Department of Computer Science and Engineering, NIT Calicut
 Lecture 2: Equivalence Relations and Partitions

K. Murali Krishnan

Let S be a set. Let $R \subseteq S \times S$. We say that R is relation defined over S. We will write $a R b$ as a short hand notation for $(a, b) \in R$ (or $b \in R(a)$).

Definition 1. A relation R defined over S is said to be reflexive if aRa for all $a \in S . R$ is symmetric if whenever aRb holds, bRa also holds for all $a, b \in S . R$ is said to be transitive if for all $a, b, c \in S$, whenever $a R b$ and $b R c$, we have $a R c . \quad R$ is said to be irreflexive, asymmetric or intransitive when it is respectively not reflexive or not symmetric or not transitive. R is said to be anti-symmetric if both aRb and bRa will hold simultaneously if and only if $a=b$ for any $a, b \in S$.

Note that the equality relation ${ }^{\prime}=^{\prime}=\{(a, a) \mid a \in S\}$ is reflexive, symmetric and transitive (why?).

The notation $\mathbf{C}, \mathbf{R}, \mathbf{Q}, \mathbf{Z}$ and \mathbf{N} respectively will denote the set of complex, real, rational, integer and natural numbers. We use $\mathbf{Z}_{\mathbf{n}}$ to denote the set $\{0,1,2, . ., n-1\}$. Addition and multiplication in $\mathbf{Z}_{\mathbf{n}}$ is performed $\bmod n$. Thus, if $a, b \in \mathbf{Z}_{\mathbf{n}}$, then $a+b$ denotes $a+b \bmod n$ and $a b$ denotes $a b \bmod n$. The ' $=$ ' symbol will always represent the identify relation (that is, $\{(a, a): a \in S\}$, where S is the domain S under consideration). A relation R is a function when for each $a \in S, R(a)$ is a singleton set.

Exercise 1. Consider the following examples:

1. Let $S=\mathbf{R} \times \mathbf{R}$ (the set of pairs of reals or simply the Cartesian plane). Let $R=$ $\{(x, y) \mid x+y=1\}$. Is R a function? If so is it surjective? injective? bijective? If bijective, find f^{-1}.
2. Let $S=\mathbf{N}=\{0,1,2 \ldots\}$. Let $R=\{(a, b) \mid$ adivides $b\}$. (Note 0 does not divide any number, but every non-zero element in \mathbf{N} divides 0$)$. Is R reflexive? symmetric? anti-symmetric? transitive?
3. Let $S=\mathbf{Z} \times \mathbf{N}-\{0\}$. (That is S consists of pairs of integers, with the second number in the pair being a positive integer). Let $R=\{((p, q),(r, s)) \mid p s=q r\}$. Is R a) reflexive? b) symmetric? c) anti-symmetric? d) transitive?
4. Show that if R (over S) is reflexive, anti-symmetric, symmetric and transitive, then R must be the identity relation.
5. Let $S=\mathbf{R} \times \mathbf{R}$, show that the relation $R=\left\{\left((x, y),\left(x^{\prime} y^{\prime}\right)\right) \mid a x+b y=a x^{\prime}+b y^{\prime}\right\}$ is reflexive, symmetric and transitive. What is the geometric property captured by the relation? (That is, if points (x, y) and $\left(x^{\prime} y^{\prime}\right)$ are related, what can you say about their positions in the two dimensional coordinate system?)
6. Show that a relation R defined over any set S is symmetric if and only if $R=R^{-1}$.

Definition 2. A relation is an equivalence relation if it reflexive, symmetric and transitive.

The notation $M_{n}(\mathbf{R})$ or $M_{n}(\mathbf{C})$ will denote $n \times n$ matrices with real/complex entries. $G L_{n}(\mathbf{R})$ or $G L_{n}(\mathbf{C})$ denotes the set of $n \times n$ non-singular real matrices (i.e., $n \times n$ real matrices with non-zero determinant).

If n is a positive integer and a, b integers, the notation $a \equiv b \bmod n$ will be used to say that $(a-b)$ is divisible by n.

Exercise 2. Show that the relation R defined in each case is an equivalence relation.

1. In $M_{n}(\mathbf{R})$ define the relation $R=\left\{(A, B): \exists P \in G L_{n}(\mathbf{R})\right.$ such that $\left.A=P B P^{-1}\right\}$. We say matrices A and B are similar if $(A, B) \in R$. Find is $R^{-1}\left(G L_{n}(\mathbf{R})\right)$?
2. Let n be a positive integer. Over \mathbf{Z}, define $R=\{(a, b): a \equiv b \bmod n\}$.

