
When I began teaching I always hit a problem
when it came to 3D shapes. I wanted the pupils to
get a feel for them, and I would get them to make
the shapes from their nets. The pupils would first
try to visualise how the 2D nets could become 3D
shapes and then they would physically fold the nets
into the shapes for themselves. Octahedrons,
dodecahedrons, prisms, icosahedrons and even
cubes led to a lot of mess and disorder. Pupils
would accidentally cut off the tabs or forget or
misunderstand which edges had to be glued
together. All in all, a lot of hard work went into
making very unsatisfactory models instead of things
of beauty that we could show off and at the same
time use to explore spatial properties.

Then in 1994 I met Bob Vertes at a mathe-
matics conference in Reading. We got talking about
teaching 3D shapes and he reassured me that we
weren’t the first to encounter such problems, and
then suggested a solution. “Pull-up nets,” he said.
“What?” I said. Then he started doodling: he
quickly sketched the ‘stair net’ for a cube and
showed on the diagram
how to use a loop of thread
to ‘pull up’ the net to make
a cube (figure 1). Once I
saw what he meant, I
couldn’t wait to have a go.

That night in my room at the conference (whilst
the other delegates were letting their hair down at
the evening bop), I was using card and thread (with
not a tab in sight) to make one. I pulled the thread
and the net folded up into a handsome cube! It was
one of those ‘mathemagical’ experiences. I had to
make more: large ones, smaller ones, patterned
ones and so on. Exploring the properties of a cube,
counting the number of sides, faces and edges, or
calculating the area of faces, etc became a cinch.
This was real problem solving in 3D; extremely
enjoyable, no hassle, very kinaesthetic, and the
models were brilliant! They became the must-have
conference accessory. Even delegates convalescing
from the previous night’s bash were folding,
threading, pulling!1

When I got back from the conference I began
to ponder various questions:
• Was this the only net of a cube which could be

pulled up to make a cube? What about the
other 10 cube nets? Do any of these pull up?

• How would you modify this pull-up for a cube
to make it a pull-up for a cuboid?

Figure 3
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PULL-UP NETS
Liz Meenan describes an easy and exciting
way of making 3D solids from their nets
without the need for any glue.

In all figures, the dots
in the nets indicate the
holes where the string
goes.
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Figure 1

Basic instructions for
pull-ups:
1 Cut out the net for

your pull-up polyhe-
dron.

2 Use a ruler and sharp
point to score lightly
along the remaining
black lines.

3 Make holes at the
points A, B, C, D, etc.

4 Thread and weave
thin ribbon, string or
thread through the
holes A, B, C, D, etc
to link the shapes
together.

5 Gently pull up the
net to make your
polyhedron.

6 Unfold and decorate
the outside of your
polyhedron.
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What about other 3D shapes – do they have
pull-up nets? Yes indeed; the world is your 3D oyster!
The tetrahedron pull-up is simply a parallelogram
split into four equilateral triangles (figure 2). Or try
a pull-up net for an octahedron (figure 3) or an
icosahedron (figure 4).2 Other pyramids can be
made by changing the number of triangles and the
shape in the middle, but when I tried to make a
pull-up net for a dodecahedron I failed. I really
didn’t think it was possible, due to the symmetry
of the shape, but there is a pop-up net for the
dodecahedron which is extremely effective, and
again is based on the traditional net (Gardner, 1961).3

However, I really wanted a complete set of pull-
up nets for all five Platonic solids.4 I had almost
given up hope when one afternoon last year, while
doing an ICT presentation, Jeff Zhao (a PGCE
student) showed us an interactive website that
allowed you to click on a net of a 3D shape and then
using a slider it folded up to make the 3D shape
(www.mathsnet.net/geometry/solid/nets.html).
It had the dodecahedron (figure 5), so that night at
home I proceeded to make the net and put holes

near the relevant vertices, and lo and behold, after
threading, I pulled up my first (and, dare I say it,
the first ever?) dodecahedron into my hand!

These nets are magical, and using them takes
the hassle out of making 3D shapes. They are
cheap and easy to make, so have a go yourself!

Liz Meenan works part time at Leeds University as
a PGCE tutor and mathematics support tutor.
With thanks to Bob Vertes.

Notes
1 I also indulged in a little mathematical voodoo, making a

large pull-up model of a cube and positioning a miniature
jack-in-the-box headmaster (not mine of course) on the
glued square and pulling the model up round him and
letting it down again.

2 This is due to Tom King, a student on the 2004-2005 PGCE
course at Leeds University.

3 What amazes me is that very few mathematicians seem ever
to have made one. It’s ideal to give as a Christmas present,
with the calendar months on its faces. And you can even
send it through the post. Never mind a lap-dancer from a
Christmas cake; start the new year with a dodecahedron
popping up from an ordinary A5 envelope! (For other inter-
esting calendar nets go to
www.projects.ex.ac.uk/trol/trol/trolqc.htm.)

4 The Platonic solids are the cube, tetrahedron, octahedron,
dodecahedron and icosahedron, named after Plato, who
wrote about them in a book called Timaeus.
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Figure 5

Go to
www.atm.org.uk/mt208
for downloadable nets
for the pull-ups and an
additional article by Liz
on the Platonic solids.
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