APPLICATION NOTE 42497

Elemental Analysis: Combustion (Dumas) method for Nitrogen/ Protein determination of animal feed reference materials

Authors: Liliana Krotz and Walter Galotta; Thermo Fisher Scientific, Milan, Italy

Keywords: Animal feed, argon, combustion, nitrogen, protein

Goal

To assess the performance of the Flash*Smart* EA using helium and argon as carrier gas in alternative to the Kjeldahl method of animal feed reference materials analysis.

Introduction

One of the most important nutrients in animal nutrition is protein. The intake of protein provides animals with resource for energy, growth of muscles, production of hormones, milk, wool etc. The protein content can be monitored through the precise and accurate determination of nitrogen levels in the animal feed product.

Traditionally, the Kjeldahl method is used. However, it presents some challenges in terms of automation and reproducibility. For this reason, the use of an automated analytical techniques allowing fast nitrogen analysis with an excellent reproducibility is required.

The capabilities of the Dumas method (combustion method) for the determination of nitrogen have been greatly improved to make it faster, safer and more reliable than the traditional Kjeldahl method. Combustion Dumas method has been approved and adopted by the Association of Official Analytical Chemists (AOAC Official Method 990.03. Protein crude in Animal Feed 4.2.08).

The Thermo Scientific[™] Flash*Smart*[™] Elemental Analyzer, based on the dynamic flash combustion of the sample, meets a wide array of requirements of laboratories such as accuracy, day by day reproducibility and high sample throughput. The Flash*Smart* EA uses helium as carrier gas, which ensures high sensitivity.

Considering the need for cost efficiencies and the likely increase in helium gas cost, due to its possible shortage, an alternative for the carrier gas, is needed. Argon which is readily available, can be used as alternative to helium giving excellent performance of the Flash*Smart* EA.

Figure 1. Thermo Scientific FlashSmart Elemental Analyzer

Method

The FlashSmart EA operates according to the dynamic flash combustion of the sample. The sample is weighed in tin containers and introduced into the combustion reactor via the Thermo Scientific[™] MAS Plus Autosampler with oxygen. After combustion, the produced gases are carried by a helium or argon flow to a second reactor filled with copper, then swept through CO₂ and H₂O traps, a GC column and finally detected by a Thermal Conductivity Detector (TCD) (Figure 2). A complete report is automatically generated by the Thermo Scientific™ EagerSmart[™] Data Handling Software and displayed at the end of the analysis. The EagerSmart Data Handling Software controls all analytical parameters of the instrument including the oxygen flow and the timing of oxygen injection. It calculates automatically the amount of oxygen, relative to the sample matrix and sample weight, through the dedicated Thermo Scientific[™] OxyTune Function ensuring the complete combustion of the sample. Through this optimization also decreases the cost per analysis by not wasting oxygen or consuming the copper unnecessarily. Figure 3 shows the OxyTune Categories. From the nitrogen data obtained and a protein factor (6.25 as default), the software allows the automatic calculation of the protein content.

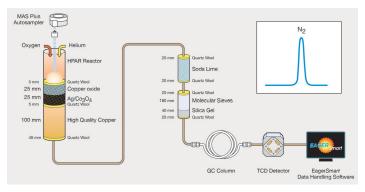


Figure 2. Nitrogen configuration

xyrun	e: Automatic C	0xyTune: Automatic Oxygen Dosing				
	window provid lation of the o					
Samp	le # 45	T;	ype <mark>ByP</mark>	Weight	: (mg): 0	
	\Box Use fixed of	xygen quantity	y set for all sam	ples marked @	2	
tomatic	c Oxygen quantit	U:				
comaci						
Comoti		Category A intime (s): 0				
		Category A n time (s): 0	sec			
	Oxyger	Category A n time (s): 0	sec C	D	E	-
	Oxyger nt * 20 / 100 * 1	Category A n time (s): 0 .3)+ 0		D Beer	E	•
Weigł	0xyger nt * 20 / 100 * 1 A	Category A n time (s): 0 .3)+ 0 B	С	-	E	4
Weigł 1	0xyger nt * 20 / 100 * 1 A Forage	Category A n time (s): 0 .3)+ 0 B Cereals	C	Beer	E	-
Weigł 1 2	Oxyger nt * 20 / 100 * 1 Forage Fodder	Category A time (s): 0 .3) + 0 B Cereals Pasta	C Soil Fertilizer	Beer Juice	E	-
Weigł 1 2 3	Oxyger nt * 20 / 100 * 1 A Forage Fodder Leaves	Category A n time (s): 0 .3) + 0 B Cereals Pasta Flour	C Soil Fertilizer Milk	Beer Juice	E	
Weigł 1 2 3 4	Oxyger nt * 20 / 100 * 1 A Forage Fodder Leaves Tobacco	Category A time (s): 0 	C Soil Fertilizer Milk	Beer Juice	E	
Weigł 1 2 3 4 5	Oxyger at * 20 / 100 * 1 A Forage Fodder Leaves Tobacco Cocoa	Category A time (s): 0 .3)+ 0 B Cereals Pasta Flour Meat Cheese Beans	C Soil Fertilizer Milk	Beer Juice	E	

