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1. Waves and instabilities

In this section we will carry out a series of calculations that are similar in that they
involve considering small perturbations and how they evolve. We will often derive a
dispersion relation and use it to determine if waves are likely to be able to travel or
if small perturbations can become unstable and grow. Our first example illustrates
the procedure with sounds waves. In this case there is no instability but we do find
a dispersion relation relating wavelengths to frequencies for wave solutions.

1.1. Sound waves – compressive waves in 1D. Consider an isentropic ideal fluid
with equation of state p = Kργ. Recall Euler’s equation.

(1)
∂u

∂t
+ u · ∇u = −1

ρ
∇p

Consider small perturbations in one dimension about an equilibrium configuration
with zero velocity, u(x, t) = u1(x, t) and ρ(x, t) = ρ0 + ρ1(x, t) where u1 and ρ1 are

1
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both small. We assume that the zeroth order velocity u0 = 0. We have restricted
the possible waves to 1 dimension. We also assume that pressure can be described
as p(x, t) = p0 + p1(x, t) where p0 is independent of time and position. We insert
these expressions in to Euler’s equation

(2)
∂

∂t
(u0 + u1) + (u0 + u1)

∂

∂x
(u0 + u1) = − 1

ρ0 + ρ1

∂

∂x
(p0 + p1)

We can approximate 1
ρ0+ρ1

∼ 1
ρ0

(1− ρ1/ρ0)
Any term that is a produce of two first order terms is second order so we can drop

it. We can also drop zero-th order terms as they should satisfy Euler’s equation on
their own. Euler’s equation becomes

(3)
∂u1
∂t

+ u0
∂u1
∂x

+ u1
∂u0
∂x

= − 1

ρ0

∂p1
∂x

+
ρ1
ρ20

∂p0
∂x

As u0 = 0 we can drop the second term on the left hand side. As u0 doesn’t depend
on position we can drop the third term on the left hand side. As p0 does not depend
on position we can drop the second term on the right hand side. Euler equation now
becomes

(4)
∂u1
∂t

= − 1

ρ0

∂p1
∂x

We note that

(5) dp1 =
∂p0
∂ρ

dρ → ∂p1
∂x

=

(
∂p

∂ρ

)
0

∂ρ1
∂x

.

and Euler’s equation can be written in terms of density and velocity only

(6)
∂u1
∂t

= − 1

ρ0

(
∂p

∂ρ

)
0

∂ρ1
∂x

To first order in our perturbations Euler’s equation has become

(7) u1,t = − 1

ρ0

(
∂p

∂ρ

)
0

ρ1,x

where ,x refers to a derivative with respect to x. The u · ∇u term is second order in
our perturbation strength and so has been dropped. Let’s take the time derivative
of this equation

(8) u1,tt = − 1

ρ0

(
∂p

∂ρ

)
0

ρ1,xt

We now use the equation of continuity

(9)
∂ρ

∂t
+∇ · (ρu) = 0
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Following the same procedure of using first order perturbations, conservation of mass
becomes

(10) ρ1,t = −ρ0u1,x
Let’s take the x derivative of this equation

(11) ρ1,tx = −ρ0u1,xx
Putting these together we find

(12) u1,tt =

(
∂p

∂ρ

)
0

u1,xx

This is a wave equation with solutions

u1 = A exp(i(kx− ωt))(13)

ρ1 = B exp(i(kx− ωt))(14)

for amplitudes A,B. Inserting these wavelike solutions into our equation for conser-
vation of mass and that derived from Euler’s equation we find a dispersion relation

(15) ω2 =

(
∂p

∂ρ

)
0

k2

The sound speed is

(16) cs =

√(
∂p

∂ρ

)
0

=

√
γ
p

ρ

where the derivative is often describe in terms of keeping the entropy fixed. Fur-
thermore Equation (7) relates the amplitude in velocity to that in density with
A = csB/ρ0.

The above procedure of using a first order perturbation approximation and looking
for a dispersion relation is seen again and again in fluid dynamics. It is used for
stability analysis, for example in derivation of the Kelvin Helmholtz instability. This
procedure is also used to find the dispersion relation for spiral density waves in a
fluid disk.

Consider how we would have done a similar derivation but not restricting the
system to 1 dimension. Equation 7 (derived from Euler’s equation) becomes

(17) u1,t = − 1

ρ0

(
∂p

∂ρ

)
0

∇ρ1

and the equation of continuity becomes

(18) ρ1,t = −ρ0∇ · u1
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Taking the divergence of equation 17 and time derivative of equation 18

∇ · u1,t = − 1

ρ0

(
∂p

∂ρ

)
0

∇2ρ1(19)

ρ1,tt = −ρ0∇ · u1,t(20)

These can be combined to give

(21) ρ1,tt =

(
∂p

∂ρ

)
0

∇2ρ1.

