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We describe a method for identifying the source of a satellite interferer using a single satellite.
The technique relies on the fact that the strength of a carrier signal measured at the downlink
station varies with time due to a number of factors, and we use a quantum-inspired algorithm to
compute a ‘signature’ for a signal, which captures part of the pattern of variation that is charac-
teristic of the uplink antenna. We define a distance measure to numerically quantify the degree
of similarity between two signatures, and by computing the distances between the signature for
an interfering carrier and the signatures of the known carriers being relayed by the same satellite
at the same time, we can identify the antenna that the interferer originated from, if a known car-
rier is being relayed from it. As a proof of concept we evaluate the performance of the technique
using a simple statistical model applied tomeasured carrier data.
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1 INTRODUCTION
The increasing demand for satellite communication links has led to an increasing number of satellite signals, and to an increasing amount of uplink
interference. The causes of this interference include the growth in the number of small ground terminals, low quality equipment, poor installations
andmaintenance, uplink personnel mistakes (human error), faulty equipment, incorrectly pointed antennas, adjacent satellite interference, terres-
trial service interference, and sometimes intentional jamming 1,2. Satellite operators are therefore increasingly interested in solutions not only for
detecting interference, which is themain task of a satellite monitoring system, but also to identify its source.
The traditional approach is to geographically localize, or geolocate, the transmitting station of an interferer. However, most localization systems

need to receive the interference signal via two adjacent satellites in order to perform geolocation 3,4,5,6,7, and there are a number of limitations
associated with this approach:
• An adjacent satellite must be available that is equipped with transponder(s) receiving components of the interfering signal and a reference
signal (same uplink frequency range, same polarization).

• The interference and reference signals need to have enough crosstalk energy between the primary and adjacent satellites to achieve a
sufficient level of correlation.

• Accurate ephemeris datamust be available for both satellites.
• The reference signal needs to be received from both satellites via transponders operating with the same physical local oscillators (LOs) as
the transponders re-transmitting the interference signal.
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• If the system is installed at only one earth station, the downlink signals of both satellites need to be receivable at this earth station (downlink
beamsof both satellites need to cover themeasurement site location). If this is not possible (beamspointing todifferent locations) the system
needs to be installed at different locations inside the beams.

• A region is identified in which the transmitter is likely to reside, but additional steps are often necessary to actually identify the transmitter.
Geolocation can also be performed using crosstalk measurements between signals received frommultiple antennas/beams belonging to the same
satellite 8,9, but this approach has the drawback that additional payload resources are needed (antennas, transponders) or that operations must be
interrupted to release resources. It has also been shown that frequencymeasurements of signals froma single satellite, taken at different times, can
be used to locate an unknown emitter 10,11, but this approach is extremely susceptible to frequency instability introduced by the uplink terminal,
which leads to very high localization errors unless the terminal’s frequency stability is better than±1 × 10−12 per day, which can be achieved for
example via synchronization with a Galileo/GPS/GNNS disciplined frequency reference oscillator.
Herewe describe amethod able to identify the source of an interferer using a single satellite, based on the variation of signal strengthwith time,

measured at the downlink station. It is a variant on amethod that is the subject of Austrian patent 12 and of international, US, and European patent
applications 13,14,15. The main benefit of our approach is that it enables identification of unknown RFI transmitters based only on measurements
of power variations. This overcomes the constraints of the above methods. Even in the case that the position of the transmitter of a ‘matching’
reference signal is not known, the result canbeused for resolving the interference caseby contacting the satellite operator’s accountingdepartment
to get in touchwith the customer (the individual operating the uplink) who is potentially causing the interference.
The main limitation of the approach is that the interferer must be from a known antenna from which a known carrier is also being relayed. This

means that the method only works for antennas that are transmitting at least two carriers, and that the interferer must be from a known antenna.
As an example, in 2018 roughly 30% of antennas pointing to a big satellite fleet transmitted two or more carriers, and in 2012 Türksat reported
that just 3% of interference was due to unknown carriers 2, so our method is applicable in a significant number of cases. It is not a substitute for the
traditional geolocation approachwith adjacent satellites (based on TDOA/FDOAmeasurements), but in the case that the traditional approach does
not work (no adjacent satellite available; different beam coverage; not the same uplink frequency; etc.), which happens more than 60% to 70% of
the time, it offers an additional possibility.
The rest of this paper is structured as follows. Section 2 outlines our method and discusses the power variations that it relies on, and the limita-

tions of the approach, as well its quantum-inspired aspects. In section 3 we explain in detail how to compute the signature, and in section 4 how to
quantify the similarity between signatures. Section 5 analyses the performance of themethod, and section 6 concludes.

