An Intrageneric and Intraspecific Study of Morphological and Genetic

 Variation in the Neotropical Compsoneura and Virola (Myristicaceae)by
Royce Allan David Steeves

A Thesis
Presented to
The University of Guelph

In partial fulfillment of requirements
for the degree of Doctor of Philosophy
in

Botany

Guelph, Ontario, Canada
Royce Steeves, August, 2011

AN INTRAGENERIC AND INTRASPECIFIC STUDY OF MORPHOLOGICAL AND GENETIC VARIATION IN THE NEOTROPICAL COMPSONEURA AND VIROLA (MYRISTICACEAE)

Royce Allan David Steeves
University of Guelph, 2011

Advisor:

Dr. Steven G. Newmaster

The Myristicaceae, or nutmeg family, consists of 21 genera and about 500 species of dioecious canopy to sub canopy trees that are distributed worldwide in tropical rainforests. The Myristicaceae are of considerable ecological and ethnobotanical significance as they are important food for many animals and are harvested by humans for timber, spices, dart/arrow poison, medicine, and a hallucinogenic snuff employed in medico-religious ceremonies.

Despite the importance of the Myristicaceae throughout the wet tropics, our taxonomic knowledge of these trees is primarily based on the last revision of the five neotropical genera completed in 1937. The objective of this thesis was to perform a molecular and morphological study of the neotropical genera Compsoneura and Virola. To this end, I generated phylogenetic hypotheses, surveyed morphological and genetic
diversity of focal species, and tested the ability of DNA barcodes to distinguish species of wild nutmegs.

Morphological and molecular analyses of Compsoneura. indicate a deep divergence between two monophyletic clades corresponding to informal sections Hadrocarpa and Compsoneura. Although 23 loci were tested for DNA variability, only the trnH-psbA intergenic spacer contained enough variation to delimit 11 of 13 species sequenced. A morphological and molecular investigation of Compsoneura capitellata showed little discrete morphological variation among populations but significant genetic structure among populations.

Phylogenetic analysis of Virola also revealed a deep molecular divergence between two clades having numerous contrasting morphologies. In contrast to Compsoneura, the trnH-psbA intergenic spacer failed to differentiate the majority of Virola species tested. An infraspecific morphological and molecular study of V. sebifera and V. loretensis showed that each of these species contains morphologically and ecologically discrete sympatric morphotypes that likely represent new species.

In total, this investigation found 5 provisional new species from fewer than 600 collections at biological stations in Ecuador and Peru where these new species were among the most abundant trees in the forest. This suggests that much diversity likely remains to be described in the Myristicaceae and other tropical plant families.

ACKNOWLEDGEMENTS

This thesis wouldn't have been possible without the help of many people. Firstly, I'd like to thank my supervisor, Steve Newmaster, for taking me on 5 years ago as a new masters student, pardon the pun. Your patience and infectious botanical curiosity has been an inspiration to me. Aron Fazekas, thanks for your unrelenting patience with me in the lab and for always having time for those "quick" questions that turn into a lenghty discussion. As for jungle-man John Janovec, thanks for all the great times in the field, your help in getting permits, access to BRIT's plant and human resources and our latenight Compsoneura campfire discussions.

I'm also very grateful to all the members of my committee Dr's Rob Hanner, Usher Posluszny, and David Galbraith for your valuable input and guidance throughout these years.

Carol-Anne Lacroix and Ragupathy Sabrumanyam; thanks for sharing your taxonomic and ethnobotanical expertise over the years. I'd also like to thank the following labmates for their input, thoughtfull discussions, help in procrastinating, and most importantly their friendship: Heather Cole, Jillian Bainard, John Gerrath, Troy Mcmullin, Kevin Berg, Kevin Burgess, Jose Maloles, Evan Lusty and Brian Lacey as well as all the other folks that have worked in the herbarium over the years. An extra thanks to Jose and Brian for their help with measuring specimens and preparing figures.

This work couldn't have been completed without all the dedicated field botanists that I've had the pleasure of working with. Derek Piper and Andrea Reid: thanks for your patience with me in the tropics. I know I'm not the easiest person to get along with in the tropical heat while climbing a tree and trying to get the pruning poles together. I also got
to work with some great parataxonomists in my 4 months in the field: Danilo Simba Larco (Ecaudor), Wilson Quizhpe (Ecuador), Angel Balarezo (Peru-BRIT), Pedro Centeno (Peru-BRIT), Benjamin Chambi (Peru-BRIT). Thank you all for the many laughs in the field, your unspeakable tree-climbing/pruning abilities and all your patience with a neotropcial neophytologist like myself. Funding for my research and travel were provided in part byby NSERC, Amazon Conservation Association, and the Latournelle travel grant. David Neil, Renan Valega, Keri McNew, and Tiana Franklin made this research possible by coordinating collection and export permits.

I am deeply indebted to innumerable people that have helped me troubleshoot DNA extraction, PCR, sequencing and other molecular methods over the past few years; namely I'd like to thank the Husband and Crease labs for sharing equipment and Jeff and Angela at the Genomics Facility for their expertise. I'd also like to take the opportunity to my fellow graduate students for their companionship and numerous beer-fueled discussions at the grad lounge. To my girlfriend friend Sarah Baldwin: thank for your love and patience through this whole process, thanks for our long-winded plant genetic discussions and thanks for being you.

Last but not least I'd like to thank my parents, Bob and Diane, for their unrelenting love and support throughout my schooling. Our innumerable forays into the woods and streams of New Brunswick to go hunting, fishing, trapping, berry and fiddlehead picking have spawned a curiosity in nature that I hope will only grow stronger. This thesis is dedicated to you.

Table of Contents

ACKNOWLEDGEMENTS iv
LIST OF TABLES ix
LIST OF FIGURES X
GENERAL INTRODUCTION 1
Taxonomy 1
Ethnotaxonomy 1
DNA Barcoding 4
Phenetic versus Cladistic Analyses in Systematics 6
Human and geologic history of Central and South America 9
Myristicaceae. 12
General Morphology and Cytology 12
Ecology 14
Ethnobotany 15
Myristicaceae Systematics. 17
Biogeography of the Myristicaceae 19
Challenges to Molecular work with the Myristicaceae. 20
Why work with the Myristicaceae? 21
Chapter 1 33
A PHYLOGENETIC AND MORPHOLIGICAL ANALYSIS OF COMPSONEURA33
Abstract. 33
Introduction 34
Materials and Methods 39
Taxon sampling and outgroup selection 39
Results 44
DNA sequencing and alignment 44
Phylogenetic Analyses 45
Morphology 46
Distance analysis 46
Discussion 47
Phylogenetic Analyses 47
Distance Analysis 52
Figures. 60
Literature Cited 64
Chapter 2 70
A MORPHOLOGICAL AND MOLECULAR INVESTIGATION OF THE COMPSONEURA CAPITELLATA (A. DC) Warb. COMPLEX 70
Abstract 70
Introduction 71
Materials and Methods 74
Morphological data sampling 74
Morphological data analysis 75
DNA extraction, amplification, sequencing and alignment 76
Statistical Parsimony analyses 78
Results 79
Morphology 79
Molecular analyses 81
Discussion 82
Morphology 82
Genetic analyses 84
Compsoneura atopa and Compsoneura diazii 84
Compsoneura capitellata 86
Conclusion 90
Provisional Taxonomic descriptions: 91
The following information summarizes a provisional combination (C. morona- santiago) and provisional resurrection (C. tessmanii) of taxa from the C. capitellata complex 91
Compsoneura morona-santiago J. Janovec \& R. Steeves, sp. nov. -TYPE: ECUADOR. Morona-Santiago: Taisha, $2^{\circ} 225^{\prime}$ S, $77^{\circ} 31$ W, 500 m, 31 Jan 1962,P.C. D. Cazalet and T. D. Pennington 7602 (holotype: NY; isotype: US).91
Compsoneura tessmannii (Markgraf), Notizbl. Bot. Gart. Berlin 9: 964. 1926.
TYPE: PERU. Loreto: basin of Rio Marañon from Iquitos upstream on the way tothe mouth of Rio Santiago at Pongo de Manseriche, ca. $3^{\circ} 50^{\prime} \mathrm{S}, 77^{\circ} 40^{\prime} \mathrm{W}, 23$ Sep1924, Tessmann 4108 (holotype: B; fragment of holotype: F; photos of holotype:F, H, MO, NY; isotype fragment: F, NY)94
Tables 98
Figures 108
Literature Cited 120
Chapter 3 126
A MOLECULAR PHYLOGENETIC INVESTIGATION OF VIROLA Aublet 126
Abstract. 126
Introduction 127
Materials and Methods 133
Taxon Sampling 133
Morphology 135
DNA extraction, Amplification, Sequencing and Alignment 135
Cladistic analyses 137
Distance analyses. 139
Results 140
Morphology 140
DNA sequencing and Alignment 140
Cladistic Analysis 141
Distance analyses. 142
Discussion 142
Cladistic analysis and Morphology 142
Distance analysis 148
Descriptions of provisional species 149
Virola sp.RADS1 R. Steeves sp. nov.-TYPE: Peru. Madre de dios: Los AmigosBiological Research Station -12.57 DD Lat, -70.10 DD Long, $250 \mathrm{~m}, 17$ Jun2008, R. Steeves and A. Balarezo 500 (holotype: OAC)149
Virola sp.RADS4 R. Steeves-TYPE: Ecuador. Manabi: Diez de Augusto, Camarones, -0.083 DD Lat, -80.16 DD Long, 80 m, 28 April 2008, R. Steeves, A.Reid and D. Simba 205 (holotype: OAC; QCNE)151
Virola sp.RADS3 R. Steeves-TYPE: Ecuador. Zamora-Chinchipe, Quimi, -3.59DD Lat, -78.50 DD Long, 1200 m, 17 May 2008, R. Steeves, W. Quizhpe and D.Simba 335 (holotype: OAC; QCNE)153
Tables 155
Figures 159
Literature Cited 179
Chapter 4 187
A MORPHOLOGICAL AND MOLECULAR INVESTIGATION OF VIROLA SEBIFERA Aublet AND VIROLA LORETENSIS A. C. Sm. 187
Abstract 187
Materials and Methods 190
Collection sites 190
Study species 191
Morphological analysis 192
DNA extraction, amplification, molecular cloning, sequencing and alignment193
Results 196
Morphological Analyses 196
Molecular Analyses 198
Discussion 199
Morphological Analyses 199
Molecular Analyses 200
Conclusions 202
Tables 205
Figures 207
Literature Cited 216
CONCLUDING STATEMENTS 221
Literature Cited 225
APPENDICES 226
Appendix 1 226
Alignment 1.1 226
Alignment 1.2 236
Appendix 2 243
Alignment 2.1 243
Appendix 3 250
Alignment 3.1 250
Alignment 3.2 278
Appendix 4 286
Alignment 4.1 286

LIST OF TABLES

Table 1.1 Compsoneura and outgroup taxa used in all analyses. Collector(s), Collections number (Coll. \#), code of Herbaria storing (Herb.), Country of origin, decimal degrees latitude (Lat.), decimal degrees longitude (Long.), Barcode of Life Database sequence process ID (BOLD \#), and genbank accession numbers are listed if applicable.
Table 1.2 Unambiguous morphological character transformations that differentiate informal sections Compsoneura and Hadrocarpa.58

Table 2.1 Specimens used in vegetative and floral ordinations. Herbarium code and accession number, collectors, collection number (Coll.\#), country, decimal degrees latitude (DD Lat.), decimal degrees longitude (DD Long.), and elevation (Elev.) are listed.
Table 2.2 CA analysis of 48 quantitative morphological metrics for C. capitellata taxa. Bolded Pearson correlation (P Corr.) values indicate the metrics most significant to the ordination ($* *=p$ value <0.01).
Table 2.3 Collection numbers (Coll. \#), Country, Population name, decimal degrees latitude (DD Lat.), decimal degrees longitude (DD long.), elevation above sea level (Elev a.s.l.), and Barcode of Life Database process identification numbers (BOLD. process ID) for specimens used in molecular analyses. Collectors of samples were J. Janovec (JPJ), Camila Diaz (CDiaz), and R. Steeves (RADS). Specimens of C. atopa and C. diazii are indicated by a "-Ca" and "Cd" proceeding the collection number. All other collections represent C. capitellata. 106
Table 3.1 Species[SL and BL indicate small leaf and big leaf morphotypes of V. loretensis and V. Sebifera], collectors, collection numbers (Coll. \#), Barcode of Life Database process ID number (BOLD ID), and decimal degree co-ordinates (latitude= DD Lat., longitude $=$ DD long.) of taxa collected for this study. 155
Table 3.2 Morphological trait values of 8 species of Virola taken from species descriptions of Smith (1937). Minimum and maximum trait values are given as ranges. NDA indicates that there was no data available.
Table 4.1 Species collected, collection numbers (Coll. \#), Morphotype (type)[BL=Big Leaf, SL=Small Leaf], location (CICRA=Los Amigos Biological Station), decimal degrees latitude (Lat.) and longitude (Long.), herbarium accession numbers (Herb. Acc.), and data set sample was used in ($M=$ molecular, $m=$ morphology, \# indicates how many alleles were recovered) for 29 collections employed in this study. 205
Table 4.2 Correspondence analysis of 10 morphological metrics (minimum and maximum) measured for V. sebifera and V. loretensis taxa. Bolded Pearson correlations (P Corr.) indicate the 4 metrics most significant to the differentiation of taxa (p value $<$ 0.01).

LIST OF FIGURES

Figure 1.1 Phylogram of consensus tree created with sequences of trnH-psbA, AT103 and AGT1 sequences of 8 species of Compsoneura. Numbers on branches indicate Bayesian posterior probabilities of nodes and numbers following taxon names are the collection numbers of herbarium samples from which DNA was extracted (see table 1.1 for collection information). Branch colours indicate sections Hadrocarpa (red) and Compsoneura (blue). Bolded taxa posess fused anthers. Branch lengths are proportional to distance.
Figure 1.2 Phylogram of the single most parsimonious tree (Length=187) constructed from a concatenated alignment of trnH-psbA, AGT1 and AT103 data sets (CI=0.85, $\mathrm{RI}=0.88, \mathrm{HI}=0.15$). Numbers on branches indicate bootstrap values and numbers following taxon names are the collection numbers of herbarium samples from which DNA was extracted (see table 1.1 for collection information). Branch colours indicate sections Hadrocarpa (red) and Compsoneura (blue). Compsoneura taxa in bold font possess fused anthers and unbolded taxa posess free anthers.
Figure 1.3 Neighbour joining (uncorrected p-distance) tree constructed using trnH-psbA data. Red branches indicate members of section Hadrocarpa and blue branches indicate section Compsoneura. Numbers indicate collection numbers of herbarium samples from which DNA was extracted (also see table 1.1). Geographical zones (Amazonian or Choco-Panama) of various species of Hadrocarpa is indicated by lines on the right. Branch lengths are proportional to distance.62

Figure 1.4 Histograms of the number of pairwise intraspecific (red bars) and interspecific divergence distances estimates (x -axes) among all Compsoneura samples included in the neighbour joining analysis. The number of pairwise comparisons is on the y-axis and the pairwise p -distance for the trnH-psbA region is on the x -axis.63

Figure 2.1 Illustration of morphological metrics: A) Vegetative data points: SW=Stem Width, LPL=Petiole Length, LPW=Petiole Width, LVS=space between secondary veins, LVN=Vein Number, LL=Lamina Length, LWB= Leaf Width at $1 / 4$ length, LWM=Leaf Width at $1 / 2$ length, LWT=Leaf Width at $3 / 4$ length, LVN=Leaf Vein Number, LAL=Leaf Acumen Length. B) Perianth data points: TL=Tepal Lobe number, $\mathrm{PT}=$ Perianth Thickness, TLW=Tepal Lobe Basal Width, PW=Perianth Width at widest point, FPL=Flower Pedicel Length, FPW=Flower Pedicel Width, TLL=Perianth Tube Length, PTL = Perianth tube length, $\mathrm{PL}=$ Perianth total Length. C) Androecium data points: AN=Anther Number, AL=Anther Length, ASL=Anther Sac Length, ACW=Anther Cluster Width, FCL=Filament Column Length, FCWA=Filament Column Apical Width, FCWB= Filament Column Basal Width. (modified from Janovec 2000). 108
Figure 2.2 Sampling localities of Compsoneura taxa for genetic analyses: 1) C. atopa, Ecuador, Orellana. 2) C. capitellata, Ecuador, Napo. 3) C. capitellata, Ecuador, Pastaza, 4) C. capitellata, Ecuador, Morona-Santiago. 5) C. capitellata, Ecuador, ZamoraChinchipe. 6) C. capitellata, Peru, Loreto. 7) C. capitellata, Peru, San Martin. 8) C. capitellata, Peru, Cusco. 9) C. diazii, Peru, Bagua. The area inside the blue line indicates the known range of C. capitellata.
Figure 2.3 NMS ordination of quantitative leaf data for 268 specimens of C. capitellata. Stress value 0.09 . Legend indicates the country and province or region the specimens
originated from. Arrows show the morphological characters most significant to the axes as revealed by the Pearson correlation analysis. 110
Figure 2.4 NMS ordination of quantitative leaf data for 268 specimens of the C. capitellata complex with specimens classified as montane and lowland. Stress value 0.09 .

Figure 2.5 An example of bark, leaf and flower morphological trait variation in C. capitellata among (A) lowland populations (Ecuador, Napo) and (B) montane populations (Peru, Cusco).
Figure 2.6 S.E.M. and light micrographs of androecial morphology of 9 staminate collections from the C. capitellata complex of Brazil, Ecuador and Peru. A) R. L. Froes 34648, Brazil (scale bar= $250 \mu \mathrm{~m}$) B) A. Ducke, 561, Brazil (scale bar= $500 \mu \mathrm{~m}$) C) A. Ducke 23693, Brazil (scale bar $=500 \mu \mathrm{~m}$) D) M. Aulestia 2713, Ecuador (scale bar= 500 $\mu \mathrm{m}$) E) M. Aulestia 1651, Ecuador (scale bar $=500 \mu \mathrm{~m}$) F) P. C. D. Cazalet and T. D. Pennington 7602, Ecuador (scale bar= $500 \mu \mathrm{~m}$) G) E. P. Killip and A. C. Smith 26053, Peru (scale bar= $500 \mu \mathrm{~m}$) H) E. Ancuash 424, Peru (scale bar= $500 \mu \mathrm{~m}$) I) R. S. Steeves 600, Peru (scale bar $=200 \mu \mathrm{~m}$).
Figure 2.7 NMS ordination of 14 androecial characters for 75 samples. The legend
indicates the country and region of origin for the samples. Stress=0.13....................... 115
Figure 2.8 NMS ordination of 7 perianth characters for 41 samples. Legend indicates the country and region of origin for the samples used. Stress=0.10. 116
Figure 2.9 Fruit variation in C. capitellata: A) Intact glabrous fruit type found in San Martin, Peru (Top: J. Janovec 836) and intact sulcate fruit of Loreto, Peru (bottom: J. Janovec 843) B) Dissected fruit from Pastaza province, Ecuador (R. Steeves 427); interior of pericarp on left, seed exterior and interior in middle, and warted external surface of pericarp on the right.
Figure 2.10 trnH-psbA haplotype network for 7 populations of C. capitellata and 1
sample each of C. atopa and C. diazii. Nucleotide changes, and their positions are shown
on branches between nodes... 118
Figure 2.11 Precipitation regimes in South America and collection localities of C. atopa.
Figure 3.1 Virola flexuosa: A) Abaxial leaf surfaces. B) Adaxial leaf surfaces. C)
Herbarium specimen with inflorescence. D) Staminate flower showing androecium (scale bar $=0.5 \mathrm{~mm}$).
Figure 3.2 Virola multinervia: A) Abaxial and adaxial leaf surfaces from juvenile tree (15 cm ruler). B) Herbarium specimen with immature inflorescence. C) Close-up of adaxial surface of mature tree. D) Close-up of adaxial surface of mature tree. E) Abaxial leaf pubescence (scale bar= 1 mm). F) Flower with one tepal dissected to show androecium (scale bar $=0.5 \mathrm{~mm}$).
Figure 3.3 Virola sp.RADS4 A) Bark, leaves and red sap. B) Abaxial leaf surface showing glabrescent surface and secondary veins. C) Branchlet of mature tree (15 cm ruler). D) Branchlet of immature tree (15 cm ruler). E) Nearly mature fruit dissected to show outer glabrescent pericarp and nearly entire aril. F) Buttressed base of mature tree.
Figure 3.4 Virola surinamensis: A) Branch with inflorescence and abaxial leaf surface. B) Branch of mature tree with inflorescences. C) Undehisced, nearly mature fruits and dehisced fruit showing red aril (inset). D) Branches and stilt roots typical of this species .
E) Close-up of inflorescence. F) Staminate flower with petal dissected to show androecium (scale bar= 0.5 mm). 162
Figure 3.5 Virola pavonis: A) Bark, leaves, inflorescence, and greenish latex. B) Specimens showing adaxial and abaxial leaf surfaces (15 cm ruler). C) Leaves and pericarps (15 cm ruler). D) Close-up of pericarps and seed testa. 163
Figure 3.6 Virola sp.RADS3 specimen showing reddish abaxial pubescence and glabrous glossy green adaxial surface (15 cm ruler). 164
Figure 3.7 Virola calophylla: A) Leaves with inflorescence. B) Bark and leaves of mature tree. C) Nearly mature florescence. D) Close-up of inflorescence with ants. E) Abaxial leaf pubescence (scale bar= 2 mm). F) Indehiscent and dehiscent mature fruit with lacinate aril. 165
Figure 3.8 Virola sp.RADS1: A) Leaves with inflorescence and pericarps (15 cm ruler).
B) Bark showing latex and leaves. C) Close-up of leaf and branch showing undulatingleaf margins. D) Dissected fruit showing deeply lacinate aril and red-pubescent pericarp.E) Leaf and nearly mature un-dehisced fruits. F) Adaxial leaf pubescence, primary andsecondary veins (Scale bar= 1 mm).166
Figure 3.9 Virola elongata: A) Leaves, infructescence and bark. B) Adaxial leaf pubescence and secondary vein (scalebar $=1 \mathrm{~mm}$) C) Abaxial and abaxial leaf surfaces(15 cm ruler). D) Dissected mature fruit with deeply lacinated aril (semi-dried). E)Undehisced nearly mature fruits. F) Close-up of fruit pubescence (scale bar= 1 mm). . 167Figure 3.10 Virola loretensis-BL (Big Leaf morphotype): A) Bark, deep red latex anddried (dropped) leaves. B) Abaxial, adaxial leaf surfaces of sample with inflorescences(15 cm ruler). C) Close-up of inflorescence. D) Branch with mature fruits. E) Dissectedimmature fruit showing dense pubescence. F) Adaxial leaf pubescence. G) Developingflower buds (scale bar=1 mm). H) Close-up of fruit indument (scale bar= 1 mm).168
Figure 3.11 Virola loretensis-SL (Small Leaf morphotype): A) Bark, leaves and red latex. B) Adaxial leaf surfaces with inflorescence. C) Branch with inflorescence. D) Close-up of mature inflorescence. E) Flower pubescence (scale bar= 1 mm). F) Adaxial leaf pubescence (scale bar= 1 mm). 170
Figure 3.12 Virola sebifera-SL (Small Leaf morphotype): A) Leaves with orange-red pubescence (15 cm ruler) B) Bark, leaves and inflorescence of mature tree. C) Abaxial leaf pubescence (scale bar= 1 mm). D) Inflorescence. E) Flowers (scale bar= 1 mm). F) Nearly mature fruits with dissected fruit showing seed testa and aril (inset). 171
Figure 3.13 Virola sebifera-BL (Big Leaf morphotype) : A) Bark with leaf showing abaxial surface. B) Mature pistillate inflorescence. C) Nearly mature infructescence showing deciduos red pubescence. D) Close-up of staminate flowers (scale bar= 1 mm). E) Abaxial leaf pubescence and secondary vein (scale bar= 1 mm) 172
Figure 3.14 Virola dixonii branch showing adaxial and abaxial leaf surfaces (15 cm ruler). 173Figure 3.15 Illustration of morphological metrics measured on provisional new species:SW=Stem Width, LPL=Petiole Length, LPW=Petiole Width, LVS=space betweensecondary veins, LVN=Vein Number, LL=Lamina Length, LWB= Leaf Width at $1 / 4$length, LWM=Leaf Width at $1 / 2$ length, LWT=Leaf Width at $3 / 4$ length, LVN=Leaf VeinNumber, LAL=Leaf Acumen Length.174Figure 3.16 Bayesian majority rule consensus tree of 45 Virola taxa with proportionalbranch lengths and Bayesian posterior probabilities (PP) above, and bootstrap support
measures below branches. Stars (\star) indicate clades with sessile leaf hairs (compared to stalked leaf hairs), the " $\boldsymbol{*}$ " indicates a clade with type II pollen and the " + " indicates type I pollen (sensu Walker and Walker 1979). "SL" and "BL" following Virola sebifera and Virola loretensis collections indicate small-leaf and big-leaf morphotypes respectively. Additional letters following taxa names indicate collectors names and numbers (RS=Royce Steeves, JJ=John Janovec, and PB=Paul Berry). Additional information can be found about these specimens in table 3.1 as well as the barcode of life database. Taxa in bold are provisional new species. 176
Figure 3.17 Neighbour-joining uncorrected p-distance gene tree of 17 Virola species. Taxa in bold are proposed new species. Blue branches indicate taxa of the Multinervae clade and red those of the Sebiferae clade. "SL" and "BL" following Virola sebifera taxa indicate whether they are of the small-leaf or big-leaf morphotypes. Letters and numbers proceeding species names indicate the collector and collection number. 178
Figure 4.1 Collection locations in Peru ($\mathrm{n}=4$) and Brazil ($\mathrm{n}=1$): 1) Manu Paradise Lodge, 2) Quincemil, 3) CICRA-Los Amigos Biological Reserve, 4) Puerto Maldonado, 5) Brasilia-Reserva Ecologia do IBGE.
Figure 4.2 Virola sebifera-BL (Big Leaf morphotype): A) Bark with leaf showing abaxial surface. B) Mature pistillate inflorescence. C) Nearly mature infructescence showing deciduous red pubescence. D) Close-up of staminate flowers (scale bar= 1 mm). E) Abaxial leaf pubescence and secondary vein (scale bar= 1 mm) 208
Figure 4.3 Virola sebifera-SL (Small Leaf morphotype): A) Leaves with orange-red pubescence (15 cm ruler) B) Bark, leaves and inflorescence of mature tree. C) Abaxial leaf pubescence (scale bar= 1 mm). D) Inflorescence. E) Flowers (scale bar= 1 mm). F) Nearly mature fruits with dissected fruit showing seed testa and aril (inset).
Figure 4.4 Virola loretensis-BL (Big Leaf morphotype): A) Bark, deep red latex and dried (dropped) leaves. B) Abaxial, adaxial leaf surfaces of sample with inflorescences (15 cm ruler). C) Close-up of inflorescence. D) Branch with mature fruits. E) Dissected immature fruit showing dense pubescence. F) Adaxial leaf pubescence. G) Developing flower buds (scale bar=1 mm). H) Close-up of fruit indument (scale bar= 1 mm)........ 210
Figure 4.5 Virola loretensis-SL (Small Leaf morphotype): A) Bark, leaves and red latex. B) Adaxial leaf surfaces with inflorescence. C) Branch with inflorescence. D) Close-up of mature inflorescence. E) Flower pubescence (scale bar= 1 mm). F) Adaxial leaf pubescence (scale bar= 1 mm).
Figure 4.6 Illustration of 10 vegetative morphological metrics measured: SW=Stem Width, LPL=Petiole Length, LPW=Petiole Width, LVS=space between secondary veins, LVN=Vein Number, LL=Lamina Length, LWB= Leaf Width at $1 / 4$ length, LWM=Leaf Width at $1 / 2$ length, LWT=Leaf Width at $3 / 4$ length, LVN=Leaf Vein Number, LAL=Leaf Acumen Length. A maximum and minimum value of each metric was recorded for every specimen measured. 213
Figure 4.7 NMS ordination of quantitative leaf metrics of V. sebifera and V. loretensis morphotypes. 214

Figure 4.8 Haplotype network of 35 sequences from V. sebifera and V. loretensis clones. Legend indicates the shapes and colours used for each of the morphotypes and the one shared allele.

GENERAL INTRODUCTION

Taxonomy

Ethnotaxonomy

It is likely that the first profession was that of the shaman; the healer, guide to the realm of spirits and maker of medicines. The need for this profession was presumably born of the inherent difficulty and serious nature of plant identification. The shaman may have varying roles in numerous cultures but in most embodiments they are the authority on the use and implementation of the medicinal and religious application of plants. In many cultures these tasks are regarded with such great importance that individuals within traditional cultures may be relieved of the tasks of everyday life from a young age to devote their whole lives to the practice of identifying and implementing plants in medicoreligious applications. The act and practice of naming and differentiating species, variants, or cultivars of plants often holds great cultural importance to traditional peoples likely because it has developed from the need to identify the nutritious and intoxicating plants available to them.

Humans have an inherent ability to recognize and classify the diversity of life around them (Newmaster et al. 2006, Diamond and Bishop 1999). Although many species of animals distinguish edible and inedible species from one another based on senses and/or innate aversions to particular foodstuffs, language and tradition have afforded humans the ability to pass on this knowledge to subsequent generations. A unifying trait among human cultures is the development of systems to name and describe the biodiversity in their realm. Although vernacular names may be different, it is interesting that a population of individuals with similar phenotypes is often recognized as
a 'species' both in aboriginal cultures and the scientific, or Linnaean, system and aboriginal classifications sometimes recognize more 'species' than current scientific nomenclature (Diamond and Bishop 1999).

Taxonomy and Species

Taxonomy is the scientific practice of classifying, identifying, and describing organisms. Although taxonomists are concerned with all organismal levels of classification, but of particular importance is the determination, discovery and description of species. Traditionally, plant taxonomists have used a wide range of characters to help them classify earth's botanical diversity. Until relatively recently, botanists were largely restricted to studies of gross morphology, anatomy and inter-fertility to classify diversity. Additional characters became available with the use of secondary metabolite analysis and with the advent of chromosome staining botanists have been able to determine and consider chromosome number as a taxonomic character . More recently flow cytometry, allozyme analysis, and DNA-DNA hybridization gave taxonomists more sensitive means of delimiting taxa. However, it was the advent of the polymerase chain reaction (PCR) by Kary Mullis (Mullis and Faloona 1987) that enabled the determination of DNA sequences in a quick, accurate and inexpensive manner, that has revolutionized the field of systematics as we know it today. The additional information afforded by DNA sequence analysis has not only given taxonomists a more characters to help classify taxa, but has allowed systematists to estimate their evolutionary histories with data that is independent of morphology.

There exists well over 20 species concepts in use today however, many biologists will agree that species are lineages of separately evolving populations (de Quieroz 2005).

Species concepts with respect to plants have troubled botanists as phenotypic plasticity, polyploidy, hybridization, and differing methods of reproduction and genetic inheritance makes the standardization of criteria for species recognition difficult and have led some to suggest that plant species do not exist as real entities like animal species (Levin 1979, Bachmann 1998). In spite of these assertions, a recent analysis of crossing data in more than 400 plant and animal genera found that 70% of plant species correspond to reproductively isolated lineages, compared to only 39% of animal species tested (Rieseberg et al. 2006). Although hybridization is known to occur frequently in plants (Golden and Bain 2000, Palme et al. 2003), and is expected to be an important in the generation of new species (Whitney et al 2010), there is emerging evidence that reproductive isolation, genetic and morphological integrity can be maintained in the face of hybridization (Palma-Silva et al. 2011). In a recent study of four morphologically distinct sympatric neotropical Bromeliads Palma-Silva and colleagues (2011) found that 7 haplotypes were shared among species, however, nuclear microsatellite markers showed significant differentiation between species. This differential permeability of chloroplast and nuclear genomes between freely hybridizing species is of prime interest to plant taxonomists as it demonstrates that any given species can largely maintain its nuclear genetic integrity, and therefore morphological integrity despite the capture, or introgression, or another species' chloroplast haplotype. Plant systematists must consider these data as it may result in strong chloroplast versus nuclear gene tree incongruence (Rieseberg and Soltis 1991), and there exists the strong possibility that different loci of the nuclear genome (such as neutral versus non-neutral loci) may exhibit differential permeability between species (i.e. asymmetrical introgression).

Species are the "measuring-stick" with which biologists measure biodiversity. Virtually all major fields of biology rely upon accurate species identification in order to test scientific hypotheses. Therefore, the power of biological inference relies largely upon the accuracy of the measuring stick used, as well as the skill with which it is applied. However, many taxa lack a modern systematic revision, many areas of the world are uncollected, many investigators lack the taxonomic expertise necessary to identify species of interest and most of the world biodiversity has yet to be described (Mora et al 2010). Additionally, taxonomic experts, if there are any for a particular group, are sometimes too occupied with their own studies to perform routine identifications for others. Also, barriers such as language, funding constraints, and manuscript availability may further hinder access to taxonomic information. The specimens themselves may be difficult to identify due to a lack of distinguishing features (such as fertile structures), specimen age, quality and quantity of material. This combination of factors often leads to numerous errors in the course of many investigations where the taxonomy of a group of species is not well studied. Despite its fundamental importance to biological sciences, the field of taxonomy has been in decline in recent years, with a reduction in both the number of investigators as well as financial support (Godfray 2002).

DNA Barcoding

A potential improvement for some of these problems is the implementation of DNA-based identification systems such as DNA barcoding. DNA barcoding is the use of one or several standardized genomic regions as the basis for identification of a species (Hebert et al. 2003a,b). The mitochondrial coding gene cytochrome oxidase I has proven useful in numerous animal groups and algae (Hebert et al. 2004, Hebert et al. 2006,

Saunders 2005) and various barcoding campaigns are quickly building sequence libraries for the worlds flora and fauna (iBOL 2010). Once DNA region(s) suitable for delimitation of species has been found, agreed upon, and a sequence library has been compiled, DNA-based identification systems can be potentially revolutionary for species identification since assignments can be performed on specimens which may be degraded, lacking critical morphological characters, or from small or otherwise unidentifiable pieces of tissue. The ability to identify species from material lacking morphologically differentiating characters represents a drastic transformation in the types of ecological questions that can be addressed. Additional benefits are that it is rapid, largely automatable, accessible to anyone with access to a thermocycler and sequencing equipment (although this could potentially be miniaturized for public use). This automation may ultimately relieve taxonomic experts of the task of routine identifications, giving them more time to pursue questions of more theoretical nature.

Progress towards a universal plant DNA barcode has been largely impeded by the comparatively slow and heterogeneous rate of plastid nucleotide mutation in plants, the desire for universal primers, poor sequence quality in the most discriminating plastid loci (Chase et al. 2007, Fazekas et al. 2009), and the low rates of species discrimination of a single locus (Hollingsworth et al. 2009). Recently, plant taxonomists have proposed the multi-locus combination of plastid coding regions matK and rbcL as the proposed loci for a global campaign to barcode land plants (Hollingsworth et al. 2009). These more conserved loci could serve as core regions to identify samples to higher ranks (family and genus) while more variable markers (plastid spacers, nrDNA, and low copy nuclear loci)
will be needed for the identification of some taxa. DNA bardcoding will undoubtedly be more difficult in plants as they are prone to interspecific hybridization, allopolyploidy, introgression, and many species are of relatively recent origin. The asymmetrical introgression of one species' chloroplast genome into another species, also known as chloroplast capture, is well documented by phylogenetic, phylogeographic, and population genetic literature (Rieseberg and Soltis 1991, Golden and Bain 2000, Palme et al. 2003, Palma-Silva et al 2011) and it is expected that this phenomena will confound cpDNA-based species delimitation (such as plant DNA barcoding) even where species limits are rather clear (Hollingsworth et al. 2011.

Phenetic versus Cladistic Analyses in Systematics

Phenetics is method of grouping taxa based upon the amount of similarity or difference, regardless of phylogeny. Phenetic approaches are generally based on molecular or morphological data and seek to group taxa according to overall similarity. When nucleotide sequence data is employed in phenetic approaches the nucleotide differences among two sequences are converted to a numerical value. Then a matrix of these pair-wise values is generated from the nucleotide sequence alignment and a phenetic tree is constructed to group sequences based on similarity.

Cladistic methodologies seek to construct relationships of taxa based on shared derived characters, or synapomorphies. Cladistic methods have largely replaced phenetic means of estimating ancestor-descendant relationships as phenetics is based on summarystatistics (overall similarity), which is widely regarded as inferior to character based cladistic methods of phylogeny estimation (Steel et al. 1988, Farris et al. 1996, Murphy
and Doyle 1998). Cladistic methods on the other hand generally require much more time (hours or days) and often recovers numerous equally probable trees.

This thesis will investigate two main questions with respect to Compsoneura and Virola: 1) What are the sister-species relationships within these genera and do these clades agree with past sub-generic taxonomic groupings? and 2) Do cryptic species exist in these genera and can DNA loci be used to discriminate species of these trees that are exceedingly difficult to identify? Separate molecular analyses will be used to help answer each of these questions. Bayesian and parsimony based cladistic analyses will be used to estimate evolutionary relationships among taxa (Compsoneura=Chapter 1, Virola=Chapter 3). Although the use of phenetic analyses with DNA barcoding data has been criticized by some taxonomists (Will and Rubinoff 2004), phenetic methods will be used to assess the ability of highly variable cpDNA loci to discriminate species of these two genera as I am concerned primarily with taxon distinctiveness rather than the reconstruction of sister group relationships in such analyses.

A benefit of analyzing large volumes of sequence data with phenetic methods is that many samples (hundreds if not thousands) can be included from within populations as well as across a species' range in order to survey for undetected speciation. Such dense taxon sampling patterns have revealed potential cryptic speciation events in butterflies, bats, fish, flies, algae, wasps, and amphipods that had gone unnoticed by traditional taxonomic characters (Hebert et al. 2004, Saunders 2005, Witt et al. 2006, Clare et al. 2007, Smith et al. 2007, Hubert et al. 2008, Smith et al. 2008). It is important to note, however, that many of these investigations complemented their molecular characters with additional natural history data such as plant or insect-host-specificity, and geography
(Hebert et al. 2004, Smith et al. 2004, Saunders 2005, Smith et al. 2008). These DNA barcoding studies, as well as population genetic, phylogeography and systemic studies are discovering units that may represent undescribed species faster than these units can be further tested and described. Padial and colleagues (2010) have proposed multiple protocols for recognizing and testing candidate species with integrative data from multiple character sets (molecular, morphology, geography, ecology, etc.) so that these putative taxa can be recognized in some form until they can be fully described. It appears that the sequence data generated by DNA barcoding efforts will only serve to aid systematist in identifying molecular operational taxonomic units (MOTU: as discussed by Blaxter et al. 2005) that can then be treated as candidate species hypotheses to be tested with integrative approaches.

Throughout their evolution as hunter-gatherers, humans have sustained themselves by being able to recognize the biotic elements that can nourish and heal us. Agriculture, a buttress and hallmark of large sedentary societies, has selected choice genetic variants as the basis of improvement for domesticated plants and animals. Without genetic variation such selection is impossible. Therefore, genetic diversity is critical to the welfare of human societies. In our continued search for biological treasures to improve the human condition we will need increasingly sophisticated means to survey the diversity surrounding us. After about 200 years of Linnaean taxonomic pursuits there exists about 1.2 million described species and an estimated 7 million more yet to be discovered, described, and classified (Mora et al. 2011), it can only be hoped that genetic systems of identification will expedite the taxonomic process so that we can more intelligently manage our organismal resources.

Human and geologic history of Central and South America

The neotropical region (the landmass situated between the tropics of Cancer and Capricorn in Central and South America) is home to an estimated 90,000 plant species (Raven 1976, Prance 1977, Thomas 1999), which represents a significant proportion of the world's estimated 235,000-420,000 seed plant species (Govaerts 2003, Scotland and Wortley 2003). Permanent plots and transects conducted in the Amazon basin have routinely found 200 to 300 species per hectare, making the Amazon the world's most diverse forest in terms of tree species richness (Gentry 1988, Pitman et al. 2002).

There are a number of noteworthy geological events that have had a significant effect on the evolution and composition of the neotropical flora. Approximately 130 million years before present (mybp) the African and South American continents began to separate, with complete separation occurring about 80-90 mybp (Raven and Axelrod 1974). The continents of Africa and South America continued to separate during the late Cretaceous (99-65 mybp) while volcanic islands formed between North and South America (Raven and Axelrod 1974). The uplift of the Central American landmass continued into the Miocene (23-5 mybp) culminating in the physical connection of the North and South America an estimated 3 mybp (Keigwin 1978, Marshall 1982). The Andean orogeny began its uplift around 23 mybp but the most intense activity occurred from the middle Miocene (12 mybp) to the early Pliocene (Hoorn et al. 2010). This uplift created the worlds longest current tropical mountain range as well as a large network of lakes and swamps that existed from about 25-10 mybp when the East-West drainage of
the continent was impeded by the forming mountains (Pons and Franceschi 2007, Hoorn et al 2010).

The uplift of the Andean orogeny has likely been a key factor in the generation of neotropical floristic diversity. Gentry $(1982,1988)$ hypothesized that the relatively recent uplift of the Andean cordillera caused explosive speciation in herbaceous plants and is responsible for the exceedingly high diversity of plant species in the neotropics. Rapid speciation has also been found in tree genera as a molecular analysis of the genus Inga found very low level of nucleotide substitutions among species despite morphological differentiation, suggesting recent and rapid speciation in the genus (Richardson et al. 2001). Contemporary analyses that have integrated molecular phylogenetic and geologic data appears to indicate the uplift of the Andes was crucial to the diversification of the neotropical flora primarily through the generation of topographic features, fertile and heterogeneous edaphic conditions, as well as varying precipitation regimes (Hoorn et al. 2010).

The diverse biota of South America has also been impacted in past and present times by its human inhabitants. The first humans are believed to have arrived in South America 12,000-15,000 years ago and they are thought to have contributed to the extinction of numerous large bodied vertebrates through hunting (Janzen 1983). The extinction of these large herbivores likely led to the extinction, or rarefaction, of many species of plants dependent on these megafauna for dispersal and/or germination of their seeds (Janzen and Martin 1981).

Shortly after they arrived in the Neotropics, humans made use of the rich flora around them by domesticating numerous species, making South and Central America an
independent origin of agriculture (Olsen and Schaal 1999, Smith 2006). When Gaspar de Carvajal sailed down the Amazon from 1541-1542 he wrote of large settlements in the region of modern day Manaus, Brazil where some communities stretched uninterrupted for 25 km . However, after studying cultures living at the periphery of the Northwest Amazon basin, anthropologists largely concluded that all pre-Colombian societies were small hunter-gatherer groups clinging to existence and sparsely scattered across the Amazon (Meggers 1971, Hames and Vickers 1982). This was largely based on the notion that great societies, such as those described by Carvajal, required large-scale agriculture that was regarded as impossible on the poor soils of the region. Relatively recently however, scientists came to realize that rich black soils, called terra preta (or black earth), scattered across the Amazon were of human origin (Smith 1980, Glaser et al. 2001), These soils appear to have been created by the generation and application of charcoal to highly oxidized, and therefore poor, soils. It appears that this soil amelioration technique was employed across the Amazon watershed as deposits of terra preta soils have been found from the rivers source to the sea and up many of its tributaries to the North and South (Glaser 2007). The application of charcoal to these soils appears to change the soil microbe community (Grossman et al. 2010) and increase the cation exchange capacity, and therefore nitrogen retention of the soils, leading to improved crop yields (Lehmann et al. 2005, Chan et al. 2007). Increased yields from these soils might have enabled the persistence of large societies (perhaps millions of people) such as those documented by Carvajal (Hackenberger 1999). Assessments of species richness done by Junquiera et al. (2010) found that domesticated and semi-domesticated woody plant diversity is higher on terra preta soils compared to adjacent non-anthropogenic soils. This could mean that the
very composition of the Amazon forest was changed by these societies and that the Amazon rainforest is not the wild "forest primeval" envisioned by many people.

Myristicaceae

The nutmeg family, or Myristicaceae, is composed of sub-canopy to canopy evergreen trees found in virtually any tropical rainforest of the world. The family is currently represented taxonomically by 21 genera and about 500 species (Janovec 2000). The Myristicaceae are ecologically important as species in this family are abundant in tropical rainforests and the family as a whole is often among the top 10 most abundant tree families in these forests (Gentry 1988, Pitman et al. 2001, Pitman et al. 2002).

General Morphology and Cytology

Members of the Myristicaceae have numerous morphological traits that make them easy to identify to the family level in the field. Most species have brown-red bark that is smooth and flakes off in thin slivers or large plates. Perhaps the most striking feature of the family is their characteristic branching pattern whereby the mostly horizontal branches radiate in whorls from the trunk. All leaves of the Myristicaceae are simple, entire, 2 ranked and alternately arranged on branches. Leaf veins are pinnate and free to anastomosing or brochidodromous. Leaf blades may be densely pubescent or totally glabrous. Members of the Myristicaceae are dioecious with the exception of a few monoecious members of the neotropical genus Iryanthera. Flowers are unisexual, inconspicuous, small in size ($<4 \mathrm{~mm}$), composed of three sepals (rarely 4) that are fused to varying degrees, and exude a strong fragrance (Smith 1937, Armstrong 1997, Janovec
2000). Female flowers are uni-carpellate and uni-ovulate and they show very little morphological differentiation within the family. Male flowers are composed of 2-60 anthers which are fused to various degrees to a central column. This fused androecium is often referred to as a synandrium and has been of key interest to systematic studies of the family owing to the largely amorphous nature of the leaves and gynoecium (Smith 1937, Warburg 1987, Janovec 2000, Sauquet et al. 2003b). Flowers are borne on racemose or thrysoidal paniculate inflorescences, which themselves originate within leaf axils (Wilde 1991). Once fertilized, the unicarpellate ovary develops into an elliptical fruit called a follicle. The fruit is comprised of a single seed, typically with a ruminate endosperm, covered to various degrees by a fatty white-reddish aril. The arillate seed is encapsulated by a pericarp which dehisces along a single suture in most species at maturity to present the seed to animal dispersers.

Cytological investigations in the family Myristicaceae have largely been restricted to members of Myristica. The amount of DNA in an unreplicated haploid nucleus of plants ranges approximately 1000 -fold, from 0.1 pg to approximately 125 pg (Bennett et al. 2000). This haploid nuclear complement of DNA, also known as the C-Value, has only been determined for Myristica dactyloides and Myristica fragrans, which were estimated to contain 1.4 pg and 1.2 pg (or 1,372 and 1176 Mbp) respectively in a haploid complement of their 24 chromosomes (Bennet et al. 2000). Chromosome counts in other taxa have revealed haploid chromosome numbers of 19, 21, 25 and 26 (Mehra and Bawa 1969,Raven 1975). The chromosomes of Myristicaceae are holocentric (Flach 1966), meaning that they do not possess a localized centromere, and consequently kinetochore activity is distributed over the length of the chromosome. Holocentric chromosomes are
rather unusual among angiosperms and have been reported in few families including Cyperaceae, Juncaceae, Melanthiaceae, Cuscutaceae, (Pazy and Plitman 1994, Luceno et al. 1998, Nagaki et al 2005, Hipp et al. 2009). A high degree of variation of in chromosome arrangement in species of Carex, which is afforded by holocentric chromosomes, has led to speculation that chromosome rearrangements may have played a significant role in the generation of the extraordinary number of species in Carex (Hipp et al. 2009). An additional chromosomal curiosity is that Myristica fragrans is one of relatively few angiosperms that have been found to have hetergametic sex chromosomes (Ganeshaiah et al. 2000).

Ecology

Wild nutmeg trees are entirely dependent upon animals for both the pollination of their flowers and dispersal of their seeds. The flowers emit a strong sweet fragrance and individual flowers are open for only a few days (Armstrong and Irvine 1989a). Members of the nutmeg family are believed to be pollinated by small generalist pollinators such as beetles (Coleoptera), thrips (Thysanoptera), and flies (Diptera) that consume pollen (Armstrong and Drummond 1986, Armstrong and Irvine 1989b, Armstrong 1997).

However, there has yet to be a comprehensive study of pollination agents of the family. Since the female flowers offer no apparent reward for pollinators, it is believed they attract pollinators by mimicking the fragrance of male flowers (Armstrong 1997). The seeds of Myristicaceae are highly prized by birds and mammals for their aril, or seed covering, which is particularly rich in energy-rich fats (Howe 1981). Seed-set in some species may be low; a study by Bullock (1982) found that most female trees of Compsoneura sprucei produce less than 10 fruits per fruiting cycle. The nutritious aril
and diurnal opening of the fruit is believed to encourage consumption of seeds by avian and mammalian dispersal vectors. Numerous species of birds such as trogons (Trogon massena), motmots (Baryphthengus martii), toucans (Ramphastos sulfuratus, R. swainsonii), and guans (Penelope purpurascens) consume the fruit but typically regurgitate or expel the seeds only minutes after consuming the nutritious aril (Howe and Vande Kerckhove 1981, Howe et al. 1985). However, spider monkeys (Ateles fusciceps) may act as one of the most important long distance dispersers of nutmeg seeds as they consume the entire seed-aril unit and the seed is excreted intact many hours later (Russo 2003). Additional studies of seed dispersal in Virola flexuosa have indicated that human hunting can have an impact on seed removal as nearly 90% of seeds were found to be removed from parent trees in unhunted plots versus only 67% removal in hunted areas (Holbrook and Voiselle 2009). Seed dispersal might be particularly important as Howe et al.(1985) found that 99.2% of Virola surinamensis seeds that fell within 45 m of the parent tree succumbed to predation but those which were dispersed to greater distances experienced a 44-fold survival advantage. Additional ecological studies are needed to ascertain whether bats or other large terrestrial mammals are significant dispersers of various species of nutmeg seeds. It is still unknown whether nutmeg trees are diphasic, exactly which species pollinate their flowers, and what effects pollinators and dispersers have on the genetic structure of populations.

Ethnobotany

In addition to their ecological importance, the Myristicaceae are also significant ethnobotanically. The hollowed branches of the neotropical nutmeg genus Otoba are used
to construct blowpipes used in hunting (Schultes and Raffauf 1990). The blood red latex of Virola spp. is used as part of the mixture for curare; an arrow and dart poison for immobilizing animals (Macrae and Towers 1984). Virola latex is also the primary source of tryptamine alkaloids included in yakee or ebena snuff which is employed widely across the Amazon by natives to produce powerful visions for shamanic, religious, and sometimes recreational purposes (Macrae and Towers 1984a and b, Macrae and Towers 1985, Schultes and Raffauf 1990, McKenna et al. 1984). Various preparations of the sap, leaves and bark are used to treat malaria, diarrhea, fungal skin infections, arthritis, and hemorrhoids (Schultes and Raffauf 1990, Lopes et al. 1999). Members of the genus Virola are harvested extensively in many South American countries as a source of wood for veneer and timber. In some neotropical countries, exports of Virola spp. are rivaled in economic importance only by big-leaf mahogany [Swietena macrophylla, Meliaceae] (Macedo and Anderson 1993).

The best known member of the Myristicaceae is the spice bearing species Myristica fragrans, the common nutmeg tree. Although believed to have been domesticated only in the last 500 years, M. fragrans, has been employed ethnobotanically wherever it has been spread by humans in the world. Myristica fragrans is native to a small area known as the Banda Islands of the Maluku Province of modern day Indonesia. The nutmeg tree has been dispersed far beyond its endemic range in the Banda Islands to a pantropical range by people since the late $18^{\text {th }}$ century (Hanna 1978). The nutmeg tree bears a fruit that dehisces when ripe to reveal a single seed covered by a bright red aril, which are known commercially as nutmeg and mace respectively. The primary use of M. fragrans is as a flavoring in cooking but many cultures around the world have found it
useful for a myriad of purposes. In its native range the pericarps of nutmeg are made into a sweet snack called 'pala manis' or 'pala gulu' by repeated soaking in a sugar solution (Gils and Cox 1994). Indigenous Malukans also topically apply nutmeg oil, which gives a warm strengthening feeling, to relieve headaches, stomach aches, diarrhea and flu symptoms (Gils and Cox 1994). Both nutmeg and mace have been used as an aphrodisiac, anti-rheumatoid, anti-malarial, stimulant, and post childbirth tonic (Burkill 1935).

Myristicaceae Systematics

Nutmeg trees made their first appearance in the scientific literature in 1742 when Linnaeus first described the genus Myristica. Myristicaceae was established in 1810 by Brown, but the first thorough monographic treatment of the Myristicaceae was not completed until 1856 by De Candolle (cited from Janovec 2000). De Candolle recognized about 90 species worldwide and organized them into 13 sections of the single genus Myristica. Bentham and Hooker (1880) retained the monogeneric concept for Myristicaceae and condensed the 13 sections of De Candolle into 7 sections. The most comprehensive work of the pantropical Myristicaeae was done by Warburg (1897, cited from Janovec 2000). Warburg (1897) recognized 240 species organized in 15 genera, the majority of which are still recognized. The last comprehensive treatment of the neotropical Myristicaceae was done by Smith (1937) who recognized the genera Virola, Compsoneura (split into sections Coniostele and Compsoneura based on degrees of anther fusion), Osteophloeum, Iryanthera, and Dialyanthera (currently synonymous with Otoba), all of which are endemic to South and Central America. Since Smith's (1937)
work, further collections of the Myristicaceae have led to descriptions of both new species and genera (Rodrigues 1989a and b, Janovec and Harrison 2002, Janovec 2002, Janovec and Neill 2002, Sauquet 2003, Sauquet 2004, de Wilde 1991). Taxonomic works on the neotropical Myristicaceae since 1937 have been largely limited to descriptions of new species. The most recent taxonomic work concerning neotropical nutmegs, a monograph of Compsoneura, by Janovec (2000) nearly doubled the number of species in the genus and divided the genus into informal sections Compsoneura and Hadrocarpa, the latter of which was further subdivided into informal sub-groups Atopa and Capitellata.

Myristicaceae are members of the eumagnoliid clade which are among the most primitive of extant angiosperms (Soltis et al. 2000, APG III). Although initial molecular analyses placed Myristicaceae at the base of order Magnoliales making it sister to all remaining families of the order (Soltis et al. 2000, Sauquet et al. 2003), the most recent phylogenetic analysis to date found Magnoliaceae to be sister to all other families including Myristicaceae (Soltis et al. 2011). Molecular phylogenetic analysis completed on the family by Sauquet et al. (2003) and Doyle et al. (2004) found insufficient molecular divergence within the Myristicaceae to make strong phylogenetic inferences of generic relationships. Despite this very weak consensus of intergeneric relationships within the Myristicaceae, there was some support among numerous loci for the placement of the neotropical genus Compsoneura as the sister to the rest of the family (Doyle et al. 2004, Sauquet et al. 2003).

Biogeography of the Myristicaceae

Very little is known about the phylogeographic and biogeographic history of the Myristicaceae despite being an ancient group of trees with a pantropical distribution. This paucity of information is largely due to the fact that there is very poor representation of the family in the fossil record compared to other angiosperm families (Doyle et al. 2004). The earliest fossil evidence of the Myristicaceae is from a fossilized wood sample of Myristicoxylon princeps from the Paleocene of the African Sahara region. It is unclear, however, as to whether this specimen belongs to a stem or crown group of the family (Boureau 1950). Doyle et al. (2008) document the identification of a Myristicaceous seed from England's London Clay which dates to the Early Eocene ($\sim 56-34 \mathrm{mya}$) which is markedly older than the only seed found previously from Miocene (23-5mya) deposits of Germany (Gregor 1977). Additional fossils of seeds (Berry 1929), leaves (Wolfe 1977), flowers (Poinar and Poinar 1999), and pollen (Frederikson 1973, Jan du Chene et al. 1978) of likely Myristicaceae origin have been found but they cannot be reliably distinguished from morphologically similar families (Doyle et al. 2004). The rarity of nutmeg fossils prior to the Paleocene corroborates the molecular clock estimate of Doyle et al. (2004) predicting that the Myristicaceae crown group diversified in the last 15-20 million years. Such a recent diversification is rather surprising as the same markers estimated that the closely related Annonaceae radiated approximately 100-120mya, which correlated well with their rich fossil record (Doyle et al. 2004). However, this relatively young estimation of Myristicaceae radiation could be an artifact of poor fossil representation of the family and/or a marked decrease in the rate of molecular evolution compared to closely related families, leading to a mis-calibration of the molecular clock.

Therefore it is unclear as to whether this low level of molecular divergence is truly the result of a relatively recent diversification in the family or a marked slowdown in molecular evolution resulting in the conservation of DNA sequences. Given the Myristicaceae's pantropical distribution, basal position on the flowering plant phylogeny, and poor long distance dispersal ability, it is unlikely that they radiated in the last 20 million years when the continents were almost in the same positions as today. This leaves us with little knowledge of the evolutionary and phylogeographic patterns of one of the most abundant and diverse plant families of tropical rain forests.

Challenges to Molecular work with the Myristicaceae

A diverse assembly of metabolites produced in plant cells often co-purify during DNA isolation procedures leading to the degradation of genomic DNA and/or the inhibition of PCR. These inhibitors often include but are not restricted to phenols, tannins, polysaccharides, proteins, alkaloids, lignans, flavonoids, and RNA. The Myristicaceae, like many other plants, contain copious amounts of secondary metabolites that are troublesome for molecular investigations. The most notorious are perhaps flavans called myristinins that are found in numerous species of nutmegs and are the most potent inhibitors known of β DNA polymerases and have the added action of autolytic cleavage of dsDNA (Sawadjoon et al. 2002, Deng et al. 2005, Maloney et al. 2005). Additionally, numerous other flavonoids have been isolated and characterized from various genera of the Myristicaceae (Braz Filho et al. 1973, Gottlieb et al. 1973, Gottlieb et al. 1976) which include phenols and tannins, which are known inhibitors of PCR (Wilson 1999, Krause et al. 2001). The inhibitory effects of these contaminating chemicals may be minimized by
the inclusion of chemicals such as Polyvinylpyrillidone, phenacylthiazolium bromide, and sodium sulfite in lysis buffers during DNA extraction (Ivanova et al. 2008, Poinar et al. 1998, Whitlock et al. 2008). If inhibitory chemicals remain in purified DNA extracts then the inclusion of PCR facilitating chemicals such as trehalose, PVP, tween 20, PEG, and BSA may be necessary to achieve amplification of DNA sequences (Pierpont 1969, Sasaki et al. 1998, Horne et al. 2004, Speiss et al. 2004, Barabwal et al. 2003,). Thus, overcoming the challenges associated with nucleic acid manipulation in the Myristicaceae may contribute to enhancing molecular protocols for DNA extraction, amplification, and sequencing vital to studying many species of plants.

Why work with the Myristicaceae?

Biologists depend largely on morphological taxonomic descriptions to identify the species encountered in their studies. Examinations of the composition and diversity of tropical rainforests have been the focus of many contemporary tropical plant ecologists, however, they are faced with a flora that is exceedingly diverse and difficult to identify. Previous investigations of the Myristicaceae have revealed that the mis-identification rate of Myristicaceae species typically exceeds 50% in herbarium samples and 25% in ecological plots (J. Janovec personal communication, Steeves personal observations). A DNA based identification system would aid tropical plant identification, however there have been few tests of DNA barcoding regions in a diverse group with many pairs of morphologically similar and recently evolved sister species (Gao et al. 2009, Gonzales et al. 2009, Spooner et al. 2009). The Myristicaceae, and Compsoneura and Virola in particular, provide a rigorous test of DNA-based identification for plants as they are
diverse, morphologically difficult to identify, contain many sister species, and the family is known to have exceedingly slow rates of molecular evolution (Sauquet et al. 2003).

The primary goal of this thesis was to explore morphological and molecular diversity among and within species of Virola and Compsoneura; two genera of the neotropical Myristicaceae endemic to Central and South America. This was accomplished by surveying DNA sequence variation of many species within each of these genera and by selecting species complexes from each genus to provide an assessment of genetic variation within these focal species. The objective of the generic level investigations was to generate phylogenetic estimates of relationships of the respective species in hopes of elucidating general trends of morphological evolution, biogeography, and illuminating cases of high genetic variability that may indicate cryptic and/or incipient speciation events. The main objective of surveying DNA sequence variability within the selected species was to see if the high morphological variability exhibited by these taxa was the result of phenotypic plasticity, cryptic/incipient speciation, or infraspecific genetic variation. This thesis reveals that there are many species yet to be described in one of the most common tree families of the neotropics and that the taxonomic understanding of the Amazon and other tropical forests is arguably in its infancy. If we are to attempt to understand this botanically diverse region from an ecological, evolutionary, biogeographical, or any other biological standpoint we must first finely dissect its most fundamental units: the species of which it is composed.

Literature cited

Armstrong, J.E., \& Drummond, B.A. 1986. Floral biology of Myristica fragrans Houtt. (Myristicaceae), the nutmeg of commerce. Biotropica 18: 32-38.

Armstrong, J. E., \& Irvine, A. K. 1989a. Floral biology of Myristica insipida (Myristicaceae), a distinctive beetle pollination syndrome. American Journal of Botany 76: 86-94.

Armstrong, J.E. \& Irvine, A.K. 1989b. Flowering, sex ratios, pollen-ovule ratios, fruit set, and reproductive effort of a dioecious tree, Myristica insipida (Myristicaceae), in two different rainforest communities. American Journal of Botany 76: 74-85.

Armstrong, J. E. 1997. Pollination by deceit in nutmeg (Myristica insipida, Myristicaceae): floral displays and beetle activity at male and female trees. American journal of botany 84: 1266-1274.

Bachmann, K. 1998. Species as units of diversity: an outdated concept. Theory Bioscience 117: 213-230.

Bennett, M.D., Bhandol, P., \& Leitch, I. 2000. Nuclear DNA amounts in Angiosperms and their modern uses-807 new estimates. Annals of Botany 86: 859-909.

Bentham, G., \& Hooker, J.D. 1880. Genera plantarum, London: Reeve and Co.
Berry, E. 1929. Early Tertiary fruits and seeds from Belen, Peru. Johns Hopkins University Studies in Geology 10: 137-180.

Blaxter, M. L. 2004. The promise of a DNA taxonomy. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 359: 669.

Boureau, E. 1950. Étude paléoxylologique du Sahara (IX). Sur un Myristicoxylon princeps n. gen., n. sp., du Danien d'Asselar (Sahara soudanais). Bulletin du Muséum National d’Histoire Naturelle 2: 523-528.

Braz Filho, R., Frota Leite, M., \& Gottlieb, O. 1973. Constitutions of diarylproppanoids from Virola multinervia. Phytochemistry 12: 417-419.

Bullock, S. H. 1982. Population structure and reproduction in the neotropical dioecious tree Compsoneura sprucei. Oecologia 55: 238-242.

Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A., \& Joseph, S. 2008. Using poultry litter biochars as soil amendments. Australian Journal of Soil Research 46: 437-444.

Clare, E. L., Lim, B. K., Engstrom, M. D., Eger, J. L., \& Hebert, P. D. 2007. DNA barcoding of Neotropical bats: species identification and discovery within Guyana. Molecular Ecology Notes 7: 184-190.

Cole, R. J. 2009. Postdispersal seed fate of tropical montane trees in an agricultural landscape, Southern Costa Rica. Biotropica 41: 319-327.

Deng, J., Starck, S. R., Li, S., \& Hecht, S. M. 2005. (+)-Myristinins A and D from Knema elegans, which Inhibit DNA Polymerase β and Cleave DNA. Journal of Natural Products 68: 1625-1628.
de Queiroz, K. 2005. A unified concept of species and its consequences for the future of taxonomy. Proceedings of the California Academy of Sciences 56: 196.

Diamond, J., \& Bishop, K. D. 1999. Ethno-ornithology of the Ketengban people, Indonesian New Guinea. In Folkbiology. MIT Press (pp. 17-45).

Doyle, J. A., Manchester, S. R., \& Sauquet, H. 2008. A seed related to Myristicaceae in the early Eocene of Southern England. Systematic Botany 33: 636-646.

Doyle, J. A., Sauquet, H., Scharaschkin, T., \& Le Thomas, A. 2004. Phylogeny, molecular and fossil dating, and biogeographic history of Annonaceae and Myristicaceae (Magnoliales). International Journal of Plant Science 165: S55S67.

Farris, J. S., Albert, V. A., Källersjö, M., Lipscomb, D., \& Kluge, A. G. 1996. Parsimony jackknifing outperforms neighbor-joining. Cladistics 12: 99-124.

Fazekas, A. J., Kesanakurti, P. R., Burgess, K. S., Percy, D. M., Graham, S. W., Barrett, S. C., Newmaster, S. G., Hajibabael, M., \& Husband, B. C. 2009. Are plant species inherently harder to discriminate than animal species using DNA barcoding markers? Molecular Ecology Resources 9: 130-139.

Felsenstein, J. 1984. Distance methods for inferring phylogenies: A justification. Evolution 38: 16-24.
Felsenstein, J. 1987. Estimation of hominoid phylogeny from a DNA hybridization data set. Journal of molecular evolution 26: 123-131.

Flach, M. 1966. Diffuse centromeres in a dicotyledenous plant. Nature 5030:1369-1370.
Frederiksen, N. 1973. New mid-Tertiary spores and pollen grains from Mississippi and Alabama. Tulane Studies in Geology and Paleontology 10: 65-86.

Ganeshaiah, K.N., Ravishankar, K.V., Anand, L., Shibu, M.P., Shaanker, U. 2000. Identification of sex-specific DNA markers in the dioecious tree, nutmeg (Myristica fragrans Houtt.). Plant Genetic Resources Newsletter 121:59-61

Gao, T., Sun, Z., Yao, H., Song, J., Zhu, Y., Ma, X., \& Chen, S. 2009. Identification of Fabaceae plants using the DNA barcode matK. Planta Medica 4: 1-3.

Gentry, A. H. 1982. Neotropical floristic diversity: phytogeographical connections between Central and South America, Pleistocene climatic fluctuations, or an accident of the Andean orogeny? Annals of the Missouri Botanical Garden 69: 557-593.

Gentry, A. H. 1988. Tree species richness of upper Amazonian forests. Proceedings of the National Academy of Sciences of the United States of America 85: 156-159.

Glaser, B. 2007. Prehistorically modified soils of central Amazonia: a model for sustainable agriculture in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences 362: 187.

Glaser, B., Haumaier, L., Guggenberger, G., \& Zech, W. 2001. The 'Terra Preta' phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88: 37-41.

Godfray, H. C. 2002. Challenges for taxonomy. Nature 417: 17-19.
Golden, J. L., \& Bain, J. F. 2000. Phylogeographic patterns and high levels of chloroplast DNA diversity in four Packera (Asteraceae) species in southwestern Alberta. Evolution 54: 1566-1579.

Gonzalez, M. A., Baraloto, C., Engel, J., Mori, S. A., Pétronelli, P., Riéra, B., Roger, A., Thébaud, C., \& Chave, J. 2009. Identification of Amazonian trees with DNA barcodes. PLoS One 4: e7483.

Gottlieb, O. 1976. Neolignans from Virola carinata. Phytochemistry 15: 773-774.
Gottlieb, O., Loureiro, A., Dos Santo Carneiro, M., \& Da Rocha, A. 1973. Distribution of diarylpropanoids in Amazonian Virola species. Phytochemistry 12: 1830.

Govaerts, R. 2003. How many species of seed plants are there?-a response. Taxon 52: 583-584.

Gregor, H. 1977. Subtropische Elemente im europäischen Tertiär II (Fruktifikationen). Paläontologische Zeitschrift 51: 199-226.

Grossman, J. M., O’Neill, B. E., Tsai, S. M., Liang, B., Neves, E., Lehmann, J., \& Thies, J. E. 2010. Amazonian anthrosols support similar microbial communities that differ distinctly from those extant in adjacent, unmodified soils of the same mineralogy. Microbial Ecology 60: 192-205.

Hackenberger, M. J., Petersen, J. B., \& Neves, E. G. 1999. Village size and permanence in Amazonia: two archaeological examples from Brazil. Latin American Antiquity 10: 353-376.

Hames, R. B., \& Vickers, W. T. 1982. Adaptive responses of native americans. New York: Academic press.

Hebert, P. D. N., Cywinska, A., Ball, S. L., \& deWaard, J. R. 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences 270: 313-321.

Hebert, P. D. N., Ratnasingham, S., \& de Waard, J. R. 2003. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society B: Biological Sciences 270: S96-S99.

Hebert, P. D. N., Stoeckle, M. Y., Zemlack, T. S., \& Francis, C. M. 2004. Identification of birds through DNA barcodes. PLOS Biology 2: 1657-1663.

Hebert, P. D., Penton, E. H., Burns, J. M., Janzen, D. H., \& Hallwachs, W. 2004. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences 101: 14812.

Hipp, A.L., Rothrock, P.E., \& Roalson, E.H. 2009. The evolution of Chromosome arrangements in Carex (Cyperaceae). Botanical Review 75: 96-109.

Holbrook, K. M., \& Loiselle, B. A. 2009. Dispersal in a Neotropical tree, Virola flexuosa (Myristicaceae): Does hunting of large vertebrates limit seed removal? Ecology 90: 1449-1455.

Hollingsworth, P. M., Forrest, L. L., Spouge, J. L., Hajibabaei, M., Ratnasingham, S., Van Der Bank, M., Chase, M. W., Cowan, R. S., Erickson, D. L., Fazekas, A. J., \& others. 2009. A DNA barcode for land plants. Proceedings of the National Academy of Sciences 106: 12794-12797.

Hollingsworth, P. M., Graham, S. W., \& Little, D. P. 2011. Choosing and using a plant DNA barcode. PloS one 6: e19254.

Hoorn, C., Wesselingh, F. P., ter Steege, H., Bermudez, M. A., Mora, A., Sevink, J., Sanmartin, I., Sanchez-Meseguer, A., Anderson, C. L., Figueiredo, J. P., Jaramillo, C., Riff, D., Negri, F. R., Hooghiemstra, H., Lundberg, J., et al. 2010. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330: 927-931.

Howe, H. F. 1981. Dispersal of a neotropical nutmeg (Virola sebifera) by birds. The Auk 98: 88-98.

Howe, H. F., \& Vande Kerckhove, G. A. 1981. Removal of wild nutmeg (Virola surinamensis) crops by birds. Ecology 62: 1093-1106.

Howe, H. F., Schupp, E. W., \& Westley, L. C. 1985. Early consequences of seed dispersal for a neotropical tree (Virola surinamensis). Ecology 66: 781-791.

Hubert, N., Hanner, R., Holm, E., Mandrak, N. E., Taylor, E., Burridge, M., Watkinson, D., Dumont, P., Curry, A., Bentzen, P., \& others. 2008. Identifying Canadian freshwater fishes through DNA barcodes. PLoS One 3: e2490.

Ivanova, N. V., Fazekas, A. J., \& Hebert, P. D. N. 2008. Semi-automated, membranebased protocol for DNA isolation from plants. Plant Molecular Biology Reporter 26: 186-198.

Jan du Chene, R., Onyike, M., \& Sowunmi, M. 1978. Some new Eocene pollen of the Ogwashi-Asabe formation, South-Eastern Nigeria. Rev Esp Micropaleontol 10: 285-322.

Janovec, J. P. 2002. Compsoneura diazii (Myristicaceae), a new species from the Rio Cenepa area of Northwestern Peru. Novon 12: 366-368.

Janovec, J. P., \& Harrison, J. S. 2002. A morphological analysis of the Compsoneura sprucei complex (Myristicaceae), with a new combination for the Central American species Compsoneura mexicana. Systematic Botany 27: 662-673.

Janovec, J. P., \& Neill, A. K. 2002. Studies of the Myristicaceae: an overview of the Compsoneura atopa complex, with descriptions of new species from Colombia. Brittonia 54: 251-261.

Janovec, J. P. 2000. A systematic study of Compsoneura (A. DC.) Warb., A Neotropical member of the nutmeg family. Texas A\&M University Dissertation: 1-359.

Janzen, D. H. 1983. The Pleistocene hunters had help. The American naturalist 121: 598599.

Junqueira, A. B., Shepard, G. H., \& Clement, C. R. 2010. Secondary forests on anthropogenic soils in Brazilian Amazonia conserve agrobiodiversity. Biodiversity and Conservation 19: 1933-1961.

Keigwin, L. D. 1978. Pliocene closing of the Isthmus of Panama, based on biostratigraphic evidence from nearby Pacific Ocean and Caribbean Sea cores. Geology 6: 630.

Krause, D., Smith, W., \& McSweeney, C. 2001. Extraction of microbial DNA from rumen contents containing plant tannins. Biotechniques 31: 294-298.

Lehmann, J., Pereira da Silva, J., Steiner, C., Nehls, T., Zech, W., \& Glaser, B. 2003. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant and Soil 249: 343-357.
Levin, D. A. 1979. The nature of plant species. Science 204: 381-384.
Lopes, N. P., \& Kato, M. J. 1999. Antimalarial use of volatile oil from leaves of Virola surinamensis (Rol.) Warb. by Waiăpi Amazon Indians. Journal of ethnopharmacology 67: 313-319.

Luceno, M., Vanzela, A.L.L., \& Guerra, M. 1998. Cytotaxonomic studies in Brazilian Rhynchospora (Cyperaceae), a genus exhibiting holocentric chromosomes. Canadian Journal of Botany 76:440-449.

Macedo, D. S., \& Anderson, A. B. 1993. Early ecological changes associated with logging in an Amazon floodplain. Biotropica 25: 151-163.

MacRae, W. D., \& Towers, G. H. 1985. Non-alkaloidal constituents of Virola elongata bark. Phytochemistry 24: 561-566.

Macrae, W. D., \& Towers, G. H. 1984a. Justicia pectoralis: a study of the basis for its use as a hallucinogenic snuff ingredient. Journal of ethnopharmacology 12: 93111.

Macrae, W., \& Towers, G. 1984b. An ethnopharmacological examination of Virola elongata bark: A South American arrow poison. Journal of ethnopharmacology 12: 75-92.

Maloney, D. J., Deng, J., Starck, S. R., Gao, Z., \& Hecht, S. M. 2005. (+)-Myristinin A, a naturally occurring DNA polymerase β inhibitor and potent DNA-damaging agent. Journal of the American Chemical Society 127: 4140-4141.

Marshall, L. G., Webb, S. D., Sepkoski, J. J., \& Raup, D. M. 1982. Mammalian evolution and the great American interchange. Science 215: 1351-1357.

McKenna, D. J., Towers, G. H. N., \& Abbott, F. S. 1984. Monoamine oxidase inhibitors in South American hallucinogenic plants part 2: Constituents of orally-active Myristicaceous hallucinogens. Journal of Ethnopharmacology 12: 179-211.

Meggers, B. J. 1971. Amazonia: Man and nature in a counterfeit paradise. Chicago: Aldine.

Mehra, P.H., \& Bawa, K.S. 1969. Chromosomal evolution in tropical hardwoods. Evolution 23: 466-481.

Mora, C., Tittensor, D.P., Adl, S., Simpson, A.G.B., \& Worm, B. 2011. How many species are there on the earth and in the oceans. Public Library of Science-Biology 9: e1001127.

Mullis, K. B., \& Faloona, F. A. 1987. Specific synthesis of DNA in Vitro via a Polymerase-Catalyzed chain reaction. Methods in Enzymology 155: 335-350.

Nagaki, K., Kasjihara, K., \& Murata, M. 2005. Visualization of diffuse centromeres with centromere-specific histone H3 in the holocentric plant Luzula nivea. The plant cell 17:1886-1893.

Olsen, K. M., \& Schaal, B. A. 1999. Evidence on the origin of cassava: phylogeography of Manihot esculenta. Proceedings of the National Academy of Sciences of the United States of America 96: 5586.

Padial, J.M., Miralles, A., De la Riva, I., and Vences, M. 2010. The integrative future of taxonomy. Frontiers in Zoology 7:16.

Palma-Silva, C., Wendt, T., Pinheiro, F., Barbará, T., FAY, M. F., Cozzolino, S., \& Lexer, C. Sympatric bromeliad species (Pitcairnia spp.) facilitate tests of mechanisms involved in species cohesion and reproductive isolation in Neotropical inselbergs. Molecular Ecology 20: 3185-3201

Palmé, A. E., Semerikov, V., \& Lascoux, M. 2003. Absence of geographical structure of chloroplast DNA variation in sallow, Salix caprea L. Heredity 91: 465-474.

Pazy, B., \& Plitmann, U. 1994. Holocentric chromosome behaviour in Cuscuta (Cuscutaceae). Plant Systematics and Evolution 191:105-109.

Pierpoint, W. S. 1969. o-Quinones formed in plant extracts. Their reaction with bovine serum albumin. Biochemical Journal 112: 619.

Pitman, N. C., Terborgh, J. W., Silman, M. R., Núñez V, P., Neill, D. A., Cerón, C. E., Palacios, W. A., \& Aulestia, M. 2001. Dominance and distribution of tree species in upper Amazonian terra firme forests. Ecology 82: 2101-2117.

Pitman, N. C., Terborgh, J. W., Silman, M. R., Núñez V, P., Neill, D. A., Cerón, C. E., Palacios, W. A., \& Aulestia, M. 2002. A comparison of tree species diversity in two upper Amazonian forests. Ecology 83: 3210-3224.

Poinar, G. J., \& Poinar, R. 1999. The amber forest: a reconstruction of a vanished world. Princeton, N.J.: Princeton University Press.

Poinar, H. N. 1998. Molecular coproscopy: dung and diet of the extinct ground sloth Nothrotheriops shastensis. Science 281: 402-406.

Pons, D., \& Franceschi, D. D. 2007. Neogene woods from western Peruvian Amazon and palaeoenvironmental interpretation. Bulletin of Geosciences 82: 343-354.

Prance, G. T. 1977. Floristic Inventory of the Tropics: Where Do We Stand? Annals of the Missouri Botanical Garden 64: 659-684.

Raven, P.H. 1975. The bases of Angiosperm phylogeny: Cytology. Annals of the Missouri Botanical Garden 62: 724-764.

Raven, P. H. 1976. Systematics and plant population biology. Systematic Botany 1: 284316.

Raven, P. H., \& Axelrod, D. I. 1974. Angiosperm biogeography and past continental movements. Annals of the Missouri Botanical Garden 61: 539-673.

Richardson, J. E. 2001. Rapid diversification of a species-rich genus of neotropical rain forest trees. Science 293: 2242-2245.

Rieseberg, L.H., \& Soltis, D.E. 1991. Phylogenetic consequences of cytoplasmic gene flow in plants. Evolutionary Trends in Plants 5: 65-84.

Rieseberg, L.H., Wood, T.E., \& Baack, E.J. 2006. The nature of plant species. Nature 440: 524-527.

Roch, S. 2010. Toward extracting all phylogenetic information from matrices of evolutionary distances. Science 327: 1376-1379.

Rodrigues, W. A. 1989a. A new Venezuelan Virola (Myristicaceae). Annals of the Missouri Botanical Garden 76: 1163-1164.

Rodrigues, W. A. 1989b. Two new neotropical species of Compsoneura (Myristicaceae). Brittionia 4: 160-163.

Russo, S. E. 2003. Responses of dispersal agents to tree and fruit traits in Virola calophylla (Myristicaceae): implications for selection. Oecologia 136: 80-87.

Saunders, G. W. 2005. Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Philosophical Transactions of the Royal Society B: Biological Sciences 360: 1879.

Sauquet, H. 2003. Androecium diversity and evolution in Myristicaceae (Magnoliales), with a description of a new Malagasy genus, Doyleanthus gen. nov. American Journal of Botany 90: 1293-1305.

Sauquet, H. 2004. Systematic revision of Myristicaceae (Magnoliales) in Madagascar, with four new species of Mauloutchia. Botanical Journal of the Linnean Society 146: 351-368.

Sauquet, H., Doyle, J. A., Scharaschkin, T., Borsch, T., Hilu, K. W., Chatrou, L. W., \& Le Thomas, A. 2003. Phylogenetic analysis of Magnoliales and Myristicaceae based on multiple data sets: implications for character evolution. Botanical Journal of the Linnean Society 142: 125-186.

Sawadjoon, S., Kittakoop, P., Kirtikara, K., Vichai, V., Tanticharoen, M., \& Thebtaranonth, Y. 2002. Atropisomeric myristinins: Selective COX-2 inhibitors and antifungal agents from Myristica cinnamomea. The Journal of Organic Chemistry 67: 5470-5475.

Scotland, R. W., \& Wortley, A. H. 2003. How many species of seed plants are there? Taxon 52: 101-104.

Smith, A. C. 1937. The American species of Myristicaceae. Brittonia 2: 393-510.
Smith, B. D. 2006. Eastern North America as an independent center of plant domestication. Proceedings of the National Academy of Sciences 103: 12223.

Smith, M. A., Rodriguez, J. J., Whitfield, J. B., Deans, A. R., Janzen, D. H., Hallwachs, W., \& Hebert, P. D. 2008. Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections. Proceedings of the National Academy of Sciences 105: 12359.

Smith, M. A., Wood, D. M., Janzen, D. H., Hallwachs, W., \& Hebert, P. D. N. 2007. DNA barcodes affirm that 16 species of apparently generalist tropical parasitoid flies (Diptera,Tachinidae) are not all generalists. Proceedings of the National Academy of Sciences 104: 4967-4972.

Smith, N. J. H. 1980. Anthrosols and human carrying capacity in Amazonia. Annals of the Association of American Geographers 70: 553-566.

Soltis, D. E., Soltis, P. S., Chase, M. W., Mort, M. E., Albach, D. C., Zanis, M., Savolainen, V., Hahn, W. H., Hoop, S. B., \& Fay, M. F. 2000. Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Botanical Journal of the Linnean Society 133: 381-461.

Soltis, D. E., Smith, S. A., Cellinese, N., Wurdack, K. J., Tank, D. C., Brockington, S. F., Refulio-Rodriguez, N. F., Walker, J. B., Moore, M. J., Carlsward, B. S., \& others. 2011. Angiosperm phylogeny: 17 genes, 640 taxa. American Journal of Botany 98: 704 .

Spooner, D. M. 2009. DNA barcoding will frequently fail in complicated groups: An example in wild potatoes. American Journal of Botany 96: 1177-1189.

Steel, M. A., Hendy, M. D., \& Penny, D. 1988. Loss of information in genetic distances. Nature 336: 118.

Thomas, W. W. 1999. Conservation and monographic research on the flora of Tropical America. Biodiversity and Conservation 8: 1007-1015.

