- 175 *MAT1-2*) (Supplementary Table 1). Apothecia formation was initiated using techniques
- 176 described by Orshinsky and Boland (2011). Briefly, isolates were grown on potato dextrose agar

177 (PDA, Difco, Sparks, MD) or wheat meal (Bob's Red Mill, Milwaukie, OR) agar amended with 178 2.5 mM ascorbic acid at 25 C under continuous light. A minimum of eight plates were prepared 179 per isolate. Plates were inoculated with the fungus by spreading a 300 µl mycelia/sterile water 180 slurry. Morphological assessments were made using a Zeiss V20 dissecting microscope, with 181 images captured utilizing Zeiss Zen software (Carl Zeiss Microscopy, Thornwood, NY). Co-182 inoculations of isolates of differing mating type were produced by preparing slurries of mycelia 183 and sterile water from actively growing S. homoeocarpa cultures that were previously genotyped 184 as either MAT1-1 or MAT1-2 (Putman et al. 2015) or by genotyping using the methods of 185 Putnam et al. (2015), followed by plating on ascorbic acid amended PDA. Specifically, a 300 µl 186 slurry of a MAT1-2 isolate was spread over the surface of the plates using a sterile glass rod, 187 allowed to grow for one day, then reinoculated by 300 µl of a MAT1-1 mycelia/sterile water 188 slurry. Co-inoculated plates were incubated under the aforementioned conditions. Ten plates per 189 mating cross were used to evaluate apothecia production.

190

191 2.3 DNA extractions, PCR amplification, and sequencing

DNA was extracted using a standard phenol/chloroform procedure (Crouch et al. 2005) or the 192 193 OmniPrep DNA kit (G-Biosciences, St. Louis, MO) according to the manufacturer's protocol. 194 DNA concentration and purity were determined using a NanoDrop 1000 Spectrophotometer (Thermo Fisher Scientific, Wilmington, DE). Nucleotide sequence data for phylogenetic 195 196 analyses was generated from three standard molecular markers: the rDNA internal transcribed 197 spacer (ITS) region, calmodulin (CaM), and DNA replication licensing factor Mcm7. PCR 198 amplification to generate sequencing templates was performed using an Eppendorf Mastercycler 199 Gradient (Eppendorf, Hamburg, Germany) and published primer pairs: ITS4/ ITS5, (White et al.

200	1990), CAL-228F/CAL-737R (Carbone and Kohn 1999) and Mcm7-709for/Mcm7-1348rev
201	(Schmitt et al. 2009). PCR primers were synthesized as oligonucleotides by Integrated DNA
202	Technologies (Coralville, IA). PCR reactions were performed using ChromaTaq DNA
203	polymerase (Denville Scientific, Metuchen, NJ) in 25 µl volumes containing 10x PCR buffer, 1.5
204	mM MgCl ₂ , 0.2 mM of each dNTP, and 12.5 $ng/\mu l$ of each primer. PCR amplicons were
205	visualized on 0.8% agarose gels and purified using the NucleoSpin Gel and PCR Clean-up kit
206	(Macherey-Nagel, Duren, Germany). Purified amplicons were sequenced in both directions using
207	Sanger sequencing technology by GeneWiz, Inc. (South Plainfield, NJ) or in-house using ABI
208	BigDye 3 Terminator Cycle sequencing chemistry on an ABI3130 Genetic Analyzer (Life
209	Technologies, Grand Island, NY). All sequences were assembled using Lasergene Sequence
210	Analysis Software (DNASTAR, Madison, WI) or Sequencher (Gene Codes Corporation, Ann
211	Arbor MI).

212

213 2.4 Alignments and phylogenetic analyses

214 DNA sequences were aligned with the MAFFT program online version 7

215 (http://mafft.cbrc.jp/alignment/server/) (Katoh and Standley 2013) using the algorithm G-INS-i. 216 jModeltest version 2.1.7 (Darriba et al. 2012) was used to determine the best nucleotide substitution models using the Akaike Information Criterion (AIC). Individual gene trees were 217 218 produced for each of the marker regions sequenced from the fungal isolates with the model 219 parameters previously estimated (Supplementary Fig 1-3). A combined phylogenetic analysis 220 was performed from all sampled taxa using aligned datasets from all sequenced regions and a 221 partitioned approach. Phylogenetic analysis were performed using maximum likelihood (ML) 222 and Bayesian (BI) approaches. Bayesian phylogenetic trees were obtained using MrBayes

223	version 3.2.5 (Ronquist et al. 2012) with a TIM2 + I + γ model for ITS and Mcm7 datasets, and a
224	TPM1 + I + γ model for the CaM dataset. MrBayes analyses were initiated from random starting
225	trees, run for 10 million generations with four chains (Metropolis-coupled Markov Chain Monte
226	Carlo) (Huelsenbeck and Rannala 2004) and sampled every 1000 th generations for a total of
227	10,000 tree samples per run. Default priors were used on all analyses and two independent BI
228	analyses were run. To evaluate stationarity and convergence between runs, log-likelihood scores
229	were plotted using TRACER version 1.6 (Rambaut et al. 2013). After stationarity evaluation,
230	25% of the trees were removed from the analyses. The remaining trees were used to calculate
231	posterior probabilities (PP) at all nodes using the "sumt" command. ML analyses were
232	performed using RaxML (Stamatakis 2006) implemented in RaxML GUI version 1.5b1
233	(Silvestro and Michalak 2012). Branch support was assessed with 1,000 nonparametric
234	bootstrapping replicates using the model parameters described above. Clades with $PP \ge 0.95$ and
235	bootstrap values \geq 70% were considered well supported (Huelsenbeck and Rannala 2004).
236	Finished tree files were visualized in FigTree version 1.4.3 (Rambaut 2014).
237	
238	2.5 Data and specimen curation
239	All sequence data from this study was deposited in NCBI GenBank (Table 1). Sequence
240	alignments are available through the National Agricultural Library AgData Commons
241	(http://dx.doi.org/10.15482/USDA.ADC/1429061). Fungal specimens used for taxonomic

242 descriptions, along with select representative isolates, have been deposited at CBS-KNAW

- 243 culture collections (Utrecht, The Netherlands); vouchers and type specimens were deposited in
- the U.S. National Fungus Collections, Beltsville, MD, USA (Table 1). Nomenclature

245 descriptions have been deposited in MycoBank (accession numbers MB807153, MB823934, 246 MB823935, MB823936, MB823937). 247 248 3. Results 249 250 3.1 Morphological and cultural assessments 251 When young (~2 to 10 days), all Sclerotinia homoeocarpa cultures grown on unamended PDA 252 exhibited white, rapidly growing, floccose mycelium (Fig 2). As cultures matured (> 3 weeks), hyphae gradually exhibited a darker coloration, ranging from off-white to olive or brown. Aerial 253 254 mycelium gradually collapsed, and flat, dark brown/black stroma was formed by some S. homoeocarpa isolates on the underside (back) of the colony (Fig 2). No spores were present in 255 256 any cultures. Two individual S. homoeocarpa isolates (SE16F-4, RCCPG-1) produced apothecia 257 without the presence of the opposite mating type after four weeks of growth on PDA amended 258 with ascorbic acid (PDA-AA; Fig 3A-D). Apothecia also formed from the following co-259 inoculations on PDA-AA: SE16F-4 × MAFF 235856, SE16F-4 × MAFF 235858, SE16F-4 × 260 261 BC-14, SE16F-4 × RE18G-38, SE16F-4 × LWC-10, SE16-F4 × DRR-9 (Supplementary Table 1). In all instances, regardless of whether isolates of both mating types were present or not, 262 apothecia were sterile, as evidenced by the absence of asci and ascospores (Fig 3 E-G), 263 264 suggesting that any apothecia visible in crosses might be a result of isolate SE16F-4 producing 265 individual apothecia. Apothecia were, on average, 2.73 by 1.91 mm. Apothecia were not 266 observed on any of the remaining isolates.

268 *3.2 Molecular phylogeny*

Sequencing of three molecular markers generated 1,810 bp of DNA sequence data, with PCR
success rates from DNA templates as follows: CaM=87%, Mcm7=68%, ITS=97%. Fifty-seven
percent of the DNA produced PCR amplicons from all three markers, 37% of samples produced
amplicons from just two markers, and 6% of samples produced amplicons from only one marker
(Table 1).