Figure 3. OxyTune EagerSmart Data Handling Software window

Results

The accuracy and precision of the Flash*Smart* EA was evaluated through the analysis of BIPEA (Bureau InterProfessionnel d'Etudes Analytiques, France) Reference Materials. The materials were characterized through an intercomparison laboratory test using Kjeldahl and combustion methods. The results obtained were compared with the accepted range indicated in the relative reports of BIPEA.

For the intercomparison laboratory test, BIPEA considered the following Official Methods:

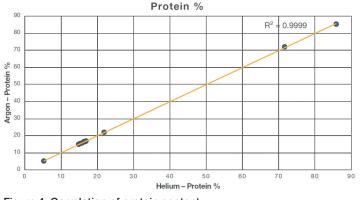
- For Kjeldahl method: NF EN ISO 5983-1: Determination of nitrogen content and calculation of crude protein content -Part 1: Kjeldahl method; NF EN ISO 5983-2: Determination of nitrogen content and calculation of crude protein content -Part 2: Block digestion and steam distillation method; REGULATION (EC) n° 152/2009 – Methods of sampling and analysis for the official control of feed.
- For Dumas method: NF EN ISO 16634-1: Determination of the total nitrogen content by combustion according to the Dumas principle and calculation of the crude protein content -Part 1: Oilseeds and animal feeding stuffs.

Different reference materials were chosen to demonstrate the availability of the method for a large range of protein content without matrix effect. Samples were homogenized by a ball mill. Table 1 shows the BIPEA accepted range for both Kjeldahl and combustion method, and the protein average content of 10 consecutive analyses of BIPEA Reference Materials obtained with the Analyzer using helium as carrier gas.

Table 1. Protein data of BIPEA Reference Materials

Comula nome	Protein % – BIP	Protein %		
Sample name	Kjeldahl method	Combustion method	FlashSmart EA	
Feed for sow	15.4–16.6	15.6–16.8	16.32	
Hyperproteic powder	82.0-88.8	82.9-89.9	85.84	
Laying hen feed 1	16.0–17.0	16.3–17.3	16.90	
Laying hen feed 2	16.2–17.2	16.5–17.5	16.76	
Fish meal	67.7–71.9	68.8–73.0	71.72	
Feed for chicken 1	17.6–18.6	17.8–19.0	18.82	
Feed for rabbit	14.7–15.7	15.1–16.1	15.71	
Molasse	5.1-5.9	5.1–5.9	5.29	
Cat food	33.0-35.0	33.3–35.3	35.07	
Dehydrated alfalfa 1	14.4–15.2	14.6–15.6	14.90	
Dehydrated alfalfa 2	14.2–15.4	14.5–15.7	15.17	
Growing finishing pig meal	15.0–16.0	15.2–16.2	15.73	
Horse beans	24.9–26.5	25.2–26.8	26.52	
Triticale	9.7–10.5	9.7–10.5	10.29	
Bran	15.5–16.5	15.8–16.8	16.37	
Common wheat	12.2–13.0	12.3–13.1	12.59	
Feed for piglet	18.0–19.2	18.2–19.4	19.12	
Corn	6.1–6.9	6.1–6.9	6.75	
Milk replacer for cow	20.7–21.9	21.1–22.5	21.91	
Poultry meal	63.4–67.4	64.4-68.4	66.44	

To demonstrate the performance of the Flash*Smart* Elemental Analyzer using argon as carrier gas, several BIPEA Reference Materials were analyzed for N/Protein determination. The instrument calibration was performed with aspartic acid or nicotinamide standard using K factor as calibration method. Table 2 shows the sample weight and the standard when helium or argon is used as carrier gas. Table 3 shows the N/Protein data obtained using helium and argon as carrier gas. Each sample was analyzed ten times. The data are comparable and the repeatability is more than acceptable giving in both cases a RSD% less than 2% as Official Methods requirements. Figure 4 shows the relationship of the protein content using helium and argon carrier gas, the good correlation obtained confirm the possibility to use argon as alternative carrier gas for N/Protein analysis.