Trueman, J. W. 1998. Reverse successive weighting. Systematic Biology 47: 733.
Van Gils, C., \& Cox, P. A. 1994. Ethnobotany of nutmeg in the Spice Islands. Journal of Ethnopharmacology 42: 117-124.

Warburg, O. 1897. Monographie der Myristicaceen. Nova Acta Acad. Caes. Leop.-Carol 68: 1-680.

Whitlock, R., Hipperson, H., Mannarelli, M., \& Burke, T. 2008. A high-throughput protocol for extracting high-purity genomic DNA from plants and animals. Molecular Ecology Resources 8: 736-741.

Wilde, W. J. J. O. D. 1991. The genera of the Myristicaceae as distinguished by their inflorescences and the description of a new genus: Bicuiba. Beitr. Biol. Pflanzen 66: 95-125.

Will, K. W., \& Rubinoff, D. 2004. Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics 20: 4755.

Will, K., Mishler, B., \& Wheeler, Q. 2005. The perils of DNA barcoding and the need for integrative taxonomy. Systematic Biology 54: 844-851.

Wilson, I. G. 1997. Inhibition and facilitation of nucleic acid amplification. Applied and Environmental Microbiology 63: 3741-3751.

Witt, J. D., Threloff, D. L., \& Hebert, P. D. 2006. DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation. Molecular Ecology 15: 3073-3082.

Wolfe, J. 1977. Paleogene floras from the Gulf of Alaska region. U.S. Geological Survey Professional Paper 997: 1-108.

Chapter 1

A PHYLOGENETIC AND MORPHOLIGICAL ANALYSIS OF COMPSONEURA

Abstract

Compsoneura currently comprises 21 described species of canopy to sub-canopy Myristicaceae trees native to tropical rainforests below 1500 m elevation in South and Central America. Compsoneura species are difficult to identify due to their similar looking leaves and small (1-4mm), largely amorphous, flowers. In this chapter infrageneric relationships are estimated using molecular phylogenetic analyses employing one chloroplast (trnH-psbA) and two nuclear markers (AT103 and AGT1) and both maximum parsimony and Bayesian inference. Phylogenetic analyses revealed a deep evolutionary rift within Compsoneura corresponding to informal sections Compsoneura and Hadrocarpa proposed by previous morphological and biogeographical studies. Phylogenetic analyses also revealed that mountain building has likely been an important generator of speciation in the taxa studied. A distance based molecular analysis was also conducted with increased taxon sampling to test DNA-based identification using the highly variable locus trnH-psbA. Distance analyses revealed that all but two of 13 Compsoneura species included can be identified by one or more nucleotide polymorphisms. The molecularly indistinguishable species do not share a common range, making molecular identification of all tested species possible with a combination of sequence and location data. Herein I present molecular and morphological evidence supporting the sub-generic classification of Janovec (2000) and discuss the results with respect to sub-generic classification, morphology, and biogeography.

Introduction

The Myristicaceae, or nutmeg family, consists of 21 genera and more than 500 species of dioecious, and rarely monoecious, canopy to sub canopy trees distributed worldwide in tropical rainforest environFments (Smith 1937, Wilde 1991, Janovec 2000). The Myristicaceae diverged early in the radiation of the angiosperms and previous molecular studies has placed them as the sister to all members of the order Magnoliales (APG III 2003, Qiu et al. 2006). However, the most recent and comprehensive molecular phylogenetic analysis employing 17 genes places Magnoliaceae as sister to all other members of the Magnoliales, including Myristicaceae (Soltis et al 2011). Nutmeg trees are readily recognized in the field by their combination of some or all of the following diagnostic features: (1) Myristicaceous branching (branches originating in a whorled fashion in a single plane and at relatively regular intervals on the trunk); (2) frequent presence of pink to blood-red sap with a bitter, astringent taste; (3) tiny urceolate to cupshaped flowers with three to four tepals; (4) reduced to elongated filament column terminated with free to fused anthers dehiscing to the outside; (5) a one-seeded fruit that typically dehisces longitudinally into two valves; and (6) the presence of an aril that is usually red, or white. Numerous studies have reported the significant ecological importance of the Myristicaceae in wet, lowland tropical forests of Central and South America, Africa, Madagascar, India, and Asia (Gentry 1982, Pascal and Pelissier 1996, Poulsen et al. 1996, Spichiger et al. 1996). The Myristicaceae also hold considerable economic and cultural importance as the source of the commercial nutmeg spice (Myristica fragrans) and DMT-containing hallucinogens derived from Virola spp. in the

Amazon basin (Chagnon 1971, Mckenna et al. 1984, Schultes 1984, Van Gils and Cox 1994). Many members of the family are also valued for their wood, which is used in rural house construction as well as fine carpentry that reaches an international market (Macedo and Anderson 1993). Additionally, plant extracts of members of the nutmeg family have been investigated for their pharmacological potential, including, but not limited to, aphrodisiac and anti-cancer effects (Sawadjoon et al. 2002, Maloney et al. 2005, Tajuddin et al. 2005, Nguyen et al. 2010, Patro et al. 2010, Pusztai et al. 2010).

Compsoneura is one of six neotropical genera of Myristicaceae, which comprises 21 described dioecious species that inhabit rainforest environments below 1500 m elevation in South and Central America (Smith 1937, Wilde 1991, Janovec 2000). Compsoneura is easily differentiated from other neotropical members of the family by virtual absence of pubescence on the leaf lamina and subparallel tertiary nerves (some taxa of Annonaceae and Icacinaceae [Discophora spp.] also have similarly arranged nerves and often confused with Compsoneura spp.). Since species of Compsoneura share similar leaf morphologies, identification relies heavily upon characteristics of the small flowers (1-4 mm), particularly characteristics of the androecium (Warburg 1897, Smith 1937, Armstrong and Tucker 1986, Janovec 2000, Janovec and Harrison 2002). Flowers are only present on adult trees for a few months every year (Bullock 1982, Armstrong 1997), which can make identification of female and vegetative specimens of these dioecious trees exceedingly difficult. Herbarium studies of the genus Compsoneura (Janovec 2000) and studies of the neotropical Myristicaceae in ecological plots by Steeves (2008, personal observations) encountered mis-identification rates of approximately 50% and 25% respectively.

Despite the cultural, ecological, and economic importance of the Myristicaceae throughout the wet tropics of the world, our systematic knowledge of the Myristicaceae is mostly based on the last, grand synthesis of the family by Warburg (1897). In Monographie der Myristicaceen (1897), which was rooted in prior studies by De Candolle (1856), Warburg described 240 species and 15 genera, including four of the six neotropical genera recognized today. Among the genera elevated by Warburg to the generic rank was Compsoneura, which was based on de Candolle's (1856) Myristica section Compsoneura. Both agreed that Compsoneura as a group of similar species was characterized by tertiary leaf venation parallel to the secondary veins, an orange fruit pericarp dehiscing longitudinally, an entire red aril, and mottled seeds. With the eight specimens he had available at the time, Warburg recognized five species of Compsoneura and divided them into two sections: (1) section Eucompsoneura (Warb.) with free anthers and (2) section Coniostele (Warb.) with fused anthers. Based on a study of 70 specimens available at the time from Central and South America, Smith (1937) described five additional species of Compsoneura and synonymized one (C. capitellata and C. tessmannii as the former), but adopted Warburg's sections Eucompsoneura and Coniostele. Since that time, the neotropical Myristicaceae has been the focus of only a few studies focused on new species and regional floristics. In 1956 Smith described an intriguing new species named Virola atopa from the Pacific coastal region of Colombia but later placed this species in Compsoneura once staminate specimens were made available by the explorations of Richard Evans Schultes (Smith 1956). Rodrigues (1989) described two new species of Compsoneura, bringing the total to 11 species. These preceding studies of the $19^{\text {th }}$ and $20^{\text {th }}$ centuries have been plagued by the availability of
few samples from across the geographical range of Compsoneura as well as a paucity of differentiating morphological characters.

In recent years, increased collecting efforts and the advent of molecular analyses has made more specimens and characters available for taxonomic investigation. Contemporary studies by Janovec and co-workers over the past 10 years have examined over 3000 specimens of the genus Compsoneura for studies concerning population genetics, morphological evolution and taxonomy (Janovec 2000, Janovec and Harrison 2002, Janovec and Neill 2002, Newmaster et al. 2008). Janovec and Neill (2002) described two new species in the Compsoneura atopa complex and differentiated this species group from other Compsoneura based on the following combination of characters: (1) Secondary venation conspicuously brochidodromous (the secondary veins strongly anastomosing near the laminar margins); (2) Trichomes stellate to dendritic, often forming a ferrugineous tomentum on the young stem, leaf node, leaf lamina, petiole, external perianth surface, ovary, and pericarp surface; (3) Anthers free, their apices slightly incurved; (4) Oil cells abundant in the perianth and androecium, visible under low magnification and conspicuous when viewed in longitudinal or cross section; (5) Pericarp ligneous, strongly rostrate, and carinate with longitudinal ridges running from base to near apex; (6) Aril deeply lacinate or reduced, white to tan when fresh, \tan to light brown when dry; (7) Testa brown, muricate, often with reticulate, vein-like impressions.

In the most recent systematic treatment of Compsoneura, Janovec (2000) opted to refer to informal sections Compsoneura and Hadrocarpa, which were based on multiple vegetative and reproductive characters, as opposed to Warburg's (1897) sectional
divisions based solely on free or fused anthers (hereafter non-italicized "Hadrocarpa" and "Compsoneura" will refer to these informal sections sensu Janovec 2000). Although morphological evidence indicated that Hadrocarpa and Compsoneura were distinct evolutionary lineages, Janovec (2000) and Janovec and Neill (2002) lacked molecular support. Such molecular evidence has been long in coming due to the difficulties of extracting, amplifying, and sequencing members of the Myristicaceae that posses potent DNA polymerase inhibitors (Sawadjoon et al. 2002, Maloney et al. 2005). These problems have been particularly difficult to overcome in Compsoneura s.l. as the vast majority of specimens are from old collections, which were not made with molecular investigations in mind. Additionally, molecular work of the family has been plagued by low rates of molecular evolution in loci traditionally used for phylogenetics (Sauquet et al. 2003).

The genus Compsoneura provides fertile ground for testing taxonomic hypotheses and DNA based identification methodologies as they are ecologically and ethnobotanically important, likely contains sister species of relatively recent origin (Janovec \& Harrison 2002), and also has additional new cryptic species (Janovec et al. in preparation). The objectives of this research were (1) to test the sub-generic classifications of Warburg (Eucompsoneura and Coniostele) and Janovec (Compsoneura and Hadrocarpa) with molecular phylogenetic analyses and morphological comparisons and (2) to assess the ability of DNA sequences to differentiate species of Compsoneura sensu lato. Molecular phylogenetic analyses were performed using trnH-psbA, the most rapidly evolving cpDNA loci surveyed in a DNA barcoding study of Compsoneura (Newmaster et al. 2008), as well as two low copy nuclear loci (AT103 and AGT1).

Materials and Methods

Taxon sampling and outgroup selection

Many species of neotropical Compsoneura are represented by one or very few herbarium specimens, most of which were collected over 20 years ago. It is well known that DNA extraction can be particularly difficult from such herbarium material (Savolainen et al. 1995, Lister et al. 2008, Telle and Thines 2008). This problem is exacerbated in members of the nutmeg family as they contain high levels of potent DNA polymerase inhibiting secondary metabolites and DNA degrading chemicals (Sawajadoon et al. 2002, Maloney et al. 2005). Due to the rare nature and poor condition of many collections, it was not possible to include all species of Compsoneura in molecular analyses. Forty-six collections representing 13 species of Compsoneura were used in the molecular analyses. Some sequences used in this analysis were retrieved from Genbank from previous studies of Compsoneura (Newmaster et al. 2008). Since DNA sequences were not retrieved from all collections nor all loci, the number of collections and species used in the phylogenetic and distance analyses differ. All collections used in molecular analyses were identified according to the most current taxonomic treatment (Janovec 2000) and all taxa have accessions archived at one or more of the following herbaria: Botanical Research Institute of Texas (BRIT), Ontario Agricultural College (OAC), New York Botanical Gardens (NYBG), Missouri Botanical Gardens (MO), and the National Herbarium of the Ecuadorian Museum of Natural Sciences (QCNE)[Table 1.1].

Since phylogenetic relationships remain unresolved in the Myristicaceae (Sauquet et al. 2003), members of Iryanthera, Otoba and Virola were selected as outgroups for phylogenetic and distance-based analyses.

DNA extraction, Amplification and Sequencing

Total genomic DNA was extracted from leaf tissue of silica-dried or herbarium specimens using the Macherey-Nagel Nucleospin II plant Kit. Lysis buffer 1 was used according to the manufactures' instructions with the exception of an increase of the post homogenization incubation period to 1 hr (from 10 min) and the addition of 20 mM N Phenacylthiazolium Bromide, which has been found to improve amplification of recalcitrant samples (Poinar et al. 1998, Asif and Cannon 2005).

Initially a suite of chloroplast (accd, atpF-H, matK, psbK-I, rbcL, rpoB, rpoC1, trnH-psbA, trnL-F, trnS-G, UPA, and ycf5) and nuclear (AGT1, APG1, AT103, EIF3E, GI, GS, ITS, IGS, PHYA, PHYC, and sqd1) loci were amplified to investigate their utility for systemic investigations of Compsoneura. However, only a small subset (trnHpsbA, AT103, and AGT1) consistently produced a single banded PCR product with high quality sequence traces and were sufficiently variable for systematic investigations.

Species not represented by trnH-psbA accessions in GenBank from Newmaster et al. (2008) were PCR amplified and sequenced using the primers $\operatorname{trnH} 2$ (5^{\prime} -CGCATGGTGGATTCACAATCC-3'; Tate and Simpson 2003) and psbAF (5'GTTATGCATGAACGTAATGCTC-3'; Sang et al. 1997). PCR was performed in a $20 \mu \mathrm{l}$ volume using $0.4 \mu \mathrm{l}$ of Phire II polymerase (Finnzymes) with 1X Phire II reaction buffer (with 1.5 mM MgCl), 0.2 mM of each DNTP, $0.2 \mu \mathrm{M}$ of each primer and $2.0 \mu \mathrm{~g}$ of BSA (Kreader 1996). Cycling conditions entailed an initial denaturation step of 1 min at $98^{\circ} ; 35$ cycles of 98° for $5 \mathrm{~s}, 64^{\circ}$ for $5 \mathrm{~s}, 72^{\circ}$ for 10 s : and a final elongation step of 72°
for 1 min followed by a 4° hold. Phire II was used to amplify $\operatorname{trnH}-\mathrm{psbA}$ as it is robust to the inhibitors contained in nutmeg extracts and as it is a fusion-based polymerase which has been found to reduce stuttering in sequences containing homopolymer regions such as the trnH-psbA intergenic spacer (Fazekas et al. 2010).

Nuclear loci were amplified using the primers AT103F (5'-CTTCAAGCCMAAGTTCATCTTCTA-3'; Li et al. 2008), AT103R (5’-TTGGCAATCATTGAGGTACATNGTMACATA-3';), AGT1-MYR-F (5’-GGGCATTGACGTAGCTTTGACAGG-3'; this thesis), and AGT1-MYR-R (5'-GTGCAGTTCTTCAAGCCCCAAGC-3'; this thesis). Nuclear loci were amplified with 0.5 U of AmpliTaq Gold (Applied biosystems) DNA polymerase in a $20 \mu \mathrm{l}$ reaction containing 1X reaction buffer, $2.5 \mathrm{mM} \mathrm{MgCl}, 8 \% \mathrm{~W} / \mathrm{V}$ Polyethylene glycol (Zimmerman and Harrison 1987, Sasaki et al. 2006), 0.2 M trehalose (Speiss et al. 2004), $2 \mu \mathrm{~g}$ BSA, 0.2 mM each DNTP, and $0.2 \mu \mathrm{M}$ of each primer.

Amplification products were sequenced directly using the same primers employed in PCR. Cycle sequencing reactions were performed in a $10.5 \mu \mathrm{~L}$ reaction volume containing $0.5 \mu \mathrm{~L}$ of BigDye terminator mix v3.1, $1.88 \mu \mathrm{~L}$ of 5 x sequencing buffer (Applied Biosystems), $1.0 \mu \mathrm{M}$ of primer and $0.5 \mu \mathrm{~L}$ of PCR product. Thermal cycling parameters were 96° for $2 \mathrm{~min} ; 30$ cycles of 96° for $30 \mathrm{~s}, 56-60^{\circ}$ (primer dependant) for 15 s , and 72° for 4 min ; and a 4° hold. Cycle sequencing reactions were cleaned using sephadex columns (Cat.no. S5897; Sigma-Aldrich, St. Louis, MO, USA) and the samples were run on an ABI 3730 sequencer (Applied Biosystems).

Alignment, phylogenetic and distance analysis

Sequence contigs were assembled and edited using Sequencher 4.8 (Gene Codes Corporation, Ann Arbor, MI, USA). DNA sequences were aligned using the default settings of the ClustalW algorithm (Thompson et al. 1994) in Bioedit (Hall 1999) and adjusted manually. Alignments can be found in Appendix 1 at the end of this thesis. A 4bp inversion believed to belong to the loop structure of the 3'UTR (untranscribed region) of the psbA gene (Storchova and Olsen 2007) was omitted from data matrices due to the high likelihood of homoplasious inversions. Gaps in the alignments were coded using Simple Indel Coding (SIC) (Simmons and Ochoterena 2000) for Bayesian analyses and Modified Complex Indel Coding for distance-based and parsimony analyses using Indelcoder (Muller 2006).

A previous study of Compsoneura by Newmaster et al. (2008) found the trnHpsbA intergenic spacer to be the most useful of numerous proposed chloroplast barcode loci. I amplified and sequenced 5 additional species of rarely collected Compsoneura from herbarium material and generated a Neighbour-Joining (NJ) uncorrected p-distance tree using PAUP 4.0 (Swafford 2002) to further explore the ability of this locus to discriminate species of Compsoneura s.l. with increased taxon sampling. Additionally, intra and interspecific distances were calculated using pair-wise uncorrected p-distance in Mega 3.1 (Kumar et al. 2008) for species with multiple sequences per tax on to investigate whether there exists a barcoding gap (Hebert et al. 2004a, Hebert et al. 2004b) in these taxa. Uncorrected p-distances were calculated as there existed a very low level of nucleotide substitution among taxa and therefore it was not deemed necessary to emloy a substitution model in calculating distance estimates.

An incongruence length difference test (ILD: Farris et al. 1995) was executed in PAUP (Swafford 2002) to determine whether the three loci employed in this study contained significant incongruence. The ILD was performed using 100 replicates of a heuristic search strategy, MAXTREES set at 100, 10 random addition sequence replicates holding 5 trees at each step, MULTREES option in effect, and tree bisectionreconnection (TBR) branch swapping. No significant incongruence was detected (pvalue $=0.17$) and individual gene trees generated by Bayesian inference showed no significant topological discrepancies among the major clades, therefore all three loci were concatenated in a total evidence approach for Bayesian inference and parsimony analyses.

Maximum parsimony analyses were performed in PAUP 4.0b10 (Swafford 2002) and each nucleotide position was treated as an unordered character and all positions were equally weighted. The single heuristic search was performed with 1000 replicates of random addition sequence, holding 10 trees at each step, TBR branch swapping with the MULTREES option not in effect and MAXTREES set to 5000. Branch support was estimated using a heuristic search, 5000 bootstrap (BS) replicates, 10 random addition sequence replicates holding 1 tree at each step, TBR branch swapping, and a maximum number of trees set at 50,000 with MULTREES not in effect.

Phylogenetic trees were also generated using Bayesian inference with the program MrBayes (Ronquist and Huelsenbeck 2003). Nucleotide substitution models were selected using Mrmodeltest (Nylander 2004) using the Akaike Information Criterion. Mrmodeltest selected the following substitution models for the three loci: $\operatorname{trnH}-\mathrm{psbA}=$ HKY +G, AT103=GTR +G, AGT1 $=\mathrm{GTR}+\mathrm{G}$. Ten million generations were performed
using 4 chains and 2 runs with trees being sampled every 100 generations. Log-likelihood values stabilized after 2.5 million generations; therefore the consensus tree and posterior probabilities (PP) were estimated using a burn-in of 25,000 trees. Since posterior probabilities are largely considered to be overestimations of support for clades (Douady et al. 2003, Alfaro and Holder 2006, Yang and Rannala 2010), especially when employing concatenated data sets (Suzuki et al. 2002), any nodes with less than 0.75 posterior probability were collapsed on the phylogram using treegraph2 (Stover and Muller 2010).

Additionally, gross morphological differences and similarities between the informal sections Hadrocarpa and Compsoneura were observed in the field, herbaria and literature (Janovec 2000, Janovec and Harrison 2002). Differentiating traits of the leaves, flowers, inflorescence, fruit and indument of all these parts were synthesized from the most recent taxonomic treatment (Janovec 2000) and subsequent species descriptions (Janovec and Harrison 2002, Janovec and Neil 2002).

Results

DNA sequencing and alignment

Table 1.1 presents specimens included in various genetic analyses that were successfully amplified for one or more loci along with their Barcode of Life Database (BOLD) process identification numbers that can be used to access sequence and specimen info online at www.barcodinglife.org. Genbank accession numbers are included in Table 1.1 for specimens whose trnH-psbA sequences were retrieved from Newmaster et al. (2008). The trnH-psbA spacer alignment for phylogenetic analyses consisted of 342
nucleotides, 39 variable characters and 18 parsimony informative characters. The AGT1 gene alignment consisted of 710 nucleotides, 59 variable and 34 parsimony informative sites while the AT103 gene alignment consisted of 412 nucleotides, 31 variable characters and 22 parsimony informative sites. The concatenated alignment contained 1464 characters of which 129 were variable and 74 parsimony informative nucleotide positions. The outgroups contributed 89 variable and 29 parsimony informative characters. The MCIC algorithm employed in indelcoder coded 14 separate indel events.

Phylogenetic Analyses

A total of 14 collections representing 8 species of Compsoneura were included in the phylogenetic analyses as high-quality DNA was not extracted from all samples. Trees constructed from individual loci varied slightly in their overall topology, mostly due to the markers varying information content, but in all cases the monophyly of informal sections Hadrocarpa and Compsoneura was recovered and supported by high (1.0) posterior probabilities (data not shown). Additionally, no significant incongruence was detected with an ILD test, therefore the loci were combined in an all evidence approach. The 50% majority-rule Bayesian consensus tree with posterior probabilities is shown in Figure 1.1. The most parsimonious phylogram estimated by PAUP recovered a nearly identical topology (Figure 1.2). A single most parsimonious tree was found with a length of 187 , a consistency index (CI) of 0.85 , a homoplasy index (HI) of 0.15 , and a retention index (RI) of 0.88 . Both Bayesian and parsimony analyses of the three regions revealed strong support of the monophyly of Compsoneura s.l. as measured by posterior probabilities (1.0) and bootstrap support (99). There was also strong support ($\mathrm{PP}=1.0$,
$\mathrm{BS}=99$) for the nodes separating informal sections Hadrocarpa and Compsoneura. However, it appears that fused anthers have evolved multiple times in Compsoneura (Figures 1.1 and 1.2), making Warburg's sections Eucompsoneura and Coniostele paraphyletic in nature. Additionally, there was a considerable branch length separating Hadrocarpa and Compsoneura compared to the relatively short branches within each group, indicating a significant amount of evolutionary divergence between these two informal sections.

Morphology

Species of the two sections share a few morphological similarities such as tertiary veins growing more or less perpendicular to the midvein, an entire endosperm, and generally glabrous leaves. However, thirteen contrasting morphological characters were found to differentiate Hadrocarpa from Compsoneura (Table 1.2).

Distance analysis

This study was able to obtain sequences from 5 additional species of Compsoneura than were analysed by Newmaster et al. (2008). These 5 species are relatively rare and poorly collected members of section Hadrocarpa (sensu Janovec 2000), which were collected between 1972 and 1996. All species with the exception of C. cuatrecasasi and C. carchifolia can be identified by one or more single nucleotide polymorphisms (Figure 1.3). It is also interesting to note that C. capitellata, C. sprucei, and C. mexicana exhibit a high degree of molecular variation relative to other species. Intraspecific distances were found to sometimes be larger than interspecific distances and
therefore there was no barcoding gap found in the taxa tested (Figure 1.3). Additionally, both sections Hadrocarpa and Compsoneura were found to be monophyletic in this analysis and within section Hadrocarpa, species from Western Colombia and Panama formed their own clade due to a 9-bp indel as well as a shared single nucleotide polymorphism.

Discussion

Taxonomy is most biologically relevant when it seeks to classify and identify organisms with respect to their evolutionary history. This study represents the most comprehensive molecular analysis of the genus Compsoneura to date. Previous work by Newmaster et al. (2008) assessed levels of molecular variation of different cpDNA markers in the genus on a more restricted suite of taxa but did not conduct a phylogenetic analysis. Janovec (2000) investigated the microsatellite allele variation amongst populations of South and Central American Compsoneura sprucei which, together with a morphometric analysis, led to the resurrection of C. mexicana (Janovec and Harrison 2002). With the use of markers from the chloroplast and nuclear genomes, my analyses revealed a significant molecular divergence that is mirrored by morphological adaptations of sections Hadrocarpa and Compsoneura (sensu Janovec 2000) that I feel are sufficient to warrant the recognition of these sections as separate respective genera. The following discussion will address this as well as implications of the distance analysis.

Phylogenetic Analyses

Previous studies of Compsoneura have highlighted numerous morphological and biogeographical differences between informal sections Hadrocarpa and Compsoneura but did not include molecular analyses (Janovec 2000). In this study I present the first phylogenetic estimation of a genus of the Myristicaceae, thus providing some illumination of the relationships between members of Compsoneura. Very high posterior probabilities (1.0) and bootstrap support (99) was found on the nodes that separate sections Compsoneura and Hadrocarpa, indicating they are monophyletic. It is also interesting to note that both phylogenetic analyses indicated that Warburg's sections Eucompsoneura (free anthers) and Coniostele (fused anthers) are paraphyletic, as fused anthers appear to have evolved multiple times within Compsoneura. Additionally, similar branch lengths were recovered separating the two sections of Compsoneura as were found between Otoba-Compsoneura and Otoba-Iryanthera. This suggests that the two sections have been on diverging evolutionary paths for a substantial amount of time. The two sections also have distinct biogeographic patterns. Members of Compsoneura are widespread in the Amazon basin, the Western coast of the Andes as well as Central America. Members of Hadrocarpa on the other hand primarily reside on the Western side of the Andes in Ecuador, Colombia and Panama with the vast majority of species being endemic to Western Colombia.

It thus appears that the informal sections Hadrocarpa and Compsoneura represent a more natural sub-generic classification of the genus compared to Warburg's (1897) sections Eucompsoneura and Coniostele when both molecular and morphological data are considered. There exists so many dichotomous morphological and molecular characters among section Hadrocarpa and Compsoneura, that I suggest that the former be
elevated to the generic rank so as to recognize the morphological and molecular distinctiveness of these clades. I believe that this is important as end-users of taxonomy use field characters not only to recognize species, but also to help group collections and as an aid to memory. If recognized formally, I proposed that the genus be named Hadrocarpa (derived from the greek hadros, or thick, and carpa, or seed/fruit) as large fruits with thick ligneous pericarps are characteristic of these trees.

The Myristicaceae remain poorly understood from a phylogeographic perspective due to a paucity of data and low rates of nucleotide substitution that has plagued previous investigators (Sauquet et al. 2003). The only molecular phylogenetic analysis of the family conducted by Sauquet et al. (2003) was unable to recover well supported relationships among genera of the family despite using some of the most variable loci commonly used in low-level angiosperm phylogenetics (trnL-trnF, ndhF, trnK, and matk). I elected to use Iryanthera as an outgroup to my analyses as they are the only dioecious (assumed ancestral state) members of the family and Iryanthera leaves appear to be the most similar of any Myristicaceae to the sister of the family, Idiospermum australiense (Calycanthaceae). Initial efforts were made to use Idiospermum australiense as an outgroup, however, difficulty in amplification and alignment of sequences prevented its inclusion. Despite this uncertainty of rooting and therefore character polarity, there remain numerous interesting and well supported relationships that have been revealed with this analysis.

The well supported C. mutisii-C. mexicana-C. excelsa clade was recovered in all trees made from the three individual loci (data not shown) and is of particular phylogeographic interest. It appears that the species of this clade arose through a series of
allopatric speciation events initiated by the uprise of the Andean Orogeny. These speciation events would likely have been initiated by the rise of the Andean range resulting in the separation of current C. mutisii from its Amazonian progenitor populations (likely C. ulei or C. sprucei). This event was followed by dispersal of an ancestor of C. mutisii to Central America (likely via birds, their known dispersal vector) to a forming Central American archipelago or after the formation of the Panamanian Isthmus (Raven and Axelrod 1974). After this event, the up-rise of a mountain range in present day Costa Rica separated populations on the East and West side of the forming cordillera. This vicariance event likely led to the differentiation of the species we know as C. excelsa and C. mexicana respectively. It is also interesting to note that a morphological cladistic analysis of Compsoneura by Janovec (2000) found that C. ulei consistently grouped within the mutisii-excelsa-mexicana clade, a group which shares the trait of fused or partially fused anthers on the filament column. The somewhat low support $(\mathrm{PP}=0.81, \mathrm{BS}=51)$ on the node separating C. ulei and C. debilis from the other members of the genus may be due to the fact that the most variable locus used in this study, AGT1, was not successfully sequenced for C. ulei. Recovery of AGT1 or other variable low copy nuclear markers may provide increased resolution and support of infrageneric relationships within section Compsoneura. Although the position of C. ulei is not well supported, it has a fused anther column like C. mutisii and C. excelsa but the rest of the Compsoneura and Hadrocarpa clades have free anthers. The phylogenetic estimation created here requires multiple conversions from the state of free to fused anthers. Great importance has been placed on the androecium in morphological cladistics since it is one of the few variable characters of Compsoneura (Janovec 2000) as well as
other genera (Sauquet et al. 2003). If the phylogenetic estimation presented here is found to be robust with future data, it may mean that fusion of the androecium is potentially homoplasious.

Although there were relatively few species included from section Hadrocarpa, due to the old age of most collections and difficulty in extracting high quality DNA for the amplification of low copy nuclear sequences, there remains a few interesting trends to note. The first is the apparent paraphyletic nature of the cpDNA of C. capitellata. Due to difficulties in amplifying herbarium material, the C. atopa specimen used in this analysis came from the most recent collection which was found growing in a coffee plantation in the vicinity of Comuna 24 de Mayo, Ecuador, in 2000. This tree also constitutes one of only a few collections of C. atopa in the Amazonian basin as it is endemic to Colombia West of the Andes. Despite numerous attempts to locate additional individuals, there have been only two collections made of this species east of the Andes to date. Therefore it is possible that this tree might be one of the last remnants of a refugial Amazonian population of C. atopa and may have hybridized to some extent with C. capitellata. Additional data from chloroplast and nuclear markers will be required to test this hypothesis as the most variable marker (AGT1) was not recovered for C. atopa in this study. Additionally there appears to be a great deal of molecular divergence within the species C. capitellata which will be discussed below and in a subsequent chapter.

A robust phylogenetic analysis will require known outgroups, however, this is difficult due to the unresolved phylogeny of the Myristicaceae (Sauquet et al. 2003) and the fact that the family likely diverged from sister taxa about 100 mybp. This large amount of evolutionary time may lead to a great deal of homoplasy and long stem
lengths, potentially leading to long branch attraction in the highly variable markers necessary to resolve intergeneric relationships of the Myristicaceae. Although it cannot be assured that this is a properly rooted phylogeny, the topology recovered here, however, makes intuitive sense based on the apparent pattern of trans-andean speciation of some taxa of Compsoneura. Additionally, the 3 markers employed in this study had substantially more variation than others used by previous studies and may be informative for future studies of Myristicaceae phylogeny.

Distance Analysis

The second objective of this study was to perform an analysis of the ability of a chloroplast locus to distinguish members of Compsoneura, including rare collections and samples already sequenced by Newmaster et al. (2008). The morphological uniformity, slow rates of molecular evolution, and dearth of molecular markers from previous investigators has made the taxonomy of this group particularly difficult. The inclusion of 5 additional taxa to the 8 taxa studied by Newmaster et al. (2008) resulted in a trnH-psbA NJ tree where all but one species pair (C. carchifolia and C. cuatrecasasi) are differentiated by unique haplotypes. These two species species are easily distinguished morphologically by dissimilar leaf and flower morphologies and also have disjunct distributions.

Although most species are rather morphologically coherent, there appears to be a relatively large divergence among the sequences of different populations of some species (C. sprucei, C. mutisii, C. mexicana, and C. capitellata for example). This pattern may be due to a number of non-mutual exclusive phenomena. The first possibility is that these
divergent populations may represent cryptic species. This is very possible as recent molecular studies of tropical insects (Hebert et al. 2004b, Smith et al. 2007, Smith et al. 2008) have revealed previously unnoticed alpha diversity. It is highly possible that there exists undescribed species of neotropical Myristicaceae considering the cryptic morphological nature of these trees and the wide range of climatological and edaphic regimes present across the Amazon basin. If these populations are not continuous it is also possible that these geographically isolated haplotypes represent restricted gene flow between discontinuos populations. Since the chloroplast genome is inherited from the maternal parent and spread via seed, this pattern could be generated by restricted seed dispersal and/or restricted seed establishment between populations. If these genetic polymorphisms are indeed an indicator of intra-specific haplotype diversity and not cryptic speciation it will prove difficult to unambiguously identify new collections by means of DNA barcodes as the genetic distance within a species may be equal or greater than that between currently recognized species. Despite these problems, trnH-psbA will be a very useful tool to biologists to help identify sterile, herbarium and fragmentary material of Compsoneura since morphological means of identification may lead to misidentification rates of 25-60\% (J. Janovec personal communication, R. Steeves personal observations). Additional studies with increased population-level sampling are recommended to sample haplotype diversity across the geographic range of these species; of particular interest will be the study of the more hypervariable taxa such as C. sprucei, C. mexicana, and C. capitellata.

Althougth the primary function of the distance analysis was to assess the ability of the trnH-psbA locus to discriminate species of Compsoneura, there are also some
relationships on the tree (Figure 1.3) of biogeographical significance worthy of discussion. Two members of Janovec's (2000) informal subgroup Atopa (C. rigidifolia and C. sp1) form a clade (Choco-Panama clade Figure 1.3) with the exception of the groups namesake, C. atopa. Likewise, members of Janovec's (2000) informal subgroup Capitellata included in this analysis (C. capitellata, C. cuatrecasasii,C. diazii, and C. $s p 2)$ are also paraphyletic in this tree. Members of subgroup Atopa are endemic to Western Colombia and Panama and those of subgroup Capitellata are found in both the East and Western slopes of the Andes. Members of subgroup Atopa and Capitellata have a number of vegetatitive and reproductive morphological tratits which distinguish each respective subgroup (Janovec 2000) but it appears that the similarity of their trnH-psbA haplotypes is primarily correlated to geographic region (Amazonian or Choco-Panama) rather than morphological subgroupings (sensu Janovec 2000). This apparent incongruence of morphological affinities of taxa and their haplotypes similarities is possibly due to convergent morphological evolution but is more likely a result of cpDNA paraphyly due to introgression of the maternally inherited cpDNA. Chloroplast haplotype introgression between species, also known as chloroplast sharing or chloroplast capture, is well documented in plants by phylogenetic and phylogeographic studies and appears to be relatively common (Rieseberg and Soltis 1991, Golden and Bain 2000, Palme et al. 2003, Palma-Silva et al. 2011). This phenomena may also account for high levels of intraspecific genetic distance found in plant plastid regions (Hollingsworth et al 2011). In the future it would be desirable to compare nuclear and plastid phylogenies of Compsoneura (subgroups Atopa and Capitellata in particular) to establish whether
introgression or convergent morphological evolution are likely the cause of discrepancy between morphological and molecular data.

Tables

Table 1.1 Compsoneura and outgroup taxa used in all analyses. Collector(s), Collections number (Coll. \#), code of Herbaria storing (Herb.), Country of origin, decimal degrees latitude (Lat.), decimal degrees longitude (Long.), Barcode of Life Database sequence process ID (BOLD \#), and genbank accession numbers are listed if applicable.

Species	Collector (s)	Coll. \#	Herb.	Country	Lat.	Long.	BOLD \#	Genbank \#
C. atopa	J.P. Janovec and W. Quizhpe	1374	NY	Ecuador	-0.47	-77.26	RSMYR002-11	EU090622.1
C. capitellata	R.A.D. Steeves	527	OAC	Peru	-13.23	-70.78	RSMYR003-11	
C. capitellata	R.A.D. Steeves	551	OAC	Peru	-13.23	-70.78	RSMYR004-11	
C. capitellata	J.P. Janovec	835		Peru	-6.15	-76.17	RSMYR005-11	EU090623.1
C. capitellata	J.P. Janovec	855		Peru	-3.52	-73.15	RSMYR006-11	EU090624.1
C. capitellata	J.P. Janovec	872		Peru	-3.52	-73.15	RSMYR007-11	EU090625.1
C. capitellata	J.P. Janovec	875		Peru	-3.52	-73.15	RSMYR008-11	EU090626.1
C. capitellata	J.P. Janovec and W. Quizhpe	889		Ecuador	-1.04	-77.37	RSMYR009-11	EU090627.1
C. sp. 1	C. Aulestia et al.	848	QCNE	Ecuador	0.55	-78.32	RSMYR010-11	
C. cuatrecasasi	A.H. Gentry and A. Juncosa	40682	MO	Colombia	3.15	-77.25	RSMYR011-11	
C. diazii	C. Diaz et al.	7644	MO	Peru	-5.03	-78.22	RSMYR012-11	
C. rigidifolia	G. Mcpherson	10008	Duke	Panama	9.15	-79.30	RSMYR013-11	
C. sp. 2	A.H. Gentry and E. Renteria	23826	MO	Colombia	5.30	-76.33	RSMYR014-11	
C. debilis	M.L. Kawasaki	190	CAS	Brazil	0.18	-68.40	RSMYR015-11	EU090628.1
C. debilis	P.E. Berry et al.	6172	MO	Venezuela	2.52	-67.18	RSMYR016-11	EU090629.1
C. debilis	P.E. Berry	7209		Venezuela			RSMYR017-11	EU090630.1
C. debilis	R.L. Liesner and G. Carnevali	22972	MO	Venezuela	1.51	-67.03	RSMYR018-11	EU090631.1
C. excelsa	J.P. Janovec and R. Aguilar	636	NY	Costa Rica	8.43	-83.12	RSMYR019-11	EU090632.1
C. excelsa	J.P. Janovec and R. Aguilar	666	NY	Costa Rica	8.44	-83.28	RSMYR020-11	EU090633.1
C. excelsa	J.P. Janovec	668	NY	Costa Rica	8.26	-83.22	RSMYR021-11	EU090634.1
C. excelsa	J.P. Janovec	669	NY	Costa Rica	8.26	-83.22	RSMYR022-11	EU090635.1
C. excelsa	J.P. Janovec	671	NY	Costa Rica	8.26	-83.22	RSMYR023-11	EU090636.1
C. mexicana	V. Tzub	007					RSMYR024-11	EU090637.1
C. mexicana	J.P. Janovec	354	TAMU	Costa Rica	10.25	-83.29	RSMYR025-11	EU090638.1
C. mexicana	J.P. Janovec	362	TAMU	Costa Rica	10.25	-83.29	RSMYR026-11	EU090639.1

Species	Collector (s)	Coll. \#	Herb.	Country	Lat.	Long.	BOLD	GB
C. mexicana	J.P. Janovec and A. Neill	696	NY	Belize	16.23	-89.08	RSMYR027-11	EU090640.1
C. mexicana	J.P. Janovec and A. Neill	701	NY	Belize	16.23	-89.08	RSMYR028-11	EU090641.1
C. mexicana	J.P. Janovec and A. Neill	719	NY	Belize	16.12	-89.03	RSMYR029-11	EU090642.1
C. mexicana	J.P. Janovec and A. Neill	720	NY	Belize	16.12	-89.03	RSMYR030-11	EU090643.1
C. mexicana	J.P. Janovec and J.A. Janovec	757	NY	Belize	16.20	-89.10	RSMYR031-11	EU090644.1
C. mexicana	J.P. Janovec	1283					RSMYR032-11	EU090645.1
C. mutisii	J.P. Janovec and Quizhpe	911	NY	Ecuador	1.03	-78.32	RSMYR033-11	EU090646.1
C. mutisii	J.P. Janovec and Quizhpe	913	NY	Ecuador	1.03	-78.32	RSMYR034-11	EU090647.1
C. mutisii	J.P. Janovec and Quizhpe	914	NY	Ecuador	1.03	-78.32	RSMYR035-11	EU090648.1
C. mutisii	J.P. Janovec	1290					RSMYR036-11	EU090649.1
C. mutisii	J.P. Janovec	1295					RSMYR037-11	EU090650.1
C. sprucei	J.P. Janovec and A. Pena Cruz	812	NY	Peru	-6.06	-76.11	RSMYR038-11	EU090651.1
C. sprucei	J.P. Janovec and A. Pena Cruz	817	NY	Peru	-6.06	-76.11	RSMYR039-11	EU090652.1
C. sprucei	J.P. Janovec and A. Pena Cruz	821	NY	Peru	-6.06	-76.11	RSMYR040-11	EU090653.1
C. sprucei	J.P. Janovec and W. Quizhpe	884	NY	Ecuador	-1.04	-77.37	RSMYR041-11	EU090654.1
C. sprucei	J.P. Janovec and W. Quizhpe	887	NY	Ecuador	-1.04	-77.37	RSMYR042-11	EU090655.1
C. sprucei	J.P. Janovec and W. Quizhpe	903	NY	Ecuador	-1.04	-77.37	RSMYR043-11	EU090656.1
C. ulei	E. Lima and A. Silva	088	NY	Brazil	-3.50	-49.42	RSMYR044-11	EU090657.1
C. ulei	C.R. Sperling et al.	6192	US	Brazil	-5.49	-50.32	RSMYR045-11	EU090658.1
C. ulei	M. Nee	42644	NY	Brazil	-2.25	-59.54	RSMYR046-11	EU090659.1
O. glycycarpa	R.A.D. Steeves	546	OAC	Peru	-13.23	-70.78	RSMYR047-11	
O. parvifolia	R.A.D. Steeves	598	OAC	Peru	-13.23	-70.78	RSMYR048-11	
V. surinamensis	R.A.D. Steeves	078	OAC	Peru	-13.23	-70.78	RSMYR049-11	
I. juruensis	R.A.D. Steeves	451	OAC	Peru	-13.23	-70.78	RSMYR050-11	
I. laevis	R.A.D. Steeves	460	OAC	Peru	-13.23	-70.78	RSMYR051-11	

Table 1.2 Unambiguous morphological character transformations that differentiate informal sections Compsoneura and Hadrocarpa.

Compsoneura	Morphological Character	Hadrocarpa
Drying green, sometimes brown	Leaves	Drying brown, rarely olive or brownish-green
Free, arching (venation eucamptodromous)	Secondary leaf veins	Anastomosing marginally, at least in part (venation weakly to strongly brochidodromous)
Free from above the base, semiconnate, or connate	Anthers	Free from the base
Present	Glandular trichomes on inner flower perianth, filaments, and filament columns	Absent or rarely present in one species (C. diazii)
Absent	T-shaped or stellate trichomes on vegetative and reproductive organs	Present
Absent, or few and inconspicuous	Floral oil cells	Abundant and conspicuous
Elliptic to ovate-elliptic	Fruit shape	Sub-globose, elliptic-ovate, to strongly rostrate
Orange, thin, fleshy	Fruit pericarp at maturity	Green to brown, thick, fortified, ligneous
Always smooth	Fruit pericarp surface	Sulcate to strongly furrowed, or carinate to strongly ridged
Strongly dehiscent along one longitudinal line	Fruit pericarp dehiscence	Indehiscent to partially or "forced" dehiscent
Glabrous	Fruit pericarp pubescence	Pubescent throughout or at least in part; hairs t -shaped to irregularly stellate
Thick, entire, somewhat fleshy, bright red to scarlet when mature	Aril	Thin, entire to deeply laciniate from base, or rudimentary, reduced, and sometimes seemingly absent; white when mature but rarely seen because the fruit pericarps are largely indehiscent

Figures

Figure 1.1 Phylogram of consensus tree created with sequences of trnH-psbA, AT103 and AGT1 sequences of 8 species of Compsoneura. Numbers on branches indicate Bayesian posterior probabilities of nodes and numbers following taxon names are the collection numbers of herbarium samples from which DNA was extracted (see table 1.1 for collection information). Branch colours indicate sections Hadrocarpa (red) and Compsoneura (blue). Bolded taxa possess fused anthers. Branch lengths are proportional to distance.

Figure 1.2 Phylogram of the single most parsimonious tree (Length=187) constructed from a concatenated alignment of trnH-psbA, AGT1 and AT103 data sets (CI=0.85, $\mathrm{RI}=0.88, \mathrm{HI}=0.15$). Numbers on branches indicate bootstrap values and numbers following taxon names are the collection numbers of herbarium samples from which DNA was extracted (see table 1.1 for collection information). Branch colours indicate sections Hadrocarpa (red) and Compsoneura (blue). Compsoneura taxa in bold font possess fused anthers and non-bolded taxa possess free anthers.

Figure 1.3 Neighbour joining (uncorrected p-distance) tree constructed using trnH-psbA data. Red branches indicate members of section Hadrocarpa and blue branches indicate section Compsoneura. Numbers indicate collection numbers of herbarium samples from which DNA was extracted (also see table 1.1). Geographical zones (Amazonian or Choco-Panama) of various species of Hadrocarpa is indicated by lines on the right. Branch lengths are proportional to distance.

Figure 1.4 Histograms of the number of pairwise intraspecific (red bars) and interspecific divergence distances estimates (x -axes) among all Compsoneura samples included in the neighbour joining analysis. The number of pairwise comparisons is on the y-axis and the pairwise p -distance for the trnH -psbA region is on the x -axis.

Literature Cited

Alfaro, M. E., \& Holder, M. T. 2006. The posterior and the prior in Bayesian phylogenetics. Annual review of ecology, evolution, and systematics 37: 19-42.

APG III. 2003. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II.

Armstrong, J. E., \& Tucker, S. C. 1986. Floral development in Myristica (Myristicaceae). American Journal of Botany 73: 1131-1143.

Armstrong, J. E. 1997. Pollination by deceit in nutmeg (Myristica insipida, Myristicaceae): floral displays and beetle activity at male and female trees. American journal of botany 84: 1266-1274.

Asif, M. J., \& Cannon, C. H. 2005. DNA extraction from processed wood: a case study for the identification of an endangered timber species (Gonystylus bancanus). Plant Molecular Biology Reporter 23: 185-192.

Bullock, S. H. 1982. Population structure and reproduction in the neotropical dioecious tree Compsoneura sprucei. Oecologia 55: 238-242.

Candolle, A. D. 1856. Myristicaceae. Prodromus Systematis Naturali Vegetablis 14: 187208.

Chagnon, N. A., Le Quesne, P., \& Cook, J. M. 1971. Yanomamö Hallucinogens: Anthropological, Botanical, and Chemical Findings. Current Anthropology 12: 72-74.

Douady, C. J., Delsuc, F., Boucher, Y., Doolittle, W. F., \& Douzery, E. J. 2003. Comparison of Bayesian and maximum likelihood bootstrap measures of phylogenetic reliability. Molecular Biology and Evolution 20: 248-254.

Farris, J. S., Kallersjo, M., Kluge, A. G., \& Bult, C. 1995. Testing significance of incongruence. Cladistics 10: 315-319.

Fazekas, A. J., Steeves, R., \& Newmaster, S. G. 2010. Improving sequencing quality from PCR products containing long mononucleotide repeats. Biotechniques 48: 277-285.

Gentry, A. H. 1982. Neotropical floristic diversity: phytogeographical connections between Central and South America, Pleistocene climatic fluctuations, or an accident of the Andean orogeny? Annals of the Missouri Botanical Garden 69: 557-593.

Golden, J. L., \& Bain, J. F. 2000. Phylogeographic patterns and high levels of chloroplast DNA diversity in four Packera (Asteraceae) species in southwestern Alberta. Evolution 54: 1566-1579.

Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic acids symposium series. (pp. 95-98).

Hebert, P. D. N., Stoeckle, M. Y., Zemlack, T. S., \& Francis, C. M. 2004. Identification of birds through DNA barcodes. PLOS Biology 2: 1657-1663.

Hebert, P. D., Penton, E. H., Burns, J. M., Janzen, D. H., \& Hallwachs, W. 2004. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences 101: 14812-14817.

Hollingsworth, P. M., Graham, S. W., \& Little, D. P. 2011. Choosing and using a plant DNA barcode. PloS one 6: e19254.

Janovec, J. P., \& Harrison, J. S. 2002. A morphological analysis of the Compsoneura sprucei complex (Myristicaceae), with a new combination for the Central American species Compsoneura mexicana. Systematic Botany 27: 662-673.

Janovec, J. P., \& Neill, A. K. 2002. Studies of the Myristicaceae: an overview of the Compsoneura atopa complex, with descriptions of new species from Colombia. Brittonia 54: 251-261.

Janovec, J. P. 2000. A systematic study of Compsoneura (A. DC.) Warb., A Neotropical member of the nutmeg family. Texas A\&M University Dissertation: 1-359.

Kreader, C. A. 1996. Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Applied and Environmental Microbiology 62: 1102-1106.

Kumar, S., Nei, M., Dudley, J., \& Tamura, K. 2008. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in bioinformatics 9: 299-306.

Li, M., Wunder, J., Bissoli, G., Scarponi, E., Gazzani, S., Barbaro, E., Saedler, H., \& Varotto, C. 2008. Development of COS genes as universally amplifiable markers for phylogenetic reconstructions of closely related plant species. Cladistics 24: 727-745.

Lister, D. L., Bower, M. A., Howe, C. J., \& Jones, M. K. 2008. Extraction and amplification of nuclear DNA from herbarium specimens of emmer wheat: a
method for assessing DNA preservation by maximum amplicon length recovery. Taxon 57: 254-258.

Macedo, D. S., \& Anderson, A. B. 1993. Early ecological changes associated with logging in an Amazon floodplain. Biotropica 25: 151-163.

Maloney, D. J., Deng, J., Starck, S. R., Gao, Z., \& Hecht, S. M. 2005. (+)-Myristinin A, a naturally occurring DNA polymerase β inhibitor and potent DNA-damaging agent. Journal of the American Chemical Society 127: 4140-4141.

McKenna, D. J., Towers, G. H. N., \& Abbott, F. S. 1984. Monoamine oxidase inhibitors in South American hallucinogenic plants part 2: Constituents of orally-active Myristicaceous hallucinogens. Journal of Ethnopharmacology 12: 179-211.

Müller, K. 2006. Incorporating information from length-mutational events into phylogenetic analysis. Molecular phylogenetics and evolution 38: 667-676.

Newmaster, S. G., Fazekas, A. J., Steeves, R. A. D., \& Janovec, J. 2008. Testing candidate plant barcode regions in the Myristicaceae. Molecular Ecology Resources 8: 480-490.

Nguyen, P. H., Le, T. V. T., Kang, H. W., Chae, J., Kim, S. K., Kwon, K., Seo, D. B., Lee, S. J., \& Oh, W. K. 2010. AMP-activated protein kinase (AMPK) activators from Myristica fragrans (nutmeg) and their anti-obesity effect. Bioorganic and Medicinal Chemistry Letters 20: 4128-4131.

Nylander, J. 2004. MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.

Palma-Silva, C., Wendt, T., Pinheiro, F., Barbará, T., FAY, M. F., Cozzolino, S., \& Lexer, C. Sympatric bromeliad species (Pitcairnia spp.) facilitate tests of mechanisms involved in species cohesion and reproductive isolation in Neotropical inselbergs. Molecular Ecology 20: 3185-3201

Palmé, A. E., Semerikov, V., \& Lascoux, M. 2003. Absence of geographical structure of chloroplast DNA variation in sallow, Salix caprea L. Heredity 91: 465-474.

Pascal, J. P., \& Pelissier, R. 1996. Structure and floristic composition of a tropical evergreen forest in south-west India. Journal of Tropical Ecology 12: 191-214.

Patro, S. P., Tyagi, M., Saha, J., \& Chattopadhyay, S. 2010. Comparative nuclease and anti-cancer properties of the naturally occurring malabaricones. Bioorganic and Medicinal Chemistry 18: 7043-7051.

Poinar, H. N. 1998. Molecular coproscopy:dung and diet of the extinct ground sloth Nothrotheriops shastensis. Science 281: 402-406.

Poulsen, A., Nelson, I., Tan, S., \& Balsev, H. 1996. A quantitative inventory of trees in one hectare of mixed dipterocarp forest in Temburong, Bnmei Darussalam. In Tropical rainforest research: current issues. London: Kluwer Academic Publishers (pp. 139-150).

Pusztai, R., Abrantes, M., Sherly, J., Duarte, N., Molnar, J., \& Ferreira, M. J. 2010. Antitumor-promoting Activity of Lignans: Inhibition of Human Cytomegalovirus IE Gene Expression. Anticancer research 30: 451-454.

Qiu, Y-L., Li.,L., Hendry, T.A., Li, R., Taylor, D.W., Issa, M.J., Ronen, A.J., Vekaria, M.L., \& White, A.M. 2006. Reconstructing the basal angiosperm phylogeny: evaluating information content of mitochondrial genes. Taxon 55:837-856.

Raven, P. H., \& Axelrod, D. I. 1974. Angiosperm biogeography and past continental movements. Annals of the Missouri Botanical Garden 61: 539-673.

Rieseberg, L.H., \& Soltis, D.E. 1991. Phylogenetic consequences of cytoplasmic gene flow in plants. Evolutionary Trends in Plants 5: 65-84.

Rodrigues, W. A. 1989. Two new neotropical species of Compsoneura (Myristicaceae). Brittionia 4: 160-163.

Ronquist, F., \& Huelsenbeck, J. P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574.

Sang, T., Crawford, D. J., \& Stuessy, T. F. 1997. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). American Journal of Botany 84: 1120-1136.

Sasaki, Y., Miyoshi, D., \& Sugimoto, N. 2006. Effect of molecular crowding on DNA polymerase activity. Biotechnology Journal 1: 440-446.

Sauquet, H., Doyle, J. A., Scharaschkin, T., Borsch, T., Hilu, K. W., Chatrou, L. W., \& Le Thomas, A. 2003. Phylogenetic analysis of Magnoliales and Myristicaceae based on multiple data sets: implications for character evolution. Botanical Journal of the Linnean Society 142: 125-186.

Savolainen, V., Cuénoud, P., Spichiger, R., Martinez, M. D., Crèvecoeur, M., \& Manen, J. F. 1995. The use of herbarium specimens in DNA phylogenetics: evaluation and improvement. Plant Systematics and Evolution 197: 87-98.

Sawadjoon, S., Kittakoop, P., Kirtikara, K., Vichai, V., Tanticharoen, M., \& Thebtaranonth, Y. 2002. Atropisomeric myristinins: Selective COX-2 inhibitors and antifungal agents from Myristica cinnamomea. The Journal of Organic Chemistry 67: 5470-5475.

Schultes, R. 1981. Iconography of the New World Hallucinogens. Arnoldia 41: 80-125.

Simmons, M., \& Ochoterena, H. 2000. Gaps as characters in sequence-based phylogenetic analysis. Systematic Botany 49: 369-381.

Smith, A. C. Studies of South American plants: XV. American Journal of Botany 43: 573-577.

Smith, A. C. 1937. The American species of Myristicaceae. Brittonia 2: 393-510.
Smith, M. A., Rodriguez, J. J., Whitfield, J. B., Deans, A. R., Janzen, D. H., Hallwachs, W., \& Hebert, P. D. 2008. Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections. Proceedings of the National Academy of Sciences 105: 12359-12364.

Smith, M. A., Wood, D. M., Janzen, D. H., Hallwachs, W., \& Hebert, P. D. N. 2007. DNA barcodes affirm that 16 species of apparently generalist tropical parasitoid flies (Diptera,Tachinidae) are not all generalists. Proceedings of the National Academy of Sciences 104: 4967-4972.

Soltis, D. E., Smith, S. A., Cellinese, N., Wurdack, K. J., Tank, D. C., Brockington, S. F., Refulio-Rodriguez, N. F., Walker, J. B., Moore, M. J., Carlsward, B. S., \& others. 2011. Angiosperm phylogeny: 17 genes, 640 taxa. American Journal of Botany 98: 704.

Speiss, A., T. Mueller, \& Ivell, R. 2004. Trehalose is a potent PCR enhancer: lowering of DNA melting temperature and thermal stabilization of Taq polymerase by the disaccharide trehalose. Clinical chemistry 50: 1256-1259.

Spichiger, R., Loizeau, P., Latour, C., \& Barriera, G. 1996. Tree species richness in a southwestern Amazonian forest. Candollea 51: 559-577.

Štorchová, H., \& Olson, M. S. 2007. The architecture of the chloroplast psbA-trnH noncoding region in angiosperms. Plant Systematics and Evolution 268: 235-256.

Stöver, B. C., \& Müller, K. F. 2010. TreeGraph 2: Combining and visualizing evidence from different phylogenetic analyses. BMC bioinformatics 11: 1-9.

Suzuki, Y., Glazko,G.V., \& Nei, M. 2002. Overcredibility of molecular phylogenies obtained by Bayesian phylogenetics. Proceedings of the National Academy of Sciences 99: 16138-16143.

Swafford, D. 1999. PAUP*: Phylogenetic Analysis Using Parsimony (and Other Methods). Version 4 . Sunderland : Sinauer Associates.

Tajuddin, S. A., Latif, A., Qasmi, I., \& Amin, K. 2005. An experimental study of sexual function improving effect of Myristica fragrans Houtt.(nutmeg). BMC Complementary and Alternative Medicine 5: 16-22.

Tate, J. A., \& Simpson, B. B. 2003. Paraphyly of Tarasa (Malvaceae) and diverse origins of the polyploid species. Systematic Botany 28: 723-737.

Telle, S., \& Thines, M. 2008. Amplification of $\operatorname{cox} 2(\sim 620 \mathrm{bp})$ from 2 mg of Up to 129 Years Old Herbarium Specimens, Comparing 19 Extraction Methods and 15 Polymerases (R. DeSalle, Ed.). PLoS ONE 3: e3584.

Thompson, J. D., Higgins, D. G., \& Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic acids research 22: 4673-4680.

Van Gils, C., \& Cox, P. A. 1994. Ethnobotany of nutmeg in the Spice Islands. Journal of Ethnopharmacology 42: 117-124.

Warburg, O. 1897. Monographie der Myristicaceen. Nova Acta Acad. Caes. Leop.-Carol 68: 1-680.

Wilde, W. J. J. O. D. 1991. The genera of the Myristicaceae as distinguished by their inflorescences and the description of a new genus: Bicuiba. Beitr. Biol. Pflanzen 66: 95-125.

Yang, Z., \& Rannala, B. 2010. Bayesian species delimitation using multilocus sequence data. Proceedings of the National Academy of Sciences 107: 9264-9269.

Zimmerman, S. B., \& Harrison, B. 1987. Macromolecular crowding increases binding of DNA polymerase to DNA: an adaptive effect. Proceedings of the National Academy of Sciences of the United States of America 84: 1871-1875.

Chapter 2

A MORPHOLOGICAL AND MOLECULAR INVESTIGATION OF THE COMPSONEURA CAPITELLATA (A. DC) Warb. COMPLEX

Abstract

Members of Compsoneura are canopy-subcanopy trees native to tropical rainforests of Central and South America. Compsoneura capitellata is a common and widespread member of the Myristicaceae family found in both cloud and lowland rainforests of Northwestern Amazonia. The flowers, fruits and leaves of members of the Compsoneura capitellata complex exhibit a high degree of morphological variation but the species has not received careful study since 1937 when few specimens were available and even the fruits were unknown. Many specimens of C. capitellata have since been collected from the entire species' range. The aim of this study was to investigate patterns of morphological and genetic diversity in the C. capitellata complex. Morphological analyses of leaf, perianth and androecial characters revealed little differentiation among populations, however, leaf characters exhibited some differentiation according to habitat (montane versus lowland populations). In contrast, DNA sequencing of 60 C. capitellata individuals, from 7 populations, with the trnH-psbA intergenic spacer revealed 9 haplotypes, with each population containing only haplotypes unique to that locale. I speculate that the apparent morphological continuum and contrasting genetic sub-division across the geographic landscape is potentially a result of restricted seed dispersal, historic anthropogenic use, cryptic speciation, or a combination of these phenomena. Herein I

present C. morona-santiagoensis, a provisional new species endemic to the sandstone substrates of Cutucu and the Cordillera del Condor of Ecuador and suggest the resurrection of C. tessmannii (Markgraf), a large-leaved taxa from the mountainous cloud forests of Peru.

Introduction

The Myristicaceae, or nutmeg family, is a pantropical assemblage of canopy to subcanopy trees comprised of 21 genera and about 500 species. These trees are native to cloud and lowland tropical rainforests where they are often among the most diverse and abundant tree families of those environments (Gentry 1988, Pitman et al. 2001, Pitman et al. 2002). Six genera, Bicuiba, Compsoneura, Iryanthera, Ostephloem, Otoba, and Virola are native to the Central and South America. A recent investigation of Compsoneura (chapter 1 this thesis) revealed evidence of a deep evolutionary divergence between informal sections Hadrocarpa and Compsoneura (sensu Janovec 2000) supported by numerous morphological and molecular characters. Members of Compsoneura are typified by having mostly glabrous leaves with brochidodromous or eucamptodromous secondary veins, tertiary venation perpendicular to the midvein and are endemic to Central and South America.

Compsoneura capitellata is a common and widespread dioecious tree species that inhabits old growth cloud and lowland rainforests of Northwest Amazonia (Brazil, Colombia, Ecuador, and Peru) from $100 \mathrm{~m}-1500 \mathrm{~m}$ elevation above sea level (asl). Compsoneura capitellata was one of the first species of Compsoneura described by de Candolle (1856), however it has been studied little since that time. The flowers, fruits and leaves of Compsoneura capitellata exhibit a high degree of morphological diversity but
the species has not received careful study since the last monographic treatment by Smith (1937). At that time very few specimens were available for study ($\mathrm{n}=11$) from only a few localities and the only fruit sample available (Ducke 19576, B, K, S, US, Utr) was deemed so atypical (i.e. a thick woody pericarp and large non-arillate seed) that it couldn't belong to Myristicaceae (Smith 1937), although the fruit in question was that of C. capitellata (Janovec 2000). Smith had very few fertile specimens to study and elected to ascribe vegetatively diverse collections from the Northwest Amazon as C. capitellata and synonymized the previously described C. tessmannii (Markgraf), following the monospecific concept of Warburg (1897).

Many collections of C. capitellata have been made since the last taxonomic treatment, which has expanded the species' known range and revealed a considerable degree of morphological variation. The chartaceous to thick coriaceous, simple, and alternate leaves of this species are elliptic-ovate in shape, being 2-13 cm wide (at half length) and $4-50 \mathrm{~cm}$ long with the smallest leaves generally occurring in the lowlands and the larger-leafed varieties generally occurring at higher elevations. The bark exhibits a wide range of colours and textures; from pale grey to brown to red and peeling off in large brittle plates or long fibrous slivers. The staminate flower is typically composed of 3-4 tepals forming a globose to cupuliform flower 1.4-2.5 mm long and 1.1-1.8 mm wide with an androecium composed of 5-12 anthers which are 0.4-0.7 mm in length. Fruits of this species are typically $2-6 \mathrm{~cm}$ long and $2-5 \mathrm{~cm}$ wide. The fruit is composed of a greenish, woody, indehiscent or forced-dehiscent pericarp which is 3-7 mm thick, glabrous to ferruginous-tomentellous, green to reddish brown in colour, and smooth, muricate, or linearly to irregularly sulcate in texture. A thin white aril, which is
sometimes greatly reduced, typically covers the large dull brown seed ($1.5-4 \mathrm{~cm}$), which is comprised of an entire, white, endosperm. Compsoneura capitellata is often confused with C. sprucei collections as C. capitellata is only reliable differentiated by its thick, woody pericarp, white aril, and sometimes by the thickness of the leaves and more strongly arcuate secondary veins compared to C. sprucei.

While other members of Myristicaceae have been the subject of ecological investigations (Howe and Vande Kerkhove 1981, Bullock 1982, Cole 2009, Holbrook and Loiselle 2009), members of Compsoneura have been the subject of few ecological studies (Bullock 1982). C. capitellata has yet to be the focus of any detailed ecological studies and thus mechanisms of pollination, vectors of dispersal, and habitat preference are virtually unknown (Janovec personal communication). The large geographic and altitudinal range that this species inhabits translates into a wide range of light regimes, temperatures, precipitation, and substratum encountered by populations. Although the pollinators of C. capitellata are not known, the small ($1-4 \mathrm{~mm}$) size of the yellow flowers and casual observations suggests that small generalist pollinators such as thrips (Thysanoptera) and beetles (Coleoptera) pollinate these dioecious trees (personal observation) as has been found in the nutmeg of commerce, Myristica fragrans (Armstrong and Irvine 1989). Informal questioning of local foresters has failed to identify a known disperser of the large, indehiscent, white arillate fruits.

More intensive collection and specimen-based studies of herbarium material are needed to improve our understanding of tropical species of plants (Tobler et al. 2007, Thomas 1999). Examination of field and herbarium specimens by J. Janovec and R. Steeves revealed a relatively high degree of leaf and fruit morphological variation in C. capitellata compared to other congeners. Such specimen studies quickly lead to the realization that our
understanding of the C. capitellata complex is hampered by lack of both morphological and nucleotide sequence data. In fact, no intensive survey of floral morphological patterns and genetic variation had ever been conducted in this group, or Compsoneura in general. Although the tiny flowers of C. capitellata have been broadly characterized by a syndrome of free anthers and presence of a filament column, variation in relative size, shape, and positioning of anthers and filament columns was observed in field and herbaria. However, these androecial characteristics have never been studied with quantitative techniques.

Levels of gene flow, inbreeding, and genetic differentiation among tropical plants are of prime interest to tropical ecologists, conservationists and taxonomists. Although the Northwest Amazon, to which Compsoneura capitellata is endemic, is considered to be the most botanically diverse region of the world (Prance 1977, Gentry 1982) it is rather poorly understood from a genetic perspective, especially with respect to the Myristicaceae.

Previous molecular investigations of Compsoneura have revealed considerable nucleotide sequence variation in C. capitellata (Newmaster et al. 2008, Chapter 1 of this thesis). The aim of this study was to examine the morphological and molecular variation of this species in order to investigate whether genetic isolation exists between populations. If genetic diversity is greater among than within populations then it is more likely that reproductive isolation has occurred and morphological diversity may represent cryptic speciation.

Materials and Methods

Morphological data sampling

In order to quantify morphological differences, measures of 10 leaf, 7 androecium and 9 perianth dimensions were made (Figure 2.1) from collections for many locations
across C. capitellata's range. Leaf measurements were made by measuring two leaves of herbarium samples with a ruler or by measuring photographs of pressed samples with a digital ruler in the program TPSdig2 (Rohlf 2006). Likewise, perianth and androecial metrics were measured using the Miniscale (Bioquip Inc., 2000), a miniature 5 mm ruler demarcated in 0.10 mm increments that can be used to gather quantitative data under a microscope, or from high resolution digital images of androecia which were captured using a Hirox microscope and associated software (Hirox-USA, Hackensack, NJ). Minimum and maximum measurements of mature structures on each specimen for the 26 metrics were recorded to document the range of leaf sizes within a population. Since species of Compsoneura are dioecious, only a subset of the total number of specimens possessed perianths and/or staminate flowers. Of the 268 specimens available for this study (Table 2.1), only 41 possessed staminate flowers. SEM micrographs and light microscope images were also compiled to demonstrate variation in androecial characters.

Morphological data analysis

A principal component analysis (PCA) was performed on leaf morphometric data using Canoco 4.5 (ter Braak, 1998) to identify the length of the ordination axis and unimodal ordination model was applied (Correspondence Analysis, CA). The relationship between quantitative leaf characters was analysed via nonmetric multi-dimensional scaling (NMS; Kruskal 1964; Primer 2002). In NMS, the Bray-Curtis distance measure was used because of its robustness for both large and small scales on the axes (Minchin 1987). Data were standardized by species maxima and two-dimensional solutions were appropriately chosen based on plotting a measure of fit ('stress') to the number of dimensions. Stress represents distortion in the data and a stress value over 0.2 is high
enough that the results are invalidated (Primer 2002). One thousand iterations were used for each NMS run, using random start coordinates. The first two ordination axes were rotated to enhance interpretability with the different axes. As an independent check, detrended correspondence analysis (DCA; ter Braak 1998) was used to evaluate the NMS classification. A Pearson-Correlation analysis was performed to investigate which characters contributed the most to the differentiation of the samples.

DNA extraction, amplification, sequencing and alignment

Like many members of the Myristicaceae, PCR-amenable genomic DNA of C. capitellata is very difficult to obtain from old collections or even fresh herbarium material that hasn't been rapidly dried and maintained in a desiccated state (personal observations). Almost all species of Compsoneura dry a dark brown colour, presumably due to the oxidation of secondary metabolites released from vacuoles as the leaves dry. Therefore DNA was sampled mostly from recent collections ($<\sim 10$ years old) and/or had been immediately placed in silica gel upon collection in the field. In attempts to capture the inherent morphological and genetic variability encountered in this species, seven populations were sampled from a wide area of the species' range in Ecuador ($\mathrm{n}=4$) and Peru ($\mathrm{n}=3$) spanning 1550 km and 1200 m of elevation. One specimen each of C. atopa and C. diazii were included in analyses as a previous genetic study (Chapter 1 of this thesis) has found a close relationship with C. capitellata. Figure 2.2 indicates collection locations and elevations of sampled populations.

Total genomic DNA was extracted from leaf tissue of silica-dried or herbarium specimens using the Macherey-Nagel Nucleospin II plant Kit. Lysis buffer 1 was used
according to the manufactures' instructions with the exception of the elongation of the post homogenization incubation period to 1 hr (from 10 minutes) and the addition of 20 mM N-Phenacylthiazolium Bromide which has been found to improve amplification of recalcitrant samples (Poinar et al. 1998, Asif and Cannon 2005).

Initially a suite of chloroplast (matK, psbK-I, rbcL, rpoB, rpoC1, trnH-psbA, UPA, and ycf5) and nuclear (AGT1, AT103, ITS, IGS, PHYA, PHYC, and sqd1) loci were amplified to investigate their utility for infra-specific studies of C. capitellata. However, only trnH-psbA was both consistently amplified and contained numerous polymorphisms. Five C. capitellata trnH-psbA accessions were retrieved via GenBank from Newmaster et al. (2008). An additional 55 samples were PCR amplified and sequenced using the primers trnH2 (5'-CGCATGGTGGATTCACAATCC-3'; Tate and Simpson 2003) and psbAF (5'GTTATGCATGAACGTAATGCTC-3'; Sang et al. 1997) or the custom designed primer pair trnH-Myrist (5'-TTGATCCACTTGGCTACATCC3^{\prime} '; this thesis) and psbA-Myrist (5'- GACCTAGCTGCTGTTGAAGC-3':this thesis). PCR was performed in a $20 \mu \mathrm{l}$ volume using $0.4 \mu \mathrm{l}$ of Phire II polymerase (Finnzymes) with 1X Phire II reaction buffer (with 1.5 mM MgCl), 0.2 mM of each DNTP, $0.2 \mu \mathrm{M}$ of each primer and $2.0 \mu \mathrm{~g}$ of BSA (Kreader 1996). Cycling conditions entailed an initial denaturation step of 1 min at $98^{\circ} ; 35$ cycles of 98° for $5 \mathrm{~s}, 64^{\circ}$ for $5 \mathrm{~s}, 72^{\circ}$ for 10 s : and a final elongation step of 72° for 1 min followed by a 4° hold. Phire II was used to amplify trnH-psbA as it has been found to be robust to the inhibitors contained in nutmeg extracts and as it is a fusion-based polymerase which has been found to reduce stuttering in regions containing homopolymer sequences such as the trnH-psbA intergenic spacer (Fazekas et al. 2010).

Amplification products were sequenced directly using the primers trnH-Myrist and psbA-Myrist. Cycle sequencing reactions were performed in a $10.5 \mu \mathrm{~L}$ reaction volume containing $0.5 \mu \mathrm{~L}$ of BigDye terminator mix v3.1, 1.88 $\mu \mathrm{L}$ of 5 x sequencing buffer (Applied Biosystems), $1.0 \mu \mathrm{M}$ of primer and $0.5 \mu \mathrm{~L}$ of PCR product. Thermal cycling parameters were 96° for $2 \min ; 30$ cycles of 96° for $30 \mathrm{~s}, 56^{\circ}$ for 15 s , and 72° for 4 min ; and a 4° hold. Cycle sequencing reactions were cleaned using sephadex columns (Cat.no. S5897; Sigma-Aldrich, St. Louis, MO, USA) and the samples were run on an ABI 3730 sequencer (Applied Biosystems).

Sequence contigs were assembled and edited using Sequencher 4.8 (Gene Codes Corporation, Ann Arbor, MI, USA). DNA sequences were aligned using the default settings of the ClustalW algorithm (Thompson et al. 1994) in Bioedit (Hall 1999) and adjusted manually. Three of four nucleotides of a loop structure believed to be the 3 ' untranscribed region (UTR) of the psbA gene (Storchova and Olsen 2007) was omitted from the data matrix. Stem-loop secondary structures of DNA have a high likelihood of homoplasious inversions, even at low taxonomic ranks (Golenberg et al. 1993, Graham et al. 2000, Shaw et al. 2005). DNA sequence alignments can be found in appendix 2. Gaps in the alignments were coded using Modified Complex Indel Coding for distance analyses using Indelcoder (Muller 2006). All sequences generated for the molecular analyses have been deposited in the Barcode of Life Database (BOLD) [www.barcodinglife.org] and their BOLD process identification numbers (which can be used online to access sequence data, images, as well as additional specimen information) are found in Table 2.3.

Statistical Parsimony analyses

In attempts to estimate the phylogeographic history of C. capitellata,, haplotype networks were constructed by statistical parsimony (Templeton et al. 1992, Templeton 1998) using the program TCS (Clement et al. 2000), which calculates the number of differences between haplotypes that are due to a sequence of single mutations at each site. Networks were calculated with TCS as implemented by ANeCA (Panchal 2007) by treating gaps as a $5^{\text {th }}$ character state and with a 95% confidence interval. Haplotype networks may be preferable to traditional phylogenetic methods at the intraspecific level because population level data often violate many of the assumptions made by traditional tree-building methods, such as Maximum Parsimony, Maximum Likelihood and Bayesian Analyses (Posada and Crandall 2001). In comparison, networks are able to utilize haplotypic data that contains low levels of genetic divergence, ancestral haplotypes, multiple mutational variants from a given haplotype within the population, and reticulation that may be caused by recombination or hybridization (Templeton et al. 1992; Posada and Crandall 2001). Since loops are not theoretically possible in haplotype networks of non-recombining regions such as plastid DNA, the connection deemed the most unlikely connecting haplotypes of a loop was removed.

Results

Morphology

Leaf length in C. capitellata varied between 3.6 and 51.7 cm long and the width at half length ranged from $1.7-13.5 \mathrm{~cm}$. The ordination analyses of quantitative leaf metrics did not reveal that any C. capitellata regional populations were distinct when all regions are considered. However, there are many specimens from Amazonas, and Cusco, Peru
that were found to cluster together on the NMS ordination (Figure 2.3). Pearson correlation analyses revealed that the X -axis is strongly correlated with 8 measures of leaf length and width (Figure 2.3; Table 2.2) and the y-axis was mostly correlated to leaf vein number and space (Figure 2.3; Table 2.2). In order to investigate whether populations isolated within Andean valleys and at high elevations exhibit morphological affinities of their leaves, collections were coded as either Montane or Lowland and plotted using the NMS ordination values (Figure 2.4). It was evident from this plot that there is a general trend for montane populations to have larger leaves compared to lowland populations (Figure 2.5).

Anther number ranged from 4-9 per androecium and the individual mature anthers were $0.4-1.6 \mathrm{~mm}$ long. Much of this variation in androecial characters is demonstrated in the SEM and light microscope images of Figure 2.6. Ordination analyses revealed three distinct clusters that were due to variation in minimum and maximum anther number, which was variable within almost all regions sampled. Pearson correlation analyses showed that the x -axis was strongly correlated to $\mathrm{max} / \mathrm{min}$ anther number, length and cluster width while the y-axis was mostly correlated to those same measures as well as anther sac length (Figure 2.7; Table 2.2).

Perianths of C. capitellata were $0.4-2.0 \mathrm{~mm}$ at their widest, $1.1-3.2 \mathrm{~mm}$ long and were on petioles $0.5-3.0 \mathrm{~mm}$ long and $0.1-1.0 \mathrm{~mm}$ wide. No particular groupings were evident from the ordination, but two peripheral points (from Peru-Huanuco and EcuadorNapo populations) belonged to the only female flowers inlcuded the analysis (Figure 2.8). Pistillate perianths also had the thickest pedicels at 1.0 mm , presumably owing to the mechanical stresses placed upon the pedicel during fruit development.

The fruits of the C. capitellata complex were found to be relatively consistent in size but highly variable in pericarp texture. Pericarps ranged from green to ferruginous, glabrous to tomentellous, and smooth to sulcate or warty in appearance (Figure 2.9). Although few fruits were available for study, pericarp morphology appeared to be consistent within populations.

Molecular analyses

Bi-directional trnH-psbA intergenic spacer sequences were obtained for 59 Compsoneura capitellata individuals representing 7 populations and single specimens of C. atopa and C. diazii. Aligned sequences were 302 bp in length and contained 13 variable sites including one indel originating from an A / T homopolymer run 9-12 bp in length. Table 2.3 documents the species determinations, collection numbers, locations and Barcode of Life Database process ID numbers of collections used in the molecular analyses.

The haplotype network estimated by TCS at a 95% confidence level revealed 10 haplotypes (Figure 2.10). Each haplotype was restricted to a particular sampling location and no evidence was found of haplotypes being shared among two populations. The only locality that showed intra-population variability, Loreto, had three haplotypes that varied by only by either a single nucleotide polymorphism or a single base insertion in the longest homopolymer tract. A branch connecting the Zamora-Chinchipe and MoronaSantiago populations was removed as the sole difference between these three populations is a GAAG, GAAA, or CTTC $\left(5^{\prime}-3^{\prime}\right)$ sequence of the apical loop of the 3^{\prime} UTR (untranslated region) and the most probable mutational pattern for this region is for GAAG \leftrightarrow CTTC through an inversion and GAAG \leftrightarrow GAAA through a single transition.

Likewise a branch connecting the Morona-Santiago population to an unsampled/ancestral haplotype was removed as it was more likely to have originated from an extant and nearby population than an unsampled haplotype.

Discussion

This study represents the first intraspecific morphological and molecular investigation of the genus Compsoneura, representing 266 and 60 specimens examined for each respective analysis. Although the findings of this investigation raise many questions about the taxonomic status of the C. capitellata complex, I will hypothesize causes of the patterns of morphological and molecular variation observed across the species' range and provide an account of a provisional new and resurrected species from the Compsoneura capitellata complex.

Morphology

Since leaves are always present on male, female and juvenile trees they should be very important taxonomically, however, they are notoriously similar in morphology among species and even genera of Myristicaceae. Despite great differences in leaf size among some populations of C. capitellata, the ordination analyses indicate that leaf metrics alone cannot unambiguously differentiate populations when specimens from the entire range of the species are included. However, there was a general trend observed where montane populations showed larger leaves and fewer veins compared to their lowland conspecifics. Many of these montane specimens are from the Peruvian Andean provinces of Cusco, Amazonas and Huanuco and Junin. These populations are not only at higher altitudes (500-1000 m asl), but are typically separated from the lowland Amazon
basin by small mountain ranges. Even relatively small mountain ranges and associated changes in altitude are considered to be important generators of speciation in the tropics (Janzen 1967) so the contrasting sizes of leaves in montane and lowland may be of taxonomic significance. The leaves of trees from Morona-Santiago, Ecuador were not distinctive in size from other populations of C. capitellata but were distinct in the fact that their laminas were domed between the secondary veins rather than plane as in all other specimens examined.

Characteristics of the androecium have traditionally been regarded as the most important taxonomic characters of Compsoneura (Smith 1937, Janovec 2000). Although the ordination of androecial characters has three distinct groups, these groupings are caused mainly by anther number differences, with each cluster containing most populations. It is possible that these clusters are a result of infraspecfic variation in androecial characters rather than incipient speciation but anther number is rarely characteristic of Compsoneura species (Janovec 2000).

Characteristics of the perianth have been given little taxonomic attention with respect to Myristicaceae species but multivariate analyses have never been performed to verify their taxonomic utility in the family. Although this analysis was primarily infraspecific, it appears to confirm that quantitative perianth characters show little variation and form a continuum and are unlikely to be of great taxonomic utility.