274 The phylogenetic tree constructed from the combined dataset produced a topology similar 275 to those constructed from individual marker datasets, although with variation in branch support observed across the trees (Fig. 4, Supplementary Fig 1-3). The three single gene genealogies did 276 277 not conflict with each other, although some individual clades had low PP and bootstrap support. As outgroup to the Rutstroemiaceae ingroup, Sclerotinia species (S. asari, S. sclerotiorum, S. 278 279 matthiolae, S. minor, and S. trifoliorum) and Ciboria species (C. amentacea, C. aestivalis, C, 280 spermophila, C. americana), together with Botrytis cinerea, formed their own well supported 281 monophyletic group, consistent with their placement in the Sclerotiniaceae (Fig 4). Consistent 282 with previous research, S. homoeocarpa clustered as a member of the Rutstroemiaceae, 283 alongside species of Rutstroemia, Lambertella, and Lanzia. Phylogenetic analyses of the three 284 loci combined showed high bootstrap and PP support values for the majority of the branches, 285 except for a few internal branches (Fig 4). In the multilocus phylogenetic tree, the S. homoeocarpa isolates clustered into a well-286

supported clade that was distinct from other species in the family *Rutstroemiaceae* such as *Lambertella*, *Lanzia* and *Rutstroemia* (Fig 4; PP=1.0, bootstrap=73%). Based on this
phylogenetic distinctiveness, we propose to erect a new genus, *Clarireedia*, to accommodate
these fungi, as detailed below in the Taxonomy section. All three single gene genealogies

recovered the proposed new genus as monophyletic with fully supported bootstrap and PP values(Supplementary Fig 1-3).

293 The fungal isolates within the proposed genus *Clarireedia* were subdivided into two main 294 groups with high PP and bootstrap support values in the combined phylogeny; these were designated Group A and Group B (PP=0.98-1.0; bootstrap=77-100). Basal to Group A and 295 296 Group B were three single isolate lineages: CBS 465.73 from rabbit dung; CPB-17 and PSFFB-1 297 from Festuca rubra. These single isolate lineages grouped most closely to Group A. Clarireedia 298 Group A included the type species (C. homoeocarpa comb. nov.) and a new species to be 299 designated C. bennettii. The clades designated as C. homoeocarpa and C. bennettii were 300 recovered from all three individual gene genealogies, although with variable bootstrap and PP 301 support values. Although two of the single isolate lineages (CPB-17 and PSFFB-1) clustered as part of C. homoeocarpa in the ITS and Mcm7 phylogenies, the other single isolate lineage (CBS 302 303 465.73) aligned with C. bennettii (Supplementary Fig 2-3). Clarireedia bennettii was recovered 304 in the CaM and ITS phylogenies with high bootstrap and PP support values, but was not supported (albeit not contradicted) in the Mcm7 phylogeny. All members of Group A originated 305 from the United Kingdom, and were isolated from Festuca rubra and one isolate from 306 307 Symplocarpus foetidus. The three isolates deposited in the CBS culture collection by Bennett in 308 1937 (accession numbers CBS 309.37, CBS 310.37, CBS 311.37) fell within Group A, but were 309 not all members of the same species. CBS 310.37 was a member of C. homoeocarpa, and CBS 310 309.37 and CBS 311.37 were members of C. bennettii. 311 Clarireedia Group B contained two new species, to be designated C. jacksonii and C. 312 monteithiana (Fig 4; see Taxonomy section). Clarireedia jacksonii was only identified from C3

313 turfgrasses, including species such as Agrostis stolonifera, F. rubra, Lolium perenne and Poa

- 314 *pratensis* (Table 1). *Clarireedia monteithiana* was identified solely from the C4 turfgrasses
- 315 Cynodon dactylon × transvaalensis and Paspalum vaginatum.
- 316

317 **4.** Taxonomy

- The results obtained from the phylogenetic analyses showed that fungi previously described as *Sclerotinia homoeocarpa* form a lineage within the family *Rutstroemiaceae*, distinct from
- 320 currently recognized species and constituting a new undescribed genus (Fig 4). Four species,
- 321 including the type species for the genus are described here. Because these new species do not
- 322 produce reproductive structures or other distinct characters that allow morphological
- 323 identification; species recognition within the genus is dependent upon molecular phylogenetic
- 324 analyses. A list of variable molecular characters found within the CaM, ITS and Mcm7 regions
- 325 that can be used to discriminate species between and within groups A and B in *Clarireedia* is
- 326 provided in Table 2.
- 327
- 328 Clarireedia L.A. Beirn, B.B. Clarke, C. Salgado & J.A. Crouch gen. nov.
- 329 MycoBank No.: MB807153
- 330 Etym.: "Clarus" is Latin for famous, "reedia" in honor of Dr. C. Reed Funk's seminal
- 331 contributions to turfgrass science and development of turfgrass cultivars with resistance to dollar332 spot disease.
- 333 A genus of the *Rutstroemiaceae*. Thalli at first aerial, white to off-white, later collapsing and
- turning brown, tan, olive or grey, sometimes slightly pink. Hyphae septate, hyaline. Apothecia
- arising from a substratal stroma, cupulate to discoid, brown, cinnamon, or light orange,
- 336 receptacle pubescent.

- 337 *Type species:* Clarireedia homoeocarpa (F.T. Benn.) L.A. Beirn, B.B. Clarke, C. Salgado, &
- 338 J.A. Crouch comb. nov.
- 339 MycoBank No.: MB823934 Fig 2A-E.
- 340 Basionym: Sclerotinia homoeocarpa F.T. Benn., Ann. Appl. Biol. 24: 254 (1937).
- 341 Synonyms: *Rhizoctonia monteithiana nomen invalidum* F.T. Benn., *Gard. Chron.* **3**:129 (1935).
- 342 *Rutstroemia festucae nomen invalidum* J.F. Powell [doctoral dissertation] p. 53 (1998).
- 343

344 Morphological description: Thalli at first aerial, white to off-white, later collapsing and turning 345 brown, tan, olive or grey, sometimes slightly pink. Colonies on PDA raised, aerial mycelium 346 white to off-white, collapsing and turning brown, tan, olive, or grey, with undulate margins. Colony reaches 4 cm radial growth after 6 days 25 C under continuous light on PDA + ascorbic 347 acid. Colonies > 15 days old do not form a dark stroma on PDA + ascorbic acid. Hyphae septate, 348 349 hyaline. Apothecia 0.5 to 1.5 mm in diameter (from Bennett 1937), arising from a dark substratal 350 stroma, cupulate to discoid, brown, cinnamon, or light orange, receptacle pubescent. (Fig 3A-D). Ascus 162.9 x 12.5 µm, on average (from Bennett 1937). Ascospores hyaline, oblong to 351 elliptical, mostly unicellular, occasionally with a medium septum, 20.7 x 8.3 µm (from Bennett 352 353 1937). Conidia not observed. Microconidia spherical, hyaline, 2.0 µm in diameter, formed in 354 cream-colored pustules (from Bennett 1937).

355

Diagnostic molecular characters: In relationship to the alignment deposited at USDA AgData
Commons (http://dx.doi.org/10.15482/USDA.ADC/1429061), *C. homoeocarpa* can be
distinguished from the related species *C. bennettii* by molecular characters at three loci (Table
2): CaM: characters 45, 79, 85, 109, 129, 131, 137, 150, 343, 397, 416, 485, 486, 499, 530, 537;

- 360 ITS: characters 64, 67, 85, 86, 109, 156, 160, 161, 198, 200, 230, 231, 471, 489; Mcm7:
 361 characters 60, 69, 364.
- 362
- 363 *Neotype hic designatus:* United Kingdom: dried sterile apothecia produced on *Festuca rubra*364 seeds (Fig 5A-E), 1972, *N. Jackson* (BPI892697).
- 365 *Epitype hic designatus*: United Kingdom: dried mycelium on potato dextrose agar, 1937, *F.T.*
- 366 Bennett (BPI 910612, marker sequences, CaM: MF964271, ITS: MF964322, Mcm7: KF545451;
- 367 ex-epitype CBS 310.37).
- 368 *Habitat:* Primarily known as a pathogen of C3 grasses in the genus *Festuca*.
- 369 *Distribution:* United Kingdom.