This is a wave equation. Solutions are

∝ eik·x−ωt.

Note that equation 20 implies that there is no density perturbation if the velocity
perturbation is incompressible.

1.1.1. Plane waves. We now redo the above but do not restrict the analysis to one
spatial dimension. We assume that pressure, velocity and density

(22) ∝ ei(k·x−ωt)

so that

p = p0 + p1e
i(k·x−ωt)(23)

ρ = ρ0 + ρ1e
i(k·x−ωt)(24)

u = u1e
i(k·x−ωt)(25)

The continuity equation to first order becomes

(26) −iωρ1 + iρ0k · u1 = 0

Euler’s equation becomes

(27) −iωu1 = −c2sik
ρ1
ρ0

We take k· Euler’s equation

(28) ωk · u1 = c2sk
2ρ1
ρ0

and insert the above into equation (26), finding a dispersion relation

(29) ω2 = c2sk
2

as long as k · u1 6= 0. This condition implies that ∂ρ1
∂t
6= 0 and so the waves are

compressive in nature.
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2. Jeans Instability

We consider a constant density medium at rest with density ρ and sound speed
cs. Consider perturbations to density, velocity and gravitational potential

ρ(x, t) = ρ0 + ρ1(x, t)

u(x, t) = 0 + u1(x, t)

Φ(x, t) = something + Φ1(x, t)(30)

with forms for the perturbations

ρ1(x, t) = ρae
i(kx−ωt)

u1(x, t) = uae
i(kx−ωt)(31)

Φ1(x, t) = Φae
i(kx−ωt)(32)

The procedure of completely ignoring the zeroth order term in the gravitational
potential is known as the Jeans swindle. Usually one assumes that the zero-th order
variables satisfy the hydrodynamic equations.

The perturbation to the gravitational potential can be found from Poisson’s equa-
tion

(33) ∇2Φ1 = 4πGρ1

we take only the derivative in the x direction finding

(34) Φa = −4πGρa
k2

Conservation of mass to first order

(35) ρ1,t + ρ0u1,x = 0

Inserting our perturbations

(36) −ωρa + ρ0kua = 0

or

(37) ua =
ρa
ρ0

ω

k

Euler’s equation to first order

(38) u1,t + c2s
ρ1,x
ρ0

= −Φ1,x

Inserting our Fourier components

(39) −iωua + ikc2s
ρa
ρ0

= ik
4πGρa
k2
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Inserting our relation between ua and ρa we find a dispersion relation

(40) ω2 = c2sk
2 − 4πGρ0

Let’s look at the dispersion relation. In the limit of larger k we recover our sound
waves. In the limit of small k our frequency becomes complex and modes are unsta-
ble. We set ω2 = 0 and solve for k finding a Jeans wave-vector

(41) kJ =

√
4πGρ0
c2s

or an associated Jeans wavelength λJ = 2π/kJ . The maximum stable wavelength

(42) λJ =

√
πc2s
Gρ0

For k < kJ or λ > λJ modes are unstable and there can be gravitational collapse.
We can also consider a mass contained within this wavelength ρ0λ

3
J and call it the

Jeans mass

(43) MJ ∼
π3/2c3s

G3/2ρ
1/2
0

As k → 0 we find that ω2 → −4πGρ0 becomes increasingly negative and reaches
a maximum at k = 0 which corresponds to an infinite wavelength. In this limit the
growth inverse timescale γ = iω =

√
4πGρ0. Given a particular cloud the fastest

growing wavelength will be the largest one of order the size of the cloud itself.
It is useful to estimate a timescale for gravitational collapse to happen. In this

case
√
Gρ is an inverse collapse timescale or a free-fall timescale.

What does this instability mean physically? The Jeans wavelength is the wave-
length at which the sound crossing timescale is equivalent to the free fall or gravita-
tional collapse timescale. The Jeans instability implies that all density distributions
are unstable, from large scale cosmological structure to molecular clouds. Clumps
will form with a minimum mass given by the Jeans mass.

3. Stratified Fluid Flows – Waves or Instabilities on a Fluid
Boundary

Consider two incompressible inviscid fluids one lying above the other in a uniform
gravitational field. The fluid on the top has density ρ′ and that on the bottom ρ.
The fluid on the top has mean velocity U ′ and that on the bottom U . We orient
our coordinate system so that −z is the direction of gravitational acceleration, the
interface between the two fluids lies at z = 0 and x increases along the interface.
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Figure 1. Two fluids, one lying above the other in a gravitational
field. The top fluid has horizontal velocity U ′ and the bottom one has
velocity U . When the top fluid is denser than the bottom fluid ρ′ > ρ
then the boundary is unstable to the Rayleigh-Taylor instability. When
ρ′ < ρ gravity waves can propagate on the boundary. When U ′ 6= U
then the boundary is unstable to the Kelvin-Helmholtz instability.