2 METHOD
Our method relies on the fact that the signal strength of a carrier that is measured at the downlink station varies with time due to a number of
factors, and the technique is capable of identifying the antenna that an interferer originated from if another ‘known’ carrier is being relayed by the
satellite at the same time from the same antenna. It turns out that there are similarities in the patterns of variation of signal strength for carriers
originating from the same uplink antenna, and we found we were able to compute a ‘signature’ for the variation of signal strength for each carrier,
that captures part of the pattern of variation that is characteristic of the uplink antenna.
In order to numerically quantify the degree of similarity or difference between two signatures, we compute a ‘distance’ between them, which is

a number between 0 and 1. If the distance is close to zero, the signatures are similar (if they are identical the distance is zero), and if it is close to
one, they are very different. This distance between signatures turns out to be lower on average for carriers from the same antenna than for carriers
from different antennas, and by comparing the signature for an interfering carrier with the signatures for the other carriers being relayed by the
same satellite, we can rank them according to their degree of similarity.
The causes of power variations in a received carrier include:
• Power variations from signal-sending hardware (satellite modem, frequency converter, power amplifier, etc.)
• Satellitemovement versus antenna pattern and pointingmechanism (antenna tracking the satellite position or constant bearing towards the
satellite, antenna pointing variations due to wind)

• Atmospheric losses due gases and hydrometeors
• Faraday rotation in the ionosphere
• Noise contributions (terrestrial noise picked up from the surface of the earth, receiver noise in both satellite and Rx ground station,
atmospheric noise, extra-terrestrial noise from the sun andmoon, etc. )
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Our approachonlyworks if the signal power is not strongly affectedby the satellite transponders, so it applies to transparent transponderswork-

ingwith constant gain (fixed gainmode) andwhich are not saturated. In the case of saturation and/or if Automatic Level Control (ALC) is applied, the
sensitivity of the measurements can be severely reduced, requiring different measurement settings (high averaging) and a reference carrier that
is affected by the same mode of transponder operation in order for the approach to work. It does not work with regenerative transponders. The
method works well with different transponders. A small reduction in similarity is introduced by frequency dependency, meaning that if a carrier’s
frequency is different by e.g. 1 GHz (Ku-Band) the level of similarity in power fluctuation is slightly reduced. More degradation of level of similarity
comes from different polarization, but the similarity is still high enough for successful detection.
The sensitivity of themeasurement could perhaps be increased if downlink path influences, such as the power variation of a beacon signal and/or

the transponder noise floor and/or the average power variation of all the signals on the downlink, were subtracted from the unknown signal and the
known signal.

2.1 A quantum-inspired algorithm
The algorithm we present here to calculate the similarity between two carriers is based on the one described in the patent applications 12,13,14,15,
which is a so-called ‘quantum inspired algorithm’, in which concepts from quantum information theory are applied to the representation and pro-
cessing of classical information 16,17,18. The first step in developing a quantum inspired algorithm is to find a suitable encoding of the information as
quantum states, which can then be manipulated using the well-developed mathematical techniques of quantum information theory. In the patent
applications the signal was encoded in terms of qubits (quantum bits), which has advantages when the absolute value of the signal contains sig-
nificant information, but in this case we subtract a running average from it, so there is no advantage in using the qubit encoding. In the qubit
representation each signal value is mapped to two values in a vector that is normalized to have an `2 norm (Euclidean norm) of 1, but here we map
each signal value to a single value in a normalized vector. Both kinds of vector are valid representations of quantum states in a Hilbert space1. In
the patent application we used the Schmidt decomposition 19,20 to analyse the 24-hour periodic structure of the signal, and to extract its principal
components 21, one of which served as a ‘signature’, and we defined a distance measure. Here we use the singular value decomposition, which is
equivalent to the Schmidt decomposition, together with the same distancemeasure.
Although the algorithm presented here was inspired by concepts from quantum information theory, we have expressed it in terms of a finite-

dimensional inner product space and the singular value decomposition, which are familiar concepts in statistical signal processing.