370 *Notes:* No type specimen was ever designated for *S. homoeocarpa*. Through Noel Jackson (Professor Emeritus, University of Rhode Island), we obtained a microscope slide said 371 372 to originate from Bennett's personal collection from the original collections. The slide was in the possession of Drew Smith at the Sports Turf Research Institute in the U.K., who received it from 373 Bennett at his retirement, and Smith passed the slide on to Jackson during his U.K. sabbatical in 374 1971. Unfortunately, the material on the slide was degraded, and no recognizable structures were 375 376 present on the mount. Therefore, we designated a neotype specimen for C. homoeocarpa that consists of a dried apothecial specimen, along with a set of 35-mm slides taken by Jackson in 377 1971 (Fig 5). The neotype is unique among the C. homoeocarpa materials examined in this 378 379 study. To our knowledge, this is the only sample possessing morphological characteristics 380 consistent with the protolog, providing a bona fide physical specimen of known origin. The geographic and host origin of this specimen (U.K., F. rubra) are consistent with those described 381 for S. homoeocarpa. 382

383	Bennett deposited three cultures with the CBS-KNAW collection in 1937, without any
384	details about host, locale or other origination information. Only one of the original Bennett's
385	isolates, CBS 310.37, is a member of <i>C. homoeocarpa</i> ; this isolate is designated the epitype for
386	the species. As with all three of the original Bennett isolates, CBS 310.37 produces very sparse
387	and slow growing hyphae. None of the structures described in the protolog were observed from
388	CBS 310.37, even when grown under conditions conducive for apothecial formation (Orshinsky
389	and Boland 2011).
390	
391	Clarireedia bennettii C. Salgado, L.A. Beirn, B.B. Clarke, & J.A. Crouch sp. nov.
392	Mycobank No.: MB823935 Fig 2F-J.
393	
394	Holotype: United Kingdom: 1937, F. T. Bennett CBS 309.37 (dried specimen BPI 910610, ex-
395	holotype CBS 309.37).
396	Etym.: in honor of F.T. Bennett, the British mycologist that first described the causal agent of
397	dollar spot disease.
398	
399	Morphological description: Colonies on PDA + ascorbic acid and wheat meal agar reaching 8
400	cm (radial growth) after 6 days at 25 C under continuous light, aerial mycelia floccose, colony
401	front white, colony back white to light brown, no pigment diffusing into media. Colonies > 15
402	days old do not form a dark stroma on PDA + ascorbic acid and remain floccose. Hyphae
403	septate, hyaline. Apothecia and conidia not observed.
404	Diagnostic molecular characters: In relationship to the alignments deposited at USDA AgData
405	Commons http://dx.doi.org/10.15482/USDA.ADC/1429061), C. bennettii can be distinguished

- 406 from the related species *C. homoeocarpa* by molecular characters at three loci (Table 2): CaM:
- 407 characters 45, 79, 85, 109, 129, 131, 137, 150, 343, 397, 416, 485, 486, 499, 530, 537. ITS:
- 408 characters 64, 67, 85, 86, 109, 156, 161, 198, 200, 230, 231, 471, 489. Mcm7: characters 60, 69,
- 409 364.
- 410 *Habitat:* Known as a pathogen of an unidentified diseased turgrass host (Bennett 1937), found on
- 411 dead grass and *Symplocarpus foetidus*.
- 412 *Distribution*: Netherlands, United Kingdom and United States.

413 Notes: Clarireedia bennettii exhibits a higher rate (2X) of radial growth on PDA + ascorbic acid

- 414 when compared to the sister species *C. homoeocarpa*.
- 415
- 416 Clarireedia jacksonii C. Salgado, L.A. Beirn, B.B. Clarke, & J.A. Crouch sp. nov.

417 Mycobank No.: MB823936 Fig 2K-O; Fig 3A-D

- 418
- 419 Holotype: United States: North Carolina, on Agrostis stolonifera, 2008, L.P. Tredway LWC-10
- 420 (dried specimen BPI 910609, ex-holotype LWC-10 = CBS 138618).
- 421 Etym.: in honor of Noel Jackson, turfgrass pathologist and diagnostician renowned for his
- 422 research on the etiology and control of dollar spot and other important turfgrass diseases

423 throughout a distinguished career that spanned more than 40 years.

424

425 *Morphological description*: Colonies fast growing, cottony, front white to off-white with light

- 426 brown spots, back white to off-white, later collapsing and turning tan to brown. Colony reaches 8
- 427 cm radial growth after 6 days at 25 C under continuous light on PDA + ascorbic acid and wheat
- 428 meal agar. Colonies > 15 days old form thick, flat, black stroma on PDA + ascorbic acid. Hyphae

- 429 septate, hyaline. Apothecia arising from a substratal stroma, cupulate to discoid, brown,
- 430 cinnamon, or light orange, receptacle pubescent. Apothecia 2.73 x 1.91 mm arising from dark,
- 431 substratal stroma (Fig 3A-D). Asci, ascospores and conidia have not been observed.

432

- 433 Diagnostic molecular characters: In relationship to the alignments deposited at USDA AgData
- 434 Commons http://dx.doi.org/10.15482/USDA.ADC/1429061), C. jacksonii can be distinguished
- 435 from the related species *C. monteithiana* by molecular characters at three loci (Table 2): CaM:
- 436 characters 99, 118, 148, 159, 392, 393, 405, 416, 438, 453, 510. ITS: characters 44, 82, 149, 162,
- 437 164, 472. Mcm7: characters 171, 247, 295, 388, 400.
- Habitat: Pathogen of C3 grasses such as Agrostis stolonifera, Festuca rubra, Lolium perenne and
 Poa pratensis.
- 440 *Distribution*: worldwide.

441 Notes: Clarireedia jacksonii and C. monteithiana appear to be the most important pathogenic species causing dollar spot disease of turfgrasses in North America and perhaps 442 443 worldwide, as these species affect some of the most important and widely grown cool-season grasses used as turfgrass. The back view of C. jacksonii fungal colonies on PDA + ascorbic acid 444 is the same color as the front (Fig 2L), compared to C. monteithiana (below), which presents 445 446 light olive-brown coloration on the back side of the colony (Fig 2Q). Publicly available genome 447 sequences of Clarireedia identified as S. homoeocarpa (Green et al. 2016) represent isolates of C. jacksonii based on sequence identity at the CaM, ITS, and Mcm7 marker regions (data not 448 449 shown).

450 *Clarireedia monteithiana* C. Salgado, L.A. Beirn, B.B. Clarke, & J.A. Crouch sp. nov.

451 Mycobank No.: MB 823937 Fig 2P-T.

452 Holotype: United States: Mississippi, on Cynodon dactylon × transvaalensis, 2008, L.P.

- 453 *Tredway* RB-19 (dried specimen BPI 910611, ex-holotype RB-19 = CBS 136376).
- 454 Etym.: in honor of John Monteith, the USDA scientist who first described dollar spot disease of
- 455 turfgrass in 1928.
- 456 *Morphological description*: Colonies fast growing, cottony, front white to off-white, back light
- 457 olive-brown, later collapsing and turning medium to dark brown. Colony reaches 8 cm radial
- 458 growth after 6 days at 25 C under continuous light on PDA + ascorbic acid and wheat meal agar.
- 459 Colonies > 15 days old form thick, flat, black stroma on PDA + ascorbic acid. Hyphae septate,
- 460 hyaline. Apothecia, asci, ascospores and conidia have not been observed.
- 461
- 462 *Diagnostic molecular characters:* In relationship to the alignments deposited at USDA AgData
- 463 Commons http://dx.doi.org/10.15482/USDA.ADC/1429061), *C. monteithiana* can be
- 464 distinguished from the related species *C. jacksonii* by molecular characters at three loci (Table
- 465 2): CaM: characters 99, 118, 148, 159, 392, 393, 405, 416, 438, 453, 510. ITS: characters 44, 82,
- 466 149, 162, 164, 472. Mcm7: characters 171, 247, 295, 388, 400.
- 467 *Habitat*: Known as a pathogen of C4 grasses such as *Cynodon dactylon* × *transvaalensis* and
 468 *Paspalum vaginatum*.
- 469 *Distribution*: Dominican Republic, Japan, United States.
- 470 *Notes*: See notes for *C. jacksonii. Clarireedia monteithiana* is currently only known from
- 471 C4 turfgrasses. It is unknown whether additional species of C4 grasses are parasitized by *C*.
- 472 *monteithiana*. Given previous indicators of diversity among isolates from C4 grass hosts (Liberti
- 473 et al. 2012), this question should be empirically tested using the CaM, ITS and Mcm7 markers
- 474 rather than assuming the affiliation of isolates with *C. monteithiana* based on host physiology.

475 **5. Discussion**

476 This study marks the first multi-locus phylogenetic analysis of the *Rutstroemiaceae*, a family best known as saprotrophs but also including some necrotrophic plant pathogens and 477 endophytes (Holst-Jensen et al. 1997; Hosoya et al. 2014). Previously, the family 478 479 *Rutstroemiaceae* was said to include taxa producing substratal stroma represented by the type R. firma (Holst-Jensen et al. 1997), whereas the Sclerotiniaceae was composed of fungi producing 480 481 apothecia arising from tuberoid sclerotia represented by the type S. sclerotiorum (Whetzel 1945). 482 However, more recent molecular analyses have shown that the substratal stroma is not a reliable 483 character to define the *Rutstroemiaceae* (Baral and Bemmann 2014; Zhao et al. 2016). While our 484 data supports division between the monophyletic Sclerotiniaceae and the paraphyletic Rutstroemiaceae families, it also expands on previous rDNA-based studies to uncover these two 485 486 familial lineages emerging from a common ancestor (Holst-Jensen et al. 1997; Wang et al. 2006; 487 Zhao et al. 2016).