This problem is somewhat more complicated than our previous example of sound
waves as we must consider an interface.

Recall Euler’s equation

(44)
∂u

∂t
+ (u · ∇u)u = −1

ρ
∇p−∇Φ

We use the vector identity

(45) (u · ∇)u = ∇
(
u2

2

)
− u×∇× u

If the flow is irrotational we can drop the second term on the right. For an irrotational
flow Euler’s equation becomes

(46)
∂u

∂t
+∇

(
u2

2

)
= −1

ρ
∇p−∇Φ

If the flow is irrotational then we can use a potential function for the velocity u
such that

(47) ∇ψ = −u
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Euler’s equation becomes

(48) ∇
(
−∂ψ
∂t

+
u2

2
+
p

ρ
+ Φ

)
= 0

Here moving the density inside the gradient is equivalent to assuming that the flow
is incompressible. We can integrate the previous equation finding

(49) −∂ψ
∂t

+
u2

2
+
p

ρ
+ Φ = F (t)

where F (t) does not depend on position.
We now consider an interface between the two fluids and describe the position of

the interface (in z) as ξ(x, t). We assume that

(50) ξ = Aei(kx−ωt)

and based on a derived dispersion relation determine if small perturbations grow,
decay or oscillate with time.

Since our velocity is U ′ and U above and below the interface our velocity potential
can be written

(51) ψ(x, z, t) =

{
−U ′x+ φ′(x, z, t)
−Ux+ φ(x, z, t)

for
z > 0
z < 0

We regard the functions φ, φ′ as perturbations. The above is equivalent to describing
the velocity as the sum of zero-th and first order solutions. We assume that φ′, φ ∝
ei(kx−ωt). However φ′, φ also depend on z.

For an incompressible fluid ∇ · u = 0 so

(52) ∇2ψ = 0.

For a solution with perturbation exponentially decaying with z (and decaying with
increasing z for z > 0 and decaying with decreasing z for z < 0), and depending on
ei(kx−ωt), Laplaces’s equation allows us to relate the exponential decay rate with z to
the wavenumber in x. In other words

φ′ = φ′1e
i(kx−ωt)−kz

φ = φ1e
i(kx−ωt)+kz(53)

satisfy Laplace’s equation.
We write out the velocity u = −∇ψ

u =

{
U ′x̂ + kφ′1(−ix̂ + ẑ)ei(kx−ωt)−kz

U x̂ + kφ1(−ix̂− ẑ)ei(kx−ωt)+kz
for

z > 0
z < 0

(54)
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We require that fluid elements not cross the interface, ξ(x, t). This means that

(55) uz = −dψ
′

dz
=
∂ξ

∂t
+ U ′

∂ξ

∂x
for z > 0

and

(56) uz = −dψ
dz

=
∂ξ

∂t
+ U

∂ξ

∂x
for z < 0.

Equation 50 gives partial derivatives

(57)
∂ξ

∂t
= −iωAei(kx−ωt) ∂ξ

∂x
= ikAei(kx−ωt)

Inserting these into equations 55, 56 we find

i(kU ′ − ω)A = kφ′1
i(kU − ω)A = −kφ1.(58)

and each is satisfied. So far the above are two equations for three unknowns A, φ′1, φ1.
However we have another equation derived from Euler’s equation (or Bernoulli’s
equation).

We can invert equation 49 to solve for pressure

(59) p = −ρ
(
−∂ψ
∂t

+
u2

2
+ Φ

)
+ ρF (t)

At the interface we require pressure balance. The gravitational potential at the
interface Φ = gz = gξ so

(60) −ρ′
(
−∂ψ

′

∂t
+
u′2

2
+ gξ

)
+ ρ′F (t) = −ρ

(
−∂ψ
∂t

+
u2

2
+ gξ

)
+ ρF (t)

For large and small z above and below the boundary we assume that perturbations
in the fluid will decay. Because F (t) does not depend on position we can set it to
zero.

Zeroth order terms should balance, so we need only consider terms that are first
order in our perturbation quantities. To first order

(61) u′2 → −2U ′
∂φ′

∂x
u2 → −2U

∂φ

∂x
.