3 COMPUTING THE SIGNATURE
The signature is computed from a sequence of satellite downlinkEIRP (Equivalent Isotropically Radiated Power) values representing the variation
from the uplink signal, measured in dBW, calculated as follows:

EIRP[dBW] = Psa[dBm] + Lfs[dB]−Gant[dB]−Gpath[dB]− 30dB, (1)
wherePsa is the power at the input of themonitoring device (SpectrumAnalyzer),Lfs is free space loss,Gant is the receiving antenna gain,Gpath is
the path gain from the antenna feed to the spectrum analyzer, and 30dB is the conversion from dBm to dBW. Themeasurement process takes into
account the contribution of noise when calculatingPsa, subtracting it from the received signal (power + noise). The SNR limitation of this process is
about 3 dB, meaning that signals with SNR below 3 dB are not taken into account. This limit is chosen in order to keep the additional error due to
estimation and subtraction of noise small. If noisewas not subtracted, themeasurementwould suffer from sensitivity in terms of reduced amplitude
of power fluctuations
The EIRP values must be equally spaced in time, so if the raw data was not measured at a fixed time interval, it must be interpolated to give

values that are equally spaced in time. The data used for the results presented in this paper was interpolated at three minute intervals, which was
roughly half the average interval between measurements in the raw data. For the calculation of the signature it is the variation of the EIRP with
time is important rather than its absolute value, so the absolute value is removed in following steps.

3.1 Expressing EIRP values as a state vector
Given a vector of EIRP values (EIRP1,EIRP2, . . . ,EIRPi, . . . ,EIRPN) corresponding to times t1, t2, . . . , ti, . . . , tN, with equal intervals between
them, we first subtract a running average from the EIRP values, using a window of a specified width in time. This has the effect that constant

1Although here we are working with vectors in a real inner product state, which is a special case of a Hilbert space, this approach can be generalized to
use complex vectors, as explained in 12,13,14,15
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differences between the averageEIRP values of two carriers, which are not relevant to the signature, are not taken into account. To generate the
results presented here, we used a Gaussian window with a standard deviation of 6 hours, meaning that average differences between one day and
the next were also removed, andwe call the resulting valuesE = (E1,E2, . . . ,Ei, . . . ,EN).
Now, for our quantum-inspired algorithmwewish to encode these values as a quantum state vector, which we call

q = (q1, q2, . . . , qi, . . . qN ). (2)
To qualify as a state vector qmust have a norm of one 20, i.e. ‖q‖ = 1, where for the special case of a quantum state for which all of the qi are real
numbers the norm is defined as

‖q‖ =
√

qTq. (3)
This means that qTq =

∑
i q2

i = 1, and the q2
i values can be interpreted as probabilities because they are between 0 and 1 and their sum is one. In

quantummechanics the qi values are known as (probability) amplitudes and the q2
i values correspond to the probabilities of particular outcomes of

measurements. It is the amplitudes that are the fundamental quantities, so we choose to encode the signal in terms of them.We first define
ei =

Ei + Emax

2Emax
, (4)

where Emax is themaximum absolute value of Ei for all i, that is, Emax = maxi |Ei|, so that 0 ≤ ei ≤ 1. We then let2
pi =

ei∑
j ej

, (5)
so that the pi values form a valid probability distribution, with 0 ≤ pi ≤ 1 and∑i pi = 1, and we derive our qi values from the pi values, by defining
q2

i = pi, so that
qi =

√
pi, (6)

taking the positive square root, so that 0 ≤ qi ≤ 1.
It might be thought that it would be simpler to encode the data as a state vector by defining e = (e1, e2, . . . , ei, . . . eN) and r = e/‖e‖, thus

avoiding the square root in equation 6, but although r is a valid state vector, we found that the ‘quantum-inspired’ approach of encoding the data
as probability amplitudes in q gave slightly better results in terms of being able to distinguish between pairs of carriers from the same antenna and
from different antennas when using the distancemeasure defined in section 4.