Exercise 3. If R_{1}, R_{2} are equivalence relations over a set S, so is $R_{1} \cap R_{2}$. Is it always true that $R_{1} \cup R_{2}$ is an equivalence relation?

A collection of disjoint subsets of a set S define a partitioning of S if each set in the collection is non-empty and their union is S.

Definition 3. Let S be any set. A collection $\left\{S_{i}\right\}_{i \in I}$ of subsets of S is a partitioning of S if 1.) $S_{i} \neq \emptyset$ for each $i \in I$ 2.) $S_{i} \cap S_{j}=\emptyset$ if $i \neq j$ and 3. $\bigcup_{i \in I} S_{i}=S$. Each set S_{i} in a given partitioning of S is called an equivalence class in the partitioning.

We next investigate the connection between equivalence relations and partitions.
Example 1. The following are examples of partitions.

1. Let S, T be non-empty sets. Let $f: S \mapsto T$ be a surjective function. Then, $\left\{f^{-1}(t)\right\}_{t \in T}$ is a partitioning of S.
2. Consider $S=\mathbf{R}^{2}$. Let a, b be positive real numbers. For each real number t, define $S_{t}=\{(x, y): x, y \in \mathbf{R}, a x+b y=t\}$. Show that $\left\{S_{t}\right\}_{t \in \mathbf{R}}$ is a partitioning of S. (Each equivalence class consists of points in a line parallel to $a x+b y=0$.)
3. Consider $S=\mathbf{Z}$. Let n be a positive integer. Let $I=\in\{0,1,2, \ldots, n-1\}$ For each $k \in I$ define $S_{k}=\{j \in \mathbf{Z}: j \equiv k \bmod n\}$. Show that $\left\{S_{k}\right\}_{k \in I}$ is a partitioning of \mathbf{Z}.

Exercise 4. Let S be a non-empty set and let I be any non-empty index set. Let $\left\{S_{i}\right\}_{i \in I}$ be a partitioning of S. Define relation R on $S, R=\left\{(a, b): \exists i \in I, a, b \in S_{i}\right\}$. Show that R is an equivalence relation.

The next exercise shows that every equivalence relation R defined on a set S induces a partitioning of S. Hence, in view of the exercise above, the notions of equivalence relations and partitions are the same.

Exercise 5. Let R be an equivalence relation defined on a non-empty set S. This exercise proves that $\{R(a)\}_{a \in S}$ is a partitioning of S.

1. Show that for each $a \in S, R(a) \neq \emptyset$.
2. Show that $\bigcup_{a \in S} R(a)=S$.
3. Show that for any $a, b \in S, a \neq b, R(a) \cap R(b) \neq \emptyset$ the $R(a)=R(b)$.

Proof. Suppose $a \neq b$ and $R(a) \cap R(b) \neq \emptyset$. Let $z \in R(a) \cap R(b)$. Let x be an arbitrary element in $R(a)$. We will show that $x \in R(b)$ as well, proving that $R(a) \subseteq R(b)$. The proof $R(b) \subseteq R(a)$ is similar.
By assumption $a R z$. By symmetry of R we conclude $z R a$. Similarly, by assumption $b R z$. From transitivity of R, we conclude $b R a$. Now, by symmetry of R we get $a R b$

Since $x \in R(a)$, we have $a R x$. By symmetry we get $x R a$. From $x R a$ and $a R b$, by transitivity of R, we get $x R b$. By symmetry, we have $b R x$ or $x \in R(b)$.

Exercise 6. How many equivalence relations are possible over the set $\{1,2,3\}$?. How may equivalence relations are possible over the set $S=\{1,2,3,4\}$?

Definition 4. Let R be an equivalence relation over a non-empty set S. The index of R is the number of equivalence classes in the partition of $S\{R(a)\}_{a \in S}$ defined by R.

Exercise 7. Let $S=\mathbf{R}$. Let R be defined by $x R y$ if $x-y \in \mathbf{Z}$. Show that R is an equivalence relation. Show the the index of R is not finite.

Exercise 8. Let $n=24$ and $S=\mathbf{Z}_{n}$. Define $R=\left\{(a, b) \in \mathbf{Z}_{n}: G C D(a, n)=G C D(b, n)\right\}$. Show that R is an equivalence relation. What is the index of R ?

Exercise 9. Let S be any non-empty set. Consider the set $2^{S \times S}$ (that is collection of all subsets of of $S \times S$) be the set of all relations defined over S. Define an injective function $f: S \mapsto 2^{S \times S}$ such that: 1.) f is injective 2.) For each $a \in S, f(a)$ is an equivalence relation. (This exercise shows that the number of equivalence relations over a non-empty set is "as least as many" as the number of elements in S).