Equation 54 implies that ∂ψ′

∂t
= ∂φ′

∂t
and likewise for ψ and φ. Inserting these expres-

sions into our pressure relation (equation 60) and evaluating it at z = 0

(62) ρ′
[
−
(
∂

∂t
+ U ′

∂

∂x

)
φ′ + gξ

]
= ρ

[
−
(
∂

∂t
+ U

∂

∂x

)
φ+ gξ

]
.
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Evaluating at z = 0 is equivalent to assuming that the amplitude of perturbation
A is very small (specifically A < k−1). Using our exponential forms for φ, φ′, ξ this
becomes

(63) ρ′ (−i(kU ′ − ω)φ′1 + gA) = ρ (−i(kU − ω)φ1 + gA) .

Using equations 58 to eliminate φ′1, φ1 we find an equation where each term is pro-
portional to A. Dividing this by A we find a dispersion relation that can be put in
the following form

(64) ρ(kU − ω)2 + ρ′(kU ′ − ω)2 = kg(ρ− ρ′).

This is our dispersion relation.

3.1. Surface gravity waves. For two fluids at rest (U = U ′ = 0) our dispersion
relation is

(65) ω = ±
√
gk

√
ρ− ρ′
ρ+ ρ′

If ρ > ρ′ then ω is real and we have wave-like solutions. In the limit of ρ′ � ρ (air
over water) ω =

√
gk and we have surface gravity waves.

3.2. Rayleigh-Taylor instability. Consider fluids at rest with ρ′ > ρ. In this case
ω has to be complex which implies that perturbations can grow exponentially and
so are unstable. The solution is

(66) ω = ±i
√
gk

√
ρ′ − ρ
ρ+ ρ′

with solutions ∝ e±iωt. We can construct a growth timescale

(67) tgrow =
i

|ω|
= (gk)−1/2

∣∣∣∣ρ′ − ρρ+ ρ′

∣∣∣∣−1/2
so we can write solutions as

(68) ∝ e±t/tgrow

As we have assumed uniform acceleration by gravity, this instability could also
take place in other settings where there is uniform acceleration such as in the shell
of a supernova remnant. Outward acceleration is equivalent to inwardly directed
gravity.
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Figure 2. Kelvin Helmholtz instability grows because of pressure dif-
ferences caused by the velocity perturbations. It’s not obvious here,
but there must be a small lag between pressure and velocity differences
for water waves to be excited by wind. If the velocity and pressure per-
turbations are exactly in phase then there is no energy transfer between
media.

3.3. Kelvin-Helmholtz Instability. We consider the case when fluids are stable
to the Rayleigh-Taylor instability but moving with respect to one another. Our
dispersion relation (equation 64) is a quadratic equation for ω. Grouping terms we
can write the dispersion relation as a polynomial of ω,

(69) ω2(ρ+ ρ′)− ω2k(ρU + ρ′U ′) + k2(ρU2 + ρ′U ′2)− kg(ρ− ρ′) = 0

The quadratic equation gives

ω =
1

2(ρ+ ρ′)
(2k(ρU + ρ′U ′)±√

4k2(ρU + ρ′U ′)2 − 4(ρ+ ρ′)(k2(ρU2 + ρ′U ′2)− kg(ρ− ρ′))
)
.(70)

There is no real solution and instability occurs when

(71) k >
(ρ2 − ρ′2)g
ρρ′(U − U ′)2

.

Note ω is not necessarily small at the transition point. When gravity is unimportant,
we can take g → 0, and then find that all wavelengths are unstable as long as U ′ 6= U .
When ρ > ρ′, then gravity stabilizes short k or long wavelengths. The larger k



12 AST242 LECTURE NOTES PART 5

are more unstable, consequently the smallest wavelengths grow the fastest, however
surface tension and other small scale processes can stabilize the smallest wavelengths.

4. Thermal Instability

We consider the case of the interstellar medium, gas with different temperatures
but with each phase approximately in pressure equilibrium. There are different
heating and cooling mechanisms. We start with an equation for energy conservation.
We would like to work with variables density, temperature and pressure.

(72) TdS = de− pdρ
ρ2

For an ideal gas with e = p
ρ

1
γ−1

(73) ρTdS =
dp

γ − 1
− γ

γ − 1

p

ρ
dρ

Using the Lagrangian derivative and equating heating rate with that due to thermal
conductivity and heating and cooling

(74) ρT
DS

Dt
=

1

γ − 1

Dp

Dt
− γ

γ − 1

p

ρ

Dρ

Dt
= ∇ · (λ∇T ) +Q+(ρ, T )−Q−(ρ, T )

where λ is the thermal conductivity, Q+ is the heating rate per unit volume and Q−

is the cooling rate. The form of the cooling rate, Q−, is expected to be non-trivial in
shape. It contains a peak at about 100K, due to molecular line emission (vibrational
and rotational transitions), and one at 105K due to optical and UV emission lines
from ions (e.g., bound-free, bound-bound, and during recombination).