3.2 Generating ‘eigensignals’ for a state vector
Geostationary satellites are not completely stationary relative to stations on the ground, moving north-south and east-west due to their orbital
inclination, eccentricity, and longitude drift. This leads to a 24-hour variation in the signal strength at the receiving station, which can be seen in the
plots of qi in figures 1 and 2. It is also present in qi signals plotted in figures 3 and 4, though it is not as obvious in those plots. We use the singular
value decomposition to generate ‘eigensignals’ for state vectors, based on this 24-hour periodicity.
We considerEIRP data form days, with n values per day,E = (E1,E2, . . .EN), whereN = mn, and express the values as a state vector q using

equations 4, 5, and 6, thenwe define theMatrixM in terms of the elements ofq to be

M =



q1 q2 . . . qn

qn+1 qn+2 . . . q2n

q2n+1 q2n+2 . . . q3n

... ... ...
q(m−1)n+1 q(m−1)n+2 . . . qmn


, (7)

so that each row corresponds to data from one day. Taking the singular value decomposition (SVD) ofM, we canwrite:
M = USVT , (8)

whereU is anm×m orthogonal matrix,S is anm× n diagonal matrix containing non-negative real numbers, andV is an n× n orthogonal matrix.
The columns ofV are called the right-singular vectors ofM, and they are orthonormal and are the principal components of the rows ofM. We
refer to them asvi, and they characterize features of the signal over 24-hour periods. As they are the eigenvectors of the covariancematrixMTM,
we call them ‘eigensignals’. In a celebrated paper 22 this technique was applied to the classification of human faces. The diagonal entries si of S are
known as the singular values ofM, and they are ordered so that s1 is the largest, and they decrease with increasing i, so the vi vectors with small

2We could have defined pi directly in terms of Ei + Emax , but we find it clearer to introduce ei as an intermediary
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values of imake the greatest contribution to the signal. The columns ofU are the left-singular vectors ofM, and they contain the information on
the proportion of each eigensignal that is present in the signals for each day.
The v1 vector picks out the dominant part of the 24-hour variation in the signal, which turns out not to be very characteristic of the uplink

antenna, and to be rather similar for all carriers sharing the same downlink. However, the v2 vector is characteristic of the uplink antenna, and we
therefore use v2 as the signature. Figure 1 shows qi and v2 for a carrier transmitted from an antenna at a station in Rugby (England) over the 31
days in December 2012, and figure 2 shows the corresponding plots for another carrier transmitted from the same antenna in Rugby during the
same period. As can be seen, the v2 values are very similar to each other. For comparison, figures 3 and 4 show the corresponding plots for two
carrier signals from an antenna in Mińsk Mazowiecki (Poland) during the same period, and again the v2 values are very similar to each other, but
quite different to the ones for the signals from the antenna in Rugby.

FIGURE 1 qi vs i (left) andv2 (right), for a signal fromRugby

FIGURE 2 qi vs i (left) andv2 (right), for a second signal fromRugby

4 QUANTIFYING THE SIMILARITY BETWEEN SIGNATURES
The scalar product of two vectors r and swith real components is rTs and if they have a norm of one we can use this to define a measureD of the
distance between them,

D(r, s) =
√

1− |rT s|2, (9)
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FIGURE 3 qi vs i (left) andv2 (right), for a signal fromMińskMazowiecki

FIGURE 4 qi vs i (left) andv2 (right), for a second signal fromMińskMazowiecki

which is zero when the vectors are identical, and is one when they are maximally different (orthogonal). Since the vi vectors from the SVD are
orthonormal, the signatures, v2, have a norm of one, and we useD to calculate the distance between pairs of them, to quantify their similarity. The
distance for carriers from the same antenna turns out to be lower on average than for carriers from different antennas.

5 PERFORMANCE EVALUATION
In order to quantitatively test this approach for identifying signals we developed a statistical model based on histograms of distances between
carriers, and applied the model to carrier data that was monitored in Dubai in December 2012, consisting of 53 carriers from 32 antennas, which
were relayed by the SESAT2 satellite. The data collected at Dubai was chosen because of its high quality, with data that was sampled at a relatively
constant rate, and with a single monitoring device. Some of the other data that was available to us suffered from a sampling rate that was patchy,
and it was collected with multiple monitoring devices operating in a round-robin fashion, which meant that the sampling rate for each monitoring
device was realtively low. We initially analysed the Dubai data from the whole month, and then investigated the performance for shorter periods
of time. We subsequently analysed data that was monitored at other sites, and found that the performance depended on the satellite and on the
interval betweenmeasurements in the raw data. For comparison with the results for the Dubai data, we give results for data that wasmonitored at
Rambouillet (the sitewas actually calledRambouillet_2) during the same timeperiod, consisting of 85 carriers from 51 antennas,whichwere relayed
by the E10A satellite.
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5.1 Statistical model and results for data fromDubai for onemonth
Figure 5 shows the frequency distributions of distances between pairs of different carriers, from the same antenna, fs(D), and fromdifferent anten-
nas, fd(D), using data for each carrier for the whole month. For the 53 carriers there are (53