Even though many additional specimens have been collected since Smith's (1937) monograph of Compsoneura, few populations of C. capitellata have mature staminate/pistillate flowers as well as fruits available for analysis. The relatively few fruits available for study were wildly divergent in pericarp morphologies. Fruit specimens
from the San Martin population were smooth, green and glabrescent, those of Loreto were Ferruginous-tomerntellous and longitudinally sulcate, while a single fruit found in the Pastaza population was ferruginous-tomentellous and reticulated-furrowed with a warted appearance. Although it appears that fruit morphology is conserved within populations, so few fruits are available for study that it is not evident whether this holds true for all populations. Future collections of C. capitellata should make deliberate efforts to collect and document multiple fruits within populations

Genetic analyses

Compsoneura atopa and Compsoneura diazii

C. atopa and C. diazii were included in this investigation since previous phylogenetic investigations of Compsoneura had found these taxa to be similar to C. capitellata with respect to their trnH-psbA haplotypes. Perhaps one of the most surprising revelations of the molecular sequence data was that this C. atopa specimen differed by only a single nucleotide polymorphism (SNP) when compared to three populations of Ecuadorian C. capitellata and by two SNP's from a Peruvian C. capitellata population. C. atopa is a large tree (35 m or more tall) that has been collected extensively on the Western slopes of the Andes in Colombia and Ecuador but is known from only two collections east of the Ecuadorian Andes. C. atopa differs from C. capitellata in a number of morphological traits including the possession of brochidodromous venation, persistent abaxial leaf pubescence, secondary vein number (12-27 versus 4-12), a dense indument of the perianth, apical anther spurs, and the presence of bracteoles on inflorescences. The differences between these two species are so numerous and pronounced that Janovec (2000) subdivided the informal section Hadrocarpa into
subgroups Atopa and Capitellata, which were named after these species. Therefore, it was truly surprising to find that C. atopa differed by only 1 or 2 SNP's from 4 different populations of C. capitellata, especially considering that these SNP's are primarily due to hairpin-loop inversions or homopolymer run indels. It is also interesting that this specimen's haplotype is most similar to C. capitellata from southeastern Ecuador (120608 km distant) rather than the nearby C. capitellata population (only 38 km distant). A previous investigation (Chapter 1 of this thesis) that employed the trnH-psbA spacer for some members of subgroup Atopa (C. atopa, C. rigidifolia, and C. sp1) found that C. atopa (J. J. Janovec 1374), C. cuatrecasasi (AHG 40682), and C. sp 2 (AHG 23826) are paraphyletic with respect to other members of their subgroups. The two C. atopa individuals that have been found east of the Andean Cordillera may either represent a population that predates the uplift of the Andes or a more contemporary migration event. The seed source for such a dispersal event could have come from the western slopes of Colombia or the 20 km wide, 1874 m asl, Las Cruces mountain pass which connects the Choco region of Colombia with the lowland Amazon via the Magdalena valley. Although other members of subgroup Atopa have been collected in the Magdalena Valley, this latter suggestion seems unlikely as C. atopa has yet to be collected there. It is also interesting to note that the seeds of C. atopa are boiled and roasted by indigenous peoples of the Baudo region of Colombia (La Rotta 1985) so it is conceivable that humans may have played a role in the dispersal of this species across the Andes. Plastid haplotype sharing, or chloroplast capture (Hollingsworth et al 2011), is well document in many plant taxa (Rieseberg and Soltis 1991, Golden and Bain 2000, Palma et al 2003) even in the presence strong morphological dissimilarity among species (Palma-Silva et al. 2011).

It is therefore possible that haplotype similarity among the morphologically dissimilar C. capitellata, C. atopa, and C. diazii observed in this study is due to relatively recent hybridization between these species resulting in plastid introgression. If the low collection rates of C. atopa east of the Andes are an indicator of its population density then hybridization with the more numerous C. capitellata trees may have been more likely. In light of these findings, I plotted the collection locations of C. atopa on a map of precipitation regimes in South America (Figure 2.11) to see if there was any obvious trend. It appears that C. atopa is restricted to areas of high precipitation ($>4000 \mathrm{~mm} /$ year). Therefore future collections in unexplored regions of Amazonian Ecuador and Colombia may find additional populations of this species. Future investigations should seek additional collections of C. atopa from throughout its western and eastern Andean range as well as more variable chloroplast and multiple bi-parentally inherited markers in order to investigate the origin of Amazonian C. atopa.

Compsoneura diazii was separated from the C. capitellata complex as a new species by Janovec (2002) so it is of little surprise that C. diazii is nested well within the haplotype network. It is somewhat surprising, however, that the C. diazii haplotype was most similar to the Pastaza, Ecuador population of C. capitellata rather than the less geographically distant populations of C. capitellata from San Martin, Peru, and South Western Ecuador (Zamora-Chinchipe and Morona-Santiago).

Compsoneura capitellata

All sampled populations of C. capitellata appear to be fixed for one or very few haplotypes. Only one sampled population, Loreto, exhibited SNP's within its population but each of these other haplotypes consisted of a single SNP relative to the most common
haplotype. This is somewhat surprising given that relatively high levels of within population diversity has been found in previous studies of tropical tree cpDNA using restriction polymorphisms (Caron et al. 2000, Latouche-Halle et al. 2003). However, the low variability found in this study was not unexpected given that Sauquet et al. (2003) found very low levels of nucleotide substitution in cpDNA coding and non-coding regions amongst genera of Myristicaceae. Once the loops in the haplotype network were removed it is evident that the most northerly populations (Napo, Pastaza, MoronaSantiago, Zamora-Chinchipe and San Martin) have the fewest nucleotide differences between them as compared to the more isolated populations (at least with respect to sampling patterns) of Loreto and Cusco. Given the apparent fixation of haplotypes for each population it is difficult to tell if these populations represent a large panmictic assemblage of populations of a single morphologically and molecularly diverse species or numerous isolated populations and/or distinct undescribed species. These questions are particularly difficult given the low levels of molecular variation available and missing morphological characters for many populations, and few distinguishing characters when present.

Of central importance to understanding and interpreting patterns of molecular and morphological variation is the natural history of the species of study. Such high levels of population differentiation can be easily generated in maternally inherited DNA, such as plastid DNA, if propagule dispersal is restricted. The dispersal agents of these largeseeded trees remains unknown to date but it is possible that these trees were dispersed by now extinct large mammals such as the giant ground sloths or gomphotheres (Janzen and Martin 1982). The fruits of C. capitellata are covered by a thick, woody, and indehiscent
to forced-dehiscent pericarp that protects a single large seed ($2-4 \mathrm{~cm}$ in diameter) covered by a thin, white and fatty aril (Janovec 2000). These fruits fit many of the criteria of the Pleistocene megafaunal dispersal syndrome outlined by Janzen and Martin (1982). The largest mammals currently found in the range of C. capitellata that could act as potential dispersal agents are white-tailed and Brocket's deer (Mazama spp.), tapir (Tapirus spp.), as well as spider (Ateles spp.), howler (Alouatta spp.) and wooly monkeys (Lagothrix spp.) but it seems highly unlikely that any of these species would act as effective long distance dispersers as it would necessitate them swallowing the $2-4 \mathrm{~cm}$ seeds, which is likely too large for them to consume intact. This hypothesis could be tested with greenhouse studies to see whether scarification and the application of stomach-like acids have a positive effect on the germination potential of C. capitellata as well as field studies to investigate the rate of seed removal, and predation versus dispersal.

There remains one other extant indigenous mammal capable of dispersing the seeds of these trees: Homo sapiens. Humans have also likely had a great impact on the Amazonian flora and fauna for the last 10,000 years (Janzen 1983, Roosevelt et al. 1996, Paz-Riviera and Putz 2009). It has been found relatively recently that a charcoal enriched soil called Terra Preta, which is found in large areas (perhaps 20\% of the Brazilian Amazon) of Brazil adjacent Amazon river, was created by humans between 600-8700 years BP (Smith 1980, Liang et al. 2008). Terra Preta vastly changes the soil microbiota (Kim et al. 2007, Grossman et al. 2010) and increases a soils cation-exchange capacity which helps to trap nitrogen within the soil and release it and other nutrients to plants (Liang et al. 2006, Chan et al. 2007). It is believed that the advent of Terra Preta may have enabled the development of large human populations on the relatively poor oxisols
of the Amazon via a pre-Colombian agricultural revolution (Smith 1980, Hackenberger et al. 1999) but these societies may have collapsed due to introduced diseases. The rich endosperm of Compsoneura mexicana seeds is commonly eaten by children in Central America (Janovec 2000). It is therefore plausible that such ancient societies may have actively cultivated and spread C. capitellata seeds for their fatty arils and rich endosperm which is reported to taste similar to Brazil nuts (Bertholettia excelsa). If this occurred it is possible that the cultivation of these trees has impacted its distribution and genetic structure.

A large degree of population subdivision may be expected in a non-recombining genome of a shade tolerant, old growth forest species such as C. capitellata. Previous studies of tropical (Hamilton 1999) and temperate broadleaved trees (Demesure et al. 1996, Petit et al. 2002) have reported a large degree of fixation of cpDNA haplotypes within populations even at small spatial scales. Demesure et al.(1996) found a large degree of population differentiation in European Beech (Fagus sylvatica) which was attributed to the last glaciation but there was also a widespread haplotype that connected all populations. Most analyses of cpDNA structure in the Neotropics have focused on investigating the effects of forest fragmentation on population genetic structure and have therefore been concerned with relatively small spatial scales. Additionally, population subdivision may be easily achieved with cpDNA as its effective population is a quarter that of nuclear markers and selection may be especially strong in non-recombining genomes dense in mRNA and protein-coding genes.

It is also possible that these populations are exchanging genes via pollen but this would not be evident using maternally inherited markers. Although possible, I think this
is highly unlikely as the flowers are likely visited only by small thrips and beetles which are unlikely to travel great distances. More field work is needed to ascertain whether C. capitellata exists as discreet or continuous breeding populations across their range. Additional and more variable molecular markers will also be needed in the future to help elucidate whether seed dispersal, pollen flow, or other factors are restricting gene flow between these populations. It would also be of great interest to investigate whether similar genetic patterns exists for other taxa as this may indicate that such patterns are the result of ecological speciation, human cultivation and/or phylogeographic processes.

Compsoneura capitellata inhabits the largest geographical and altitudinal range of any species in the genus, spanning 1700 km of latitude, 1200 km longitude, and 1200 m elevation. These trees can be found growing in white sands (San Martin), sandstone ridges (Morona-Santiago), and red oxisols (much of its range). These studies have revealed a large degree of variation in leaf, flower, and fruit morphologies but most of these values form a continuum with respect to geographical populations. The highest degree of morphological and genetic diversity was found in the topographically and edaphically diverse Southwestern region of Ecuador.

Conclusion

With these data it appears that the the Capitellata complex exists as a morphologically diverse group with pronounced genetic discontinuities between populations. Perhaps more variable markers and increased sampling of the Andes to the Amazon region will help answer whether these populations are actively exchanging genes via seed and/or pollen dispersal. It would also be of considerable interest to determine whether the larger leaved montane populations are more genetically similar to
local lowland populations or more distant populations of similar morphology and altitude (i.e. have montane varieties arisen multiple times in the Andes). Given the large number of nucleotide differences of C. capitellata in the mountains of Cusco, Peru and this population's atypical large leaf morphologies and affinities to Markgraf's C. tessmannii, I propose the provisional resurrection of C. tessamannii. Further genetic evidence would be desirable to investigate whether these two large-leaved trees are indeed genetically related. Additionally, collections from the sandstone ridges of the Cordillera del Condor and Cutucu formations of Ecuador appear to represent a new taxon that is provisional described below as Compsoneura morona-santiagoensis. C. morona-santiagoensis is unique within the C. capitellata complex in having domed leaf lamina in between the secondary veins but in other characters of the leaves, flowers and fruits it is similar to other members of the C. capitellata complex. It is possible that some of the other taxa with morphological oddities such as the Pastaza, Ecuador population that possesses a warted pericarp and distinct haplotype represents new species, however the description of these taxa as new species requires additional morphological and molecular data in order to establish the degree to which these populations are related.

Provisional Taxonomic descriptions:

The following information summarizes a provisional combination (C. morona-santiago) and provisional resurrection (C. tessmanii) of taxa from the C. capitellata complex.

Compsoneura morona-santiago J. Janovec \& R. Steeves, sp. nov. -TYPE: ECUADOR. Morona-Santiago: Taisha, $2^{\circ} 225^{\prime} \mathrm{S}, 77^{\circ} 31 \mathrm{~W}, 500 \mathrm{~m}, 31 \mathrm{Jan}$ 1962, P.C. D. Cazalet and T. D. Pennington 7602 (holotype: NY; isotype: US).

Tree to 15 m . Bark unknown. Sap red from inner bark. Branches teret to subterete, 0.20.6 cm diam., rugose to longitudinally striate, brown, densely to sparsely ferrugineous-tomentellous throughout when young, glabrescent to minutely tomentellous in leaf axils and throughout with age, the hairs short-stalked to sessile, 2-branched, the upper branch with a concave surface. Leaves simple, alternate, spirally arranged on upper trunk, distichous on branches, Petioles stout, subterete, slightly canaliculate, 0.9-1.5 x 0.1-0.2 cm, brown to nearly black, glabrous to glabrescent, the hairs short stalked to sessile, 2-branched; Blades elliptic to slightly obovate-elliptic, 7.5-21.1 cm long, 2.2-6.5 cm wide at $1 / 2$ length, $2.5-7.6 \mathrm{~cm}$ wide at $1 / 2$ the length, 2.3-6.8 cm at $3 / 4$ length, thick chartaceous to think coriaceous, the adaxial surface drying olive-brown to dark brown, dull to glossy, glabrescent to sparsely ferrugineous-tomentellous when young, especially at the base, glabrous to glabrescent throughout with age, the abaxial surface drying light brown to brown, dull, glabrescent to sparsely ferrugineous-tomentellous when young, specially at base, glabrous to glabrescent throughout with age, the hairs minute, sessile, short-stalked, 2-branched, the base acute to broadly to weakly acute, the margins conspicuously revolute, the apex weakly to strongly caudate, the acumen $0.7-1.1 \mathrm{~cm}$ long; Venation with costa raised and glabrous to glabrescent at base adaxially, prominently keeled and glabrescent or sparsely tomentellous abaxially, especially toward base, the secondary nerves acute-ascending, eucamptodromous, distinct near margins, 712 per side, spaced $0.6-3.5 \mathrm{~cm}$, slightly impressed, same color as lamina glabrous adaxially, prominent, same color as lamina, glabrous to glabescent abaxially, the tertiary veins conspicuous, semi-parallel, and semi-perpendicular to secondary veins. Staminate
inflorescence axillary, paired, paniculate, $5.5-8.0 \times 0.8-1.2 \mathrm{~cm}$, sparsely surface drying olive-brown to dark brown, dull to glossy, glabrescent to sparsely ferrugineoustomentellous to glabrescent with age, the hairs 2-branced; Rachis densely alternate clusters of about 6-9 per branchlet, arising slightly unilaterally from branchlet pedicels, up to $0.15-0.28 \times 0.02 \times 0.03 \mathrm{~cm}$; Pistillate inflorescence unknown. Staminate flower buds long ovate to long elliptic-ovate. Staminate buds unknown. Staminate perianth elongate vasiform, $0.23-0.32 \times 0.15-0.2 \mathrm{~cm}$, coriaceous to thick-coriaceous, yellow to orange when fresh, drying brown, glabrous adaxially, densely to minutely ferrugineoustomentellus abaxially, the hairs short-stalked or sessile, 2-breanched, tube $0.6-0.10 \mathrm{~cm}$ long, lobes 3-4, lanceolate to ovate-lanceolate to narrowly deltoid, $0.16-0.24 \times 0.13-0.18$ cm , erect from base to apex, the apices acute. Androecium 0.07-0.15 x 0.12 cm long, the filament column $0.02-0.04 \mathrm{~cm}$ long, $0.01-0.05 \mathrm{~cm}$ at base. $0.01-0.04 \mathrm{~cm}$ at apex, dark, solid, oily, glabrous, the anthers $6-7$, distinct, erect from base, $0.05-0.07 \mathrm{~cm}$ long. The bases rounded, oil cells conspicuous in the anther connective, the apices strongly acute. Pistillate flowers: known only from persistent perianth subtending fruit, thin coriaceous, drying brown, glabrous adaxially, densely to thinly ferrugineous-tomentellus abaxially, the hairs 2-branched. Mature Fruits 1-5 per infructescence, sub-globose to widely transversely elliptic, $2.9-4.5 \times 3.0-5.0 \mathrm{~cm}$, minutely to densely, muricate, slightly rugose and green when fresh, drying brown, glabrous to glabrescent; Pericarp minutely to densely muricate, glabrescent to sparsely ferrugineous-tomentellous, strongly ligneous, $0.2-0.3 \mathrm{~cm}$ thick, appearing indehiscent or partially deshiscent from base; Seed with an entire, thin aril, white when fresh, yellowish when dry; Testa dull, dark brown, somewhat warty to slightly muricate; Endosperm white, entire.

Distribution. This species is a member of the Capitellata subgroup (sensu Janovec 2000), with brown drying leaves, weakly anastomosing secondary veins, and sub-globose, ligneous fruit with a softly sulcate or furrowed pericarp. Elongate, narrow, densely flowered paniculate inflorescences characterize this species. Based on anthers which are strongly erect-ascending from base to apex, this species is distinct from C. capitellata and may be related to C. diazii. In leaf morphology it is similar to C. capitellata, with brown lamina and weakly anastomosing veins. Compsoneura diazii is easily differentiated on the basis of strongly anastomosing veins. This species is endemic to southeastern Ecuador where it has been collected on numerous occasions from moist premontane to cloud forest exclusively on soils of sandstone origin. In Morona-Santiago it was collected from around the municipality of Taisha and the in the Cordilllera de Cutucu on the road between Mendez and Morona. In Zamora-Chinchipe it was collected along the road between Nudo de Sabanillo and Vallodolid as well as near the town of Quimi. Sandstone substrate is prevalent in this region of southeastern Ecuador and, with future field work, may prove to be the limiting biogeographic factor for this species. Etymology: This species name is derived from the province of Morona-Santiago, Ecuador, where this species was first collected.

Compsoneura tessmannii (Markgraf), Notizbl. Bot. Gart. Berlin 9: 964. 1926. TYPE:
PERU. Loreto: basin of Rio Marañon from Iquitos upstream on the way to the mouth of Rio Santiago at Pongo de Manseriche, ca. $3^{\circ} 50^{\prime}$ S, $77^{\circ} 40^{\prime} \mathrm{W}$, 23 Sep 1924, Tessmann 4108 (holotype: B; fragment of holotype: F; photos of holotype: F, H, MO, NY; isotype fragment: F, NY).

Tree to 18 m tall and 30 cm dbh. Bark reddish in colour, furrowed and peels off in long thin fibrous slivers. Sap profuse and clear-red. Branchlets terete to subterete, $0.3-0.8 \mathrm{~cm}$ wide, rugose to longitudinally striate when dried, brown-green, lenticellate, glabrescent to minutely tomentellous in leaf axils and glabrous throughout with age, the hairs shortstalked to sessile, 2-branched. Leaves simple, alternate, thick-coriaceous, distichous on branches, leaf buds ferruginous but soon glabrous upon leaf expansion; petioles stout, subterete, canaliculate, $0.8-2.6 \mathrm{~cm}$ long and $0.3-0.6 \mathrm{~cm}$ wide, brown to nearly black when dry, glabrous to glabrescent, the hairs short stalked to sessile, 2-branched; blades elliptic-oblong, lamina $14.8-30.0 \mathrm{~cm}$ long, $4.5-11.5 \mathrm{~cm}$ wide at $1 / 4$ length, $3.5-13.6 \mathrm{~cm}$ wide at $1 / 2$ width, $4.9-12.0 \mathrm{~cm}$ wide at $3 / 4$ length, base broadly cuneate to acute and mucronate to cuspidate at apex, conspicuously revolute at margins, drying light to dark brown or infrequently greenish brown, glabrescent when young but soon glabrous, adaxial surface deep green and glossy, abaxial surface lighter green with a dull shine; venation costa glabrous and raised above, prominently keeled and glabrous-glabrescent below; secondary nerves 6-11 per side, spaced by 1.1-2.5 cm , arcuate ascending, eucamptodromous, partially anastomosing near margin. Staminate inflorescences axillary, paniculate 3-12 cm long, 2-4 cm wide, rachis 4-25 alternate branched, $7-15 \mathrm{~cm}$ long, vestiture of staminate inflorescences densely ferruginous-tomentellous, hairs 2branched. Staminate flower buds green and globose. Staminate flowers subglobose to globose, arranged in clusters of 4-12 per inflorescence branch, pedicels slender, 0.1-0.13 cm wide and 0.29-0.42 cm long; perianth coriacous, yellow fresh, drying dark brown, $0.56-0.61 \mathrm{~cm}$ long, $0.44-0.5 \mathrm{~cm}$ wide; tepal lobes 3 (rarely 2-4), ovate-deltoid, 0.43-0.45
long, $0.32-0.37$ wide at base, perianth tube $0.14-0.17 \mathrm{~cm}$ long; perianth staminate vestiture glabrous within, densely ferruginous-tementellous outside, hairs 2-branched. Androecium 0.2-0.22 cm long, filament column $0.09-0.15 \mathrm{~cm}$ long, $0.1-0.11 \mathrm{~cm}$ wide at apex, $0.1-0.12 \mathrm{~cm}$ wide at base, the anthers $6-10$, free and spreading from the base, slightly incurved above, $0.2-0.22 \mathrm{~cm}$ long, acute-obtuse at apex, rounded at base. Pistillate inflorescences unknown. Fruits (immature) 1-3 per infructescence, globose, tepals slightly accrescent; Pericarp red tomentose to glabrescent with age, sulcate to rugose with a warty appearance, presumably indehiscent or forced dehiscent; Seed unknown; Endosperm unknown

Distribution: Receently collected from the vicinity of Quincemil, Peru in the mountains of the Madre de Dios watershed. The dried leaf lamina of the Quincemil population has a strong resemblance to type specimens of C. tessmannii (Markgraf) which was described in 1926 as a new species of with affinities to capitellata from Pongo de Manseriche, Iquitos, Peru but was synonymized as C. capitellata by Janovec (2000). Further morphological and genetic studies are desireable to determine whether C. tessmannii populations of Amazonas and Cusco provinces represent disjunct conspecific taxa.

Additional specimens examined: Peru. CUSCO: Quispicanchi Province, District of Camanti, Community of Quincemil, -13.23, -70.78, 500-1200 m, 06/26-07/04, 2008, R. Steeves and P. Centeno 527(OAC); R. Steeves and P. Centeno 531 (OAC); R. Steeves and P. Centeno 535 (OAC); R. Steeves and P. Centeno 538 (OAC); R. Steeves and P. Centeno 548 (OAC); R. Steeves and P. Centeno 550 (OAC); R. Steeves and P. Centeno 551 (OAC); R. Steeves and P. Centeno 556 (OAC); R. Steeves and P. Centeno 558
(OAC); R. Steeves and P. Centeno 562 (OAC); R. Steeves and P. Centeno 563 (OAC); R. Steeves and P. Centeno 568 (OAC); R. Steeves and P. Centeno 569 (OAC); R. Steeves and P. Centeno 570 (OAC); R. Steeves and P. Centeno 571 (OAC); R. Steeves and P. Centeno 572 (OAC); R. Steeves and P. Centeno 577 (OAC); R. Steeves and P. Centeno 591 (OAC); R. Steeves and P. Centeno 593 (OAC); and R. Steeves and P. Centeno 600 (OAC).

Tables

Table 2.1 Specimens used in vegetative and floral ordinations. Herbarium code and accession number, collectors, collection number (Coll.\#), country, decimal degrees latitude (DD Lat.), decimal degrees longitude (DD Long.), and elevation (Elev.) are listed.

Herbarium	Collector(s)	Coll. \#	Country	DD Lat.	$\begin{gathered} \text { DD } \\ \text { Long. } \end{gathered}$	Elev.
QCNE-88196	Aulestia, M.	2260	Ecuador	0.65	-76.43	250
	Schultes, R. E., and I.					
	Cabrera	14144	Colombia	0.12	-71.25	250
	Schultes, R. E., and I.					
US 2171356	Cabrera	14144	Colombia	0.12	-71.25	250
QCNE-64227	Palacios, W., et al.	9197	Ecuador	0.08	-76.18	230
	Schultes, R. E., and I.					
US 2171510		15107	Colombia	0.07	-71.12	300
	Schultes, R. E., and I.					
US 2171510	Cabrera	15107	Colombia	0.07	-71.12	300
	Schultes, R. E., and I.					
US 2220060	Cabrera	15107	Colombia	0.07	-71.12	300
	Schultes, R. E., and I.					
H	Cabrera	15107	Colombia	0.07	-71.12	300
	Schultes, R. E., and I.					
US 2220060	Cabrera	15107	Colombia	0.07	-71.12	300
	Schultes, R. E., and I.					
H	Cabrera	15107	Colombia	0.07	-71.12	300
	Schultes, R. E., and I.					
NY	Cabrera	15107	Colombia	0.07	-71.12	300
QCNE-64522	Palacios, W., et al.	9226	Ecuador	0.00	-76.18	230
QCNE-63507	Palacios, W., et al.	8989	Ecuador	0.00	-76.18	230
QCNE-64198	Palacios, W., et al.	9311	Ecuador	0.00	-76.18	230
NY	Certn, C., and F. Hurtado	4138	Ecuador	-0.10	-76.18	200
QCNE-44552	Certn, C., and J. Ayala	9497	Ecuador	-0.13	-76.37	240
MO-5020318	Gudi, O, E.	118	Ecuador	-0.33	-77.08	250
QCNE-45495	Rubio, D.	280	Ecuador	-0.33	-77.08	250
MO3806254	Espinoza, S.	83	Ecuador	-0.33	-77.08	250
QCNE 39714	Gudi, O, E.	118	Ecuador	-0.33	-77.08	250
NY	Rubio, D.	280	Ecuador	-0.33	-77.00	250
MO 3794978 MO	Rubio, D.	280	Ecuador	-0.33	-77.00	250
05030983	Aulestia, M.	1651	Ecuador	-0.42	-76.58	250
QCNE 84139	Aulestia, M.	1651	Ecuador	-0.42	-76.58	250
MO 4063871	Palacios, W.	2310	Ecuador	-0.43	-77.10	300
NY	Palacios, W.	2310	Ecuador	-0.43	-77.10	300
QCNE 19906	Palacios, W.	2310	Ecuador	-0.43	-77.10	300
NY	Neill, D.	7150	Ecuador	-0.43	-77.02	250
MO 3482889	Neill, D.	7150	Ecuador	-0.43	-77.02	250
QCNE 55032	Palacios, W., et al.	7586	Ecuador	-0.48	-75.53	230
MO 4063877	Cer¢n, C., and W. Palacios	3029	Ecuador	-0.50	-77.02	250

NY	Ollgaard, B., et al.	57050	Ecuador	-0.53	-76.37	300
QCNE 87119	Dik, A., and C. Aulestia	1436	Ecuador	-0.55	-76.52	250
QCNE-75762	Aulestia, M., and G. Grefa	269	Ecuador	-0.55	-76.50	250
QCNE-53357	Korning, J., and K. Thomsen	47562	Ecuador	-0.55	-76.37	370
QCNE-53352	Korning, J., and K. Thomsen	47556	Ecuador	-0.55	-76.37	250
F 2612343	Palacios, W., et al.	7798	Ecuador	-0.55	-75.53	230
F 2162341	Palacios, W., et al.	7812	Ecuador	-0.55	-75.53	230
QCNE 54636	Palacios, W., et al.	7798	Ecuador	-0.55	-75.53	230
QCNE 54624	Palacios, W., et al.	7812	Ecuador	-0.55	-75.53	230
QCNE/MO MO	Freire, E., P. Cerda	23	Ecuador	-0.63	-77.45	690
05030981	Aulestia, M.	2746	Ecuador	-0.65	-76.43	250
$\begin{aligned} & \text { QCNE-88049 } \\ & \text { MO } \end{aligned}$	Aulestia, M.	2446	Ecuador	-0.65	-76.43	250
05030982	Aulestia, M.	2713	Ecuador	-0.65	-76.43	250
QCNE-88239	Aulestia, M.	2497	Ecuador	-0.65	-76.43	250
QCNE-88319	Aulestia, M.	2497	Ecuador	-0.65	-76.43	250
QCNE-88464	Aulestia, M.	2746	Ecuador	-0.65	-76.43	250
QCNE-88658	Aulestia, M., and T. Ahue	2909	Ecuador	-0.68	-76.45	260
QCNE/MO	Alvarado, A.	390	Ecuador	-0.70	-77.33	810
Mo 05030980	Aulestia, M., and T. Ahue	2909	Ecuador	-0.78	-76.45	260
$\begin{aligned} & \text { QCNE-8642 } \\ & \text { MO } \end{aligned}$	Dik, A., and J. Andi	953	Ecuador	-0.83	-76.35	270
05030962	Dik, A., and J. Andi	953	Ecuador	-0.83	-76.35	270
QCNE-86816	Dik, A., and R. Enomenga	1145	Ecuador	-0.83	-76.30	250
QCNE-86694	Dik, A.	1232	Ecuador	-0.85	-76.25	260
MO 3654088	Cer\$n, C., et al.	4123	Ecuador	-0.92	-76.18	200
MO 3654089	Cer¢n, C., et al.	4138	Ecuador	-0.92	-76.18	200
US 3129061	Cer\$n, C., and F. Hurtado	4140	Ecuador	-0.92	-76.18	200
QCNE-17872	Cer\$n, C., and F. Hurtado	4140	Ecuador	-0.92	-76.18	200
QCNE 28641	Cer\$n, C., and F. Hurtado	4123	Ecuador	-0.92	-76.18	200
MO 3654090	Cer\$n, C., and F. Hurtado	4140	Ecuador	-0.92	-76.18	200
QCNE-28645	Cer\$n, C., and F. Hurtado	4138	Ecuador	-0.92	-76.18	200
MO 4063873	Cer\$n, C., and F. Hurtado	3876	Ecuador	-0.92	-76.18	200
QCNE-84478	Aulestia, M., and O. Gonti	1983	Ecuador	-0.92	-76.15	250
QCNE 84462	Aulestia, M.	1859	Ecuador	-0.92	-76.15	250
QCNE 86988	Dik, A.	1455	Ecuador	-0.93	-76.22	248
QCNE-88822	Pitman, N.	587	Ecuador	-0.93	-76.22	250
QCNE-86996	Dik, A.	1447	Ecuador	-0.93	-76.22	248
NY	Palacios, W.	2409	Ecuador	-0.95	-76.22	230
QCNE-28524	Palacios, W.	2409	Ecuador	-0.95	-76.22	230
MO 3597372	Palacios, W.	2409	Ecuador	-0.95	-76.22	230
QCNE/MO	Aulestia, M., and A. Omehuat Aulestia, M., and B.	3246	Ecuador	-0.98	-76.20	235
QCNE/MO	Quihuinamo Aulestia, M., and B.	3111	Ecuador	-0.98	-76.20	237
MO	Quihuinamo	3207	Ecuador	-0.98	-76.20	235
QCNE	Aulestia, M., and B.					
096476	Quihuinamo	3111	Ecuador	-0.98	-76.20	237
QCNE	Aulestia, M., and B.					
096452	Quihuinamo	3207	Ecuador	-0.98	-76.20	235

QCNE 87099	Dik, A., and T. Ahue	1563	Ecuador	-1.00	-76.18	250
Harvard	Schultes, R. E., and F. Lopez	10200	Brazil	-1.00	-69.50	150
QCNE-87276	Dik, A., and T. Ahue	1598	Ecuador	-1.03	-76.18	249
MO 4221156	Cer¢n, C., and C. Iguago	5599	Ecuador	-1.07	-77.60	450
QCNE 46430	Cer¢n, C., et al.	8728	Ecuador	-1.07	-77.60	400
MO 4066077	Cer¢n, C., et al.	8728	Ecuador	-1.07	-77.60	400
QCNE-46737	Cer¢n, C., et al.	8728	Ecuador	-1.07	-77.60	400
NY	Zak, V.	4161	Ecuador	-1.25	-76.92	320
MO 4210196	Zak, V.	4161	Ecuador	-1.25	-76.92	320
QCNE-21871	Zak, V.	4161	Ecuador	-1.25	-76.92	320
Harvard	Garcia-Barriga, H.	14769	Colombia	-1.25	-69.63	240
NY	Tipaz, G., et al.	571	Ecuador	-1.42	-77.33	400
F 2157840	Hurtado, F.	2987	Ecuador	-1.42	-77.33	400
QCNE/MO	Palacios, W.	12164	Ecuador	-1.47	-77.43	500
QCNE-49315	Gudi, O, E.	930	Ecuador	-1.57	-77.42	580
QCNE 80470	Palacios, W.	11379	Ecuador	-1.77	-78.00	900
Mo 2820305	Diaz, C.	1380	Peru	-2.50	-75.75	200
F 668926	Klug, G.	2130	Peru	-2.87	-75.25	180
Harvard	Klug, G.	2130	Peru	-2.87	-75.25	180
Harvard	Klug, G.	2130	Peru	-2.88	-75.25	180
US 1456778	Klug, G.	2130	Peru	-2.88	-75.25	180
NY	Klug, G.	2130	Peru	-2.88	-75.25	180
MO1039604	Klug, G.	2130	Peru	-2.88	-75.25	180
NY	Cid Ferreira, C. A., et al. Schultes, R. E., and G. A.	8462	Brazil	-2.88	-67.75	180
H	Black Schultes, R. E., and G. A.	8166	Brazil	-3.00	-69.00	100
US 1989313	Black	8166	Brazil	-3.00	-69.00	100
MO 4257892	Pipoly, J.	13212	Peru	-3.33	-72.92	400
MO 3826656	Vasquez, R.	11810	Peru	-3.33	-72.92	130
MO 4229666	Vasquez, R., and N. Jaramillo	16072	Peru	-3.33	-72.92	140
F1868820	Rimachi Y., M.	3043	Peru	-3.50	-73.07	100
NY	Rimachi Y., M.	3043	Peru	-3.50	-73.07	100
MO 2825596	Rimachi Y., M.	3043	Peru	-3.50	-73.07	100
MO 3630620	Vasquez, R., et al.	5164	Peru	-3.50	-72.83	106
NY	Vasquez, R., et al.	5164	Peru	-3.50	-72.83	106
F 2034668	Vasquez, R., et al.	5164	Peru	-3.50	-72.83	106
F 1312427	Fr¢es, R. L. de	20820	Brazil	-3.50	-68.95	200
US 2343268	Fr¢es, R. L. de	34864	Brazil	-3.50	-68.95	200
MO 2188259	Ducke, A.	19576	Brazil	-3.50	-68.95	200
NY	Ducke, A.	314	Brazil	-3.50	-68.95	200
NY 3097	Frces, R. L. de	20813	Brazil	-3.50	-68.95	200
MO 2188260	Ducke, A.	23693	Brazil	-3.50	-68.95	200
F 1230229	Ducke, A.	561	Brazil	-3.50	-68.95	200
H	Ducke, A.	1486	Brazil	-3.50	-68.95	100
NY	Ducke, A.	23693	Brazil	-3.50	-68.95	200
MO 1255784	Ducke, A.	561	Brazil	-3.50	-68.95	200
US 1516503	Ducke, A.	23693	Brazil	-3.50	-68.95	200
Harvard	Ducke, A.	143	Brazil	-3.50	-68.95	200
NY-2728	Ducke, A.	1486	Brazil	-3.50	-68.95	100
NY	Ducke, A.	19576	Brazil	-3.50	-68.95	200

F 1486643	Ducke, A.	1486	Brazil	-3.50	-68.95	200
NY	Ducke, A.	561	Brazil	-3.50	-68.95	200
NY	Frces, R. L. de	20820	Brazil	-3.50	-68.95	200
MO 4257890	Pipoly, J., et al.	12632	Peru	-3.58	-73.25	110
NY	Klug, G.	180	Peru	-3.58	-73.25	100
F 6184000	Williams, L.	3786	Peru	-3.58	-73.25	120
NY	Tessman, G.	5101	Peru	-3.58	-73.25	120
F 624285	Klug, G.	180	Peru	-3.58	-73.25	100
MO 3869563	Vasquez, R., and N. Jaramillo	9676	Peru	-3.80	-73.42	122
MO 3042849	Tunqui, S.	189	Peru	-3.83	-77.67	200
MO 2892231	Huashikat, V.	1786	Peru	-3.83	-77.67	200
MO 2813382	Huashikat, V.	1035	Peru	-3.83	-77.67	180
MO 2892223	Huashikat, V.	2012	Peru	-3.83	-77.67	200
MO 3042848	Tunqui, S.	301	Peru	-3.83	-77.67	200
MO 4257893	Vasquez, R., et al.	15809	Peru	-3.87	-73.25	180
MO 4257891	Vasquez, R.	14517	Peru	-3.87	-73.25	200
MO 3630613	Vasquez, R., et al.	5880	Peru	-3.87	-73.25	200
MO 2734836	Rimachi Y., M.	3303	Peru	-3.88	-73.63	170
FLAS 186349	Rimachi Y., M.	4532	Peru	-3.88	-73.63	170
NY	McDaniel, S., and M. Rimachi	21069	Peru	-3.88	-73.63	160
NY	Rimachi Y., M.	3303	Peru	-3.88	-73.63	170
MO 2427881	Rimachi Y., M.	2849	Peru	-3.88	-73.63	160
MO 2734836	Rimachi Y., M.	3303	Peru	-3.88	-73.63	160
NY	Rimachi Y., M.	4532	Peru	-3.88	-73.63	160
NY	Rimachi Y., M.	165	Peru	-3.88	-73.63	150
US 3177354	Rimachi Y., M.	4532	Peru	-3.88	-73.63	160
NY	Vasquez, R., et al.	5354	Peru	-3.92	-73.92	0
MO 3842988	Vasquez, R., et al.	12195	Peru	-3.92	-73.67	150
Tex	Vasquez, R., et al.	5354	Peru	-3.92	-73.58	130
MO 3584403	Vasquez, R., et al.	5354	Peru	-3.92	-73.58	130
MO 2204538	Kayap, R.	662	Peru	-4.00	-78.00	375
NY	McDaniel, S.	29641	Peru	-4.00	-73.25	200
F2027320	Vasquez, R., et al.	7296	Peru	-4.17	-72.00	116
NY	Vasquez, R., et al.	7296	Peru	-4.17	-72.00	116
MO 3628224	Vasquez, R., et al.	7296	Peru	-4.17	-72.00	116
QCNE 54324	Palacios, W., et al.	8654	Ecuador	-4.27	-78.70	930
NY	Prance, G. T., et al.	23868	Brazil	-4.47	-71.68	300
MO 2725124	Prance, G. T., et al.	23868	Brazil	-4.47	-71.68	200
MO 2323593	Ancuash, E.	218	Peru	-4.50	-78.12	333
MO 2205012	Ancuash, E.	142	Peru	-4.50	-78.12	33
NY-00066801	Tessmann, G.	4108	Peru	-4.50	-77.45	500
F-1022586	Tessmann, G.	4108	Peru	-4.50	-77.42	500
MO -4929828	Vasquez, R., et al.	24158	Peru	-4.55	-78.20	600
MO	Vasquez, R.	24158	Peru	-4.55	-78.20	600
F 2157471	Cid Ferreira, C. A., et al.	9949	Brazil	-4.55	-71.67	100
NY	Cid Ferreira, C. A., et al.	9949	Brazil	-4.55	-71.67	100
US 3290254	Cid Ferreira, C. A., et al.	9949	Brazil	-4.55	-71.67	200
MO 2435914	Ancuash, E.	424	Peru	-4.63	-78.13	440
NY	Ancuash, E.	424	Peru	-4.63	-78.13	440
MO 3032654	Ancuash, E.	424	Peru	-4.63	-78.13	440

MO-5096929	Jaramillo, N., and K. Katip	797	Peru	-4.92	-78.32	320
MO-5096932	Vasquez, R., et al.	19932	Peru	-4.92	-78.32	550
MO-5096933	Vasquez, R., et al.	19956	Peru	-4.92	-78.32	550
MO-5096931	Vasquez, R., et al.	20016	Peru	-4.92	-78.32	550
MO-4929838	Vasquez, R., et al.	20363	Peru	-4.92	-78.32	320
MO-5096930	Jaramillo, N.	869	Peru	-4.92	-78.32	320
MO-4929829	Vasquez, R., et al.	23886	Peru	-5.05	-78.33	600
MO-4929833	Vasquez, R., et al.	21416	Peru	-5.05	-78.33	380
MO-429825	Diaz, C., et al.	4172	Peru	-5.05	-78.33	310
MO	Diaz, C.	4128	Peru	-5.05	-78.33	310
MO-4929827	Diaz, C., et al.	4128	Peru	-5.05	-78.33	310
MO	Diaz, C., et al.	4172	Peru	-5.05	-78.33	310
MO-4929832	Vasquez, R., et al.	24895	Peru	-5.05	-78.33	450
	Vasquez, R., et al.	24895	Peru	-5.07	-78.33	450
MO0429834	Vasquez, R., et al.	24643	Peru	-5.25	-78.37	900
MO	Vasquez, R., et al.	24643	Peru	-5.25	-78.37	900
F-1706096	Vigo, J. S.	6439	Peru	-6.03	-75.88	540
MO 5103767	Vigo, J. S.	6519	Peru	-6.03	-75.88	532
US 2703971	Vigo, J. S.	6519	Peru	-6.03	-75.88	532
MO 5103768	Vigo, J. S.	6439	Peru	-6.03	-75.88	540
F 1706102	Vigo, J. S.	6519	Peru	-6.03	-75.88	532
US 3260273	Knapp, S., and J. Mallet	8466	Peru	-6.25	-76.28	200
MO 3632210	Knapp, S., and J. Mallet	8466	Peru	-6.25	-76.28	200
NY	Vigo, J. S.	4596	Peru	-8.00	-76.62	500
H	Vigo, J. S.	4596	Peru	-8.00	-76.62	500
F 1871036	Vigo, J. S.	4596	Peru	-8.00	-76.62	500
Tex	Vigo, J. S.	5566	Peru	-8.12	-76.52	600
F 1874381	Vigo, J. S.	5566	Peru	-8.12	-76.52	600
Duke 311051	Vigo, J. S.	5566	Peru	-8.12	-76.52	600
NY	Vigo, J. S.	5566	Peru	-8.12	-76.52	600
F 1898708	Rodriguez, L. T.	03	Peru	-9.00	-76.00	650
NY	MacBride, J. F.	5065	Peru	-9.55	-75.90	1170
F 536109	MacBride, J. F.	5065	Peru	-9.55	-75.90	1170
NY	Killip, E. P., and A. C. Smith	26053	Peru	-10.87	-73.75	1100
F 616725	Killip, E. P., and A. C. Smith	26053	Peru	-10.87	-73.75	1100
MO-4657673	Betancur, J., et al.	4316	Colombia	1.30	-78.13	1325
MO-2637120	Renteria, E., et al.	28	Colombia	7.38	-73.83	320
MO-2665544	Renteria, E., et al.	14	Colombia	5.58	-73.50	320
H	Soejarto, D.	2782	Colombia	7.50	-74.92	700
H	Soejarto, D.	2782	Colombia	7.50	-74.92	700
H	Soejarto, D.	2782	Colombia	7.50	-74.92	700
MO 2716725	Gentry, A. H., and E. Renteria	23826	Colombia	5.50	-76.55	50
NY	Gentry, A. H., and E. Renteria Cazalet, P. C. D., and T. D.	23826	Colombia	5.50	-76.55	50
NY	Pennington Cazalet, P. C. D., and T. D.	7602	Ecuador	-2.38	-77.52	500
US 2406117	Pennington van der Werff, H., and W.	7602	Ecuador	-2.38	-77.52	500
NY	Palacios van der Werff, H., and W.	10331	Ecuador	-2.78	-77.83	800
MO 4066528	Palacios	10331	Ecuador	-2.78	-77.83	800

van der Werff, H., and W.

NY	Palacios	9393	Ecuador	-4.25	-79.20	2000
OAC	Steeves, R. et al	RS 328	Ecuador	-3.57	-78.45	1200
OAC	Steeves, R. et al	RS 328	Ecuador	-3.57	-78.45	1200
OAC	Steeves, R. et al	RS 332	Ecuador	-3.57	-78.45	1200
OAC	Steeves, R. et al	RS 334	Ecuador	-3.57	-78.45	1200
OAC	Steeves, R. et al	RS 334	Ecuador	-3.57	-78.45	1200
OAC	Steeves, R. et al	RS 336	Ecuador	-3.57	-78.45	1200
OAC	Steeves, R. et al	RS 338	Ecuador	-3.57	-78.45	1200
OAC	Steeves, R. et al	RS 346	Ecuador	-3.57	-78.45	1200
OAC	Steeves, R. et al	RS 271	Ecuador	-1.04	-77.37	450
OAC	Steeves, R. et al	RS 271	Ecuador	-1.04	-77.37	450
OAC	Steeves, R. et al	RS 274	Ecuador	-1.04	-77.37	450
OAC	Steeves, R. et al	RS 278	Ecuador	-1.04	-77.37	450
OAC	Steeves, R. et al	RS 278	Ecuador	-1.04	-77.37	450
OAC	Steeves, R. et al	RS 280	Ecuador	-1.04	-77.37	450
OAC	Steeves, R. et al	RS 280	Ecuador	-1.04	-77.37	450
OAC	Steeves, R. et al	RS 284	Ecuador	-1.04	-77.37	450
OAC	Steeves, R. et al	RS 284	Ecuador	-1.04	-77.37	450
OAC	Steeves, R. et al	RS 293	Ecuador	-1.04	-77.37	450
OAC	Steeves, R. et al	RS 294	Ecuador	-1.04	-77.37	450
OAC	Steeves, R. et al	RS 295	Ecuador	-1.04	-77.37	450
OAC	Steeves, R. et al	RS 295	Ecuador	-1.04	-77.37	450
OAC	Steeves, R. et al	RS 364	Ecuador	-1.78	-77.83	900
OAC	Steeves, R. et al	RS 364	Ecuador	-1.78	-77.83	900
OAC	Steeves, R. et al	RS 370	Ecuador	-1.78	-77.83	900
OAC	Steeves, R. et al	RS 406	Ecuador	-1.78	-77.83	900
OAC	Steeves, R. et al	RS 418	Ecuador	-1.78	-77.83	900
OAC	Steeves, R. et al	RS 406	Ecuador	-1.78	-77.83	900
OAC	Steeves, R. et al	RS 527	Peru	-13.24	-70.78	1000
OAC	Steeves, R. et al	RS 531	Peru	-13.24	-70.78	1000
OAC	Steeves, R. et al	RS 535	Peru	-13.24	-70.78	1000
OAC	Steeves, R. et al	RS 535	Peru	-13.24	-70.78	1000
OAC	Steeves, R. et al	RS 538	Peru	-13.24	-70.78	1000
OAC	Steeves, R. et al	RS 538	Peru	-13.24	-70.78	1000
OAC	Steeves, R. et al	RS 538	Peru	-13.24	-70.78	1000
OAC	Steeves, R. et al	RS 538	Peru	-13.24	-70.78	1000
OAC	Steeves, R. et al	RS 551	Peru	-13.24	-70.78	1000
OAC	Steeves, R. et al	RS 562	Peru	-13.24	-70.78	1000
OAC	Steeves, R. et al	RS 566	Peru	-13.24	-70.78	1000
OAC	Steeves, R. et al	RS 568	Peru	-13.24	-70.78	1000
OAC	Steeves, R. et al	RS 570	Peru	-13.24	-70.78	1000
OAC	Steeves, R. et al	RS 571	Peru	-13.24	-70.78	1000
OAC	Steeves, R. et al	RS 571	Peru	-13.24	-70.78	1000
OAC	Steeves, R. et al	RS 572	Peru	-13.24	-70.78	1000
OAC	Steeves, R. et al	RS 572	Peru	-13.24	-70.78	1000
OAC	Steeves, R. et al	RS 577	Peru	-13.24	-70.78	1000
OAC	Steeves, R. et al	RS 600	Peru	-13.24	-70.78	1000

Table 2.2 CA analysis of 48 quantitative morphological metrics for C. capitellata taxa. Bolded Pearson correlation (P Corr.) values indicate the metrics most significant to the ordination ($* *=\mathrm{p}$ value <0.01).

Metric	X-axis		Y-axis	
	P Corr.	Sig. (2-tailed)	P Corr.	Sig.(2-tailed)
Stem and leaf				
Stem width-min.	0.261	0.000	0.060	0.329
Stem width-max	0.127	0.038	-0.032	0.607
Petiole length-min	0.713**	0.000	0.083	0.175
Petiole length-max	0.671	0.000	0.141	0.021
Leaf Petiole width-min	0.585	0.000	-0.080	0.194
Leaf Petiole width-max	0.653	0.000	-0.036	0.558
Lamina Length-min	0.919**	0.000	-0.136	0.026
Lamina Length-max	0.857**	0.000	0.081	0.187
Leaf width $1 / 4$ length-min	0.924**	0.000	-0.046	0.454
Leaf width $1 / 4$ length-max	0.918**	0.000	0.126	0.040
Leaf width $1 / 2$ length-min	0.941**	0.000	-0.046	0.459
Leaf width 1 1/2 length-max	0.904**	0.000	0.135	0.027
Leaf width $3 / 4$ length-min	0.945**	0.000	-0.030	0.624
Leaf width $3 / 4$ length-max	0.883**	0.000	0.140	0.023
Leaf vein number-min	0.604	0.000	-0.454**	0.000
Leaf vein number-max	0.544	0.000	-0.464**	0.000
Leaf vein space-min	0.463	0.000	0.475**	0.000
Leaf vein space-max	0.325	0.000	0.487**	0.000
Leaf acumen length-min	0.467	0.000	0.004	0.951
Leaf acumen length-max	0.443	0.000	-0.043	0.487
Androecial				
Anther number min	-0.790**	0.000	0.502	0.000
Anther number max	-0.736**	0.000	0.556**	0.000
Anther length min	-0.593**	0.000	-0.684**	0.000
Anther length max	-0.593**	0.000	-0.684**	0.000
Anther sac length min	-0.419	0.000	-0.608**	0.000
Anther sac length max	-0.496	0.000	-0.517**	0.000
Anther cluster width min	-0.576**	0.000	-0.555**	0.000
Anther cluster width max	-0.590**	0.000	-0.535**	0.000
Filament column length min	-0.545**	0.000	-0.609**	0.000
Filament column length max	-0.573**	0.000	-0.566	0.000
Filament column apical width min	-0.440	0.000	-0.251	0.030
Filament column apical width max	-0.408	0.000	-0.238	0.040
Filament column basal width min	-0.482	0.000	-0.195	0.093
Filament column basal width max	-0.515	0.000	-0.144	0.217
Perianth				
Flower pedicel length min	0.572	0.000	0.700**	0.000
Flower pedicel length max	0.659	0.000	0.638**	0.000
Flower pedicel width min	0.329	0.036	-0.337	0.031
Flower pedicel width max	0.345	0.027	-0.391	0.011
Perianth thickness min	0.174	0.277	-0.374	0.016
Perianth thickness max	0.230	0.148	-0.405**	0.009
Tepal lobe length min	0.881**	0.000	-0.235	0.139
Tepal lobe length max	0.881**	0.000	-0.236	0.138
Perianth tube length min	0.529	0.000	-0.028	0.863
Perianth tube length max	0.737	0.000	-0.014	0.929
Perianth total length min	0.915**	0.000	-0.211	0.184
Perianth total length max	0.948**	0.000	-0.183	0.253

Perianth width at widest point \min	$\mathbf{0 . 8 7 8 * *}$	0.000	0.049	0.760
Perianth width at widest point \max	$\mathbf{0 . 8 5 6}^{* *}$	0.000	0.026	0.872

Table 2.3 Collection numbers (Coll. \#), Country, Population name, decimal degrees latitude (DD Lat.), decimal degrees longitude (DD long.), elevation above sea level (Elev a.s.l.), and Barcode of Life Database process identification numbers (BOLD. process ID) for specimens used in molecular analyses. Collectors of samples were J. Janovec (JPJ), Camila Diaz (CDiaz), and R. Steeves (RADS). Specimens of C. atopa and C. diazii are indicated by a "-Ca" and "Cd" proceeding the collection number. All other collections represent C. capitellata.

Coll. \#	Country	Population name	$\begin{aligned} & \text { DD } \\ & \text { Lat. } \end{aligned}$	DD Long.	Elev. a.s.I.	$\begin{gathered} \hline \text { BOLD process } \\ \text { ID } \\ \hline \end{gathered}$
JPJ1374-Ca	Ecuador	C. atopaOrellana Morona-	-0.47	-77.26	400m	RSMYR002-11
RADS332	Ecuador	Santiagoensis Morona-	-3.57	-78.45	1200m	RSMYR053-11
RADS334	Ecuador	Santiagoensis Morona-	-3.57	-78.45	1200m	RSMYR054-11
RADS336	Ecuador	Santiagoensis Morona-	-3.57	-78.45	1200m	RSMYR055-11
RADS338	Ecuador	Santiagoensis Morona-	-3.57	-78.45	1200m	RSMYR056-11
RADS346	Ecuador	Santiagoensis	-3.57	-78.45	1200m	RSMYR057-11
JPJ893	Ecuador	Napo	-1.04	-77.37	450m	RSMYR058-11
JPJ894	Ecuador	Napo	-1.04	-77.37	450m	RSMYR059-11
JPJ899	Ecuador	Napo	-1.04	-77.37	450m	RSMYR009-11
JPJ900	Ecuador	Napo	-1.04	-77.37	450m	RSMYR060-11
JPJ902	Ecuador	Napo	-1.04	-77.37	450m	RSMYR061-11
RADS271	Ecuador	Napo	-1.04	-77.37	450m	RSMYR062-11
RADS274	Ecuador	Napo	-1.04	-77.37	450m	RSMYR063-11
RADS278	Ecuador	Napo	-1.04	-77.37	450m	RSMYR064-11
RADS280	Ecuador	Napo	-1.04	-77.37	450m	RSMYR065-11
RADS284	Ecuador	Napo	-1.04	-77.37	450m	RSMYR066-11
RADS293	Ecuador	Napo	-1.04	-77.37	450m	RSMYR067-11
RADS294	Ecuador	Napo	-1.04	-77.37	450m	RSMYR068-11
RADS295	Ecuador	Napo	-1.04	-77.37	450m	RSMYR069-11
RADS364	Ecuador	Pastaza	-1.78	-77.83	1000m	RSMYR070-11
RADS370	Ecuador	Pastaza	-1.78	-77.83	1000m	RSMYR071-11
RADS406	Ecuador	Pastaza	-1.78	-77.83	1000m	RSMYR072-11
RADS409	Ecuador	Pastaza	-1.78	-77.83	1000m	RSMYR073-11
RADS418	Ecuador	Pastaza	-1.78	-77.83	1000m	RSMYR074-11
RADS427	Ecuador	Pastaza Zamora-	-1.78	-77.83	1000m	RSMYR075-11
JPJ1542	Ecuador	Chinchipe Zamora-	-4.29	-78.63	1000m	RSMYR076-11
JPJ1543	Ecuador	Chinchipe Zamora-	-4.29	-78.63	1000m	RSMYR077-11
JPJ1544	Ecuador	Chinchipe Zamora-	-4.29	-78.63	1000m	RSMYR078-11
JPJ1545	Ecuador	Chinchipe	-4.29	-78.63	1000m	RSMYR079-11
RADS527	Peru	Cusco	-13.24	-70.78	1000m	RSMYR003-11

RADS531	Peru	Cusco	-13.24	-70.78	1000 m	RSMYR080-11
RADS535	Peru	Cusco	-13.24	-70.78	1000 m	RSMYR081-11
RADS538	Peru	Cusco	-13.24	-70.78	1000 m	RSMYR082-11
RADS550	Peru	Cusco	-13.24	-70.78	1000 m	RSMYR083-11
RADS551	Peru	Cusco	-13.24	-70.78	1000 m	RSMYR004-11
RADS562	Peru	Cusco	-13.24	-70.78	1000 m	RSMYR084-11
RADS566	Peru	Cusco	-13.24	-70.78	1000 m	RSMYR085-11
RADS568	Peru	Cusco	-13.24	-70.78	1000 m	RSMYR086-11
RADS569	Peru	Cusco	-13.24	-70.78	1000 m	RSMYR087-11
RADS570	Peru	Cusco	-13.24	-70.78	1000 m	RSMYR088-11
RADS571	Peru	Cusco	-13.24	-70.78	1000 m	RSMYR089-11
RADS572	Peru	Cusco	-13.24	-70.78	1000 m	RSMYR090-11
JPJ843	Peru	Loreto	-3.48	-74.25	100 m	RSMYR093-11
JPJ844	Peru	Loreto	-3.48	-74.25	100 m	RSMYR094-11
JPJ855	Peru	Loreto	-3.52	-73.15	100 m	RSMYR006-11
JPJ860	Peru	Loreto	-3.52	-73.15	100 m	RSMYR095-11
JPJ862	Peru	Loreto	-3.52	-73.15	100 m	RSMYR096-11
JPJ863	Peru	Loreto	-3.52	-73.15	100 m	RSMYR097-11
JPJ872	Peru	Loreto	-3.52	-73.15	100 m	RSMYR007-11
JPJ873	Peru	Loreto	-3.52	-73.15	100 m	RSMYR098-11
JPJ874	Peru	Loreto	-3.52	-73.15	100 m	RSMYR099-11
JPJ875	Peru	Loreto	-3.52	-73.15	100 m	RSMYR008-11
JPJ827	Peru	San Martin	-6.15	-76.17	250 m	RSMYR101-11
JPJ829	Peru	San Martin	-6.15	-76.17	250 m	RSMYR103-11
JPJ830	Peru	San Martin	-6.15	-76.17	250 m	RSMYR104-11
JPJ831	Peru	San Martin	-6.15	-76.17	250 m	RSMYR105-11
JPJ832	Peru	San Martin	-6.15	-76.17	250 m	RSMYR106-11
JPJ833	Peru	San Martin	-6.15	-76.17	250 m	RSMYR107-11
JPJ834	Peru	San Martin	-6.15	-76.17	250 m	RSMYR108-11
JPJ835	Peru	San Martin	-6.15	-76.17	$250 m$	RSMYR005-11
CDiaz7644-Cd	Peru	Bagua	-5.03	-78.22	$800 m$	RSMYR012-11

Figures

Figure 2.1 Illustration of morphological metrics: A) Vegetative data points: SW=Stem Width, LPL=Petiole Length, LPW=Petiole Width, LVS=space between secondary veins, LVN=Vein Number, LL=Lamina Length, LWB= Leaf Width at $1 / 4$ length, LWM=Leaf Width at $1 / 2$ length, LWT=Leaf Width at $3 / 4$ length, LVN=Leaf Vein Number, LAL=Leaf Acumen Length. B) Perianth data points: TL=Tepal Lobe number, $\mathrm{PT}=$ Perianth Thickness, TLW=Tepal Lobe Basal Width, $\mathrm{PW}=$ Perianth Width at widest point, FPL=Flower Pedicel Length, FPW=Flower Pedicel Width, TLL=Perianth Tube Length, PTL $=$ Perianth tube length, $\mathrm{PL}=$ Perianth total Length. C) Androecium data points: AN=Anther Number, AL=Anther Length, ASL=Anther Sac Length, ACW=Anther Cluster Width, FCL=Filament Column Length, FCWA=Filament Column Apical Width, FCWB= Filament Column Basal Width. (modified from Janovec 2000).

Figure 2.2 Sampling localities of Compsoneura taxa for genetic analyses: 1) C. atopa, Ecuador, Orellana. 2) C. capitellata, Ecuador, Napo. 3) C. capitellata, Ecuador, Pastaza, 4) C. capitellata, Ecuador, Morona-Santiago. 5) C. capitellata, Ecuador, ZamoraChinchipe. 6) C. capitellata, Peru, Loreto. 7) C. capitellata, Peru, San Martin. 8) C. capitellata, Peru, Cusco. 9) C. diazii, Peru, Bagua. The area inside the blue line indicates the known range of C. capitellata.

Figure 2.3 NMS ordination of quantitative leaf data for 268 specimens of C. capitellata. Stress value 0.09 . Legend indicates the country and province or region the specimens originated from. Arrows show the morphological characters most significant to the axes as revealed by the Pearson correlation analysis.

Figure 2.4 NMS ordination of quantitative leaf data for 268 specimens of the C. capitellata complex with specimens classified as montane and lowland. Stress value 0.09 .

Figure 2.5 An example of bark, leaf and flower morphological trait variation in C. capitellata among (A) lowland populations (Ecuador, Napo) and (B) montane populations (Peru, Cusco).

Figure 2.6 S.E.M. and light micrographs of androecial morphology of 9 staminate collections from the C. capitellata complex of Brazil, Ecuador and Peru. A) R. L. Froes 34648, Brazil (scale bar= $250 \mu \mathrm{~m}$) B) A. Ducke, 561, Brazil (scale bar= $500 \mu \mathrm{~m}$) C) A. Ducke 23693, Brazil (scale bar $=500 \mu \mathrm{~m}$) D) M. Aulestia 2713, Ecuador (scale bar= 500 $\mu \mathrm{m}$) E) M. Aulestia 1651, Ecuador (scale bar= $500 \mu \mathrm{~m}$) F) P. C. D. Cazalet and T. D. Pennington 7602, Ecuador (scale bar= $500 \mu \mathrm{~m}$) G) E. P. Killip and A. C. Smith 26053,

Peru (scale bar= $500 \mu \mathrm{~m}$) H) E. Ancuash 424, Peru (scale bar= $500 \mu \mathrm{~m}$) I) R. S. Steeves 600, Peru (scale bar= $200 \mu \mathrm{~m}$).

Figure 2.7 NMS ordination of 14 androecial characters for 75 samples. The legend indicates the country and region of origin for the samples. Stress=0.13.

Figure 2.8 NMS ordination of 7 perianth characters for 41 samples. Legend indicates the country and region of origin for the samples used. Stress $=0.10$.

Figure 2.9 Fruit variation in C. capitellata: A) Intact glabrous fruit type found in San Martin, Peru (Top: J. Janovec 836) and intact sulcate fruit of Loreto, Peru (bottom: J. Janovec 843) B) Dissected fruit from Pastaza province, Ecuador (R. Steeves 427); interior of pericarp on left, seed exterior and interior in middle, and warted external surface of pericarp on the right.

Figure 2.10 trnH-psbA haplotype network for 7 populations of C. capitellata and 1
sample each of C. atopa and C. diazii. Nucleotide changes, and their positions are shown on branches between nodes.

Figure 2.11 Precipitation regimes in South America and collection localities of C. atopa.

Literature Cited

Armstrong, J. E., \& Irvine, A. K. 1989. Floral biology of Myristica insipida (Myristicaceae), a distinctive beetle pollination syndrome. American Journal of Botany 76: 86-94.

Asif, M. J., \& Cannon, C. H. 2005. DNA extraction from processed wood: a case study for the identification of an endangered timber species (Gonystylus bancanus). Plant Molecular Biology Reporter 23: 185-192.

Bullock, S. H. 1982. Population structure and reproduction in the neotropical dioecious tree Compsoneura sprucei. Oecologia 55: 238-242.

Candolle, A. D. 1856. Myristicaceae. Prodromus Systematis Naturali Vegetablis 14: 187208.

Caron, H., Dumas, S., Marque, G., Messier, C., Bandou, E., Petit, R. J., \& Kremer, A. 2000. Spatial and temporal distribution of chloroplast DNA polymorphism in a tropical tree species. Molecular Ecology 9: 1089-1098.

Chan, K. Y., Zwieten, L., Meszaros, I., Downie, A., \& Joseph, S. 2007. Agronomic values of greenwaste biochar as a soil amendment. Australian Journal of Soil Research 45: 629-634.

Clement, M., Posada, D., \& Crandall, K. A. 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology 9: 1657-1659.

Cole, R. J. 2009. Postdispersal seed fate of tropical montane trees in an agricultural landscape, Southern Costa Rica. Biotropica 41: 319-327.

Demesure, B., Comps, B., \& Petit, R. J. 1996. Chloroplast DNA phylogeography of the common beech (Fagus sylvatica L.) in Europe. Evolution 50: 2515-2520.

Fazekas, A. J., Steeves, R., \& Newmaster, S. G. 2010. Improving sequencing quality from PCR products containing long mononucleotide repeats. Biotechniques 48: 277-285.

Gentry, A. H. 1982. Neotropical floristic diversity: phytogeographical connections between Central and South America, Pleistocene climatic fluctuations, or an accident of the Andean orogeny? Annals of the Missouri Botanical Garden 69: 557-593.

Gentry, A. H. 1988. Tree species richness of upper Amazonian forests. Proceedings of the National Academy of Sciences of the United States of America 85: 156-159.

Golden, J. L., \& Bain, J. F. 2000. Phylogeographic patterns and high levels of chloroplast DNA diversity in four Packera (Asteraceae) species in southwestern Alberta. Evolution 54: 1566-1579.

Golenberg, E. M., Clegg, M. T., Durbin, M. L., Doebley, J., \& Pow Ma, D. 1993. Evolution of a noncoding region of the chloroplast genome. Molecular phylogenetics and evolution 2: 52-64.

Graham, S. W., Reeves, P. A., Burns, A. C., \& Olmstead, R. G. 2000. Microstructural changes in noncoding chloroplast DNA: interpretation, evolution, and utility of indels and inversions in basal angiosperm phylogenetic inference. International Journal of Plant Science 161: S83-S96.

Grossman, J. M., O’Neill, B. E., Tsai, S. M., Liang, B., Neves, E., Lehmann, J., \& Thies, J. E. 2010. Amazonian anthrosols support similar microbial communities that differ distinctly from those extant in adjacent, unmodified soils of the same mineralogy. Microbial Ecology 60: 192-205.

Hackenberger, M. J., Petersen, J. B., \& Neves, E. G. 1999. Village size and permanence in Amazonia: two archaeological examples from Brazil. Latin American Antiquity 10: 353-376.

Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic acids symposium series. (pp. 95-98).

Hamilton, M. B. 1999. Tropical tree gene flow and seed dispersal-deforestation affects the genetic structure of the surviving forest fragments. Nature 401: 129-130.

Holbrook, K. M., \& Loiselle, B. A. 2009. Dispersal in a Neotropical tree, Virola flexuosa (Myristicaceae): Does hunting of large vertebrates limit seed removal? Ecology 90: 1449-1455.

Hollingsworth, P. M., Graham, S. W., \& Little, D. P. 2011. Choosing and using a plant DNA barcode. PloS one 6: e19254.

Howe, H. F., \& Vande Kerckhove, G. A. 1981. Removal of wild nutmeg (Virola surinamensis) crops by birds. Ecology 62: 1093-1106.

Janovec, J. P. 2000. A systematic study of Compsoneura (A. DC.) Warb., A Neotropical member of the nutmeg family. Texas A\&M University Dissertation: 1-359.

Janovec, J. P. 2002. Compsoneura diazii (Myristicaceae), a new species from the Rio Cenepa area of Northwestern Peru. Novon 12: 366-368.

Janzen, D. H. 1983. The Pleistocene hunters had help. The American naturalist 121: 598599.

Janzen, D. H. 1967. Why mountain passes are higher in the tropics. The American Naturalist 101: 233-249.

Janzen, D. H., \& Martin, P. S. 1982. Neotropical anachronisms: the fruits the gomphotheres ate. Science 215: 19-27.

Kim, J. S., Sparovek, G., Longo, R. M., De Melo, W. J., \& Crowley, D. 2007. Bacterial diversity of terra preta and pristine forest soil from the Western Amazon. Soil Biology and Biochemistry 39: 684-690.

Kreader, C. A. 1996. Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Applied and Environmental Microbiology 62: 1102-1106.

Kruskal, J. B. 1964. Nonmetric multidimensional scaling: a numerical method. Psychometrika 29: 115-129.

La Rotta, C. 1985. Estudio etnobotanico de las especies utilizadas por la comunidad indigena Emera del alto rio Baudo. Mecanografido. Fundacion Segunda Expedicion Botanica. Bogota, Colombia. Bogota Colombia: Mecanografido. Fundacion Segunda Expedicion Botanica.

Latouche-Hallé, C., Ramboer, A., Bandou, E., Caron, H., \& Kremer, A. 2003. Nuclear and chloroplast genetic structure indicate fine-scale spatial dynamics in a neotropical tree population. Heredity 91: 181-190.

Liang, B., Lehmann, J., Solomon, D., Sohi, S., Thies, J. E., Skjemstad, J. O., Luizao, F. J., Engelhard, M. H., Neves, E. G., \& Wirick, S. 2008. Stability of biomassderived black carbon in soils. Geochimica et Cosmochimica Acta 72: 6069-6078.

Liang, B., Solomon, D., Grossman, J. M., O'Neill, B., Skjemstad, J. O., Thies, J., Luizao, F. J., J. Petersen, \& Neves, E. G. 2006. Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal 70: 1719-1730.

Minchin, P. R. 1987. An evaluation of the relative robustness of techniques for ecological ordination. Plant Ecology 69: 89-107.

Müller, K. 2006. Incorporating information from length-mutational events into phylogenetic analysis. Molecular phylogenetics and evolution 38: 667-676.

Newmaster, S. G., Fazekas, A. J., Steeves, R. A. D., \& Janovec, J. 2008. Testing candidate plant barcode regions in the Myristicaceae. Molecular Ecology Resources 8: 480-490.

Palma-Silva, C., Wendt, T., Pinheiro, F., Barbará, T., FAY, M. F., Cozzolino, S., \& Lexer, C. Sympatric bromeliad species (Pitcairnia spp.) facilitate tests of
mechanisms involved in species cohesion and reproductive isolation in Neotropical inselbergs. Molecular Ecology 20: 3185-3201

Palmé, A. E., Semerikov, V., \& Lascoux, M. 2003. Absence of geographical structure of chloroplast DNA variation in sallow, Salix caprea L. Heredity 91: 465-474.

Panchal, M. 2007. The automation of nested clade phylogeographic analysis. Bioinformatics 23: 509-510.

Paz-Rivera, C., \& Putz, F. E. 2009. Anthropogenic soils and tree distributions in a lowland forest in Bolivia. Biotropica 41: 665-675.

Petit R.J., Csaikl, U.M., Bordacs, S., Burg, K., Coart, E., et al. 2002. Chloroplast DNA variation in European white oaks - Phylogeography and patterns of diversity based on data from over 2600 populations. Forest Ecology and Management 156: 5-26.

Pitman, N. C., Terborgh, J. W., Silman, M. R., Núñez V, P., Neill, D. A., Cerón, C. E., Palacios, W. A., \& Aulestia, M. 2002. A comparison of tree species diversity in two upper Amazonian forests. Ecology 83: 3210-3224.

Pitman, N. C., Terborgh, J. W., Silman, M. R., Núñez V, P., Neill, D. A., Cerón, C. E., Palacios, W. A., \& Aulestia, M. 2001. Dominance and distribution of tree species in upper Amazonian terra firme forests. Ecology 82: 2101-2117.

Poinar, H. N. 1998. Molecular coproscopy: dung and diet of the extinct ground sloth Nothrotheriops shastensis. Science 281: 402-406.

Posada, D., \& Crandall, K. A. 2001. Intraspecific gene genealogies: trees grafting into networks. Trends in Ecology \& Evolution 16: 37-45.

Prance, G. T. 1977. Floristic inventory of the tropics: Where do we stand? Annals of the Missouri Botanical Garden 64: 659-684.

Rieseberg, L.H., \& Soltis, D.E. 1991. Phylogenetic consequences of cytoplasmic gene flow in plants. Evolutionary Trends in Plants 5: 65-84.

Rohlf, F. J. 2006. tpsDig version 2.10, Department of Ecology and Evoluation. State University of New York at Stony Brook, New York.

Roosevelt, A. C., Lima da Costa, M., Lopes Machado, C., Michab, M., Mercier, N., Valladas, H., Feathers, J., Barnett, W., Imazio da Silveira, M., Henderson, A., Silva, J., Chernoff, B., Reese, D. S., Holman, J. A., Toth, N., et al. 1996. Paleoindian cave dwellers in the Amazon: The peopling of the Americas. Science 272: 373-384.

Sang, T., Crawford, D. J., \& Stuessy, T. F. 1997. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). American Journal of Botany 84: 1120-1136.

Sauquet, H., Doyle, J. A., Scharaschkin, T., Borsch, T., Hilu, K. W., Chatrou, L. W., \& Le Thomas, A. 2003. Phylogenetic analysis of Magnoliales and Myristicaceae based on multiple data sets: implications for character evolution. Botanical Journal of the Linnean Society 142: 125-186.

Shaw, J., Lickey, E. B., Beck, J. T., Farmer, S. B., Liu, W., Miller, J., Siripun, K. C., Winder, C. T., Schilling, E. E., \& Small, R. L. 2005. The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. American Journal of Botany 92: 142-166.

Smith, A. C. 1956. Studies of South American plants: XV. American Journal of Botany 43: 573-577.

Smith, A. C. 1937. The American species of Myristicaceae. Brittonia 2: 393-510.
Smith, N. J. H. 1980. Anthrosols and human carrying capacity in Amazonia. Annals of the Association of American Geographers 70: 553-566.

Štorchová, H., \& Olson, M. S. 2007. The architecture of the chloroplast psbA-trnH noncoding region in angiosperms. Plant Systematics and Evolution 268: 235-256.

Tate, J. A., \& Simpson, B. B. 2003. Paraphyly of Tarasa (Malvaceae) and diverse origins of the polyploid species. Systematic Botany 28: 723-737.

Templeton, A. R. 1998. Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history. Molecular Ecology 7: 381397.

Templeton, A. R., Crandall, K. A., \& Sing, C. F. 1992. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132: 619-633.
ter Braak, C. 1998. Canoco 4 Centre for Biometry. Wageningenm, The Netherlands.
Thomas, W. W. 1999. Conservation and monographic research on the flora of Tropical America. Biodiversity and Conservation 8: 1007-1015.

Thompson, J. D., Higgins, D. G., \& Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic acids research 22: 4673-4680.

Tobler, M., Honorio, E., Janovec, J., \& Reynel, C. 2007. Implications of collection patterns of botanical specimens on their usefulness for conservation planning: an example of two neotropical plant families (Moraceae and Myristicaceae) in Peru. Biodiversity and Conservation 16: 659-677.

Warburg, O. 1897. Monographie der Myristicaceen. Nova Acta Acad. Caes. Leop.-Carol 68: 1-680.

Chapter 3

A MOLECULAR PHYLOGENETIC INVESTIGATION OF VIROLA Aublet

Abstract

The Myristicaceae are a widespread and specios family of tropical trees with great ethnobotanical and ecological importance, yet they remain to be understood from a phylogenetic perspective. Virola is a genus comprised of about 60 species of canopy and sub-canopy trees endemic to the neotropics whose fruits are important food for many vertebrates and sap is revered by numerous native tribes as a source of medicine and hallucinogenic snuff. The objective of this study was to estimate a phylogenetic tree for to illuminate infrageneric relationships among Virola taxa from Northwestern South America. An additional objective of this study was to test whether the trnH-psbA spacer could differentiate species of Virola and whether DNA sequence data indicates undescribed species. Although levels of DNA sequence divergence were low, phylogenetic hypotheses generated using both Bayesian and Parsimony methodologies supported similar topologies and showed a great deal of divergence amongst two groups in the genus (Multinervae and Sebiferae). Phylogenetic analyses also supported the recognition of 3 new provisional species. The most variable plant DNA barcode known for the Myristicaceae, the trnH-psbA intergenic spacer, failed to differentiate the majority of species included in this study.

Introduction

The Myristicaceae are a family of flowering plants consisting of 21 genera and about 500 species found worldwide in tropical rainforests. The family is best known as the source of the spices nutmeg and mace, which are produced from the fruit of the Asian species Myristica fragrans. Myristicaceae species are small to large trees (5-55 m tall) that hold significant ecological importance throughout most of the lowland wet tropical forests of the world (Gentry 1982, Pascal and Pelissier 1996, Pitman et al. 2002, Pitman et al. 2008). The family has been represented in molecular systematics studies (Chase et al. 1993, Qiu et al. 1993, Sauquet et al. 2003, Soltis et al. 2011), which have confirmed traditional hypotheses of classification of the Myristicaceae as belonging to order Magnoliales of subclass Magnoliidae. Unfortunately, few studies have addressed species diversity and distribution of the Myristicaceae within genera (Sauquet et al. 2003, Sauquet 2004), at the level of species (Janovec and Harrison 2002), populations (Degen et al. 2004), and individual specimens. Because of their abundance and diversity in tropical moist forests of the world, the Myristicaceae are an ideal family for studying speciation, evolution, and biogeography of lowland tropical forests but such investigations are difficult without well resolved phylogenies.

Virola is a genus of approximately 60 described species that are endemic to the lowland and cloud rainforests of Central and South America. Species of Virola are vegetatively characterized by having profuse red latex (rarely green-yellow), simple, entire, alternate, and regularly spaced linear-ovate to obovate leaves that differ from other neotropical genera by the presence of dendritic or stalked-sessile stellate hairs on their
abaxial surface. Secondary veins are prominent, pinnate, and arcuate-ascending but sometimes diverge towards the apex. Like all other Myristicaceae their panicle-racemelike inflorescences are born in leaf axils. The flowers of these dioecious trees are very small ($1-4 \mathrm{~mm}$ in diameter) and are composed of 3-4 tepals which are often covered in a dendritic or stellate pubescence. The fruits of Virola are composed of a dehiscent pubescent-glabrous pericarp which opens at maturity to reveal a single globose-elliptic seed which is covered in a bright orange-red fat-rich aril that is attractive to numerous large vertebrate species.

Ecology

Due to their ubiquitous nature and position as one of the 5-10 most abundant fruitproducing tree genera of South American rainforests (Gentry 1988, Pitman et al. 2001, Pitman et al. 2002, Pitman 2008), Virola spp. have been extensively studied from an ecological perspective. For example, investigation of sex ratios in Virola trees have revealed a male bias within smaller age classes ($<30 \mathrm{~cm}$ DBH) of Virola trees (Ackerly et al. 1990, Queenborough et al. 2003), which is typical of dioecious tropical trees (Armstrong and Irvine 1989, Opler and Bawa 1978). The arils of Virola spp. are energydense and highly nutritious. Analyses of Virola surinamensis fruit arils have found a 63% lipid content, 3% protein and 9% carbohydrate (Howe and Vande Kerkhove 1981) while a similar study of V. sebifera found comparable percentages of lipid (53.7\%), protein (7.1\%) and carbohydrates (8.4\%) (Howe 1981). Numerous studies have found that birds are by far the most speciose and abundant agents of seed dispersal for this genus (V. sebifera; Howe 1981, V. surinamensis; Howe and Vande Kerkhove 1981, V. surinamensis; Howe et al. 1985, V. flexuosa; Holbrook and Loiselle 2009). Although
birds are undeniably important dispersers of Virola seeds, they often regurgitate seeds directly under the parent tree after stripping the nutritious aril from the seeds with their gizzards (Howe 1981, Howe et al. 1985). It is therefore notable that two studies by Russo $(1992,2003)$ found that even though V. calophylla fruits were consumed by 17 species of birds, 82% (1992) and 92% (2003) of all seeds dispersed by vertebrates were removed by spider monkeys (Ateles paniscus). These primates typically consume the seed and defecate it many hours later, thus acting to more efficiently disperse the seeds away from the parent tree. This may be especially important as it has been found that 99.96% of V. surinamensis and $30-35 \%$ of V. nobilis seeds that fell within 45 m of a parent tree were consumed by invertebrate pre-dispersal seed predators (Howe et al. 1985, Howe 1993) and studies of V. sebifera found low to high rates (5-96\%) of seed predation in Panama (Howe 1981). These studies seem to support the conformity of Virola species to the Janzen-Connell model (Janzen 1970, Connell 1971). However, investigations of V. michellii, V. bicuhyba and V. kwatae have found high seed survival with little to no seed predation by invertebrates or no decrease in seed predation with increasing distance from the mother tree (Forget et al. 2000, Zipparo and Morellato 2005, Forget and Cuijpers 2008). Additionally, it has been found that fruit removal in V. flexuosa by dispersal agents is more efficient in non-hunted versus hunted forests (89.4% versus 66.8%) in the forests of Amazonian Ecuador (Holbrook and Loiselle 2009). Despite these extensive investigations of seed dispersal/predation in various species of Virola, little is known of of their pollination biology, what may act as herbivores/parasites, or whether these ecologically important trees are truly dioecious or diphasic in nature (alternating male and female depending on life stage).

Ethnobotany

Virola spp. also hold considerable ethnobotanical importance to both industrial and traditional societies of Central and South America. Virola surinamensis, known as ucuuba in the Amazonian basin, grows in the lowland floodplains of the Amazon basin from the Foothills of the Andes to the Amazonian delta in near monospecific stands and are valued for their lumber, which is in such abundant supply that it is rivaled in economic importance only by big-leafed mahogany [Swietenia macrophylla] (Macedo and Anderson 1993). The fatty seeds of V. surinamensis and V. sebifera are also harvested for their abundant and aromatic waxes which are used in the production of candle waxes (Williams 1960). Members of the genus are also widely employed by natives across their range for a multitude of uses. Perhaps one of the most widespread applications of Virola is as a hallucinogenic snuff. Traditional cultures of the Northwest Amazon purify the red latex derived from the bark of various Virola species to make a powdered snuff rich in various tryptamine alkaloids (primarily N,N-Dimethyltryptamine and 5-Methoxydimethyltryptamine), which purportedly produces powerful visions to aid in the teaching of medicine, divination of evil spirits, communication with other shamen, and healing of the sick (Macrae and Towers 1984a and b, Chagnon 1971, McKenna et al. 1984, Bennett and Alarcon 1994, Schultes and Holmstedt 1968, Schultes 1981, Schultes and Raffauf 1990, Prance 1972). Interestingly, similar preparations of the sap can be used as arrow/dart poisons to immobilize animals (Mckenna et al. 1984, MaCrae and Towers 1984b). Although these tryptamines are rendered inert by ingestion via the enzyme monoamine oxidase (MAO), some tribes have combined potent MAO inhibitors with the resin to make it orally active as an entheogen (Mckenna et al. 1984). Virola sap is also
used to decrease pain and inflammation, as an anti-fungal skin treatment, to prevent and treat dental caries, bladder/stomach ailments, thrush, marlaria, and is given as a snuff to hunting dogs to increase their ability to smell (Davis and Yost 1983, Schultes and Raffauf 1991, Beloz 1992, Bennett and Alarcon 1994, Roumy et al. 1997). The limited pharmacological investigations performed on Virola species have found them efficacious as oral hallucinogens as well as anti-malarial and anti-microbial agents (McKenna et al. 1984, Roumy et al. 1997, Lopes et al. 1999).