We include three more equations, the continuity equation (conservation of mass)
and Euler’s equation (conservation of momentum) and an equation of state

∂ρ

∂t
+∇ · (ρu) = 0(75)

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p(76)

p =
ρkBT

m̄
(77)
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We consider perturbations of velocity, density, temperature and pressure in the
form

ρ(x, t) = ρ0 + ρ1e
i(k·x−ωt)

p(x, t) = p0 + p1e
i(k·x−ωt)

T (x, t) = T0 + T1e
i(k·x−ωt)

u(x, t) = u1e
i(k·x−ωt)(78)

We assume the gas without perturbations is uniform and at rest (u0 = 0, and p0, ρ0, T0
independent of x and time).

Let consider perturbations to the heating and cooling functions

(79) Q(ρ, T ) = Q+(ρ0, T0)−Q−(ρ0, T0) +Qρρ1 +QTT1

so that

Qρ =
∂(Q+ −Q−)

∂ρ

∣∣∣∣
ρ0,T0

QT =
∂(Q+ −Q−)

∂T

∣∣∣∣
ρ0,T0

(80)

To first order in our perturbations, the continuity equation, Euler’s equation, the
equation of state and our equation for conservation of energy become

−iωρ1 + ik · u1ρ0 = 0(81)

−iωu1 = −ikp1
ρ0

(82)

p1
p0

=
ρ1
ρ0

+
T1
T0

(83)

− iω

γ − 1

(
p1 −

γp0
ρ0

ρ1

)
= −λk2T1 +QTT1 +Qρρ1(84)

Note γp0
ρ0

= c2s where cs is the sound speed. We can dot k with equation (82) to find

(85) ωk · u1 = k2
p1
ρ0

and this can be used to eliminate the velocity from the continuity equation

(86) ω2ρ1 = k2p1
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Inserting this into the last two perturbation equations(
ω2

k2
ρ0
p0
− 1

)
ρ1
ρ0

=
T1
T0

(87)

− iω

γ − 1

(
ω2

k2
− c2s

)
ρ1 = QTT1 − λk2T1 +Qρρ1(88)

These can be manipulated to give a dispersion relation

(89) − iω

γ − 1

(
ω2

k2
− c2s

)
−
(
QT − λk2

) T0
p0

(
ω2

k2
− c2s
γ

)
= Qρ

where we have used our definition for sound speed. This differs only in the sign of ω
from the expression given by Pringle & King (equation 8.10) because of the different
sign in our assumed form for the perturbation. The dispersion relation is a cubic
equation in ω. The three roots (real or/and complex) can be studied as a function
of k.

Note: We have assumed an ideal gas described with an adiabatic index even though
we are considering heating and cooling.

4.1. Acoustic waves damped by thermal conductivity. If there is no thermal
conductivity, λ = 0, and heating and cooling are negligible (Qρ = QT = 0) then the
dispersion relation (equation 89) simplifies to

(90) ω2 = k2c2s

which is the relation for acoustic or sound waves.
Let’s consider the dispersion relation when heating balances cooling and we are at

an equilibrium point Qρ = QT = 0. In this case the dispersion relation becomes

(91) iω
(
ω2 − k2c2s

)
= λk2

T0
ρ0

(γ − 1)
(
ω2 − k2c2sγ−1

)
If we assume that λ is small we can try a solution ω = kcs + x where x is small. To
first order in λ and x

i2k2c2sx = λk2
T0
ρ0

(γ − 1)2γ−1k2c2s(92)

x = −iλ
2

T0
ρ0

(γ − 1)2γ−1(93)

Thus

(94) ω = csk − iδ δ =
λ

2

T0
ρ0

(γ − 1)2γ−1
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with δ > 0. With our form for the perturbations ∝ exp(i(k ·x−ωt) we find that our
perturbations exponentially damp due to thermal conductivity.

Note that δ is not small if k is sufficiently large. Hence our assumption that δ
is small is only satisfied for moderate values of k. For k sufficiently large (or over
sufficiently small distances) perturbations are rapidly damped due to conduction.

The parameter δ has units of inverse time. We can estimate how much the ampli-
tude is reduced per wavelength traveled with the factor e−δP where P is the period,
P = 2π

ω
= 2π

csk
.

4.2. Field Stability Criterion. We consider slow changes or small ω. In this limit
ω � kcs and our dispersion relation (equation 89) reduces to

(95)
iω

γ − 1
c2s +

(
QT − λk2

) T0
p0

c2s
γ

= Qρ

We can rewrite this as

(96) iω =
γ − 1

γp0

(
Qρρ0 −QTT0 + λk2T0

)
.