2

)
= 53 × 26 = 1378 pairs, 70 of which were from the

same antenna, and 1308 ofwhichwere fromdifferent antennas. It can be seen that the distances betweenmost carriers from the same antenna are
much lower than the distances between carriers from different antennas, so fairly good separation can be obtained between carrier pairs from the
same antenna and pairs from different antennas.
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FIGURE 5 fs(D) (left) and fd(D) (right) - Dubai
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FIGURE 6 Fs(D) (left) and Fd(D) (right) - Dubai

The quality of the separation can be characterized using the corresponding relative cumulative frequency distributions, for pairs of carriers from
the same antenna, Fs(D), and from different antennas, Fd(D), shown in figure 6. Fs(D) is an estimate of the probability that the distance between a
pair of carriers from the same antenna is less thanD. For example, the value of Fs(0.4) is approximately 0.71. Given the scenario that an interfering
carrier is coming from one of a number of known uplink antennas, but we don’t know which one, our approach for identifying the antenna is to
calculate the distances from the interferer to all the known carriers from the satellite that is relaying the interferer, and to select those for which
the distanceD is less than a specified thresholdDt, and we refer to those carriers as being in the ‘result set’. Fs(Dt) is therefore an estimate of the
probability that a given carrier from a satellite is in the result set. Each carrier in the result set that is from the same antenna as the interferer is a
positive identification of the source of the interferer, so we refer to these as positives. The result set can also contain carriers that are not from the
same antenna as the interferer, which we refer to as false positives. In what follows we analyse the probabilities of obtaining at least one positive
and at least one false positive, and the expected number of positives and of false positives, averaged over all antennas, and we also consider the
influence of the number of carriers per antenna.
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5.1.1 Probability of at least one positive
Typically several carriers are transmitted from the same antenna at the same time, so the probability that at least one carrier from the same antenna
as the interferer is in the result set is bigger than Fs(Dt), because Fs(Dt) is a probability estimate for a single pair, but on average there is more than
one of them.We call this probability pid, because it is the probability that at least one carrier has been correctly identified as coming from the same
antenna as the interferer. For each known carrier, the probability that it is not in the result set is 1 − Fs(Dt), so for an antenna with K carriers the
probability that none of them are in the result set is (1 − Fs(Dt))K. If the number of antennas that have K carriers is n(K), then averaged across
antennas, the probability that none of the carriers are in the result set, which we call p̄id, is

p̄id =

∑
K n(K)(1− Fs(Dt))K∑

K n(K)
. (10)

Now, the sum in the denominator of this equation is equal to the total number of antennas, which we call Na and the probability that at least one
carrier in the result set came from the same antenna as the interferer is 1− p̄id, so

pid = 1−
1

Na

∑
K

n(K)(1− Fs(Dt))
K . (11)

Table 1 shows n(K) For the Dubai data in December 2012, and if we chooseDt = 0.4 for our threshold, for which Fs(Dt) = 0.714, the probability
that the antennawe are seeking is in the result set is approximately pid = 0.76. Table 1 also shows the number of same-antenna pairs for each value

TABLE 1 n(K) and the number of same-antenna pairs for Dubai data in December 2012

K n(K) same-antenna pairs
1 27 0
2 1 1
3 1 3
6 2 30
9 1 36

of K, and it can be seen that 66 out of the population of 70 same-antenna pairs come from just three antennas, and all 70 of the pairs come from
five antennas out of the total of 32 antennas. Furthermore, 351 of the different-antenna pairs are drawn from a completely different population to
those used for the same-antenna carrier comparisons, and 1053 of the different antenna carrier comparison involve at least one of the antennas in
a different population to those used for the same antenna carrier comparisons. For comparison, the data from Rambouillet, which is presented in
section 5.4, has a larger proportion of antennas withmore than one carrier.