Taxonomy

Despite being the most species-rich genus of neotropical Myristicaceae, Virola has received little taxonomic attention. Virola was first described by Aublet (1775) as a genus endemic to Central and South America. The first comprehensive treatment of the Myristicaceae was performed by De Candolle (1856) who organized 90 species into 13 sections of the single genus Myristica. De Candolle grouped taxa we today recognize as Virola into sections Virola and Sychoneura based upon length of the filament column, anther apiculation, and leaf venation. Warburg (1897) relegitimated the generic concept of Virola in his thorough study of the Myristicaceae where he proposed its subdivision into sections Oxyanthera and Amblyanthera on the basis of the ratio of filament column to anther ratios. The genus was further divided into 6 unranked species groups (Mollissimae, Sebiferae, Calophyllae, Rugulosae, Surinamenses, and Subsessilis) in Smith's (1937) monograph of the neotropical Myristicaceae. Although these sections were arguably more natural and utilitarian owing to the inclusion of vegetative traits as well as characters of the pistillate inflorescences, some species belonged to multiple groups. The last comprehensive treatment of Virola was performed by Rodrigues (1980)
but is somewhat incomplete due to its restriction to Brazilian members of the genus. Walker and Walker (1979) examined pollen morphology in 30 species of Virola which were found to be highly similar in terms of size and shape but divided them into tree groups based upon differences in exine sculpturing patterns. Additional palynological comparisons among genera of Myristicaceae have shown that Virola along with the other American, Asian and African genera possess monosulcate boat-shaped pollen with a reticulate-rugulate tectum and a columnate infratectum (Sauquet and le Thomas 2003). Since 1980, taxonomic investigations of Virola have been primarily alpha-taxonomic in nature and about 60 species are currently recognized in the genus (Rodrigues 1989, Sabatier 1997, Jaramillo et al. 2000, Rodrigues 2002). Paleobotanical studies of Virola have been difficult as the genus is represented in the fossil record by a single cluster of flowers from the Dominican amber (Poinar and Poinar 1999).

In spite of its abundance and diversity in the Neotropics, Virola has been underrepresented in modern molecular studies of the Myristicaceae. Virola was represented by three species in the only molecular systematic study of Myristicaceae to date, which used chloroplast coding and non-coding intergenic spacers to estimate the evolutionary relationships among the 21 genera. This investigation failed to find well supported relationships among genera, largely due to low levels of nucleotide substitution among loci sampled (Sauquet et al. 2003). This phylogenetic uncertainty has hindered further studies of character evolution and biogeography of this pantropical family. Using RAPD's, Degen et al.(2001) studied V. michellii's spatial genetic structure in comparison to 7 other tropical tree species and found significant genetic structure at small spatial scales ($50-300 \mathrm{~m}$), which they hypothesized was due to aggregated seed dispersal from
monkeys excreting ingested seeds. Additionally, microsatellite markers have also been developed for V. flexuosa and V. surinamensis (Holbrook et al. 2006, Draheim et al. 2009) but their application in wide-ranging studies have yet to be published.

The objectives of this investigation were to 1) reconstruct infrageneric evolutionary relationships in order to test previous sub-generic classifications and 2) to test the ability of chloroplast DNA to discriminate species of Virola. Although poor in terms of resolution in some clades, a phylogenetic tree was generated for the genus and relationships are discussed with respect to ecology, morphology, and biogeography. Additionally, three new provisional species of Virola from the neotropics are inferred from molecular phylogenetic analysis and morphological distinctiveness.

Materials and Methods

Taxon Sampling

Virola is well represented in herbarium collections owing to their abundance in neotropical rainforests and intensive ecological investigations. These samples are often soaked in alcohol upon collection or dried immediately in the field. Most Virola spp. dry dark brown upon collection and DNA from samples more than a year old are generally not amenable to DNA extraction and amplification (personal observation), likely due to abundant secondary metabolites that have the ability to degrade DNA and inhibit PCR through direct enzymatic inhibition and/or the generation of non-bypassable crosslinking via maillard reactions (Poinar 1998, Sawadjoon 2002). Initial efforts to extract whole genomic DNA from Virola herbarium specimens were largely ineffectual. Therefore, new herbarium and DNA collections were made in Peru and Ecuador so that DNA of
sufficient quality and quantity could be extracted from specimens. Fresh DNA collections were made by John Janovec or the author by putting young and clean (i.e. visibly free of epiphytes) leaf tissue immediately on silica gel upon specimen collection in order to minimize DNA degradation. Conventional herbarium vouchers were also made of all collections. In all, 45 new collections representing 14 species of Virola were included in phylogenetic analyses. Greater taxon sampling was not possible due to the poor condition of DNA retrieved from herbarium specimens. Since this is the first phylogenetic investigation of the genus, it is unclear as to whether this particular suite of species represents the phylogenetic breadth of the genus. Additional sequences and species were included in distance analyses from tropical DNA barcoding campaigns (Gonzalez et al. 2009, Kress et al. 2009). All collections used in molecular analyses were identified according to the most current taxonomic treatment (Smith 1937) and all specimens employed have accessions archived at one or more of the following herbaria: Botanical Research Institute of Texas (BRIT), Ontario Agricultural College (OAC), and the National Herbarium of the Ecuadorian Museum of Natural Sciences (QCNE). Figures 3.1-3.14 show vegetative and reproductive structures of the 14 taxa collected. It was observed in the field that there were big-leafed and small-leafed morphotypes of V. sebifera and V. loretensis. Consequently, collections have been annotated with a BL (Big-Leaf) or SL (Small-Leaf) to indicate to which of the morphotypes they belong. A more thorough analysis and discussion of the taxonomic implications of these morphotypes is provided in chapter 4 of this thesis. Collection information of the specimens used in this study, including Barcode Of Life Database (BOLD) process identification numbers, can be found in Table 3.1. Since phylogenetic relationships
remain largely unresolved in the Myristicaceae (Sauquet et al. 2003), 2 members of Iryanthera, and Compsoneura were selected as outgroups for phylogenetic analysis as they are hypothesized to have close relationships to Virola (Sauquet et al. 2003).

Morphology

In addition to sterile material (that was photographed, pressed, and dried) fruits and flowers were dried and/or preserved in FAA (Formalin-Acetic Acid-Alcohol) for morphological investigations when they were available. A data matrix of quantitative vegetative and reproductive morphological metrics was assembled for 8 species available from Smith (1937) and other species were not included due to a lack of data on leaf, flower and fruit metics. Measurements of 10 quantitative vegetative metrics (Figure 3.15) were made from digital photographs using tpsDig 2.0 (Rohlf 2006) for use in species descriptions when provisional new species were collected.

DNA extraction, Amplification, Sequencing and Alignment

Total genomic DNA was extracted from leaf tissue of silica-dried or herbarium specimens using the Macherey-Nagel Nucleospin II Plant Kit (Macherey-Nagel, Duren Germany). Lysis buffer 1 was used according to the manufactures' instructions with the exception of an increase of the post homogenization incubation period from 10 minutes to 1 hr and the addition of 20 mM N-Phenacylthiazolium Bromide, which has been found to result in improved PCR amplification of recalcitrant samples (Poinar et al. 1998, Asif and Cannon 2005).

Due to the low levels of nucleotide substitution in the Myristicaceae (Sauquet et al. 2003), the most variable Virola loci available were targeted by screening available chloroplast sequences from genbank (matK, psbK-I, rbcL, rpoB, rpoC1, trnH-psbA, trnLF) and from a preliminary screening of the most variable nuclear markers from studies of Compsoneura (Chapter 2 of this thesis)[AGT1 and AT103]. Only trnH-psbA, AT103, and AGT1 consistently produced a single PCR product that yielded high quality sequence traces and were sufficiently variable for systematic investigations.

Taxa not represented by trnH-psbA accessions in GenBank from Newmaster et al. (2008) were PCR amplified and sequenced using the primers trnH2 (5'-

CGCATGGTGGATTCACAATCC-3'; Tate and Simpson 2003) and psbAF (5'GTTATGCATGAACGTAATGCTC-3'; Sang et al. 1997). PCR was performed in a $20 \mu \mathrm{l}$ volume using $0.4 \mu \mathrm{l}$ of Phire II polymerase (Finnzymes) with 1X Phire II reaction buffer (with 1.5 mM MgCl), 0.2 mM of each DNTP, $0.2 \mu \mathrm{M}$ of each primer and $2.0 \mu \mathrm{~g}$ of BSA (Kreader 1996). Cycling conditions entailed an initial denaturation step of 1 min at $98^{\circ} \mathrm{C} ; 35$ cycles of $98^{\circ} \mathrm{C}$ for $5 \mathrm{~s}, 64^{\circ} \mathrm{C}$ for $5 \mathrm{~s}, 72^{\circ} \mathrm{C}$ for 10 s : and a final elongation step of $72^{\circ} \mathrm{C}$ for 1 min followed by a 4° hold. Phire II was used to amplify $\operatorname{trnH}-\mathrm{psbA}$ as it is robust to the inhibitors contained in nutmeg extracts (personal observations) and as it is a fusion-based polymerase which has been found to reduce stuttering in sequences containing homopolymer regions such as the trnH-psbA intergenic spacer (Fazekas et al. 2010).

Nuclear loci were amplified using the primers AT103F (5'-
CTTCAAGCCMAAGTTCATCTTCTA-3'; Li et al. 2008), AT103R (5’-
TTGGCAATCATTGAGGTACATNGTMACATA-3'; this thesis), AGT1-MYR-F (5’-

GGGCATTGACGTAGCTTTGACAGG-3'; this thesis), and AGT1-MYR-R (5'-GTGCAGTTCTTCAAGCCCCAAGC-3'; this thesis). Nuclear loci were amplified with 0.5U of AmpliTaq Gold (Applied biosystems) DNA polymerase in a $20 \mu 1$ reaction containing 1X reaction buffer, $2.5 \mathrm{mM} \mathrm{MgCl}, 8 \% \mathrm{~W} / \mathrm{V}$ Polyethylene glycol (Zimmerman and Harrison 1987, Sasaki et al. 2006), 0.2 M trehalose (Speiss et al. 2004), $2 \mu \mathrm{~g}$ BSA, 0.2 mM each DNTP, and $0.2 \mu \mathrm{M}$ of each primer.

Amplification products were sequenced directly using the same primers employed in PCR. Cycle sequencing reactions were performed in a $10.5 \mu \mathrm{~L}$ reaction volume containing $0.5 \mu \mathrm{~L}$ of BigDye terminator mix $v 3.1,1.88 \mu \mathrm{~L}$ of 5 x sequencing buffer (Applied Biosystems), $1.0 \mu \mathrm{M}$ of primer and $0.5 \mu \mathrm{~L}$ of PCR product. Thermal cycling parameters were 96° for $2 \mathrm{~min} ; 30$ cycles of 96° for 30 s , $56-60^{\circ}$ (primer dependant) for 15 s , and 72° for 4 min ; and a 4° hold. Cycle sequencing reactions were cleaned using sephadex columns (Cat.no. S5897; Sigma-Aldrich, St. Louis, MO, USA) and the samples were run on an ABI 3730 sequencer (Applied Biosystems).

Sequence contigs were assembled and edited using Sequencher 4.8 (Gene Codes Corporation, Ann Arbor, MI, USA). DNA sequences were aligned using the default settings of the ClustalW algorithm (Thompson et al. 1994) in Bioedit (Hall 1999) and adjusted manually. Alignments can be found in Appendix 3. Gaps in the alignments were coded using Simple Indel Coding (SIC) (Simmons and Ochoterena 2000) for Bayesian analyses and Modified Complex Indel Coding for distance analyses using Indelcoder (Muller 2006).

Cladistic analyses

An incongruence length difference test (ILD: Farris et al. 1994) was executed in PAUP (Swafford 2002) to determine whether the three loci employed in this study contained significant incongruence. The ILD was performed using 100 replicates of a heuristic search strategy, MAXTREES set at 100, 10 random addition sequence replicates holding 5 trees at each step, MULTREES in effect, and tree bisection-reconnection (TBR) branch swapping. No significant incongruence was detected (p -value $=0.98$) therefore all three loci were concatenated in a total evidence approach in Bayesian and Parsimony analyses.

Phylogenetic trees were generated using Bayesian inference with the program MrBayes (Ronquist and Huelsenbeck 2003). Nucleotide substitution models were first selected using Mrmodeltest (Nylander 2004) which uses the Akaike Information Criterion to assess the significance of adding parameters to the different models of evolution employed by MrBayes 3.1 (Ronquist and Huelsenbeck 2003). Mrmodeltest selected the following substitution models for the three loci: $\operatorname{trnH}-\mathrm{psbA}=\mathrm{F} 81$, AT103=GTR, and AGT1 $=\mathrm{HKY}+\mathrm{I}$. The three genetic loci were assigned to separate partitions with their corresponding models of nucleotide substitution and the indel data was given a fourth partition and assigned the model "restriction data" as recommended by Ronquist and Huelsenbeck (2003). Ten million generations were performed using 4 chains and 2 runs with trees being sampled every 100 generations. Log-likelihood values stabilized after 2.5 million generations; therefore the consensus tree and posterior probabilities were estimated using a burn-in of 25,000 trees. Since posterior probabilities are largely considered to be overestimations of clade support (Douady et al. 2003, Alfaro and Holder 2006, Yang and Rannala 2010), especially when employing concatenated
data sets (Suzuki et al. 2002), all nodes with less than 0.75 posterior probability were collapsed on the cladogram using treegraph2 (Stover and Muller 2010).

Maximum parsimony analyses were performed in PAUP 4.0b10 (Swafford 2002) and each nucleotide position was treated as an unordered character and all positions were equally weighted. A "two step" analysis was performed as it may permit the investigation of more optimal tree topologies compared to a "one step" analysis (Davis et al. 2004). The first heuristic search was performed with 1000 replicates of random addition sequence holding 10 trees at each step, TBR branch swapping with the MULTREES option not in effect with MAXTREES set to 5000 . Using these trees in memory from the initial analysis, a second heuristic search was performed using the same parameters with a MAXTREES of 50000 and the MULTREES option in effect. Branch support was estimated using a heuristic search, 5000 bootstrap replicates, 10 random addition sequence replicates holding 1 tree at each step, TBR branch swapping, and a maximum number of trees set at 50,000 with MULTREES not in effect.

Distance analyses

Full length trnH-psbA sequences of 13 species of Virola were amplified from whole-genomic DNA extracts and 5 species' sequences were retrieved from Genbank accessions (Virola kwatae: FJ039018.1;Virola michelli: GQ428669.1, FJ039021.1, FJ039020.1, FJ039019.1;Virola multicostata: GQ428671.1, GQ428670.1; Virola multiflora: GQ982401.1;Virola nobilis: GQ982402.1). These sequences were then used to generate a Neighbour-Joining uncorrected p-distance tree using PAUP 4.0 (Swafford 2002) to explore the ability of this locus to discriminate species of Virola. Uncorrected p-
distance was used as there existed very low levels of nucleotide substitution among taxa and it was therefore not thought to be beneficial to include a model of molecular substitution patterns, which is employed by other distance calculation methods. An 11 bp tract of homopolymer A / T repeat was omitted from distance analyses due to the high likelihood of homoplasious indels.

Results

Morphology

Morphological trait data was retrieved from Smith (1937) for a total of 8 of the 14 species included in the phylogenetic analyses. These data are presented in Table 3.2 and the species are broken up into informal groups Sebiferae and Multinervae (see "Cladistic Analysis" below) in order to show contrasting morphological traits of two clades from phylogenetic analyses. Many values were very comparable amongst the two clades, however, leaf vein number was greater in members of Multinervae ($20-60$ veins) than Sebiferae (9-28), Multinervae also had thicker pericarps (1-7 mm) than did members of Sebiferae (0.3-1.3 mm) and the arils of Multinervae taxa are generally lacinate to nearly the base while those of Sebiferae taxa are only lacinate for half the length of the seed.

DNA sequencing and Alignment

Bi-directional sequence pherograms were obtained for 41 Virola samples and 4 outgroup members for the trnH-psbA intergenic spacer. The trnH-psbA alignment for the distance analysis included 9 additional sequences retrieved from Genbank and was 363 base pairs (bp) long with 49 variable sites, 23 of which were provided from outgroup
taxa. These sequences varied from 162-339 bp in length. The trnH-psbA alignment for phylogenetic analysis was 357 bp in length and contained 42 variable and 30 parsimony informative sites, with outgroups responsible for 22 and 11 of these sites respectively.

AGT1 bi-directional sequences were recovered from 42 Virola and all 4 outgroup taxa. The aligned AGT1 data matrix was 728 bp in length with 122 variable sites of which 89 were parsimony informative. Outgroups provided 38 variable and 21 parsimony informative sites. The short coding section (264 bp) of AGT1 contained no stop codons.

AT103 sequences were recovered from all 49 samples (45 Virola taxa and 4 outgroup members). The aligned AT103 data matrix was 438 bp in length with 42 variable sites of which 27 were parsimony informative. Outgroup taxa were responsible for 16 variable and 8 parsimony informative sites. AT103 Sequences varied from 428438 bp in length.

The concatenation and alignment of all three loci for phylogenetic analyses was 1517 bp in length and contained 206 (13.6\%) variable sites, of which 146 (9.6\%) were parsimony informative. The 4 outgroup taxa contributed 76 variable and 40 parsimony informative characters.

Cladistic Analysis

The first heuristic search of the concatenated data retrieved 2856 equally parsimonious trees (Length=245 steps). The second heuristic search yielded 50,000 equally parsimonious trees (Length $=245$ steps, consistency index $[\mathrm{CI}]=0.910$, retention index $[R I]=0.979$, and rescaled retention index $[R C]=0.891$). The semi-strict consensus tree of the 50,000 most parsimonious trees was almost identical in topology to that of the

Bayesian analysis. Therefore, parametric bootstrap support measures were plotted on the Bayesian cladogram.

The Bayesian consensus tree and posterior probabilities of the two MCMC runs estimated in MrBayes with proportional branch lengths is presented in Figure 3.16 along with bootstrap support values. Since the Bayesian inference and parsimony topologies are virtually the same, the results of the two will be discussed together. Since two large clades were evident on the resulting tree, the clades were informally named Multinervae and Sebiferae for the sake of discussion.

Distance analyses

Four outgroup and 41 full length Virola trnh-psbA sequences (the same sequences as used in phylogenetic analyses) were recovered from fresh, silica gel dried, tissue and an additional 9 sequences were retrieved from Genbank. An uncorrected p-distance phylogram is presented in Figure 3.17. Of the 18 aligned species of Virola, only 6 (V. sp. RADS1, V. caducifolia, V. multicostata, V. michellii, V. pavonis, and V. kwatae) form distinct monophyletic clades on the phylogram. All but one sample of V. multinervia formed a clade. All 8 species of the Sebiferae clade possessed a single haplotype.

Discussion

Cladistic analysis and Morphology

This study is the first molecular systematic investigation of Virola and the first systematic study of this species-rich and widely distributed genus since Rodrigues’
investigation of its Brazilian members (1980). Otto Warburg (1897) presented the first cladistic hypothesis of the Myristicaceae based on morphological characters but even contemporary attempts to hypothesize relationships within the family using both morphological and molecular data have failed to find well supported relationships, mainly due to the conservative nature of morphological and molecular characters and/or recent diversification of the family (Sauquet et al 2003). Smith (1937) noted that previous attempts by De Candolle, Warburg and Ducke to form groups within Virola have relied mainly on characteristics of the androecium that were, at times, continuous. This heavy reliance on characters of the male flower also made classification of female or otherwise sterile specimens difficult. Therefore, Smith (1937) sought groupings supported by vegetative as well as male and female reproductive characters so that specimens without flowers and fruits could be more easily keyed to groups with major morphological affinities. Since Smith's primary objective was identification and not estimating ancestordescendant relationships, some species were placed in multiple groups.

Although there are few species that form well supported monophyletic clades, this investigation recovered numerous clades above the species-level within Virola supported by high bootstrap and posterior probability values. Since node support inferred from Bayesian posterior probabilities are generally viewed as overestimations (Suzuki et al. 2002, Douady et al. 2003), a conservative approach was taken in this analysis by collapsing nodes with relatively low support (<0.75); the resulting tree is nearly identical to relationships inferred from the more conservative approach of parametric bootstrapping.

Both tree building approaches revealed cladistic support for Smith's (1937) subgeneric groups that were included in this analysis. The first is Smith's Rugulosae, containing V. multinervia and V. flexuosa, which was recovered in my phylogenetic analysis, Smith also included V. loretensis which is not placed in this clade on the phylogeny so it appears that this clade is paraphyletic with respect to molecular data. Surinameses, sensu Smith (1937), encompasses V. surinamensis and V. pavonis, also formed a monophyletic clade. Although there is relatively limited taxon sampling in this analysis, it appears that there is considerable degree of support for the groupings of Smith (1937).

The genus Virola is divided into two well supported clades that I have elected to informally name "Multinervae" and "Sebiferae". These two clades have numerous contrasting morphological traits as well as some ecological and ethnobotanical distinctions. Multinervae is composed of tall emergent canopy trees that typically have more numerous secondary leaf veins compared to the sub-canopy to canopy species of Sebiferae (15-60 versus 9-28 respectively). The pericarps of Multinervae ($1-7 \mathrm{~mm}$) are also typically thicker than those of Sebiferae (0.3-1.3 mm). Furthermore, taxa of Multinervae are have an aril that is lacinate nearly to its base while those of Sebiferae are lacinate for half the length of the seed. Although incomplete quantitative data exists, it has also been observed in the field that members of Multinervae generally have larger, globose seeds while those of Sebiferae are generally smaller and more ellipsoid in shape. Additionally, 4 species (V. flexuosa, V. multinervia, V. pavonis, and V. surinamensis) of Multinervae included in this analysis were studied by Walker and Walker (1979) and classified as having type II pollen while 5 species (V. calophylla, V. elongata, V.
loretensis, V. peruviana, and V. sebifera) of the Sebiferae clade were classified as having type I pollen.

Although some species in this analysis formed well supported clades, there was little to no phylogenetic signal in members of the Sebiferae group, although a previous investigation of the neotropical genus Compsoneura (Chapter 1 of this thesis) found relatively well resolved relationships among many species with the same three loci. It is unclear as to whether the differing levels of phylogenetic signal between these informal subgroups of Virola are due to incomplete taxon sampling, nucleotide substitution rate heterogeneity, incomplete lineage sorting, a recent origin of Sebiferae species, or some combination of these. Since the sub-generic classification of Virola has been rather unstable due to a low degree of morphological trait variation, it is hoped that increased sampling of taxa, loci, and morphological characters in the future will enable a more stable classification rooted in the evolutionary histories of these species.

The Multinervae and Sebiferae clades exhibit numerous contrasting traits that likely have ecological and evolutionary origins. The Multinervae clade, as circumscribed here, is composed of tall canopy trees with globose seeds and relatively thick pericarps. Although speculative, it is possible that these adaptations are a result of co-evolution with primate and large bird species that act as dispersal agents as numerous studies have found members of this clade to be primarily dispersed by toucans and large primates (Julliot 1996, Juliotte and Sabatier 1993, Holbrook and Loiselle 2009). Their thick, astringent, pericarps may be adapted to prevent pre-dispersal seed consumption by these larger dispersers and/or discourage ovipositioning of invertebrate seed predators that have been found to infect large percentages of seeds of some species if this clade (Howe et al. 1985,

Howe 1993). The leaves of these canopy trees generally have longer and thinner leaves with more secondary veins/unit of length than members of Sebiferae (see Table 3.2). These characters may possibly be an adaptation to deal with the increased stresses of wind and rain experienced in the canopy. Another dichotomy previously mentioned is the type II pollen of Multinervae (sensu Walker and Walker 1979) opposed to the type I pollen of Sebiferae (Walker and Walker 1979), however it is unclear as to what implications, if any, this difference in pollen morphology has to pollination ecology and evolution of Virola. One more anecdotal difference between these two clades is that members of Sebiferae are often employed as hallucinogenic snuffs by natives while members of Multinervae are rarely used (Schultes and Raffauf 1990), possibly due to differences in the quality and/or quantity of their alkaloidal constituents or perhaps the increased ease with which the bark is removed from the smaller sub-canopy trees of Sebiferae.

After careful investigation of Virola spp. in situ in Ecuador and Peru as well as extensive herbarium investigations (BRIT, KEW, QCNE, LOJA, QAP, and USM), it was suspected that the taxa included in this study contained a minimum of three new species. This phylogenetic analysis gives further support for the distinction of these species but it is difficult to justify formal description with such incomplete taxon sampling. Additionally, reproductive material is lacking from these 3 putative new species, therefore their morphological characters are incomplete and their descriptions are provisional. These putative new species will be referred to in the following discussion according to their taxon names currently registered on the Neotropical Myristicaceae
project of the Barcode of Life Database (www.barcodinglife.org). The "RADS" portion of the species name refers to the initials of the author.

Working outwards from the base of the phylogeny, the first novel species is V. sp.RADS4; a species found west of the Andes near Camarones, Ecuador on the coastal plain in a seasonally dry forest. Virola sp.RADS4 is a tall emergent tree $(50 \mathrm{~m}, 30 \mathrm{~cm}$ dbh) that usually possesses stilt roots when mature and was found growing near streams in an otherwise dry forest that contained cacti, an unusual habitat for Virola. It appears to have affinities to V. duckei but differs in having fewer secondary veins (10-17 versus 25 37) and less pubescence (essentially glabrous versus ferruginous-tomentose). This species also differs from V. aequatorialis (Jaramillo et al. 2000), another species of the coastal plains of Ecuador, in not having a winged petiole and having less than 20 veins per leaf. The red sap of this species was also self-administered for a recalcitrant ringworm (Tinea $s p$.$) infection of the skin and found to be highly efficacious.$

Virola $s p . R A D S 3$ is also proposed as a new species with affinities to V. calophylloidea. Virola sp.RADS3 has only been found in the Cordillera del Condor of Ecuador growing at an elevation of 1200 m asl. Due to its deep reddish sessile pubescence, V. sp.RADS3 was initially identified in a permanent ecological plot as Otoba parvifolia. It appears that this taxon does not represent a range extension of V. calophylloidea of the Rio Negro of Brazil, owing to its rich reddish pubescence and the fact that it was growing on a rare sandstone substrate home to many highly endemic species (Rogers 2002, Ulloa and Neil 2006, Clarke et al. 2010, Janovec et al. in prep.).

The third novel species discovered in the course of this analysis is V. sp.RADS1. This species has been collected solely in the Madre de Dios watershed of Peru in terra
firme forests from the foothills of the Andes (750 m asl) and the lowland Amazon (200 m asl). This species had been identified in ecological plots as V. pavonis due to its whitish abaxial lamina colour and superficially similar leaf venation. However, these molecular analyses clearly show that it forms a well supported monophyletic clade and has no close genetic affinity to V. pavonis. Virola sp.RADS1 can be easily differentiated vegetatively from V. pavonis in having fewer leaf veins (11-15 versus 15-20) and conspicuously undulating edges of the leaf lamina.

Distance analysis

Of the 18 species of Virola for which trnH-psbA sequences were retrieved, $6(\mathrm{~V}$. sp.RADS4, V. caducifolia, V. multicostata, V. michelii, V. pavonis, and V. kwatae) had haplotypes distinct from other species (i.e. had diagnostic characters). All members of the Sebiferae clade had a large deletion in the most variable region of the trnH-psbA spacer and exhibited identical haplotypes with their homopolymer runs omitted, making species delimitation impossible within this clade with this loci. However, only 4 species pairs in the Multinervae clade shared haplotypes. One specimen of V. multinervia had an identical haplotype to V. flexuosa; V. multiflora and V. nobilis also shared haplotypes. Of the remaining 7 species, V. surinamensis had two paraphyletic haplotypes. This apparent paraphyly of conspecific sequences may be due to undetected speciation or population divergence as the two V. surinamensis sequence clusters on the distance tree represent populations in both Peru and Ecuador. However, chloroplast haplotype introgression, or chloroplast capture, is expected to occur frequently in plant species (Rieseberg and Soltis 1991, Hollingsworth et al 2011) and it is important to keep this in mind before delimiting species based solely on haplotype data. Since many species were represented by fewer
than 4 specimens from restricted geographical areas, it remains unclear whether chloroplast haplotype introgression is commonplace in this genus but given the emerging evidence of widespread plastid introgression in other plant families (Golden and Bain 2000, Palme et al. 2003, Palma-Silva et al. 2011) it is likely that plastid-based DNA identification will only be confounded by increased taxon sampling of Virola. Despite this possibility, the trnH-psbA spacer may represent an alternative means of identifying collections (particularly juveniles or difficult material such as pollen or roots) of the Multinervae clade as they are often mis-identified in ecological plots and there are usually few species at any one locale. Since numerous other proposed DNA barcoding loci have exhibited little variation in initial trials and introgression and paraphyly are likely to plague species discrimination, efforts should be focused on finding variable lowcopy nuclear loci that can more effectively discriminate species of these ecologically dominant trees.

Descriptions of provisional species

Virola sp.RADS1 R. Steeves sp. nov.-TYPE: Peru. Madre de dios: Los Amigos Biological Research Station -12.57 DD Lat, -70.10 DD Long, 250 m, 17 Jun 2008, R. Steeves and A. Balarezo 500 (holotype: OAC)

Tree to 20 m tall and 40 cm dbh. Bark grey in colour, tough and ridged on young trees but growing smoother with age. Sap profuse and clear-red. Branchlets terete to subterete, $1.5-4 \mathrm{~mm}$ wide, bark smooth, green and may be covered in an evanescent
pubescence, the hairs short-stalked to sessile, stellate. Leaves simple, alternate, thinchartaceus, leaf buds ferruginous but soon glabrous upon leaf expansion; petioles stout, subterete, canaliculate, $0.5-1.2 \mathrm{~cm}$ long and 1-2.5 mm wide, brown when dry, glabrous to glabrescent, the hairs short stalked to sessile, stellate; blades elliptic-oblong, lamina 12.717.0 cm long, $3.25-4.8 \mathrm{~cm}$ wide at $1 / 4$ length, $3.3-5.5 \mathrm{~cm}$ wide at $1 / 2$ width, $1.9-4.1 \mathrm{~cm}$ wide at $3 / 4$ length, base attenuate to rounded and acuminate at apex, drying dark brown, glabrescent, adaxial surface whitish with a waxy appearance, abaxial surface dark green with a glossy appearance; venation costa glabrous and raised above, prominently keeled and glabrescent below; secondary nerves 11-16 per side, spaced by 7-9 mm, arcuate ascending, eucamptodromous, partially anastomosing near margin. Staminate
inflorescences unknown Pistillate inflorescences unknown. Fruits (nearly mature) 1-3 per infructescence, globose, pedicel $0.9-1.0 \mathrm{~cm}$ long and $2.5-3 \mathrm{~mm}$ wide; Pericarp green and glabrescent with age, smooth and ferruginous-tomentose, $1.2-1.5 \mathrm{~cm}$ wide and $1.5-2$ cm long and 0.8-1.2 mm thick, presumably dehiscent when mature; Seed $1-1.2 \mathrm{~cm}$ wide, $1.3-1.5 \mathrm{~cm}$ long; Testa striated by aril; Aril lacinate to base; Endosperm unknown.

Distribution and notes: Collected only from the Madre de Dios watershed in Peru from elevations of 150-750 m. V. sp.RADS1's leaf colour, indument and venation has many affinities to V. pavonis and V. surinamensis but differs in having an acuminate apex, fewer than 16 secondary veins and a comparatively thinner pericarp. When formalized this species will be named after the forester and conservationist Aldo Leopold whose early $20^{\text {th }}$ century essay "The River of the Mother of God" about the Madre de Dios River has inspired me and many others to explore wild places.

Additional specimens examined: Peru. CUSCO: Quispicanchi Province, District of Camanti, Community of Quincemil, -13.23, -70.78, 500-1200 m, 06/26-07/04, 2008, R. Steeves, P. Centeno, D. White, and K. Ward 561 (OAC); Madre de Dios: Manu province, Los amigos biological station, Confluence of Los Amigos and Madre de Dios rivers, $-12.57,-70.1,200-250 \mathrm{~m}, 06 / 7-17 / 2008$, R. Steeves and A. Balarezo 431 (OAC), R. Steeves and A. Balarezo 432 (OAC), R Steeves and A. Balarezo 447 (OAC), R. Steeves and A. Balarezo 450 (OAC), R. Steeves and A. Balarezo 470 (OAC), R. Steeves and A. Balarezo 500 (OAC).

Virola sp.RADS4 R. Steeves-TYPE: Ecuador. Manabi: Diez de Augusto, Camarones, 0.083 DD Lat, -80.16 DD Long, 80 m, 28 April 2008, R. Steeves, A. Reid and D. Simba 205 (holotype: OAC; QCNE)

Tree to 50 m tall and 30 cm dbh. Bark grey in colour, tough and ridged. Sap profuse and clear-red. Branchlets terete to subterete, $0.27-0.42 \mathrm{~cm}$ wide, bark smooth, green and may be covered in an evanescent pubescence, the hairs short-stalked, stellate. Leaves simple, alternate, thin-chartaceus, leaf buds ferruginous but soon glabrescent upon leaf expansion; petioles stout, subterete, canaliculate, $0.48-1.22 \mathrm{~cm}$ long and $0.26-0.44 \mathrm{~cm}$ wide, brown when dry, glabrous to glabrescent, the hairs short stalked, stellate; blades elliptic-oblong, lamina $11.5-19.7 \mathrm{~cm}$ long, $3.0-7.0 \mathrm{~cm}$ wide at $1 / 4$ length, $3.4-7.6 \mathrm{~cm}$ wide at $1 / 2$ width, 3.2-6.9 cm wide at $3 / 4$ length, base attenuate to rounded and acuminate at apex, drying dark brown, glabrescent, adaxial surface dull green when fresh, abaxial surface dark green with a glossy appearance; venation costa glabrous and raised above, prominently keeled and glabrescent below; secondary nerves 11-17 per side, spaced by
$0.35-0.7 \mathrm{~cm}$, arcuate ascending, eucamptodromous, partially anastomosing near margin. Staminate inflorescences unknown Pistillate inflorescences unknown. Fruits (immature) 1-3 per infructescence, elliptic, pedicel $0.9-1.0 \mathrm{~cm}$ long and $02.5-3 \mathrm{~mm}$ wide; Pericarp green and glabrescent with age, smooth and ferruginous-tomentose, $1.2-1.5 \mathrm{~cm}$ wide and 1.5-2 cm long and 0.8-1.2 mm thick, presumably dehiscent when mature; Seed 1-1.2cm wide, 1.3-1.5cm long; Testa striated by aril; Aril lacinate to base; Endosperm unknown.

Distribution and notes: Collected only from dry coastal forests 20 km south of Pedernales, Ecuador at the Lalo Loor research station near Camarones where it was one of the most common canopy tree species. This species has morphological affinities to V. duckei from which it differs in having only 10-17 secondary nerves compared to the 2537 typical of V. duckei (Smith 1937).

Additional specimens examined: Ecuador. Manabi: Diez de Augusto, -0.083 DD Lat, -80.16 DD Long, 80 m, 04/26-29/2008, R. Steeves, A. Reid and D. Simba 205
(holotype: OAC! ; QCNE!), 2008, R. Steeves, A. Reid and D. Larco 188 (OAC), R.
Steeves, A. Reid and D. Larco 189 (OAC), R. Steeves, A. Reid and D. Larco 190 (OAC), R. Steeves, A. Reid and D. Larco 191 (OAC), R. Steeves, A. Reid and D. Larco 192 (OAC), R. Steeves, A. Reid and D. Larco 193 (OAC), R. Steeves, A. Reid and D. Larco 194 (OAC), R. Steeves, A. Reid and D. Larco 195(OAC), R. Steeves, A. Reid and D. Larco 196 (OAC), R. Steeves, A. Reid and D. Larco 197 (OAC), R. Steeves, A. Reid and D. Larco 198 (OAC), R. Steeves, A. Reid and D. Larco 199 (OAC), R. Steeves, A. Reid and D. Larco 200 (OAC), R. Steeves, A. Reid and D. Larco 201 (OAC), R. Steeves, A.

Reid and D. Larco 202 (OAC), R. Steeves, A. Reid and D. Larco 203 (OAC), R. Steeves, A. Reid and D. Larco 204 (OAC), R. Steeves, A. Reid and D. Larco 206 (OAC), R. Steeves, A. Reid and D. Larco 207 (OAC), R. Steeves, A. Reid and D. Larco 208 (OAC), R. Steeves, A. Reid and D. Larco 209 (OAC), R. Steeves, A. Reid and D. Larco 210 (OAC), R. Steeves, A. Reid and D. Larco 211 (OAC), R. Steeves, A. Reid and D. Larco 212 (OAC), R. Steeves, A. Reid and D. Larco 213 (OAC), R. Steeves, A. Reid and D. Larco 214 (OAC), R. Steeves, A. Reid and D. Larco 215 (OAC).

Virola sp.RADS3 R. Steeves-TYPE: Ecuador. Zamora-Chinchipe, Quimi, -3.59 DD Lat, -78.50 DD Long, 1200 m, 17 May 2008, R. Steeves, W. Quizhpe and D. Simba 335 (holotype: OAC; QCNE)

Tree to 30 m tall and 25 cm dbh. Bark grey in colour, tough and ridged-smooth. Sap profuse and clear-red. Branchlets terete to subterete, 4-7 mm wide, bark smooth, grey and may be covered in an evanescent pubescence, the hairs short-stalked sessile, stellate. Leaves simple, alternate, thin-chartaceus, leaf buds ferruginous, persistenly ferruginoustomentellous; petioles stout, subterete, canaliculate, $1.27-1.74 \mathrm{~cm}$ long and $3-5 \mathrm{~mm}$ wide, brown when dry, glabrescent, the hairs sessile, stellate; blades lanceolate-oblong, lamina 12.3-19.2 cm long, $4.7-5.9 \mathrm{~cm}$ wide at $1 / 4$ length, $5.3-6.6 \mathrm{~cm}$ wide at $1 / 2$ width, $4.4-5.56 \mathrm{~cm}$ wide at $3 / 4$ length, base rounded and acuminate at apex, drying dark brown, glabrescent, adaxial surface reddish-white when fresh, abaxial surface dark green with a glossy appearance when fresh, dark brown when dry; venation costa glabrous and raised above, prominently keeled and glabrescent below; secondary nerves 9-12per side, spaced by 6.4-
7.8 mm , arcuate ascending, eucamptodromous, partially anastomosing near margin.

Staminate inflorescences unknown Pistillate inflorescences unknown. Fruits unknown.

Distribution and notes: Collected only from the slopes of the Cordillera del Condor near Quimi, Ecuador on the site of a proposed Canadian gold mine. Two trees were found growing at 1200 m elevation in a permanent plot situated on soil of sandstone origin. This species was originally identified as Otoba parvifolia in a permanent plot owing to its faint secondary veins and reddish adaxial leaf colour. This species has morphological affinities to V. calophylloidea but differs in its reddish pubescence, distribution, and its unique habitat where many highly endemic species are found. When formalized, this species will be named after the native Shuar people that inhabit the area where these trees are found.

Additional specimens examined: Ecuador. Zamora-Chinchipe: -3.59 DD Lat, -78.50
DD Long, 1200 m, 17 May 2008, R. Steeves, W. Quizhpe and D. Simba 339 (OAC).

Tables

Table 3.1 Species[SL and BL indicate small leaf and big leaf morphotypes of V. loretensis and V. Sebifera], collectors, collection numbers (Coll. \#), Barcode of Life Database process ID number (BOLD ID), and decimal degree co-ordinates (latitude= DD Lat., longitude= DD long.) of taxa collected for this study.

Species	Collector(s)	Coll. \#	BOLD ID	$\begin{gathered} \text { DD } \\ \text { Lat. } \end{gathered}$	DD Long.
C. capitellata	Steeves, R. et al	RS 551	RSMYR004-11	-13.24	-70.78
C. debilis	Berry, P	PB 7209	RSMYR017-11		
I. juruensis	Steeves, R. et al	RS 451	RSMYR050-11	-12.57	-70.10
I. laevis	Steeves, R. et al	RS 460	RSMYR051-11	-12.57	-70.10
V. caducifolia	Janovec, J.	JJ 847	RSMYR109-11		
V. calophylla	Steeves, R. et al	RS 430	RSMYR110-11	-12.57	-70.10
V. calophylla	Steeves, R. et al	RS 454	RSMYR111-11	-12.57	-70.10
V. calophylla	Steeves, R. et al	RS 481	RSMYR112-11	-12.57	-70.10
V. calopylla	Steeves, R. et al	RS 511	RSMYR113-11	-12.61	-69.20
V. dixonii	Steeves, R. et al	RS 225	RSMYR114-11	-1.04	-77.37
V. elongata	Steeves, R. et al	RS 502	RSMYR115-11	-12.61	-69.20
V. elongata	Steeves, R. et al	RS 437	RSMYR116-11	-12.57	-70.10
V. elongata	Steeves, R. et al	RS 494	RSMYR117-11	-12.57	-70.10
V. flexuosa	Steeves, R. et al	RS 522	RSMYR118-11	-12.61	-69.20
V. flexuosa	Steeves, R. et al	RS 595	RSMYR119-11	-13.24	-70.78
V. flexuosa	Steeves, R. et al	RS 442	RSMYR120-11	-12.57	-70.10
V. sp.RADS1	Steeves, R. et al	RS 510	RSMYR121-11	-12.61	-69.20
V. sp.RADS1	Steeves, R. et al	RS 561	RSMYR122-11	-13.24	-70.78
V. sp.RADS1	Steeves, R. et al	RS 432	RSMYR123-11	-12.57	-70.10
V. sp.RADS1	Steeves, R. et al	RS 500	RSMYR124-11	-12.57	-70.10
V V. loretensis	Steeves, R. et al	RS 516	RSMYR125-11	-12.61	-69.20
V. loretensis	Steeves, R. et al	RS 526	RSMYR126-11	-12.61	-69.20
V. loretensis	Steeves, R. et al	RS 480	RSMYR127-11	-12.57	-70.10
V. multinervia	Steeves, R. et al	RS 107	RSMYR128-11	-12.57	-70.10
V. multinervia	Steeves, R. et al	RS 108	RSMYR129-11	-12.57	-70.10
V. multinervia	Steeves, R. et al	RS 543	RSMYR130-11	-13.24	-70.78
V. multinervia	Steeves, R. et al	RS 549	RSMYR131-11	-13.24	-70.78
V. multinervia	Steeves, R. et al	RS 429	RSMYR132-11	-12.57	-70.10
V. multinervia	Steeves, R. et al	RS 466	RSMYR133-11	-12.57	-70.10
V. multinervia	Steeves, R. et al	RS 350	RSMYR134-11	-3.57	-78.45
V. pavonis	Steeves, R. et al	RS 216	RSMYR135-11	-1.04	-77.37
V. peruviana	Janovec, J.	JJ 772	RSMYR136-11		
V V sebifera-BL	Steeves, R. et al	RS 584	RSMYR137-11	-13.24	-70.78
V. sebifera-SL	Steeves, R. et al	RS 507	RSMYR138-11	-12.61	-69.20
V. sebifera-SL	Steeves, R. et al	RS 534	RSMYR139-11	-13.24	-70.78
V. sebifera-SL	Steeves, R. et al	RS 552	RSMYR140-11	-13.24	-70.78
V. loretensis-SL	Steeves, R. et al	RS 483	RSMYR141-11	-12.57	-70.10

V. sp.RADS3	Steeves, R. et al	RS 335	RSMYR142-11	-3.57	-78.45
V. sp.RADS3	Steeves, R. et al	RS 339	RSMYR143-11	-3.57	-78.45
V. sp.RADS4	Steeves, R. et al	RS 213	RSMYR144-11	-0.08	-80.17
V. sp.RADS4	Steeves, R. et al	RS 214	RSMYR145-11	-0.08	-80.17
V. surinamensis	Steeves, R. et al	RS 501	RSMYR146-11	-12.61	-69.20
V. surinamensis	Steeves, R. et al	RS 428	RSMYR147-11	-12.57	-70.10
V. surinamensis	Steeves, R. et al	RS 489	RSMYR148-11	-12.57	-70.10
V. surinamensis	Steeves, R. et al	RS 82	RSMYR149-11	-12.57	-70.10
V. surinamensis	Steeves, R. et al	RS 83	RSMYR150-11	-12.57	-70.10
V. surinamensis	Steeves, R. et al	RS 84	RSMYR151-11	-12.57	-70.10
V. surinamensis	Steeves, R. et al	RS 248	RSMYR152-11	-1.04	-77.37
V. surinamensis	Steeves, R. et al	RS 324	RSMYR153-11	-3.57	-78.45

Table 3.2 Morphological trait values of 8 species of Virola taken from species descriptions of Smith (1937). Minimum and maximum trait values are given as ranges. NDA indicates that there was no data available.

	Sebiferae				Multinervae			
	V. elongata	V. sebifera	V. calophylla	$V .$ loretensis	V. multinervia	V. flexuosa	V. surinamensis	V. pavonis
Height (m)								
	25	40	4 to 10	4 to 10	30	30	25	23
Leaf petiole								
length (mm)	5-16	10-25	7-20	3-12	4-15	2-7	2-9	4-13
Leaf lamina								
length (cm)	12-32	15-47	20-55	15-35	25-45	5-11	10-22	8-21
Leaf width at half length (cm)	4-11	6-15	7-24	4-10	8-16	1.7-4	2-5	2-6.5
Leaf vein number	9-20	10-28	12-27	15-26	40-60	40-50	16-30	15-20
Inflorescence								
length (cm)	4-18	8-23	12-30	to 25	15-20	4-9	7-17	7-15
Flowers per branch (\#)	2-8	3-10	4-10	5-10	20-50	10-15	5-20	3-8
Anther length (mm)	0.6-1.6	0.9-2	1-1.7	1-1.4	to 0.9	0.8-0.9	1.3-1.9	1.1-1.5
Anther number								
	3(4-6)	3(4-5)	3	3	3	3	3	3
Fruit length (mm)								
	11-16	10-19	NDA	13-22	20-30	NDA	13-21	25-50
Fruit width (mm)								
	8-12	7-14	NDA	13-22	15-25	NDA	11-18	15-23
Pericarp								
thickness (mm)	$0.3-1.3$	$0.5-1$	NDA	$<.5 \mathrm{~mm}$	$1.5-4 \mathrm{~mm}$		1 to 2	$2 \text { to } 7$
Aril	$1 / 2$	1/2	$1 / 2$	$1 / 2$	lacinate to	lacinate to	lacinate to	lacinate

lacinate lacinate lacinate lacinate base base base to base

Figures

Figure 3.1 Virola flexuosa: A) Abaxial leaf surfaces. B) Adaxial leaf surfaces. C) Herbarium specimen with inflorescence. D) Staminate flower showing androecium (scale bar $=0.5 \mathrm{~mm}$).

Figure 3.2 Virola multinervia: A) Abaxial and adaxial leaf surfaces from juvenile tree (15 cm ruler). B) Herbarium specimen with immature inflorescence. C) Close-up of adaxial surface of mature tree. D) Close-up of adaxial surface of mature tree. E) Abaxial leaf pubescence (scale bar= 1 mm). F) Flower with one tepal dissected to show androecium (scale bar $=0.5 \mathrm{~mm}$).

Figure 3.3 Virola sp.RADS4 A) Bark, leaves and red sap. B) Abaxial leaf surface showing glabrescent surface and secondary veins. C) Branchlet of mature tree (15 cm ruler). D) Branchlet of immature tree (15 cm ruler). E) Nearly mature fruit dissected to show outer glabrescent pericarp and nearly entire aril. F) Buttressed base of mature tree.

Figure 3.4 Virola surinamensis: A) Branch with inflorescence and abaxial leaf surface. B) Branch of mature tree with inflorescences. C) Undehisced, nearly mature fruits and dehisced fruit showing red aril (inset). D) Branches and stilt roots typical of this species . E) Close-up of inflorescence. F) Staminate flower with petal dissected to show androecium (scale bar $=0.5 \mathrm{~mm}$).

Figure 3.5 Virola pavonis: A) Bark, leaves, inflorescence, and greenish latex. B) Specimens showing adaxial and abaxial leaf surfaces (15 cm ruler). C) Leaves and pericarps (15 cm ruler). D) Close-up of pericarps and seed testa.

Figure 3.6 Virola sp.RADS3 specimen showing reddish abaxial pubescence and glabrous glossy green adaxial surface (15 cm ruler).

Figure 3.7 Virola calophylla: A) Leaves with inflorescence. B) Bark and leaves of mature tree. C) Nearly mature florescence. D) Close-up of inflorescence with ants. E) Abaxial leaf pubescence (scale bar= 2 mm). F) Indehiscent and dehiscent mature fruit with lacinate aril.

Figure 3.8 Virola sp.RADS1: A) Leaves with inflorescence and pericarps (15 cm ruler). B) Bark showing latex and leaves. C) Close-up of leaf and branch showing undulating leaf margins. D) Dissected fruit showing deeply lacinate aril and red-pubescent pericarp. E) Leaf and nearly mature un-dehisced fruits. F) Adaxial leaf pubescence, primary and secondary veins (Scale bar= 1 mm).

Figure 3.9 Virola elongata: A) Leaves, infructescence and bark. B) Adaxial leaf pubescence and secondary vein (scalebar= 1 mm) C) Abaxial and abaxial leaf surfaces (15 cm ruler). D) Dissected mature fruit with deeply lacinated aril (semi-dried). E) Undehisced nearly mature fruits. F) Close-up of fruit pubescence (scale bar= 1 mm).

Figure 3.10 Virola loretensis-BL (Big Leaf morphotype): A) Bark, deep red latex and dried (dropped) leaves. B) Abaxial, adaxial leaf surfaces of sample with inflorescences (15 cm ruler). C) Close-up of inflorescence. D) Branch with mature fruits. E) Dissected
immature fruit showing dense pubescence. F) Adaxial leaf pubescence. G) Developing flower buds (scale bar=1 mm). H) Close-up of fruit indument (scale bar= 1 mm).

Figure 3.11 Virola loretensis-SL (Small Leaf morphotype): A) Bark, leaves and red latex. B) Adaxial leaf surfaces with inflorescence. C) Branch with inflorescence. D) Close-up of mature inflorescence. E) Flower pubescence (scale bar= 1 mm). F) Adaxial leaf pubescence (scale bar= 1 mm).

Figure 3.12 Virola sebifera-SL (Small Leaf morphotype): A) Leaves with orange-red pubescence (15 cm ruler) B) Bark, leaves and inflorescence of mature tree. C) Abaxial leaf pubescence (scale bar= 1 mm). D) Inflorescence. E) Flowers (scale bar= 1 mm). F) Nearly mature fruits with dissected fruit showing seed testa and aril (inset).

Figure 3.13 Virola sebifera-BL (Big Leaf morphotype) : A) Bark with leaf showing abaxial surface. B) Mature pistillate inflorescence. C) Nearly mature infructescence showing deciduos red pubescence. D) Close-up of staminate flowers (scale bar= 1 mm). E) Abaxial leaf pubescence and secondary vein (scale bar= 1 mm).

Figure 3.14 Virola dixonii branch showing adaxial and abaxial leaf surfaces (15 cm ruler).

Figure 3.15 Illustration of morphological metrics measured on provisional new species: SW=Stem Width, LPL=Petiole Length, LPW=Petiole Width, LVS =space between secondary veins, LVN=Vein Number, LL=Lamina Length, LWB= Leaf Width at $1 / 4$ length, LWM=Leaf Width at $1 / 2$ length, LWT=Leaf Width at $3 / 4$ length, LVN=Leaf Vein Number, LAL=Leaf Acumen Length.

Figure 3.16 Bayesian majority rule consensus tree of 45 Virola taxa with proportional branch lengths and Bayesian posterior probabilities (PP) above, and bootstrap support measures below branches. Stars (\star) indicate clades with sessile leaf hairs (compared to stalked leaf hairs), the " $\boldsymbol{*}$ " indicates a clade with type II pollen and the " $\boldsymbol{*}$ " indicates type I pollen (sensu Walker and Walker 1979). "SL" and "BL" following Virola sebifera and Virola loretensis collections indicate small-leaf and big-leaf morphotypes respectively. Additional letters following taxa names indicate collectors names and numbers (RS=Royce Steeves, JJ=John Janovec, and PB=Paul Berry). Additional information can be found about these specimens in table 3.1 as well as the barcode of life database. Taxa in bold are provisional new species.


```
substitutions per site
```

Figure 3.17 Neighbour-joining uncorrected p-distance gene tree of 17 Virola species. Taxa in bold are proposed new species. Blue branches indicate taxa of the Multinervae clade and red those of the Sebiferae clade. "SL" and "BL" following Virola sebifera taxa indicate whether they are of the small-leaf or big-leaf morphotypes. Letters and numbers proceeding species names indicate the collector and collection number.

Literature Cited

Ackerly, D. D., Rankin-De-Merona, J. M., \& Rodrigues, W. A. 1990. Tree densities and sex ratios in breeding populations of dioecious central Amazonian Myristicaceae. Journal of Tropical Ecology 6: 239-348.

Alfaro, M. E., \& Holder, M. T. 2006. The posterior and the prior in Bayesian phylogenetics. Annual review of ecology, evolution, and systematics 37: 19-42.

Armstrong, J. E., \& Irvine, A. K. 1989. Floral biology of Myristica insipida (Myristicaceae), a distinctive beetle pollination syndrome. American Journal of Botany 76: 86-94.

Asif, M. J., \& Cannon, C. H. 2005. DNA extraction from processed wood: a case study for the identification of an endangered timber species (Gonystylus bancanus). Plant Molecular Biology Reporter 23: 185-192.

Beloz, A. 1992. Brine shrimp bioassay screening of two medicinal plants used by the Warao: Solanum straminifolium and Virola surinamensis. Journal of Ethnopharmacology 37: 225-227.

Bennett, B. C., \& Alarcón, R. 1994. Osteophloeum platyspermum and Virola duckei (Myristicaceae): newly reported as hallucinogens from Amazonian Ecuador. Economic Botany 48: 152-158.

Candolle, A. D. 1856. Myristicaceae. Prodromus Systematis Naturali Vegetablis 14: 187208.

Chagnon, N. A., Le Quesne, P., \& Cook, J. M. 1971. Yanomamö Hallucinogens: Anthropological, Botanical, and Chemical Findings. Current Anthropology 12: 72-74.

Chase, M. W., Soltis, D. E., Olmstead, R. G., Morgan, D., Les, D. H., Mishler, B. D., Duvall, M. R., Price, R. A., Hills, H. G., Qiu, Y. L., \& others. 1993. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Annals of the Missouri Botanical Garden 80: 528-580.

Clark, J. L., Neill, D. A., Weber, A., Gruhn, J. A., \& Katan, T. 2010. Shuaria (Gesneriaceae), an Arborescent New Genus from the Cordillera del Cóndor and Amazonian Ecuador. Systematic Botany 35: 662-674.

Connell, J. H. 1971. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In Dynamics of populations. Proceedings of the Advanced Study Institute on Dynamics of numbers in populations. Wageningen: Oosterbeek (pp. 298-310).

Davis, E. W., \& Yost, J. A. 1983. The ethnomedicine of the Waorani of Amazonian Ecuador. Journal of Ethnopharmacology 9: 273-297.

Davis, J. I., Stevenson, D. W., Petersen, G., Seberg, O., Campbell, L. M., Freudenstein, J. V., Goldman, D. H., Hardy, C. R., Michelangeli, F. A., Simmons, M. P., \& others. 2004. A phylogeny of the monocots, as inferred from rbcL and atpA sequence variation, and a comparison of methods for calculating jackknife and bootstrap values. Systematic Botany 29: 467-510.

Degen, B., Bandou, E., \& Caron, H. 2004. Limited pollen dispersal and biparental inbreeding in Symphonia globulifera in French Guiana. Heredity 93: 585-591.

Douady, C. J., Delsuc, F., Boucher, Y., Doolittle, W. F., \& Douzery, E. J. 2003. Comparison of Bayesian and maximum likelihood bootstrap measures of phylogenetic reliability. Molecular Biology and Evolution 20: 248-254.

Draheim, H., Cui, M., \& Dick, C. W. 2009. Characterization of 14 microsatellite DNA markers for the tropical forest tree Virola surinamensis (Rol.) Warb.(Myristicaceae). Molecular Ecology Resources 9: 1386-1388.

Farris, J. S., Kallersjo, M., Kluge, A. G., \& Bult, C. 1995. Testing significance of incongruence. Cladistics 10: 315-319.

Fazekas, A. J., Steeves, R., \& Newmaster, S. G. 2010. Improving sequencing quality from PCR products containing long mononucleotide repeats. Biotechniques 48: 277-285.

Forget, P. M., \& Cuijpers, L. 2008. Survival and scatterhoarding of frugivores-dispersed seeds as a function of forest disturbance. Biotropica 40: 380-385.

Forget, P. M., Milleron, T., Feer, F., Henry, O., \& Dubost, G. 2000. Effects of dispersal pattern and mammalian herbivores on seedling recruitment for Virola michelii (Myristicaceae) in French Guiana. Biotropica 32: 452-462.

Gentry, A. H. 1988. Tree species richness of upper Amazonian forests. Proceedings of the National Academy of Sciences of the United States of America 85: 156-159.

Golden, J. L., \& Bain, J. F. 2000. Phylogeographic patterns and high levels of chloroplast DNA diversity in four Packera (Asteraceae) species in southwestern Alberta. Evolution 54: 1566-1579.

Gonzalez, M. A., Baraloto, C., Engel, J., Mori, S. A., Pétronelli, P., Riéra, B., Roger, A., Thébaud, C., \& Chave, J. 2009. Identification of Amazonian trees with DNA barcodes. PLoS One 4: e7483.

Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic acids symposium series. (pp. 95-98).

Holbrook, K. M., \& Loiselle, B. A. 2009. Dispersal in a Neotropical tree, Virola flexuosa (Myristicaceae): Does hunting of large vertebrates limit seed removal? Ecology 90: 1449-1455.

Holbrook, K. M., Loiselle, B. A., \& Clark, A. M. 2007. Eight polymorphic microsatellite loci for a Neotropical nutmeg, Virola flexuosa (Myristicaceae). Molecular ecology notes 7: 248-250.

Hollingsworth, P. M., Graham, S. W., \& Little, D. P. 2011. Choosing and using a plant DNA barcode. PloS one 6: e19254.

Howe, H. F. 1993. Aspects of variation in a neotropical seed dispersal system. Plant Ecology 107: 149-162.

Howe, H. F. 1981. Dispersal of a neotropical nutmeg (Virola sebifera) by birds. The Auk 98: 88-98.

Howe, H. F., \& Vande Kerckhove, G. A. 1981. Removal of wild nutmeg (Virola surinamensis) crops by birds. Ecology 62: 1093-1106.

Howe, H. F., Schupp, E. W., \& Westley, L. C. 1985. Early consequences of seed dispersal for a neotropical tree (Virola surinamensis). Ecology 66: 781-791.

Janovec, J. P. 2000. A systematic study of Compsoneura (A. DC.) Warb., A Neotropical member of the nutmeg family. Texas A\&M University Dissertation: 1-359.

Janovec, J. P., \& Harrison, J. S. 2002. A morphological analysis of the Compsoneura sprucei complex (Myristicaceae), with a new combination for the Central American species Compsoneura mexicana. Systematic Botany 27: 662-673.

Janzen, D. H. 1970. Herbivores and the number of tree species in tropical forests. The American Naturalist 104: 501-528.

Jaramillo, T. S., Muriel, P., Rodrigues, W. A., \& Balslev, H. 2000. Myristicaceae novelties from Ecuador. Nordic Journal of Botany 20: 443-447.

Julliot, C. 1996. Fruit choice by red howler monkeys (Alouatta seniculus) in a tropical rain forest. American Journal of Primatology 40: 261-282.

Julliot, C., \& Sabatier, D. 1993. Diet of the red howler monkey (Alouatta seniculus) in French Guiana. International Journal of Primatology 14: 527-550.

Kreader, C. A. 1996. Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Applied and Environmental Microbiology 62: 1102-1106.

Kress, W. J., Erickson, D. L., Jones, F. A., Swenson, N. G., Perez, R., Sanjur, O., \& Bermingham, E. 2009. Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. Proceedings of the National Academy of Sciences 106: 18621-18626.

Li, M., Wunder, J., Bissoli, G., Scarponi, E., Gazzani, S., Barbaro, E., Saedler, H., \& Varotto, C. 2008. Development of COS genes as universally amplifiable markers for phylogenetic reconstructions of closely related plant species. Cladistics 24: 727-745.

Lopes, N. P., Kato, M. J., \& others. 1999. Antimalarial use of volatile oil from leaves of Virola surinamensis (Rol.) Warb. by Waiăpi Amazon Indians. Journal of ethnopharmacology 67: 313-319.

Macedo, D. S., \& Anderson, A. B. 1993. Early ecological changes associated with logging in an Amazon floodplain. Biotropica 25: 151-163.

Macrae, W. D., \& Towers, G. H. 1984a. Justicia pectoralis: a study of the basis for its use as a hallucinogenic snuff ingredient. Journal of ethnopharmacology 12: 93111.

Macrae, W., \& Towers, G. 1984b. An ethnopharmacological examination of Virola elongata bark: A South American arrow poison. Journal of ethnopharmacology 12: 75-92.

McKenna, D. J., Towers, G. H. N., \& Abbott, F. S. 1984. Monoamine oxidase inhibitors in South American hallucinogenic plants part 2: Constituents of orally-active Myristicaceous hallucinogens. Journal of Ethnopharmacology 12: 179-211.

Müller, K. 2006. Incorporating information from length-mutational events into phylogenetic analysis. Molecular phylogenetics and evolution 38: 667-676.

Nylander, J. 2004. MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.

Opler, P. A., \& Bawa, K. S. 1978. Sex ratios in tropical forest trees. Evolution 32: 812821.

Palma-Silva, C., Wendt, T., Pinheiro, F., Barbará, T., FAY, M. F., Cozzolino, S., \& Lexer, C. Sympatric bromeliad species (Pitcairnia spp.) facilitate tests of mechanisms involved in species cohesion and reproductive isolation in Neotropical inselbergs. Molecular Ecology 20: 3185-3201

Palmé, A. E., Semerikov, V., \& Lascoux, M. 2003. Absence of geographical structure of chloroplast DNA variation in sallow, Salix caprea L. Heredity 91: 465-474.

Pascal, J. P., \& Pelissier, R. 1996. Structure and floristic composition of a tropical evergreen forest in south-west India. Journal of Tropical Ecology 12: 191-214.

Pitman, N. C., Mogollón, H., Dávila, N., Ríos, M., García-Villacorta, R., Guevara, J., Baker, T. R., Monteagudo, A., Phillips, O. L., Vásquez-Martínez, R., \& others. 2008. Tree community change across 700 km of lowland Amazonian forest from the Andean foothills to Brazil. Biotropica 40: 525-535.

Pitman, N. C., Terborgh, J. W., Silman, M. R., Núñez V, P., Neill, D. A., Cerón, C. E., Palacios, W. A., \& Aulestia, M. 2002. A comparison of tree species diversity in two upper Amazonian forests. Ecology 83: 3210-3224.

Pitman, N. C., Terborgh, J. W., Silman, M. R., Núñez V, P., Neill, D. A., Cerón, C. E., Palacios, W. A., \& Aulestia, M. 2001. Dominance and distribution of tree species in upper Amazonian terra firme forests. Ecology 82: 2101-2117.

Poinar, G. J., \& Poinar, R. 1999. The amber forest: a reconstruction of a vanished world. Princeton, N.J.: Princeton University Press.

Poinar, H. N. 1998. Molecular coproscopy: dung and diet of the extinct ground sloth Nothrotheriops shastensis. Science 281: 402-406.

Prance, G. T. 1972. Ethnobotanical notes from Amazonian Brazil. Economic Botany 26: 221-237.

Qiu, Y. L., Chase, M. W., Les, D. H., \& Parks, C. R. 1993. Molecular phylogenetics of the Magnoliidae: cladistic analyses of nucleotide sequences of the plastid gene rbcL. Annals of the Missouri Botanical Garden 80: 587-606.

Rieseberg, L.H., \& Soltis, D.E. 1991. Phylogenetic consequences of cytoplasmic gene flow in plants. Evolutionary Trends in Plants 5: 65-84.

Rodrigues, W. A. 1980. Revisão taxonômica das espécies de Virola Aublet (Myristicaceae) do Brasil. Acta Amazonica (suplemento): 1-127.

Rodrigues, W. A. 1989. A new Venezuelan Virola (Myristicaceae). Annals of the Missouri Botanical Garden 76: 1163-1164.

Rodrigues, W. A. 2002. Notas taxonômicas sobre Myristicaceae neotropicais. Acta Biológica Paranaense 31: 71-77.

Rogers, Z. S. 2002. A new species of Weinmannia (Cunoniaceae: Cunonieae) from southern Ecuador. Novon 12: 249-252.

Rohlf, F. J. 2006. tpsDig version 2.10, Department of Ecology and Evoluation. State University of New York at Stony Brook, New York.

Ronquist, F., \& Huelsenbeck, J. P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574.

Roumy, V., Garcia-Pizango, G., Gutierrez-Choquevilca, A. L., Ruiz, L., Jullian, V., Winterton, P., Fabre, N., Moulis, C., \& Valentin, A. 2007. Amazonian plants from Peru used by Quechua and Mestizo to treat malaria with evaluation of their activity. Journal of ethnopharmacology 112: 482-489.

Russo, S.E. 1992. Linking spatial patterns of seed dispersal and plant recruitment in a neotropical tree, Virola calophylla (Myristicaceae). Harvard University. PhD dissertation: 1-148.

Russo, S. E. 2003. Responses of dispersal agents to tree and fruit traits in Virola calophylla (Myristicaceae): implications for selection. Oecologia 136: 80-87.

Sabatier, D. 1997. Description et biologie d'une nouvelle espèce de Virola (Myristicaceae) de Guyane. Adansonia, Série 3: 273-278.

Sang, T., Crawford, D. J., \& Stuessy, T. F. 1997. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). American Journal of Botany 84: 1120-1136.

Sasaki, Y., Miyoshi, D., \& Sugimoto, N. 2006. Effect of molecular crowding on DNA polymerase activity. Biotechnology Journal 1: 440-446.

Sauquet, H. 2004. Systematic revision of Myristicaceae (Magnoliales) in Madagascar, with four new species of Mauloutchia. Botanical Journal of the Linnean Society 146: 351-368.

Sauquet, H., Doyle, J. A., Scharaschkin, T., Borsch, T., Hilu, K. W., Chatrou, L. W., \& Le Thomas, A. 2003. Phylogenetic analysis of Magnoliales and Myristicaceae based on multiple data sets: implications for character evolution. Botanical Journal of the Linnean Society 142: 125-186.

Sauquet, H., \& Le Thomas, A. 2003. Pollen diversity and evolution in Myristicaceae (Magnoliales). International Journal of Plant Sciences 164: 613-628.

Sawadjoon, S., Kittakoop, P., Kirtikara, K., Vichai, V., Tanticharoen, M., \& Thebtaranonth, Y. 2002. Atropisomeric myristinins: Selective COX-2 inhibitors and antifungal agents from Myristica cinnamomea. The Journal of Organic Chemistry 67: 5470-5475.

Schultes, R. E., \& Holmstedt, B. 1968. The vegetal ingredients of the Myristicaceous snuffs of the Northwest Amazon. Rhodora 70: 113-160.

Schultes, R. E., \& Raffauf, R. F. 1990. The Healing Forest. Portland, Oregon: Dioscorides Press.

Schultes, R. 1981. Iconography of the New World Hallucinogens. Arnoldia 41: 80-125.
Simmons, M., \& Ochoterena, H. 2000. Gaps as characters in sequence-based phylogenetic analysis. Systematic Botany 49: 369-381.

Smith, A. C. 1937. The American species of Myristicaceae. Brittonia 2: 393-510.
Soltis, D. E., Smith, S. A., Cellinese, N., Wurdack, K. J., Tank, D. C., Brockington, S. F., Refulio-Rodriguez, N. F., Walker, J. B., Moore, M. J., Carlsward, B. S., \& others. 2011. Angiosperm phylogeny: 17 genes, 640 taxa. American Journal of Botany 98: 704 .

Speiss, A., T. Mueller, \& Ivell, R. 2004. Trehalose is a potent PCR enhancer: lowering of DNA melting temperature and thermal stabilization of Taq polymerase by the disaccharide trehalose. Clinical chemistry 50: 1256-1259.

Stöver, B. C., \& Müller, K. F. 2010. TreeGraph 2: Combining and visualizing evidence from different phylogenetic analyses. BMC bioinformatics 11: 1-9.

Suzuki, Y., Glazko, G. V., \& Nei, M. 2002. Overcredibility of molecular phylogenies obtained by Bayesian phylogenetics. Proceedings of the National Academy of Sciences of the United States of America 99: 16138-16143.

Swafford, D. 1999. PAUP*: Phylogenetic Analysis Using Parsimony (and Other Methods). Version 4 . Sunderland : Sinauer Associates.

Tate, J. A., \& Simpson, B. B. 2003. Paraphyly of Tarasa (Malvaceae) and diverse origins of the polyploid species. Systematic Botany 28: 723-737.

Thompson, J. D., Higgins, D. G., \& Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic acids research 22: 4673-4680.

Ulloa Ulloa, C., \& Neill, D. A. 2006. Phainantha shuariorum (Melastomataceae), una especie nueva de la Cordillera del Condor, Ecuador, Disyunta de un genero Guyanes. Novon 16: 281-285.

Warburg, O. 1897. Monographie der Myristicaceen. Nova Acta Acad. Caes. Leop.-Carol 68: 1-680.

Walker, J.W. \& A.G. Walker. 1979. Comparative pollen morphology of the American Myristicaceous genera Compsoneura and Virola. Annals of the Missouri Botanical Garden 66: 731-755.

Williams, L. O. 1960. Ucuuba and related wax-like vegetable tallows. Plant Foods for Human Nutrition (Formerly Qualitas Plantarum) 7: 295-296.

Yang, Z., \& Rannala, B. 2010. Bayesian species delimitation using multilocus sequence data. Proceedings of the National Academy of Sciences 107: 9264-9269.

Zimmerman, S. B., \& Harrison, B. 1987. Macromolecular crowding increases binding of DNA polymerase to DNA: an adaptive effect. Proceedings of the National Academy of Sciences of the United States of America 84: 1871-1875.

Zipparro, V. B., \& Morellato, L. P. 2005. Seed predation of Virola bicuhyba (Schott) Warb.(Myristicaceae) in the Atlantic forest of south-eastern Brazil. Revista Brasileira de Botânica 28: 515-522.

Chapter 4

A MORPHOLOGICAL AND MOLECULAR INVESTIGATION OF VIROLA SEBIFERA Aublet AND VIROLA LORETENSIS A. C. Sm.

Abstract

Virola is a widespread and species-rich genus of neotropical Myristicaceae. Although Virola is an ecologically dominant and ethnobotanically significant group of trees, they have received little contemporary taxonomic study. In this study I test whether ecologically separate and polymorphic morphotypes of V. sebifera and V. loretensis represent undescribed cryptic species using morphological and molecular data. Species hypotheses were tested using a multivariate analysis of morphological characters as well as a statistical parsimony analysis using a low-copy nuclear locus. Morphological analyses show discrete variation in morphotypes of both V. sebifera and V. loretensis that corresponds to upland and floodplain forest habitats. Haplotype networks constructed from molecular data reveal some distinct clades as well as a high degree of apparent incomplete lineage sorting in these taxa. It is concluded that these data suggest that these ecologically separated morphotypes of each species represent distinct undescribed species.

Introduction

There are an estimated 235,000-420,000 (Govaerts 2003, Scotland and Wortley 2003) seed plant species in the world. The vast majority (about 200,000) of these plant species reside in tropical areas, with the neotropical region contributing about 90,000 species (Thomas 1999). It is now widely recognized that tropical moist forests of the world are being rapidly destroyed by human activity (Dodson and Gentry 1991, Gentry 1988, 1992). The sheer organismal diversity and short history of intensive study in tropical regions are demonstrated by the meager understanding we have of these fragile ecosystems and their astonishing number of species. Many species remain to be discovered, described, and classified; many more remain to be understood from ecological and evolutionarily perspectives. Examinations of the composition and diversity of tropical rainforests have been the focus of many contemporary plant ecologists, however, they are faced with a flora that is exceedingly diverse and difficult to identify.

Myristicaceae is composed of 21 genera and approximately 500 species of trees that have significant ecological and ethnobotanical importance worldwide in wet lowland tropical forests. Floristic and ecological studies have revealed that Myristicaceae ranks among the ten, and often five, most diverse and prominent tree families in these ecosystems (Gentry 1982, 1988, Pascal and Pelissier 1996, Pitman et al. 2001, 2002, 2008). Worldwide, the most important species economically is the Asiatic Myristica fragrans, which is widely cultivated in tropical areas for the spices nutmeg and mace. In the American tropics, numerous species are valued as sources of food, medicine, narcotics, and timber (Gottlieb 1973, Prance 1972, Schultes and Raffaf 1990). The most
widely employed Myristicaceae genus in the Neotropics for both commercial and traditional ethnobotanical uses is Virola.

Virola is a genus of canopy to sub-canopy trees endemic to South and Central America. They are the most speciose nutmeg genus in the new world tropics and often rank amongst the most abundant trees in this region (Pitman et al. 2001, 2002, 2008). Despite being the most species-rich genus of neotropical Myristicaceae, Virola has received relatively little recent taxonomic attention. Virola was first described by Aublet (1775) as a genus endemic to Central and South America. The genus was divided into 6 groups (Mollissimae, Sebiferae, Calophyllae, Rugulosae, Surinamenses, and Subsessilis) by Smith's (1937) monograph of the neotropical Myristicaceae where he recognized 38 species. The last comprehensive treatment of Virola was performed by Rodrigues (1980) and was largely restricted to the species residing within the political boundaries of Brazil. Since 1980, taxonomic investigations of Virola have been primarily alpha-taxonomic in nature and about 60 species are currently recognized in the genus (Rodrigues 1989, Sabatier 1997, Jaramillo et al. 2000, Rodrigues 2002).

Virola sebifera is a common and widespread canopy tree that is found in tropical rainforests from 1700 m a.s.l. in the Andes to near sea level in Eastern Brazil. This species also ranges across a wide latitudinal gradient as it can be found from Costa Rica to Southern parts of Brazil (Provinces of São Paulo and Matto Grosso del Sul). Across its range, and even within populations, members of V. sebifera exhibit a great deal of morphological diversity. Smith (1937) described V. sebifera leaves as being ovate, oblong, deltoid, or elliptic in shape with cordate, rounded, or truncate bases and ranging from $15-47 \mathrm{~cm}$ in length and $6-15 \mathrm{~cm}$ in width. In spite of this great variation in leaf
morphologies, Smith (1937) united 9 species previously described spcies (V. macoa, V. boliviensis, V. panamensis, V. cordifolia, V. fulva, V. warburgii, V. peruviana, V. mycetis, and V. venezuelensis) into V. sebifera, citing numerous connecting morphological forms for this monospecific concept.

Virola loretensis is a small tree (3-10 m according to Smith 1937) of floodplain forests of the Northwestern Amazon basin (Ecuador, Peru and Colombia). It was first described by Smith (1937) from 12 collections from the Peruvian province of Loreto and Acre, Brazil. The leaves of V. loretensis are distinguished by having a ferruginoustomentose pubescence which is particularly prominent on abaxial veins, large size (15-37 cm long and $4-10 \mathrm{~cm}$ broad) and deciduous habit during pronounced dry seasons. The inflorescences of this species are also easily distinguished by a dense ferruginoustomentose pubescence which is also present on the fruits (Smith 1937).

In the course of field and herbarium investigations, it became apparent that both V. sebifera and V. loretensis possess a great deal of morphological variation within each species, often within the same locality. The objective of this investigation was to test whether this morphological diversity is indicative of within-species phenotypic plasticity or cryptic speciation. This was tested by multivariate analysis of morphological data as well as the construction of a haplotype network from a low-copy nuclear gene.

Materials and Methods

Collection sites

Since members of Virola are particularly recalcitrant with respect to DNA extraction and sequencing, previously collected herbarium specimens were of no utility to
this investigation. Consequently, only recent collections made where leaf tissue was promptly preserved in silica dessicant could be employed in this study, thereby greatly limiting the geographic and morphological breadth of sampling. In attempts to capture the inherent morphological and genetic variability encountered in these species, five populations were sampled from Southern Peru ($\mathrm{n}=4$) and Brazil ($\mathrm{n}=1$) spanning 2560 km in distance and 1600 m of elevation (Figure 4.1). Virola sebifera samples were collected in Peru from two cloud forests (Manu Paradise Lodge and Quincemil) and two lowland rainforests (Centro de Investigación y Capacitación Río Los Amigos [CICRA] and Puerto Maldonado). Virola sebifera samples were also collected from a single Brazilian population by Mark Leithead and Lucas Silva at the Reserva Ecologica do IBGE near the city of Brasilia. Virola loretensis samples were collected from CICRA and Puerto Maldonado, Peru. All Peruvian samples were collected by the author and associated collectors. Herbarium vouchers were made for all collections and have been deposited at the OAC herbarium (Table 4.1). Leaf tissue was placed in silica gel immediately upon collection to minimize oxidation as members of this genus typically do not yield DNA amenable to PCR unless tissue is desiccated immediately.

Study species

Two relatively common morphotypes of Virola sebifera were collected. A bigleafed form (hereafter V. sebifera-BL) was found growing at all locations in either seasonal flooded forests of the Madre de Dios river or in well drained upland habitats in cloud forests (750-1700 m asl). A second and comparatively smaller-leafed form (V.
sebifera-SL) was found to grow exclusively in terra firme forests (upland, non-flooded, forests) of the Madre de Dios watershed and near streams in cloud forest habitats.

Large and small-leafed forms of V. loretensis were also collected from the Madre de Dios watershed. The big-leafed variety (V. loretensis-BL) was relatively rare (only 3 trees encountered in the course of 2 months) and was collected from floodplain forests of two locations. The small-leafed variety (V. loretensis-SL) was rarely collected (only 3 trees encountered) in terra firme forests at the Los Amigos Biological Station. Pictures were taken of vegetative and reproductive material (when available) to document the 4 different morphotypes (Figures 4.2-4.5).

Morphological analysis

After sterile material was photographed, pressed, and dried, measurements of 10 quantitative vegetative metrics (Figure 4.6) were made from digital photographs using tpsDig 2.0 (Rohlf 2006). A principal component analysis (PCA) was performed on leaf morphometric data using Canoco 4.5 (ter Braak, 1998) to identify the length of the ordination axis and unimodal ordination model was applied (Correspondence Analysis, CA). The relationship between quantitative leaf characters was analysed via nonmetric multi-dimensional scaling (NMS; Kruskal 1964, Primer 2002). In NMS, the Bray-Curtis distance measure was used because of its robustness for both large and small scales on the axes (Minchin 1987). Data were standardized by species maxima and twodimensional solutions were appropriately chosen based on plotting a measure of fit ('stress') to the number of dimensions. Stress represents distortion in the data and a stress value over 0.2 is high enough that the results are invalidated (Primer 2002). One thousand
iterations were used for each NMS run, using random start coordinates. The first two ordination axes were rotated to enhance interpretability with the different axes. As an independent check, detrended correspondence analysis (DCA; ter Braak 1998) was used to evaluate the NMS classification. A Pearson-Correlation analysis was performed to investigate which metrics contributed the most to the differentiation of taxa.

DNA extraction, amplification, molecular cloning, sequencing and alignment

A total of 16 samples including 5 V . sebifera-BL, 5 V . sebifera-SL, 3 V . loretensis-BL, and 3 V . loretensis-SL were used in genetic analyses. Collection information for samples used in genetic analyses can be found in Table 4.1. Total genomic DNA was extracted from leaf tissue of silica-dried specimens using the Macherey-Nagel Nucleospin II plant Kit. Lysis buffer 1 was used according to the manufactures' instructions with the exception of the elongation of the post homogenization incubation period to 1 hr (from 10 minutes) and the addition of 20 mM N Phenacylthiazolium Bromide which has been found to improve amplification of recalcitrant samples (Poinar et al. 1998, Asif and Cannon 2005).

A phylogenetic investigation of Virola (chapter 3 of this thesis) found the AGT1 gene and associated exons (Li et al. 2008) to be the most variable loci in Virola and was therefore employed in this study. This locus was amplified using the primers AGT1-MYR-F (5'-GGGCATTGACGTAGCTTTGACAGG-3'; this thesis), and AGT1-MYR-R (${ }^{\prime}$ '-GTGCAGTTCTTCAAGCCCCAAGC-3'; this thesis). PCR was performed with 0.5 U of PlatinumTaq ${ }^{\circledR}$ (Invotrogen, Burlington, Ontario) DNA polymerase in a $20 \mu \mathrm{l}$ reaction containing 1X reaction buffer, $2.5 \mathrm{mM} \mathrm{MgCl}, 8 \% \mathrm{~W} / \mathrm{V}$ Polyethylene glycol
(Zimmerman and Harrison 1987, Sasaki et al. 2006), 0.2 M trehalose (Speiss et al. 2004), $2 \mu \mathrm{~g}$ BSA, 0.2 mM each DNTP, and $0.2 \mu \mathrm{M}$ of each primer. Cycling conditions entailed an initial denaturation step of 4 min at $95^{\circ} ; 30$ cycles of 95° for $15 \mathrm{~s}, 67^{\circ}$ for 10 s, 72° for 30 s : and a final elongation step of 72° for 2 min followed by a 4° hold. PlatinumTaq ${ }^{\circledR}$ was used as it was found to work well with the AGT1 primer set and be more robust than two high fidelity polymerases (Kapa HIFI and Finnzymes Phusion) to the inhibiting substances present in these samples.

Since there exists the possibility of multiple alleles with low-copy nuclear genes, PCR amplicons were cloned to sequence individual alleles. PCR product was diluted 10X and then cloned using the StrataClone ${ }^{\text {TM }}$ PCR Cloning Kit (VWR, Mississauga, Ontario). PCR fragments were ligated to the StrataClone ${ }^{\text {TM }}$ PCR cloning vector in a reaction mixture containing $1.5 \mu \mathrm{l}$ of StrataClone ${ }^{\mathrm{TM}}$ Cloning Buffer, $1 \mu \mathrm{l}$ of diluted PCR product and $0.5 \mu \mathrm{l}$ of StrataClone ${ }^{\mathrm{TM}}$ Vector Mix amp/kan. The reaction mixture was then incubated at room temperature for 10 minutes and transformed into SoloPack competent E.coli cells according to the manufacturer's instructions. The transformed cells were incubated in Luria-Bertani (LB) Medium with agitation at $37^{\circ} \mathrm{C}$ for 2 hours to allow the cells to recover. Transformed cell were then spread onto 1% agar LB plates containing $100 \mathrm{mg} / \mathrm{L}$ ampicillin (Sigma, Oakville, Ontario) and $64 \mathrm{mg} / \mathrm{L}$ X-Gal (Fisher Scientific, Ottawa, Ontario, Canada). Plates were then incubated at $37^{\circ} \mathrm{C}$ for 20 hours.