The ISM is nearly in pressure equilibrium. Since p ∝ ρT we can use ∂ρ
∂T

∣∣
p

= − ρ
T

and

(97)
∂Q

∂ lnT

∣∣∣∣
p

= QTT + QρT
∂ρ

∂T

∣∣∣∣
p

= QTT −Qρρ

Thus our dispersion relation (equation 95) becomes

(98) −iω =
γ − 1

γp0

[
∂Q

∂ lnT

∣∣∣∣
p

− λk2T0

]
In the case of no conductivity (λ = 0) there is instability when

(99) instability⇐⇒ ∂Q

∂ lnT

∣∣∣∣
p

> 0

This is called the Field stability criterion.
Let us consider the Field stability criterion physically. Pressure equilibrium is

expected otherwise there will be large velocities generated and mixing. If increasing
the temperature increases the heating rate then the temperature will continue to
rise and we will have instability. If increasing the temperature decreases the heating
rate then we will have convergence to a stable situation. For the second case, giving
stability, we have negative feedback. For the first case, giving instability, we have
positive feedback. I note that there can be instability even in the negative feedback
case if the feedback (heating or cooling) is delayed, a situation that we have not
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taken into account here but does happen for example when star formation heats or
perturbs the medium affecting future generations of stars.

When there is conductivity and k is large there is stability even when the stability
criterion shown in equation (99) is violated. In this case the thermal conductivity
smoothes or damps temperature fluctuations faster than they can grow. We can
define a critical wavevector by setting ω = 0 in equation (99) and solving for k

(100) k2F ≡
1

λT0

∂Q

∂ lnT

∣∣∣∣
p

The Field length λF ≡ 2π/kF . For wavelengths larger than the critical one pertur-
bations will grow. Small perturbations are smoothed out by the conductivity and so
stabilized.

4.3. An aside on positive and negative feedback. The very simplest system

(101)
dΣ

dt
= f(Σ)

can achieve equilibrium near a fixed point Σ∗ where f(Σ∗) = 0. Expanding about
the fixed point and letting x = Σ− Σ∗

(102)
dx

dt
= f ′(Σ∗)x

This has an exponential solution that is exponentially decaying to the fixed point if
f ′(Σ∗) < 0. If the derivative is negative we say the system has negative feedback
and we expect a stable system. Otherwise we say the system has positive feedback
and we expect it to be unstable. Note that f ′(Σ) is in units of inverse time and so
defines a decay or growth timescale;

(103) tdecay = − 1

f ′(Σ)
.

A system with delayed feedback might look like this

(104)
dΣ(t)

dt
= f(Σ(t− τ))

so that its rate of change depends on the density Σ at a time τ in the past. We
could imagine a complicated function f that depends on Σ at various times. There
is a class of differential equations called delayed differential equations that can be
employed. Instability can occur even when there is negative feedback in systems with
delayed feedback. Instability or oscillating solutions can occur when the feedback
delay timescale τ exceeds the timescale for decay to equilibrium, tdecay. For example

(105) Σ̇ = − π

2τ
Σ(t− τ)
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has solution

(106) Σ ∝ sin

(
πt

2τ

)
.

. Oscillating solutions can have frequencies that period related to the delay; here
P ∼ 4τ .

5. Convective Instability

Figure 3. A small fluid element is displaced by δz. Originally it had
pressure and density p, ρ. At its new location the ambient pressure
and density are p′, ρ′. We let the fluid element expand or contract
to reach pressure equilibrium at its new location without exchanging
heat. Its new density is ρ∗. If ρ∗ > ρ′ and the fluid element is denser
than the ambient medium then it will sink back to its original location.
Otherwise it will keep rising and the system is convectively unstable.

Consider a small fluid element that is located in fluid that is in hydrostatic equi-
librium in a gravitational field. Our fluid element starts in equilibrium with pressure
and density p, ρ. We then displace it by a vertical amount δz. At this new position
the ambient pressure and density are slightly different with pressure and density
p′, ρ′. When we displaced our fluid element it may have contracted or expanded. If
its new density ρ∗ is larger than the new ambient value ρ′ then the fluid element
will sink back to its original position. In this case the system is stable. If the new
fluid element density ρ∗ is lower than the new ambient value then the fluid element
is buoyant and we say the system is convectively unstable.

How are we going to let the fluid element change? We let it remain in pressure
equilibrium with its surroundings. This means its new pressure is p′. We don’t
allow it to heat or cool while we displace it. This is equivalent to assuming that
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heat exchange is slow. This is equivalent to moving the fluid element adiabatically.
Because we consider adiabatic changes p ∝ ργ and

(107)
p∗
p

=
p′

p
=

(
ρ∗
ρ

)γ
or ρ∗ = ρ

(
p′

p

)1/γ

The pressure gradient for our atmosphere is dp
dz

. If we go up by δz from a particular
location, then the ambient pressure and density are

(108) p′ = p+
dp

dz
δz ρ′ = ρ+

dρ

dz
δz.