The primary objective of this study was to determine the identity of the causal agent of 488 489 dollar spot disease in turfgrass, now named as *Clarireedia homoeocarpa*, the type member of the 490 new genus Clarireedia. The multi-locus phylogeny also detected three additional undescribed 491 species within the new genus *Clarireedia*. This study shows that all of the surveyed fungal 492 isolates associated with turfgrass hosts and causing dollar spot disease fall within the genus 493 *Clarireedia*. Our data also shows that earlier attempts to reclassify *C. homoeocarpa* were likely 494 confounded by the fact that genera in the *Rutstroemiaceae* are polyphyletic, and available 495 cultures of the Rutstroemiaceae have not always been correctly identified. For example, if we 496 had only included isolates CBS 464.73 and CBS 465.73 alongside the C. homoeocarpa isolates 497 from turfgrass, we would have concluded that C. homoeocarpa should be placed in the genus

498	Rutstroemia, since CBS 464.73 and CBS 465.73 were identified in the CBS culture collection as
499	R. paludosa (Groves and Elliot 1961; synonyms Poculum paludosa, Sclerotinia paludosa;
500	isolated from Symplocarpus foetidus) and R. cunicularia (Elliott 1967; synonym=Peziza
501	cunicularia; isolated from rabbit dung) based on depositor data. At first glance, the fact that
502	isolate CBS 465.73 was isolated from rabbit dung seems odd, however, the fungal isolate could
503	have been present on grass previous to being eaten by the animal, or could have been transferred
504	to the excrement by close contact with diseased plants. Isolates CBS 464.73 and CBS 465.73 do
505	not appear to be members of the genus Rutstroemia, as they do not cluster or are associated with
506	isolates of the type species for the genus Rutstroemia, R. firma (isolates CBS 115.86, CBS
507	341.62), but are aligned within <i>Clarireedia</i> . This scenario is not unique in the relatively
508	understudied Rutstroemiaceae. Another example is found in the recent description of the species
509	P. pseudosydowiana in the genus Poculum (Hosoya et al. 2014). Identification of P.
510	pseudosydowiana was largely based on ITS sequence similarity to isolates of R. sydowiana CBS
511	115928 and CBS 115975 that were referred to by the synonym of <i>P. sydowiana</i> (Hosoya et al.
512	2014) by Holst-Jensen et al. (1997). Therefore, in addition to demonstrating the need to re-
513	evaluate many of the currently described species within the Rutstroemiaceae, our data also
514	suggests that a taxonomic review at the genus rank may also be necessary for many of the fungi
515	in this family.
516	Our results confirm that the fungi causing dollar spot disease are not members of the
517	genus Sclerotinia, nor are they members of the Sclerotiniaceae, consistent with numerous
518	previous studies (Whetzel 1945; Jackson 1973; Kohn 1979a,b; Kohn and Grenville 1989; Novak

and Kohn 1991; Carbone and Kohn 1993; Holst-Jensen et al. 1997; Powell and Vargas 1999).

520 Based on the placement of C. homoeocarpa relative to isolates of Lambertella, Lanzia, and

521	Rutstroemia in the multi-locus phylogeny, C. homoeocarpa isolates are unique and fall outside
522	of any currently described genus. Thus, rather than placing these fungi in an already established
523	genus, our multi-locus data showed that C. homoeocarpa is a member of a singular taxon, unique
524	from all described genera of the <i>Rutstroemiaceae</i> . Although representatives of two
525	Rutstroemiaceae genera—Poculum and Dicephalospora—were not included in our work due to
526	the unavailability of bona fide isolates, it is exceedingly unlikely that the new genus Clarireedia
527	is synonymous with these or other existing genera. Pairwise comparisons between the ITS
528	sequence of <i>P. hennigsianum</i> (GenBank Z81442; Holst-Jensen et al. 1997) shows only 77 to
529	81% similarity with Clarireedia isolates (data not shown). Similarly, Clarireedia isolates share
530	just 82 to 83% similarity with isolates of <i>D. rufocornea</i> (e.g. GenBank JN033401; Han et al.
531	2014) and other members of the genus Dicephalospora (data not shown). These high levels of
532	dissimilarity with ITS, the most conserved of the three molecular markers employed in the study,
533	supports the distinction of <i>Clarireedia</i> from any described genera in the <i>Rutstroemiaceae</i> .
534	Within the new genus Clarireedia, in addition to the type species C. homoeocarpa, three
535	additional species were recovered in all analyses. This outcome is consistent with previous
536	suggestions by researchers that observed variation in morphological characters, AFLP
537	fingerprints, and ITS data as an indication that more than one fungal species may be responsible
538	for dollar spot disease in turfgrass (Jackson 1973; Smith et al. 1989; Kohn 1979a; Liberti et al.
539	2012; Powell 1998; Smith et al. 1989; Taylor 2010; Viji et al. 2004). As early as 1973, Jackson
540	put forth the idea of multiple species causing the disease, citing the morphological differences he
541	observed between isolates from North America and the United Kingdom. Unknowingly, Bennett
542	also worked with two different fungal species, as the three specimens he collected from the
543	United Kingdom fall within C. homoeocarpa and C. bennettii. These two species appear to

544	represent a minority of the isolates causing dollar spot disease of turfgrass, as 71% of the
545	remaining isolates examined in this study, which were selected from a larger collection of
546	isolates from around the world (Putnam 2013), correspond to C. jacksonii and C. monteithiana.
547	The restriction of C. jacksonii and C. monteithiana to C3 and C4 grass hosts, respectively,
548	demonstrates a host preference among the most common and widespread incitants of dollar spot
549	disease of turfgrass. It remains unknown whether this host association would be consistently
550	recovered among dollar spot isolates obtained from grass hosts not sampled in this study.
551	However, ITS sequence data from dollar spot isolates recovered from the C4 grass hosts Zoysia
552	japonica and Stenotaphrum secundatum group with other fungal isolates obtained from C4
553	grasses (Liberti et al. 2012). Interestingly, Liberti et al. (2012) also reported a unique group of
554	isolates causing dollar spot disease on both C3 and C4 grass hosts restricted to Florida,
555	morphologically and phylogenetically distinct from isolates obtained from northern U.S.
556	locations. A similar finding was also reported in Norway, where isolates obtained from A.
557	stolonifera demonstrated only 97.6% ITS sequence similarity to previously sequenced isolates
558	from the U.S. (Espevig et al. 2015). These data suggest that in addition to the four species
559	described herein, additional species of Clarireedia responsible for contemporary outbreaks of
560	dollar spot disease may exist, possibly with geographic restrictions, although further analysis of
561	these populations would be required to test this hypothesis. Regardless, the presence of several
562	species within Clarireedia demonstrates the unexpectedly high level diversity present within this
563	genus of economically important plant pathogens.
564	The grouping of the type species C. homoeocarpa and three other isolates from Festuca
565	species in the U.K. is interesting, since not all isolates from the U.K. clustered together, and

some were members of *C. bennettii* and *C. jacksonii*. This suggests that there may also be some

567	form of biological significance to the unique fungal groups reported here. For example, isolates
568	within type species C. homoeocarpa not only shared geographic and species origin, but they also
569	exhibited a reduced rate of growth in culture when compared to the other <i>Clarireedia</i> species.
570	These attributes, combined with the observation that isolates of <i>C. homoeocarpa</i> from this region
571	are routinely found in association with decaying grass substrates (Kate Entwistle, personal
572	communication), suggests that this species may consist of isolates that prefer a saprophytic
573	lifestyle, although additional data is required to test this hypothesis.
574	Our phylogenetic analyses also discriminated three single isolate lineages (PSFFB-1,
575	CPB-17, CBS 465.73). These lineages constitute additional distinctive evolutionary entities
576	(Clarireedia sp.) that contribute to the diversity of organisms capable of causing dollar spot
577	disease. In the systematics of fungi, there is no consensus on how singleton lineages should be
578	treated (Seifert and Rossman 2011). In a phylogenetic tree, singleton lineages constitute branches
579	with unknown support (i.e. bootstrap, PP), as a clade should have at least two representatives to
580	obtain statistical significance (Salgado-Salazar et al. 2015). Additional sampling of fungal
581	isolates causing dollar spot disease may help resolve the species status of these singleton
582	lineages.
583	The CaM, ITS and Mcm7 gene markers performed well for taxonomic delineation at both

the genus and species level, and are recommended for use in combination for future phylogenetic and systematic analyses of these pathogens. Additionally, the matrix of molecular characters provided in the taxonomy section can be used to diagnose the species in a practical way. Using the molecular characteristics described herein, a diagnostic assay could be developed to quickly and accurately detect and identify *Clarireedia* to the species level.