Colonies are white in color if they fail to express the β-Galactosidase gene, which is interrupted with the successfully insertion of a sequence into the vector. These white colonies were selected and transferred into a buffer containing low TE and 2\% V/V tween-20 and then subjected to $95^{\circ} \mathrm{C}$ for 10 min to lyse the cells. This lysate was then
used as template DNA for a subsequent PCR reaction using the same primers and cycling conditions employed for the initial amplification reaction.

In case multiple copies of this locus were present in any individuals, 16 colonies were sequenced in one direction from each individual tree. This number of colonies was selected as it gives a 0.96 probability of detecting all alleles present in a sample with 4 alleles according to the formula:

$$
\left.\mathrm{P}=\left[1-(\mathrm{t}-1 / \mathrm{t})^{\mathrm{n}}\right)\right]^{\mathrm{t}}
$$

where " t " is the number of alleles in an individual and " n " is the number of colonies sequenced (Joly et al. 2006).

Amplification products were sequenced directly using the AGT1-MYR-F primer used for PCR. Cycle sequencing reactions were performed in a $10.5 \mu \mathrm{~L}$ reaction volume containing $0.5 \mu \mathrm{~L}$ of BigDye terminator mix v3.1, $1.88 \mu \mathrm{~L}$ of 5 x sequencing buffer (Applied Biosystems), $1.0 \mu \mathrm{M}$ of primer and $0.5 \mu \mathrm{~L}$ of PCR product. Thermal cycling parameters were 96° for $2 \mathrm{~min} ; 30$ cycles of 96° for 30 s , and 60° for 4 min ; and a 4° hold. Cycle sequencing reactions were cleaned using sephadex columns (Cat. no. S5897; Sigma-Aldrich, St. Louis, MO, USA) and the samples were run on an ABI 3730 sequencer (Applied Biosystems).

Sequences were edited using Sequencher 4.8 (Gene Codes Corporation, Ann Arbor, MI, USA). DNA sequences were aligned using the default settings of the ClustalW algorithm (Thompson et al. 1994) in Bioedit (Hall 1999) and adjusted manually. Alignments can be found in appendix 4. Single nucleotide polymorphisms (SNP's) found in only one of the cloned sequences of a specimen were assumed to be due to polymerase error and were therefore omitted from the alignment (i.e. the allele was
retained but suspected erroneous base pairs were changed to the nucleotide used at that position by the other alleles of that individual). If two or more clones of an individual specimen contained the same alleles they were retained but it was kept in mind that these may be artifacts of PCR. All unique alleles from each individual were then aligned for haplotype network analysis.

Haplotype networks were constructed by statistical parsimony (Templeton et al. 1992, Templeton 1998) using the program TCS (Clement et al. 2000) which calculates the number of differences between haplotypes that are due to a sequence of single mutations at each site. Networks were calculated with TCS as implemented by ANeCA (Panchal 2007) by treating gaps as a $5^{\text {th }}$ character state and with a 95% confidence interval. Haplotype networks may be preferable to traditional phylogenetic methods at low taxonomic levels because population level data often violate many of the assumptions made by traditional tree-building methods, such as Maximum Parsimony, Maximum Likelihood and Bayesian Analyses (Posada and Crandall 2001). In comparison, networks are able to utilize haplotypic data that contains low levels of genetic divergence, ancestral haplotypes, multiple mutational variants from a given haplotype within the population, and reticulation that may be caused by recombination or hybridization (Templeton et al. 1992, Posada and Crandall 2001).

Results

Morphological Analyses

Morphological measurements were recorded for 3 specimens each of V. loretensis-BL and V. loretensis-SL, 11 V . sebifera-BL and 9 V . sebifera-SL. Leaf length of V. sebifera-BL ranged from $24-49 \mathrm{~cm}$ while V. sebifera-SL leaves were $13-32 \mathrm{~cm}$
long; V. loretensis-BL was $24.5-42 \mathrm{~cm}$ and V. loretensis-SL ranged from $16-22 \mathrm{~cm}$ in length. The ordination analyses of quantitative leaf characters showed a pronounced distinction between big-leaf and small-leaf varieties of the two species but both V. sebifera and V. loretensis clustered together with respect to big or small leaf-type (Figure 4.7). One sample of V. loretensis-BL (RS 480) was positioned approximately mid-way between big-leaf and small-leaf varieties. Virola loretensis-BL is deciduous during the dry season in South-Eastern Peru and this sample was in the process of regenerating its leaves and therefore this sample may not represent its fully developed size. Additionally, one sample of V. sebifera-SL was grouped with V. sebifera-BL and this may be due to the fact that this sample was the only juvenile included in the analysis and it was observed that juveniles growing under the canopy tend to have larger leaves than adult trees that have emerged from the sub-canopy. Pearson correlation analyses revealed that the X -axis is strongly correlated with numerous measures of leaf length and width (Figure 4.7; Table 4.2) and the y-axis was relatively weakly correlated to leaf acumen length and stem width (Fig 4.7; Table 4.2).

Although the fruits of these species were not available for quantitative analysis they were qualitatively observed in the field (Figures 4.2-4.5). The fruits of V. sebiferaBL are generally elliptic in shape, strongly carinate at suture of the pericarps, and ferruginous-tomentose but quickly deciduous. The fruits of V. sebifera-SL are more globose in shape, weakly carinate at pericarp suture, and persistently ferruginoustomentose. Individuals of V. sebifera-BL were typically found growing in the floodplain forests or cloud forests; V. sebifera-SL were typically found inhabiting terra firme forests.

The fruits of V. loretensis-BL are globose in shape but are readily distinguished from other taxa in having long (6-9 mm) persistent ferruginous-tomentose pubescence on the pericarp surface. The fruits of V. loretensis-SL are covered in a comparatively shorter indument $(<1 \mathrm{~mm})$ and their size, shape and color are is similar to the fruits of V. sebifera-SL. In addition to fruit characters, these V. loretensis taxa can be distinguished based on their habitats (flood plain versus terra firme forest) and height (V. loretensis-BL $=3-5 \mathrm{~m}, V$. loretensis $-\mathrm{SL}=20-40 \mathrm{~m}$).

Molecular Analyses

In total, 233 AGT1 clones were successfully sequenced for the 16 individuals used in these analyses. The alignment consistent of $686 \mathrm{bp}, 20$ of which were parsimony informative. There were 30 unique alleles found and only four alleles were shared by multiple individuals. Two alleles were shared by members of V. sebifera-SL, two amongst V. loretensis-BL, and one was shared amongst V. loretensis-BL and V. loretensis-SL. The number of alleles per individual varied from 1-4 but most individuals $(\mathrm{n}=8)$ contained only 2 alleles. Of the 233 AGT1 sequences recovered from clones, 90 (38.6%) contained one or more single nucleotide polymorphisms not found in any other cloned sequence of their respective individual specimens. These SNP's were assumed to be due to PCR error and the nucleotide(s) was/were changed in the alignment to the same nucleotide used in equivalent alleles of that individual.

The haplotype network (Figure 4.8) shows 30 unique alleles and contains only a single loop. The node representing V. sebifera-BL allele "RS 636-AL-R" connects primarily to other V. sebifera-BL alleles and one V. loretensis-SL allele (RS 465-AL-X), which itself connects solely to other V. loretensis individuals. The one loop recovered in
the haplotype network (between AL-N and AL-O) analysis may be due to an ancient recombination event or may be an artifact of PCR mediated recombination (Jumpponen and Johnson 2005, Lahr and Katz 2009).

Discussion

This investigation represents one of the first assessments of infraspecific genetic variation in Myristicaceae (Chapter 1 of this thesis, Degen et al. 2001). To date, investigations of infraspecific genetic variation in neotropical trees have mainly been restricted to questions concerning population genetics (Hamrick et al. 1993, Dick et al. 2003), with few investigations testing taxonomic hypotheses with molecular methods (Duminil et al. 2006). The Myristicaceae, like many other diverse tropical plant families, have received relatively little taxonomic study since the advent of molecular methods. The following discourse outlines the implications of the morphological and molecular investigations with respect to the taxonomic status of V. sebifera and V. loretensis.

Morphological Analyses

Observations of V. sebifera and V. loretensis taxa in the field suggested that both of these species were either polymorphic, morphologically plastic depending on which habitat they were found in, or contain undescribed species. The multivariate analysis indicates that both V. sebifera small and big-leaf morphotypes form practically discrete clusters on each side of the y-axis of the ordination. This suggests that leaf size variation is not continuous between these two morphotypes. Although sample sizes were relatively small, the two morphotypes of V. loretensis also form two discrete clusters on each side of the y-axis. Big-leaf and small-leaf morphotypes of V. sebifera and V. loretensis also
grouped together in the ordination of leaf characters. This clustering is of interest since both small-leafed varieties were found growing in terra firme forests and big-leafed varieties were found growing primarily in floodplain forests. The two small-leafed morphotypes were both elliptic-lanceolate in shape with rounded bases and acuminate tips, while the big-leafed morphotypes were oblong in shape and had cordate bases and acute tips. Increased morphological sampling from additional trees and geographic regions would be beneficial to explore whether these morphological patterns between the two habitats are maintained with increased taxon and geographic sampling.

Molecular Analyses

In spite of relatively clear vegetative and reproductive morphological differences among V. sebifera and V. loretensis and their respective morophotypes, there was little structure in terms of species and morphotypes in the haplotype network. Six alleles of V. sebifera-BL (alleles R-W, Figure 4.8) formed a clade as did 9 V . loretensis-BL and SL alleles (alleles X-AC, Figure 4.8). Aside from these two clades, alleles from both species and leaf types were distributed throughout the remaining network. This may indicate that contemporary gene flow and/or incomplete lineage sorting may be responsible for the lack of resolution between V. sebifera and V. loretensis and their respective morphotypes. Gene flow resulting in introgression of alleles among these taxa is probably as interspecific hybridization is thought to be a commonplace among closely related angiosperms (Golden and Bain 2000, Palme et al. 2003 Palma-Silva et al. 2001) and is likely an important mechanism in plant speciation (Whitney et al. 2010, Southcott et al. 2011). Incomplete lineage sorting and/or low nucleotide substitution levels could also be responsible for the lack of resolution in this haplotype network as a previous
phylogenetic analysis of Virola spp. found little to no resolution among V. sebifera, V. loretensis and closely related species (see Sebiferae clade, Figure 3.16 in Chapter 3 of this thesis).

Hybridization in tropical trees is presumed to be rare (Ashton 1969) but has been observed with morphological and molecular data in paleotropical Dipterocarpaceae (Kamiya et al. 2010) and neotropical Meliaceae (Duminil et al. 2006). In the course of 4 months of field work no apparent big-leaf x small-leaf hybrids were observed in either V. sebifera or V. loretensis. It was noted in the field that Virola loretensis-SL had morphological affinities to both V. sebifera and V. loretensis. Virola loretensis-SL has leaf size and shape (rounded leaf bases) comparable to V. sebifera-SL in addition to similar inflorescences, fruit indument, and tree height, however, V. loretensis-SL has a rich reddish leaf indument and orange aril typical of V. loretensis-BL. Furthermore, both V. loretensis varieties and V. sebifera-SL flower at the same time where they were found in South-Eastern Peru so it is conceivable that hybridization could occur. However, of 7 V. loretensis-SL alleles sampled only one (AL-Q) was apparently derived from a V. sebifera-SL allele. Although it is possible that V. loretensis-SL is a contemporary hybrid derived from V. loretensis-BL and V. sebifera-SL, this may be unlikely given the fact that no sampled alleles were shared between them and few alleles were similar to V. sebiferaSL. These potential hybrid collections may merit further investigation as hybridization in tropical trees may be underestimated due to the difficulty in collecting fertile specimens, few morphological differences between species, and general paucity of rigorous taxonomic investigations employing both morphological and molecular data.

It also appears that AGT1 may potentially exist in multiple copies in these Virola taxa. Of the 16 trees sampled for molecular analyses, 5 individuals had clones with 3 or 4 alleles (Table 4.1). If alleles differing by only a single nucleotide polymorphism from another allele within the same individual are deleted, then only 3 individuals potentially have multiple copies (RS 480, RS 503, and ML 013). Two of these collections (RS 480 and RS 503) contain alleles that differ by only two polymorphisms from other alleles of the same individual and therefore may be due to PCR error as well. This leaves the single collection from Brazil (ML 013) as an individual with 3 or more alleles that differ by more than two polymorphisms from other alleles in the same individual. It is well known that DNA polymerase error can introduce erroneous bases into PCR amplicons (Ashelford et al. 2005, Dickie 2010, Fazekas et al 2010) and 38.6% of sequenced clones in this study contained suspected erroneous single nucleotide polymorphisms. Since the error rate of PlatinumTaq ${ }^{\circledR}$ is not advertised, it cannot be ascertained whether this percentage of errors is to be expected. However, a PCR reaction performed using comparable parameters to this study (i.e. 30 cycles, 700 bp fragment, and a Taq-based polymerase with an error rate of 2.28×10^{-5}) is expected to produce errors in about 48% of PCR-generated amplicons (Finnzymes PCR fidelity calculatorhttp://finnzymes.com/pcr/fidelity_calc.php). Although attemps made in this study to use more accurate DNA polymerases were largely ineffectual, it would be preferable to perform additional PCR reactions with a higher fidelity DNA polymerase for subsequent cloning reactions to determine whether the multiple alleles detected are an artifact of polymerase error or due to the existence of multiple copies.

Conclusions

This investigation endeavored to elucidate taxonomic hypotheses in V. sebifera and V. loretensis by integrating morphological and molecular data. Although the haplotype analysis was somewhat ambiguous in terms of delimiting the 4 morphotypes studied, the combination of morphological discontinuity among conspecific morphotypes and separation of morphotypes among different edaphic habitats is indicative of multiple unrecognized species. These species are not provisionally described in this study as increased sample sizes, more variable molecular markers, and the study of more type specimens are desired prior to the recognition of putative new species.

The discovery of two novel taxa would be highly significant as both were found at one of the most active research stations in the lowland Amazon (Los Amigos Biological Research Station). These two cryptic taxa differed morphologically and ecologically from their larger-leafed conspecifics yet they were not recognized in ecological plots as distinct taxa. A recent study of Inga spp. in South-Eastern Peru found that error rates in the identification of Inga taxa were around 7% and significantly impacted the accuracy of some, but not all, ecological conclusions from such data (Dexter et al. 2010). After observing permanent ecological plots in Ecuador and Peru, I estimated that misidentification rates often exceed 20% for Myristicaceae species if they are identified as the correct family, although high, this is still lower than the estimated 50% misidentification rate estimated for herbarium material (J. Janovec, personal communication).

This study demonstrates the utility of field observation and integrative taxonomic approaches, both of which will be essential to help discover new species in the highly diverse neotropical region. Identification of Myristicaceae taxa solely by molecular
means will likely prove exceedingly difficult as their plastid DNA exhibits low rates of molecular evolution (Sauquet et al. 2003, chapter 1,2, and 3 of this thesis), more variable nuclear loci may be prone to incomplete lineage sorting, and these species may have rapidly diversified relatively recently as has been found in the speciose genus Inga (Richardson et al. 2001). The need for comprehensive studies of tropical flowering plants precludes knowledgeable conservation decisions and sustainable utilization of tropical forests. This study shows that our taxonomic understanding of one of the most widespread and abundant genera of the neotropics is rudimentary at best and that much work remains to be done if we wish to explore the ecological and evolutionary history of this important floristic region.

Tables

Table 4.1 Species collected, collection numbers (Coll. \#), Morphotype (type)[BL=Big Leaf, SL=Small Leaf], location (CICRA=Los Amigos Biological Station), decimal degrees latitude (Lat.) and longitude (Long.), herbarium accession numbers (Herb. Acc.), and data set sample was used in ($\mathrm{M}=$ = molecular, $\mathrm{m}=$ morphology, \# indicates how many alleles were recovered) for 29 collections employed in this study.

Species	Coll. \#	type	Location	Lat.	Long.	Herb. Acc.	Data Set
V. Ioretensis	RS 480	BL	Peru-CICRA	-12.56	-70.09	OAC 94718	Mm-3
			Peru-Puerto				
V. Ioretensis	RS 516	BL	Maldonado	-12.72	-69.24	OAC 94754	Mm-2
			Peru-Puerto				
V. loretensis	RS 526	BL	Maldonado	-12.72	-69.24	OAC 94764	Mm-2
V. Ioretensis	RS 452	SL	Peru-CICRA	-12.56	-70.09	OAC 94690	Mm-3
V. loretensis	RS 465	SL	Peru-CICRA	-12.56	-70.09	OAC 94703	Mm-4
V. loretensis	RS 483	SL	Peru-CICRA	-12.56	-70.09	OAC 94721	Mm-2
V. sebifera	ML 013	BL	Brazil-Brasilia	-15.89	-47.86		M-3
V. sebifera	RS 435	BL	Peru-CICRA	-12.56	-70.09	OAC 94673	M-2
V. sebifera	RS 472	BL	Peru-CICRA	-12.56	-70.09	OAC 94710	m
V. sebifera	RS 496	BL	Peru-CICRA	-12.56	-70.09	OAC 94734	m
			Peru-Puerto				
V. sebifera	RS 503	BL	Maldonado	-12.72	-69.24	OAC 94741	Mm-3
			Peru-Puerto				
V. sebifera	RS 506	BL	Maldonado	-12.72	-69.24	OAC 94744	m
V. sebifera	RS 578	BL	Peru-Quincemil	-13.24	-70.78	OAC 94816	m
V. sebifera	RS 582	BL	Peru-Quincemil	-13.24	-70.78	OAC 94820	Mm-2
V V sebifera	RS 587	BL	Peru-Quincemil	-13.24	-70.78	OAC 94825	m
V V sebifera	RS 611	BL	Peru-Manu	-13.05	-71.53	OAC 94849	m
V. sebifera	RS 618	BL	Peru-Manu	-13.05	-71.53	OAC 94856	m
V. sebifera	RS 624	BL	Peru-Manu	-13.05	-71.53	OAC 94862	m
V. sebifera	RS 636	BL	Peru-Manu	-13.05	-71.53		Mm-2
V. sebifera	RS 434	SL	Peru-CICRA	-12.56	-70.09	OAC 94672	m
V V sebifera	RS 443	SL	Peru-CICRA	-12.56	-70.09	OAC 94681	Mm-2
V V sebifera	RS 444	SL	Peru-CICRA	-12.56	-70.09	OAC 94682	Mm-1
V. sebifera	RS 464	SL	Peru-CICRA	-12.56	-70.09	OAC 94702	Mm-1
			Peru-Puerto				
V. sebifera	RS 513	SL	Maldonado	-12.72	-69.24	OAC 94751	m
V. sebifera	RS 529	SL	Peru-Quincemil	-13.24	-70.78	OAC 94767	Mm-2
V V sebifera	RS 533	SL	Peru-Quincemil	-13.24	-70.78	OAC 94771	M-2
V V sebifera	RS 553	SL	Peru-Quincemil	-13.24	-70.78	OAC 94791	m
V. sebifera	RS 565	SL	Peru-Quincemil	-13.24	-70.78	OAC 94803	m
V. sebifera	RS 602	SL	Peru-Quincemil	-13.24	-70.78	OAC 94840	m

Table 4.2 Correspondence analysis of 10 morphological metrics (minimum and maximum) measured for V. sebifera and V. loretensis taxa. Bolded Pearson correlations (P Corr.) indicate the 4 metrics most significant to the differentiation of taxa (p value $<$ 0.01).

Metric	X-axis		Y-axis	
	P Corr.	Sig. (2-tailed)	P Corr.	Sig.(2-tailed)
Stem width-min.	-0.577	0.002	$0.496^{* *}$	0.010
Stem width-max	-0.494	0.010	$\mathbf{0 . 5 6 5 * *}$	0.003
Petiole length-min	-0.574	0.002	0.126	0.540
Petiole length-max	-0.683	0.000	0.238	0.242
Leaf Petiole width-min	-0.792	0.000	0.334	0.096
Leaf Petiole width-max	-0.792	0.000	0.354	0.076
Lamina Length-min	$-0.966^{* *}$	0.000	-0.074	0.718
Lamina Length-max	$-0.959^{* *}$	0.000	-0.098	0.635
Leaf width $1 / 4$ length-min	-0.841	0.000	0.020	0.922
Leaf width $1 / 4$ length-max	-0.871	0.000	0.197	0.336
Leaf width $1 / 2$ length-min	-0.914	0.000	-0.134	0.515
Leaf width $1 / 2$ length-max	$-0.940^{* *}$	0.000	-0.064	0.756
Leaf width $3 / 4$ length-min	-0.873	0.000	-0.287	0.155
Leaf width $3 / 4$ length-max	-0.921	0.000	-0.264	0.193
Leaf vein number-min	-0.917	0.000	0.282	0.163
Leaf vein number-max	$-0.927^{* *}$	0.000	0.220	0.280
Leaf vein space-min	-0.458	0.019	0.067	0.745
Leaf vein space-max	-0.360	0.071	-0.090	0.661
Leaf acumen length-min	-0.133	0.517	$-0.574^{* *}$	0.002
Leaf acumen length-max	-0.134	0.515	$-0.703^{* *}$	0.000

Figures

Figure 4.1 Collection locations in Peru ($\mathrm{n}=4$) and Brazil ($\mathrm{n}=1$): 1) Manu Paradise Lodge, 2) Quincemil, 3) CICRA-Los Amigos Biological Reserve, 4) Puerto Maldonado, 5) Brasilia-Reserva Ecologia do IBGE.

Figure 4.2 Virola sebifera-BL (Big Leaf morphotype): A) Bark with leaf showing abaxial surface. B) Mature pistillate inflorescence. C) Nearly mature infructescence showing deciduous red pubescence. D) Close-up of staminate flowers (scale bar= 1 mm). E) Abaxial leaf pubescence and secondary vein (scale bar= 1 mm).

Figure 4.3 Virola sebifera-SL (Small Leaf morphotype): A) Leaves with orange-red pubescence (15 cm ruler) B) Bark, leaves and inflorescence of mature tree. C) Abaxial leaf pubescence (scale bar= 1 mm). D) Inflorescence. E) Flowers (scale bar= 1 mm). F) Nearly mature fruits with dissected fruit showing seed testa and aril (inset).

Figure 4.4 Virola loretensis-BL (Big Leaf morphotype): A) Bark, deep red latex and dried (dropped) leaves. B) Abaxial, adaxial leaf surfaces of sample with inflorescences (15 cm ruler). C) Close-up of inflorescence. D) Branch with mature fruits. E) Dissected
immature fruit showing dense pubescence. F) Adaxial leaf pubescence. G) Developing flower buds (scale bar=1 mm). H) Close-up of fruit indument (scale bar= 1 mm).

Figure 4.5 Virola loretensis-SL (Small Leaf morphotype): A) Bark, leaves and red latex. B) Adaxial leaf surfaces with inflorescence. C) Branch with inflorescence. D) Close-up of mature inflorescence. E) Flower pubescence (scale bar= 1 mm). F) Adaxial leaf pubescence (scale bar= 1 mm).

Figure 4.6 Illustration of 10 vegetative morphological metrics measured: $\mathrm{SW}=$ =Stem Width, LPL=Petiole Length, LPW=Petiole Width, LVS=space between secondary veins, LVN=Vein Number, LL=Lamina Length, LWB= Leaf Width at $1 / 4$ length, LWM=Leaf Width at $1 / 2$ length, LWT=Leaf Width at $3 / 4$ length, LVN=Leaf Vein Number, LAL=Leaf Acumen Length. A maximum and minimum value of each metric was recorded for every specimen measured.

Figure 4.7 NMS ordination of quantitative leaf metrics of V. sebifera and V. loretensis morphotypes.

Figure 4.8 Haplotype network of 35 sequences from V. sebifera and V. loretensis clones. Legend indicates the shapes and colours used for each of the morphotypes and the one shared allele.

Literature Cited

Ashelford, K. E., Chuzhanova, N. A., Fry, J. C., Jones, A. J., \& Weightman, A. J. 2005. At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Applied and Environmental Microbiology 71: 7724-7736.

Ashton, P. S. 1969. Speciation among tropical forest trees: some deductions in the light of recent evidence. Biological Journal of the Linnean Society 1: 155-196.

Asif, M. J., \& Cannon, C. H. 2005. DNA extraction from processed wood: a case study for the identification of an endangered timber species (Gonystylus bancanus). Plant Molecular Biology Reporter 23: 185-192.

Clement, M., Posada, D., \& Crandall, K. A. 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology 9: 1657-1659.

Degen, B., Caron, H., Bandou, E., Maggia, L., Chevallier, M. H., Leveau, A., \& Kremer, A. 2001. Fine-scale spatial genetic structure of eight tropical tree species as analysed by RAPDs. Heredity 87: 497-507.

Dexter, K. G., Pennington, T. D., \& Cunningham, C. W. 2010. Using DNA to assess errors in tropical tree identifications: How often are ecologists wrong and when does it matter? Ecological Monographs 80: 267-286.

Dick, C. W., Abdul-Salim, K., \& Bermingham, E. 2003. Molecular systematic analysis reveals cryptic tertiary diversification of a widespread tropical rain forest tree. American Naturalist 162: 691-703.

Dickie, I. A. 2010. Insidious effects of sequencing errors on perceived diversity in molecular surveys. New Phytologist 188: 916-918.

Dodson, C. H., \& Gentry, A. H. 1991. Biological extinction in Western Ecuador. Annals of the Missouri Botanical Garden 78: 273-295.

Duminil, J., Caron, H., Scotti, I., CAZAL, S. O., \& Petit, R. J. 2006. Blind population genetics survey of tropical rainforest trees. Molecular Ecology 15: 3505-3513.

Gentry, A. H. 1982. Neotropical floristic diversity: phytogeographical connections between Central and South America, Pleistocene climatic fluctuations, or an accident of the Andean orogeny? Annals of the Missouri Botanical Garden 69: 557-593.

Gentry, A. H. 1988. Tree species richness of upper Amazonian forests. Proceedings of the National Academy of Sciences of the United States of America 85: 156-159.

Gentry, A. H. 1992. Tropical forest biodiversity: distributional patterns and their conservational significance. Oikos 63: 19-28.

Gottlieb, O., Loureiro, A., Dos Santo Carneiro, M., \& Da Rocha, A. 1973. Distribution of diarylpropanoids in Amazonian Virola species. Phytochemistry 12: 1830.

Golden, J. L., \& Bain, J. F. 2000. Phylogeographic patterns and high levels of chloroplast DNA diversity in four Packera (Asteraceae) species in southwestern Alberta. Evolution 54: 1566-1579.

Govaerts, R. 2003. How many species of seed plants are there?-a response. Taxon 52: 583-584.

Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic acids symposium series. (pp. 95-98).

Hamrick, J. L., Murawski, D. A., \& Nason, J. D. 1993. The influence of seed dispersal mechanisms on the genetic structure of tropical tree populations. Plant Ecology 107: 281-297.

Jaramillo, T. S., Muriel, P., Rodrigues, W. A., \& Balslev, H. 2000. Myristicaceae novelties from Ecuador. Nordic Journal of Botany 20: 443-447.

Joly, S., Starr, J. R., Lewis, W. H., \& Bruneau, A. 2006. Polyploid and hybrid evolution in roses east of the Rocky Mountains. American Journal of Botany 93: 412-425.

Jumpponen, A., \& Johnson, L. C. 2005. Can rDNA analyses of diverse fungal communities in soil and roots detect effects of environmental manipulations-a case study from tallgrass prairie. Mycologia 97: 1177-1194.

Kamiya, K., Gan, Y. Y., Lum, S. K. Y., Khoo, M. S., Chua, S. C., \& Faizu, N. N. H. 2010. Morphological and molecular evidence of natural hybridization in Shorea (Dipterocarpaceae). Tree Genetics \& Genomes. Retrieved from http://www.springerlink.com/index/10.1007/s1 1295-010-0332-8

Kruskal, J. B. 1964. Nonmetric multidimensional scaling: a numerical method. Psychometrika 29: 115-129.

Lahr, D. J., \& Katz, L. A. 2009. Reducing the impact of PCR-mediated recombination in molecular evolution and environmental studies using a new-generation highfidelity DNA polymerase. BioTechniques 47: 351-357.

Li, M., Wunder, J., Bissoli, G., Scarponi, E., Gazzani, S., Barbaro, E., Saedler, H., \& Varotto, C. 2008. Development of COS genes as universally amplifiable markers for phylogenetic reconstructions of closely related plant species. Cladistics 24: 727-745.

Minchin, P. R. 1987. An evaluation of the relative robustness of techniques for ecological ordination. Plant Ecology 69: 89-107.

Panchal, M. 2007. The automation of nested clade phylogeographic analysis. Bioinformatics 23: 509-510.

Pascal, J. P., \& Pelissier, R. 1996. Structure and floristic composition of a tropical evergreen forest in south-west India. Journal of Tropical Ecology 12: 191-214.

Pitman, N. C., Mogollón, H., Dávila, N., Ríos, M., García-Villacorta, R., Guevara, J., Baker, T. R., Monteagudo, A., Phillips, O. L., Vásquez-Martínez, R., \& others. 2008. Tree community change across 700 km of lowland Amazonian forest from the Andean foothills to Brazil. Biotropica 40: 525-535.

Pitman, N. C., Terborgh, J. W., Silman, M. R., Núñez V, P., Neill, D. A., Cerón, C. E., Palacios, W. A., \& Aulestia, M. 2002. A comparison of tree species diversity in two upper Amazonian forests. Ecology 83: 3210-3224.

Pitman, N. C., Terborgh, J. W., Silman, M. R., Núñez V, P., Neill, D. A., Cerón, C. E., Palacios, W. A., \& Aulestia, M. 2001. Dominance and distribution of tree species in upper Amazonian terra firme forests. Ecology 82: 2101-2117.

Poinar, H. N. 1998. Molecular coproscopy: dung and diet of the extinct ground sloth Nothrotheriops shastensis. Science 281: 402-406.

Posada, D., \& Crandall, K. A. 2001. Intraspecific gene genealogies: trees grafting into networks. Trends in Ecology \& Evolution 16: 37-45.

Prance, G. T. 1972. Ethnobotanical notes from Amazonian Brazil. Economic Botany 26: 221-237.
ter Braak, C. 1998. Canoco 4 Centre for Biometry. Wageningenm, The Netherlands
Richardson, J. E. 2001. Rapid diversification of a species-rich genus of neotropical rain forest trees. Science 293: 2242-2245.

Rodrigues, W. A. 2002. Notas taxonômicas sobre Myristicaceae neotropicais. Acta Biológica Paranaense 31: 71-77.

Rodrigues, W. A. 1980. Revisão taxonômica das espécies de Virola Aublet (Myristicaceae) do Brasil. Acta Amazonica (suplemento): 1-127.

Rodrigues, W. A. 1989. Two new neotropical species of Compsoneura (Myristicaceae). Brittionia 4: 160-163.

Rohlf, F. J. 2006. tpsDig version 2.10, Department of Ecology and Evoluation. State University of New York at Stony Brook, New York.

Sabatier, D. 1997. Description et biologie d'une nouvelle espèce de Virola (Myristicaceae) de Guyane. Adansonia, Série 3: 273-278.

Sasaki, Y., Miyoshi, D., \& Sugimoto, N. 2006. Effect of molecular crowding on DNA polymerase activity. Biotechnology Journal 1: 440-446.

Sauquet, H., Doyle, J. A., Scharaschkin, T., Borsch, T., Hilu, K. W., Chatrou, L. W., \& Le Thomas, A. 2003. Phylogenetic analysis of Magnoliales and Myristicaceae based on multiple data sets: implications for character evolution. Botanical Journal of the Linnean Society 142: 125-186.

Schultes, R. E., \& Raffauf, R. F. 1990. The Healing Forest. Portland, Oregon: Dioscorides Press.

Scotland, R. W., \& Wortley, A. H. 2003. How many species of seed plants are there? Taxon 52: 101-104.

Southcott, L., \& K.L. Ostevic. 2011. Bromeliad population genetics reveals species cohesion agaist the odds. Molecular Ecology 20: 3081-3083

Smith, A. C. 1937. The American species of Myristicaceae. Brittonia 2: 393-510.
Speiss, A., T. Mueller, \& Ivell, R. 2004. Trehalose is a potent PCR enhancer: lowering of DNA melting temperature and thermal stabilization of Taq polymerase by the disaccharide trehalose. Clinical chemistry 50: 1256-1259.

Templeton, A. R. 1998. Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history. Molecular Ecology 7: 381397.

Templeton, A. R., Crandall, K. A., \& Sing, C. F. 1992. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132: 619-633.
ter Braak, C. 1998. Canoco 4 Centre for Biometry. Wageningenm, The Netherlands.
Thomas, W. W. 1999. Conservation and monographic research on the flora of Tropical America. Biodiversity and Conservation 8: 1007-1015.

Thompson, J. D., Higgins, D. G., \& Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673-4680.

Whitney, K.D., Randell, R.A., \& L.H. Rieseberg. 2010. Adaptive introgression of abioatic tolerance traits in the sunflower Helianthus annuus. New Phytologist 187: 230-239.

Zimmerman, S. B., \& Harrison, B. 1987. Macromolecular crowding increases binding of DNA polymerase to DNA: an adaptive effect. Proceedings of the National Academy of Sciences of the United States of America 84: 1871-1875.

CONCLUDING STATEMENTS

This research represents a long overdue molecular and morphological revision of two of the most elemental genera of neotropical forests. The following remarks summarize the implications of my findings as they relate to future research and conservation efforts in the tropics.

This work is also among the first tests of DNA barcoding in a diverse group of plants (Spooner 2009). Most plant DNA barcoding projects to date have focused on local/regional floras and have included few congeneric species and have rarely included multiple collections from across a species' range (Lahaye et al. 2008, Kress et al. 2008). This approach could be likened to that of assembling a flora, or regional checklist, as compared to that of a monograph that focuses on taxonomy. There are a number of reasons why a "flora-like" approach has been applied with plants. Firstly, plant DNA barcoders have been somewhat hindered by low mitochondrial and chloroplast DNA sequence divergence and have spent much time converging on a set of loci that are to be employed as the core plant DNA barcodes (Hollingsworth et al 2011). Furthermore, sister-species are often not sympatric so little emphasis has been put on thorough taxon sampling.

Although most members of Compsoneura could be indentified by the trnH-psbA region (Chapter 2 of this thesis), the low levels of plastid sequence variability in Virola currently makes molecular identification difficult (Chapter 3 of this thesis) and plant DNA barcoding efforts are likely to be hindered by haplotype sharing among species (Hollingsworth et al. 2011). Consequently, species rich groups such as Virola may require multiple rapidly evolving loci for molecular discrimination. Similar levels of
variation within and among described species in Myristicaceae also confounds molecular species delimitation via barcodes. In my opinion, future plant DNA barcoding efforts should take on a molecular-monographic approach where described taxa are tested with dense taxon sampling across a species' known range and rigorously combined with additional data sources (morphological, edaphic, environmental, ethnobotanical, etc) for an integrative taxonomic approach.

Thomas (1999) found that 29% of species included in recent monographs were newly described, causing him to estimate that the South American flora contains approximately 90,000 species of seed plants. A total of 4 provision new species and one resurrection are presented within this thesis entirely from collections made by myself. I find this highly significant as I collected in only 7 locations, most of which were amongst the most active research stations in the Amazon. Furthermore, these new species were often among the most abundant trees in these forests (R. Steeves and J. Janovec, unpublished data). In my investigations of the infraspecific morphological and molecular variation in Compsoneura capitellata, Virola sebifera, and V. loretensis two provisional new species and possibly four or more, were found within these widespread species. It is likely that a great deal of additional species remain to be documented in these and other genera of Myristicaceae, as well as other tropical plant families. If future investigations of infraspecific molecular diversity discover a similar rate of cryptic species we may have to recalculate our estimates of neotropical plant diversity. It is likely that we may find significantly more than Thomas' (1999) estimate as a study of herbarium collection patterns in Peru done by Tobler et al.(2007) found that the vast majority of collections were made near very few localities that were close to roads and cities, leaving much of
the Peruvian rainforest unexplored by botanists.
According to most estimates, well over half of our medicinal drugs come either directly or indirectly from plants. With roughly a quarter to a third of the world's plant diversity, the neotropics offers enormous prospects for the discovery of new drugs for implementation in Western medicinal practice. However, this great diversity can also be a hindrance to bio-prospecting in the region. Species, genera and even families are often mis-identified and taxon identification are often inconsistent even with the same collector (R. Steeves, personal observations). This means that even if desirable properties are found in a particular plant extract, subsequent expeditions often collect a different species with correspondingly dissimilar, and potentially ineffective, chemical constitution. When DNA identification is possible in tropical plants it will undoubtedly help collectors ensure their identifications are consistent.

My research forms a much needed foundation for future investigations aimed at understanding the neotropical Myristicaceae and the Amazon as a whole. This work represents only the beginning of a modern systematic revision of the genera Compsoneura and Virola. To these ends, this investigation generated about 600 novel collections of Myristicaceae from the Northwest Amazon and produced about as many DNA nucleotide sequences from coding and non-coding regions. Future research should attempt to resolve evolutionary relationships amongst the genera of the Myristicaceae, which has remained largely unresolved due to low levels of nucleotide variation and the difficulty of extracting and amplifying DNA from samples. Although low levels of sequence divergence were found in this study, the low copy nuclear and non-coding chloroplast regions employed in this study show increased sequence divergence
compared to those used in pervious investigations (Sauquet et al 2003). Additionally, the difficulty of extracting DNA from both fresh and archived (Herbarium) specimens was found to be greatly alleviated by the use of PTB (Phenacylthiazolium bromide) and the use of PCR enhancers such as trehalose and polypropylene glycol. Future investigations should seek to determine the causes of chloroplast haplotype sharing among species and illuminate phylogeographic patterns in medicinal and edible members of the Myristicaceae as well as other families as the possibility exists that humans played a pivotal role in the determination of tree distributions in the Amazon basin.

Literature Cited

Hollingsworth, P. M., Graham, S. W., \& Little, D. P. 2011. Choosing and using a plant DNA barcode. PloS one 6: e19254.

Kress, W. J., Erickson, D. L., Jones, F. A., Swenson, N. G., Perez, R., Sanjur, O., \& Bermingham, E. 2009. Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. Proceedings of the National Academy of Sciences 106: 18621-18626.

Lahaye, R., Van Der Bank, M., Bogarin, D., Warner, J., Pupulin, F., Gigot, G., Maurin, O., Duthoit, S., Barraclough, T. G., \& Savolainen, V. 2008. DNA barcoding the floras of biodiversity hotspots. Proceedings of the National Academy of Sciences 105: 2923-2928.

Spooner, D. M. 2009. DNA barcoding will frequently fail in complicated groups: An example in wild potatoes. American Journal of Botany 96: 1177-1189.

Thomas, W. W. 1999. Conservation and monographic research on the flora of Tropical America. Biodiversity and Conservation 8: 1007-1015.

Tobler, M., Honorio, E., Janovec, J., \& Reynel, C. 2007. Implications of collection patterns of botanical specimens on their usefulness for conservation planning: an example of two neotropical plant families (Moraceae and Myristicaceae) in Peru. Biodiversity and Conservation 16: 659-677.

APPENDICES

Appendix 1

Alignment 1.1

Concatenated DNA nucleotide sequence alignment 3-loci,1464 characters, and 17 taxa used in Bayesian and Maximum parsimony analyses in chapter 1.50 base pairs per line.
trnH-psba 1-342, AGT1 343-1052, AT103 1053-1464
C_atopa_1374 TCCGCCCCTTGTCCTTTCT-----AAAGAAAAAAATTTTAGATTACTAGT
C_cap_RS_527 TCCGCCCCTTGTCCTTTCT-----AAAGAAAAAAATTTTCGATTACTAGT
C_cap_RS_551 TCCGCCCCTTGTCCTTTCT-----AAAGAAAAAAATTTTCGATTACTAGT
C_cap_835 TCCGCCCCTTGTCCTTTCT-----AAAGAAAAAAATTTTAGATTACTAGT
C_debilis_7209 TCCGCCCCTTGTCCTTTCT-----AAAGAAAAAAATTTTAGATTACTAGT
C_excelsa_671 TCCGCCCCTTGTCCTTTCT-----AAAGAAAAAAATTTTAGATTACTAGT
C_mexicana_362 TCCGCCCCTTGTCCTTTCT-----AAAGAAAAAAATTTTAGATTACTAGT
C_mexicana_720 TCCGCCCCTTGTCCTTTCT-----AAAGAAAAAAATTTTAGATTACTAGT
C_mutisii_914 TCCGCCCCTTGTCCTTTCT-----AAAGAAAAAAATTTTAGATTACTAGT
C_mutisii_1295 TCCGCCCCTTGTCCTTTCT-----AAAGAAAAAAATTTTAGATTACTAGT
C_sprucei_817 TCCGCCCCTTGTCCTTTCT-----AAAGAAAAAAATTTTAGATTACTAGT
C_sprucei_887 TCCGCCCCTTGTCCTTTCT-----AAAGAAAAAAATTATAGATTACTAGT
C_ulei_88
C_ulei_6192
I_juru_451
TCCGCCCCTTGTCCTTTCT-----AAAGAAAAAAATTTTAGATTACTAGT I_laev_460 TCCGCCCCTTGTCTTTTCTTTTCTAAAGACAAAAATTTTAGATTACTAGT 0_parvi_RS_598 TCCGCCCCTTGTCTTTTCG-----AAAGACTAAAATTTTAGATTACTAGT

C_atopa_1374
C_cap_RS_527
C_cap_RS_551
C_cap_835
C_debilis_7209
C_excelsa_671
C_mexicana_362
C_mexicana_720 C mutisii 014 CTTTCTATTTTTTCATACAATTTATACCCTTAGAAAA C_mutisii_1295 C_sprucei_817 C_sprucei_887 C_ulei_88 C_ulei_6192 I_juru_451 I_laev_460 0_parvi_RS_598

C_atopa_1374
C_cap_RS_527
C_cap_RS_551
C_cap_835
C_debilis_7209 C_excelsa_671 C_mexicana_362

CTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAAAATCGACAATA CTTTCTTATTTTTTTCATACTAATTTCTACCCTTTAGAAAATCGACAATA CTTTCTTATTTTTTTCATACTAATTTCTACCCTTTAGAAAATCGACAATA TTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAAAATCGACAATA CTTTCTTATTTTTTTCATACAAATTTCTATCCTTTAGAAAA----CAATA CTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAAAA----CAATA CTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAAAA----CAATA CTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAAAA----CAATA СТТТСТTATTTTTTTCATACAAATTTATACCCTTTAGAAAA----CAATA CTTTCTTATTTTTTTCATACAAATTTATACCCTTTAGAAAA----CAATA CTTTCTTATTTTTTTCATACAAATTTCTACCCTTTTGAAAA----CAATA CTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAAAA----CAATA CTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAAAA----CAATA CTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAAAA----CAATA CTTTCTTATTTTTTTCATACTAATTTCTACCCTTTAGAAAATTGACAATA CTTTCTTATTTTTTTCATACTAATTTCTACCCTTTAGAAAATTGACAATA CTTTCTTATTTTTTTCATACTAATTTCTACCCTTTCTAAAATTTACAATA

GGAAAAAATGCATTTTAGGAATGTACATGAACTGAAGATCAGTTCAAATC GGAAAAAATGCATTTTAGGAATGTACATGAACTGAAGATCAGTTCAAATC GGAAAAAATGCATTTTAGGAATGTACATGAACTGAAGATCAGTTCAAATC GGAAAAAATTCATTTTAGGAATGTACATGAACTGAAGATCAGTTCAAATC GGAAAAAATGCATTTTAGGAATGTACATAAACTGAAGATCCGTTAAAATC GGAAAAAATGCATTTTAGGAATGTACATAAACTGAAGATCAGTTAAAATA GGAAAAAATGCATTTTAGGAATGTACATAAACTGAAGATCAGTTAAAATA

C_mexicana_720 GGAAAAAATGCATTTTAGGAATGTACATAAACTGAAGATCAGTTAAAATA C_mutisii_914 GGAAAAAATGCATTTTAGGAATGTACATAAACTGAAGATCAGTTAAAATA C_mutisii_1295 GGAAAAAATGCATTTTAGGAATGTACATAAACTGAAGATCAGTTAAAATA C_sprucei_817 GGAAAAAATGCATTTTAGGAATGTACATAAACTGAAGATCAGTTAAAATA C_sprucei_887 GGAAAAAATGCATTTTAGGAATGTACATAAACTGAAGATCAGTTAAAATA
C_ulei_88
C_ulei_6192
I_juru_451 GGAAAAAATGCATTTTAGGAATGTACATAAACTGAAGATCAGTTAAAATA GGAAAAAATGCATTTTAGGAATGTACATAAACTGAAGATCAGTTAAAATA I laev 460 0_parvi_RS_598 GGAAAAAAT----TTTTGGAATGTACATAAACAGAAGATCAGTTAAAAAC

C_atopa_1374 AAAAAAA--------GGTATGATGTTCGATTATGAACCAAATAATTCATA C_cap_RS_527 AAAAAAA-------GGTATGATGTTCGATTATGAACCAAATAATTCATA C_cap_RS_551 AAAAAAA-------GGTATGATGTTCGATTATGAACCAAATAATTCATA C_cap_835
C_debilis_7209
AAAAAAA--------GGTATGATGTTCGATTATGAACCAAATAATTCATA
AAAAAAAAA------GGTATGATGTTCGATCATGAACCAAATAATTAATA
C_excelsa_671 AAAAAAAAA------GGTATGATGTTCGATCATGAACCAAATAATTAATA
C_mexicana_362 AAAAAAAAA------GGTATGATGTTCGATCATGAACCAAATAATTAATA
C_mexicana_720 AAAAAAAA-------GGTATGATGTTCGATCATGAACCAAATAATTAATA
C_mutisii_914 AAAAAAAAA------GGTATGATGTTCGATCATGAACCAAATAATTCATA
C_mutisii_1295 AAAAAAAAA------GGTATGATGTTCGATCATGAACCAAATAATTAATA
C_sprucei_817 AAAAAAAAAAA----GGTATGATGTTCGATCATGAACCAAATAATGAATA
C_sprucei_887 AAAAAAAA------GGTATGATGTTCGATCATGAACCAAATAATTAATA
C_ulei_88
C_ulei_6192
AAAAAAAAA-----GGTATGATGTTCGATCATGAACCAAATAATTAATA
AAAAAAAA-------GGTATGATGTTCGATCATGAACCAAATAATTAATA
I_juru_451 AAAATAAAAAAAAAAGGTATGATGTTCGATCATGAA-CAAA-AATGAATA
I_laev_460 AAAAAAAA-------GGTATGATGTTCGATCATGAA-CAAA-AATGAATA
0_parvi_RS_598 AAAAAAA-------GGTATGATGTTCGATCCTGAACCAACTAATTAATA
C_atopa_1374 TTTTCTGAAATTGAAAAAAAAA-TCTTATGTGAGTAAACCACTACTGAAC C_cap_RS_527
C_cap_RS_551
C_cap_835
C_debílis_7209
C excelsa 671
C mexicana
_362 TTTTCTGAAATGGAAAAAAAAA-TCTTATGTGAGTAAACCACTACTGAAC
C_mexicana_720 TTTTCTGAAATGGAAAAAAAA--TCTTATGTGAGTAAACCACTACTGAAC C_mutisii_914 TTTTCTTAAATGGAAAAAAAA--TCTTATGTGAGTAAACCACTACTGAAC C_mutisii_1295 TTTTCTTAAATGGAAAAAAAA--TCTTATGTGAGTAAACCACTACTGAAC C_sprucei_817 TTTTCTTAAATGGAAAAAAAA--TCTTATGTGAGTAAACCACTACTGAAC C_sprucei_887 TTTTCTTAAATGGAAAAAAAA--TCTTATGTGAGTAAACCACTACTGAAC C_ulei_88
C_ulei_6192
I_juru_451 TTTTCTTAAATTGAAAAAAAAA-TCTTATGTGAGTAAACCACTACTGAAC TTTTCTTAAATTGAAAAAAAAA-TCTTATGTGAGTAAACCACTACTGAAC I lo 400 I 0_parvi_RS_598 TTTTTTAAAATTGAAAAAAAAAATCTTATGTGAGTAAACCACTACTGAAA

C_atopa_1374
C_cap_RS_527
C_cap_RS_551
C_cap_835
C_debilis_7209
C_excelsa_671
C_mexicana_362
C_mexicana_720 C mutisii 914 CAGATCAATAC CAGATCAATACCCATGGGTATTGATCTGGTCCTHAATGACTCGTATACA C_mutisii_1295 CAGATCAATACCCATGGGTATTGATCTGGTCCTTCAATGACTCGTATACA

C_sprucei_817 CAGATCAATACCCATGGGTATTGATCTGGTCCTTCAATGACTCGTATACA C_sprucei_887 CAGATCAATACCCATGGGTATTGATCTGGTCCTTCAATGACTCGTATACA C_ulei_88 C_ulei_6192 I_juru_451
I_laev_460 0_parví_RS_598

C_atopa_1374
C_cap_RS_527
C_cap_RS_551
C_cap_835
C_debilis_7209
C_excelsa_671
C_mexicana_362
C_mexicana_720
C_mutisii_914
C_mutisii_1295
C_sprucei_817
C_sprucei_887
C_ulei_88
C_ulei_6192
I_juru_451
I_laev_460
0_parvi_RS_598
C_atopa_1374
C_cap_RS_527
C_cap_RS_551
C_cap_835
C_debilis_7209 C_excelsa_671
C_mexicana_362
C_mexicana_720 C_mutisii_914
C_mutisii_1295
C_sprucei_817
C_sprucei_887
C_ulei_88
C_ulei_6192
I_juru_451
NN TGCCTACTGGCATGGGAATCGTATGCGCAAGTCCAAAAGCAATAGAAGCA TGCCTACTGGCATGGGANTCGTATGCGCAAGTCCAAAAGCAATAGAAGCA NN TGCCTACTGGNATGGGAATCGTATGCGCAAGTCCAAAAGCAATGGAAGCA NN TGCCTACTGGTATGGGAATCGTATGCGCAAGTCCAAAAGCAATGGAAGCA TGCCTACTGGTATGGGAATCGTATGCGCAAGTCCAAAAGCAATGGAAGCA TGCCTACTGGTATGGGAATCGTATGCGCAAGTCCAAAAGCAATGGAAGCA TGCCTACTGGTATGGGAATCGTATGCGCAAGTCCAAAAGCAATGGAAGCA TGCCTACTGGTATGGGAATCGTATGCGCAAGTCCAAAAGCAATGGAAGCA TGCCTACTGGTATGGGAATCGTATGCGCAAGTNCAAAAGCAATGGAAGCA NN NN I laev 460 TGCCTACTGGTATGGGAATCGTATGCGCAAGTCCAAAAGCAATAGAAGCA 0_parvi__RS_598 TGCCTACTGGCATGGGAATCGTATGCGCAAGTCCAAAAGCAATAGAAGCA

C_atopa_1374 NNN C_cap_RS_527
C_cap_RS_551
C_cap_835
C_debilis_7209
C_excelsa_671
C_mexicana_362
C_mexicana_720
C_mutisii_914
C_mutisii_1295
C_sprucei_817
C_sprucei_887
C_ulei_88 TCCAAGACTGCTAAATCAGTCAGAGTATTCTTTGACTGGAAAGACTACCT TCCAAGACTGCTAAATCAGTCAGAGTATTCTTTGACTGGAAAGACTACCT NN TCCAAGACTGCTAAATCAGTCAGAGTATTCTTTGACTGGAAAGACTACNT NN TCCAAGACTGCTAAATCAGTCAGAGTATTCTTTGACTGGAAAGACTACCT TCCAAGACTGCTAAATCAGTCAGAGTATTCTTTGACTGGAAAGACTACCT TCCAAGACTGCTAAATCAGTCAGAGTATTCTTTGNCTGGANAGACTACCT TCCAAGACTGCTAAATCAGTCAGAGTATTCTTTGACTGGAAAGACTACCT TCCAAGACTGCTAAATCAGTCAGAGTATTCTTTGACTGGAAAGACTACCT TCCAAGACTGCTAAATCAGTCAGAGTATTCTTTGACTGGAAAGACTACCT NN

C_ulei_6192
I_juru_451
I_laev_460
O_parvi_RS_598
C_atopa_1374
C_cap_RS_527
C_cap_RS_551
C_cap_835
C_debilis_7209
C_excelsa_671
C_mexicana_362
C_mexicana_720
C_mutisii_914
C_mutisii_1295
C_sprucei_817
C_sprucei_887
C_ulei_88
C_ulei_6192
I_juru_451
I_laev_460
0_parvi_RS_598
C_atopa_1374
C_cap_RS_527
C_cap_RS_551
C_cap_835
C_debilis_7209
C_excelsa_671
C_mexicana_362
C_mexicana_720
C_mutisii_914
C_mutisii_1295
C_sprucei_817
C_sprucei_887
C_ulei_88
C_ulei_6192
I_juru_451
I_laev_460
0_parvi__RS_598
C_atopa_1374
C_cap_RS_527
C_cap_RS_551
C_cap_835
C_debilis_7209
C_excelsa_671
C_mexicana_362
C_mexicana_720
C_mutisii_914
C_mutisii_1295
C_sprucei_817
C_sprucei_887
C_ulei_88
C_ulei_6192
I_juru_451
I_laev_460

NN TCCAAGACTGCTAAATCAGTCAGAGTATTCTTTGACTGGAAAGACTACCT TCCAAGACTGCTAAATCAGTCAGAGTATTCTTTGACTGGAAAGACTACCT TCCAAGACTGCTAAATCAGTCAGAGTATTCTTTGACTGGAAAGACTACCT

NN GAAGTTCTATAAGTTGGGAACATATTGGCCCTACACACCTTCTATACAAC GAAGTTCTATAANTTGGGAACATATTGGCCCTACACACCTTCTATACAAC NN GAAGTTCTATAAGCTGGGAACATATTGGCCCTACACACCCTCTATACAAC NN GAAGTTCTATAAGTTGGGAACATATTGGCCCTACACACCCTCTATACAAC GAAGTTCTATAAGTTGGGAACATATTGGCCCTACACACCCTCTATACAAC GAAGTTCTATAAGTTGGGAACATATTGGCCCTACACACCCTCTATACAAC GAAGTTCTATAAGTTGGGAACATATTGGCCCTACACACCCTCTATACAAC GAAGTTCTATAAGTTGGGAACATATTGGCCCTACACACCCTCTATACAAC GAAGTTCTATAAGTTGGGAACATATTGGCCCTACACACCCTCTATACAAC NN NN GAAGTTCTATAAGTTGGGAACATATTGGCCCTACACACCTTCTATACAAC GAAGTTCTATAAGTTGGGAACATATTGGCCCTACACACCTTCTATACAAC GAAGTTCTATAAGTTGGGAACATATTGGCCCTACACACCTTCTATACAAC

NNNNGTATGGCCTGAGAGCAGCTTTGGATCTCATATTTGTGGAAGGACTT TTTTGTATGGCCTGAGAGCAGCTTTGGATCTCATATTTGTGGAAGGACTT TTTTGTATGGCCTGAGAGCAGCTTTGGATCTCATATTTGTGGAAGGACTT NN TTTTGTATGGCCTGAGAGCAGCTTTGGATCTCATATTTTTGGAAGGACTT NN TTTTGTATGGCCTGAGAGCAGCTTTGGATCTCATATTTTTGGAAGGACTT TTTTGTATGGCCTGAGAGCAGCTTTGGATCTCATATTTTTGGAAGGACTT TNTTGTATGGCCTGAGAGCAGCTTTGGATCTCATATTTTTGGAAGGACTT TTTTGTATGGCCTGAGAGCAGCTTTGGATCTCATATTTTTGGAAGGACTT TTTTGTATGGCCTGAGAGCAGCTTTGGATCTCATATTTTTGGAAGGACTT TTTTGTATGGCCTGAGAGCAGCTTTGGATCTCATATTTTTGGAAGGACTT NN NN TTTTGTATGGCCTGAGAGCAGCTTTGGATCTCATATTTGTGGAAGGACTT TTTTGTATGGCCTGAGAGCAGCTTTGGATCTCATATTTGTGGAAGGACTT TTTTGTATGGCCTGAGAGCAGCTTTGGATCTCATATTTGTGGAAGGACTT

GAAAATGTGTTTGACAGACACAAACGTTTGGGCAAAGCAACAAGGTAATA GAAAATGTGTTTGACAGACACAAACGTTTGGGCAAAGCAACAAGGTAATA GAAAATGTGTTTGACAGACACAAACGTTTGGGCAAAGCAACAAGGTAATA NN GAAAATGTGTTTGACAGACACAAACGTTTGGGCAAAGCAACAAGGTAATA NN GAAAATGTGTTTGNCAGACACAAACGTTTGGGCAAAGCAACAAGGTAATN GAAAATGTGTTTGACAGACACAAACGTTTGGGCAAAGCAACAAGGTAATA GAAAATGTGTTTGACAGACACAAACGTTTGGGCAAAGCAACAAGGTAATA GAAAATGTGTTTGACAGACACAAACGTTTGGGCAAAGCAACAAGGTAATA GAAAATGTGTTTGACAGACACAAACGTTTGGGCAAAGCAACAAGGTAATA GAAAATGTGTTTGACAGACACAAACGTTTGGGCAAAGCAACAAGGTAATA NN NN GAAAATGTGTTTGACAGACACAAACGTTTGGGCAAAGCAACAAGGTAATA GAAAATGTGTTTGACAGACACAAACGTTTGGGCAAAGCAACAAGGTAATA

0_parvi_RS_598 GAAAATGTGTTTGACAGACACAAACGTTTGGGCAAAGCAACAAGGTAA--
C_atopa_1374
C_cap_RS_527
C_cap_RS_551
C_cap_835
C_debílis_7209
C_excelsa_671
C_mexicana_362
C_mexicana_720
C_mutisii_914
C_mutisii_1295
C_sprucei_817
C_sprucei_887
C_ulei_88
C_ulei_6192
I_juru_451
I_laev_460
0_parvi_RS_598
C_atopa_1374
C_cap_RS_527
C_cap_RS_551
C_cap_835
C_debilis_7209
C_excelsa_671
C_mexicana_362
C_mexicana_720
C_mutisii_914
C_mutisii_1295
C_sprucei_817
C_sprucei_887
C_ulei_88
C_ulei_6192
I_juru_451
I_laev_460
0_parvi_RS_598
C_atopa_1374
C_cap_RS_527
C_cap_RS_551
C_cap_835
C_debilis_7209
C_excelsa_671
C_mexicana_362
C_mexicana_720
C_mutisii_914
C_mutisii_1295
C_sprucei_817
C_sprucei_887
C_ulei_88
C_ulei_6192
I_juru_451
I_laev_460
0_parvi__RS_598
C_atopa_1374 TTGAGAACTTTTTCCCCAGTGAATGCTGACCATATATGCTTTTTGAACTN
GATTTTGGAAAGATGTAGTGCTGAATGCTAATATTGAGCACTCGATGTCC GATTTTGGAAAGATGTAGTGCTGAATGCTAATATTGAGCACTCGATGTCC GATTTTGGAAAGATGTAGTGCTGAATGCTAATATTGAGCACTCGATGTCC NN GATTTTGGAAAGATGCAGTGCTGAATGCTAATATTGAGCACTCGATGTCC NN GATTTTGGAAAGATGCAGTGCTGAATGCTAATATTGAGCACTCGATGTCC GATTTTGGAAAGATGCAGTGCTGAATGCTAATATTGAGCACTCGATGTCC GATTTTGGGAAGATGCAGTGCTGAATGCTAATATTGAGCACTCGATGTCC GATTTTGGGAAGATGCAGTGCTGAATGCTAATATTGAGCACTCGATGTCC GATTTTGGAAAGATGCAGTGCTGAATGCTAATATTGAGCACTCGATGTCC GATTTTGGAAAGATGCAGTGCTGAATGCTAATATTGAGCACTCGATGTCC NN NN GATTTTGGAAATATGTAGTGCTGAATGCTAATATTGAGCACTTGATGTCC GATTTTGGAAAGATGTAGTGCTGAATGCTAATATTGAGCACTCGATGTCC ----------AGATGTAGTACTGAATGCTAATATTGAGCACTCGATGTCC

ATAGTAAGAGAGGNACACCATTTATTTATTGGGAACTACCCTGGATGGGN ATAGTAAGAGAGGNACACCATTTATTTATTGGGAACTACCCTGGATGGGA ATAGTAAGAGAGGGACACCATTTATTTATTGGGAACTACCCTGGATGGGA NN ATAGTAAGAGAGGCACATCATTTATTTATTGGGAACTACCCTGGATGGGA NN ATAGTAAGAGAGGCACACCATTTATTTATTGGGAACTAACCTGGATGGGA ATAGTAAGAGAGGCACACCATTTATTTATTGGGAACTAACCTGGATGGGA ATAGTAAGAGAGGCACACCATTTATTTATTGGGAACTAACCTGGATGGGA ATAGTAAGAGAGGCACACCATTTATTTATTGGGAACTAACCTGGATGGGA ATAGTAAGAGAGGCACACCATTTATTTATTGGGAACTAACCTGGATGGGA ATAGTAAGAGAGGCACACCATTTATTTATTGGGAACTAACCTGGATGGGA NN NN ATAGTAAGAGAGGCACACCATTTATTTATTGGGAACTGCCCTGGATGGGT ATAGTAAGAAAGGCACACCATTTATTTATTGGGAACTGCCCTGGATGGGT ATAGTAAGAGAGGCACACCATTTATTTATTGGGAACTACACTGGATGAGC

GGGAAATATT-CCAAAAATTTCAGCAGTGGGACAGTCCTAGACACTGATA GGGGAATATT-CCAAAAATTTCAGCAGTGGGACAATCCTAGACACTGATA GGGGAATATT-CCAAAAATTTCAGCAGTGGGACAATCCTAGACACTGATA NN GGGGAATATT-CCAAAAATTTCAGCAGTGGGACAATCCTAGACACTGATG NN GGGGAATATC-CCAAAAATTTCAGCAGTGGGACAATCCTAGACACTGATA GGGGCATATT-CCAAAAATTTCAGCAGTGGGACAATCCTAGACACTGATA GGGGAATATT-CCAAAAATTTCAGCAGTGGGACAATCCTAGACACTGATA GGGGAATATT-CCAAAAATTTCAGCAGTGGGACAATCCTAGACACTGATA GGGGAATATT-CCAAAGATTTCAGCAGTGGGACAATCCTAGACACTGATA GGGGAATATT-CCAAAAATTTCAGCAGTGGGACAATCCTNGACACTGATA NN NN GGGGAATATT-CAAAAAATTTCAGCAGTGGGACAATCCTAGACACTGATT GGGGAATATT-CAAAAAATTTCAGCAGTGGGACAATCCTAGACACTGATT AGGGAATATT-CCAAAAATTTCAGCAGTGGGACAATCCTAGACACTGATA

C_cap_RS_527 TTGNGAACTTTTTCCCCAGTGAATGCTGACCATATATGCTTTTTGAACTT C_cap_RS_551 TTGAGAACTTTTTCCCCAGTGAATGCTGACCATATATGCTTTTTGAACTT C_cap_835 C_debilis_7209 C_excelsa_671 C_mexicana_362 C_mexicana_720 C_mutisii_914 C_mutisii_1295 C_sprucei_817
C_sprucei_887
C_ulei_88
C_ulei_6192
I_juru_451
I_laev_460
O_parvi_RS_598
C_atopa_1374
C_cap_RS_527
C_cap_RS_551
C_cap_835
C_debilis_7209
c 671 TAGT
C_excelsa_671 NN
C_mexicana_720 TCTATTTATAATCCTCAAAAATTCCTCCAAACAGCAGCTAAAATCACCTT
C_mutisii_914 TCNATTTATAATCCTCAAAAATTCCTCCAAACAGCAGCTAAAATCACCTT
C_mutisii_1295 TCTATTTATAATCCTCAAAAATTCCTCCAAACAGCAGCTAAAATCACCTT
C_sprucei_817 TCTATTTATAATCCTCAAAAATTCCTCCAAACAGCATCTAAAATCACCTT
C_sprucei_887 TCTATTTATAATCCTCAAAAATTCCTCCAAACAGCANCTAAAATCACCTT
C_ulei_88
C_ulei_6192
I_juru_451 NN NN

I_laev_460 ССТАТTTATAATCCTCAAAA-TTCCTCCATACAGCTGCTAAAATCATCAT 0_parvì_RS_598 TCTATTTATAATCCTCAAAA-TTCCTCCAAACAGCAGCTAAAATCATCAT

C_atopa_1374
C_cap_RS_527
C_cap_RS_551
C_cap_835
C_debilis_7209
C_excelsa_671
C_mexicana_362
C_mexicana_720
C_mutisii_914
C_mutisii_1295
C_sprucei_817
C_sprucei_887
C_ulei_88
C_ulei_6192
I_juru_451
I_laev_460
0_parvi_RS_598
C_atopa_1374
C_cap_RS_527
C_cap_RS_551
C_cap_835

ATTCATTTACTTTTAGGCTGTGACCCGCCCAATGGATGANTGGTTCAATT ATTCATTTACTTTTAGGCTGTGACCCGCCCAATGGATGAATGGTTCAATT ATTCATTTACTTTTAGGCTGTGACCCGCCCAATGGATGAATGGTTCAATT NN ATTCATTTACTTTTAGGCTGTGACCTGCCCAATGGATGAATGGTTCAATT NN ATTTATTTACTTTTAGGCTGTGACCCGCCCAATGGATGAATGGTTCAATT ATTTATTTACTTTTAGGCTGTGACCCGCCCAATGGATGAATGGTTCAATT ATTTATTTACTTTTAGGCTGTGACCCGCCCAATGGATGAATGGTTCAATT ATTTATTTACTTTTAGGCTGTGACCCGCCCAATGGATGAATGGTTCAATT ATTTATTTACTTTTAGGCTGTGACCCGCCCAATGGATGAATGGTTCAATT ATTTATTTACTTTTAGGCTGTGACCCNCCCAATGGATGAATGGTTCAATT NN NN ATTCGTTTACTTTTTGGCTGTGACCCGCCCAATGGATGAATGGTTCAATT ATTCGTTTACTTTTCGGCTGTGACCCGCCCAATGGATGAATGGTTCAATT ATTCGTTTACTTTTAGGCTGTGACCCGCCCAATGGATGAATGGTTCAATT

CTCATGAAGGNGTGACATTTGTAAGATGATAA-GAGTGCCTGAGATCNNN CTCATGAAGGTGTGACATTTGTAAGATGATAA-GAGTGCCNGAGATCTAA CTCATGAAGGTGTGACATTTGTAAGATGATAA-GAGTGCCNGAGATCTAA NN

C_debilis_7209 CTCATGAAGGTGTGACATT-GTAAGATGATAA-GAGTGCCNGAGATCTAA C_excelsa_671 NN C_mexicana_362 CTCATGAAGGTGTGACATTTGTAAGATGATAA-GAGTGCCTGAGATCTAA C_mexicana_720 CTCATGAAGGTGTGACATTTGTAAGATGATAA-GAGTGCCTGAGATCTAA C_mutisii_914 CTCATGAAGGTGTGACATTTGTAAGATGATAA-GAGTGCCTGAGATCTAA C_mutisii_1295 CTCATGAAGGTGTGACATTTGTAAGATGATAA-GAGTGCCTGAGATCTAA C_sprucei_817 CTCATGAAGGTGTGACATTTGTAAGATGATAA-GAGTGCCTGAGATCTAA C_sprucei_887 CTCATGAAGGTGTGACATTTGTAAGATGATAA-GAGTGCCTGAGATCTAA C_ulei_88 C_ulei_6192 I_juru_451 I_laev_460 0_parvi_RS_598

C_atopa_1374
C_cap_RS_527
C_cap_RS_551
C_cap_835
C_debilis_7209
C_excelsa_671
C_mexicana_362
C_mexicana_720
C_mutisii_914
C_mutisii_1295
C_sprucei_817
C_sprucei_887
C_ulei_88
C_ulei_6192
I_juru_451
I_laev_460
O_parvi_RS_598
C_atopa_1374
C_cap_RS_527
C_cap_RS_551
C_cap_835
C_debilis_7209
C_excelsa_671
C_mexicana_362
C_mexicana_720
C mutisii 914
C mutisii 1295
C sprucei
C_sprucei_887
C_ulei_88
C_ulei_6192
I_juru_451
I_laev_460
NN GTCTATAGACAGAGAAATGGCCTTTCACTCATGTTCTTTGTCCTTTTTAA GTCTATAGACAGAGAAATGGCCTTTCACTCATGTTCTTTGTCCTTTTTAA NN GTCTATAGACAGAGAAATGGCCTTTCACTAATGTTCTTTGTCCTTTTTAA NN -------GACAGAGAAATGGCCTTTCACTAATGCTCTTTGTCCTTTTTAA -------GACAGAGAAATGGCCTTTCACTAATGCTCTTTGTCCTTTTTAA GTCTATAGACAGAGAAATGGCCTTTCACTAATGCTCTTTGTCCTTTTTAA GTCTATAGACAGAGAAATGGCCTTTCACTAATGCTCTTTGTCCTTTTTAA GTCTATAGACAGAGAAATGGCCTTTCACTAATGCTCTTTGT-----GTCTATAGACAGAGAAATGGCCTTTCACTAATGCTCTTTGTCCTTGTTAA NN NN GTCTATCGACAGA- -AATGGCCTTTCACTAATGTTCTTTGTCCTTTTTAA GTCTATCGACAGA--AATGGCCTTTCACTAATGTTCTTTGTCCTTTTTAA 0_parvi_RS_598 GTCTATAGACAGAGAAATGGCCTTTCACTAATGTTCTCTGTCCTTTTTTA

C_atopa_1374
C_cap_RS_527
C_cap_RS_551
C_cap_835
C_debilis_7209
NNATCTTCTACGCCACATACTTGTCTGAGAAAATTGGGTATTGGAGGTAC ATATNTTCTNCGCCACATACTTGTCTGAGAAAATTGGGTATTGGAGGTAC ATATCTTCTACGCCACATACTTGTCTGNGAAAATTGGGTATTGGAGGTAC NNATCTTCTACGCCACATACTTGTCTGAGAAAATTGGGTATTGGAGGTAC C_excelsa_671 NNATCTTCTATGCCACATATTTGTCNGAGAAAATTGGGTATTGGAGGTAC C_mexicana_362 ATATCTTCTATGCCACATATTTGTCTGAGAAAATTGGGTATTGGAGGTAC

C_mexicana_720 ATATCTTCTATGCCACATATTTGTCTGAGAAAATTGGGTATTGGAGGTAC C_mutisii_914 ATATCTTCTATGCCACATATTTGTCTGAGAAAATTGGGTATTGGAGGTAC C_mutisii_1295 ATATCTTCTATGCCACATATTTGTCTGAGAAAATTGGGTATTGGAGGTAC C_sprucei_817 --ATCTTCTATGCCACATATTTNTCTGAGAAAATTGGGTATTGGAGGTAC C_sprucei_887 ATATCTTCTATGCCACATATTTGTCTGAGAAAATTGGGTATTGGAGGTAC C_ulei_88 C_ulei_6192
I_juru_451 NN NNATCTTCTATGCCACATATTTGTCTGAGAAAATTGGGTATTGGAGGTAC ATATCTTCTATGCCACATACCTGTCTGAGAAAATTGGGTATTGGAGGTAC I_laev_460 ATATCTTCTATGCCACGTACTTGTCTGAGAAAATTGGGTATTGGAGGTAC 0_parvi_RS_598 AAATCTTCTACGCCACATACCTGTCTGAGAAAATTGGGTATTGGAGGTAC

C_atopa_1374 ATAACTATTTACAGGCATTTGAAGGCCAACCCAGAGTACCAACTTTACCC C_cap_RS_527 ATAACTATTTACAGGCATTTGAAGGCCAACCCAGAGTACCAACTTTACCC C_cap_RS_551 ATAACTATTTACAGGCATTTGAAGGCCAACCCAGAGTACCAACTTTACCC C_cap_835
C_debilis_7209 C_excelsa_671 C_mexicana_362 C_mexicana_720 C_mutisii_914 C_mutisii_1295 C_sprucei_817
C_sprucei_887
C_ulei_88
C_ulei_6192
I_juru_451
I_laev_460 ATAACTATTTACAGGCATTTGAAGGCCAACCCAGAGTACCAACTTTACCC ATAACTATTTACAGGCATTTGAAGGCCAACCCAGAGTACCAACTTTACCC ATAACTATTTACAGGCATTTGAAGGCCAACCCAGAGTACCAACTTTACCC ATAACTATTTACAGGCATTTGAAGGCCAACCCAGAGTACCAACTTTACCC ATAACTATTTACAGGCATTTGAAGGCCAACCCAGAGTACCAACTTTACCC ATAACTATTTACAGGCATTTGAAGGCCAACCCAGAGTACCAACTTTACCC ATAACTATTTACAGGCATTTGAAGGCCAACCCAGAGTACCAACTTTACCC ATAACTATTTACAGGCATTTGAAGGCCAACCCAGAGTACCAACTTTACCC ATAACTATTTACAGGCATTTGAAGGCCAACCCAGAGTACCAACTTTACCC NN ATAACTATTTACAGGCATTTGAAGGCCAACCCAGAGTACCAACTTTACCC ATAACTATTTACAGGCATTTGAAGGCCAACCCAGAGTACCAACTTTACCC ATAACTATTTACAGGCATTTGAAGGCCAACCCAGAGTACCAACTTTACCC 0_parvi_RS_598 ATAACTATTTACAGGCATTTGAAGGCCAACCCAGAGTACCAACTTTACCC

C_atopa_1374
C_cap_RS_527
C_cap_RS_551
C_cap_835
C_debīlis_7209
C_excelsa_671
C_mexicana_362
C_mexicana_720
C_mutisii_914
C_mutisii_1295
C_sprucei_817
C_sprucei_887
C_ulei_88
C_ulei_6192
I_juru_451
AATCTTCAAGTATTTCGAGAACTGGTGCCAGGATGAGAATAGGCATGGAG AATCTTCAAGTATTTCGAGAACTGGTGCCAGGATGAGAATAGGCATGGAG AATCTTCAAGTATTTCGAGAACTGGTGCCAGGATGAGAATAGGCATGGAG AATCTTCAAGTATTTCGAGAACTGGTGCCAGGATGAGAATAGGCATGGAG AATCTTCAAGTATTTCGAGAACTGGTGCCAGGATGAGAATAGGCATGGAG GATCTTCAAGTATTTCGAGAACTGGTGCCAGGATGAGAATAGGCATGGAG GATCTTCAAGTATTTCGAGAACTGGTGCCAGGATGAGAATAGGCATGGAG GATCTTCAAGTATTTCGAGAACTGGTGCCAGGATGAGAATAGGCATGGAG GATCTTCAAGTATTTCGAGAACTGGTGCCAGGATGAGAATAGGCATGGAG GATCTTCAAGTATTTCGAGAACTGGTGCCAGGATGAGAATAGGCATGGAG AATCTTCAAGTATTTTGAAAACTGGTGCCAGGATGAGAATAGGCANGGAG AATCTTCAAGTATTTTGAAAACTGGTGCCAGGATGAGAATAGGCATGGAG NN GATCTTCAAGTATTTCGAGAACTGGTGCCAGGATGAGAATAGGCATGGAG AATCTTCAAGTATTTTGAGAACTGGTGCCAGGATGAGAACAGGCATGGAG I_laev_460 AATCTTCAAGTATTTTGAGAACTGGTGCCAGGATGAGAACAGGCATGGAG 0_parvi_RS_598 AATCTTCAAGTATTTCGAGAACTGGTGCCAGGATGAGAACAGGCATGGAG

C_atopa_1374
C_cap_RS_527
C_cap_RS_551
C_cap_835
C_debilis_7209 C_excelsa_671
C_mexicana_362
C_mexicana_720

C_mutisii_ 914 ATTTCTTCTCTGCATTGATGAAGGCGCAGCCTCAATTCCTCAATGACTGG C_mutisii_1295 ATTTCTTCTCTGCATTGATGAAGGCGCAGCCTCAATTCCTCAATGACTGG

ATTTCTTCTCTGCATTGATGAAGGCGCAGCCTCAATTCCTCAATGACTGG ATTTCTTCTCTGCATTGATGAAGGCGCAGCCTCAATTCCTCAATGACTGG ATTTCTTCTCTGCATTGATGAAGGCGCAGCCTCAATTCCTCAATGACTGG ATTTCTTCTCTGCATTGATGAAGGCGCAGCCTCAATTCCTCAATGACTGG ANTTCTTCTCTGCATTGATGAAGGCNCAGCCTCAATTCCTCAATGACTGG ATTTCTTCTCTGCATTGATGAAGGCGCAGCCTCAATTCCTCAATGACTGG ATTTCTTCTCTGCATTGATGAAGGCGCAGCCTCAATTCCTCAATGACTGG ATTTCTTCTCTGCATTGATGAAGGCGCAGCCTCAATTCCTCAATGACTGG

C_sprucei_817 ATTTCTTCTCTGCATTGATGAAGGCGCAGCCTCAATTCCTCAATGACTGG C_sprucei_887 ATTTCTTCTCTGCATTGATGAAGGCGCAGCCTCAATTCCTCAATGACTGG C_ulei_88 C_ulei_6192 I_juru_451
I_laev_460 NN ATTTCTTCTCTGCATTGATGAAGGCGCAGCCTCAATTCCTCAATGACTGG ATTTCTTCTCTGCATTGATGAAGGCACAGCCTCAATTCCTCAATGACTGG 0_parvī_RS_598

C_atopa_1374
C_cap_RS_527
C_cap_RS_551
C_cap_835 ATTTCTTCTCTGCATTGATGAAGGCACAGCCTCAATTCCTCAATGACTGG ATTTCTTCTCTGCATTGATGAAGGCGCAGCCTCAATTCCTCAATGACTGG

C_debilis_7209 C_excelsa_671
C_mexicana_362
C_mexicana_720 C_ulei_88
C_ulei_6192 - juru

C_atopa_1374
C_cap_RS_527
C_cap_RS_551
C_cap_835
C_debilis_7209 C_excelsa_671 C_mexicana_362 C_mexicana_720 C_mutisii_914 C_mutisii_1295 C_sprucei_817 C_sprucei_887 C_ulei_88 C_ulei_6192 I_juru_451 I_laev_460 0_parvi_RS_598

C_atopa_1374
C_cap_RS_527
C_cap_RS_551
C_cap_835
C_debilis_7209 C_excelsa_671 C_mexicana_362 C_mexicana_720 C_mutisii_914 C_mutisii_1295 C_sprucei_817 C_sprucei_887
C_ulei_88

C mutisii 914 AAAGCGAAGCTGTGGGCTCGTTTCTTCTGTCTATCGTAAATGTTATTTA C_mutisii_1295 AAAGCGAAGCTGTGGGCTCGTTTCTTCTGTCTATCGGTAAATGTTATTTA C_sprucei_817 AAAGCGAAGCTGTGGGCTCGTTTCTTCTGTCTATCGGTAAATGTTATTCA C_sprucei_887 AAAGCGAAGCTGTGGGCTCGTTTCTTCTGTCTATCGGTAAATGTTATTCA NN I_juru_451 AAAGCGAAGCTGTGGGCTCGTTTCTTCTGTCTATCGGTAAATGTTATTCA I_laev_460 AAAGCGAAGCTGTGGGCTCGTTTCTTCTGTCTATCGGTAAATGTTATTCA 0_parvi_RS_598 AAAGCGAAGTTGTGGGCTCGTTTCTTCTGTCTATCGGTAAATTTTATTCA

AAAGCGAAGCTGTGGGCTCGTTTCTTCTGTCTATCGGTAAATGTTATTCA AAAGCGAAGCTGTGGGCTCGTTTCTTCTGTCTATCGGTAAATGTTATTCA AAAGCGAAGCTGTGGGCTCGTTTCTTCTGTCTATCGGTAAATGTTATTCA AAAGCGAAGCTGTGGGCTCGTTTCTTCTGTCTATCGGTAAATGTTATTNA AAAGCGAAGCTGTGGGCTCGTTTCTTCTGTCTATCGGTAAATGTTATTCA AAAGCGAAGCTGTGGGCTCGTTTCTTCTGTCTATCGGTAAATGTTATTTA AAAGCGAAGCTGTGGGCTCGTTTCTTCTGTCTATCGGTAAATGTTATTTA AAAGCGAAGCTGTGGGCTCGTTTCTTCTGTCTATCGGTAAATGTTATTTA AAAGCGAAGCTGTGGGCTCGTTTCTTCTGTCTATCGGTAAATGTTATTTA AAAGCGAAGCTGTGGGCTCGTTTCTTCTGTCTATCGGTAAATGTTATTCA

ATTTTATTATATTTTTTAGCCTTTTCATATTTCACTGGGCATGATTATTC ATTTTATTATATTTTTTAGCCTTTTCATATTTCACTGGGCATGATTATTC ATTTTATTATATTTTTTAGCCTTTTCATATTTCACTGGGCATGATTATTC ATTTTATTATATTTTTTAGCCTTTTCATATTTCACTGGGCATGATTATTC ATTTTATTATATTTTTTAGCCTTTTCATATTTCACTGGGCATGATTCTTC ATTTTATTATATTTTTTAGCCTTTTCATATTTCACTGGGCATGATTCTTC ATTTTATTATATTTTTTAGCCTTTTCATATTTCACTGGGCATGATTCTTC ATTTTATTATATTTTTTAGCCTTTTCATATTTCACTGGGCGTGATTCTTC ATTTTATTATATTTTTTAGCCTTTTCATATTTCACTGGGCATGATTCTTC ATTTTATTATATTTTTTAGCCTTTTCATATTTCACTGGGCATGATTCTTC ATTTTATTATATTTTTTAGCCTTTTCATATTTCACTGGGCATGATTCTTC ATTTTATTATATTTTTTAGCCTTTTCATATTTCACTGGGCATGATTCTTC NN ATTTTATTATATTTTTTAGCCTTTTCATATTTCACTGGGCATGATTCTTC ATTTTATTATATTTTTCAGCCTTTTCATATTTCACTGGGCATGATTCTTA ATTTTATTATATTTTTTAGCCTTTTCATATTTCACTGGGCATGATTCTTA ATTTTATTATATTTTTTAGCCTTTTCATATTTAACTGGGAATGATTCTTC

TGATTATTGGAGACTCACAATCTGTTACTTCCAGCTTTTGATTTTTCATG TGATTATTGGAGACTCACAATCTGTTGCTTCCAGCTTTTGATTTTTCATG TGATTATTGGAGACTCACAATCTGTTGCTTCCAGCTTTTGATTTTTCATG TGATTATTGGAGACTCACAATCTGTTGCTTCCAGCTTTTGATTTTTCATG TGATTATTGTAGACTCACAATCTGTTGCTTCAAGNTTTTGATTTTTCATG TGATTATTGTAGACTCACAATCTGTTGCTTCAAGCTTTTGATTTTTCATG TGATTATTGTAGACTCACAATCTGTTGCTTCAAGGTTTTGATTTTTCATG TGATTATTGTAGACTCACAATCTGTTGCTTCAAGGTTTTGATTTTTCATG TGATTATTGTAGACTCACAATCTGTTGCTTCAAGCTTTTGATTTTTCATG TGATTATTGTAGACTCACAATCTGTTGCTTCAAGCTTTTGATTTTTCATG TGATTATTGTAGACTCACAATCTGTTGCTTCNAGCTTTTGATTTTTCATG TGATTATTGTAGACTCACAATCTGTTGCTTCGAGCTTTTGATTTTTCATG NN

```
C_ulei_6192 TGATTATTGTAGACTCACAATCTGTTGCTTCAAGCTTTTGATTTTTCATG
I_juru_451 TGATTATTGGATACTCACAATCTGTTGCTTCCAGCTTTTGATTTTTCATG
I_laev_460 TGATTATTGGATACTCACAATCTGTNGCTTCCAGCTTTTGATTTTTCATG
0_parvi_RS_598 TGATTATTGGAGACTCACAATCTGTTGCTTCCAGCTTTTGATTTTTCATG
C_atopa_1374 GATGAAGAGGTTTCAAAAGTGGATTTTGTTGGTCATCTGTTCTCTTTTTA
C_cap_RS_527 GATGAAGTGGTTTCAAAAGTGGATTTTGTTGGTCATCTGTTCTCTTTTTA
C_cap_RS_551 GATGAAGTGGTTTCAAAAGTGGATTTTGTTGGTCATCTGTTCTCTTTTTA
C_cap_835 GATGAAGAGGTTTCAAAAGTGGATTTTGTTGGTCATCTGTTCTCTTTTTA
C_debilis_7209 GATGAAGNNGTTTCAAAAGTGGATTTTGTGGGTCATCTGTTCTCTTTTTA
C_excelsa_671 GATGAAGTGGTTTCAAGAGTGGATTTTGTGGGTCATCTGTTCTCTTTTTA
C_mexicana_362 GATGAAGTGGTTTCAAGAGTGGATTTTGTGGGTCATCTGTTCTCTTTTTA
C_mexicana_720 GATGAAGTGGTTTCAAGAGTGGATTTTGTGGGTCATCTGTTCTCTTTTTA
C_mutisii_914 GATGAAGTGGTTTCAAGAGTGGATTTTGTGGGTCATCTGTTCTCTTTTTA
C_mutisii_1295 GATGAAGTGGTTTCAAGAGTGGATTTTGTGGGTCATCTGTTCTCTTTTTA
C_sprucei_817 GATGAAGTGGTTTCAAAAGTGGATTTTGTGGGTCATCTGTTCTCTTTTTA
C_sprucei_887 GATGAAGTAGTTTCAAAAGTGGATTTTGTGGGTCATCTGTTCTCTTTTTA
C_ulei_88
C_ulei_6192
I_juru_451
I_laev_460
0_parvi_RS_598
C_atopa_1374 CATTGCTTATGCCT
C_cap_RS_527 CGTTGCTTATGCCT
C_cap_RS_551 CGTTGCTTATGCCT
C_cap_835 CGTTGCTTATGCCT
C_debilis_7209 TGTNGCTTATGCTT
C_excelsa_671 TGTTGCTNANGCTT
C_mexicana_362 TGTTGCTTATGCTT
C_mexicana_720 TGTNGCTTATGCTT
C_mutisii_914 TGTTGCTTATGCTT
C_mutisii_1295 TGTNGCTNANGCTT
C_sprucei_817 TGTNGCTTATGCTT
C_sprucei_887 TGTTGCTTATGCTT
C_ulei_88 NNNNNNNNNNNNNN
C_ulei_6192 TNNNGNTNANNNTT
I_juru_451 TNTNNCTNANNNTT
I_laev_460 TGTNGCTNATGCTT
0_parvi_RS_598 TGTTGCTTATGCTT
```


Alignment 1.2

DNA nucleotide sequence alignment of trnH-psbA for 50 taxa and 348 characters used to construct NJ tree in chapter 1.50 base pairs per line.