We insert p′ into our previous equation finding

ρ∗ = ρ

(
p′

p

)1/γ

= ρ

(
p+ dp/dzδz

p

)1/γ

= ρ

(
1 +

1

γp

dp

dz
δz

)
= ρ+

ρ

γp

dp

dz
δz.(109)

The difference in densities

(110) ρ∗ − ρ′ =
(
ρ

γp

dp

dz
− dρ

dz

)
δz

The system is stable if ρ∗ > ρ′ or

(111)
ρ

γp

dp

dz
>
dρ

dz

The stability criterion is often called the Schwarzschild criterion but it is usually
expressed in terms of temperature.

5.1. Schwarzschild criterion and the Brunt-Väisälä frequency. Using an ideal
gas p ∝ ρT or

ρ ∝ p

T
.

Expanding the derivative dρ
dz

,

(112) ρ′ = ρ+
dρ

dz
δz = ρ+

[
ρ

p

dp

dz
− ρ

T

dT

dz

]
δz.
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We can modify equation 110

(113) ρ∗ − ρ′ =
[
−(1− γ−1)ρ

p

dp

dz
+
ρ

T

dT

dz

]
δz

must be positive for stability. Both dT
dz

and dp
dz

are expected to be negative in an
atmosphere. The first term dominates and the medium is stable if

(114)

∣∣∣∣dTdz
∣∣∣∣ < (1− γ−1)T

ρ

∣∣∣∣dpdz
∣∣∣∣ .

This is the Schwarzschild criterion.
The force per unit volume acting on the displaced fluid element is g(ρ∗− ρ) where

the difference in densities is given by equation (113). An equation of motion

(115) ρ
d2(δz)

dt2
= −g(ρ− ρ∗)

or

(116)
d2(δz)

dt2
= −g

ρ

[
−(1− γ−1)ρ

p

dp

dz
+
ρ

T

dT

dz

]
δz

The Brunt-Väisälä frequency, N ,

(117) N2 =
g

T

[
dT

dz
− (1− γ−1)T

p

dp

dz

]
gives the frequencies of small oscillations when the system is stable. These are called
internal gravity waves to differentiate them from surface waves. The frequency is
that for buoyant oscillations. The Brunt-Väisälä frequency can also be written (see
equation 110)

(118) N2 =
g

ρ

(
ρ

γp

dp

dz
− dρ

dz

)
For an isothermal gas γ = 1, the pressure is proportional to the density, p ∝ ρ,

and the temperature gradient is zero, dT/dz = 0. In an isothermal atmosphere
the Brunt-Väisälä frequency vanishes; N = 0. An atmosphere with a steep tem-
perature gradient is likely to be convective (with negative N2 and not satisfying the
Schwarzchild criterion for stability) whereas one with a shallow temperature gradient
should be stable (and with positive N2).

6. Waves traveling in a plane parallel atmosphere

The background setting is an atmosphere in hydrostatic equilibrium. We encounter
two restoring forces for small perturbations: pressure and buoyancy. We suspect that
waves can travel at the sound speed, cs if they are primarily acoustic in nature, and
with a frequency that is related to the Brunt-Väisälä frequency, N if they are buoyant
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in nature. We expect a dispersion relation that has limits of ω = csk for acoustic
waves and ω = N for internal gravity waves.

Our zero-th order or equilibrium solution has density and pressure ρ0(z) and p0(z)
related via hydrostatic equilibrium

(119)
dp0
dz

= −ρ0g

where g is the gravitational acceleration. Mass conservation to first order

(120)
∂ρ1
∂t

+ ρ0∇ · u1 + ρ1∇ · u0 + u0 · ∇ρ1 + u1 · ∇ρ0 = 0

We drop terms with u0 as the equilibrium system is static and u0 = 0. The gradient
∇ρ0 only contains a z component.

(121)
∂ρ1
∂t

+ uz1
∂ρ0
∂z

+ ρ0∇ · u1 = 0

Euler’s equation for momentum conservation, again to first order

(122)
∂u1

∂t
=
ρ1
ρ20

dp0
dz

ẑ− 1

ρ0
∇p1

and we have ignored the variation of the gravitational acceleration. We have used
the fact that the unperturbed pressure gradient is in the z direction.

We have a system that in which two directions x, y differ from the other, z, where
gradients in the ambient pressure and density exist. Let our velocity perturbation

u1 = (u, v, w).(123)

Let our perturbations be functions of z that are wavelike in the other two dimensions,

(124) u, v, w, ρ1, p1 ∝ exp i(ωt− kxx− kyy)

with

(125) k⊥ ≡
√
k2x + k2y.