589 The taxonomic resolution of C. homoeocarpa and related species after more than 70 590 years of unresolved identity is an important foundation for ongoing studies of these destructive 591 fungal pathogens. Despite the presumed absence of a sexual cycle in natural populations, our 592 analyses showed considerable diversity within Clarireedia. This suggests the potential for more genetic diversity and increased disease problems, particularly if fertile apothecia are formed in 593 594 nature. Research aimed at understanding the biological significance of this variability may aid in 595 future disease control efforts. For example, recent RNA-Seq analysis of the host pathogen 596 interaction between C. jacksonii and creeping bentgrass identified an assortment of fungal enzymes capable of degrading a wide-range of host tissue, as well as ABC transporters that may 597 598 play a role in fungicide resistance, from a single isolate (MB-01) of C. jacksonii (Orshinsky et al. 599 2012). Expanding these emerging technologies to the population scale may provide insight into 600 how population diversity may impact functional traits required for disease manifestation and 601 control.

602

603 Acknowledgements

This work was supported by USDA-ARS project 8042-22000-279-00D and the Center for 604 605 Turfgrass Science, Rutgers University. We thank Shamal Budhdev for laboratory support; 606 Christian Feuillet and Amy Rossman for assistance with the Latin language and botanical 607 nomenclature; Stacy Bonos, Brad Hillman, William Meyer, and Tom Molnar for helpful naming 608 discussions; Noel Jackson for sharing original research materials from his personal collection; 609 and Manish Parashar, Moustafa AbdelBaky, Melissa Romanus, and Bryan Rabin for access to 610 computing servers and technical assistance. This research was supported in part by an 611 appointment of C. Salgado-Salazar to the Agricultural Research Service (ARS) Research

612	Participation Program administered by the Oak Ridge Institute for Science and Education
613	(ORISE) through an interagency agreement between the U.S. Department of Energy (DOE) and
614	the USDA. ORISE is managed by ORAU under DOE contract number DE-AC05-06OR23100.
615	Mention of trade names or commercial products in this publication is solely for the purpose of
616	providing specific information and does not imply recommendation or endorsement by the
617	USDA. USDA is an equal opportunity provider and employer.
618	
619	References
620	
621	Baldwin NA, Newell AJ, 1992. Field production of fertile apothecia by Sclerotinia homoeocarpa
622	in Festuca turf. Journal of the Sports Turf Research Institute 68: 73–76.
623	Baral HO, Bemmann M, 2014. Hymenoscyphus fraxineus vs. H. albidus – a comparative light-
624	microscopical study on the causal agent of European ash dieback and related foliicolous,
625	stroma-forming species. Mycology 5:228–290.
626	Bennett FT, 1935. Rhizoctonia diseases of turf. The Gardeners Chronicle 3: 129.
627	Bennett FT, 1937. Dollarspot disease of turf and its causal organism, Sclerotinia homoeocarpa n.
628	sp. Annals of Applied Biology 24: 236–257.
629	Carbone I, Kohn LM, 1993. Ribosomal DNA sequence divergence within internal transcribed
630	spacer 1 of Sclerotiniaceae. Mycologia 85: 415-427.
631	Carbone I, Kohn LM, 1999. A method for designing primer sets for speciation studies in
632	filamentous ascomycetes. Mycologia 91: 553–556.
633	Crouch JA, Clarke BB, Hillman BI, 2005. Phylogenetic relationships and fungicide sensitivities
634	of Colletotrichum graminicola isolates from turfgrass in North America. International

- 635 *Turfgrass Society Research Journal* **10**: 186–195.
- 636 Darriba D, Taboada GL, Doallo R, Posada D, 2012. jModelTest 2: more models, new heuristics
 637 and parallel computing. *Nature Methods* 9: 772.
- 638 Dumont KP, 1971. Sclerotineaceae II. Lambertella. Memoirs of The New York Botanical Garden

639 22: 1–178.

- Elliott ME, 1967. *Rutstroemia cuniculi*, a coprophilous species of the *Sclerotiniaceae*. *Canadian Journal of Botany* 45: 521-524.
- 642 Espevig T, Brurberg MB, Kvalbein A, 2015. First report of dollar spot, caused by Sclerotinia
- 643 *homoeocarpa*, of creeping bentgrass in Norway. *Plant Disease* 99: 287.
- Espevig T, Brurberg M, M U, Dahl A, Kvalbein A, Normann K, Crouch JA, 2017. First report of
- 645 dollar spot disease, caused by *Sclerotinia homoeocarpa*, of *Agrostis stolonifera* in Sweden.
 646 *Crop Science* 57: s349–s353.
- 647 Fenstermacher JM, 1970. Variation within Sclerotinia homoeocarpa F. T. Bennett [Master's

648 Thesis]. University of Rhode Island.

- 649 Goodman DM, Burpee LL, 1991. Biological control of dollar spot disease of creeping bentgrass.
 650 *Phytopathology* 81: 1438–1446.
- Green R, Sang H, Chang T, Allan-Perkins E, Petit E, Jung G, 2016. Draft genome sequences of
 the turfgrass pathogen *Sclerotinia homoeocarpa*. *Genome Announcements* 4: e01715-15.
- Groves JW, Elliot ME, 1961. Self-fertility in the *Sclerotinaceae*. *Canadian Journal of Botany*39: 215-231.
- Han JG, Hosoya T, Sung GH, Shin HD, 2014. Phylogenetic reassessment of *Hyaloscyphaceae*
- 656 sensu lato (*Helotiales, Leotiomycetes*) based on multigene analyses. *Fungal Biology* **118**:
- 657 150–167.

Holst-Jensen A, Kohn LM, Schumacher T, 1997. Nuclear rDNA phylogeny of the

659 Sclerotiniaceae. *Mycologia* **89**: 885–899.

- 660 Hosoya T, Zhao Y, Degawa Y, 2014. Poculum pseudosydowianum, sp. nov. (Rutstroemiaceae,
- 661 *Ascomycota*) from Japan and its endophytic occurrence. *Phytotaxa* **175**: 216–224.
- 662 Huelsenbeck JP, Rannala B, 2004. Frequentist properties of Bayesian posterior probabilities of
- 663 phylogenetic trees under simple and complex substitution models. *Systematic Biology* 53:
 664 904–913.
- Jackson N, 1973. Apothecial production in *Sclerotinia homoeocarpa* F.T. Bennett. *Journal of the Sports Turf Research Institute* 49: 58–63.
- 667 Katoh K, Standley DM, 2013. MAFFT Multiple Sequence Alignment Software Version 7:
- 668 Improvements in Performance and Usability. *Molecular Biology and Evolution* **30**: 772–
 669 780.
- Kohn LM, 1979a. Delimitation of the economically important plant pathogenic *Sclerotinia*species. *Phytopathology* 69: 881–886.
- 672 Kohn LM, 1979b. A monographic revision of the genus *Sclerotinia*. *Mycotaxon* **9**: 365–444.
- 673 Kohn LM, Grenville DJ, 1989. Anatomy and histochemistry of stromal anamorphs in the

674 Sclerotiniaceae. Canadian Journal of Botany 67: 371–393.

- Liberti D, Rollins JA, Harmon PF, 2012. Evidence for morphological, vegetative, genetic, and
 mating-type diversity in *Sclerotinia homoeocarpa*. *Phytopathology* **102**: 506–518.
- 677 Monteith J, 1927. Can you identify brown patch? *The National Greenkeeper* **6**: 7–11.
- 678 Monteith JL, Dahl AS, 1932. Turf diseases and their control. *Bulletin of the United States Golf*
- 679 Association Green Section 12: 87–186.
- 680 Novak LA, Kohn LM, 1991. Electrophoretic and immunological comparisons of

681 developmentally regulated proteins in members of the *Sclerotiniaceae* and other sclerotial

682 fungi. *Applied and Environmental Microbiology* **57**: 525–534.