5.1.2 Expected number of positives
We call the expected number of positives ni, because they are carriers that have been correctly identified as coming from the same antenna as the
interferer, and we call the average number of carriers per antenna ns, because it is the average number of carriers from the same antenna. Only
carriers from the same antenna as the interferer can contribute towards ni, and on average there will be ns of them. We can consider the decision
as to whether the distance of each of these carriers from that of the interferer is less thanDt as being independent trials, so the probability that a
carrier from the same antenna as the interferer is in the result set (the trial is a success) is equal to the number of successes ni divided by the number
of trials ns, but we know that this probability is given by Fs(Dt), so we have Fs(Dt) = ni/ns, which gives an estimate for ni of

ni = nsFs(Dt). (12)
Amore detailed analysis takes into account the distribution of the number of carriers per antenna.We can consider the decisions as towhether the
distances between each carrier from the antenna and the interferer are less than Dt as being independent trials, so the probability of obtaining k

positives froman antennawithK known carriers, whichwe callP(k), will follow a binomial distribution, and if we let p = Fs(Dt) and q = 1−p, then
P (k) =

(K
k

)
pkqK−k. (13)

The expected value of k is known to be
k̄ =

∑
k

kP (k) = Kp, (14)
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and given the distribution n(K), and averaging overK, the expected number of positives is

ni = 〈k̄〉 =
p

Na

∑
K

n(K)K = K̄p, (15)

where K̄ = ns, the average number of carriers from the same antenna, so we obtain the same result as equation 12.
For the Dubai data in December 2012 the value of ns was approximately 1.66 and Fs(0.4)was 0.71, so ni is therefore approximately 1.2.

5.1.3 Expected number of false positives
In general the result setwill also contain some carriers from antennas other than the one thatwe are trying to identify, and the number of such false
positives, which we call nf , can be estimated using Fd(D), which is an estimate of the probability that the distance between a pair of carriers from
different antennas is less thanD. A similar argument to the one that led to equation 12 gives

nf = ndFd(Dt), (16)
where nd is the number of carriers from different antennas to the one that the interferer originated from.We call the number of carriers relayed by
the satellite isNs, andwe know that of these, on average ns of them are from one particular antenna, so the average the number that are from other
antennas is

nd = Ns − ns, (17)
so we have

nf = (Ns − ns)Fd(Dt), (18)
For this example case, 53 carriers were relayed by the satellite, soNs = 53, and given our example threshold ofDt = 0.4, the value of Fd(0.4) is

approximately 0.0061, so we have an estimated number of nf = ndFd(Dt) = 51.34× 0.0061 false positives, which is approximately 0.31. Note that
a slightly higher value ofDt, sayDt = 0.5, would give a higher expected number of positives, of ni = 1.25, but also a much higher number of false
positives, nf = 2.7.
Note also thatweneednot restrict our data to carriers relayed by the same satellite as the interferer, since other satellitesmay also relay carriers

from the antenna that is the source of the interferer, but it was found that for the data at our disposal, including such carriers increased the false
positive rate significantly, with little or no increase in the number of positives.

5.1.4 Probability of one ormore false positives
For a carrier from an antenna with K carriers there are Ns − K possible comparisons with carriers from the other antennas, and if we now let
p = Fd(Dt) then the probability of one ormore false positives, which we call pK

f , as it applies to an antennawithK carriers, is
pKf = 1− (1− p)(Ns−K). (19)

Provided p is small, this approximates to
pKf ' (Ns −K)p, (20)

which happens to also equal the expected number of false positives for that antenna, whichwe call nK
f . ProvidedNs is large andK is small, (20) is not

a strong function of K, andwith this assumption
pKf = nK

f ' Nsp ' 〈pKf 〉 = 〈nK
f 〉, (21)

and this would be the expected result averaged over all the antennas, which we call pf = 〈pK
f 〉, and we have

pf ' Nsp = NsFd(Dt), (22)
For the Dubai data in December 2012 the probability of one ormore false positives is therefore approximately pf = 0.32.

5.1.5 The influence of the number of carriers per antenna
So far we have considered probabilities and expectation values averaged over all the antennas relayed by the satellite, which gives some idea of the
performance of our approach, independent of the interferer. However, once the result set has been calculated for a particular interferer, there is
extra information available, asweknowwhich antennas the carriers in the result set came from, andhowmanyknowncarriers arebeing transmitted
by those antennas, and that can be taken into account in interpreting the results.
If the interferer came from an antenna transmitting K carriers, the probability of obtaining k positives in the result set is given by equation 13,