C atopa_1374 TCCGCCCCTTGTCCTTTCT-------- AAAGAAAAAAATTTTAGATTAC
C_cap_835
C_cap_855
C_cap_872 TCCGCCCCTTGTCCTTTCT---------AAAGAAAAAAATTTTAGATTAC TCCGCCCCTTGTCCTTTCT--------AAAGAAAAAAATTTTAGATTAC TCCGCCCCTTGTCCTTTCT---------AAAGAAAAAAATTTTAGATTAC TCCGCCCCTTGTCCTTTCT-------- AAAGAAAAAAATTTTAGATTAC TCCGCCCCTTGTCCTTTCT--------AAAGAAAAAAATTTTCGATTAC TCCGCCCCTTGTCCTTTCT--------AAAGAAAAAAATTTTCGATTAC TCCGCCCCTTGTCCTTTCT---------AAAGAAAAAAATTTTAGATTAC TCCGCCCCTTGTCCTTTCT---------AAAGAAAAAAATTTTAGATTAC TCCGCCCCTTGTCCTTTCTAAACTTTCTAAAGAAAATAATTTTAGATTAC TCCGCCCCTTGTCCTTTCTAAACTTTCTAAAGAAAATAATTTTAGATTAC TCCGCCCCTTGTCCTTTCTAAACTTTCTAAAGAAAATAATTTTAGATTAC TCCGCCCCTTGTCCTTTCTAAACTTTCTAAAGAAAATAATTTTAGATTAC TCCGCCCCTTGTCCTTTCT--------AAAGAAAAAAATTTTAGATTAC TCCGCCCCTTGTCCTTTCT---------AAAGAAAAAAATTTTAGATTAC TCCGCCCCTTGTCCTTTCT-------- AAAGAAAAAAATTTTAGATTAC TCCGCCCCTTGTCCTTTCT-------- AAAGAAAAAAATTTTAGATTAC TCCGCCCCTTGTCCTTTCT--------AAAGAAAAAAATTTTAGATTAC TCCGCCCCTTGTCCTTTCT-------- AAAGAAAAAAATTTTAGATTAC TCCGCCCCTTGTCCTTTCT---------AAAGAAAAAAATTTTAGATTAC TCCGCCCCTTGTCCTTTCT---------AAAGAAAAAAATTTTAGATTAC TCCGCCCCTTGTCCTTTCT-------- AAAGAAAAAAATTTTAGATTAC TCCGCCCCTTGTCCTTTCT---------AAAGAAAAAAATTTTAGATTAC TCCGCCCCTTGTCCTTTCT-------- AAAGAAAAAAATTTTAGATTAC TCCGCCCCTTGTCCTTTCT-------- AAAGAAAAAAATTTTAGATTAC TCCGCCCCTTGTCCTTTCT---------AAAGAAAAAAATTTTAGATTAC TCCGCCCCTTGTCCTTTCT--------AAAGAAAAAAATTTTAGATTAC TCCGCCCCTTGTCCTTTCT---------AAAGAAAAAAATTTTAGATTAC TCCGCCCCTTGTCCTTTCT--------AAAGAAAAAAATTTTAGATTAC TCCGCCCCTTGTCCTTTCT--------AAAGAAAAAAATTTTAGATTAC TCCGCCCCTTGTCCTTTCT-------- AAAGAAAAAAATTTTAGATTAC TCCGCCCCTTGTCCTTTCT---------AAAGAAAAAAATTTTAGATTAC TCCGCCCCTTGTCCTTTCT---------AAAGAAAAAAATTTTAGATTAC TCCGCCCCTTGTCCTTTCT---------AAAGAAAAAAATTTTAGATTAC TCCGCCCCTTGTCCTTTCT-------- AAAGAAAAAAATTTTAGATTAC TCCGCCCCTTGTCCTTTCT---------AAAGAAAAAAATTTTAGATTAC TCCGCCCCTTGTCCTTTCT--------AAAGAAAAAAATTTTAGATTAC TCCGCCCCTTGTCCTTTCT-------- AAAGAAAAAAATTTTAGATTAC TCCGCCCCTTGTCCTTTCT---------AAAGAAAAAAATTTTAGATTAC TCCGCCCCTTGTCCTTTCT-------- AAAGAAAAAAATTATAGATTAC TCCGCCCCTTGTCCTTTCT-------- AAAGAAAAAAATTATAGATTAC TCCGCCCCTTGTCCTTTCT-------- AAAGAAAAAAATTATAGATTAC TCCGCCCCTTGTCCTTTCT---------AAAGAAAAAAATTTTAGATTAC TCCGCCCCTTGTCCTTTCT---------AAAGAAAAAAATTTTAGATTAC TCCGCCCCTTGTCCTTTCT--------- AAAGAAAAAAATTTTAGATTAC TCCGCCCCTTGTCTTTTCG--------AAAGACTAAAATTTTAGATTAC TCCGCCCCTTGTCTTTTCG--------AAAGACTAAAATTTTAGATTAC ?CCG?CCCTTGTCTTTTCT---TTTTCTAAAGAAAAAAATTTTAGATTAC TCCGCCCCTTGTCTTTTCT----TTTCTAAAGACAAAAATTTTAGATTAC TCCGCCCCTTGTCTTTTCT----TTTCTAAAGACAAAAATTTTAGATTAC

C_atopa_1374
C_cap_835
C_cap_855
C_cap_872
C_cap_875
C_cap_RS_551
C_cap_RS_527
C_diaz_7644A
C_cap_889
C_sp1_A848
C_cuatre_40682
C_rigid_10008
C_sp2_23826
C_debilis_190
C_debilis_6172
C_debilis_7209
C_debilis_22972
C_excelsa_636
C_excelsa_666
C_excelsa_668
C_excelsa_669
C_excelsa_671
C_mexicana_07
C_mexicana_354
C_mexicana_362
C_mexicana_696
C_mexicana_701
C_mexicana_719
C_mexicana_720
C_mexicana_757
C_mexicana_1283
C_mutisii_911
C_mutisii_913
C_mutisii_914
C_mutisii_1290
C_mutisii_1295
C_sprucei_812
C_sprucei_817
C_sprucei_821
C_sprucei_884
C_sprucei_887
C_sprucei_903
C_ulei_88
C_ulei_6192
C_ulei_42644
0_gly_RS_546
0_parvi_RS_598
V_sur_RS_078
I_juru_RS_451
I_laev_RS_460
C_atopa_1374
C_cap_835
C_cap_855
C_cap_872
C_cap_875

TAGTCTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAAAATCGAC TAGTTTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAAAATCGAC TAGTCTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAAAATCTAC TAGTCTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAAAATCTAC TAGTCTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAAAATCTAC TAGTCTTTCTTATTTTTTTCATACTAATTTCTACCCTTTAGAAAATCGAC TAGTCTTTCTTATTTTTTTCATACTAATTTCTACCCTTTAGAAAATCGAC TAGTCTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAAAATCGAC TAGTCTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAAAATCGAC TAGTCTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAAAATCGAC TAGTCTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAAAATCGAC TAGTCTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAAAATCGAC TAGTCTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAAAATCGAC TAGTCTTTCTTATTTTTTTCATACAAATTTCTATCCTTTAGAAAA----C TAGTCTTTCTTATTTTTTTCATACAAATTTCTATCCTTTAGAAAA----C TAGTCTTTCTTATTTTTTTCATACAAATTTCTATCCTTTAGAAAA--- - C TAGTCTTTCTTATTTTTTTCATACAAATTTCTATCCTTTAGAAAA----TAGTCTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAAAA----C TAGTCTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAAAA----C TAGTCTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAAAA----C TAGTCTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAAAA----TAGTCTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAAAA----C TAGTCTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAAAA----C TAGTCTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAAAA----C TAGTCTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAAAA----C TAGTCTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAAAA----C TAGTCTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAAAA----C TAGTCTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAAAA----C TAGTCTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAAAA----C TAGTCTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAAAA----C TAGTCTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAAAA----C TAGTCTTTCTTATTTTTTTCATACAAATTTATACCCTTTAGAAAA----C TAGTCTTTCTTATTTTTTTCATACAAATTTATACCCTTTAGAAAA----C TAGTCTTTCTTATTTTTTTCATACAAATTTATACCCTTTAGAAAA----TAGTCTTTCTTATTTTTTTCATACAAATTTATACCCTTTAGAAAA----C TAGTCTTTCTTATTTTTTTCATACAAATTTATACCCTTTAGAAAA----C TAGTCTTTCTTATTTTTTTCATACAAATTTCTACCCTTTTGAAAA----C TAGTCTTTCTTATTTTTTTCATACAAATTTCTACCCTTTTGAAAA--- -TAGTCTTTCTTATTTTTTTCATACAAATTTCTACCCTTTTGAAAA--- -TAGTCTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAAAA----C TAGTCTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAAAA----C TAGTCTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAAAA----C TAGTCTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAAAA--- -TAGTCTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAAAA--- -TAGTCTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAAAA----C TAGTCTTTCTTATTTTTTTCATACTAATTTCTACCCTTTCTAAAATTTAC TAGTCTTTCTTATTTTTTTCATACTAATTTCTACCCTTTCTAAAATTTAC TAGTCTTTCTTATTTTTT-CATACTAATTTCTACCCTTTAGAAAATTGAC TAGTCTTTCTTATTTTTTTCATACTAATTTCTACCCTTTAGAAAATTGAC TAGTCTTTCTTATTTTTTTCATACTAATTTCTACCCTTTAGAAAATTGAC

AATAGGAAAAAATGCATTTTAGGAATGTACATGAACTGAAGATCAGTTCA AATAGGAAAAAATTCATTTTAGGAATGTACATGAACTGAAGATCAGTTCA AATAGGAAAAAATGCATTTTAGGAATGTACATGAACTGAAGATCAGTTCA AATAGGAAAAAATGCATTTTAGGAATGTACATGAACTGAAGATCAGTTCA AATAGGAAAAAATGCATTTTAGGAATGTACATGAACTGAAGATCAGTTCA

C_cap_RS_551
C_cap_RS_527
C_diaz_7644A
C_cap_889
C_sp1_A848
C_cuatre_40682
C_rigid_10008
C_sp2_23826
C_debilis_190
C_debilis_6172
C_debilis_7209
C_debilis_22972
C_excelsa_636
C_excelsa_666
C_excelsa_668
C_excelsa_669
C_excelsa_671
C_mexicana_07
C_mexicana_354
C_mexicana_362
C_mexicana_696
C_mexicana_701
C_mexicana_719
C_mexicana_720
C_mexicana_757
C_mexicana_1283
C_mutisii_911
C_mutisii_913
C_mutisii_914
C_mutisii_1290
C_mutisii_1295
C_sprucei_812
C_sprucei_817
C_sprucei_821
C_sprucei_884
C_sprucei_887
C_sprucei_903
C_ulei_88
C_ulei_6192
C_ulei_42644
0_gly_RS_546
0_parvi_RS_598
V_sur_RS_078
I_juru_RS_451
I_laev_RS_460
C_atopa_1374
C_cap_835
C_cap_855
C_cap_872
C_cap_875
C_cap_RS_551
C_cap_RS_527
C_diaz_7644A
C_cap_889
C_sp1_A848
C_cuatre_40682

AATAGGAAAAAATGCATTTTAGGAATGTACATGAACTGAAGATCAGTTCA AATAGGAAAAAATGCATTTTAGGAATGTACATGAACTGAAGATCAGTTCA AATAGGAAAAAATGCATTTTAGGAATGTACATGAACTGAAGATCAGTTCA AATAGGAAAAAATGCATTTTAGGAATGTACATGAACTGAAGATCAGTTCA AATAGGAAAAAATGCATTTTAGGAATGTACATGAACTGAAGATCAGTTCA AATAGGAAAAAATGCATTTTAGGAATGTACATGAACTGAAGATCAGTTCA AATAGGAAAAAATGCATTTTAGGAATGTACATGAACTGAAGATCAGTTCA AATAGGAAAAAATGCATTTTAGGAATGTACATGAACTGAAGATCAGTTCA AATAGGAAAAAATGCATTTTAGGAATGTACATAAACTGAAGATCCGTTAA AATAGGAAAAAATGCATTTTAGGAATGTACATAAACTGAAGATCCGTTAA AATAGGAAAAAATGCATTTTAGGAATGTACATAAACTGAAGATCCGTTAA AATAGGAAAAAATGCATTTTAGGAATGTACATAAACTGAAGATCCGTTAA AATAGGAAAAAATGCATTTTAGGAATGTACATAAACTGAAGATCAGTTAA AATAGGAAAAAAT----TTTTGGAATGTACATAAACAGAAGATCAGTTAA AATAGGAAAAAAT----TTTTGGAATGTACATAAACAGAAGATCAGTTAA AATAGGAAAAAATTCATTTTTGGAATGTACATAAACTGAAGATCAGTTAA AATAGGAAAAAATGCATTTTTGGAATGTACATAAACTGAAGATCAGTTAA AATAGGAAAAAATGCATTTTAGGAATGTACATAAACTGAAGATCAGTTAA

AATCAAAAAAA--------GGTATGATGTTCGATTATGAACCAAATAATT AATCAAAAAAA--------GGTATGATGTTCGATTATGAACCAAATAATT AATCAAAAAAA-------GGTATGATGTTCGATTATGAACCAAATAATT AATCAAAAAAA-------GGTATGATGTTCGATTATGAACCAAATAATT AATCAAAAAAA-------GGTATGATGTTCGATTATGAACCAAATAATT AATCAAAAAAA--------GGTATGATGTTCGATTATGAACCAAATAATT AATCAAAAAAA-------GGTATGATGTTCGATTATGAACCAAATAATT AATCAAAAAAA-------GGTATGATGTTCGATTATGAACCAAATAATT AATCAAAAAAA-------GGTATGATGTTCGATTATGAACCAAATAATT AATCAAAAAAA-------GGTATGATGTTCGATTATGAACCAAATAA?G AATCAAAAAAA--------GGTATGATGTTCGATTATGAACCAAATAATG

C_rigid_10008
C_sp2_23826
C_debilis_190
C_debilis_6172
C_debilis_7209
C_debilis_22972
C_excelsa_636
C_excelsa_666
C_excelsa_668
C_excelsa_669
C_excelsa_671
C_mexicana_07
C_mexicana_354
C_mexicana_362
C_mexicana_696
C_mexicana_701
C_mexicana_719
C_mexicana_720
C_mexicana_757
C_mexicana_1283
C_mutisii_911
C_mutisii_913
C_mutisii_914
C_mutisii_1290
C_mutisii_1295
C_sprucei_812
C_sprucei_817
C_sprucei_821
C_sprucei_884
C_sprucei_887
C_sprucei_903
C_ulei_88
C_ulei_6192
C_ulei_42644
0_gly_RS_546
0_parvi_RS_598
V_sur_RS_078
I_juru_RS_451
I_laev_RS_460
C_atopa_1374
C_cap_835
C_cap_855
C_cap_872
C_cap_875
C_cap_RS_551
C_cap_RS_527
C_diaz_7644A
C_cap_889
C_sp1_A848
C_cuatre_40682
C_rigid_10008
C_sp2_23826
C_debilis_190
C_debilis_6172
C_debilis_7209
C_debilis_22972

AATCAAAAAAA------- GGTATGATGTTCGATCATGAACCAAATAATG AATCAAAAAAA-------GGTATGATGTTCGATTATGAACCAAATAATT AATCAAAAAAAAA------GGTATGATGTTCGATCATGAACCAAATAATT AATCAAAAAAAAA------GGTATGATGTTCGATCATGAACCAAATAATT AATCAAAAAAAAA------GGTATGATGTTCGATCATGAACCAAATAATT AATCAAAAAAAAA------GGTATGATGTTCGATCATGAACCAAATAATT AATAAAAAAAAAA-----GGTATGATGTTCGATCATGAACCAAATAATT AATAAAAAAAAAA------GGTATGATGTTCGATCATGAACCAAATAATT AATAAAAAAAAAA------GGTATGATGTTCGATCATGAACCAAATAATT AATAAAAAAAAAA------GGTATGATGTTCGATCATGAACCAAATAATT AATAAAAAAAAAA------GGTATGATGTTCGATCATGAACCAAATAATT AATAAAAAAAAA------GGTATGATGTTCGATCATGAACCAAATAATT AATAAAAAAAAAA------GGTATGATGTTCGATCATGAACCAAATAATT AATAAAAAAAAAA------GGTATGATGTTCGATCATGAACCAAATAATT AATAAAAAAAAA-------GGTATGATGTTCGATCATGAACCAAATAATT AATAAAAAAAAA------GGTATGATGTTCGATCATGAACCAAATAATT AATAAAAAAAAA------GGTATGATGTTCGATCATGAACCAAATAATT AATAAAAAAAAA------GGTATGATGTTCGATCATGAACCAAATAATT AATAAAAAAAAA------GGTATGATGTTCGATCATGAACCAAATAATT AATAAAAAAAAAA------GGTATGATGTTCGATCATGAACCAAATAATT AATAAAAAAAAAA------GGTATGATGTTCGATCATGAACCAAATAATT AATAAAAAAAAAA----- GGTATGATGTTCGATCATGAACCAAATAATT AATAAAAAAAAAA----- GGTATGATGTTCGATCATGAACCAAATAATT AATAAAAAAAAAA------GGTATGATGTTCGATCATGAACCAAATAATT AATAAAAAAAAAA------GGTATGATGTTCGATCATGAACCAAATAATT AATAAAAAAAAAAAA----GGTATGATGTTCGATCATGAACCAAATAATG AATAAAAAAAAAAAA----GGTATGATGTTCGATCATGAACCAAATAATG AATAAAAAAAAAAAA----GGTATGATGTTCGATCATGAACCAAATAATG AATAAAAAAAAA------GGTATGATGTTCGATCATGAACCAAATAATT AATAAAAAAAAA-------GGTATGATGTTCGATCATGAACCAAATAATT AATAAAAAAAAA-------GGTATGATGTTCGATCATGAACCAAATAATT AATAAAAAAAAAA------GGTATGATGTTCGATCATGAACCAAATAATT AATAAAAAAAAA------GGTATGATGTTCGATCATGAACCAAATAATT AATAAAAAAAAAA------GGTATGATGTTCGATCATGAACCAAATAATT AAACAAAAAAA-------GGTATGATGTTCGATCCTGAACCAACTAATT AAACAAAAAAA-------GGTATGATGTTCGATCCTGAACCAACTAATT AATAAAAAATAAAAA----GGTATGATGTTCGATCATGAAACAAATAATG AATAAAAATAAAAAAAAAAGGTATGATGTTCGATCATGAA-CAAA-AATG AATAAAAAAAAA------GGTATGATGTTCGATCATGAA-CAAA-AATG

CATATTTTCTGAAATTGAAAAAAAAA---TCTTATGTGAGTAAACCACTA CATATTTTCTGAAATTGAAAAAAAAA-- -TCTTATGTGAGTAAACCACTA CATATTTTCTGAAATTGAAAAAAAAAAA-TCTTATGTGAGTAAACCACTA CATATTTTCTGAAATTGAAAAAAAAAAAATCTTATGTGAGTAAACCACTA CATATTTTCTGAAATTGAAAAAAAAAAAATCTTATGTGAGTAAACCACTA CATATTTTCTGAAATTGAAAAAACAAA- - TCTTATGTGAGTAAACCACTA CATATTTTCTGAAATTGAAAAAACAAA- - TCTTATGTGAGTAAACCACTA CATATTTTCTGAAATTGAAAAAAAAAA- - TCTTATGTGAGTAAACCACTA CATATTTTTTGAAATTGAAAAAAAAA-- - TCTTATGTGGGTAAACCACTA AATATTTTCTGAAATTGAAAAAAAAAA - - TCTTATGTGAGTAAACCACTA AATATTTTCTGAAATTGAAAAAAAAAA--TCTTATGTGAGTAAACCACTA AATATTTTCTGAAATTGAAAAAAAAAA- -????????????????????? CATATTTTCTGAAATTGAAAAAACAAA- - TCTTATGTGAGTAAACCACTA AATATTTTCTGAAATTGAAAAAAAAA---TCTTATGTGAGTAAACCACTA AATATTTTCTGAAATTGAAAAAAAAA---TCTTATGTGAGTAAACCACTA AATATTTTCTGAAATTGAAAAAAAAA-- - TCTTATGTGAGTAAACCACTA AATATTTTCTGAAATTGAAAAAAAAA---TCTTATGTGAGTAAACCACTA

C_excelsa_636
C_excelsa_666
C_excelsa_668
C_excelsa_669
C_excelsa_671
C_mexicana_07
C_mexicana_354
C_mexicana_362
C_mexicana_696
C_mexicana_701
C_mexicana_719
C_mexicana_720
C_mexicana_757
C_mexicana_1283
C_mutisii_911
C_mutisii_913
C_mutisii_914
C_mutisii_1290
C_mutisii_1295
C_sprucei_812
C_sprucei_817
C_sprucei_821
C_sprucei_884
C_sprucei_887
C_sprucei_903
C_ulei_88
C_ulei_6192
C_ulei_42644
0_gly_RS_546
0_parvi_RS_598
V_sur_RS_078
I_juru_RS_451
I_laev_RS_460
C_atopa_1374
C_cap_835
C_cap_855
C_cap_872
C_cap_875
C_cap_RS_551
C_cap_RS_527
C_diaz_7644A
C_cap_889
C_sp1_A848
C_cuatre_40682
C_rigid_10008
C_sp2_23826
C_debilis_190
C_debilis_6172
C_debilis_7209
C_debilis_22972
C_excelsa_636
C_excelsa_666
C_excelsa_668
C_excelsa_669
C_excelsa_671
C_mexicana_07

AATATTTTCTGAAATGGAAAAAAAA--- - TCTTATGTGAGTAAACCACTA AATATTTTCTGAAATGGAAAAAAAA--- - TCTTATGTGAGTAAACCACTA AATATTTTCTGAAATGGAAAAAAAA--- - TCTTATGTGAGTAAACCACTA AATATTTTCTGAAATGGAAAAAAAA--- - TCTTATGTGAGTAAACCACTA AATATTTTCTGAAATGGAAAAAAAA----TCTTATGTGAGTAAACCACTA AATATTTTCTGAAATGGAAAAAAAA--- TCTTATGTGAGTAAACCACTA AATATTTTCTGAAATGGAAAAAAAAA-- - TCTTATGTGAGTAAACCACTA AATATTTTCTGAAATGGAAAAAAAAA---TCTTATGTGAGTAAACCACTA AATATTTTCTGAAATGGAAAAAAAA--- - TCTTATGTGAGTAAACCACTA AATATTTTCTGAAATGGAAAAAAAA----TCTTATGTGAGTAAACCACTA AATATTTTCTGAAATGGAAAAAAAA----TCTTATGTGAGTAAACCACTA AATATTTTCTGAAATGGAAAAAAAA--- - TCTTATGTGAGTAAACCACTA AATATTTTCTGAAATGGAAAAAAAA--- - TCTTATGTGAGTAAACCACTA AATATTTTCTGAAATGGAAAAAAAAA---TCTTATGTGAGTAAACCACTA CATATTTTCTTAAATGGAAAAAAAA----TCTTATGTGAGTAAACCACTA CATATTTTCTTAAATGGAAAAAAAA----TCTTATGTGAGTAAACCACTA CATATTTTCTTAAATGGAAAAAAAA--- TCTTATGTGAGTAAACCACTA AATATTTTCTTAAATGGAAAAAAAA--- -TCTTATGTGAGTAAACCACTA AATATTTTCTTAAATGGAAAAAAAA--- - TCTTATGTGAGTAAACCACTA AATATTTTCTTAAATGGAAAAAAAA--- -TCTTATGTGAGTAAACCACTA AATATTTTCTTAAATGGAAAAAAAA----TCTTATGTGAGTAAACCACTA AATATTTTCTTAAATGGAAAAAAAA--- - TCTTATGTGAGTAAACCACTA AATATTTTCTTAAATGGAAAAAAAA--- - TCTTATGTGAGTAAACCACTA AATATTTTCTTAAATGGAAAAAAAA--- - TCTTATGTGAGTAAACCACTA AATATTTTCTTAAATGGAAAAAAAA--- - TCTTATGTGAGTAAACCACTA AATATTTTCTTAAATTGAAAAAAAAA---TCTTATGTGAGTAAACCACTA AATATTTTCTTAAATTGAAAAAAAAA---TCTTATGTGAGTAAACCACTA CATATTTTCTTAAATTGAAAAAAAAA-- -TCTTATGTGAGTAAACCACTA AATATTTTTTAAAATTGAAAAAAAAAA - - TCTTATGTGAGTAAACCACTA AATATTTTTTAAAATTGAAAAAAAAAA- - TCTTATGTGAGTAAACCACTA AATATTTTCTTAAAAAAAAAAAAGAAA- - TCTTATGTGAGTAAACCACTA AATATTTTCTTAAATTGAAAAAAAAAA - TCTTATGTGAGTAAACCACTA AATATTTTCTTAAATTGAAAAACAAAA - - TCTTATGTGAGTAAACCACTA

CTGAACCAGATCAATACCCATGGGTATTGATCTGGTCCTTCAATGACTCG ?? CTGAACCAGATCAATACCCATGGGTATTGATCTGGTCCTTCAATGACTCG CTGAACCAGATCAATACCCATGGGTATTGATCTGGTCCTTCAATGACTCG

C_mexicana_354
C_mexicana_362
C_mexicana_696
C_mexicana_701
C_mexicana_719
C_mexicana_720
C_mexicana_757
C_mexicana_1283
C_mutisii_911
C_mutisii_913
C_mutisii_914
C_mutisii_1290
C_mutisii_1295
C_sprucei_812
C_sprucei_817
C_sprucei_821
C_sprucei_884
C_sprucei_887
C_sprucei_903
C_ulei_88
C_ulei_6192
C_ulei_42644
0_gly_RS_546
0_parvi_RS_598
V_sur_RS_078
I_juru_RS_451
I_laev_RS_460
C_atopa_1374
C_cap_835
C_cap_855
C_cap_872
C_cap_875
C_cap_RS_551
C_cap_RS_527
C_diaz_7644A
C_cap_889
C_sp1_A848
C_cuatre_40682
C_rigid_10008
C_sp2_23826
C_debilis_190
C_debilis_6172
C_debilis_7209
C_debilis_22972
C_excelsa_636
C_excelsa_666
C_excelsa_668
C_excelsa_669
C_excelsa_671
C_mexicana_07
C_mexicana_354
C_mexicana_362
C_mexicana_696
C_mexicana_701
C_mexicana_719
c_mexicana_720

CTGAACCAGATCAATACCCATGGGTATTGATCTGGTCCTTCAATGACTCG CTGAAACAGATCAATACCCATGGGTATTGATCTGATCTTTCAATGACTCG CTGAAACAGATCAATACCCATGGGTATTGATCTGATCTTTCAATGACTCG CTGAACCAGATCAATACCCATGGGTATTGATCTGATCCTTCAATGACTCG CTGAACCAGATCAATACCCATGGGTATTGATCTGGTCCTTCAATGACTCG CTGAACCAGATCAATACCCATGGGTATTGATCTGGTCCTTCAATGACTCG

TATACACTAATACCGAAATATTAGCCATTTATTGATAGAGCTTCAACA TATACACTAATACCGAAATATTAGCCATTTATTGATAGAGCTTCAACA TATACACTAATACCGAAATATTAACCATTTATTGATAGAGCTTCAACA TATACACTAATACCGAAATATTAACCATTTATTGATAGAGCTTCAACA TATACACTAATACCGAAATATTAACCATTTATTGATAGAGCTTCAACA TATACACTAATACCGAAATATTAGCCATTTATTGATAGAGCTTCAACA TATACACTAATACCGAAATATTAGCCATTTATTGATAGAGCTTCAACA TATACACTAATACCGAAATATTAGCCATTTATTGATAGAGCTTCAACA TATACACTAATACCGAAATATTAACCATTTATTGATAGAGCTTCAACA TATACACTAATACCGAAATATTAGCCATTTATTGATAGAGCTTCAACA TATACACTAATACCGAAATATTAGCCATTTATTGATAGAGCTTCAACA ?? TATACACTAATACCGAAATATTAGCCATTTATTGATAGAGCTTCAACA TATACACTAATACCGAAATATTAGCCATTTATTGATAGAGCTTCAACA

$$
\begin{array}{ll}
\text { C_mexicana_757 } & \text { TATACACTAATACCGAAATATTAGCCATTTATTGATAGAGCTTCAACA } \\
\text { C_mexicana_1283 } & \text { TATACACTAATACCGAAATATTAGCCATTTATTGATAGAGCTTCAACA } \\
\text { C_mutisii_-911 } & \text { TATACACTAATACCGAAATATTAGCCATTTATTGATAGAGCTTCAACA } \\
\text { C_mutisii_-913 } & \text { TATACACTAATACCGAAATATTAGCCATTTATTGATAGAGCTTCAACA } \\
\text { C_mutisii_-914 } & \text { TATACACTAATACCGAAATATTAGCCATTTATTGATAGAGCTTCAACA } \\
\text { C_mutisii__1290 } & \text { TATACACTAATACCGAAATATTAGCCATTTATTGATAGAGCTTCAACA } \\
\text { C_mutisii_1295 } & \text { TATACACTAATACCGAAATATTAGCCATTTATTGATAGAGCTTCAACA } \\
\text { C_sprucei_812 } & \text { TATACACTAATACCGAAATATTAGCCATTTATTGATAGAGCTTCAACA } \\
\text { C_sprucei__817 } & \text { TATACACTAATACCGAAATATTAGCCATTTATTGATAGAGCTTCAACA } \\
\text { C_sprucei_821 } & \text { TATACACTAATACCGAAATATTAGCCATTTATTGATAGAGCTTCAACA } \\
\text { C_sprucei_884 } & \text { TATACACTAATACCGAAATATTAGCCATTTATTGATAGAGCTTCAACA } \\
\text { C_sprucei__887 } & \text { TATACACTAATACCGAAATATTAGCCATTTATTGATAGAGCTTCAACA } \\
\text { C_sprucei__903 } & \text { TATACACTAATACCGAAATATTAGCCATTTATTGATAGAGCTTCAACA } \\
\text { C_ulei_88 } & \text { TATACACTAATACCGAAATATTAGCCATTTATTGATAGAGCTTCAACA } \\
\text { C_ulei_6192 } & \text { TATACACTAATACCGAAATATTAGCCATTTATTGATAGAGCTTCAACA } \\
\text { C_ulei_42644 } & \text { TATACACTAATACCGAAATATTAGCCATTTATTGATAGAGCTTCAACA } \\
\text { 0_gly_RS_546 } & \text { TATACACTAATACCGAAGCATTAGCCATTTGTTGATAGA?CTTCA??? } \\
\text { 0_parvi_RS_598 } & \text { TATACACTAATACCGAAGCATT?GCCATTTGTTGATAGAGCTTCAACA } \\
\text { V_sur_RS_078 } & \text { TATACACTAATACCGAAATATTAGCCATTTGTTGATGGAGCTTCAACA } \\
\text { I_juru_RS_451 } & \text { TATACACTAATACCGAAGTATTAGCCATTTGTTGATAGAGCTTCAACA } \\
\text { I_laev_RS_460 } & \text { TATACACTAATACCGAAGTATTAGCCATTTGTTGATAGAGCTTCAACA }
\end{array}
$$

Appendix 2

Alignment 2.1

The trnH-psbA DNA nucleotide sequence alignment of 61 taxa and 302 characters used in haplotype network analysis in chapter 2.50 base pairs per line.

C_cap_JJ_1542 AGATTACTAGTCTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAA C_cap_JJ_1543 AGATTACTAGTCTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAA C_cap_JJ_1544 AGATTACTAGTCTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAA C_cap_JJ_1545 AGATTACTAGTCTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAA C_cap_JJ_827 AGATTACTAGTTTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAA C_cap_JJ_829 AGATTACTAGTTTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAA C_cap_JJ_830 AGATTACTAGTTTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAA C_cap_JJ_831 AGATTACTAGTTTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAA C_cap_JJ_832 C_cap_JJ_833 C_cap_JJ_834 C_cap_JJ_835 C_cap_JJ_843 C_cap_JJ_844 C_cap_JJ_855 C_cap_JJ_860 C_cap_JJ_862 C_cap_JJ_863 C_cap_JJ_872 C_cap_JJ_873 C_cap_JJ_874 C_cap_JJ_875 C_cap_JJ_893 C_cap_JJ_894 C_cap_JJ_899 C_cap_JJ_900 C_cap_JJ_902 C_cap_RS_271 C_cap_RS_274 C_cap_RS_278 C_cap_RS_280 C_cap_RS_284 C_cap_RS_293 C_cap_RS_294 C_cap_RS_295 C_cap_RS_332 C_cap_RS_334 C_cap_RS_336 C_cap_RS_338 C_cap_RS_346 C_cap_RS_364 C_cap_RS_370 C_cap_RS_406 C_cap_RS_409 C_cap_RS_418 C_cap_RS_427 C_cap_RS_527 C_cap_RS_531 C_cap_RS_535 AGATTACTAGTTTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAA AGATTACTAGTTTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAA AGATTACTAGTTTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAA AGATTACTAGTTTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAA AGATTACTAGTCTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAA CGATTACTAGTCTTTCTTATTTTTTTCATACTAATTTCTACCCTTTAGAA CGATTACTAGTCTTTCTTATTTTTTTCATACTAATTTCTACCCTTTAGAA CGATTACTAGTCTTTCTTATTTTTTTCATACTAATTTCTACCCTTTAGAA

C_cap_RS_538 C_cap_RS_550 C_cap_RS_551 C_cap_RS_562 C_cap_RS_566 C_cap_RS_568 C_cap_RS_569 C_cap_RS_570 C_cap_RS_571 C_cap_RS_572 C_atopa_1374 C_diaz_7644

C_cap_JJ_1542 C_cap_JJ_1543 C_cap_JJ_1544 C_cap_JJ_1545 C_cap_JJ_827 C_cap_JJ_829 C_cap_JJ_830 C_cap_JJ_831 C_cap_JJ_832 C_cap_JJ_833 C_cap_JJ_834 C_cap_JJ_835 C_cap_JJ_843 C_cap_JJ_844 C_cap_JJ_855 C_cap_JJ_860 C_cap_JJ_862 C_cap_JJ_863 C_cap_JJ_872 C_cap_JJ_873 C_cap_JJ_874 C_cap_JJ_875 C_cap_JJ_893 C_cap_JJ_894 C_cap_JJ_899 C_cap_JJ_900 C_cap_JJ_902 C_cap_RS_271 C_cap_RS_274 C_cap_RS_278 C_cap_RS_280 C_cap_RS_284 C_cap_RS_293 C_cap_RS_294 C_cap_RS_295 C_cap_RS_332 C_cap_RS_334 C_cap_RS_336 C_cap_RS_338 C_cap_RS_346 C_cap_RS_364 C_cap_RS_370 C_cap_RS_406 C_cap_RS_409

CGATTACTAGTCTTTCTTATTTTTTTCATACTAATTTCTACCCTTTAGAA AGATTACTAGTCTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAA AGATTACTAGTCTTTCTTATTTTTTTCATACAAATTTCTACCCTTTAGAA

AATCGACAATAGGAAAAAATGCATTTTAGGAATGTACATGAACTGAAGAT AATCGACAATAGGAAAAAATGCATTTTAGGAATGTACATGAACTGAAGAT AATCGACAATAGGAAAAAATGCATTTTAGGAATGTACATGAACTGAAGAT AATCGACAATAGGAAAAAATGCATTTTAGGAATGTACATGAACTGAAGAT AATCGACAATAGGAAAAAATTCATTTTAGGAATGTACATGAACTGAAGAT AATCGACAATAGGAAAAAATTCATTTTAGGAATGTACATGAACTGAAGAT AATCGACAATAGGAAAAAATTCATTTTAGGAATGTACATGAACTGAAGAT AATCGACAATAGGAAAAAATTCATTTTAGGAATGTACATGAACTGAAGAT AATCGACAATAGGAAAAAATTCATTTTAGGAATGTACATGAACTGAAGAT AATCGACAATAGGAAAAAATTCATTTTAGGAATGTACATGAACTGAAGAT AATCGACAATAGGAAAAAATTCATTTTAGGAATGTACATGAACTGAAGAT AATCGACAATAGGAAAAAATTCATTTTAGGAATGTACATGAACTGAAGAT AATCTACAATAGGAAAAAATGCATTTTAGGAATGTACATGAACTGAAGAT AATCGACAATAGGAAAAAATGCATTTTAGGAATGTACATGAACTGAAGAT AATCGACAATAGGAAAAAATGCATTTTAGGAATGTACATGAACTGAAGAT

C_cap_RS_418
C_cap_RS_427
C_cap_RS_527
C_cap_RS_531
C_cap_RS_535
C_cap_RS_538
C_cap_RS_550
C_cap_RS_551
C_cap_RS_562
C_cap_RS_566
C_cap_RS_568
C_cap_RS_569
C_cap_RS_570
C_cap_RS_571
C_cap_RS_572
C_atopa_1374
C_diaz_7644
C_cap_JJ_1542
C_cap_JJ_1543
C_cap_JJ_1544
C_cap_JJ_1545
C_cap_JJ_827
C_cap_JJ_829
C_cap_JJ_830
C_cap_JJ_831
C_cap_JJ_832
C_cap_JJ_833
C_cap_JJ_834
C_cap_JJ_835
C_cap_JJ_843
C_cap_JJ_844
C_cap_JJ_855
C_cap_JJ_860
C_cap_JJ_862
C_cap_JJ_863
C_cap_JJ_872
C_cap_JJ_873
C_cap_JJ_874
C_cap_JJ_875
C_cap_JJ_893
C_cap_JJ_894
C_cap_JJ_899
C_cap_JJ_900
C_cap_JJ_902
C_cap_RS_271
C_cap_RS_274
C_cap_RS_278
C_cap_RS_280
C_cap_RS_284
C_cap_RS_293
C_cap_RS_294
C_cap_RS_295
C_cap_RS_332
C_cap_RS_334
C_cap_RS_336
C_cap_RS_338

AATCGACAATAGGAAAAAATGCATTTTAGGAATGTACATGAACTGAAGAT AATCGACAATAGGAAAAAATGCATTTTAGGAATGTACATGAACTGAAGAT

CAGTTCAAATCAAAAAAAGGTATGATGTTCGATTATGAACCAAATAATTC CAGTTCAAATCAAAAAAAGGTATGAGGTTCGATTATGAACCAAATAATTC CAGTTCAAATCAAAAAAAGGTATGAGGTTCGATTATGAACCAAATAATTC CAGTTCAAATCAAAAAAAGGTATGATGTTCGATTATGAACCAAATAATTC CAGTTCAAATCAAAAAAAGGTATGATGTTCGATTATGAACCAAATAATTC

C_cap_RS_346
C_cap_RS_364
C_cap_RS_370
C_cap_RS_406
C_cap_RS_409
C_cap_RS_418
C_cap_RS_427
C_cap_RS_527
C_cap_RS_531
C_cap_RS_535
C_cap_RS_538
C_cap_RS_550
C_cap_RS_551
C_cap_RS_562
C_cap_RS_566
C_cap_RS_568
C_cap_RS_569
C_cap_RS_570
C_cap_RS_571
C_cap_RS_572
C_atopa_1374
C_diaz_7644 C_cap_JJ_827 C_cap_JJ_829 C_cap_JJ_830 C_cap_JJ_831 C_cap_JJ_832 C_cap_JJ_833 C_cap_JJ_834 C_cap_JJ_835 C_cap_JJ_843 C_cap_JJ_844 C_cap_JJ_855 C_cap_JJ_860 C_cap_JJ_862 C_cap_JJ_863 C_cap_JJ_872 C_cap_JJ_873 C_cap_JJ_874 C_cap_JJ_875 C_cap_JJ_893 C_cap_JJ_894 C_cap_JJ_899 C_cap_JJ_900 C_cap_JJ_902 C_cap_RS_271 C_cap_RS_274 C_cap_RS_278 C_cap_RS_280 C_cap_RS_284 C_cap_RS_293 C_cap_RS_294

C_cap_JJ_1542 ATATTTTCTGAAATTGAAAAAAAAA---TCTTATGTGAGTAAACCACTAC C_cap_JJ_1543 ATATTTTCTGAAATTGAAAAAAAAA---TCTTATGTGAGTAAACCACTAC C_cap_JJ_1544 ATATTTTCTGAAATTGAAAAAAAAA---TCTTATGTGAGTAAACCACTAC C_cap_JJ_1545 ATATTTTCTGAAATTGAAAAAAAAA---TCTTATGTGAGTAAACCACTAC

CAGTTCAAATCAAAAAAAGGTATGATGTTCGATTATGAACCAAATAATTC ATATTTTCTGAAATTGAAAAAAAAA-- - TCTTATGTGAGTAAACCACTAC ATATTTTCTGAAATTGAAAAAAAAA-- - TCTTATGTGAGTAAACCACTAC ATATTTTCTGAAATTGAAAAAAAAA---TCTTATGTGAGTAAACCACTAC ATATTTTCTGAAATTGAAAAAAAAA---TCTTATGTGAGTAAACCACTAC ATATTTTCTGAAATTGAAAAAAAAA---TCTTATGTGAGTAAACCACTAC ATATTTTCTGAAATTGAAAAAAAAA-- - TCTTATGTGAGTAAACCACTAC ATATTTTCTGAAATTGAAAAAAAAA---TCTTATGTGAGTAAACCACTAC ATATTTTCTGAAATTGAAAAAAAAA-- - TCTTATGTGAGTAAACCACTAC ATATTTTCTGAAATTGAAAAAAAAAAA-TCTTATGTGAGTAAACCACTAC ATATTTTCTGAAATTGAAAAAAAAAAA-TCTTATGTGAGTAAACCACTAC ATATTTTCTGAAATTGAAAAAAAAAAA-TCTTATGTGAGTAAACCACTAC ATATTTTCTGAAATTGAAAAAAAAAAA-TCTTATGTGAGTAAACCACTAC ATATTTTCTGAAATTGAAAAAAAAAAA-TCTTATGTGAGTAAACCACTAC ATATTTTCTGAAATTGAAAAAAAAAAA-TCTTATGTGAGTAAACCACTAC ATATTTTCTGAAATTGAAAAAAAAAAAATCTTATGTGAGTAAACCACTAC ATATTTTCTGAAATTGAAAAAAAAAAAATCTTATGTGAGTAAACCACTAC ATATTTTCTGAAATTGAAAAAAAAAAAATCTTATGTGAGTAAACCACTAC ATATTTTCTGAAATTGAAAAAAAAAAAATCTTATGTGAGTAAACCACTAC ATATTTTTTGAAATTGAAAAAAAAA---TCTTATGTGGGTAAACCACTAC ATATTTTTTGAAATTGAAAAAAAAA---TCTTATGTGGGTAAACCACTAC ATATTTTTTGAAATTGAAAAAAAAA---TCTTATGTGGGTAAACCACTAC ATATTTTTTGAAATTGAAAAAAAAA---TCTTATGTGGGTAAACCACTAC ATATTTTTTGAAATTGAAAAAAAAA-- - TCTTATGTGGGTAAACCACTAC ATATTTTTTGAAATTGAAAAAAAAA-- - TCTTATGTGGGTAAACCACTAC ATATTTTTTGAAATTGAAAAAAAAA-- - TCTTATGTGGGTAAACCACTAC ATATTTTTTGAAATTGAAAAAAAAA---TCTTATGTGGGTAAACCACTAC ATATTTTTTGAAATTGAAAAAAAAA-- -TCTTATGTGGGTAAACCACTAC ATATTTTTTGAAATTGAAAAAAAAA---TCTTATGTGGGTAAACCACTAC ATATTTTTTGAAATTGAAAAAAAAA-- - TCTTATGTGGGTAAACCACTAC ATATTTTTTGAAATTGAAAAAAAAA-- - TCTTATGTGGGTAAACCACTAC

C_cap_RS_295
C_cap_RS_332
C_cap_RS_334
C_cap_RS_336
C_cap_RS_338
C_cap_RS_346
C_cap_RS_364
C_cap_RS_370
C_cap_RS_406 C_cap_RS_409
C_cap_RS_418
C_cap_RS_427
C_cap_RS_527
C_cap_RS_531
C_cap_RS_535
C_cap_RS_538
C_cap_RS_550
C_cap_RS_551
C_cap_RS_562
C_cap_RS_566
C_cap_RS_568
C_cap_RS_569
C_cap_RS_570
C_cap_RS_571
C_cap_RS_572
C_atopa_1374
C_diaz_7644 C_cap_JJ_1544 C_cap_JJ_1545 C_cap_JJ_827
C_cap_JJ_829
C_cap_JJ_830
C_cap_JJ_831
C_cap_JJ_832
C_cap_JJ_833
C_cap_JJ_834
C_cap_JJ_835
C_cap_JJ_843
C_cap_JJ_844
C_cap_JJ_855
C_cap_JJ_860
C_cap_JJ_862
C_cap_JJ_863
C_cap_JJ_872
C_cap_JJ_873
C_cap_JJ_874
C_cap_JJ_875
C_cap_JJ_893
C_cap_JJ_894
C_cap_JJ_899
C_cap_JJ_900
C_cap_JJ_902
C_cap_RS_271
C_cap_RS_274

C_cap_JJ_1542 TGAACCAGATCAATACCCAATGGGTATTGATCTGGTCCTTCAATGACTCG C_cap_JJ_1543 TGAACCAGATCAATACCCAATGGGTATTGATCTGGTCCTTCAATGACTCG

ATATTTTTTGAAATTGAAAAAAAAA---TCTTATGTGGGTAAACCACTAC ATATTTTCTGAAATTGAAAAAAAAA-- - TCTTATGTGAGTAAACCACTAC ATATTTTCTGAAATTGAAAAAAAAA-- - TCTTATGTGAGTAAACCACTAC ATATTTTCTGAAATTGAAAAAAAAA---TCTTATGTGAGTAAACCACTAC ATATTTTCTGAAATTGAAAAAAAAA-- - TCTTATGTGAGTAAACCACTAC ATATTTTCTGAAATTGAAAAAAAAA-- - TCTTATGTGAGTAAACCACTAC ATATTTTCTGAAATTGAAAAAAAAAA--TCTTATGTGAGTAAACCACTAC ATATTTTCTGAAATTGAAAAAAAAAA--TCTTATGTGAGTAAACCACTAC ATATTTTCTGAAATTGAAAAAAAAAA - - TCTTATGTGAGTAAACCACTAC ATATTTTCTGAAATTGAAAAAAAAAA--TCTTATGTGAGTAAACCACTAC ATATTTTCTGAAATTGAAAAAAAAAA--TCTTATGTGAGTAAACCACTAC ATATTTTCTGAAATTGAAAAAAAAAA--TCTTATGTGAGTAAACCACTAC ATATTTTCTGAAATTGAAAAAACAAA- - TCTTATGTGAGTAAACCACTAC ATATTTTCTGAAATTGAAAAAACAAA--TCTTATGTGAGTAAACCACTAC ATATTTTCTGAAATTGAAAAAACAAA--TCTTATGTGAGTAAACCACTAC ATATTTTCTGAAATTGAAAAAACAAA-- TCTTATGTGAGTAAACCACTAC ATATTTTCTGAAATTGAAAAAACAAA--TCTTATGTGAGTAAACCACTAC ATATTTTCTGAAATTGAAAAAACAAA--TCTTATGTGAGTAAACCACTAC ATATTTTCTGAAATTGAAAAAACAAA- - TCTTATGTGAGTAAACCACTAC ATATTTTCTGAAATTGAAAAAACAAA- - TCTTATGTGAGTAAACCACTAC ATATTTTCTGAAATTGAAAAAACAAA-- TCTTATGTGAGTAAACCACTAC ATATTTTCTGAAATTGAAAAAACAAA--TCTTATGTGAGTAAACCACTAC ATATTTTCTGAAATTGAAAAAACAAA--TCTTATGTGAGTAAACCACTAC ATATTTTCTGAAATTGAAAAAACAAA-- TCTTATGTGAGTAAACCACTAC ATATTTTCTGAAATTGAAAAAACAAA--TCTTATGTGAGTAAACCACTAC ATATTTTCTGAAATTGAAAAAAAAA---TCTTATGTGAGTAAACCACTAC ATATTTTCTGAAATTGAAAAAAAAAA--TCTTATGTGAGTAAACCACTAC TGAACCAGATCAATACCCAATGGGTATTGATCTGGTCCTTCAATGACTCG TGAACCAGATCAATACCCAATGGGTATTGATCTGGTCCTTCAATGACTCG TGAACCAGATCAATACCCACTGGGTATTGATCTGGTCCTTCAATGACTCG TGAACCAGATCAATACCCACTGGGTATTGATCTGGTCCTTCAATGACTCG TGAACCAGATCAATACCCACTGGGTATTGATCTGGTCCTTCAATGACTCG TGAACCAGATCAATACCCACTGGGTATTGATCTGGTCCTTCAATGACTCG TGAACCAGATCAATACCCACTGGGTATTGATCTGGTCCTTCAATGACTCG TGAACCAGATCAATACCCACTGGGTATTGATCTGGTCCTTCAATGACTCG TGAACCAGATCAATACCCACTGGGTATTGATCTGGTCCTTCAATGACTCG TGAACCAGATCAATACCCACTGGGTATTGATCTGGTCCTTCAATGACTCG TGAACCAGATCAATACCCAGTGGGTATTGATCTGGTCCTTCAATGACTCG TGAACCAGATCAATACCCAGTGGGTATTGATCTGGTCCTTCAATGACTCG

C_cap_RS_278
C_cap_RS_280
C_cap_RS_284
C_cap_RS_293
C_cap_RS_294
C_cap_RS_295
C_cap_RS_332
C_cap_RS_334
C_cap_RS_336
C_cap_RS_338
C_cap_RS_346
C_cap_RS_364
C_cap_RS_370
C_cap_RS_406
C_cap_RS_409
C_cap_RS_418
C_cap_RS_427
C_cap_RS_527
C_cap_RS_531
C_cap_RS_535
C_cap_RS_538
C_cap_RS_550
C_cap_RS_551
C_cap_RS_562
C_cap_RS_566
C_cap_RS_568
C_cap_RS_569
C_cap_RS_570
C_cap_RS_571
C_cap_RS_572
C_atopa_1374
C_diaz_7644 C_cap_JJ_827
C_cap_JJ_829
C_cap_JJ_830
C_cap_JJ_831
C_cap_JJ_832
C_cap_JJ_833
C_cap_JJ_834
C_cap_JJ_835
C_cap_JJ_843
C_cap_JJ_844
C_cap_JJ_855
C_cap_JJ_860
C_cap_JJ_862
C_cap_JJ_863
C_cap_JJ_872
C_cap_JJ_873
C_cap_JJ_874
C_cap_JJ_875
C_cap_JJ_893
C_cap_JJ_894

C_cap_JJ_1542 TATACACTAATACCGAAATATTAGCCATTTATTGATAGAGCTTCAACAGC C_cap_JJ_1543 TATACACTAATACCGAAATATTAGCCATTTATTGATAGAGCTTCAACAGC C_cap_JJ_1544 TATACACTAATACCGAAATATTAGCCATTTATTGATAGAGCTTCAACAGC C_cap_JJ_1545 TATACACTAATACCGAAATATTAGCCATTTATTGATAGAGCTTCAACAGC

TGAACCAGATCAATACCCAGTGGGTATTGATCTGGTCCTTCAATGACTCG TGAACCAGATCAATACCCACTGGGTATTGATCTGGTCCTTCAATGACTCG TGAACCAGATCAATACCCACTGGGTATTGATCTGGTCCTTCAATGACTCG TGAACCAGATCAATACCCACTGGGTATTGATCTGGTCCTTCAATGACTCG TGAACCAGATCAATACCCACTGGGTATTGATCTGGTCCTTCAATGACTCG TGAACCAGATCAATACCCACTGGGTATTGATCTGGTCCTTCAATGACTCG TGAACCAGATCAATACCCACTGGGTATTGATCTGGTCCTTCAATGACTCG TGAACCAGATCAATACCCAGTGGGTATTGATCTGGTCCTTCAATGACTCG TGAACCAGATCAATACCCACTGGGTATTGATCTGGTCCTTCAATGACTCG TGAACCAGATCAATACCCAGTGGGTATTGATCTGGTCCTTCAATGACTCG TATACACTAATACCGAAATATTAGCCATTTATTGATAGAGCTTCAACAGC TATACACTAATACCGAAATATTAGCCATTTATTGATAGAGCTTCAACAGC TATACACTAATACCGAAATATTAGCCATTTATTGATAGAGCTTCAACAGC TATACACTAATACCGAAATATTAGCCATTTATTGATAGAGCTTCAACAGC TATACACTAATACCGAAATATTAGCCATTTATTGATAGAGCTTCAACAGC TATACACTAATACCGAAATATTAGCCATTTATTGATAGAGCTTCAACAGC TATACACTAATACCGAAATATTAGCCATTTATTGATAGAGCTTCAACAGC TATACACTAATACCGAAATATTAGCCATTTATTGATAGAGCTTCAACAGC TATACACTAATACCGAAATATTAACCATTTATTGATAGAGCTTCAACAGC TATACACTAATACCGAAATATTAACCATTTATTGATAGAGCTTCAACAGC

C_cap_JJ_899 C_cap_JJ_900 C_cap_JJ_902 C_cap_RS_271 C_cap_RS_274 C_cap_RS_278 C_cap_RS_280 C_cap_RS_284 C_cap_RS_293 C_cap_RS_294 C_cap_RS_295 C_cap_RS_332 C_cap_RS_334 C_cap_RS_336 C_cap_RS_338 C_cap_RS_346 C_cap_RS_364 C_cap_RS_370 C_cap_RS_406 C_cap_RS_409 C_cap_RS_418 C_cap_RS_427 C_cap_RS_527 C_cap_RS_531 C_cap_RS_535 C_cap_RS_538 C_cap_RS_550 C_cap_RS_551 C_cap_RS_562 C_cap_RS_566 C_cap_RS_568 C_cap_RS_569 C_cap_RS_570 C_cap_RS_571 C_cap_RS_572 C_atopa_1374 C_diaz_7644

TATACACTAATACCGAAATATTAACCATTTATTGATAGAGCTTCAACAGC TATACACTAATACCGAAATATTAGCCATTTATTGATAGAGCTTCAACAGC TATACACTAATACCGAAATATTAGCCATTTATTGATAGAGCTTCAACAGC

Appendix 3

Alignment 3.1

Concatenated DNA nucleotide sequence alignment of 3-loci, 1517 characters, and 49 taxa used in Bayesian and Maximum parsimony analyses in chapter 3.50 base pairs per line.
loci order and positions in alignment:
trnH-psba 1-357, AGT1 358-1078, AT103 1079-1517
C_cap_RS_551 TCCGCCCCTTGTCCTTTCT-------AAAGAAAAAAA--TTTTCGATTAC
C_debilis_7209 TCCGCCCCTTGTCCTTTCT-------AAAGAAAAAAA--TTTTAGATTAC
I_juru_RS_451 TCCGCCCCTTGTCTTTTCTTTT--CTAAAGACAAAAA--TTTTAGATTAC
I_laev_RS_460 TCCGCCCCTTGTCTTTTCTTTT--CTAAAGACAAAAA--TTTTAGATTAC
V_cadu_JJ_847 TCCGCCCCTTGTCTTTT-----T-CTAAAGAAAAAAAAAATTTAGATTAC
V_spRADS3_RS_335 TCCGCCCCTTGTCTTTTCTTTTT-CT
V_SpRADS3_RS_339 TCCGCCCCTTGTCTTTTCTTTTT-CT--------------------------
V_peru_JJ_772 TCCGCCCCTTGTCTTTTCTTTTT-CT--------------------------
V_calo_RS_430 TCCGCCCCTTGTCTTTTCTTTTT-CT-------------------------
V_calo_RS_454 ??????CCTTGTCTTTTCTTTTT-CT--------------------------
V_calo_RS_481 ???????????????????????????
V_calo_RS_511 TCCGCCCCTTGTCTTTTCTTTTT-CT
V_spRADS1_RS_432 TCCGCCCCTTGTCTTTTCTTTTT-CT
V_spRADS1_RS_500 TCCGCCCCTTGTCTTTTCTTTTT-CT
V_spRADS1_R1_510 TCCGCCCCTTGTCTTTTCTTTTTT-CT
V_spRADS1_RS_561 TCCGCCCCTTGTCTTTTCTTTTT-CT
V_dix_RS_225 TCCGCCCCTTGTCTTTTCTTTTT-CT
V_elon_RS_437 ???????CTTGTCTTTTCTTTTT-CT
V_elon_RS_494 ???????????????????????????
V_elon_RS_502
V_flex_RS_442
V_flex_RS_522
V_flex_RS_595
V_multin_RS_107
V_multin_RS_108
V_loret_RS_480
V_loret_RS_516
V_loret_RS_526
TCCGCCCCTTGTCTTTTCTTTTT-CT
TCCGCCCCTTGTCTTTT-----T-CTAAAGAAAAAAAAAATTTAGATTAC
TCCGCCCCTTGTCTTTT-----T-CTAAAGAAAAAAAAAATTTAGATTAC
TCCGCCCCTTGTCTTTT-----T-CTAAAGAAAAAAAAAATTTAGATTAC
TCCGCCCCTTGTCTTTT-----T-CTAAAGAAAAAGAAAATTTAGATTAC
TCCGCCCCTTGTCTTTT-----T-CTAAAGAAAAAGAAAATTTAGATTAC
TCC?CCCCTTGTCTTTTCTTTTT-CT
TCCGCCCCTTGTCTTTTTCTTTTT-CT
TCCGCCCCTTGTCTTTTTCTTTTT-CT
TCCGCCCCTTGTCTTTT-----T-CTAAAGAAAAAAAAAATTTAGATTAC
TCCGCCCCTTGTCTTTT-----T-CTAAAGAAAAAGAAAATTTAGATTAC
TCCGCCCCTTGTCTTTT-----T-CTAAAGAAAAAGAAAATTTAGATTAC
TCCGCCCCTTGTCTTTT-----T-CTAAAGAAAAAGAAAATTTAGATTAC
TCCGCCCCTTGTCTTTT-----T-CTAAAGAAAAAGAAAATTTAGATTAC
TCCGCCCCTTGTCTTTTCTTTTT-CT
TCCGCCCCTTGTCTTTTCTTTTT-CT
TCCGCCCCTTGTCTTTTCTTTTT-CT
???????????????????????????
V_sebSL_RS_552 TCCGCCCCTTGTCTTTTCTTTTT-CT-------------------------
V_spRADS4_RS_213 TCCGCCCCTTGTCTTTTCCTTTTTGTACAGAAAAAAA--TTTTGGATTTC V_spRADS4_RS_214 TCCGCCCCTTGTCTTTTCCTTTTTGTACAGAAAAAAA--TTTTGGATTTC V_sur_RS_082 TCCGCCCCTTGTCTTTTCTTTTT-CTAAAGAAAAAAA--TTTTAGATTAC v_sur_RS_083 TCCGCCCCTTGTCTTTTCTTTTT-CTAAAGAAAAAAA--TTTTAGATTAC

```
V_sur_RS_084
V_sur_RS_216
V_sur_RS_248
V_sur_RS_324
V_sur_RS_428
V_sur_RS_489
V_sur_RS_501
C_cap_RS_551
C_debilis_7209
I_juru_RS_451
I_laev_RS_460
V_cadu_JJ_847
V_spRADS3_RS_335
V_spRADS3_RS_339
V_peru_JJ_772
V_calo_RS_430
V_calo_RS_454
V_calo_RS_481
V_calo_RS_511
V_spRADS1_RS_432
V_spRADS1_RS_500
V_spRADS1_R1_510
V_spRADS1_RS_561
V_dix_RS_225
V_elon_RS_437
V_elon_RS_494
V_elon_RS_502
V_flex_RS_442
V_flex_RS_522
V_flex_RS_595
V_multin_RS_107
V_multin_RS_108
V_loret_RS_480
V_loret_RS_516
V_loret_RS_526
V_multi_RS_350
V_multi_RS_429
V_multi_RS_466
V_multi_RS_543
V_multi_RS_549
V_sebBL_RS_584
V_lorSL_RS_483
V_lorSL_RS_507
V_sebSL_RS_534
V_sebSL_RS_552
V_spRADS4_RS_213 TAGTCTTTCTTATTTTTTTCATACTAA
V_spRADS4_RS_214 TAGTCTTTCTTATTTTTTTCATACTAA
V_sur_RS_082 TAGTCTTTCTTATTTTTT-CATACTAATTTCTACCCTTTAGAAAATTGAC
V_sur_RS_083 TAGTCTTTCTTATTTTTT-CATACTAATTTCTACCCTTTAGAAAATTGAC
V_sur_RS_084 TAGTCTTTCTTATTTTTT-CATACTAATTTCTACCCTTTAGAAAATTGAC
V_sur_RS_216 TAGTCTTTCTTATTTTTT-CATACTAATTTCTACCCTTTAGAAAATTGAC
V_sur_RS_248 TAGTCTTTCTTATTTTTT-CATACTAATTCCTACCCTTTAGAAAATTGAC
V_sur_RS_324 ??????????????????????????????????????????????????
V_sur_RS_428 TAGTCTTTCTTATTTTTT-CATACTAATTTCTACCCTTTAGAAAATTGAC
V_sur_RS_489 TAGTCTTTCTTATTTTTT-CATACTAATTTCTACCCTTTAGAAAATTGAC
V_sur_RS_501 TAGTCTTTCTTATTTTTT-CATACTAATTTCTACCCTTTAGAAAATTGAC
```

C_cap_RS_551	AATAGGAAAAAATGCATTTTAGGAATGTACATGAACTGAAGATCAGTTCA
C_debilis_7209	AATAGGAAAAAATGCATTTTAGGAATGTACATAAACTGAAGATCCGTTAA
I_juru_RS_451	AATAGGAAAAAATGCATTTTTGGAATGTACATAAACTGAAGATCAGTTAA
I_laev_RS_460	AATAGGAAAAAATGCATTTTAGGAATGTACATAAACTGAAGATCAGTTAA
V_cadu_JJ_847	AATAGGAAAAAATTCATTTTAGGAATGAACATAAACTGAAGATCAGTTAA
V_spRADS3_RS_335	
V_spRADS3_RS_339	
V_peru_JJ_772	
V_calo_RS_430	
V_calo_RS_454	
V_calo_RS_481	
V_calo_RS_511	
V_spRADS1_RS_432	
V_spRADS1_RS_500	
V_spRADS1_R1_510	
V_spRADS1_RS_561	
V_dix_RS_225	
V_elon_RS_437	
V_elon_RS_494	
V_elon_RS_502	
V_flex_RS_442	AATAGGAAAAAATTCATTTTAGGAATGAACATAAACTGAAGATCAGTTAA
V_flex_RS_522	AATAGGAAAAAATTCATTTTAGGAATGAACATAAACTGAAGATCAGTTAA
V_flex_RS_595	AATAGGAAAAAATTCATTTTAGGAATGAACATAAACTGAAGATCAGTTAA
V_multin_RS_107	AATAGGAAAAAATTCATTTTAGGAATGAACATAAACTGAAGATCAGTTAA
V_multin_RS_108	AATAGGAAAAAATTCATTTTAGGAATGAACATAAACTGAAGATCAGTTAA
V_loret_RS_480	
V_loret_RS_516	
V_loret_RS_526	
V_multi_RS_350	AATAGGAAAAAATTCATTTTAGGAATGAACATAAACTGAAGATCAGTTAA
V_multi_RS_429	AATAGGAAAAAATTCATTTTAGGAATGAACATAAACTGAAGATCAGTTAA
V_multi_RS_466	AATAGGAAAAAATTCATTTTAGGAATGAACATAAACTGAAGATCAGTTAA
V_multi_RS_543	AATAGGAAAAAATTCATTTTAGGAATGAACATAAACTGAAGATCAGTTAA
V_multi_RS_549	AATAGGAAAAAATTCATTTTAGGAATGAACATAAACTGAAGATCAGTTAA
V_sebBL_RS_584	
V_lorSL_RS_483	
V_lorSL_RS_507	
V_sebSL_RS_534	
V_sebSL_RS_552	
V_spRADS4_RS_213	---AGGAAAAAATGCATTTTAGGAATGTACATAAACTGAAGATCAGTTAA
V_spRADS4_RS_214	- AGGAAAAAATGCATTTTAGGAATGTACATAAACTGAAGATCAGTTAA
V_sur_RS_082	AATAGGAAAAAATTCATTTTTGGAATGTACATAAACTGAAGATCAGTTAA
V_sur_RS_083	AATAGGAAAAAATTCATTTTTGGAATGTACATAAACTGAAGATCAGTTAA
V_sur_RS_084	AATAGGAAAAAATTCATTTTTGGAATGTACATAAACTGAAGATCAGTTAA
V_sur_RS_216	AATAGGAAAAAATTCATTTTTGGAATGTACATAAACTGAAGATCAGTTAA
V_sur_RS_248	AATAGGAAAAAATTCATTTTTGGAATGTACAGAAACTGAAGATCAGTTAA
V_sur_RS_324	??
V_sur_RS_428	AATAGGAAAAAATTCATTTTTGGAATGTACATAAACTGAAGATCAGTTAA
V_sur_RS_489	AATAGGAAAAAATTCATTTTTGGAATGTACATAAACTGAAGATCAGTTAA
V_sur_RS_501	AATAGGAAAAAATTCATTTTTGGAATGTACATAAACTGAAGATCAGTTAA
C_cap_RS_551	AATCAAAAAAA-------GGTATGATGTTCGATTATGAACCAAATAATT
C_debilis_7209	AATCAAAAAAAAA-----GGTATGATGTTCGATCATGAACCAAATAATT
I_juru_RS_451	AATAAAAATAAAAAAAAAAGGTATGATGTTCGATCATGAA-CAAA-AATG
I_laev_RS_460	AATAAAAAAAAA-----GGTATGATGTTCGATCATGAA-CAAA-AATG
V_cadu_JJ_847	AATAAAAAAGAAAAA----GGTATGATGTTCGATCATGAAACAAATAATT
V_spRADS3_RS_335	

```
V_spRADS3_RS_339
V_peru_JJ_772
V_calo_RS_430
V_calo_RS_454
V_calo_RS_481
V_calo_RS_511
V_spRADS1_RS_432
V_spRADS1_RS_500
V_spRADS1_R1_510
V_spRADS1_RS_561
V_dix_RS_225
V_elon_RS_437
V_elon_RS_494
V_elon_RS_502
V_flex_RS_442
V_flex_RS_522
V_flex_RS_595
V_multin_RS_107
V_multin_RS_108
V_loret_RS_480
V_loret_RS_516
V_loret_RS_526
V_multi_RS_350
V_multi_RS_429
V_multi_RS_466
V_multi_RS_543
V_multi_RS_549
V_sebBL_RS_584
V_lorSL_RS_483
V_lorSL_RS_507
V_sebSL_RS_534
V_sebSL_RS_552
V_spRADS4_RS_213
V_spRADS4_RS_214
V_sur_RS_082
V_sur_RS_083
V_sur_RS_084
V_sur_RS_216
V_sur_RS_248
V_sur_RS_324
V_sur_RS_428
V_sur_RS_489
V_sur_RS_501
C_cap_RS_551
C_debilis_7209
I_juru_RS_451
I_laev_RS_460
V_cadu_JJ_847
V_spRADS3_RS_335
V_spRADS3_RS_339
V_peru_JJ_772
V_calo_RS_430
V_calo_RS_454
V_calo_RS_481
V_calo_RS_511
V_spRADS1_RS_432 ----------AAAAAAAAAAAAAA-------TCTTATGTTATGTGAGTA
AATAAAAAAGAAAAA----GGTATAATGTTCGATCATTAAACAAATAATT
AATAAAAAAGAAAAA----GGTATAATGTTCGATCATTAAACAAATAATT
AATAAAAAATAAAAA----GGTATGATGTTCGATCATGAAACAAATAATG
AATAAAAAATAAAAA----GGTATGATGTTCGATCATGAAACAAATAATG
AATAAAAAATAAAAA----GGTATGATGTTCGATCATGAAACAAATAATG
AATAAAAAATAAAAA----GGTATGATGTTCGATCATGAAACAAATAATT
AATAAAAAATAAAAA----GGTATGATGTTCGATCATGAAACAAATAATT
???????????????----???????????????????????????????
AATAAAAAATAAAAA----GGTATGATGTTCGATCATGAAACAAATAATG
AATAAAAAATAAAAA----GGTATGATGTTCGATCATGAAACAAATAATG
AATAAAAAATAAAAA----GGTATGATGTTCGATCATGAAACAAATAATG
CATATTTTCTGAAATTGAAAAAACAAA-----TCTTATG----- TGAGTA
AATATTTTCTGAAATTGAAAAAAAAA------TCTTATG----- TGAGTA
AATATTTTCTTAAATTGAAAAAAAAAA-----TCTTATG-----TGAGTA
AATATTTTCTTAAATTGAAAAACAAAA-----TCTTATG-----TGAGTA
AATATTTTAT-AAAAAAAAA--------GAAATCTTATG-----TGAGTA
---------- AAAAAAAAAAA------GAAATCTTATGTTATGTGAGTA
-----------AAAAAAAAAAA------GAAATCTTATGTTATGTGAGTA
----------- AAAAAAAAAAAAAA------- TCTTATGTTATGTGAGTA
-----------AAAAAAAAAAAAA-------- TCTTATGTTATGTGAGTA
-----------AAAAAAAAAAAAA--------TCTTATGTTATGTGAGTA
-----------???????????????????????????????????????
-----------AAAAAAAAAAAAA-------- TCTTATGTTATGTGAGTA
```

```
V_spRADS1_RS_500 ------------AAAAAAAAAAAAAA--------TCTTATGTTATGTGAGTA
V_spRADS1_R1_510 -----------AAAAAAAAAAAAAA--------TCTTATGTTATGTGAGTA
V_spRADS1_RS_561 -----------AAAAAAAAAAAAAA-------TCTTATGTTATGTGAGTA
V_dix_RS_225 ----------AAAAAAAAAAAA---------TCTTATGTTATGTGAGTA
V_elon_RS_437 -----------AAAAAAAAAAAAAAA------TCTTATGTTATGTGAGTA
V_elon_RS_494
V_elon_RS_502
V_flex_RS_442
V_flex_RS_522
V_flex_RS_595
V_multin_RS_107
V_multin_RS_108
V_loret_RS_480
V_loret_RS_516
V_loret_RS_526
V_multi_RS_350
V_multi_RS_429
V_multi_RS_466
V_multi_RS_543
V_multi_RS_549
V_sebBL_RS_584
V_lorSL_RS_483
V_lorSL_RS_507
V_sebSL_RS_534
V_sebSL_RS_552
V_spRADS4_RS_213 AATATTTTCTTAAAAAAAAAAA------GAAATCTTATG-----TGAGTA
V_spRADS4_RS_214 AATATTTTCTTAAAAAAAAAAA------GAAATCTTATG-----TGAGTA
V_sur_RS_082 AATATTTTCTTAAAAAAAAAAAA-----GAAATCTTATG-----TGAGTA
V_sur_RS_083 AATATTTTCTTAAAAAAAAAAAA-----GAAATCTTATG-----TGAGTA
V_sur_RS_084 AATATTTTCTTAAAAAAAAAAAA-----GAAATCTTATG-----TGAGTA
V_sur_RS_216 AATATTTTCTTAAAAAAAAAAAAA----GAAATCTTATG-----TGAGTA
V_sur_RS_248 AATATTTTCTTAAAAAAAAAAAAAAAAAGAAATCTTATG-----TGAGTA
V_sur_RS_324 ??????????????????????????????????????????????????
V_sur_RS_428 AATATTTTCTTAAAAAAAAAAAA----GAAATCTTATG-----TGAGTA
V_sur_RS_489 AATATTTTCTTAAAAAAAAAAAA-----GAAATCTTATG-----TGAGTA
V_sur_RS_501 AATATTTTCTTAAAAAAAAAAAA-----GAAATCTTATG-----TGAGTA
```

C_cap_RS_551 AACCACTACTGAACCAGATCAATACCCAGTGGGTATTGATCTGGTCCTTC C_debilis_7209 AACCACTACTGAACCAGATCAATACCCAGTGGGTATTGATCTGGTCCTTC I_juru_RS_451 AACCACTACTGAACCAGATCAATACCCACTGGGTATTGATCTGGTCCTTC I_laev_RS_460 AACCACTACTGAACCAGATCAATACCCAGTGGGTATTGATCTGGTCCTTC V_cadu_JJ_847 AACCACTACTGAACCAGATCAATACCCAGTGGGTATTGATCTGATCCTTC V_spRADS3_RS_335 AACCACTACTGAACCAGATCAATACCCACTGGGTATTGATCTGATCCTTC V_spRADS3_RS_339 AACCACTACTGAACCAGATCAATACCCACTGGGTATTGATCTGATCCTTC V_peru_JJ_772 AACCACTACTGAACCAGATCAATACCCACTGGGTATTGATCTGATCCTTC V_calo_RS_430 V_calo_RS_454 V_calo_RS_481 V_calo_RS_511 V_spRADS1_RS_432 V_spRADS1_RS_500 V_spRADS1_R1_510 V_spRADS1_RS_561 V_dix_RS_225 V_elon_RS_437 V_elon_RS_494 V_elon_RS_502 AACCACTACTGAACCAGATCAATACCCACTGGGTATTGATCTGATCCTTC AACCACTACTGAACCAGATCAATACCCACTGGGTATTGATCTGATCCTTC ?? AACCACTACTGAACCAGATCAATACCCACTGGGTATTGATCTGATCCTTC AACCACTACTGAACCAGATCAATACCCACTGGGTATTGATCTGATCCTTC AACCACTACTGAACCAGATCAATACCCACTGGGTATTGATCTGATCCTTC AACCACTACTGAACCAGATCAATACCCACTGGGTATTGATCTGATCCTTC AACCACTACTGAACCAGATCAATACCCACTGGGTATTGATCTGATCCTTC AACCACTACTGAACCAGATCAATACCCACTGGGTATTGATCTGATCCTTC AACCACTACTGAACCAGATCAATACCCACTGGGTATTGATCTGATCCTTC ?? AACCACTACTGAACCAGATCAATACCCACTGGGTATTGATCTGATCCTTC

V_flex_RS_442
V_flex_RS_522
V_flex_RS_595
V_multin_RS_107
V_multin_RS_108
V_loret_RS_480
V_loret_RS_516
V_loret_RS_526
V_multi_RS_350
V_multi_RS_429
V_multi_RS_466
V_multi_RS_543
V_multi_RS_549
V_sebBL_RS_584
V_lorSL_RS_483
V_lorSL_RS_507
V_sebSL_RS_534
V_sebSL_RS_552
V_spRADS4_RS_213
V_spRADS4_RS_214
V_sur_RS_082
V_sur_RS_083
V_sur_RS_084
V_sur_RS_216
V_sur_RS_248
V_sur_RS_324
V_sur_RS_428
V_sur_RS_489
V_sur_RS_501
C_cap_RS_551
C_debilis_7209
I_juru_RS_451
I_laev_RS_460
V_cadu_JJ_847
V_spRADS3_RS_335 V_spRADS3_RS_339
V_peru_JJ_772
V_calo_RS_430
V_calo_RS_454
V_calo_RS_481
V_calo_RS_511
V_spRADS1_RS_432
V_spRADS1_RS_500
V_spRADS1_R1_510
V_spRADS1_RS_561
V_dix_RS_225
V_elon_RS_437
V_elon_RS_494
V_elon_RS_502
V_flex_RS_442
V_flex_RS_522
V_flex_RS_595
V_multin_RS_107
V_multin_RS_108
V_loret_RS_480
V_loret_RS_516

AACCACTACTGAACCAGATCAATACCCAGTGGGTATTGATCTGATCCTTC AACCACTACTGAACCAGATCAATACCCAGTGGGTATTGATCTGATCCTTC AACCACTACTGAACCAGATCAATACCCAGTGGGTATTGATCTGATCCTTC AACCACTACTGAACCAGATCAATACCCAGTGGGTATTGATCTGATCCTTC AACCACTACTGAACCAGATCAATACCCAGTGGGTATTGATCTGATCCTTC AACCACTACTGAACCAGATCAATACCCACTGGGTATTGATCTGATCCTTC AACCACTACTGAACCAGATCAATACCCACTGGGTATTGATCTGATCCTTC AACCACTACTGAACCAGATCAATACCCACTGGGTATTGATCTGATCCTTC AACCACTACTGAACCAGATCAATACCCAGTGGGTATTGATCTGATCCTTC AACCACTACTGAACCAGATCAATACCCAGTGGGTATTGATCTGATCCTTC AACCACTACTGAACCAGATCAATACCCAGTGGGTATTGATCTGATCCTTC AACCACTACTGAACCAGATCAATACCCAGTGGGTATTGATCTGATCCTTC AACCACTACTGAACCAGATCAATACCCAGTGGGTATTGATCTGATCCTTC AACCACTACTGAACCAGATCAATACCCACTGGGTATTGATCTGATCCTTC AACCACTACTGAACCAGATCAATACCCACTGGGTATTGATCTGATCCTTC AACCACTACTGAACCAGATCAATACCCACTGGGTATTGATCTGATCCTTC ??
AACCACTACTGAACCAGATCAATACCCACTGGGTATTGATCTGATCCTTC AACCACTACTGAACCAGATCAATACCCAGTGGGTATTGATCTGATCCTTC AACCACTACTGAACCAGATCAATACCCAGTGGGTATTGATCTGATCCTTC AACCACTACTGAACCAGATCAATACCCACTGGGTATTGATCTGATCCTTC AACCACTACTGAACCAGATCAATACCCACTGGGTATTGATCTGATCCTTC AACCACTACTGAACCAGATCAATACCCACTGGGTATTGATCTGATCCTTC AACCACTACTGAACCAGATCAATACCCACTGGGTATTGATCTGATCCTTC AACCACTACTGAACCAGATCAATACCCAGTGGGTATTGATCTGATCCTTC ?? AACCACTACTGAACCAGATCAATACCCACTGGGTATTGATCTGATCCTTC AACCACTACTGAACCAGATCAATACCCACTGGGTATTGATCTGATCCTTC AACCACTACTGAACCAGATCAATACCCACTGGGTATTGATCTGATCCTTC