The equation for conservation of mass (equation 121) becomes

(126) iωρ1 + w
dρ0
dz

+ ρ0

[
−i(kxu+ kyv) +

dw

dz

]
= 0
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Euler’s equation (equation 122) becomes

ωu =
1

ρ0
kxp1

ωv =
1

ρ0
kyp1

iωw =
ρ1
ρ20

dp0
dz
− 1

ρ0

dp1
dz

(127)

We can use the first two expressions above to remove u, v from equation (126).

(128) iωρ1 + w
dρ0
dz
− i(k2x + k2y)

p1
ω

+ ρ0
dw

dz
= 0

We now relate pressure perturbations to density perturbations. We assume that
perturbations are locally adiabatic. This condition can be written

(129)
∂

∂t

(
p

ργ

)
+ (u · ∇)

(
p

ργ

)
= 0

Expanding this

(130)
∂p

∂t
− c2s

∂ρ

∂t
+ (u · ∇)p− c2s(u · ∇)ρ = 0

where c2s = γp/ρ. To first order

(131)
∂p1
∂t
− c2s

∂ρ1
∂t

+ w
dp0
dz
− c2sw

dρ0
dz

= 0

or

(132) iω(p1 − c2sρ1) + w

(
dp0
dz
− c2s

dρ0
dz

)
= 0.

Remember that c2s depends on z! The right terms can be written in terms of the
Brunt-Väisälä frequency (equation 118)

(133) iω(p1 − c2sρ1) + w
ρ0c

2
sN

2

g
= 0.

Use hydrostatic equilibrium

(134) g = − 1

ρ0

dp0
dz

and the Brunt-Väisälä frequency

(135) −dρ0
dz

=
N2ρ0
g

+
gρ0
c2s
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we can remove vertical derivatives of ρ0 and p0. Pulling together our equations
(equation 128,127 and 133)

iωρ1 − wρ0
(
N2

g
+
g

c2s

)
− ik2⊥

p1
ω

+ ρ0
dw

dz
= 0(136)

iωw +
gρ1
ρ0

+
1

ρ0

dp1
dz

= 0(137)

iω(p1 − c2sρ1) + w
ρ0c

2
sN

2

g
= 0(138)

The above involve vertical derivatives of w and p1 but not ρ1 so we can reduce the
problem to two coupled first order equations involving p1 and w. These can be
studied by themselves with all variables depending on z.

One can do a local analysis assuming that wavelengths are smaller than the atmo-
sphere scale height. In this case we can assume that ρ1, p1, w all depend on eikzz and
require that kz � g/c2s. In this limit we find a local dispersion relation

(139) ω4 − (N2 + k2c2s)ω
2 +N2k2⊥c

2
s = 0

with

(140) k2 = k2⊥ + k2z

There are two separated regimes on a plot of ω2 vs k2⊥ for allowed wave propagation
(see Figure 4). There is a higher frequency set with ω2 > N2 which are known as
p-waves and a lower frequency set which are known as g-waves. The acoustic or
p-waves have phase velocities (ω/k) greater than the sound speed and the buoyancy
or g-waves have phase velocities below the sound speed.

In the limit of high ω, we find ω2 ∼ N2 + k2c2s.
In the limit of high ω, k, we find ω2 ∼ k2c2s and the waves are acoustic.

In the limit of low ω, we find ω2 ∼ N2k2⊥c
2
s

N2+k2c2s
.

In the limit of low ω, k, we find ω2 ∼ k2c2s and the waves are acoustic.

In the limit of low ω and high k we find ω2 ∼ N2k2⊥
k2

.
Some notes: Apparently low g waves are incompressible, (but why?) and the

phase velocity is perpendicular to the group velocity (make this clear?). Why is this
important?

If there are boundary conditions then there is a discrete set of modes. I have tried
to be careful here not to use the word ‘mode’ instead of the word ‘wave’. Above
we have a local dispersion relation. Prior to that we had coupled equations that
depended on depth in the atmosphere. For a whole body one would not necessarily
use a plane parallel approximation but instead consider the equations as a function
of radius, and if the system is rotating, as a function of latitude. Certain frequencies
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Figure 4. The grey regions show the allowed regions for wave prop-
agation based on the local dispersion relation for waves in a plane
parallel atmosphere. Here N is the Brunt-Väisälä frequency and cs
the sound speed. Waves propagating with ω > N are p-waves and
those propagating with ω < N are g-waves.

will resonate and these can be called modes. Observations of the spectrum of modes
can be used to probe the structure of the object. For example thousands of modes
have been measured on the Sun. The study of these waves and modes is called
helioseismology. The internal structures of the Sun, Earth and stars are tightly
constrained by the properties of the modes of oscillation.
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