- 683 Orshinsky AM, Boland GJ, 2011. Ophiostoma mitovirus 3a, ascorbic acid, glutathione, and
- 684 photoperiod affect the development of stromata and apothecia by *Sclerotinia homoeocarpa*.
- 685 *Canadian Journal of Microbiology* **57**: 398–407.
- 686 Orshinsky AM, Hi J, Opiyo SO, Reddyvari-Channarayappa V, Mitchell TK, Boehm M, 2012.
- 687 RNA-Seq analysis of the *Sclerotinia homoeocarpa* creeping bentgrass pathosystem. *PLoS*688 *ONE* 7: e41150.
- 689 Powell J, 1998. Seasonal variation and taxonomic clarification of the dollar spot pathogen
- 690 *Sclerotinia homoeocarpa* [Doctoral Dissertation]. Michigan State University.
- Powell J, Vargas JM, 1999. Taxonomic clarification of the dollar spot pathogen: *Sclerotinia homoeocarpa*. *Phytopathology* 89: S61.
- 693 Putman A, 2013. Worldwide population biology of *Sclerotinia homoeocarpa* from common
- turfgrass hosts and mating systems of the pathogen and closely related fungi [Doctoral
- 695 Dissertation]. North Carolina State University.
- 696 Putman AI, Tredway LP, Carbone I, 2015. Characterization and distribution of mating-type
- 697 genes of the turfgrass pathogen *Sclerotinia homoeocarpa* on a global scale. *Fungal Genetics*698 *and Biology* 81: 25–40.
- 699 Rambaut A, 2014. FigTree v1.4.3. http://tree.bio.ed.ac.uk/software/figtree/.
- Rambaut A, Suchard M, Drummond A, 2013. Tracer v1.6.
- 701 *http://tree.bio.ed.ac.uk/software/tracer/.*
- 702 Ronquist F, Teslenko M, van der Mark P, Ayres DL, Hohna S, Larget B, Liu L, Suchard MA,
- Huelsenbeck JP, 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model

- choice across a large model space. *Systematic Biology* **61**: 539–542.
- 705 Salgado-Salazar C, Rossman AY, Samuels GJ, Hirooka Y, Sanchez RM, Chaverri P, 2015.
- 706 Phylogeny and taxonomic revision of *Thelonectria discophora* (Ascomycota, Hypocreales,
- 707 *Nectriaceae*) species complex. *Fungal Diversity* **70**: 1–29.
- 708 Schmitt I, Crespo A, Divakar PK, Fankhauser JD, Herman-Sackett E, Kalb K, Nelsen MP,
- 709 Nelson NA, Rivas-Plata E, Shimp AD, Widhelm T, Lumbsch HT, 2009. New primers for
- promising single-copy genes in fungal phylogenetics and systematics. *Persoonia* **23**: 35–40.
- 711 Seifert KA, Rossman AY, 2011. How to describe a new fungal species. *IMA Fungus* 1: 109–116.
- 712 Silvestro D, Michalak I, 2012. raxmlGUI: a graphical front-end for RAxML. Organisms
- 713 *Diversity & Evolution* **12**: 335–337.
- 714 Smiley RW, Dernoeden PH, Clarke BB, 2005. *Compendium of Turfgrass Diseases*. American
 715 Phytopathological Society, St. Paul.
- 716 Smith JD, Jackson N, Woolhouse AR, 1989. *Fungal diseases of amenity turf grasses*. E. & F.N.
 717 Spon, London.
- Stamatakis A, 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with
 thousands of taxa and mixed models. *Bioinformatics* 22: 2688–2690.
- Taylor TA, 2010. Population structure of *Sclerotinia homoeocarpa* from turfgrass [Masters
 Thesis]. North Carolina State University.
- 722 Viji G, Uddin W, O'Neill NR, Mischke S, Saunders JA, 2004. Genetic diversity of Sclerotinia
- *homoeocarpa* isolates from turfgrasses from various regions in North America. *Plant Disease* 88: 1269–1276.
- 725 Wang Z, Binder M, Schoch CL, Johnston PR, Spatafora JW, Hibbett DS, 2006. Evolution of
- helotialean fungi (*Leotiomycetes*, *Pezizomycotina*): A nuclear rDNA phylogeny. *Molecular*

727 *Phylogenetics and Evolution* **41**: 295–312.

- Whetzel HH, 1945. A synopsis of the genera and species of the *Sclerotiniaceae*, a family of
 stromatic inoperculate discomycetes. *Mycologia* 37: 648–714.
- 730 Whetzel HH, 1946. The cypericolous and juncicolous species of *Sclerotinia*. Farlowia 2: 385–

731 437.

732 White TJ, Bruns T, Lee S, Taylor JL, 1990. Amplification and direct sequencing of fungal

ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfnad DH, Sninsky JJ, White TJ,

- eds. *PCR Protocols: A Guide to Methods and Applications*. Academic Press, San Diego, pp.
- 735 315–322.
- 736 Zhao YJ, Hosaka K, Hosoya T, 2016. Taxonomic re-evaluation of the genus Lambertella

- 737 (*Rutstroemiaceae*, *Helotiales*) and allied stroma-forming fungi. *Mycological Progress* 15:
- 738 1215–1228.

740	List of Tables
741	
742	Table 1. List of isolates used in the study.
743	
744	Table 2. Single nucleotide polymorphism comparisons between Clarireedia homoeocarpa, C.
745	bennettii, C. jacksonii and C. monteithiana.
746	
747	Figure Legends
748	
749	Figure 1. Symptoms of dollar spot disease; (A) dollar spot disease on creeping bentgrass
750	(Agrostis stolonifera) (photo courtesy of Charles J. Schmid); (B) dollar spot disease on red
751	fescue (Festuca rubra) in the United Kingdom (photo courtesy of Noel Jackson); (C-D)
752	characteristic hourglass shaped lesion of dollar spot disease on Kentucky bluegrass (Poa
753	pratensis); (E) apothecia on sea marsh fescue (Festuca sp.) in the United Kingdom (photo
754	courtesy of Noel Jackson).
755	
756	Figure 2. Colony morphology of species in the genus Clarireedia at 8 days old (unless otherwise
757	indicated). (A-E) C. homoeocarpa: (A) colony front, PDA + ascorbic acid; (B) colony back,
758	PDA + ascorbic acid; (C) colony front, wheat meal agar; (D) three-week old colony on PDA +
759	ascorbic acid, front; (E) three-week old colony on PDA + ascorbic acid, back; (F-J) C. bennettii:
760	(F) colony front, PDA + ascorbic acid; (G) colony back, PDA + ascorbic acid; (H) colony front,
761	wheat meal agar; (I) three-week old colony on PDA + ascorbic acid, front; (J) three-week old
762	colony on PDA + ascorbic acid, back; (K-O) C. jacksonii: (K) colony front, PDA + ascorbic

763	acid; (L) colony back, PDA + ascorbic acid; (M) colony front, wheat meal agar; (N) three-week
764	old colony on PDA + ascorbic acid, front; (O) three-week old colony on PDA + ascorbic acid,
765	back; (P-T) <i>C. monteithiana</i> : (P) colony front, PDA + ascorbic acid; (Q) colony back, PDA +
766	ascorbic acid; (R) colony front, wheat meal agar; (S) three-week old colony on PDA + ascorbic
767	acid, front; (T) three-week old colony on PDA + ascorbic acid, back.
768	
769	Figure 3. Infertile apothecia formed by <i>Clarireedia</i> spp. on PDA + ascorbic acid. (A-B)

apothecia from *C. monteithiana* isolate DRR-9; (C-D) apothecia from *C. jacksonii* isolate

771 SE16F-4 (E-G) microscopic view of cross section of apothecia from *C. jacksonii* isolate SE16F-

4. Scale bars: A-B, D = 500 μ m; C = 1000 μ m; E = 100 μ m; F-G = 50 μ m.

773

Figure 4. Majority rule Bayesian phylogenetic tree from the combined three marker analysis
showing relationships among fungal isolates in the *Sclerotiniaceae* and *Rutstroemiaceae*families. Support values (posterior probability (PP) / maximum likelihood (ML) bootstrap) are
indicated above the branches. No number above the branches indicates that the clade/branch was
not supported at values ≥0.95 PP / 70% ML bootstrap. <u>Underlined isolate names indicate ex-type</u>
<u>cultures</u>. *Monilinia vaccinii-corymbosi* was used as outgroup. Branch lengths are proportional to
levels of sequence divergence.

781

Figure 5. *Clarireedia homoeocarpa* neotype material. (A) sterile apothecia generated on potato
dextrose agar; (B) Close up of apothecia on colonial bentgrass (*Agrostis capillaris*) seeds; (C)
apothecia of varying sizes from colonial bentgrass seed culture; (D) apothecia (BPI 892697); (E)
Germinating ascospores. Scale bars: A-B = 5 mm; D = 1000 µm; E = 50 µm.