AATGACTCGTATACACTAATACCGAAATATTAGCCATTTATTGATAGAGC AATGACTCGTATACACTAATACCGAAATATTAGCCATTTATTGATAGAGC AATGACTCGTATACACTAATACCGAAGTATTAGCCATTTGTTGATAGAGC AATGACTCGTATACACTAATACCGAAGTATTAGCCATTTGTTGATAGAGC AATTACTCGTATACACTAATACCGAAATATTAGCCATTTGTTGATGGAGC AATGACTCGTATACACTAATACCGAAATATTAGCCATTTGTTGATAGAGC AATGACTCGTATACACTAATACCGAAATATTAGCCATTTGTTGATAGAGC AATGACTCGTATACACTAATACCGAAATATTAGCCATTTGTTGATAGAGC AATGACTCGTATACACTAATACCGAAATATTAGCCATTTGTTGATAGAGC AATGACTCGTATACACTAATACCGAAATATTAGCCATTTGTTGATAGAGC ?? AATGACTCGTATACACTAATACCGAAATATTAGCCATTTGTTGATAGAGC AATGACTCGTATACACTAATACCGAAATATTAGCCATTTGTTGATAGAGC AATGACTCGTATACACTAATACCGAAATATTAGCCATTTGTTGATAGAGC AATGACTCGTATACACTAATACCGAAATATTAGCCATTTGTTGATAGAGC AATGACTCGTATACACTAATACCGAAATATTAGCCATTTGTTGATAGAGC AATGACTCGTATACACTAATACCGAAATATTAGCCATTTGTTGATAGAGC AATGACTCGTATACACTAATACCGAAATATTAGCCATTTGTTGATAGAGC ?? AATGACTCGTATACACTAATACCGAAATATTAGCCATTTGTTGATAGAGC AATTACTCGTATACACTAATACCGAAATATTAGCCATTTGTTGATGGAGC AATTACTCGTATACACTAATACCGAAATATTAGCCATTTGTTGATGGAGC AATTACTCGTATACACTAATACCGAAATATTAGCCATTTGTTGATGGAGC AATTACTCGTATACACTAATACCGAAATATTAGCCATTTGTTGATGGAGC AATTACTCGTATACACTAATACCGAAATATTAGCCATTTGTTGATGGAGC AATGACTCGTATACACTAATACCGAAATATTAGCCATTTGTTGATAGAGC AATGACTCGTATACACTAATACCGAAATATTAGCCATTTGTTGATAGAGC

V_loret_RS_526
V_multi_RS_350
V_multi_RS_429
V_multi_RS_466
V_multi_RS_543
V_multi_RS_549
V_sebBL_RS_584
V_lorSL_RS_483
V_lorSL_RS_507
V_sebSL_RS_534
V_sebSL_RS_552
V_spRADS4_RS_213
V_spRADS4_RS_214
V_sur_RS_082
V_sur_RS_083
V_sur_RS_084
V_sur_RS_216
V_sur_RS_248
V_sur_RS_324
V_sur_RS_428
V_sur_RS_489
V_sur_RS_501
C_cap_RS_551
C_debilis_7209
I_juru_RS_451
I_laev_RS_460
V_cadu_JJ_847
V_spRADS3_RS_335
V_spRADS3_RS_339
V_peru_JJ_772
V_calo_RS_430
V_calo_RS_454
V_calo_RS_481
V_calo_RS_511
V_spRADS1_RS_432 V_spRADS1_RS_500 V_spRADS1_R1_510 V_spRADS1_RS_561 V_dix_RS_225 V_elon_RS_437 V_elon_RS_494 V_elon_RS_502 V_flex_RS_442
V_flex_RS_522
V_flex_RS_595
V_multin_RS_107 V_multin_RS_108 V_loret_RS_480 V_loret_RS_516 V_loret_RS_526 V_multi_RS_350 V_multi_RS_429 V_multi_RS_466 V_multi_RS_543 V_multi_RS_549 V_sebBL_RS_584

AATGACTCGTATACACTAATACCGAAATATTAGCCATTTGTTGATAGAGC AATTACTCGTATACACTAATACCGAAATATTAGCCATTTGTTGATGGAGC AATTACTCGTATACACTAATACCGAAATATTAGCCATTTGTTGATGGAGC AATTACTCGTATACACTAATACCGAAATATTAGCCATTTGTTGATGGAGC AATTACTCGTATACACTAATACCGAAATATTAGCCATTTGTTGATGGAGC AATTACTCGTATACACTAATACCGAAATATTAGCCATTTGTTGATGGAGC AATGACTCGTATACACTAATACCGAAATATTAGCCATTTGTTGATAGAGC AATGACTCGTATACACTAATACCGAAATATTAGCCATTTGTTGATAGAGC AATGACTCGTATACACTAATACCGAAATATTAGCCATTTGTTGATAGAGC ?? AATGACTCGTATACACTAATACCGAAATATTAGCCATTTGTTGATAGAGC AATGACTCGTATACACTAATACCGAAATATTAGCCATTTGTTGATGGAGC AATGACTCGTATACACTAATACCGAAATATTAGCCATTTGTTGATGGAGC AATGACTCGTATACACTAATACCGAAATATTAGCCATTTGTTGATGGAGC AATGACTCGTATACACTAATACCGAAATATTAGCCATTTGTTGATGGAGC AATGACTCGTATACACTAATACCGAAATATTAGCCATTTGTTGATGGAGC AATGACTCGTATACACTAATACCGAAATATTAGCCATTTGTTGATGGAGC AATGACTCGTATACACTAATACC??????????????????????????? ?? AATGACTCGTATACACTAATACCGAAATATTAGCCATTTGTTGATGGAGC AATGACTCGTATACACTAATACCGAAATATTAGCCATTTGTTGATGGAGC AATGACTCGTATACACTAATACCGAAATATTAGCCATTTGTTGATGGAGC

TTCAACA??????????CTCTTTCTATGCCTACTGGCATGGGA?TCGTAT TTCAACA??????????CTCTTTCTATGCCTACTGG?ATGGGAATCGTAT TTCAACA??????????CTCTTTCTATGCCTACTGGTATGGGAATCGTAT TTCAACA??????????CTCTTTCTATGCCTACTGGTATGGGA?TCGTAT TTCAACATCCCAAAAGGCTCTTTCTATGCCTACTGGCATGGGAATCGTAT TTCAACTTCTCAAAAGGCTCTTTCTATGCCTACTGGCTTGGGAATCGTAT TTCAACTTCTCAAAAGGCTCTTTCTATGCCTACTGGCTTGGGAATCGTAT TTCAACT????????????????????GCCTAC?GGCATGGGAATCGTAT TTCAACTTCTCAAAAGGCTCTTTCTATGCCTACTGGCATGGGAATCGTAT TTCAACTTCTCAAAAGGCTCTTTCTATGCCTACTGGCATGGGAATCGTAT ???????TCTCAAAAGGCTCTTTCTATGCCTACTGGCATGGGAATCGTAT TTCAACTTCTCAAAAGGCTCTTTCTATGCCTACTGGCATGGGAATCGTAT TTCAACTTCTCAAAAGGCTCTTTCTATGCCTACCGGCATGGGAATCGTAT TTCAACTTCTCAAAAGGCTCTTTCTATGCCTACCGGCATGGGAATCGTAT TTCAACT????????????????????????????????GGGAATCGTAT TTCAACTTCTCAAAAGGCTCTTTCTATGCCTACCGGCATGGGAATCGTAT TTCAACT???????????????TCTATGCCTACTGGCATGGGAATCGTAT TTCAACT???????????????????????TACCGGCATGGGAATCGTAT ???????TCTCAAAAGGCTCTTTCTATGCCTACTGGCATGGGAATCGTAT TTCAACT???AT TTCAACATCCCAAAAGGCTCTTTCTATGCCTACTGGCATGGGAATCGTAT TTCAACATCCCAAAAGGCTCTTTCTATGCCTACTGGCATGGGAATCGTAT TTCAACATCCCAAAAGGCTCTTTCTATGCCTACTGGCATGGGAATCGTAT TTCAACATCCCAAAAGGCTCTTTCTATGCCTACTGGCATGGGAATCGTAT TTCAACATCCCAAAAGGCTCTTTCTATGCCTACTGGCATGGGAATCGTAT TTCAACTTCTCAAAAGGCTCTTTCTATGCCTACTGGCATGGGAATCGTAT TTCAACT????????????????????????????????????ATCGTAT TTCAACTTCTCAAAAGGCTCTTTCTATGCCTACTGGCATGGGAATCGTAT TTCAACATCCCAAAAGGCTCTTTCTATGCCTACTGGCATGGGAATCGTAT TTCAACATCCCAAAAGGCTCTTTCTATGCCTACTGGCATGGGAATCGTAT TTCAACATCCCAAAAGGCTCTTTCTATGCCTACTGGCATGGGAATCGTAT TTCAACATCCCAAAAGGCTCTTTCTATGCCTACTGGCATGGGAATCGTAT TTCAACATCCCAAAAGGCTCTTTCTATGCCTACTGGCATGGGAATCGTAT TTCAACTTTGACAGGGGCTCTTTCTATGCCTACCGGCATGGGAATCGTAT

V_lorSL_RS_483
V_lorSL_RS_507
V_sebSL_RS_534
V_sebSL_RS_552 V_spRADS4_RS_213 V_spRADS4_RS_214 V_sur_RS_082
V_sur_RS_083
V_sur_RS_084
V_sur_RS_216
V_sur_RS_248
V_sur_RS_324
V_sur_RS_428
V_sur_RS_489
V_sur_RS_501
C_cap_RS_551
C_debilis_7209
I_juru_RS_451
I_laev_RS_460
V_cadu_JJ_847
V_spRADS3_RS_335
V_spRADS3_RS_339
V_peru_JJ_772
V_calo_RS_430
V_calo_RS_454
V_calo_RS_481
V_calo_RS_511
V_spRADS1_RS_432
V_spRADS1_RS_500
V_spRADS1_R1_510
V_spRADS1_RS_561
V_dix_RS_225
V_elon_RS_437
V_elon_RS_494
V_elon_RS_502
V_flex_RS_442
V_flex_RS_522
V_flex_RS_595
V_multin_RS_107
V_multin_RS_108
V_loret_RS_480
V_loret_RS_516
V_loret_RS_526
V_multi_RS_350
V_multi_RS_429
V_multi_RS_466
V_multi_RS_543
V_multi_RS_549
V_sebBL_RS_584
V_lorSL_RS_483
V_lorSL_RS_507
V_sebSL_RS_534
V_sebSL_RS_552
V_spRADS4_RS_213 V_spRADS4_RS_214 V_sur_RS_082

TTCAACT??? TTCAACTTCTCAAAAGGCTCTTTCTATGCCTACCGGCATGGGAATCGTAT ???????TCTCAAAAGGCTCTTTCTATGCCTACCGGCATGGGAATCGTAT TTCAACTTTTGACAGGGCTCTTTCTATGCCTACCGGCATGGGAATCGTAT TTCAACATCCCAAAAGGCTCTTTCTATGCCTACTGGCATGGGAATCGTAT TTCAACA????????GGCTCTTTCTATGCCTACTGGCATGGGAATCGTAT TTCAACATCCCAAAAGGCTCTTTCTATGCCTACTGGCATGGGA?TCGTAT TTCAACATCCCAAAAGGCTCTTTCTATGCCTACTGGCATGGGAATCGTAT TTCAACATCCCAAAAGGCTCTTTCTATGCCTACTGGCATGGGAATCGTAT TTCAACA??CcAAAAGGCTCTTTCTATGCCTACTGGCATGGGAATCGTAT ?? ?? TTCAACATCCCAAAAGGCTCTTTCTATGCCTACTGGCATGGGAATCGTAT TTCAACATCCCAAAAGGCTCTTTCTATGCCTACTGGCATGGGAATCGTAT TTCAACA??CCAAAAGGCTCTTTCTATGCCTACTGGCATGGGAATCGTAT

GCGCAAGTCCAAAAGCAATAGAAGCATCCAAGACTGCTAAATCAGTCAGA GCGCAAGTCCAAAAGCAATGGAAGCATCCAAGACTGCTAAATCAGTCAGA GCGCAAGTCCAAAAGCAATAGAAGCATCCAAGACTGCTAAATCAGTCAGA GCGCAAGTCCAAAAGCAATAGAAGCATCCAAGACTGCTAAATCAGTCAGA GYGCAAGTCCAAAAGCAATAGAAGCATCCAAGACTGCTAAATCAGTCAGA GCGCAAGTCCAAAAGCATTTGAAGCATCCAAGACTGCTAAATCAGTCAGA GCGCAAGTCCAAAAGCATTTGAAGCATCCAAGACTGCTAAATCAGTCAGA GCGCAAGTCCAAAAGCATTTGAAGCATCCAAGACTGCTAAATCAGTCAGA GCGCAAGTCCAAAAGCATTKGAAGCATCCAAGACTGCTAAATCAGTCAGA GCGCAAGTCCAAAAGCATTKGAAGCATCCAAGACTGCTAAATCAGTCAGA GCGCAAGTCCAAAAGCATTWGAAGCATCCAAGACTGCTAAATCAGTCAGA GCGCAAGTCCAAAAGCATTGGAAGCATCCAAGACTGCTAAATCAGTCAGA GCGCAAGTCCAAAAGCATTTGAAGCATCCAAGACTGCTAAATCAGTCAGA GCGCAAGTCCAAAAGCATTTGAAGCATCCAAGACTGCTAAATCAGTCAGA G?GCAAGTCCAAAAGCATTTGAAGCATCCAAGACTGCTAAATCAGTCAGA GCGCAAGTCCAAAAGCATTTGAAGCATCCAAGACTGCTAAATCAGTCAGA GCGCAAGTCCAAAAGCATTTGAAGCATCCAAGACTGCTAAATCAGTCAGA GCGCMAGTCCAAAAGCATTTGAAGCATCCAAGACTGCTAAATCACTCAGA GTGCAAGTCCAAAAGCATTTGAAGCATCCAAGACTGCTAAATCAGTCAGA GCGCAAGTCCAAAAGCATTTGAAGCATCCAAGACTGCTAAATCAGTCAGA GCGCAAGTCCAAAAGCAATAGAAGCATCCAAGACTGCTAAATCAGTCAGA GCGCAAGTCCAAAAGCAATAGAAGCATCCAAGACTGCTAAATCAGTCAGA GCGCAAGTCCAAAAGCAATAGAAGCATCCAAGACTGCTAAATCAGTCAGA GCGCAAGTCCAAAAGCAATAGAAGCATCCAAGACTGCTAAATCAGTCAGA GCGCAAGTCCAAAAGCAATAGAAGCATCCAAGACTGCTAAATCAGTCAGA GYGCAAGTCCAAAAGCATTTGAAGCATCCAAGACTGCTAAATCAGTCAGA GTGCAAGTCCAAAAGCATTTGAAGCATCCAAGACTGCTAAATCAGTCAGA GTGCAAGTCCAAAAGCATTTGAAGCATCCAAGACTGCTAAATCAGTCAGA GCGCAAGTCCAAAAGCAATAGAAGCATCCAAGACTGCTAAATCAGTCAGA GCGCAAGTCCAAAAGCAATAGAAGCATCCAAGACTGCTAAATCAGTCAGA GCGCAAGTCCAAAAGCAATAGAAGCATCCAAGACTGCTAAATCAGTCAGA GCGCAAGTCCAAAAGCAATAGAAGCATCCAAGACTGCTAAATCAGTCAGA GCGCAAGTCCAAAAGCAATAGAAGCATCCAAGACTGCTAAATCAGTCAGA GCGCMAGTCCAAAAGCATTTGAAGCATCCAAGACTGCTAAATCAGTCAGA ?? GCGCAAGTCCAAAAGCATTTGAAGCATCCAAGACTGCTAAATCAGTCAGA GCGCAAGTCCAAAAGCATTTGAAGCATCCAAGACTGCTAAATCAGTCAGA GCGCAAGTCCAAAAGCATTTGAAGCATCCAAGACTGCTAAATCAGTCAGA GCGCAAGTCCAAAAGCAATAGAAGCATCCAAGACTGCTAAATCAGTCAGA GCGCAAGTCCAAAAGCAATAGAAGCATCCAAGACTGCTAAATCAGTCAGA GCGCAAGTCCAAAAGCAATAGAAGCATCCAAGACTGCTAAATCAGTCAGA

V_sur_RS_083
V_sur_RS_084
V_sur_RS_216
V_sur_RS_248
V_sur_RS_324
V_sur_RS_428
V_sur_RS_489
V_sur_RS_501

C_cap_RS_551
C_debilis_7209
I_juru_RS_451
I_laev_RS_460
V_cadu_JJ_847
V_spRADS3_RS_335
V_spRADS3_RS_339
V_peru_JJ_772
V_calo_RS_430
V_calo_RS_454
V_calo_RS_481
V_calo_RS_511
V_spRADS1_RS_432
V_spRADS1_RS_500
V_spRADS1_R1_510
V_spRADS1_RS_561
V_dix_RS_225
V_elon_RS_437
V_elon_RS_494
V_elon_RS_502
V_flex_RS_442
V_flex_RS_522
V_flex_RS_595
V_multin_RS_107
V_multin_RS_108
V_loret_RS_480
V_loret_RS_516
V_loret_RS_526
V_multi_RS_350
V_multi_RS_429
V_multi_RS_466
V_multi_RS_543
V_multi_RS_549
V_sebBL_RS_584
V_lorSL_RS_483
V_lorSL_RS_507
V_sebSL_RS_534
V_sebSL_RS_552 V_spRADS4_RS_213
V_spRADS4_RS_214
V_sur_RS_082
V_sur_RS_083
V_sur_RS_084
V_sur_RS_216
V_sur_RS_248
V_sur_RS_324
V_sur_RS_428
V_sur_RS_489

GCGCAAGTCCAAAAGCAATAGAAGCATCCAAGACTGCTAAATCAGTCAGA GCGCAAGTCCAAAAGCAATAGAAGCATCCAAGACTGCTAAATCAGTCAGA GCGCAAGTCCAAAAGCAATAGAAGCATCCAAGACTGCTAAATCAGTCAGA ?? ?? GCGCAAGTCCAAAAGCAATAGAAGCATCCAAGACTGCTAAATCAGTCAGA GCGCAAGTCCAAAAGCAATAGAAGCATCCAAGACTGCTAAATCAGTCAGA GCGCAAGTCCAAAAGCAATAGAAGCATCCAAGACTGCTAAATCAGTCAGA

GTATTCTTTGACTGGAAAGACTACCTGAAGTTCTATAA?TTGGGAACATA GTATTCTTTGACTGGAAAGACTAC?TGAAGTTCTATAAGCTGGGAACATA GTATTCTTTGACTGGAAAGACTACCTGAAGTTCTATAAGTTGGGAACATA GTATTCTTTGACTGGAAAGACTACCTGAAGTTCTATAAGTTGGGAACATA GTATTCTTTGACTGGAAAGACTACCTCAAGTTCTATAAGTTGGGTACATA GTATTCTTTGACTGGAAAGACTACCTCAAGTTCTACAAGTTGGGAACATA GTATTCTTTGACTGGAAAGACTACCTCAAGTTCTATAAGTTGGGTACATA GTATTCTTTGACTGGAAAGACTACCTCAAGTTCTATAAGTTGGGTACATA GTATTCTTTGACTGGAAAGACTACCTCAAGTTCTATAAGTTGGGTACATA GTATTCTTTGACTGGAAAGACTACCTCAAGTTCTATAAGTTGGGTACATA GTATTCTTTGACTGGAAAGACTACCTCAAGTTCTATAAGTTGGGTACATA GTATTCTTTGACTGGAAAGACTACCTCAAGTTCTACAAGTTGGGAACATA GTATTCTTTGACTGGAAAGACTACCTCAAGTTCTACAAGTTGGGAACATA GTATTCTTTGACTGGAAAGACTACCTCAAGTTCTACAAGTTGGGAACATA GTATTCTTTGACTGGAAAGACTACCTCAAGTTCTATAAGTTGGGTACATA GTATTCTTTGACTGGAAAGACTACCTCAAGTTCTATAAGTTGGGTACATA GTATTCTTTGACTGGAAAGACTACCTCAAGTTCTATAAGTTGGGTACATA GTATTCTTTGACTGGAAAGACTACCTCAAGTTCTATAAGTTGGGTACATA GTATTCTTTGACTGGAAAGACTACCTCAAGTTCTATAAGTTGGGTACATA GTATTCTTTGACTGGAAAGACTACCTCAAGTTCTACAAGTTGGGAACATA ?? GTATTCTTTGACTGGAAAGACTACCTCAAGTTCTACAAGTTGGGAACATA GTATTCTTTGACTGGAAAGACTACCTCAAGTTCTACAAGTTGGGAACATA GTATTCTTTGACTGGAAAGACTACCTCAAGTTCTACAAGTTGGGAACATA GTATTCTTTGACTGGAAAGACTACCTCAAGTTCTATAAGTTGGGTACATA GTATTCTTTGACTGGAAAGACTACCTCAAGTTCTATAAGTTGGGTACATA GTGTTCTTYGACTGGAAAGACTACCTCAAGTTCTATAAGTTGGGTACATA GTGTTCTTTGACTGGAAAGACTACCTCAAGTTCTATAAGTTGGGTACATA GTGTTCTTTGACTGGAAAGACTACCTCAAGTTCTATAAGTTGGGTACATA GTGTTCTTTGACTGGAAAGACTACCTCAAGTTCTATAAGTTGGGTACATA ?? ?? GTGTTCTTYGACTGGAAAGACTACCTCAAGTTCTATAAGTTGGGTACATA GTGTTCTTTGACTGGAAAGACTACCTCAAGTTCTATAAGTTGGGTACATA

[^0]V_spRADS3_RS_335 TGGATCTCATATTTGTGGAAGGACTTGAAAATGTGTTTGACAGACACAAA V_spRADS3_RS_339 TGGATCTCATATTTGTGGAAGGACTTGAAAATGTGTTTGACAGACACAAA V_peru_JJ_772 V_calo_RS_430 V_calo_RS_454 V_calo_RS_481 V_calo_RS_511 V_spRADS1_RS_432 V_spRADS1_RS_500 V spRADS1 R1 510 TGGATCTCATATTTG V SpRADS1 RS 561 TGGATCTCATATTTGTGGAAGGACTTGAAAATGTGTTTGACAGACACAAA V dix RS 225 V_elon_RS_437 V_elon_RS_494 V_elon_RS_502 V_flex_RS_442 V_flex_RS_522 V_flex_RS_595
V_multin_RS_107
V_multin_RS_108 V_loret_RS_480 V_loret_RS_516 V_loret_RS_526 V_multi_RS_350 V_multi_RS_429 V_multi_RS_466 V_multi_RS_543 V_multi_RS_549 V_sebBL_RS_584 V_lorSL_RS_483 V_lorSL_RS_507 V_sebSL_RS_534 V_sebSL_RS_552 V_spRADS4_RS_213 V_spRADS4_RS_214 V_sur_RS_082 V_sur_RS_083 V_sur_RS_084 V_sur_RS_216 V_sur_RS_248 V_sur_RS_324 V_sur_RS_428 V_sur_RS_489 V_sur_RS_501 TGGATCTCATATTTGTGGAAGGACTTGAAAATGTGTTTGACAGACACAAA TGGATCTCATATTTGTGGAAGGACTTGAAAATGTGTTTGACAGACACAAA TGGATCTCATATTTGTGGAAGGACTTGAAAATGTGTTTGACAGACACAAA TGGATCTCATATTTGTGGAAGGACTTGAAAATGTGTTTGACAGACACAAA TGGATCTCATATTTGAGGAAGGACTTGAAAATGTGTTTGACAGACACAAA TGGATCTCATATTTGAGGAAGGACTTGAAAATGTGTTTGACAGACACAAA TGGATCTCATATTTGAGGAAGGACTTGAAAATGTGTTTGACAGACACAAA TGGATCTCATATTTGAGGAAGGACTCGAAAATGTGTTTGACAGACACAAA TGGATCTCATATTTGAGGAAGGACTYGAAAATGTGTTTGACAGACACAAA TGGATCTCATATTTGTGGAAGGACTTGAAAATGTGTTTGACAGACACAAA TGGATCTCATATTTGTGGAAGGACTTGAAAATGTGTTTGACAGACACAAA TGGATCTCATATTTGTGGAAGGACTTGAAAATGTGTTTGACAGACACAAA TGGATCTCATATTTGAGGAAGGACTTGAAAATGTGTTTGACAGACACAAA TGGATCTCATATTTGAGGAAGGACTCGAAAATGTGTTTGACAGACACAAA TGGATCTCATATTTGAGGAAGGACTYGAAAATGTGTTTGACAGACACAAA TGGATCTCATATTTGAGGAAGGACTCGAAAATGTGTTTGACAGACACAAA TGGATCTCATATTTGAGGAAGGACTYGAAAATGTGTTTGACAGACACAAA TGGATCTCATATTTGTGGAAGGACTTGAAAATGTGTTTGACAGACACAAA ?? TGGATCTCATATTTGTGGAAGGACTTGAAAATGTGTTTGACAGACACAAA TGGATCTCATATTTGTGGAAGGACTTGAAAATGTGTTTGACAGACACAAA TGGATCTCATATTTGTGGAAGGACTTGAAAATGTGTTTGACAGACACAAA TGGATCTCATATTTGTGGAAGGACTTGAAAATGTGTTTCACAGACACAAA TGGATCTCATATTTGTGGAAGGACTTGAAAATGTGTTTCACAGACACAAA TGGATCTCTTATTTGWGGAAGGACTTGAAAATGTGTTTGACAGACACAAA TGGATCTCTTATTTGAGGAAGGACTTGAAAATGTGTTTGACAGACACAAA TGGATCTCTTATTTGAGGAAGGACTTGAAAATGTGTTTGACAGACACAAA TGGATCTCTTATTTGTGGAAGGACTTGAAAATGTGTTTGACAGACACAAA ?? ?? TGGATCTCTTATTTGWGGAAGGACTTGAAAATGTGTTTGACAGACACAAA TGGATCTCTTATTTGAGGAAGGACTTGAAAATGTGTTTGACAGACACAAA TGGATCTCTTATTTGAGGAAGGACTTGAAAATGTGTTTGACAGACACAAA

C_cap_RS_551
C_debilis_7209
CGTTTGGGCAAAGCAACAAGGTAATAGATTTTGGAAAGATGTAGTGCTGA CGTTTGGGCAAAGCAACAAGGTAATAGATTTTGGAAAGATGCAGTGCTGA CGTTTGGGCAAAGCAACAAGGTAATAGATTTTGGAAATATGTAGTGCTGA CGTTTGGGCAAAGCAACAAGGTAATAGATTTTGGAAAGATGTAGTGCTGA CGTTTGGGCAAAGCAACAAGGTAATAGATTTTGGAAAGAWGTAGTTATGA CGTTTGGGCAAAGCAACAAGGTAATAGATTTTGGAAAGATGTAGTGATGA CGTTTGGGCAAAGCAACAAGGTAATAGATTTTGGAAAGATGTAGTGATGA CGTTTGGGCAAAGCAACAAGGTAATAGATTTTGGAAAGATGTAGTGATGA CGTTTGGGCAAGGCAACAAGGTAATAGATTTTGGAAAGATGTAGTGATGA CGTTTGGGCAAGGCAACAAGGTAATAGATTTTGGAAAGATGTAGTGATGA CGTTTGGGCAAGGCAACAAGGTAATAGATTTTGGAAAGATGTAGTGATGA CGTTTGGGCAAGGCAACAAGGTAATAGATTTTGGAAAGATGTAGTGATGA

V_spRADS1_RS_432 CGTTTGGGCAAAGCAACAAGGTAATAGATTTTGGAAAGATGTAGTGATGA V_spRADS1_RS_500 CGTTTGGGCAAAGCAACAAGGTAATAGATTTTGGAAAGATGTAGTGATGA V_spRADS1_R1_510 CGTTTGGGCAAAGCAACAAGGTAATAGATTTTGGAAAGATGTAGTGATGA V_spRADS1_RS_561 CGTTTGGGCAAAGCAACAAGGTAATAGATTTTGGAAAGATGTAGTGATGA

V_dix_RS_225
V_elon_RS_437
V_elon_RS_494
V_elon_RS_502
V_flex_RS_442
V_flex_RS_522
V_flex_RS_595
V_multin_RS_107
V_multin_RS_108
V_loret_RS_480
V_loret_RS_516
V_loret_RS_526
V_multi_RS_350
V_multi_RS_429
V_multi_RS_466
V_multi_RS_543
V_multi_RS_549
V_sebBL_RS_584
V_lorSL_RS_483
V_lorSL_RS_507
V_sebSL_RS_534
V_sebSL_RS_552
V_spRADS4_RS_213 V_spRADS4_RS_214 V_sur_RS_082
V_sur_RS_083
V_sur_RS_084
V_sur_RS_216
V_sur_RS_248
V_sur_RS_324
V_sur_RS_428
V_sur_RS_489
V_sur_RS_501
C_cap_RS_551
C_debilis_7209
I_juru_RS_451
I_laev_RS_460
V_cadu_JJ_847
V_spRADS3_RS_335
V_spRADS3_RS_339
V_peru_JJ_772
V_calo_RS_430
V_calo_RS_454
V_calo_RS_481
V_calo_RS_511
V_spRADS1_RS_432
V_spRADS1_RS_500
V_spRADS1_R1_510
V_spRADS1_RS_561
V_dix_RS_225
V_elon_RS_437
V_elon_RS_494

CGTTTGGGCAAAGCAACAAGGTAATAGATTTTGGAAAGATGTAGTGATGA CGTTTGGGCAAAGCAACAAGGTAATAGATTTTGGAAAGATGTAGTGATGA CGTTTGGGCAAAGCAACAAGGTAATAGATTTTGGAAAGATGTAGTGATGA CGTTTGGGCAAAGCAACAAGGTAATAGATTTTGGAAAGATGTAGTGATGA CGTTTGGGCAAAGCAACAAGGTAATAGATTTTGGAAAGATGTAGTTATGA CGTTTGGGCAAAGCAACAAGGTAATAGATTTTGGAAAGATGTAGTTATGA CGTTTGGGCAAAGCAACAAGGTAATAGATTTTGGAAAGATGTAGTTATGA CGTTTGGGCAAAGCAACAAGGTAATAGATTTTGGAAAGATGTAGTTATGA CGTTTGGGCAAAGCAACAAGGTAATAGATTTTGGAAAGATGTAGTTATGA CGTTTGGGCAAAGCAACAAGGTAATAGATTTTGGAAAGATGTAGTGATGA CGTTTGGGCAAAGCAACAAGGTAATAGATTTTGGAAAGATGTAGTGATGA CGTTTGGGCAAAGCAACAAGGTAATAGATTTTGGAAAGATGTAGTGATGA CGTTTGGGCAAAGCAACAAGGTAATAGATTTTGGAAAGATGTAGTTATGA CGTTTGGGCAAAGCAACAAGGTAATAGATTTTGGAAAGATGTAGTTATGA CGTTTGGGCAAAGCAACAAGGTAATAGATTTTGGAAAGATGTAGTTATGA CGTTTGGGCAAAGCAACAAGGTAATAGATTTTGGAAAGATGTAGTTATGA CGTTTGGGCAAAGCAACAAGGTAATAGATTTTGGAAAGATGTAGTTATGA CGTTTGGGCAAAGCAACAAGGTAATAGATTTTGGAAAGATGTAGTGATGA ?? CGTTTGGGCAAAGCAACAAGGTAATAGATTTTGGAAAGATGTAGTGATGA CGTTTGGGCAAAGCAACAAGGTAATAGATTTTGGAAAGATGTAGTGATGA CGTTTGGGCAAAGCAACAAGGTAATAGATTTTGGAAAGATGTAGTGATGA CGTTTGGGCAAAGCAACAAGGTAATAGAGTTTGGAAAGATGTAGTGATGA CGTTTGGGCAAAGCAACAAGGTAATAGAGTTTGGAAAGATGTAGTGATGA CGTCTGGGCAAAGCAACAAGGTAATAGATTTTGGAAAGATGTAGTGATGA CGTCTGGGCAAAGCAACAAGGTAATAGATTTTGGAAAGATGTAGTGATGA CGTCTGGGCAAAGCAACAAGGTAATAGATTTTGGAAAGATGTAGTGATGA CGTCTGGGCAAAGCAACAAGGTAATAGATTTTGGAAAGATGTAGTGATGA ?? ?? CGTCTGGGCAAAGCAACAAGGTAATAGATTTTGGAAAGATGTAGTGATGA CGTCTGGGCAAAGCAACAAGGTAATAGATTTTGGAAAGATGTAGTGATGA CGTCTGGGCAAAGCAACAAGGTAATAGATTTTGGAAAGATGTAGTGATGA

ATGCTAATATTGAGCACTCGATGTCCATAGTAAGAGAGGGACACCATTTA ATGCTAATATTGAGCACTCGATGTCCATAGTAAGAGAGGCACATCATTTA ATGCTAATATTGAGCACTTGATGTCCATAGTAAGAGAGGCACACCATTTA ATGCTAATATTGAGCACTCGATGTCCATAGTAAGAAAGGCACACCATTTA ATGCTAATATTGAGCACTCGATGTCCGTAGTAAGAGAAGCACACCATTTA ATGCTAATATTGAGCACTCGATGTCCATAGTAAGAGAGGCACACCATTTA ATGCTAATATTGAGCACTCGATGTCCATAGTAAGAGAGGCACACCATTTA

V_elon_RS_502
V_flex_RS_442
V_flex_RS_522
V_flex_RS_595
V_multin_RS_107
V_multin_RS_108
V_loret_RS_480
V_loret_RS_516
V_loret_RS_526
V_multi_RS_350
V_multi_RS_429
V_multi_RS_466
V_multi_RS_543
V_multi_RS_549
V_sebBL_RS_584
V_lorSL_RS_483
V_lorSL_RS_507
V_sebSL_RS_534
V_sebSL_RS_552
V_spRADS4_RS_213
V_spRADS4_RS_214
V_sur_RS_082
V_sur_RS_083
V_sur_RS_084
V_sur_RS_216
V_sur_RS_248
V_sur_RS_324
V_sur_RS_428
V_sur_RS_489
V_sur_RS_501
C_cap_RS_551
C_debilis_7209
I_juru_RS_451
I_laev_RS_460
V_cadu_JJ_847
V_spRADS3_RS_335
V_spRADS3_RS_339
V_peru_JJ_772
V_calo_RS_430
V_calo_RS_454
V_calo_RS_481
V_calo_RS_511
V_spRADS1_RS_432
V_spRADS1_RS_500
V_spRADS1_R1_510
V_spRADS1_RS_561
V_dix_RS_225
V_elon_RS_437
V_elon_RS_494
V_elon_RS_502
V_flex_RS_442
V_flex_RS_522
V_flex_RS_595
V_multin_RS_107
V_multin_RS_108 V_loret_RS_480

ATGCTAATATTGAGCACTCGATGTCCATAGTAAGAGAGGCACACCATTTA ATGCTAATATTGAGCACTCGATGTCCGTAGTAAGAGAAGCACACCATTTA ATGCTAATATTGAGCACTCGATGTCCGTAGTAAGAGAAGCAYACCATTTA ATGCTAATATTGAGCACTCGATGTCCGTAGTAAGAGAAGCACACCATTTA ATGCTAATATTGAGCACTCGATGTCCGTAGTAAGAGAAGCACACCATTTA ATGCTAATATTGAGCACTCGATGTCCGTAGTAAGAGAAGCACACCATTTA ATGCTAATATTGAGCACTCGATGTCCATAGTAAGAGAGGCACACCATTTA ATGCTAATATTGAGCACTCGATGTCCATAGTAAGAGAGGCACACCATTTA ATGCTAATATTGAGCACTCGATGTCCATAGTAAGAGAGGCACACCATTTA ATGCTAATATTGAGCACTCGATGTCCGTAGTAAGAGAAGCACACCATTTA ATGCTAATATTGAGCACTCGATGTCCGTAGTAAGAGAAGCACACCATTTA ATGCTAATATTGAGCACTCGATGTCCGTAGTAAGAGAAGCACACCATTTA ATGCTAATATTGAGCACTCGATGTCCGTAGTAAGAGAAGCACACCATTTA ATGCTAATATTGAGCACTCGATGTCCGTAGTAAGAGAAGCACACCATTTA ATGCTAATATTGAGCACTCGATGTCCATAGTAAGAGAGGCACACCATTTA ?? CTGCTAATATTGAGCACTCGATGTCCATAGTAAGAGAGGCACACCATTTA ATGCTAATATTGAGCACTCGATGTCCATAGTAAGAGAGGCACACCATTTA ATGCTAATATTGAGCACTCGATGTCCATAGTAAGAGAGGCACACCATTTA ATGCTAATATTGAGCACTCGATGTCCGTAGTAAGGGAAGCACACCATTTA ATGCTAATATTGAGCACTCGATGTCCGTAGTAAGGGAAGCACACCATTTA ATGCTAATATTGAGCACTCGATGTCCGTAGTAAGAGAAKCACACCATTTA ATGCTAATATTGAGCACTCGATGTCCGTAGTAAGAGAAGCACACCATTTA ATGCTAATATTGAGCACTCGATGTCCGTAGTAAGAGAAGCACACCATTTA ATGCTAATATTGAGCACTCGATGTCCGTAGTAAGAGAATCACACCATTTA ?? ?? ATGCTAATATTGAGCACTCGATGTCCGTAGTAAGAGAAKCACACCATTTA ATGCTAATATTGAGCACTCGATGTCCGTAGTAAGAGAAGCACACCATTTA ATGCTAATATTGAGCACTCGATGTCCGTAGTAAGAGAAGCACACCATTTA

TTTATTGGGAACTACCCTGGATGGGAGGGGAATATT-CCAAAAATTTCAG TTTATTGGGAACTACCCTGGATGGGAGGGGAATATT-CCAAAAATTTCAG TTTATTGGGAACTGCCCTGGATGGGTGGGGAATATT-CAAAAAATTTCAG TTTATTGGGAACTGCCCTGGATGGGTGGGGAATATT-CAAAAAATTTCAG TTTATTGGGAACTACCCTGGATGGGCGGGGAATATTCCAAAAA-TTTCAA TTTATTGGGAACTACCCTGGATGGGCGGGGAATATTGCAAAAAATTTCAG TTTATTGGGAACTACCCTGGATGGGCGGGGAATATTGCAAAAAATTTCAG TTTATTGGGAACTMCCCTGGATGGGCGGGGAATATTGCAAAAAATTTCAG TTTATTGGGAACTACCCTGGATGGGCGGGGAATATTGCAAAAAAWTTCAG TTTATTGGGAACTACCCTGGATGGGCGGGGAATATTGCAAAAAAWTTCAG TTTATTGGGAACTACCCTGGATGGGCGGGGAATATTGCAAAAAAWTTCAG TTTATTGGGAACTACCCTGGATGGGCGGGGAATATTGCAAAAAATTTCAG TTTATTGGGAACT-CCCTGGATGGGCGGGGAATATTGCAAAAAATTTCAG TTTATTGGGAACT-CCCTGGATGGGCGGGGAATATTGCAAAAAATTTCAG TTTATTGGGAACT????????????????????????????????????? TTTATTGGGAACT-CCCTGGATGGGCGGGGAATATTGCAAAAAATTTCAG TTTATTGGGAACTACMCTGGATGGGCGGGGAATATTGCAAAAAATTTCAG TTTATTGGGAACTACCCTGGATGGGCGGGGAATATTGCAAAAAATTTCAG TTTATTGGGAACTACCCTGGATGGGCGGGGAATATTGCAAAAAATTTCAG TTTATTGGGAACTACCCTGGATGGGCGGGGAATATTGCAAAAAATTTCAG TTTATTGGGAACTACCCTGGATGGGCGGGGAATATTCCAAAAA - TTTCAA TTTATTGGGAACTACCCTGGATGGGCGGGGAATATTCCAAAAA - TTTCAA TTTATTGGGAACTACCCTGGATGGGCGGGGAATATTCCAAAAA - TTTCAA TTTATTGGGAACTACCCTGGATGGGCGGGGAATATTCCAAAAA -TTTCAA TTTATTGGGAACTACCCTGGATGGGCGGGGAATATTCCAAAAA-TTTCAA TTTATTGGGAACTACCCTGGATGGGCGGGGAATATTGCAAAAAATTTCAG

V_loret_RS_516
V_loret_RS_526
V_multi_RS_350
V_multi_RS_429
V_multi_RS_466
V_multi_RS_543
V_multi_RS_549
V_sebBL_RS_584
V_lorSL_RS_483
V_lorSL_RS_507
V_sebSL_RS_534
V_sebSL_RS_552
V_spRADS4_RS_213
V_spRADS4_RS_214
V_sur_RS_082
V_sur_RS_083
V_sur_RS_084
V_sur_RS_216
V_sur_RS_248
V_sur_RS_324
V_sur_RS_428
V_sur_RS_489
V_sur_RS_501
C_cap_RS_551
C_debilis_7209
I_juru_RS_451
I_laev_RS_460
V_cadu_JJ_847
V_spRADS3_RS_335
V_spRADS3_RS_339
V_peru_JJ_772
V_calo_RS_430
V_calo_RS_454
V_calo_RS_481
V_calo_RS_511
V_spRADS1_RS_432 V_spRADS1_RS_500 V_spRADS1_R1_510 V_spRADS1_RS_561 V_dix_RS_225 V_elon_RS_437 V_elon_RS_494 V_elon_RS_502 V_flex_RS_442
V_flex_RS_522
V_flex_RS_595
V_multin_RS_107
V_multin_RS_108
V_loret_RS_480
V_loret_RS_516
V_loret_RS_526
V_multi_RS_350
V_multi_RS_429
V_multi_RS_466
V_multi_RS_543
V_multi_RS_549

TTTATTGGGAACTACCCTGGATGGGCGGGGAATATTGCAAAAAATTTCAG TTTATTGGGAACTACCCTGGATGGGCGGGGAATATTGCAAAAAATTTCAG TTTATTGGGAACTACCCTGGATGGGCGGGGAATATTCCAAAAA-TTTCAA TTTATTGGGAACTACCCTGGATGGGCGGGGAATATTCCAAAAA - TTTCAA TTTATTGGGAACTACCCTGGATGGGCGGGGAATATTCCAAAAA-TTTCAA TTTATTGGGAACTACCCTGGATGGGCGGGGAATATTCCAAAAA - TTTCAA TTTATTGGGAACTACCCTGGATGGGCGGGGAATATTCCAAAAA-TTTCAA TTTATTGGGAACTACCCTGGATGGGCGGGGAATATTGCAAAAAATTTCAG ?? TTTATTGGGAACTACCCTGGATGGGCGGGGAATATTGCAAAAAATTTCAG TTTATTGGGAACTACCCTGGATCGGCGGGGAATATTGCAAAAAATTTCAG TTTATTGGGAACTACCCTGGATCGGCGGGGAATATTGCAAAAAATTTCAG TTTATTGGGAACTACCCTGGATGGGCGGGGACTATTCCAAAAA-TTTCAG TTTATTGGGAACTACCCTGGATGGGCGGGGACTATTCCAAAAA-TTTCAG TTTATTGGGAACTACCYTGGATGGGCGGGGAATATTCCAAAAA-TTTCAG TTTATTGGGAACTACCCTGGATGGGCGGGGAATATTCCAAAAA-TTTCAG TTTATTGGGAACTACCCTGGATGGGCGGGGAATATTCCAAAAA-TTTCAG TTTATTGGGAACTACCTTGGATGGGCGGGGAATATTCCAAAAA-TTTCAG ?? ??
TTTATTGGGAACTACCYTGGATGGGCGGGGAATATTCCAAAAA-TTTCAG TTTATTGGGAACTACCCTGGATGGGCGGGGAATATTCCAAAAA-TTTCAG TTTATTGGGAACTACCCTGGATGGGCGGGGAATATTCCAAAAA-TTTCAG

CAGTGGGACAATCCTAGACACTGATATTGAGAACTTTTTCCCCAGTGAAT CAGTGGGACAATCCTAGACACTGATGTTGAGAACTTTTTCCCCAGTGAAT CAGTGGGACAATCCTAGACACTGATTTTGAGAACTTTTGCCCCAGTGACT CAGTGGGACAATCCTAGACACTGATTTTGAGAACTTTTGCCCCAGTGACT CAGTGGGACAATCCTAGACACTGATATTGACAACTTTTGCCCCAGTGAAT CAGTGGGACTATCCTAGACACTGATATTGACAACTTTTGCCCCAGTGAAT CAGTGGGACTATCCTAGACACTGATATTGACAACTTTTGCCCCAGTGAAT CAGTGGGACTATCCTAGACACTGATATTGACAACTTTTGCCCCAGTGAAT CAGTGGGACTATCCTMGACACTGATATTGACAACTTTTGCCCCAGTGAAT CAGTGGGACTATCCTMGACACTGATATTGACAACTTTTGCCCCAGTGAAT CAGTGGGACTATCCTMGACACTGATATTGACAACTTTTGCCCCAGTGAAT CAGTGGTACTATCCTAGACACTGATATTGACAACTTTTGCCCCAGTGAAT CAGTGGGGCTATCCTAGACACTGATATTGACAACTTTTGCCCCAGTGAAT CAGTGGGGCTATCCTAGACACTGATATTGACAACTTTTGCCCCAGTGAAT ?? CAGTGGGGCTATCCTAGACACTGATATTGACAACTTTTGCCCCAGTGAAT CAGTGGGACTATCCTAGACACTGATATTGACAACTTTTGCCCCAGTGAAT CAGTGGGACTATCCTAGRCACTGATATTGACAACTTTTGCCCCAGTGAAT CAGTGGGACTATCCTAGACACTGATATTGACAACTTTTGCCCCAGTGAAT CAGTGGGACTATCCTAGACACTGATATTGACAACTTTTGCCCCAGTGAAT CAGTGGGACAATCCTAGACACTGATATTGACAACTTTTGCCCCAGTGAAT CAGTGGGACAATCCTAGACACTGATATTGACAACTTTTGCCCCAGTGAAT CAGTGGGACAATCCTAGACACTGATATTGACAACTTTTGCCCCAGTGAAT CAGTGGGACAATCCTAGACACTGATATTGACAACTTTTGCCCCAGTGAAT CAGTGGGACAATCCTAGACACTGATATTGACAACTTTTGCCCCAGTGAAT CAGTGGGACTRTCCTAGACACTGATATTGACAACTTTTGCCCCAGTGAAT CAGTGGGACTATCCTAGACACTGATATTGACAACTTTTGCCCCAGTGAAT CAGTSGGACTATCCTAGACACTGATATTGACAACTTTTGCCCCAGTGAAT CAGTGGGACAATCCTAGACACTGATATTGACAACTTTTGCCCCAGTGAAT CAGTGGGACAATCCTAGACACTGATATTGACAACTTTTGCCCCAGTGAAT CAGTGGGACAATCCTAGACACTGATATTGACAACTTTTGCCCCAGTGAAT CAGTGGGACAATCCTAGACACTGATATTGACAACTTTTGCCCCAGTGAAT CAGTGGGACAATCCTAGACACTGATATTGACAACTTTTGCCCCAGTGAAT

V_sebBL_RS_584 V_lorSL_RS_483 V_lorSL_RS_507 V_sebSL_RS_534 V_sebSL_RS_552 V_spRADS4_RS_213 V_spRADS4_RS_214 V_sur_RS_082 V_sur_RS_083 V_sur_RS_084 V_sur_RS_216 V_sur_RS_248 V_sur_RS_324 V_sur_RS_428 V_sur_RS_489 V_sur_RS_501

C_cap_RS_551
C_debilis_7209
I_juru_RS_451
I_laev_RS_460
V_cadu_JJ_847
V_spRADS3_RS_335
V_spRADS3_RS_339
V_peru_JJ_772
V_calo_RS_430
V_calo_RS_454
V_calo_RS_481
V_calo_RS_511
V_spRADS1_RS_432
V_spRADS1_RS_500 V_spRADS1_R1_510 V_spRADS1_RS_561 V_dix_RS_225 V_elon_RS_437 V_elon_RS_494 V_elon_RS_502 V_flex_RS_442 V_flex_RS_522 V_flex_RS_595 V_multin_RS_107 V_multin_RS_108 V_loret_RS_480 V_loret_RS_516 V_loret_RS_526 V_multi_RS_350 V_multi_RS_429 V_multi_RS_466 V_multi_RS_543 V_multi_RS_549 V_sebBL_RS_584 V_lorSL_RS_483 V_lorSL_RS_507 V_sebSL_RS_534 V_sebSL_RS_552 V_spRADS4_RS_213 V_spRADS4_RS_214

CAGTGGGACTATCCTAGACACTGATATTGACAACTTTTGCCCCAGTGAAT ?? CAGTGGGACTGTCCTAGACACTGATATTGACAACTTTTGCCCCAGTGAAT CAGTGGGACTATCCTAGACACTGATATTGACTACTTTTGCCCCAGTGAAT CAGTGGGACTATCCTAGACACTGATATTGACTACTTTTGCCCCAGTGAAT CAGTGGGACAATCCTAGACACTGATATTGACAACTTTTGCCCCAGTGAAT CAGTGGGACAATCCTAGACACTGATATTGACAACTTTTGCCCCAGTGAAT CAGTGGGACAATCATAGACACTKATATTGACAACTTTTGCCCCAGTGAAT CAGTGGGACAATCATAGACACTGATATTGACAACTTTTGCCCCAGTGAAT CAGTGGGACAATCATAGACACTGATATTGACAACTTTTGCCCCAGTGAAT CAGTGGGACAATCATAGACACTGATATTGACAACTTTTGCCCCAGTGAAT ?? ?? CAGTGGGACAATCATAGACACTKATATTGACAACTTTTGCCCCAGTGAAT CAGTGGGACAATCATAGACACTGATATTGACAACTTTTGCCCCAGTGAAT CAGTGGGACAATCATAGACACTGATATTGACAACTTTTGCCCCAGTGAAT

GCTGACCATATATGCTTTTT-G--AACTTCCTATTTATAATCCTCAAAAC GCTGACCATATATGTTTTTT-G--AGCTTTCTATTTATAATCCTCAAAAT GTTGACCATATATGTTTTTT-G--AACTTCCTATTTATAATCCTCAAAAT GTTGACCATATATGTTTTTT-G--AACTTCCTATTTATAATCCTCAAAAT GTTGACCATATRTATTTTTCTG--AACTTTCCATTTATAATCCTCAAAAT GTTGACCATATGTGTTTTTTTG--AACTTTCCATTTATAATCCTCAAAAT GTTGACCATATGTGTTTTTTTG--AACTTTCCATTTATAATCCTCAAAAT GTTGACCATATGTGTTTTTTTG--AACTTTCCATTTATAATCCTCAAAAT GTTGACCATATGTGTTTTTTTG--AACTTTCCATTTATAATCCTCAAAAT GTTGACCATATGTGTTTTTTTG--AACTTTCCATTTATAATCCTCAAAAT GTTGACCATATGTGTTTTTTTG--AACTTTCCATTTATAATCCTCAAAAT GTTGACCATATGTGTTTTTTTG--AACTTTCCATTTATAATCCTCAAAAT GTTGACCATATGTGTTTTTTTG--AACTTTCCATTTATAATCCTCAAAAT GTTGACCATATGTGTTTTTTTG--AACTTTCCATTTATAATCCTCAAAAT ?????????????KTTTTTTTG--AACTTTCCATTTATAATCCTCAAAAT GTTGACCATATGTGTTTTTTTG--AACTTTCCATTTATAATCCTCAAAAT GTTGACCATATGTGTTTTTTTTT-AACTTTCCATTTATAATCCTCAAAAT GTTGACCATATGTGTTTTTTT????????????????????????????? GTTGACCATATGTGTTTTTTTG--AACTTTCCATTTATAATCCTTAAAAT GTTGACCATATGTGTTTTTTTG--AACTTTCCATTTATAATCCT?AAAAT GTTGACCATATATATTTTTCTG--AACTTTCCATTTATAATCCTCAAAAT GTTGACCATATRTATTTTTCTG--AACTTTCCATTTATAATCCTCAAAAT GTTGACCATATATATTTTTCTG--AACTTTCCATTTATAATCCTCAAAAT GTTGACCATATATATTTTTCTG--AACTTTCCATTTATAATCCTCAAAAT GTTGACCATATATATTTTTCTG--AACTTTCCATTTATAATCCTCAAAAT GTTGACCATATGTGTTTTTTTG--AACTTTCCATKTATAATCCTCAAAAT GTTGACCATATATGTGTTTTTTTGAACTTTCCATKTATAATCCTCAAAAT GTTGACCATATGTGTTTTTTTTTTAACTTTCCATTTATAATCCTCAAAAT GTTGACCATATATATTTTTCTG--AACTTTCCATTTATAATCCTCAAAAT GTTGACCATATATATTTTTCTG--AACTTTCCATTTATAATCCTCAAAAT GTTGACCATATATATTTTTCTR--AACTTTCCATTTATAATCCTCAAAAT GTTGACCATATATATTTTTCTG-- AACTTTCCATTTATAATCCTCAAAAT GTTGACCATATATATTTTTCTG-- AACTTTCCATTTATAATCCTCAAAAT GTTGACCATATGTGTTTTTTTG--AACTTTCCATTTATAATCCTYAAAAT ?? GTTGACCATATGTGTTTTTTTG--AACTTTCCATTTATAATCCTCCAAAT GTTGACCATATGTGTTTTTTTCTTAACTTTCCATTTATAATCCTCAAAAT GTTGACCATATGTGTTTTTTTCTTAACTTTCCATTTATAATCCTCAAAAT GTTGACCACATATGTTTTTTTG--AACTT--------- - TCCTCAAAAT GTTGACCACATATGTTTTTTTG--AACTT---------- - TCCTCAAAAT

V_sur_RS_082	
V_sur_RS_083	GTTGATCATATATGTTTTTTTG--AACTT---------- TCCTCAAAAT
V_sur_RS_084	GTTGATCATAT
V_sur_RS_216	GTTGATCATATATG
V_sur_RS_248	??
V_sur_RS_324	
V_sur_RS_428	GTTGATCATATATGTTTTTT
V_sur_RS_489	GTTGATCATATATGTTTT
V_sur_RS_501	GTTGATCAT
C_debilis_7209	TCCTCCAAACAGCAGCTAAAATCATTGTATTCATTTACTTTTAGGC
I_juru_RS_451	TCCTCCATACAGCTGCTAAAATCATCATATTCGTTTACTTTTTGGC
I_laev_RS_460	TC
V_cadu_JJ_847	TC
V_spRADS3_RS_335	TCCTCCAAACAGTAGCTAAAATCATTATATTCTTTTACTTTAAGGC
V_spRADS3_RS_339	TCCTCCAAACAGTAGCTAAAATCATTATATTCTTTTACTTTAAGGCTGTG
V_peru_JJ_772	TССТССА
V_calo_RS_430	TCCTCCA
V_calo_RS_454	TCCTCCAAACAGTAGCTAAAATCATTAT
V_calo_RS_481	TCCTCCAAACAGTAGCTAAAATCATTATATTATTTTACTTTAAGGC
V_calo_RS_511	TCCTCCAAACAGTAGCTAAAATCATTATATTATTTTAC
V_spRADS1_RS_432	TC
V_spRADS1_RS_500	TC
V_spRADS1_R1_510	TCCTCCAAA??GTAGCTAAAATCGTTATATTCTTTTACTTTAAGG
V_spRADS1_RS_561	TCCTCCAAACAGTAGCTAAAATCGTTATATTCTTTTACTTTAAGGC
V_dix_RS_225	TCCTCCAAACAGTAGCTAAAATCRTTATATTCTTTTACTTTAAGGC
V_elon_RS_437	??
V_elon_RS_494	TCCTCCAAACAGTAGCTAAAA
V_elon_RS_502	TCCTCCAAACAGTAGCTAAAATCATTATATTCTTTTACTTTAAGGC
V_flex_RS_442	TCCTCCAAACAGCAGCTAAAATCATCATATTCGTTTACTTTTAGGC
V_flex_RS_522	TCCTCCAAACAGCAGCTAAAA
V_flex_RS_595	TCCTCCAAACAGCAGCTAAA
V_multin_RS_107	TCCTCCAAACAGCAGCTAAAATCATCATATTCGTTTACTTTTAGGC
V_multin_RS_108	TCCTCCAAACAGCAGCTAAAATCATCATATTCGTTTACTTTTAGGC
V_loret_RS_480	TCCTCCAAACAGTAGCTAAAATCRTTATATTCTTTTACTTTAAGGC
V_loret_RS_516	TCCTCCAAACAGTAGCT
V_loret_RS_526	TCCTCCAAACAGTAGCTAAAATCATTATAGTCTTTTACTTTAAGG
V_multi_RS_350	TCCTCCAAACAGCAGCTAAAATCATCATATTCGTTTACTTTTAGGCT
V_multi_RS_429	TCCTCCAAACAGCAGCTAAAATCATCATATTCGTTTACTTTTAGGCTG
V_multi_RS_466	TCCTCCAAACAGCAGCTAAAATCATCATATTCGTTTACTTTTAGGC
V_multi_RS_543	TCCTCCAAACAGCAGCTAAAATCATCATATTCGTTTACTTTTAGGC
V_multi_RS_549	TCCTCCAAACAGCAGCTAAAATCATCATATTCGTTTACTTTTAGGCTGTG
V_sebBL_RS_584	TCCTCСAAACAGTAGCTAAAATCATTATATTCTTTTACTTTAAGGCT
V_lorSL_RS_483	??
V_lorSL_RS_507	TCCTCCAAACAGTAGCTAAAATCGTTATATTCTTTTACTTTAAGGCTGTG
V_sebSL_RS_534	TCCTCCAAACAGTAGCTAAAATCATTATATTCTTTTACTTTAAGGCTGTG
V_sebSL_RS_552	TCCTCCAAACAGTAGCTAAAATCATTATATTCTTTTACTTTAAGGCT
V_spRADS4_RS_213	TCCTCCAAACAGCAGCTAAAATCATCATATTCGTTTACTTTTAGGCT
V_spRADS4_RS_2	TCCTCCAAACAGCAGCTAAAATCATCATATTCGTTTACTTTTAGGCTGTG
V_sur_RS_082	TCCTCCAAACAGCAGCTAAAATCATCATATTCGTTTACTTTTAGGCTGTG
V_sur_RS_083	TCCTCCAAACAGCAGCTAAAATCATCATATTCGTTTACTTTTAGGCTGTG
V_sur_RS_084	TCCTCCAAACAGCAGCTAAAATCATCATATTCGTTTACTTTTAGGCTGTG
V_sur_RS_216	TCCTCCAAACAGCAGCTAAAATCATCATATTCGTTTACTTTTAGGCTGTG
V_sur_RS_248	??
V_sur_RS_324	??
V_sur_RS_428	

C_cap_RS_551
C_debilis_7209
I_juru_RS_451
I_laev_RS_460
V_cadu_JJ_847
V_spRADS3_RS_335
V_spRADS3_RS_339
V_peru_JJ_772
V_calo_RS_430
V_calo_RS_454
V_calo_RS_481
V_calo_RS_511
V_spRADS1_RS_432
V_spRADS1_RS_500
V_spRADS1_R1_510
V_spRADS1_RS_561
V_dix_RS_225
V_elon_RS_437
V_elon_RS_494
V_elon_RS_502
V_flex_RS_442
V_flex_RS_522
V_flex_RS_595
V_multin_RS_107
V_multin_RS_108
V_loret_RS_480
V_loret_RS_516
V_loret_RS_526
V_multi_RS_350
V_multi_RS_429
V_multi_RS_466
V_multi_RS_543
V_multi_RS_549
V_sebBL_RS_584
V_lorSL_RS_483
V_lorSL_RS_507
V_sebSL_RS_534
V_sebSL_RS_552
V_spRADS4_RS_213
V_spRADS4_RS_214
V_sur_RS_082
V_sur_RS_083
V_sur_RS_084
V_sur_RS_216
V_sur_RS_248
V_sur_RS_324
V_sur_RS_428
V_sur_RS_489
V_sur_RS_501
C_cap_RS_551
C_debilis_7209
I_juru_RS_451
I_laev_RS_460

V_sur_RS_489
 V_sur_RS_501
 TCCTCCAAACAGCAGCTAAAATCATCATATTCGTTTACTTTTAGGCTGTG TCCTCCAAACAGCAGCTAAAATCATCATATTCGTTTACTTTTAGGCTGTG

ACCCGCCCAATGGATGAATGGTTCAATTCTCATGAAGGTGTGACATTTGT ACCTGCCCAATGGATGAATGGTTCAATTCTCATGAAGGTGTGACATT-GT ACCCGCCCAATGGATGAATGGTTCAATTCTCATGAAGGTGTGACATTTGT ACCCGCCCAATGGATGAATGGTTCAATTCTCATGAAGGTGTGACATTTGT ACYCACCCAATGGATGAATGGTTCAATTCTCACRAAGGTGTGACATTTGT ACCCACCCAATGGATGAATGGTTCAATTCTCATGAAGGTGTGACATTTGT ACCCACCCAATGGATGAATGGTTCAATTCTCATGAAGGTGTGACATTTGT ACCCACCCAATGGATRAATGGTTCAATTCTCATGAAGGTGTGACATTTGT ACCCACCCAATGGATGAATGGTTCAATTCTCATGAAGGTGTGACATTTGT ACCCACCCAATGGATGAATGGTTCAATTCTCATGAAGGTGTGACATTTGT ACCCACCCAATGGATGAATGGTTCAATTCTCATGAAGGTGTGACATTTGT ACCCACCCAATGGATGAATGGTTCAATTCTCATGAAGGTGTGACATTTGT ACCCACCCAATGGATGAATGGTTCAATTCTCATGAAGGTGTGACATTTGT ACCCACCCAATGGATGAATGGTTCAATTCTCATGAAGGTGTGACATTTGT ACCCACCCAATGGAT?AATGGTTCAATTCTCATGAAGGTGTGACATTTGT ACCCACCCAATGGATGAATGGTTCAATTCTCATGAAGGTGTGACATTTGT ACCCACCCAATGGATAWATGGTTCAATTCTCATGAAGGTGTGACATTTGT ??ACATTTGT ACCCACCCAATGGATGAATGGTTCAATTCTCATGAAGGTGTGACATTTGT ACCCACCCAATGGATGAATGGTTCAATTCTCATGAAGGTGTGACATTTGT ACTCACCCAATGGATGAATGGTTCAATTCTCACGAAGGTGTGACATTTGT ACYCACCCAATGGATGAATGGTTCAATTCTCACRAAGGTGTGACATTTGT ACTCACCCAATGGATGAATGGTTCAATTCTCACGAAGGTGTGACATTTGT ACTCACCCAATGGATGAATGGTTCAATTCTCACGAAGGTGTGACATTTGT ACTCACCCAATGGATGAATGGTTCAATTCTCACGAAGGTGTGACATTTGT ACCCACCCAATGGATGAATGGTTCAATTCTCATGAAGGTGTGACATTTGT ACCCACCCAATGGATGAATGGTTCAATTCTCATGAAGGTGTGACATTTGT ACCCRCCCAATGGATAAATGGTTCAATTCTCATGAAGGTGTGACATTTGT ACTCACCCAATGGATGAATGGTTCAATTCTCACGAAGGTGTGACATTTGT ACTCACCCAATGGATGAATGGTTCAATTCTCACGAAGGTGTGACATTTGT ACTCACCCAATGGATGAATGGTTCAATTCTCACGAAGGTGTGACATTTGT ACTCACCCAATGGATGAATGGTTCAATTCTCACGAAGGTGTGACATTTGT ACTCACCCAATGGATGAATGGTTCAATTCTCACGAAGGTGTGACATTTGT ACCCACCCAATGGATGAATGGTTCAATTCTCATGAAGGTGTGACATTTGT ?? ACCCACCCAATGGATGAATGGTTCAATTCTCATGAAGGTGTGACATTTGT ACCCACCCAATGGATAAATGGTTCAATTCTCATGAAGGTGTGACATTTGT ACCCACCCAATGGATAAATGGTTCAATTCTCATGAAGGTGTGACATTTGT ATCCACCCAATGGATGAATGGTTCAATTCTCACGAAGGTGTGACATTTGT ATCCACCCAATGGATGAATGGTTCAATTCTCACGAAGGTGTGACATTTGT ACCCACCCAATGGATGAATAGTTCRGTTCTCATGAAGGTGTGACATTTGT ACCCACCCAATGGATGAATAGTTCAGTTCTCATGAAGGTGTGACATTTGT ACCCACCCAATGGATGAATAGTTCAGTTCTCATGAAGGTGTGACATTTGT ACCCACCCAATGGATGAATAGTTCAGTTCTCATGAAGGTGTGACATTTGT ?? ?? ACCCACCCAATGGATGAATAGTTCRGTTCTCATGAAGGTGTGACATTTGT ACCCACCCAATGGATGAATAGTTCAGTTCTCATGAAGGTGTGACATTTGT ACCCACCCAATGGATGAATAGTTCAGTTCTCATGAAGGTGTGACATTTGT

AAGATGATAAGA-GTGCC?GAGATCTAACAAATAAGGACTGCAGGAAAAT AAGATGATAAGA-GTGCC?GAGATCTAACAAATAAGGACTGCAGGAAAAT AAGATGATAAAGAGTGCCTGAGATCTAACAAATAAGGACTGCAGGAAAAA AAGATGATAAAGAGTGCCTGAGATCTAACAAATAAGGACTGCAGGAAAAA
$\begin{array}{ll}\text { V_cadu_JJ_847 } & \text { AAGATGATAAGA-GTRCCTGAGATCTAACAAATAAGGACTGCAGGAAAAT }\end{array}$ V_spRADS3_RS_335 AAGATGATATGA-GTGCCTGAGACGTAACAAGTAAGGAGTGCAGGAAAAA V_spRADS3_RS_339 V_peru_JJ_772 V_calo_RS_430 V_calo_RS_454 V_calo_RS_481 V_calo_RS_511 V_spRADS1_RS_432 V_spRADS1_RS_500 V_spRADS1_R1_510 V_spRADS1_RS_561 V_dix_RS_225 V_elon_RS_437 V_elon_RS_494 V_elon_RS_502 V_flex_RS_442 V_flex_RS_522 V_flex_RS_595 V_multin_RS_107 V_multin_RS_108 V_loret_RS_480 V_loret_RS_516 V_loret_RS_526 V_multi_RS_350 V_multi_RS_429 V_multi_RS_466 V_multi_RS_543 V_multi_RS_549 V_sebBL_RS_584 V_lorSL_RS_483 V_lorSL_RS_507 V_sebSL_RS_534 V_sebSL_RS_552 V_spRADS4_RS_213 V_spRADS4_RS_214 V_sur_RS_082 V_sur_RS_083 V_sur_RS_084 V_sur_RS_216 V_sur_RS_248 V_sur_RS_324 V_sur_RS_428 V_sur_RS_489 V_sur_RS_501

C_cap_RS_551
C_debilis_7209
I_juru_RS_451
I_laev_RS_460
V_cadu_JJ_847
V_spRADS3_RS_335 V_spRADS3_RS_339
V_peru_JJ_772
V_calo_RS_430
V_calo_RS_454
V_calo_RS_481 AAGATGATATGA-GTGCCTGAGACGTAACAAGTAAGGAGTGCAGGAAAAA AAGATGATATGA-GTGCCTGAGACGTAACAMATAAGGAGTGCRGGAAAAA AAGATGATATGA-GTGCCTGAGACGTAACAAGTAAGGAGTGCAGGAAAAA AAGATGATATGA-GTGCCTGAGACGTAACAAGTAAGGAGTGCAGGAAAAA AAGATGATATGA-GTGCCTGAGACGTAACAAGTAAGGAGTGCAGGAAAAA AAGATGATATGA-GTGCCTGAGACGTAACAAGTAAGGAGTGCAGGAAAAA AAGATGATATGA-GTGCCTGAGACATAACAAATAAGGAGTGCAGGAAAGA AAGATGATATGA-GTGCCTGAGACATAACAAATAAGGAGTGCAGGAAAGA AAGATGATATGA-GTGCCTGAGACATAACAAATAAGGAGTGCAGGAAA?A AAGATGATATGA-GTGCCTGAGACATAACAAATAAGGAGTGCAGGAAAGA AAGATGATATGA-GTGCCTGAGACGTAACAAATAAGGAGTGCAGGAAARA AAGATGATATGA-GTGCCTGAGACGTAACAAATAAGGAGTGCAGGAAAAA AAGATGATATGA-GTGCCTGAGACGTAACAAATAAGGAGTGCAGGAAAAA AAGATGATATGA-GTGCCTGAGACGTAACAAATAAGGAGTGCAGGAAAAA AAGATGATAAGA-GTGCCTGAGATCTAACAAATAAGGACTGCAGGAAAAT AAGATGATAAGA-GTGCCTGAGATCTAACAAATAAGGACTGCAGGAAAAT AAGATGATAAGA-GTGCCTGAGATCTAACAAATAAGGACTGCAGGAAAAT AAGATGATAAGA-GTGCCTGAGATCTAACAAATAAGGACTGCAGGAAAAT AAGATGATAAGA-GTRCCTGAGATCTAACAAATAAGGACTGCAGGAAAAT AAGATGATAWGA-GTGCCTGAGACGTAACAAATAAGGAGTGCAGGAAAGA AAGATGATAKGA-GTGCCTGAGACGTAACAAATAAGGAGTGCAGGAAARA AAGATGATATGA-GTGCCTGAGACGTAACAAATAAGGAGTGCAGGAAAAA AAGATGATAAGA-GTGYCTGAGATCTAACAAATAAGGACTGCAGGAAAAT AAGATGATAAGA-GTGCCTGAGATCTAACAAATAAGGACTGCAGGAAAAT AAGATGATAAGA-GTGCCTGAGATCTAACAAATAAGGACTGCAGGAAAAT AAGATGATAAGA-GTGCCTGAGATCTAACAAATAAGGACTGCAGGAAAAT AAGATGATAAGA-GTRCCTGAGATCTAACAAATAAGGACTGCAGGAAAAT AAGATGATATGA-GTGCCTGAGACGTAACAAATAAGGAGTGCAGGAAAAA ?? AAGATGATATGA-GTGCCTGAGACGTAACAAATAAGGAGTGCAGGAAAGA AAGATGATATGA-GTGCCTGAGACGTAACAAATAAGGAGTGCAGGAAAAA AAGATGATATGA-GTGCCTGAGACGTAACAAATAAGGAGTGCAGGAAAAA AAGATGATAAGA-GTGCCTGAGATCTAACAAATAAGGACTGCAGGAAAAT AAGATGATAAGA-GTGCCTGAGATCTAACAAATAAGGACTGCAGGAAAAT AAGATGATAARA-GTGCCTGAGATCTAACAAATAAGGACTGCAGGAAAAA AAGATGATAAAA-GTGCCTGAGATCTAACAAATAAGGACTGCAGGAAAAA AAGATGATAAAA-GTGCCTGAGATCTAACAAATAAGGACTGCAGGAAAAA AAGATGATAAGA-GTGCCTGAGATCTAACAAATAAGGACTGCAGGAAAAA ?? ?? AAGATGATAARA-GTGCCTGAGATCTAACAAATAAGGACTGCAGGAAAAA AAGATGATAAAA-GTGCCTGAGATCTAACAAATAAGGACTGCAGGAAAAA AAGATGATAAAA-GTGCCTGAGATCTAACAAATAAGGACTGCAGGAAAAA

TTTCTCATATAAAT--GACTTGGAATGTCTATAGACAGAGAAATGGCCTT TTTCTCATATACAT--GACTTGGAATGTCTATAGACAGAGAAATGGCCTT TTTCTCATATATATATGATTTGAAATGTCTATCGACAGA--AATGGCCTT TTTCTCATATATATATGATTTGAAATGTCTATCGACAGA--AATGGCCTT TTTCTCTTATATAT--GATTTGAGATGTCCATAGACAAAGAAATGGCCTT TTTCTCATATTTAT--GATTTGAGATGTCTATAGACAGAGAAATGGCCTT TTTCTCATATTTAT--GATTTGAGATGTCTATAGACAGAGAAATGGCCTT TTTCTCATATATAT--GATTTGAGATGTCTATAGACAGAGAAATGGCCTT TTTCTCATATATAT-- GATTTGAGATGTCTATAGACAGAGAAATGGCCTT TTTCTCATATATAT- - GATTTGAGATGTCTATAGACAGAGAAATGGCCTT TTTCTCATATATAT--GATTTGAGATGTCTATAGACAGAGAAATGGCCTT

V_calo_RS_511 TTTCTCATATATAT--GATTTGAGATGTCTATAGACAGAGAAATGGCCTT V_spRADS1_RS_432 TTTCTCATATATAT--GATTTGAGATGTCTATAGACAGAGAAATGGCCTT V_spRADS1_RS_500 TTTCTCATATATAT--GATTTGAGATGTCTATAGACAGAGAAATGGCCTT V_spRADS1_R1_510 T?TCTCATATATAT--GATTTGAGATGTCTATAGACAGAGAAATGGCCTT V_spRADS1_RS_561 TTTCTCATATATAT--GATTTGAGATGTCTATAGACAGAGAAATGGCCTT V_dix_RS_225 TTTCTCATATATAT--GATTTGWGATGTCTATAKACAGAGAAATGGCCTT V_elon_RS_437 TTTCTCATATATAT--GATTTGAGATGTCTATAGACAGAGAAATGGCCTT V_elon_RS_494 V_elon_RS_502 V_flex_RS_442 V_flex_RS_522 V_flex_RS_595 V_multin_RS_107 V_multin_RS_108 V_loret_RS_480 V_loret_RS_516 V_loret_RS_526 V_multi_RS_350 V_multi_RS_429 V_multi_RS_466 V_multi_RS_543 V_multi_RS_549 V_sebBL_RS_584 V_lorSL_RS_483 V_lorSL_RS_507 V_sebSL_RS_534 V_sebSL_RS_552 V_spRADS4_RS_213 V_spRADS4_RS_214 V_sur_RS_082 V_sur_RS_083 V_sur_RS_084 V_sur_RS_216 V_sur_RS_248 V_sur_RS_324 V_sur_RS_428 V_sur_RS_489 V_sur_RS_501 TTTCTCATATATAT--GATTTGAGATGTCTATAGACAGAGAAATGGCCTT TTTCTCATATATAT--GATTTGAGATGTCTATAGACAGAGAAATGGCCTT TTTCTCTTATATAT--GATTTGAGATGTCCATAGACAAAGAAATGGCCTT TTTCTCTTATATAT--GATTTGAGATGTCCATAGACAAAGAAATGGCCTT TTTCTCTTATATAT- - GATTTGAGATGTCCATAGACAAAGAAATGGCCTT TTTCTCTTATATAT- - GATTTGAGATGTCCATAGACAAAGAAATGGCCTT TTTCTCTTATATAT--GATTTGAGATGTCCATAGACAAAGAAATGGCCTT TTTCTCATATATAT--GATTTGAGATGTCTATAGACAGAGAAATGGCCTT TYTCTCATATATAT--GATTTGAGATGTCTATAGACAGAGAAATGGCCTT TTTCTCATATATAT- - GATTTGAGATGTCTATAGACAGAGAAATGGCCTT TTTCTCTTATATAT-- GATTTGAGATGTCCATAGACAAAGAAATGGCCTT TTTCTCTTATATAT--GATTTGAGATGTCCATAGACAAAGAAATGGCCTT TTTCTCTTATATAT--GATTTGAGATGTCCATAGACAAAGAAATGGCCTT TTTCTCTTATATAT--GATTTGAGATGTCCATAGACAAAGAAATGGCCTT TTTCTCTTATATAT--GATTTGAGATGTCCATAGACAAAGAAATGGCCTT TTTCTCATATATAT--GATTTGAGATGTCTATAGACAGAGAAATGGCCTT ??????????????--?????????????????????????????????? TTTCTCATATATAT--GATTTGAGATGTCTATAGACAGAGAAATGGCCTT TTTCTCATATATAT--GATTTGAGATGTCTATAGACAGAGAAATGGCCTT TTTCTCATATATAT--GATTTGAGATGTCTATAGACAGAGAAATGGCCTT TTTCTCTTATATAT--GATTTGAGATGTCTATAGACAGAGAAATGGCCTT TTTCTCTTATATAT- - GATTTGAGATGTCTATAGACAGAGAAATGGCCTT TTTCTCTTATATAT-- GATTTGAGATGTCTATAGACAGAGAAATGGCCTT TTTCTCTTATATAT--GATTTGAGATGTCTATAGACAGAGAAATGGCCTT TTTCTCTTATATAT--GATTTGAGATGTCTATAGACAGAGAAATGGCCTT TTTCTCTTATATAT--GATTTGAGATGTCTATAGACAGAGAAATGGCCTT ??????????????- -?????????????????????????????????? ??????????????--?????????????????????????????????? TTTCTCTTATATAT--GATTTGAGATGTCTATAGACAGAGAAATGGCCTT TTTCTCTTATATAT--GATTTGAGATGTCTATAGACAGAGAAATGGCCTT TTTCTCTTATATAT--GATTTGAGATGTCTATAGACAGAGAAATGGCCTT

TCACTCATGTTCTTTGTCCTTTTTAAATATCTTCTACGCCACATACTTGT TCACTAATGTTCTTTGTCCTTTTTAAATATCTTCTATGCCACATA?TTGT TCACTAATGTTCTTTGTCCTTTTTAAATATCTTCTATGCCACATACCTGT TCACTAATGTTCTTTGTCCTTTTTAAATATCTTCTATGCCACGTACTTGT TCACTAATGTTCTTTGTCCTTTATACAT??????????????ATACTTGT -CACTAATGTTCTTTGTCCTTTTTAAATATCTTCTATGCCACATACTTGT - CACTAATGTTCTTTGTCCTTTTTAAATATCTTCTATGCCACATACTTGT - САСТА??????????????????????ATCTTCTATGCCACATACTTGT - CACTAATGTTCTTTGTCCTTATTAAATATCTTCTATGCCACATACTTGT - CACTAATGTTCTTTGTCCTTA?TAA?TATCTTCTATGCCACATACTTGT - CACTAATGTTCTTTGTCCTTATTAAATATCTTCTATGCCACATACTTGT - CACTAATGTTCTTTGTCCTTT??????ATCTTCTATGCCACATACTTGT - CACTAATGTTCT???????????????ATCTTCTATGCCACATACTTGT - CACTAATGTTCTTTGTCCTTTTTAAATATCTTCTATGCCACATACTTGT - CACTAATGTTCTT??????????????ATCTTCTATGCCACATACTTGT - CACTAATGTTCTTTGTCCTTTTTAAATATCTTCTATGCCACATACTTGT - CACTAATGTTCTT??????????????ATCTTCTATGCCACATACTTGT - CAC????????????????????????ATCTTCTATGCCACATACTTGT

V_elon_RS_494
V_elon_RS_502
V_flex_RS_442
V_flex_RS_522
V_flex_RS_595
V_multin_RS_107
V_multin_RS_108
V_loret_RS_480
V_loret_RS_516
V_loret_RS_526
V_multi_RS_350
V_multi_RS_429
V_multi_RS_466
V_multi_RS_543
V_multi_RS_549
V_sebBL_RS_584
V_lorSL_RS_483
V_lorSL_RS_507
V_sebSL_RS_534
V_sebSL_RS_552
V_spRADS4_RS_213
V_spRADS4_RS_214
V_sur_RS_082
V_sur_RS_083
V_sur_RS_084
V_sur_RS_216
V_sur_RS_248
V_sur_RS_324
V_sur_RS_428
V_sur_RS_489
V_sur_RS_501
C_cap_RS_551
C_debilis_7209
I_juru_RS_451
I_laev_RS_460
V_cadu_JJ_847
V_spRADS3_RS_335
V_spRADS3_RS_339
V_peru_JJ_772
V_calo_RS_430
V_calo_RS_454
V_calo_RS_481
V_calo_RS_511
V_spRADS1_RS_432
V_spRADS1_RS_500
V_spRADS1_R1_510
V_spRADS1_RS_561
V_dix_RS_225
V_elon_RS_437
V_elon_RS_494
V_elon_RS_502
V_flex_RS_442
V_flex_RS_522
V_flex_RS_595
V_multin_RS_107
V_multin_RS_108

- CACTAATGTTCTTTGTCCTTTTTAAATATCTTCTATGCCACATACTTGT - CACTAACGTTCTT??????????????ATCTTCTATGCCACATACTTGT TCACTAATGTTCTTTGTCCTTTATACATATCTTCTACGCCACATACTTGT TCACTAATGTTCTTTGTCCTTTATACAT??????????????????????
TCACTAATGTTCTTTGTCCTTTATACAT?????????????????????? TCACTAATGTTCTTTGTCCTTTATACATAT?TTCTACGCCACATACTTGT TCACTAATGTTCTTTGYCCTTTATACATATSTTCTACGCCACATACTTGT - CACTAATGTTCTTTGTCCTTTTTAAATATCTTCTATGCCACATACTTGT - CACTAA?????????????????????ATCTTCTATGCCACATACTTGT - CACTA??GTTCTTTGYCCTTTTTAAATATCTTCTATGCCACATACTTGT TCACTAATGTTCTTTGTCCTTTATACATATCTTCTACGCCACATACTTGT TCACTAATGTTCTTTGTCCTTTATACATATCTTCT?YGCCACATACTTGT TCACTAATGTTCTTTGTCCTTTATACATATCTTCTACGCCACATACTTGT TCACTAATGTTCTTTGTCCTTTATACATATCTTCTATGCCACATACTTGT TCACTAATGTTCTTTGTCCTTTATACATATCTTCTATGCCACATACTTGT - CACTAATGTTCTTTGTCCTTTTTAAATATCTTCTATGCCACATACTTGT ????????????????????????????ATCTTCTATGCCACATACTTGT - CACTAATGTTCTTTGTCCTTTTTAAATATCTTCTATGCCACATACTTGT - CACTAATGTTCTTTGTCCTTTTTAAATATCTTCTATGCCACATACTTGT - CACTAATGTTCTTTGTCCTTTTTAAATATCTTCTATGCCACATACTTGT TCACTAATGTTCTTTGTCCTTTATAAATATCTTCTACGCCACATACTTGT TCACTAATGTTCTTTGTCCTTTATAAATATCTTCTACGCCACATACTTGT TCACTAATGTTCTTTGTCCTTTAT?AATATCTTCTACGCCACATACTTGT TCACTAATGTTCTTTGTCCTTTATGAATATCTTCTACGCCACATACTTGT TCACTAATGTTCTTTGTCCTTTATGAATAT?TTCTACGCCACATACTTGT TCACTAATGTTCTTTGTCCTTTATAAATATCTTCTACGCCACATACTTGT ????????????????????????????ATCTTCTACGCCACATACTTGT ????????????????????????????ATCTTCTACGCCACATACTTGT TCACTAATGTTCTTTGTCCTTTATGAATATCTTCTACGCCACATACTTGT TCACTAATGTTCTTTGTCCTTTATGAATATCTTCTACGCCACATACTTGT TCACTAATGTTCTTTGTCCTTTATGAATATCTTCTACGCCACATACTTGT