Somalo nomo	Heliun	n carrier gas	Argon carrier gas			
Sample name	Weight (mg)	Calibration standard	Weight (mg)	Calibration standard		
Feed for sow	200-300	50–90 mg aspartic acid	125–135	50–70 mg aspartic acid		
Hyperproteic powder	200–250	200–250 90–100 mg nicotinamide		50–60 mg nicotinamide		
Laying hen feed 1	200-300	50–90 mg aspartic acid	125–135	50–70 mg aspartic acid		
Laying hen feed 2	200-300	50–90 mg aspartic acid	125–135	50–70 mg aspartic acid		
Fish meal	200–250	90–100 mg nicotinamide	120–140	50–60 mg nicotinamide		
Feed for rabbit	200–210	60–70 mg aspartic acid	125–145	50–60 mg aspartic acid		
Molasse	90–100	50–60 mg aspartic acid	90–100	50–60 mg aspartic acid		
Dehydrated alfalfa 1	190–200	50–70 mg aspartic acid	120–130	50–70 mg aspartic acid		
Dehydrated alfalfa 2	190–200	50–70 mg aspartic acid	120–130	50–70 mg aspartic acid		
Growing finishing pig meal	190–200	50–70 mg aspartic acid	100–110	50–70 mg aspartic acid		
Milk replacer for cow	120–140	50–70 mg aspartic acid	120–140	50–70 mg aspartic acid		

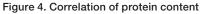

Table 2. Sample weight and standard information

Table 3. N/Protein data of BIPEA Reference Materials using helium and argon carrier gas

Complenses	Helium carrier gas			Argon carrier gas				
Sample name	N%	RSD%	Protein %	RSD%	N%	RSD%	Protein %	RSD%
Molasse	0.85	0.83	5.29	0.94	0.84	0.99	5.28	0.94
Dehydrated alfalfa 1	2.38	0.79	14.90	0.75	2.40	0.87	15.01	0.90
Dehydrated alfalfa 2	2.42	0.29	15.17	0.37	2.43	0.55	15.21	0.55
Feed for rabbit	2.51	0.80	15.71	0.84	2.51	1.14	15.71	1.16
Growing finishing pig meal	2.52	0.73	15.73	0.66	2.51	1.15	15.69	1.17
Feed for sow	2.61	0.33	16.32	0.30	2.65	0.50	16.56	0.50
Laying hen feed 2	2.68	0.86	16.76	0.81	2.68	0.88	16.72	0.82
Laying hen feed 1	2.70	0.43	16.90	0.40	2.71	0.92	16.93	0.91
Milk replacer for cow	3.50	0.79	21.91	0.76	3.51	0.71	21.95	0.76
Fish meal	11.48	0.16	71.72	0.15	11.50	0.40	71.89	0.40
Hyperproteic powder	13.73	0.20	85.84	0.20	13.63	0.42	85.22	0.42

thermo scientific

Conclusions

For the N/Protein determination, the application showed that the Dumas method meets manufacturers and laboratories requirements, including the compliance to official methods. The Thermo Scientific Flash*Smart* Elemental Analyzer based on the combustion method (Dumas) offers advantages over the Kjeldahl method for the N/Protein determination in terms of automation, easy to use and cost per sample. The Nitrogen/Protein data obtained of the BIPEA reference materials fall within the tolerance declared in relative reports and the RSD% obtained was less than 2% according to the Official Methods Performance Requirements.

Good repeatability, accuracy and precision was obtained with the Flash*Smart* EA using helium and argon carrier gas to analyze nitrogen in a wide range from low to high content.

No memory effect was observed when changing the type of sample, indicating complete combustion and detection of the element.

The Dumas Combustion method has been approved and adopted by Official Organizations such as ASBC, AOAC, AACC, AOCS, IDF, IFFO and ISO.

Find out more at thermofisher.com/OEA

© 2020 Thermo Fisher Scientific Inc. All rights reserved. AOAC is a trademark of The Association of Official Analytical Chemists; AOCS is a trademark of The American Oil Chemists; ASBC is a trademark of The American Association of Cereal Chemists; ASBC is a trademark of The American Society of Brewing Chemists; IFFO is a trademark of the International Fishmeal and Fish Oil Organization; ISO is a trademark of the International Standards Organization, BIPEA is used in trade by the Bureau Interprofessionnel d'Etudes Analytiques. All other trademarks are the property of Thermo Fisher Scientific and its subsidiaries. This information is presented as an example of the capabilities of Thermo Fisher Scientific products. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representatives for details. AN42497-EN 0520C