where p = Fs(Dt) and q = 1 − p, and the same equation gives the probability of obtaining k false positives, if we define p = Fd(Dt). In the above
example for the data from Dubai we have Fs(Dt) = 0.714 and Fd(Dt) = 0.0061 and, for example, in the case of nine carriers per antenna, the
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probability of obtaining a single positive is 0.000288, whereas the probability of obtaining a single false positive is 0.052. Therefore, in the case of a
single carrier in the result set from an antenna with nine carriers, it is much more likely to be a false positive than a positive. The expected number
of positives is given by equation 14, which in this case is 6.4, and the low probability of a single positive reflects the fact that one carrier is much less
than this expected value.
On the other hand, for the same antenna with nine carriers, the probability of three positives is 0.0167, whereas the probability of three false

positives is 1.83 × 10−5. Therefore if there are three carriers in the result set from an antenna with nine carriers they are much more likely to be
positives than false positives.
Similarly, with a three-carrier antenna, the probability of the result set containing a single positive if the interferer came from that antenna

is 0.175, whereas the probability of a single false positive is 0.018, so in this case a single carrier in the result set is more likely to be a positive
than a false positive, which reflects the fact that one positive is closer to the expected number of positives (which is 2.14) than for the case of the
nine-carrier antenna.

5.2 Results for data fromDubai for two days
So far we have presented data from a period of one month, but we also tried analysing data from shorter periods of time, and found that results
with ni > nf could be obtained for periods right down to two days, which was the minimum amount of data necessary for the algorithm to work in
its original form. However, we found that the results were better for some two-day periods than for others. This can be seen from figures 7 and 8,
which show the frequency distributions of distances between pairs of carriers from the same antenna, fs(D), and fromdifferent antennas, fd(D), for
datamonitored byDubai for two different two-day periods inDecember 2012.Note that the number of counts in figure 7 (left) is roughly twice that
of figure 8 (left), which is because not all carriers were present for the whole month, and for each period, only carriers were considered that were
present for thewhole of the period. The data in figure 7 is for pairs taken from 68 carriers, and in figure 8 it is from 54 carriers. The average number
of carriers per antennawas also higher for the data in figure 7, which further boosted the number of pairs.
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FIGURE 7 fs(D) (left) and fd(D) (right) - Dubai, 1-2 Dec. 2012

The best separation is shown by the data from 15-16 December 2012, for which a choice ofDt = 0.7 gives pid = 0.64, ni = 0.97, nf = 0.19, and
pf = 0.20.

5.3 Results for data fromDubai for less than two days
The algorithm was designed to require a minimum of two days of data (two periods of 24 hours each), as it compared one day with the next, in
order to remove the 24 hour variation that is present in all carriers, and all of the results presented in the previous sections used that version of
the algorithm.We then decided to investigate whether the algorithm could still identify characteristic features of carriers if it was modified to use
periods of less than 24 hours, which would mean that the 24 hour variation was not removed. The modified algorithm still compares data from
equal-length periods, and theremust be at least two of them, but they can be of arbitrary length, and in particular, less than 24 hours.
Figure 9 shows the frequency distributions of distances between pairs of carriers from the same antenna, fs(D), and from different antennas,

fd(D), for one day’s data, monitored at Dubai for December 15th 2012, split into two 12 hour periods. It can be seen that there is some separation
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FIGURE 8 fs(D) (left) and fd(D) (right) - Dubai, 15-16Dec. 2012

between carrier pairs from the same antenna and pairs from different antennas, and choosingDt = 0.85 gives pid = 0.62, ni = 0.93, nf = 0.92, and
pf = 0.95.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

f_s − Dubai − min_usable: 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

f_d − Dubai − min_usable: 0

FIGURE 9 fs(D) (left) and fd(D) (right) - Dubai, 15 Dec. 2012

Figure 10 shows the frequency distributions of distances between pairs of carriers from the same antenna, fs(D), and from different antennas,
fd(D), for half a day’s data, monitored at Dubai for the first 12 hours of December 15th 2012, split into two 6 hour periods. Again it can be seen that
there is some separation between carrier pairs from the same antenna and pairs from different antennas, and choosingDt = 0.85 gives pid = 0.33,
ni = 0.33, nf = 0.69, and pf = 0.71.
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It is encouraging that the algorithmworks at all for less than one day’s data, and although the results presented here show that it works less well
for shorter periods, this is based on a fixed sampling rate of EIRP values, meaning that the shorter periods contain less data. As long as the signal
contains enough structure, a higher sampling rate should give better results.