786 Supplementary Figures.

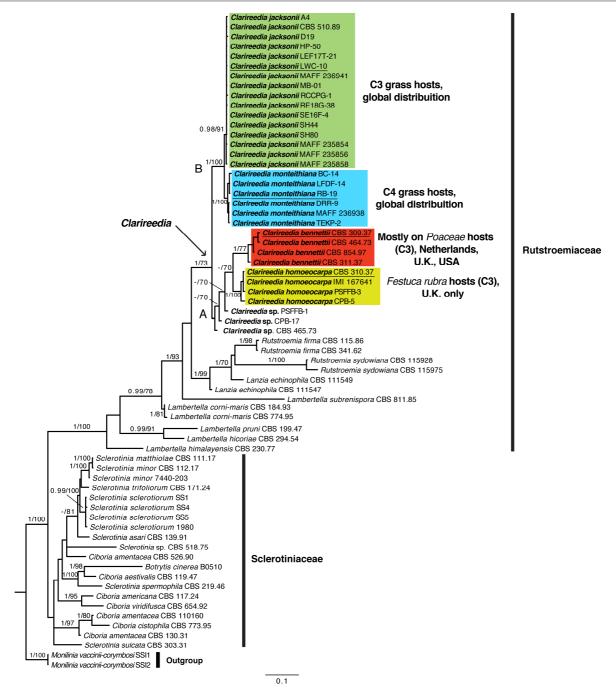
788	Supplementary Figure 1. Majority rule Bayesian phylogenetic tree based on the CaM region
789	analysis showing relationships among fungal isolates in the Sclerotiniaceae and Rutstroemiaceae
790	families. Support values (posterior probability (PP) / maximum likelihood (ML) are indicated
791	above the branches. No number above the branches indicates that the clade/branch was not
792	supported at values ≥0.95 PP / 70% bootstrap. <i>Monilinia vaccinii-corymbosi</i> was used as
793	outgroup. Branch lengths are proportional to levels of sequence divergence.
794	
795	Supplementary Figure 2. Majority rule Bayesian phylogenetic tree based on the ITS region
796	analysis showing relationships among fungal isolates in the Sclerotiniaceae and Rutstroemiaceae
797	families. Support values (posterior probability (PP) / maximum likelihood (ML) are indicated
798	above the branches. No number above the branches indicates that the clade/branch was not
799	supported at values ≥0.95 PP / 70% bootstrap. <i>Monilinia vaccinii-corymbosi</i> was used as
800	outgroup. Branch lengths are proportional to levels of sequence divergence.
801	
802	Supplementary Figure 3. Majority rule Bayesian phylogenetic tree based on the Mcm7 region
803	analysis showing relationships among fungal isolates in the Sclerotiniaceae and Rutstroemiaceae
804	families. Support values (posterior probability (PP) / maximum likelihood (ML) are indicated
805	above the branches. No number above the branches indicates that the clade/branch was not
806	supported at values ≥0.95 PP / 70% bootstrap. Monilinia vaccinii-corymbosi was used as
807	outgroup. Branch lengths are proportional to levels of sequence divergence.
808	

809 Supplementary Tables

- 810 **Supplementary Table 1.** Mating type crosses performed with *Clarireedia MAT1-1* x *MAT1-2*
- 811 isolates. All crosses were made with each strain serving as both a donor and recipient.

Table 1. List of isolates used in the study.

Fungal Specimens	Name	Туре	Host/Substrate	MAT1 idiomorph	Locale	Year	CaM	ITS	Mcm7	
Botrytis cinerea	B05.10 N/A N/A			N/A	Germany	N/A	*	*	*	
Ciboria aestivalis	CBS 119.47	N/A	N/A	N/A	Australia	1947	KF545281	KF545326	KF545470	
Ciboria amentacea	CBS 110160	N/A	Alnus glutinosa	N/A	Netherlands	2002	KF545282	KF545317	-	
Ciboria amentacea	CBS 130.31	N/A	Alnus glutinosa	N/A	England	1931	-	KF545318	1_	
Ciboria amentacea	CBS 526.90	N/A	Alnus incana	N/A	Switzerland	1990	-	KF545325	_	
Ciboria americana	CBS 117.24	N/A	Castanea sativa	N/A	N/A	1924	-	KF545327	_	
Ciboria cistophila	CBS 773.95	Holotype	Cistus laurifolius	N/A	Spain	1995	KF545241	KF545324	1_	
Ciboria viridifusca	CBS 654.92	N/A	Alnus sp.	N/A	Germany	1995	KF545283	KF545322	-	
Clarireedia bennettii	CBS 309.37	Holotype	N/A	MAT1 & 2	United Kingdom	1937	MF964270	MF964321		
Clarireedia bennettii	CBS 311.37	N/A	N/A	MAT1-1	United Kingdom	1937	MF964270	MF964323	MF964284	
Clarireedia bennettii	CBS 464.73	N/A	Symplocarpus foetidus	N/A	NY. USA	1973	KF545266	KF545316	KF545446	
Clarireedia bennettii	CBS 854.97	N/A	Poaceae	N/A N/A	Netherlands	1997	KF545265	KF545314	KF545467	
Clarireedia homoeocarpa	CBS 310.37	Ex-epitype	N/A	MAT1-2	United Kingdom	1937	MF964271	MF964322	KF545451	
Clarireedia homoeocarpa	CPB-5	N/A	Festuca rubra	MAT1-2	United Kingdom	2008	KF545272	KF545313	KF545449	
Clarireedia homoeocarpa	IMI 167641	N/A N/A	Festuca sp.	MAT1 & 2	United Kingdom	1972	MF964261	MF964312	MF964276	
Clarireedia homoeocarpa	PSFFB-3	N/A N/A	Festuca sp. Festuca rubra	MATI & 2 MATI-2	United Kingdom	2008	KF545268	1011704312	KF545448	
Clarireedia jacksonii	A4	N/A	Agrostis stolonifera	MAT1-2 MAT1-2	OH, USA	2000	KF545243	KF545295	KF545458	
Clarireedia jacksonii	CBS 510.89	N/A N/A	dying grass of golf green	N/A	Netherlands	1989	KF545261	KF545289	KF545453	
Clarireedia jacksonii	D19	N/A N/A	Poa pratensis	N/A N/A	OH, USA	2002	KF545252	KF545298	KI 545455	
Clarireedia jacksonii	HP-50	N/A N/A	Agrostis stolonifera	MAT1 & 2	NJ, USA	2002	KF545247	KF545291	-	
Clarireedia jacksonii	LEF17T-21	N/A N/A	Agrostis stolonifera	MATI & 2 MATI-2			KF545250	KF545293	-	
Clarireedia jacksonii	LWC-10	Holotype	Agrostis stolonifera	MAT1-2 MAT1-1	NC. USA	2008 2003	MF964269	MF964320	- MF964283	
Clarireedia jacksonii	MAFF 235854	N/A	Agrostis stolonifera	MAT1-1 MAT1 & 2	Japan	1987	KF545242	KF545301	KF545454	
Clarireedia jacksonii	MAFF 235854	N/A N/A	Agrostis stolonifera	MAT1 & 2 MAT1 & 2	Japan	1987	KF545246	KF545302	KF545456	
Clarireedia jacksonii	MAFF 235858	N/A N/A	Agrostis stolonifera	MAT1 & 2 MAT1 & 2	Japan	1987	MF964273	MF964324	KI 343430	
Clarireedia jacksonii	MAFF 235858 MAFF 236941	N/A N/A	Lolium perenne	MAT1 & 2 MAT1 & 2	Japan	1988	KF545248	KF545296	- KF545455	
Clarireedia jacksonii	MB-01	N/A N/A	Agrostis stolonifera	MATI & 2 MATI-1	OH, USA	2001	KF545244	KF545290	MF964289	
Clarireedia jacksonii	RCCPG-1	N/A N/A	Agrostis stolonifera	MATI-1 MATI-2	NC, USA	2001	KF545253	KF545290	IVIF904289	
Clarireedia jacksonii	RE18G-38	N/A N/A	Agrostis stolonifera	MAT1-2 MAT1 & 2	NC, USA	2003	KF545254	KF545292	- KF545457	
Clarireedia jacksonii	SE16F-4	N/A N/A	Festuca rubra	MATI & 2 MATI-2	United Kingdom	2003	MF964268	MF964319	MF964282	
Clarireedia jacksonii	SH44	N/A N/A	Agrostis stolonifera	MATI-2 MATI-2	Canada	2008	KF545251	KF545299	MF964282 KF545459	
Clarireedia jacksonii	SH80	N/A N/A	Agrostis stolonifera	MAT1-2 MAT1-2	Canada	2000	KF545245	KF545294	кг 343439	
Clarifeeala jacksonii	51160	IN/A	Cynodon dactylon x	IVIATI-2	Canaua	2000	KF343243	КГ343294	-	
Clarireedia monteithiana	BC-14	N/A	transvaalensis	MAT1-1	NC. USA	2008	KF545255	KF545307	_	
Clarireedia monteithiana	DRR-9	N/A	Paspalum vaginatum	MAT1-1	Dominican Republic	2008	KF545260	KF545303	MF964290	
			Cynodon dactylon x		,					
Clarireedia monteithiana	LFDF-14	N/A	transvaalensis	MAT1-1	NC, USA	2007	KF545256	KF545308	-	
Clarireedia monteithiana	MAFF 236938	N/A	Cynodon dactylon	MAT1-2	Japan	1991	KF545258	KF545305	KF545460	
Clarireedia monteithiana	RB-19	Holotype	Cynodon dactylon x transvaalensis	MAT1-2	MS, USA	2008	KF545257	KF545306	MF964291	
Clarireedia monteithiana	TEKP-2	N/A	Paspalum vaginatum	MAT1-2	HI, USA	2008	KF545259	KF545304	-	


<i>Clarireedia</i> sp.	CBS 465.73 N/A dung of rabbit		dung of rabbit	N/A	England	1973	KF545264	KF545315	KF545445	
Clarireedia sp.	CPB-17	N/A	Festuca rubra	MAT1-2	United Kingdom	2008	KF545240	KF545310	KF545447	
Clarireedia sp.	PSFFB-1	N/A	Festuca rubra	MAT1-2	United Kingdom	2008	KF545263	KF545312	KF545450	
Lambertella corni-maris	CBS 184.93	N/A	Pyrus malus	N/A	USA	1992	KF545262	KF545336	-	
Lambertella corni-maris	CBS 774.95	N/A	Cornus mas	N/A	Croatia	1967	-	KF545339	-	
Lambertella hicoriae	CBS 294.54	N/A	N/A	N/A	WI, USA	1954	-	KF545337	KF545473	
Lambertella himalayensis	CBS 230.77	N/A	Cassia siamea	N/A	Burma	1977	KF545285	KF545335	-	
Lambertella pruni	CBS 199.47	N/A	Prunus avium	N/A	OR, USA	1947	KF545277	KF545338	KF545472	
Lambertella subrenispora	CBS 811.85	Paratype	Aster ageratoides var. ovata	N/A	Japan	1983	-	KF545329	KF545466	
Lanzia echinophila	CBS 111547	N/A	Quercus castaneifolia	N/A	Netherlands	2002	KF545239	KF545332	-	
Lanzia echinophila	CBS 111549	N/A	Castanea sativa	N/A	Netherlands	2002	KE545271	KF545333	KF545463	
Monilinia vaccinii-corymbosi	SSI-1	N/A	Vaccinium sp.	N/A	NJ, USA	2009	MF964274	MF964325	MF964285	
Monilinia vaccinii-corymbosi	SSI-2	N/A	Vaccinium sp.	N/A	NJ, USA	2009	MF964275	MF964326	MF964286	
Rutstroemia firma	CBS 115.86	N/A	Quercus robur	N/A	Netherlands	1985	KF545286	-	KF545462	
Rutstroemia firma	CBS 341.62	N/A	N/A	N/A	France	1962	KF545275	KF545334	KF545461	
Rutstroemia sydowiana	CBS 115975	N/A	N/A	N/A	Netherlands	2002	KF545276	KF545331	KF545465	
Rutstroemia sydowiana	CBS 115928	N/A	green leaf	N/A	Netherlands	2002	-	KF545330	KF545464	
Sclerotinia asari	CBS 139.91	NA	Asarum europaeum	N/A	Germany	N/A	MF964262	MF964313	MF964277	
Sclerotinia matthiolae	CBS 111.17	N/A	Matthiola vallesiaca	N/A	Switzerland	N/A	MF964263	MF964314	MF964278	
Sclerotinia minor	7440-203	N/A	Unknown		NJ, USA	2009	-	MF964327	MF964287	
Sclerotinia minor	CBS 112.17	N/A	Lactuca sativa	N/A	Netherlands	N/A	MF964264	MF964315	MF964279	
Sclerotinia sclerotiorum	1980 UF-70	N/A	Phaseolus vulgaris	N/A	NE, USA	N/A	*	*	*	
Sclerotinia sclerotiorum	SS1	N/A	Solanum lycopersicum	N/A	NJ, USA	2009	KF545279	KF545320	KF545469	
Sclerotinia sclerotiorum	SS4	N/A	Solanum lycopersicum	N/A	NJ, USA	2009	-	MF964328	MF964288	
Sclerotinia sclerotiorum	SS5	N/A	Solanum lycopersicum	N/A	NJ, USA	2009	KF545280	KF545319	KF545468	
Sclerotinia sp.	CBS 518.75	N/A	Alnus glutinosa	N/A	Netherlands	1975	KF545278	KF545323	KF545471	
Sclerotinia spermophila	CBS 219.46	N/A	Trifolium repens seed	N/A	N/A	N/A	MF964265	MF964316	-	
Sclerotinia sulcata	CBS 303.31	N/A	Carex hudsonii	N/A	Denmark	1930	MF964266	MF964317	MF964280	
Sclerotinia trifoliorum	CBS 171.24	N/A	Trifolium incarnatum	N/A	N/A	1917	MF964267	MF964318	MF964281	

* CaM, ITS and Mcm7 sequences mined from whole genome assemblies deposited at GenBank: *Botrytis cinerea* B05.10 accession PRJNA15632; *Sclerotinia sclerotiorum* 1980 UF-70 accession PRJNA20263

ACC C

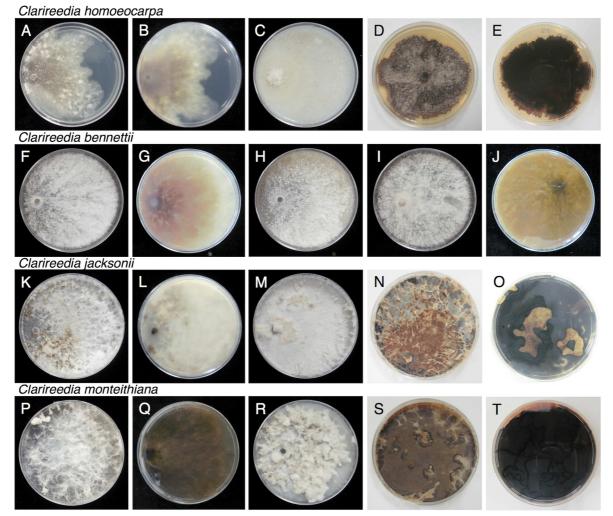
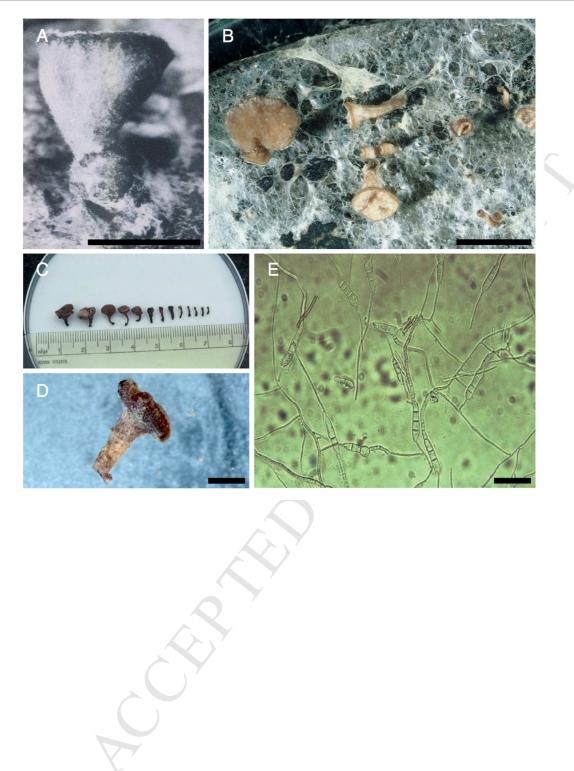

	CaM																											
Species	45	79	85	99	109	118	129	131	137	148	150	159	175	204	343	392	393	397	405	416	438	453	485	486	499	510	530	537
C. homoeocarpa	С	С	Т	Α	Α	G	Т	G	С	Т	Α	Т	-	-	С	-	-	Α	Α	С	Т	С	Α	С	С	Т	С	С
C. bennettii	Т	Т	С	Α	С	G	С	Α	Т	Т	G	Т	-	-	Т	-	-	Т	Α	T	Т	С	С	Т	Т	Т	А	Т
C. jacksonii	С	С	С	Α	Α	С	Т	Α	С	G	Α	Т	С	G	Т	С	Т	Т	Α	С	Т	С	С	Т	Т	Т	Т	С
C. monteithiana	С	С	С	С	Α	G	Т	А	С	С	А	G	С	G	Т	-	-	Т	С	G	С	Т	С	Т	Т	G	Т	С
	ITS																	Y					Mo	em7				
Species	44	64	67	82	85	86	109	149	156	160	161	162	164	198	200	230	231	471	472	489	60	69	171	247	295	364	388	400
C. homoeocarpa	С	Α	Т	С	С	G	Т	С	G	G	G	С	С	-	С	С	C	G	G	Т	G	G	Α	Т	Т	Т	Т	С
C. bennettii	С	G	G	С	-	С	Α	С	С	А	Т	С	С	А	G	Т	Т)-	G	С	Α	Α	Α	Т	Т	С	Т	С
C. jacksonii	Т	Т	С	Т	Т	Т	G	Т	Т	G	С	Т	Т	Т	Α	>	-	Т	Α	Α	Α	Α	Α	С	Т	С	Т	С
C. monteithiana	С	Т	С	С	Т	Т	G	С	Т	G	С	С	С	Т	Α			Т	G	Α	Α	Α	Т	Т	Α	С	С	Т

Table 2. Single nucleotide polymorphism comparisons between *Clarireedia homoeocarpa*, *C. bennettii*, *C. jacksonii* and *C. monteithiana*.



CER AN