5.4 Results for data fromRambouillet
Unlike in Dubai, where there was a single monitoring device, the data from Rambouillet was collected by four monitoring devices that operated in
a round-robin fashion, which meant that somemodification to our algorithmwas necessary. Because the characteristics of some of the monitoring
devices differed markedly. e.g. in sensitivity, it was decided not to interleave the recorded data values in a time-ordered sequence, because there
could be big jumps between adjacent values. Instead, the blocks of data for eachmonitoring device were contatentated. That is, after interpolation
of the data to create N values for each monitoring device, the N values for the second monitoring device were appended to those for the first
monitoring device, and the N values for the third monitoring device were then appended, and so on, to create a sequence of values of length 4N,
which was then analysed as if it had come from a single monitoring device.
Figure 11 shows the frequency distributions of distances between pairs of different carriers, from the same antenna, fs(D), and from different

antennas, fd(D), for data that was monitored at Rambouillet (actually Rambouillet_2) during the whole of December 2012. It can be seen that,
unlike in the case of theDubai data, some of the same-antenna carrier pairs have high distances, so the separation between same-antenna pairs and
different-antenna pairs is not as good. Table 2 shows n(K) and the number of same-antenna pairs for each value ofK for this data, and if we choose
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FIGURE 11 fs(D) (left) and fd(D) (right) - Rambouillet, December 2012

Dt = 0.5 for our threshold, for which Fs(Dt) = 0.380, we obtain pid = 0.48, ni = 0.63, nf = 0.91, so in this case the expected number of false
positives is about fifty percent more than the expected number of positives. The assumption we made of a low p value for our estimate of pf does
not hold in this case, so we do not give a value for it.

TABLE 2 n(K) and the number of same-antenna pairs for Rambouillet data in December 2012

K n(K) same-antenna pairs
1 36 0
2 9 9
3 3 9
5 1 10
8 1 28
9 1 36

Figure 12 shows the frequency distributions fs(D) fd(D) for data from the two-day period of December 15-16, 2012.With a choice ofDt = 0.8

for our threshold, for which Fs(Dt) = 0.413, we obtain pid = 0.49, ni = 0.66, nf = 2.20, so in this case the expected number of false positives is
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over three times more than the expected number of positives. Again, the assumption wemade of a low p value for our estimate of pf does not hold
in this case.
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FIGURE 12 fs(D) (left) and fd(D) (right) - Rambouillet, 15-16Dec. 2012

It should be noted that some of the carriers in the data fromRambouillet had a very small number ofmeasurements for somemonitoring devices
for some days, and for that reason we required at least ten measurements per day per monitoring device for the two-day period. Without that
constraint, the separation between same-antenna pairs and different-antenna pairs was much worse, and requiring more than ten measurements
reduced the numbers of entries in the histograms to values that were considered to be too small to givemeaningful results.

6 CONCLUSION
We have described amethod for identifying the source of a satellite interferer using a single satellite, which relies on the variation with time of the
strengthof carrier signalsmeasured at thedownlink station. Themethoduses aquantum-inspired algorithm to compute a signature for each carrier,
and a distance between the signature for an interfering carrier and the signatures of all known carriers being relayed by the same satellite. As a
proof of concept we have presented a simple statistical model to estimate the probability of successful identification of the source of an interferer,
the expected number of carriers correctly identified to have originated from the interfering transmitter, the expected number of false positives,
and the probability of one or more false positives, and we have used the model to evaluate the performance of the technique using measured data
relayed by one satellite.
We initially analysed data for a sample of 53 carriers relayed by one satellite, which was sampled at a relatively constant rate, with a single

monitoring device, and we have presented results using data for one month, and also for two days and less. In its original form the algorithm was
designed to work with a minimum of two days’ of data, and we found that the results were better for some two-day periods than others, but that
in some cases successful identification was possible. We also modified the algorithm to operate on less than two days’ of data, and we found that
the results were less good, but that positive identificationwas still possible in some cases. However, the results were based on a fixed sampling rate,
meaning that the shorter periods contained less data, and a higher sampling rate should give better results.
We subsequently analysed data monitored at sites where the sampling rate was less constant and multiple monitoring devices were used in a

round-robin fashion, which meant that the sampling rate for each monitoring device was relatively low. We have presented results for a sample of
85 carriers monitored at such a site, relayed by a different satellite. The performance of the algorithm was less good, but we expect that a higher
sampling rate would give better results.
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