CTG?GAAAATTGGGTATTGGAGGTACATAACTATTTACAGGCATTTGAAG CTGAGAAAATTGGGTATTGGAGGTACATAACTATTTACAGGCATTTGAAG CTGAGAAAATTGGGTATTGGAGGTACATAACTATTTACAGGCATTTGAAG CTGAGAAAATTGGGTATTGGAGGTACATAACTATTTACAGGCATTTGAAG CTGAGAAAATTGGGTATTGGAGGTACATAACCATTTACAGGCATTTGAAG CTGAGAAAATTGGGTATTGGAGGTACATAACTATTTACCGGCATTTGAAG CTGAGAAAATTGGGTATTGGAGGTACATAACCATTTACAGGCATTTGAAG ?????????????????TGGAGGTACATAACCATTTACAGGCATTTGAAG ???????????????????GAGGTACATAACCATTTACAGGCATTTGAAG CTGAGAAAATTGGGTATTGGAGGTACATAACCATTTACAGGCATTTGAAG CTGAGAAAATTGGGTATTGGAGGTACATAACCATTTACAGGCATTTGAAG

V_loret_RS_480 V_loret_RS_516 V_loret_RS_526 V_multi_RS_350 V_multi_RS_429 V_multi_RS_466 V_multi_RS_543 V_multi_RS_549 V_sebBL_RS_584 V_lorSL_RS_483 V_lorSL_RS_507 V_sebSL_RS_534 V_sebSL_RS_552 V_spRADS4_RS_213 V_spRADS4_RS_214 V_sur_RS_082 V_sur_RS_083 V_sur_RS_084
V_sur_RS_216
V_sur_RS_248
V_sur_RS_324
V_sur_RS_428
V_sur_RS_489
V_sur_RS_501
C_cap_RS_551
C_debilis_7209
I_juru_RS_451
I_laev_RS_460
V_cadu_JJ_847
V_spRADS3_RS_335 V_spRADS3_RS_339 V_peru_JJ_772 V_calo_RS_430
V_calo_RS_454
V_calo_RS_481
V_calo_RS_511
V_spRADS1_RS_432
V_spRADS1_RS_500
V_spRADS1_R1_510
V_spRADS1_RS_561
V_dix_RS_225
V_elon_RS_437
V_elon_RS_494
V_elon_RS_502
V_flex_RS_442
V_flex_RS_522
V_flex_RS_595
V_multin_RS_107
V_multin_RS_108
V_loret_RS_480
V_loret_RS_516
V_loret_RS_526
V_multi_RS_350
V_multi_RS_429
V_multi_RS_466
V_multi_RS_543

CTGAGAAAATTGGGTATTGGMGGTACATAACTATTTACCGGCATTTGAAG CTGAGAAAATTGGGTATTGGAGGTACATAACTATTTACCGGCATTTGAAG CTGAGAAAATTGGGTATTGGAGGTACATAACTATTTACCGGCATTTGAAG CTGAGAAAATTGGGTATTGGAGGTACATAACCATTTACAGGCATTTGAAG CTGAGAAAATTGGGTATTGGAGGTACATAACCATTTACAGGCATTTGAAG CTGAGAAAATTGGGTATTGGAGGTACATAACCATTTACAGGCATTTGAAG CTGAGAAAATTGGGTATTGGAGGTACATAACCATTTACAGGCATTTGAAG CTGAGAAAATTGGGTATTGGAGGTACATAACCATTTACAGGCATTTGAAG CTGAGAAAATTGGGTATTGGAGGTACATAACTATTTACCGGCATTTGAAG CTGAGAAAATTGGGTATTGGAGGTACATAACTATTTACCGGCATTTGAAG CTGAGAAAATTGGGTATTGGAGGTACATAACTATTTACCGGCATTTGAAG CTGAGAAAATTGGGTATTGGAGGTACATAACTATTTACCGGCATTTGAAG CTGAGAAAATTGGGTATTGGAGGTACATAACTATTTACCGGCATTTGAAG CTGAGAAAATTGGGTATTGGAGGTACATAACCATTTACAGGCATTTGAAG CTGAGAAAATTGGGTATTGGAGGTACATAACCATTTACAGGCATTTGAAG CTGAGAAAATTGGGTATTGGAGGTACATCACTATTTACAGGCATTTGAAG CTGAGAAAATTGGGTATTGGAGGTACATCACTATTTACAGGCATTTGAAG CTGAGAAAATTGGGTATTGGAGGTACATCACTATTTACAGGCATTTGAAG CTGAGAAAATTGGGTATTGGAGGTACATCACTATTTACAGGCATTTGAAG CTGAGAAAATTGGGTATTGGAGGTACATCACTATTTACAGGCATTTGAAG CTGAGAAAATTGGGTATTGGAGGTACATCACTATTTACAGGCATTTGAAG CTGAGAAAATTGGGTATTGGAGGTACATCACTATTTACAGGCATTTGAAG CTGAGAAAATTGGGTATTGGAGGTACATCACTATTTACAGGCATTTGAAG CTGAGAAAATTGGGTATTGGAGGTACATCACTATTTACAGGCATTTGAAG

GCCAACCCAGAGTACCAACTTTACCCAATCTTCAAGTATTTCGAGAACTG GCCAACCCAGAGTACCAACTTTACCCAATCTTCAAGTATTTCGAGAACTG GCCAACCCAGAGTACCAACTTTACCCAATCTTCAAGTATTTTGAGAACTG GCCAACCCAGAGTACCAACTTTACCCAATCTTCAAGTATTTTGAGAACTG GCCAACCCAGAGTACCAACTTTACCCAATCTTCAAGTATTTCGAGAACTG GCCAACCCAGAGTACCAACTTTACCCAATCTTCAAGTATTTCGAGAACTG

V_multi_RS_549
V_sebBL_RS_584
V_lorSL_RS_483
V_lorSL_RS_507
V_sebSL_RS_534
V_sebSL_RS_552
V_spRADS4_RS_213
V_spRADS4_RS_214
V_sur_RS_082
V_sur_RS_083
V_sur_RS_084
V_sur_RS_216
V_sur_RS_248
V_sur_RS_324
V_sur_RS_428
V_sur_RS_489
V_sur_RS_501
C_cap_RS_551
C_debilis_7209
I_juru_RS_451
I_laev_RS_460
V_cadu_JJ_847
V_spRADS3_RS_335
V_spRADS3_RS_339
V_peru_JJ_772
V_calo_RS_430
V_calo_RS_454
V_calo_RS_481
V_calo_RS_511
V_spRADS1_RS_432
V_spRADS1_RS_500
V_spRADS1_R1_510
V_spRADS1_RS_561
V_dix_RS_225
V_elon_RS_437
V_elon_RS_494
V_elon_RS_502
V_flex_RS_442
V_flex_RS_522
V_flex_RS_595
V_multin_RS_107
V_multin_RS_108
V_loret_RS_480
V_loret_RS_516
V_loret_RS_526
V_multi_RS_350
V_multi_RS_429
V_multi_RS_466
V_multi_RS_543
V_multi_RS_549
V_sebBL_RS_584
V_lorSL_RS_483
V_lorSL_RS_507
V_sebSL_RS_534
V_sebSL_RS_552
V_spRADS4_RS_213

GCCAACCCAGAGTACCAACTTTACCCAATCTTCAAGTATTTCGAGAACTG GCCAACCCAGAGTACCAACTTTACCCAATCTTCAAGTATTTCGAGAACTG

GTGCCAGGATGAGAATAGGCATGGAGATTTCTTCTCTGCATTGATGAAGG GTGCCAGGATGAGAATAGGCATGGAGA?TTCTTCTCTGCATTGATGAAGG GTGCCAGGATGAGAACAGGCATGGAGATTTCTTCTCTGCATTGATGAAGG GTGCCAGGATGAGAACAGGCATGGAGATTTCTTCTCTGCATTGATGAAGG GTGCCAGGATGAGAACAGGCAYGGAGATTTCTTCTCTGCATTGATGAAGG GTGCCAGGATGAGAACAGGCATGGAGATTTCTTCTCTGCATTGATGAAGG GTGCCAGGATGAGAACAGGCATGGAGATTTCTTCTCTGCATTGATGAAGG

V_spRADS4_RS_214 V_sur_RS_082
V_sur_RS_083
V_sur_RS_084
V_sur_RS_216
V_sur_RS_248
V_sur_RS_324
V_sur_RS_428
V_sur_RS_489
V_sur_RS_501
C_cap_RS_551
C_debilis_7209
I_juru_RS_451
I_laev_RS_460
V_cadu_JJ_847
V_spRADS3_RS_335
V_spRADS3_RS_339
V_peru_JJ_772
V_calo_RS_430
V_calo_RS_454
V_calo_RS_481
V_calo_RS_511
V_spRADS1_RS_432
V_spRADS1_RS_500
V_spRADS1_R1_510
V_spRADS1_RS_561
V_dix_RS_225
V_elon_RS_437
V_elon_RS_494
V_elon_RS_502
V_flex_RS_442
V_flex_RS_522
V_flex_RS_595
V_multin_RS_107
V_multin_RS_108
V_loret_RS_480
V_loret_RS_516
V_loret_RS_526
V_multi_RS_350
V_multi_RS_429
V_multi_RS_466
V_multi_RS_543
V_multi_RS_549
V_sebBL_RS_584
V_lorSL_RS_483
V_lorSL_RS_507
V_sebSL_RS_534
V_sebSL_RS_552
V_spRADS4_RS_213
V_spRADS4_RS_214
V_sur_RS_082
V_sur_RS_083
V_sur_RS_084
V_sur_RS_216
V_sur_RS_248
V_sur_RS_324

GTGCCAGGATGAGAACAGGCATGGAGATTTCTTCTCTGCATTGATGAAGG GTGCCAGGATGAGAACAGGCATGGAGATTTCTTCTCTGCATTGATGAAGG GTGCCAGGATGAGAACAGGCATGGAGATTTCTTCTCTGCATTGATGAAGG GTGCCAGGATGAGAACAGGCATGGAGATTTCTTCTCTGCATTGATGAAGG GTGCCAGGATGAGAACAGGCATGGAGATTTCTTCTCTGCATTGATGAAGG GTGCCAGGATGAGAACAGGCATGGAGATTTCTTCTCTGCATTGATGAAGG GTGCCAGGATGAGAACAGGCATGGAGATTTCTTCTCTGCATTGATGAAGG GTGCCAGGATGAGAACAGGCATGGAGATTTCTTCTCTGCATTGATGAAGG GTGCCAGGATGAGAACAGGCATGGAGATTTCTTCTCTGCATTGATGAAGG GTGCCAGGATGAGAACAGGCATGGAGATTTCTTCTCTGCATTGATGAAGG

CGCAGCCTCAATTCCTCAATGACTGGAAAGCGAAGCTGTGGGCTCGTTTC C?CAGCCTCAATTCCTCAATGACTGGAAAGCGAAGCTGTGGGCTCGTTTC CACAGCCTCAATTCCTCAATGACTGGAAAGCGAAGCTGTGGGCTCGTTTC CACAGCCTCAATTCCTCAATGACTGGAAAGCGAAGCTGTGGGCTCGTTTC CGCAGCCTCAATTCCTCAATGACTGGAAAGCGAAGCTGTGGGCTCGTTTC CGCAGCCTCAATTCCTCAATGACTGGAAAGCGAAGYTGTGGGCTCGTTTC CGCAGCCTCAATTCCTCAATGACTGGAAAGCGAAGCTGTGGGCTCGTTTC CGCAGCCTCAATTCCTCAATGACTGGAAAGCGAAGCTGTGGGCTCGTTTC CGCAGCCTCAATTCCTCAATGACTGGAAAGCRAAGCTGTGGGCTCGTTTC CGCAGCCTCAATTCCTCAATGACTGGAAAGCGAAGCTGTGGGCTCGTTTC CGCAGCCTCAATTCCTCAATGACTGGAAAGCGAAGCTGTGGGCTCGTTTC CGCAGCCTCAATTCCTCAATGACTGGAAAGCGAAGCTGTGGGCTCGTTTC CGCAGCCTCAATTCCTCAATGACTGGAAAGCGAAGCTGTGGGCTCGTTTC CGCAGCCTCAATTCCTCAATGACTGGAAAGCGAAGTTGTGGGCTCGTTTC CGCAGCCTCAATTCCTCAATGACTGGAAAGCGAAGCTGTGGGCTCGTTTC CGCAGCCTCAATTCCTCAATGACTGGAAAGCGAAGCTGTGGGCTCGTTTC CRCAGCCTCAATTCCTCAATGACTGGAAAGCGAAGCTGTGGGCTCGTTTC CGCAGCCTCAATTCCTCAATGACTGGAAAGCGAAGCTGTGGGCTCGTTTC CGCAGCCTCAATTCCTCAATGACTGGAAAGCAAAGCTGTGGGCTCGTTTC CGCAGCCTCAATTCCTCAATGACTGGAAAGCAAAGCTGTGGGCTCGTTTC CGCAGCCTCAATTCCTCAATGACTGGAAAGCGAAGCTGTGGGCTCGTTTC CGCAGCCTCAATTCCTCAATGACTGGAAAGCGAAGCTGTGGGCTCGTTTC CRCAGCCTCAATTCCTCAATGACTGGAAAGCGAAGCTGTGGGCTCGTTTC CGCAGCCTCAATTCCTCAATGACTGGAAAGCGAAGCTGTGGGCTCGTTTC CGCAGCCTCAATTCCTCAATGACTGGAAAGCGAAGCTGTGGGCTCGTTTC CGCAGCCTCAATTCCTCAATGACTGGAAAGCGAAGCTGTGGGCTCGTTTC

V_sur_RS_428	CGCAGCCTCAATTCCTCAATGACTGGAAAGCGAAGCTGTGGGC
V_sur_RS_489	CGCAGCCTCAATTCCTCAATGACTGGAAAGCGAAGCTGTGGGCTCGTTTC
V_sur_RS_501	CRCAGCCTCAATTCCTCAATGACTGGAAAGCGAAGCTGTGGGCTCGTTTC
C_cap_RS_551	TTC
C_debilis_7209	TTCTGTCTATCGGTAAATGTTATTCA
I_juru_RS_451	TTCTGTCTATCGGTAAATGTTATTCAATTTTA
I_laev_RS_460	TTCTGTCTATCGGTAAATGTTATTCAATTTTAT
V_cadu_JJ_847	TTCTGTCTATCGGTAAATGTTATTCAATTTTCT
V_spRADS3_RS_335	TTCTGTCTATCAGT
V_spRADS3_RS_339	TTCTGTCTATCAGTAAATGCTATTCA
V_peru_JJ_772	TTCTGTCTATCAGTAAATGCTATTCAATTTTCT
V_calo_RS_430	TTCTGTCTATCAGTAAATGCTATTCAATTTTCTTA
V_calo_RS_454	TTCTGTCTATCAGTAAATGCTATTCA
V_calo_RS_481	TTCTGTCTATCAGTAAATGCT
V_calo_RS_511	TTCTGTCTATCAGTAAATGCTATTCAATTTTC
V_spRADS1_RS_432	TTCTGTCTATCAGTAAATGCTATTCAATTTTCT
V_spRADS1_RS_500	TTCTGTCTATCAGTAAATGCTATTCAATT
V_spRADS1_R1_510	TTCTGTCTATCAGTAAATGCTATTC
V_spRADS1_RS_561	TTCTGTCTATCAGTAAATGCTATTCA
V_dix_RS_225	TTCTGTCTATCAGTAAATGCTATTCAATTTCCTTAT---------AT
V_elon_RS_437	TTCTGTCTATCAGTAAATGCTATTCAATTTTCTTA
V_elon_RS_494	TTCTGTCTATCAGTAAATGCTATTCA
V_elon_RS_502	TTCTGTCTATCAGTAAATGCTATTCAAT
V_flex_RS_442	TTCTGTCTATCGGTAAATGTTATTCAATTTTCT
V_flex_RS_522	TTCTGTCTATCGGTAAATGTTATTCAATTTTCTWA
V_flex_RS_595	TTCTGTCTATCGGTAAATGTTATTCAATTTTC
V_multin_RS_107	TTCTGTCTATCGGTAAATGTTATTCAATTT
V_multin_RS_108	TTCTGTCTATCGGTAAATGTTATTCAAT
V_loret_RS_480	TTCTGTCTATCAGTAAATGCTATTCAATTTTCT
V_loret_RS_516	TTCTGTCTATCAGTAAATGCTATTCAATTTTCTTAT--------- ${ }^{\text {AT }}$
V_loret_RS_526	TTCTGTCTATCAGTAAATGCTATTCAATTTTCT
V_multi_RS_350	TTCTGTCTATCGGTAAATKTTATTCAATTTTCT
V_multi_RS_429	TTCTGTCTATCGGTAAATGTTATTCAATTTTC
V_multi_RS_466	TTCTGTCTATCGGTAAATGTTATTCAATTTTCT
V_multi_RS_543	TTCTGTCTATCGGTAAATGTTATTCAATTTTCT
V_multi_RS_549	TTCTGTCTATCGGTAAATGTTATTCAATTTTCTTAT---------
V_sebBL_RS_584	TTCTGTCTATCAGTAAATGCTATTAAATTTTC
V_lorSL_RS_483	TTCTGTCTATCAGTAAATGCTATTCAATTTTCT
V_lorSL_RS_507	TTCTGTCTATCAGTAAATGCTATTCAATTTTCT
V_sebSL_RS_534	TTCTGTCTATCAGTAAATGCTATTCAATTTTCT
V_sebSL_RS_552	TTCTGTCTATCAGTAAATGCTATTCAATTTTC
V_spRADS4_RS_213	TTCTGTCTATCGGTAAATGTTATTCAATTTTCTTAT---------ATTT
V_spRADS4_RS_214	TTCTGTCTATCGGTAAATGTTATTCAATTTTCTTAT--------- ${ }^{\text {- }}$ -
V_sur_RS_082	TTCTGTCTATCGGTAAATATTATTCAATTTTATTATTACTATTATTATTT
V_sur_RS_083	TTCTGTCTATCGGTAAATATTATTCAATTTTATTATTACTATTATTATTT
V_sur_RS_084	TTCTGTCTATCGGTAAATATTATTCAATTTTATTATTACTATTATTATTT
V_sur_RS_216	TTCTGTCTATCGGTAAATATTATTCAATTTTATTATTACTATTATTATTT
V_sur_RS_248	TTCTGTCTATCGGTAAATATTATTCAATTTTATTATTACTATTATTATTT
V_sur_RS_324	TTCTGTCTATCGGTAAATATTATTCAATTTTATTATTACTATTATTATTT
V_sur_RS_428	TTCTGTCTATCGGTAAATATTATTCAATTTTATTATTACTATTATTATTT
V_sur_RS_489	TTCTGTCTATCGGTAAATATTATTCAATTTTATTATTACTATTATTATTT
V_sur_RS_501	TTCTGTCTATCGGTAAATATTATTCAATTTTATTATTACTATTATTATT
C_cap_RS_551	TTTAGCCTTTTCATATTTCACTGGGCATGATTATTCTGATTATTGGAGAC
C_debilis_7209	TTTAGCCTTTTCATATTTCACTGGGCATGATTCTTCTGATTATTGTAGAC
I_juru_RS_451	TTCAGCCTTTTCATATTTCACTGGGCATGATTCTTATGATTATTGGATAC

I_laev_RS_460 TTTAGCCTTTTCATATTTCACTGGGCATGATTCTTATGATTATTGGATAC V_cadu_JJ_847 TTTAGCCTTTTCATATTTCACTGGGCATGATTCTTCTGATTGYTGGAGAC V_spRADS3_RS_335 ATTAGCCTTTTCATATTTCACTGGGCATGATTCTTCTGATTATTGGAGAC V_spRADS3_RS_339 V_peru_JJ_772 V_calo_RS_430 V_calo_RS_454
V_calo_RS_481
V_calo_RS_511 V_spRADS1_RS_432 V_spRADS1_RS_500 V_spRADS1_R1_510 V_spRADS1_RS_561 V_dix_RS_225 V_elon_RS_437 V_elon_RS_494 V_elon_RS_502 V_flex_RS_442 V_flex_RS_522 V_flex_RS_595 V_multin_RS_107 V_multin_RS_108 V_loret_RS_480 V_loret_RS_516 V_loret_RS_526 V_multi_RS_350 V_multi_RS_429 V_multi_RS_466 V_multi_RS_543 V_multi_RS_549 V_sebBL_RS_584 V_lorSL_RS_483 V_lorSL_RS_507 V_sebSL_RS_534 V_sebSL_RS_552 V_spRADS4_RS_213 V_spRADS4_RS_214 V_sur_RS_082 V_sur_RS_083 V_sur_RS_084 V_sur_RS_216 V_sur_RS_248 V_sur_RS_324 V_sur_RS_428 V_sur_RS_489 V_sur_RS_501

C_cap_RS_551
C_debilis_7209
I_juru_RS_451
I_laev_RS_460
V_cadu_JJ_847
V_spRADS3_RS_335
V_spRADS3_RS_339
V_peru_JJ_772
V_calo_RS_430
V_calo_RS_454

ATTAGCCTTTTCATATTTCACTGGGCATGATTCTTCTGATTATTGGAGAC TTTAGCCTTTTCATATTTCACTGGGCATGATTCTTCTGATTATTGGAGAC ATTAGCCTTTTCATATTTCACTGGGCATGATTCTTCTGATTATTGGAGAC ATTAGCCTTTTCATATTTCACTGGGCATGATTCTTCTGATTATTGGAGAC ATTAGCCTTTTCATATTTCACTGGGCATGATTCTTCTGATTATTGGAGAC ATTAGCCTTTTCATATTTCACTGGGCATGATTCTTCTGATTATTGGAGAC TTTAGCCTTTTCATATTTCACTGGGCATGATTCTTCTGATTATTGGAGAC TTTAGCCTTTTCATATTTCACTGGGCATGATTCTTCTGATTATTGGAGAC TTTAGCCTTTTCATATTTCACTGGGCATGATTCTTCTGATTATTGGAGAC TTTAGCCTTTTCATATTTCACTGGGCATGATTCTTCTGATTATTGGAGAC TTTAGCCTTTTCGTATTTCACTGGGCATGATTCTTCTGATTATTGGAGAC TTTAGCCTTTTCATATTTCACTGGGCATGATTCTTCTGATTATTGGAGAC TTTAGCCTTTTCATATTTCACTGGGCATGATTCTTCTGATTATTGGAGAC TTTAGCCTTTTCATATTTCACTGGGCATGATTCTTCTGATTATTGGAGAC TTTAGCCTTTTCATATTTCACTGGGCTTGATTCTTCTGATTGTTGGAGAC TTTAGCCTTTTCATATTTCACTGGGCATGATTCTTCTGATTGTTGGAGAC TTTAGCCTTTTCATATTTCACTGGGCWTGATTCTTCTGATTGTTGGAGAC TTTAGCCTTTTCATATTTCACTGGGCATGATTCTTCTGATTGTTGGAGAC TTTAGCCTTTTCATATTTCACTGGGCATGATTCTTCTGATTGTTGGAGAC TTTAGCCTTTTCATATTTCACTGGGCATGATTCTTCTGATTATTGGAGAC TTTAGCCTTTTCATATTTSACTGGGCATGATTCTTCTGATTATTGGAGAC TTTAGCCTTTTCATATTTSACTGGGCATGATTCTTCTGATTATTGGAGAC TTTAGCCTTTTCATATWTCACTGGGCRWGATTCTTCTGATTGTTGGAGAC TTTAGCCTTTTCATATTTCACTGGGCATGATTCTTCTGATTRTTGGAGAC TTTAGCCTTTTCATATTTCACTGGGCATGATTCTTCTGATTGTTGGAGAC TTTAGCCTTTTCATATTTCACTGGGCATGATTCTTCTGATTGTTGGAGAC TTTAGCCTTTTCATATTTCACTGGGCATGATTCTTCTGATTGTTGGAGAC TTTAGCCTTTTCATATTTCACTGGGCATGATTCTTCTGATTATTGGAGAC TTTAGCCTTTTCATATTTCACTGGGCATGATTCTTCTGATTATTGGAGAC TTTAGCCTTTTCA?ATTTCACTGGGCATGATTCTTCTGATTATTGGAGAC TTTAGCCTTTTCATATTTCACTGGGCATGATTCTTCTGATTATTGGAGAC TTTAGCCTTTTCATATTTCACTGGGCATGATTCTTCTGATTATTGGAGAC CTTAGCCTTTTCATATTTCACTGGGCATGATTCTTCTGATTATTGGAGAC CTTAGCCTTTTCATATTTCACTGGGCATGATTCTTCTGATTATTGGAGAC TTTTGCCTTTTCATATTTCACCGGGCATGATTCTTCTGATTATTGGAGAC TTTTGCCTTTTCATATTTCACCGGGCATGATTCTTCTGATTATTGGAGAC TTTTGCCTTTTCATATTTCACCGGGCATGATTCTTCTGATTATTGGAGAC TTTTGCCTTWWCATATTTCACCGGGGWTGATTCTTCTGATTATTGGAGAC TTTTGCCTTTTCATATTTCACCGGGCATGATTCTTCTGATTATTGGAGAC TTTTGCCTTTTCATATTTCACCGGGCATGATTCTTCTGATTATTGGAGAC TTTTGCCTTTTCATATTTCACCGGGCATGATTCTTCTGATTATTGGAGAC TTTTGCCTTTTCATATTTCACCGGGCATGATTCTTCTGATTATTGGAGAC TTTTGCCTTTTCATATTTCACCGGGCATGATTCTTCTGATTATTGGAGAC

TCACAATCTGTTGCTTCCAGCTTTTGATTTTTCATGGATGAAGTGGTTTC TCACAATCTGTTGCTTCAAG?TTTTGATTTTTCATGGATGAAG??GTTTC TCACAATCTGTTGCTTCCAGCTTTTGATTTTTCATGGATGAAGTAGTTTC TCACAATCTGT?GCTTCCAGCTTTTGATTTTTCATGGATGAAGTAGTTTC TCACAATCTGTTGCTTCCAGCTTTTGATTTTTCATGGATGAAGTGGTTTC TCACAATCTGTTGCTTCCAGCTTTTGATTTTTCATGGATGAAGTGGTTTC TCACAATCTGTTGCTTCCAGCTTTTGATTTTTCATGGATGAAGTGGTTTC TCACAATCTGTTGCTTCCAGCTTTTGATTTTTCATGGATGAAGTGGTTTC TCACAATCTGTTGCTTCCAGCTTTTGATTTTTCATGGATGAAGTGGTTTC TCACAATCTGTTGCTTCCAGCTTTTGATTTTTCATGGATGAAGTGGTTTC

V_calo_RS_481 TCACAATCTGTTGSTTCCAGCTTTTGATTTTTCATGGATGAAGTGGTTTC V_calo_RS_511 TCACAATCTGTTGCTTCCAGCTTTTGATTTTTCATGGATGAAGTGGTTTC V_spRADS1_RS_432 TYACAATCTGTTGCTTCCAGCTTTTGAYTTTTCATGGATGAAGTGGTTTC V_spRADS1_RS_500 TYACAATCTGTTGCTTCCAGCTTTTGAYTTTTCATGGATGAAGTGGTTTC V_spRADS1_R1_510 TTACAATCTGTTGCTTCCAGCTTTTGAYTTTTCATGGATGAAGTGGTTTC V_spRADS1_RS_561 TYACAATCTGTTGCTTCCAGCTTTTGATTTTTCATGGATGAAGTGGTTTC V_dix_RS_225 TTACAATCTGTTGCTTCCAGCTTTTGATTTTTCATGGATGAAGTGGTTTC V_elon_RS_437 V_elon_RS_494 V_elon_RS_502 V_flex_RS_442 V_flex_RS_522 V_flex_RS_595 V_multin_RS_107 V_multin_RS_108 V_loret_RS_480
V_loret_RS_516
V_loret_RS_526
V_multi_RS_350
V_multi_RS_429
V_multi_RS_466
V_multi_RS_543
V_multi_RS_549
V_sebBL_RS_584
V_lorSL_RS_483
V_lorSL_RS_507
V_sebSL_RS_534
V_sebSL_RS_552
V_spRADS4_RS_213
V_spRADS4_RS_214
V_sur_RS_082
V_sur_RS_083
V_sur_RS_084
V_sur_RS_216
V_sur_RS_248
V_sur_RS_324
V_sur_RS_428
V_sur_RS_489
V_sur_RS_501
C_cap_RS_551
C_debilis_7209
I_juru_RS_451
I_laev_RS_460
V_cadu_JJ_847
V_spRADS3_RS_335
V_spRADS3_RS_339
V_peru_JJ_772
V_calo_RS_430
V_calo_RS_454
V_calo_RS_481
V_calo_RS_511
V_spRADS1_RS_432 V spRADS1 RS 500 AAAAGTGGATTTTGTGGGTCATCTGTTCTCTTTTTATGTTGCTTATGCTT V_spRADS1_R1_510 AAAAGTGGATTTTGTGGGTCATCTGTTCTCTTTTTATGTTGCTTATGCTT V_spRADS1_RS_561 AAAAGTGGATTTTGTGGGTCATCTGTTCTCTTTTTATGTTGCTTATGCTT V_dix_RS_225 AAAAGTGGATTTTGTGGGTCATCTGTTCTCTTTTTATGTTGCTTATGCTT

V_elon_RS_437	AAAAGTGGATTTTGTGGGTCATCTGTTCTCTTTTTATGTTGCTTATGCTT
V_elon_RS_494	AAAAGTGGATTTTGTGGGTCATCTGTTCTCTTTTTATGTTGCTTATGCTT
V_elon_RS_502	AAAAGTGGATTTTGTGGGTCATCTGTTCTCTTTTTATGTTGCTTATGCTT
V_flex_RS_442	AAAAGTGGATTTTGTGGGTCATCTGTTCTCTTTTTATGTTGCTTATGCTT
V_flex_RS_522	AA??
V_flex_RS_595	??
V_multin_RS_107	AAAAGTGGATTTTGTGGGTCATCTGTTCTCTTTTTATGTTGCTTATGCTT
V_multin_RS_108	AAAAGTGGATTTTGTGGGTCATCTGTTCTCTTTTTATGTTGCTTATGCTT
V_loret_RS_480	AAAAGTGGATTTTGTGGGTCATCTGTTCTCTTTTTATGTTGCTTATGCTT
V_loret_RS_516	AAAAGTGGATTTTGTGGGTCATCTGTTCTCTTTTTATGTTGCTTATGCTT
V_loret_RS_526	AAAAGTGGATTTTGTGGGTCATCTGTTCTCTTTTTATGTTGCTTATGCTT
V_multi_RS_350	AAAAGTGGATTTTGTGGGTCATCTGTTCWCTTTTTATGTTGCTTATGCTT
V_multi_RS_429	AAAAGTGGATTTTGTGGGTCATCTGTTCTCTTTTTATGTYGCTTATGCTT
V_multi_RS_466	AAAAGTGGATTTTGTGGGTCATCTGTTCTCTTTTTATGTTGCTTATGCTT
V_multi_RS_543	AAAAGTGGATTCTGTGGGTCATCTGTTCTCTTTTTATGTTGCTTATGCTT
V_multi_RS_549	AAAAGTGGATTCTGTGGGTCATCTGTTCTCTTTTTATGTTGCTTATGCTT
V_sebBL_RS_584	AAAAGTGGATTTTGTGGGTCATCTGTTCTCTTTTTATGTTGCTTATGCTT
V_lorSL_RS_483	AAAAGTGGATTTTGTGGGTCATCTGTTMTCTTTTTATGTTGCTTATGCTT
V_lorSL_RS_507	AAAAGTGGATTTTGTGG?????????????????????????????????
V_sebSL_RS_534	AAAAGTGGATTTTGTGGGTCATCTGTTCTCTTTTTATGTTGCTTATGCTT
V_sebSL_RS_552	AAAAGTGGATTTTGTGGGTCATCTGTTCTCTTTTTATGTTGCTTATGCTT
V_spRADS4_RS_213	AAAAGTGGATTTTGTGG-TCATCTGTTCTCTTTTTATGTTGCTTATGCTT
V_spRADS4_RS_214	AAAAGTGGATTTTGTGG-TCATCTGTTCTCTTTTTATGTTGCTTATGCTT
V_sur_RS_082	AAAAGTGGATTTTGTGGGTCATCTGTTCTCTTTTTATGTTGCTTATGCTT
V_sur_RS_083	AAAAGTGGATTTTGTGGGTCATCTGTTCTCTTTTTATGTTGCTTATGCTT
V_sur_RS_084	AAAAGTGGATTTTGTGGGTCATCTGTTCTCTTTTTATGTTGCTTATGCTT
V_sur_RS_216	AAAAGTGGATTTTGTGGGTCATCTGTTCTCTTTTTATGTTGCTTATGCTT
V_sur_RS_248	AAAAGTGGATTTTGTGGGTCATCTGTTCTCTTTTTATGTTGCTTATGCTT
V_sur_RS_324	AAAAGTGGATTTTGTGGGTCATCTGTTCTCTTTTTA??????????????
V_sur_RS_428	AAAAGTGGATTTTGTGGGTCATCTGTTCTCTTTTTATGTTGCTTATGCTT
V_sur_RS_489	AAAAGTGGATTTTGTGGGTCATCTGTTCTCTTTTTATGTTGCTTATGCTT
V_sur_RS_501	AAAAGTGGATTTTGTGGGTCATCTGTTCTMTTTTTATGTTGCTTATGCTT
C_cap_RS_551	?????????????????
C_debilis_7209	?????????????????
I_juru_RS_451	?????????????????
I_laev_RS_460	?????????????????
V_cadu_JJ_847	CATTTTCTTGCAGGTAT
V_spRADS3_RS_335	CATTCTCTTGCAGGTCT
V_spRADS3_RS_339	CATTCTCTTGCAGGTCT
V_peru_JJ_772	CATTCTCTTGCAGGTCT
V_calo_RS_430	CATTCTCTTGCAGGTCT
V_calo_RS_454	CATTCTCTTGCAGGTCT
V_calo_RS_481	CATTCTCTTGCAGGTCT
V_calo_RS_511	CATTCTCTTGCAGGTCT
V_spRADS1_RS_432	CATTCTCTTGCAGGTCT
V_spRADS1_RS_500	CATTCTCTTGCAGGTCT
V_spRADS1_R1_510	CATTCTCTTGCAGGTCT
V_spRADS1_RS_561	CATTCTCTTGCAGGTCT
V_dix_RS_225	CATTCTCTTGCAGGTCT
V_elon_RS_437	CATTCTCTTGCAGGTCT
V_elon_RS_494	CATTCTCTTGCAGGTCT
V_elon_RS_502	CATTCTCTTGCAGGTCT
V_flex_RS_442	CATTTTCTTGCAGGTAT
V_flex_RS_522	?????????????????
V_flex_RS_595	?????????????????
V_multin_RS_107	CATTTTCTTGCAGGTAT

```
V_multin_RS_108 CATTTTCTTGCAGGTAT
V_loret_RS_480 CATTCTCTTGCAGGTCT
V_loret_RS_516 CATTCTCTTGCAGGTCT
V_loret_RS_526 CATTCTCTTGCAGGTCT
V_multi_RS_350 CATTTTCTTGCAGGTAT
V_multi_RS_429 CATTTTCTTGCAGGTAT
V_multi_RS_466 CATTTTCTTGCAGGTAT
V_multi_RS_543 CATTTTCTTGCAGGTAT
V_multi_RS_549 CATTTTCTTGCAGGTAT
V_sebBL_RS_584 CATTCTCTTGCAGGTCT
V_lorSL_RS_483 CATTCTCTTGCAGGTCT
V_lorSL_RS_507 ?????????????????
V_sebSL_RS_534 CATTCTCTTGCAGGTCT
V_sebSL_RS_552 CATTCTCTTGCAGGTCT
V_spRADS4_RS_213 CATTCTCTTGCAGGTAT
V_spRADS4_RS_214 CATTCTCTTGCAGGTAT
V_sur_RS_082 CATTCTCTTGCAGGTAT
V_sur_RS_083 CATTCTCTTGCAGGTAT
V_sur_RS_084 CATTCTCTTGCAGGTAT
V_sur_RS_216 C????????????????
V_sur_RS_248 CATTCTCTTGCAGGTAT
V_sur_RS_324 ?????????????????
V_sur_RS_428 CATTCTCTTGCAGGTAT
V_sur_RS_489 CATTCTCTTGCAGGTAT
V_sur_RS_501 CATTCTCTTGCAGGTAT
```


Alignment 3.2

The trnH-psbA DNA nucleotide sequence alignment of 54 taxa and 363 characters used in NJ analyses in chapter 3.50 base pairs per line.

C_cap_RS_551	
C_debilis_7209	TCCGCCCCTTGTCCTTT-CT-----AAAGAAAAAAA--- TTTTAGAT
I_juru_RS_451	TCCGCCCCTTGTCTTTT-CTTTTCT--AAAGACAAAAA--- TTTTAGAT
I_laev_RS_460	TCCGCCCCTTGTCTTTT-CTTTTCT--AAAGACAAAAA--- TTTTAGAT
V_cadu_JJ_847	TCCGCCCCTTGTCTTTTTCT----- AAAGAAAAAAAAAA - TTTAGAT
V_flex_RS_442	TCCGCCCCTTGTCTTTTTCT------AAAGAAAAAAAAAA - TTTAGAT
V_flex_RS_522	TCCGCCCCTTGTCTTTTTCT------AAAGAAAAAAAAAA-- TTTAGAT
V_flex_RS_595	TCCGCCCCTTGTCTTTTTCT------AAAGAAAAAAAAAA--TTTAGAT
V_multi_RS_107	TCCGCCCCTTGTCTTTTTCT------AAAGAAAAAGAAAA--TTTAGAT
V_multi_RS_108	TCCGCCCCTTGTCTTTTTCT------AAAGAAAAAGAAAA--TTTAGAT
V_multi_RS_350	TCCGCCCCTTGTCTTTTTCT------AAAGAAAAAAAAAA - TTTAGAT
V_multi_RS_429	TCCGCCCCTTGTCTTTTTCT------AAAGAAAAAGAAAA - TTTAGAT
V_multi_RS_466	TCCGCCCCTTGTCTTTTTCT-----AAAGAAAAAGAAAA - TTTAGAT
V_multi_RS_543	TCCGCCCCTTGTCTTTTTCT------AAAGAAAAAGAAAA - TTTAGAT
V_multi_RS_549	TCCGCCCCTTGTCTTTTTCT------AAAGAAAAAGAAAA - TTTAGAT
V_spRADS4_RS_213	TCCGCCCCTTGTCTTTT-CCTTTTTGTACAGAAAAAAA--- TTTTGGAT
V_spRADS4_RS_214	TCCGCCCCTTGTCTTTT-CCTTTTTGTACAGAAAAAAA--- TTTTGGAT
V_surRS_082	TCCGCCCCTTGTCTTTT-CTTTTTCT-AAAGAAAAAAA--- TTTTAGAT
V_sur_RS_083	TCCGCCCCTTGTCTTTT-CTTTTTCT-AAAGAAAAAAA--- TTTTAGAT
V_sur_RS_084	TCCGCCCCTTGTCTTTT-CTTTTTCT-AAAGAAAAAAA--- TTTTAGAT
V_pav_RS_216	TCCGCCCCTTGTCTTTT-CTTTTTCT-AAAGAAAAAAA--- TTTTAGAT
V_sur_RS_248	?????????????????-????????--??GAAAAAAA---TTTTAGAT
V_sur_RS_428	TCCGCCCCTTGTCTTTT-CTTTTTCT-AAAGAAAAAAA--- TTTTAGAT
V_sur_RS_489	TCCGCCCCTTGTCTTTT-CTTTTTCT-AAAGAAAAAAA--- TTTTAGAT
V_sur_RS_501	TCCGCCCCTTGTCTTTT-CTTTTTCT-AAAGAAAAAAA--- TTTTAGAT
V_multicost_1	?????????????????????????T-AAAGAAAAAAAAAAATTTAGAT
V_multicost_2	???????????????????TTTTTTT-AAAGAAAAAAAAAAATTTTAGAT
V_nobilis	TCCGCCCCTTGTCTTTT-CTTTTTCT-AAAGAAAAAAA--- TTTTAGAT
V_multiflora	???GCCCCTTGTCTTTT-CTTTTTCT-AAAGAAAAAAA--- TTTTAGAT
V_michelii_110149	?????CCCTTGTCTTTTTCT-----AAAGAAAAAAAAAA-TTTTAGAT
V_michelii_200263	??????????????????????????-?AAGAAAAAAAAAA-TTTTAGAT
V_michelii_110168	?????CCCTTGTCTTTTTCT------AAAGAAAAAAAAAA-TTTTAGAT
V_michelii_110074	?????CCCTTGTCTTTTTCT------AAAGAAAAAAAAAA-TTTTAGAT
V_kwatae_110070	?????CCCTTGTCTTTT-CTTTTTCT-AAAGAAAAAAA--- TTTTAGAT
V_spRADS3_RS_335	TCCGCCCCTTGTCTTTT-CTTTTT
V_RADS3_RS_339	TCCGCCCCTTGTCTTTT-CTTTT
V_peru_JJ_772	TCCGCCCCTTGTCTTTT-CTTTTTC
V_calo_RS_430	TCCGCCCCTTGTCTTTT-CTTTT
V_calo_RS_454	??????CCTTGTCTTTT-CTTTTT
V_calo_RS_511	TCCGCCCCTTGTCTTTT-CTTTT
V_spRADS1_RS_432	TCCGCCCCTTGTCTTTT-CTTTTT
V_spRADS1_RS_500	TCCGCCCCTTGTCTTTT-CTTTTTC
V_spRADS1_RS_510	TCCGCCCCTTGTCTTTT-CTTTTTC
V_spRADS1_RS_561	TCCGCCCCTTGTCTTTT-CTTTTTC
V_dix_RS_225	TCCGCCCCTTGTCTTTT-CTTTTTC
V_elon_RS_437	???????CTTGTCTTTT-CTTTTTCT
V_elonRS_502	TCCGCCCCTTGTCTTTT-CTTTTTCT
V_lorBL_RS_480	TCC?CCCCTTGTCTTTT-CTTTTTC
V_lorBL_RS_526	TC

V_sebBL_RS_584	TCCGCCCCTTGTCTTTT-CT
V_lorBL_RS_516	TCCGCCCCTTGTCTTTT-CTTTTTC
V_lorSL_RS_483	TCCGCCCCTTGTCTTTT-CTTTTTC
V_sebSL_RS_507	TCCGCCCCTTGTCTTTT-CTTTTTC
V_sebSL_RS_552	TCCGCCCCTTGTCTTTT-CTTTTT
C_cap_RS_551	TACTAGTCTTTCTTATTTTTTTCATACTAATTTCTACCCTTTAGAAAATC
C_debilis_7209	TACTAGTCTTTCTTATTTTTTTCATACAAATTTCTATCCTTTAGAAAA--
I_juru_RS_451	TACTAGTCTTTCTTATTTTTTTCATACTAATTTCTACCCTTTAGAAAATT
I_laev_RS_460	TACTAGTCTTTCTTATTTTTTTCATACTAATTTCTACCCTTTAGAAAATT
V_cadu_JJ_847	TACTAGTCTTTCTTCTTTTTTTCATACTAATTTCTACCCTTTAGAAAATT
V_flex_RS_442	TACTAGTCTTTCTTCTTTTTTTCATACTAATTTCTACCCTTTAGAAAATT
V_flex_RS_522	TACTAGTCTTTCTTCTTTTTTTCATACTAATTTCTACCCTTTAGAAAATT
V_flex_RS_595	TACTAGTCTTTCTTCTTTTTTTCATACTAATTTCTACCCTTTAGAAAATT
V_multi_RS_107	TACTAGTCTTTCTTCTTTTTTTCATACTAATTTCTACCCTTTAGAAAATT
V_multi_RS_108	TACTAGTCTTTCTTCTTTTTTTCATACTAATTTCTACCCTTTAGAAAATT
V_multi_RS_350	TACTAGTCTTTCTTCTTTTTTTCATACTAATTTCTACCCTTTAGAAAATT
V_multi_RS_429	TACTAGTCTTTCTTCTTTTTTTCATACTAATTTCTACCCTTTAGAAAATT
V_multi_RS_466	TACTAGTCTTTCTTCTTTTTTTCATACTAATTTCTACCCTTTAGAAAATT
V_multi_RS_543	TACTAGTCTTTCTTCTTTTTTTCATACTAATTTCTACCCTTTAGAAAATT
V_multi_RS_549	TACTAGTCTTTCTTCTTTTTTTCATACTAATTTCTACCCTTTAGAAAATT
V_spRADS4_RS_213	TTCTAGTCTTTCTTATTTTTTTCATACTAA
V_spRADS4_RS_214	TTCTAGTCTTTCTTATTTTTTTCATACTAA
V_surRS_082	TACTAGTCTTTCTTATTTTTT-CATACTAATTTCTACCCTTTAGAAAATT
V_sur_RS_083	TACTAGTCTTTCTTATTTTTT-CATACTAATTTCTACCCTTTAGAAAATT
V_sur_RS_084	TACTAGTCTTTCTTATTTTTT-CATACTAATTTCTACCCTTTAGAAAATT
V_pav_RS_216	TACTAGTCTTTCTTATTTTTT-CATACTAATTTCTACCCTTTAGAAAATT
V_sur_RS_248	TACTAGTCTTTCTTATTTTTT-CATACTAATTCCTACCCTTTAGAAAATT
V_sur_RS_428	TACTAGTCTTTCTTATTTTTT-CATACTAATTTCTACCCTTTAGAAAATT
V_sur_RS_489	TACTAGTCTTTCTTATTTTTT-CATACTAATTTCTACCCTTTAGAAAATT
V_sur_RS_501	TACTAGTCTTTCTTATTTTTT-CATACTAATTTCTACCCTTTAGAAAATT
V_multicost_1	TACTAGTCTTTCTTATTTTTTTCATACTAATTTCTACCCTTTAGAAAATT
V_multicost_2	TACTAGTCTTTCTTATTTTTTTCATACTAATTTCTACCCTTTAGAAAATT
V_nobilis	TACTAGTCTTTCTTATTTTTT-CATACTAATTTCTACCCTTTAGAAAATT
V_multiflora	TACTAGTCTTTCTTATTTTTT-CATACTAATTTCTACCCTTTAGAAAATT
V_michelii_110149	TACTAGTCTTTCTTATTTTTTTCATACTAATTTCTACCCTTTAGAAAATT
V_michelii_200263	TACTAGTCTTTCTTATTTTTTTCATACTAATTTCTACCCTTTAGAAAATT
V_michelii_110168	TACTAGTCTTTCTTATTTTTTTCATACTAATTTCTACCCTTTAGAAAATT
V_michelii_110074	TACTAGTCTTTCTTATTTTTTTCATACTAATTTCTACCCTTTAGAAAATT
V_kwatae_110070	TACTAGTCTTTCTTATTTTTT-CATACTAATTCCTACCCTTTAGAAAATT
V_spRADS3_RS_335	
V_RADS3_RS_339	
V_peru_JJ_772	
V_calo_RS_430	
V_calo_RS_454	
V_calo_RS_511	
V_spRADS1_RS_432	
V_spRADS1_RS_500	
V_spRADS1_RS_510	
V_spRADS1_RS_561	
V_dix_RS_225	
V_elon_RS_437	
V_elonRS_502	
V_lorBL_RS_480	
V_lorBL_RS_526	
V_sebBL_RS_584	
V_lorBL_RS_516	

V_lorSL_RS_483	
V_sebSL_RS_507	
V_sebSL_RS_552	
C_cap_RS_551	GACAATAGGAAAAAATGCATTTTAGGAATGTACATGAACTGAAGATCAGT
C_debilis_7209	- - CAATAGGAAAAAATGCATTTTAGGAATGTACATAAACTGAAGATCCGT
I_juru_RS_451	GACAATAGGAAAAAATGCATTTTTGGAATGTACATAAACTGAAGATCAGT
I_laev_RS_460	GACAATAGGAAAAAATGCATTTTAGGAATGTACATAAACTGAAGATCAGT
V_cadu_JJ_847	GACAATAGGAAAAAATTCATTTTAGGAATGAACATAAACTGAAGATCAGT
V_flex_RS_442	GACAATAGGAAAAAATTCATTTTAGGAATGAACATAAACTGAAGATCAGT
V_flex_RS_522	GACAATAGGAAAAAATTCATTTTAGGAATGAACATAAACTGAAGATCAGT
V_flex_RS_595	GACAATAGGAAAAAATTCATTTTAGGAATGAACATAAACTGAAGATCAGT
V_multi_RS_107	GACAATAGGAAAAAATTCATTTTAGGAATGAACATAAACTGAAGATCAGT
V_multi_RS_108	GACAATAGGAAAAAATTCATTTTAGGAATGAACATAAACTGAAGATCAGT
V_multi_RS_350	GACAATAGGAAAAAATTCATTTTAGGAATGAACATAAACTGAAGATCAGT
V_multi_RS_429	GACAATAGGAAAAAATTCATTTTAGGAATGAACATAAACTGAAGATCAGT
V_multi_RS_466	GACAATAGGAAAAAATTCATTTTAGGAATGAACATAAACTGAAGATCAGT
V_multi_RS_543	GACAATAGGAAAAAATTCATTTTAGGAATGAACATAAACTGAAGATCAGT
V_multi_RS_549	GACAATAGGAAAAAATTCATTTTAGGAATGAACATAAACTGAAGATCAGT
V_spRADS4_RS_213	-----AGGAAAAAATGCATTTTAGGAATGTACATAAACTGAAGATCAGT
V_spRADS4_RS_214	-AGGAAAAAATGCATTTTAGGAATGTACATAAACTGAAGATCAGT
V_surRS_082	GACAATAGGAAAAAATTCATTTTTGGAATGTACATAAACTGAAGATCAGT
V_sur_RS_083	GACAATAGGAAAAAATTCATTTTTGGAATGTACATAAACTGAAGATCAGT
V_sur_RS_084	GACAATAGGAAAAAATTCATTTTTGGAATGTACATAAACTGAAGATCAGT
V_pav_RS_216	GACAATAGGAAAAAATTCATTTTTGGAATGTACATAAACTGAAGATCAGT
V_sur_RS_248	GACAATAGGAAAAAATTCATTTTTGGAATGTACAGAAACTGAAGATCAGT
V_sur_RS_428	GACAATAGGAAAAAATTCATTTTTGGAATGTACATAAACTGAAGATCAGT
V_sur_RS_489	GACAATAGGAAAAAATTCATTTTTGGAATGTACATAAACTGAAGATCAGT
V_sur_RS_501	GACAATAGGAAAAAATTCATTTTTGGAATGTACATAAACTGAAGATCAGT
V_multicost_1	GACAATAGGAAAAAATTCATTTTAGGAATGAACATAAACTGAAGATCAGT
V_multicost_2	GACAATAGGAAAAAATTCATTTTAGGAATGAACATAAACTGAAGATCAGT
V_nobilis	GACAATAGGAAAAAATTCATTTTTGGAATGTACATAAACTGAAGATCAGT
V_multiflora	GACAATAGGAAAAAATTCATTTTTGGAATGTACATAAACTGAAGATCAGT
V_michelii_110149	GACAATAGGAAAAAATGCATTTTAGGAATGAACATAAACTGAAGATCAGT
V_michelii_200263	GACAATAGGAAAAAATGCATTTTAGGAATGAACATAAACTGAAGATCAGT
V_michelii_110168	GACAATAGGAAAAAATGCATTTTAGGAATGAACATAAACTGAAGATCAGT
V_michelii_110074	GACAATAGGAAAAAATGCATTTTAGGAATGAACATAAACTGAAGATCAGT
V_kwatae_110070	GACAATAGGAAAAAATTCTTTTTTGGAATGTACATAAACTGAAGATCAGT
V_spRADS3_RS_335	
V_RADS3_RS_339	
V_peru_JJ_772	
V_calo_RS_430	
V_calo_RS_454	
V_calo_RS_511	
V_spRADS1_RS_432	
V_spRADS1_RS_500	
V_spRADS1_RS_510	
V_spRADS1_RS_561	
V_dix_RS_225	
V_elon_RS_437	
V_elonRS_502	
V_lorBL_RS_480	
V_lorBL_RS_526	
V_sebBL_RS_584	
V_lorBL_RS_516	
V_lorSL_RS_483	
V_sebSL_RS_507	

V_lorSL_RS_483
V_sebSL_RS_552

C_cap_RS_551
C_debilis_7209
I_Juru_RS_451
I_lae_-RS_460
V_flex_RS_442
V_flex_RS_522
Vflex_RS_595
-

- multi-RS-350

V_multi_RS_429
V_multi_RS_466
V multi RS 549
V_spRADS4_RS_213
V_spRADS4_RS_214
V_surRS_082
sur RS 083

V_pav_RS_216
V_sur_RS_248
V_sur_RS_428
__sur_RS_489
V_multicost_1
V_multicost_2
V_nobilis
V_multiflora
V_michelii_110149
V_michelii_200263
V_michelii_110168
V_michelii_110074
V_kwatae_110070
V_spRADS3_RS_335
V_RADS3_RS_339
V_peru_JJ_772
V_calo_RS_430
V_calo_RS_454
, 511

V_spRADS1_RS_500
V_spRADS1_RS_510
V_spRADS1_RS_561
V_dix_RS_225
elon RS 437

V_lorBL_RS_480
V_lorBL_RS_526
V_SebBL_RS_584
V_lorSL_RS_483
V_sebSL_RS_507

GACAATAGGAAAAAATGCATTTTAGGAATGTACATGAACTGAAGATCAGT AGGAAAAAA GACAATAGGAAAAAATGCATTTTAGGAATGTACATAAACTGAAGATCAGT GACAATAGGAAAAAATTCATTTTAGGAATGAACATAAACTGAAGATCAGT GACAATAGGAAAAAATTCATTTTAGGAATGAACATAAACTGAAGATCAGT GACAATAGGAAAAAATTCATTTTAGGAATGAACATAAACTGAAGATCAGT GACAATAGGAAAAAATTCATTTTAGGAATGAACATAAACTGAAGATCAGT GACAATAGGAAAAAATTCATTTTAGGAATGAACATAAACTGAAGATCAGT GACAATAGGAAAAAATTCATTTTAGGAATGAACATAAACTGAAGATCAGT GACAATAGGAAAAAATTCATTTTAGGAATGAACATAAACTGAAGATCAGT GAAGATCAGT GACAATAGGAAAAAATTCATTTTAGGAATGAACATAAACTGAAGATCAGT -----AGGAAAAAA GACAATAGGAAAAAATTCATTTTTGGAATGTACATAAACTGAAGATCAGT GACAATAGGAAAAAATTCATTTTTGGAATGTACATAAACTGAAGATCAGT GACAATAGGAAAAAATTCATTTTTGGAATGTACATAAACTGAAGATCAGT GACAATAGGAAAAAATTCATTTTTGGAATGTACATAAACTGAAGATCAGT GACAATAGGAAAAAATTCATTTTTGGAATGTACAGAAACTGAAGATCAGT GACAATAGGAAAAAATTCATTTTTGGAATGTACATAAACTGAAGATCAGT GACAATAGGAAAAAATTCATTTTTGAATGTACATAAACTGAAGATCAGT GACAATAGGAAAAAATTCATTTTAGGAATGAACATAAACTGAAGATCAGT GACAATAGGAAAAAATTCATTTTAGGAATGAACATAAACTGAAGATCAGT GACAATAGGAAAAAATTCATTTTTGGAATGTACATAAACTGAAGATCAGT GACAATAGGAAAAAATTCATTTTTGGAATGTACATAAACTGAAGATCAGT GACAATAGGAAAAAATGCATTTTAGGAATGAACATAAACTGAAGATCAGT GACAATAGGAAAAAATGCATTTTAGGAATGAACATAAACTGAAGATCAGT ACAATAGGAAAAAATGCATTTTAGGAATGAACATAAACTGAAGATCAGT GACAATAGGAAAAAATTCTTTTTTGGAATGTACATAAACTGAAGATCAGT

\qquad

V_sebSL_RS_552	
C_cap_RS_551	T-CAAATCAAAAAAA-------GGTATGATGTTCGATTATGAACCAAAT
C_debilis_7209	T-AAAATCAAAAAAAAA-----GGTATGATGTTCGATCATGAACCAAAT
I_juru_RS_451	T-AAAATAAAAATAAAAAAAAAAGGTATGATGTTCGATCATGAA-CAAA-
I_laev_RS_460	T-AAAATAAAAAAAAA------GGTATGATGTTCGATCATGAA-CAAA-
V_cadu_JJ_847	T-AAAATAAAAAAGAAAAA--- GGTATGATGTTCGATCATGAAACAAAT
V_flex_RS_442	T-AAAATAAAAAAGAAAAA--- GGTATGATGTTCGATCATGAAACAAAT
V_flex_RS_522	T-AAAATAAAAAAGAAAAA----GGTATGATGTTCGATCATGAAACAAAT
V_flex_RS_595	T-AAAATAAAAAAGAAAAA----GGTATGATGTTCGATCATGAAACAAAT
V_multi_RS_107	T-AAAATAAAAAAGAAAAA----GGTATGATGTTCGATCATGAAACAAAT
V_multi_RS_108	T-AAAATAAAAAAGAAAAA--- GGTATGATGTTCGATCATGAAACAAAT
V_multi_RS_350	T-AAAATAAAAAAGAAAAA--- GGTATGATGTTCGATCATGAAACAAAT
V_multi_RS_429	T-AAAATAAAAAAGAAAAA--- GGTATGATGTTCGATCATGAAACAAAT
V_multi_RS_466	T-AAAATAAAAAAGAAAAA--- GGTATGATGTTCGATCATGAAACAAAT
V_multi_RS_543	T-AAAATAAAAAAGAAAAA--- GGTATGATGTTCGATCATGAAACAAAT
V_multi_RS_549	T-AAAATAAAAAAGAAAAA--- GGTATGATGTTCGATCATGAAACAAAT
V_spRADS4_RS_213	T-AAAATAAAAAAGAAAAA--- GGTATAATGTTCGATCATTAAACAAAT
V_spRADS4_RS_214	T-AAAATAAAAAAGAAAAA--- GGTATAATGTTCGATCATTAAACAAAT
V_surRS_082	T-AAAATAAAAAATAAAAA----GGTATGATGTTCGATCATGAAACAAAT
V_sur_RS_083	T-AAAATAAAAAATAAAAA----GGTATGATGTTCGATCATGAAACAAAT
V_sur_RS_084	T-AAAATAAAAAATAAAAA--- GGTATGATGTTCGATCATGAAACAAAT
V_pav_RS_216	T-AAAATAAAAAATAAAAA----GGTATGATGTTCGATCATGAAACAAAT
V_sur_RS_248	T-AAAATAAAAAATAAAAA----GGTATGATGTTCGATCATGAAACAAAT
V_sur_RS_428	T-AAAATAAAAAATAAAAA--- GGTATGATGTTCGATCATGAAACAAAT
V_sur_RS_489	T-AAAATAAAAAATAAAAA----GGTATGATGTTCGATCATGAAACAAAT
V_sur_RS_501	T-AAAATAAAAAATAAAAA--- GGTATGATGTTCGATCATGAAACAAAT
V_multicost_1	T-AAAATAAAAAAGAAAAA--- GGTATGATGTTCGATCATGAAACAAAT
V_multicost_2	T-AAAATAAAAAAGAAAAA--- GGTATGATGTTCGATCATGAAACAAAT
V_nobilis	T-AAAATAAAAAATAAAAA--- GGTATGATGTTCGATCATGAAACAAAT
V_multiflora	T-AAAATAAAAAATAAAAA----GGTATGATGTTCGATCATGAAACAAAT
V_michelii_110149	T-AAAATAAAAAAGAAAAA--- GGTATGATGTTCGATCATGAAACAAAT
V_michelii_200263	T-AAAATAAAAAAGAAAAA----GGTATGATGTTCGATCATGAAACAAAT
V_michelii_110168	T-AAAATAAAAAAGAAAAA----GGTATGATGTTCGATCATGAAACAAAT
V_michelii_110074	T-AAAATAAAAAAGAAAAA----GGTATGATGTTCGATCATGAAACAAAT
V_kwatae_110070	TAAAAATAAAAAATAAAAA--- GGTATGATGTTCGATCATGAAACAAAT
V_spRADS3_RS_335	
V_RADS3_RS_339	
V_peru_JJ_772	
V_calo_RS_430	
V_calo_RS_454	
V_calo_RS_511	
V_spRADS1_RS_432	
V_spRADS1_RS_500	
V_spRADS1_RS_510	
V_spRADS1_RS_561	
V_dix_RS_225	
V_elon_RS_437	
V_elonRS_502	
V_lorBL_RS_480	
V_lorBL_RS_526	
V_sebBL_RS_584	
V_lorBL_RS_516	
V_lorSL_RS_483	
V_sebSL_RS_507	
V_sebSL_RS_552	

```
C_cap_RS_551
C_debilis_7209
I_juru_RS_451
I_laev_RS_460
V_cadu_JJ_847
V_flex_RS_442
V_flex_RS_522
V_flex_RS_595
V_multi_RS_107
V_multi_RS_108
V_multi_RS_350
V_multi_RS_429
V_multi_RS_466
V_multi_RS_543
V_multi_RS_549
V_spRADS4_RS_213
V_spRADS4_RS_214
V_surRS_082
V_sur_RS_083
V_sur_RS_084
V_pav_RS_216
V_sur_RS_248
V_sur_RS_428
V_sur_RS_489
V_sur_RS_501
V_multicost_1
V_multicost_2
V_nobilis
V_multiflora
V_michelii_110149
V_michelii_200263
V_michelii_110168
V_michelii_110074
V_kwatae_110070
V_spRADS3_RS_335
V_RADS3_RS_339
V_peru_JJ_772
V_calo_RS_430
V_calo_RS_454
V_calo_RS_511
V_spRADS1_RS_432
V_spRADS1_RS_500
V_spRADS1_RS_510
V_spRADS1_RS_561
V_dix_RS_225
V_elon_RS_437
V_elonRS_502
V_lorBL_RS_480
V_lorBL_RS_526
V_sebBL_RS_584
V_lorBL_RS_516
V_lorSL_RS_483
V_sebSL_RS_507
V_sebSL_RS_552
C_cap_RS_551
C_debilis_7209
AATTCATATTTTCTGAAATTGAAAAAA------ CAAA-TCTTATG-----
AATTAATATTTTCTGAAATTGAAAAAAAAA-------- TCTTATG-----
AATGAATATTTTCTTAAATTGAAAAAAAAAA------- TCTTATG
AATGAATATTTTCTTAAATTGAAAAA-------CAAAATCTTATG-----
AATTAATATTTTAT-AAAAAAAAA---------GAAA-TCTTATG-----
AATTAATATTTTCT-AAAAAAAAA---------GAAA-TCTTATG-----
AATTAATATTTTCT-AAAAAAAAA---------GAAA-TCTTATG----
AATTAATATTTTCT-AAAAAAAAA---------GAAA-TCTTATG-----
AATTAATATTTTCT-AAAAAAAAA---------GAAA-TCTTATG-----
AATTAATATTTTCT-AAAAAAAAA---------GAAA-TCTTATG-----
AATTAATATTTTCT-AAAAAAAAA---------GAAA-TCTTATG-----
AATTAATATTTTCT-AAAAAAAAA---------GAAA-TCTTATG----
AATTAATATTTTCT-AAAAAAAAA---------GAAA-TCTTATG-----
AATTAATATTTTCT-AAAAAAAAA---------GAAA-TCTTATG-----
AATTAATATTTTCT-AAAAAAAAA---------GAAA-TCTTATG
AATTAATATTTTCTTAAAAAAAAAAA-------GAAA-TCTTATG-----
AATTAATATTTTCTTAAAAAAAAAAA-------GAAA-TCTTATG-----
AATGAATATTTTCTTAAAAAAAAAAAA------GAAA-TCTTATG-----
AATGAATATTTTCTTAAAAAAAAAAAA------GAAA-TCTTATG-----
AATGAATATTTTCTTAAAAAAAAAAAA------GAAA-TCTTATG-----
AATTAATATTTTCTTAAAAAAAAAAAAA-----GAAA-TCTTATG-----
AATTAATATTTTCTTAAAAAAAAAAAAAAAAA-GAAA-TCTTATG-----
AATGAATATTTTCTTAAAAAAAAAAAA------GAAA-TCTTATG-----
AATGAATATTTTCTTAAAAAAAAAAAA------GAAA-TCTTATG-----
AATGAATATTTTCTTAAAAAAAAAAAA------GAAA-TCTTATG-----
AATTAATATTTTCT-AAAAAAAAAA--------GAAA-TCTTATG
AATTAATATTTTCT-AAAAAAAAAA--------GAAA-TCTTATG-----
AATTAATATTTTCTTAAAAAAAAAAAA------GAAA-TCTTATG-----
AATTAATATTTTCTTAAAAAAAAAAAAA-----GAAA-TCTTATG-----
AATGAATATTTTCT-AAAAAAAAAAA-------GAAA-TCTTATG-----
AATGAATATTTTCT-AAAAAAAAAAA-------GAAA-TCTTATG-----
AATGAATATTTTCT-AAAAAAAAAAA-------GAAA-TCTTATG-----
AATGAATATTTTCT-AAAAAAAAAAA-------GAAA-TCTTATG-----
AATTAATATTTTCTTAAAAAAAAAAAAAAAAAA----CTTTTAGG-----
-------------- - AAAAAAAAAAA-------GAAA-TCTTATGTTATG
------------- -- AAAAAAAAAAA-------GAAA-TCTTATGTTATG
-------------- AAAAAAAAAAAAAA----------TCTTATGTTATG
-------------- -- AAAAAAAAAAAAA----------- TCTTATGTTATG
------------- -- AAAAAAAAAAAAA---------- -- TCTTATGTTATG
-------------- -- AAAAAAAAAAAAA------------TCTTATGTTATG
------------- -- AAAAAAAAAAAAAA---------- TCTTATGTTATG
---------------AAAAAAAAAAAAAA------------- TCTTATGTTATG
-------------- -- AAAAAAAAAAAAAA---------- TCTTATGTTATG
-------------- -- AAAAAAAAAAAAAA----------- TCTTATGTTATG
-------------- AAAAAAAAAAAA------------- TCTTATGTTATG
-------------- -- AAAAAAAAAAAAAAA-------- -- TCTTATGTTATG
-------------- -- AAAAAAAAAAAAAA---------- TCTTATGTTATG
---------------AAAAAAAAAAAAAA------------- TCTTATGTTATG
--------------AAAAAAAAAAAAAA----------TCTTATGTTATG
------------- -- AAAAAAAAAAAAAA--------- TCTTATGTTATG
-------------- AAAAAAAAAAAAAA---------- TCTTATGTTATG
--------------- -- AAAAAAAAAAAAAA---------- TCTTATGTTATG
```



```
----------------AAAAAAAAAAAAAA------------ TCTTATGTTATG

I_juru_RS_451
I_laev_RS_460
V_cadu_JJ_847
V_flex_RS_442
V_flex_RS_522
V_flex_RS_595
V_multi_RS_107
V_multi_RS_108
V_multi_RS_350
V_multi_RS_429
V_multi_RS_466
V_multi_RS_543
V_multi_RS_549
V_spRADS4_RS_213
V_spRADS4_RS_214
V_surRS_082
V_sur_RS_083
V_sur_RS_084
V_pav_RS_216
V_sur_RS_248
V_sur_RS_428
V_sur_RS_489
V_sur_RS_501
V_multicost_1
V_multicost_2
V_nobilis
V_multiflora
V_michelii_110149
V_michelii_200263
V_michelii_110168
V_michelii_110074
V_kwatae_110070
V_spRADS3_RS_335
V_RADS3_RS_339
V_peru_JJ_772
V_calo_RS_430
V_calo_RS_454
V_calo_RS_511
V_spRADS1_RS_432
V_spRADS1_RS_500
V_spRADS1_RS_510
V_spRADS1_RS_561
V_dix_RS_225
V_elon_RS_437
V_elonRS_502
V_lorBL_RS_480
V_lorBL_RS_526
V_sebBL_RS_584
V_lorBL_RS_516
V_lorSL_RS_483
V_sebSL_RS_507
V_sebSL_RS_552
C_cap_RS_551
C_debilis_7209
I_juru_RS_451
I_laev_RS_460

TGAGTAAACCACTACTGAACCAGATCAATACCCACTGGGTATTGATCTGG TGAGTAAACCACTACTGAACCAGATCAATACCCAGTGGGTATTGATCTGG TGAGTAAACCACTACTGAACCAGATCAATACCCAGTGGGTATTGATCTGA TGAGTAAACCACTACTGAACCAGATCAATACCCACTGGGTATTGATCTGA TGAGTAAACCACTACTGAACCAGATCAATACCCACTGGGTATTGATCTGA TGAGTAAACCACTACTGAACCAGATCAATACCCACTGGGTATTGATCTGA TGAGTAAACCACTACTGAACCAGATCAATACCCACTGGGTATTGATCTGA TGAGTAAACCACTACTGAACCAGATCAATACCCAGTGGGTATTGATCTGA TGAGTAAACCACTACTGAACCAGATCAATACCCACTGGGTATTGATCTGA TGAGTAAACCACTACTGAACCAGATCAATACCCACTGGGTATTGATCTGA TGAGTAAACCACTACTGAACCAGATCAATACCCACTGGGTATTGATCTGA TGAGTAAACCACTACTGAACCAGATCAATACCCAGTGGGTATTGATCTGA TGAGTAAACCACTACTGAACCAGATCAATACCCAGTGGGTATTGATCTGA TGAGTAAACCACTACTGAACCAGATCAATACCCACTGGGTATTGATCTGA TGAGTAAACCACTACTGAACCAGATCAATACCCACTGGGTATTGATCTGA TGAGTAAACCACTACTGAACCAGATCAATACCCAGTGGGTATTGATCTGA TGAGTAAACCACTACTGAACCAGATCAATACCCAGTGGGTATTGATCTGA TGAGTAAACCACTACTGAACCAGATCAATACCCAGTGGGTATTGATCTGA TGAGTAAACCACTACTGAACCAGATCAATACCCAGTGGGTATTGATCTGA TGAGTAAACCACTACTGAACCAGATCAATACCCACTGGGTATTGATCTGA TGAGTAAACCACTACTGAACCAGATCAATACCCACTGGGTATTGATCTGA

TCCTTCAATGACTCGTATACACTAATACCGAAATATTAGCCATTTATTGA TCCTTCAATGACTCGTATACACTAATACCGAAATATTAGCCATTTATTGA TCCTTCAATGACTCGTATACACTAATACCGAAGTATTAGCCATTTGTTGA TCCTTCAATGACTCGTATACACTAATACCGAAGTATTAGCCATTTGTTGA

```

V_flex_RS_522 TGGAGCTTCAACA
V_flex_RS_595 TGGAGCTTCAACA
V_multi_RS_107 TGGAGCTTCAACA
V_multi_RS_108 TGGAGCTTCAACA
V_multi_RS_350 TGGAGCTTCAACA
V_multi_RS_429 TGGAGCTTCAACA
V_multi_RS_466 TGGAGCTTCAACA
V_multi_RS_543 TGGAGCTTCAACA
V_multi_RS_549 TGGAGCTTCAACA
V_spRADS4_RS_213 TGGAGCTTCAACA
V_spRADS4_RS_214 TGGAGCTTCAACA
V_surRS_082 TGGAGCTTCAACA
V_sur_RS_083 TGGAGCTTCAACA
V_sur_RS_084 TGGAGCTTCAACA
V_pav_RS_216 TGGAGCTTCAACA
V_sur_RS_248 ?????????????
V_sur_RS_428 TGGAGCTTCAACA
V_sur_RS_489 TGGAGCTTCAACA
V_sur_RS_501 TGGAGCTTCAACA
V_multicost_1 TGGAGC???????
V_multicost_2 ?????????????
V_nobilis ?????????????
V_multiflora ?????????????
V_michelii_110149 ?????????????
V_michelii_200263 ?????????????
V_michelii_110168 ?????????????
V_michelii_110074 ?????????????
V_kwatae_110070 ?????????????
V_spRADS3_RS_335 TAGAGCTTCAACT
V_RADS3_RS_339 TAGAGCTTCAACT
V_peru_JJ_772 TAGAGCTTCAACT
V_calo_RS_430 TAGAGCTTCAACT
V_calo_RS_454 TAGAGCTTCAACT
V_calo_RS_511 TAGAGCTTCAACT
V_spRADS1_RS_432 TAGAGCTTCAACT
V_spRADS1_RS_500 TAGAGCTTCAACT
V_spRADS1_RS_510 TAGAGCTTCAACT
V_spRADS1_RS_561 TAGAGCTTCAACT
V_dix_RS_225 TAGAGCTTCAACT
V_elon_RS_437 TAGAGCTTCAACT
V_elonRS_502 TAGAGCTTCAACT
V_lorBL_RS_480 TAGAGCTTCAACT
V_lorBL_RS_526 TAGAGCTTCAACT
V_sebBL_RS_584 TAGAGCTTCAACT
V_lorBL_RS_516 TAGAGCTTCAACT
V_lorSL_RS_483 TAGAGCTTCAACT
V_sebSL_RS_507 TAGAGCTTCAACT
V_sebSL_RS_552 TAGAGCTTCAACT

```

\section*{Appendix 4}

\section*{Alignment 4.1}

DNA nucleotide sequence alignment for AGT1 containing 683 characters and 36 unique alleles from cloned sequences employed in haplotype analyses in chapter 4.50 base pairs per line.
\begin{tabular}{|c|c|}
\hline V_lorBL_RS516 & \\
\hline lorBL_RS516_2 & GCATCC \\
\hline lorBL RS52 & \\
\hline 26 & \\
\hline 10 & \\
\hline V_lorBL_RS480_2 & \\
\hline V_lorBL_RS480_2 & \\
\hline & \\
\hline V_lorSL_RS45 & \\
\hline V_lorSL_RS452 & \\
\hline RS465 & \\
\hline & \\
\hline 465 & \\
\hline RS46 & TATGCGCAAGTCCAAAAGCATTTGAAGCATCCAAGACTGCTAAATCAG \\
\hline 13 & \\
\hline 13 & G \\
\hline _sebBL_ML13_3 & G \\
\hline V_sebBL_RS435 & AAGTCCAAAAGCATTTGAAGCATCCAAGACTGCTAAATCAG \\
\hline V_sebBL_RS435_2 & AGTCCAAAAGCATTTGAAGCATCCAAGACTGCTAAATCAG \\
\hline V_sebBL_RS503 & AAGTCCAAAAGCATTTGAAGCATCCAAGACTGCTAAATCAG \\
\hline V_sebBL_RS503_2 & TATGTGCAAGTCCAAAAGCATTTGAAGCATCCAAGACTGCTAAATCAG \\
\hline V_sebBL_RS503_3 & TATGTGCAAGTCCAAAAGCATTTGAAGCATCCAAGACTGCTAAATCAG \\
\hline V_sebBL_RS582 & CAAGTCCAAAAGCATTTGAAGCATCCAAGACTGCTAAATCAG \\
\hline V_sebBL_RS582_2 & TATGTGCAAGTCCAAAAGCATTTGAAGCATCCAAGACTGCTAAATCAG \\
\hline V_sebBL_RS636 & AG \\
\hline V_sebBL_RS636_2 & AGGCATCCAAGACTGCTAAATCAG \\
\hline V_lorSL_RS483 & G \\
\hline V_lorSL_RS483_2 & TATGCGCAAGTCCAAAAGCATTTGAAGCATCCAAGACTGCTAAATCAG \\
\hline V_sebSL_RS443 & TATGTGCAAGTCCAAAAGCATTTGAAGCATCCAAGACTGCTAAATCAG \\
\hline _sebSL_RS443_2 & \\
\hline sebSL_RS444 & TATGCGCAAGTCCAAAAGCATTTGAAGCATCCAAGACTGCTAAATCAG \\
\hline RS464 & \\
\hline RS529 & TATGCGCAAGTCCAAAAGCATTTGAAGCATCCAAGACTGCTAAATCAG \\
\hline RS529_2 & tatgcgcaig \\
\hline V_sebSL_RS533 & \\
\hline V_sebSL_RS533 & \\
\hline lorBL_RS516 & \\
\hline RS516 & \\
\hline BL_RS526 & TCAGAGTATTCTTTGACTGGAAAGACTACCTCAAGTTCTACAAGTTGG \\
\hline RS526_2 & \\
\hline rBL_RS48 & \\
\hline lorBL_RS480_2 & TCAGAGTATTCTTTGACTGGAAAGACTACCTCAAGTTCTACAAGTTGG \\
\hline _lorBL_RS480_2 & \\
\hline lorSL_RS45 & G \\
\hline lorSL_RS452_2 & \\
\hline lorSL_RS452_3 & TCAGAGTATTCTTTGACTGGAAAGACTACCTCAAGTTCTACAAGTTGG \\
\hline _lorSL_RS465 & TC \\
\hline
\end{tabular}

V_lorSL_RS465_2 TCAGAGTATTCTTTGACTGGAAAGACTACCTCAAGTTCTACAAGTTGG V_lorSL_RS465_3 TCAGAGTATTCTTTGACTGGAAAGACTACCTCAAGTTCTACAAGTTGG V_lorSL_RS465_4 V_sebBL_ML13 V_sebBL_ML13_2 V_sebBL_ML13_3 V_sebBL_RS435 V_sebBL_RS435_2 V_sebBL_RS503 V_sebBL_RS503_2 V_sebBL_RS503_3 V_sebBL_RS582 V_sebBL_RS582_2 V_sebBL_RS636 V_sebBL_RS636_2 V_lorSL_RS483 V_lorSL_RS483_2 V_sebSL_RS443 V_sebSL_RS443_2 V_sebSL_RS444 V_sebSL_RS464 V_sebSL_RS529 V_sebSL_RS529_2 V_sebSL_RS533 V_sebSL_RS533_2

V_lorBL_RS516
v_lorBL_RS516_2 v_lorBL_RS526 V_lorBL_RS526_2 V_lorBL_RS480 V_lorBL_RS480_2 V_lorBL_RS480_2 V_lorSL_RS452 V_lorSL_RS452_2 V_lorSL_RS452_3 V_lorSL_RS465 V_lorSL_RS465_2 V_lorSL_RS465_3 V_lorSL_RS465_4 V_sebBL_ML13 V_sebBL_ML13_2 V_sebBL_ML13_3 V_sebBL_RS435 V_sebBL_RS435_2 V_sebBL_RS503 V_sebBL_RS503_2 V_sebBL_RS503_3 V_sebBL_RS582 V_sebBL_RS582_2 V_sebBL_RS636 V_sebBL_RS636_2 V_lorSL_RS483 V_lorSL_RS483_2 V_sebSL_RS443 V_sebSL_RS443_2 V_sebSL_RS444 TCAGAGTATTCTTTGACTGGAAAGACTACCTCAAGTTCTACAAGTTGG TCAGAGTATTCTTTGACTGGAAAGACTACCTCAAGTTCTACAAGTTGG

GAACATATTGGCCCTACACACCTTCTATACATCTTTTGTATGGCCTGA GAACATATTGGCCCTACACACCTTCTATACATCTTTTATATGGCCTGA GAACATATTGGCCCTACACACCTTCTATACATCTTTTGTATGGCCTGA GAACATATTGGCCCTACACACCTTCTATACATCTTTTGTATGGCCTGA

V_sebSL_RS464 GAACATATTGGCCCTACACACCTTCTATACATCTTTTGTATGGCCTGA V_sebSL_RS529 V_sebSL_RS529_2 V_sebSL_RS533 V_sebSL_RS533_2

V_lorBL_RS516
V_lorBL_RS516_2
V_lorBL_RS526
V_lorBL_RS526_2
V_lorBL_RS480
V_lorBL_RS480_2
V_lorBL_RS480_2 V_lorSL_RS452
V_lorSL_RS452_2
V_lorSL_RS452_3
V_lorSL_RS465
V_lorSL_RS465_2
V_lorSL_RS465_3
V_lorSL_RS465_4
V_sebBL_ML13
V_sebBL_ML13_2
V_sebBL_ML13_3
V_sebBL_RS435
V_sebBL_RS435_2
V_sebBL_RS503
V_sebBL_RS503_2
V_sebBL_RS503_3
V_sebBL_RS582
V_sebBL_RS582_2
V_sebBL_RS636
V_sebBL_RS636_2
V_lorSL_RS483
V_lorSL_RS483_2 V_sebSL_RS443
V_sebSL_RS443_2
V_sebSL_RS444
V_sebSL_RS464
V_sebSL_RS529
V_sebSL_RS529_2
V_sebSL_RS533
V_sebSL_RS533_2
V_lorBL_RS516
V_lorBL_RS516_2 V_lorBL_RS526
V_lorBL_RS526_2 V_lorBL_RS480
V_lorBL_RS480_2 V_lorBL_RS480_2 V_lorSL_RS452 V_lorSL_RS452_2 V_lorSL_RS452_3 V_lorSL_RS465 V_lorSL_RS465_2 V_lorSL_RS465_3 V_lorSL_RS465_4

GAACATATTGGCCCTACACACCTTCTATACATCTTTTGTATGGCCTGA GAACATATTGGCCCTACACACCTTCTATACATCTTTTGTATGGCCTGA GAACATATTGGCCCTACACACCTTCTATACATCTTTTGTATGGCCTGA GAACATATTGGCCCTACACACCTTCTATACATCTTTTGTATGGCCTGA

GAGCAGCTTTGGATCTCATATTTGTGGAAGGACTTGAAAATGTGTTTG GAGCAGCTTTGGATCTCATATTTGTGGAAGGACTTGAAAATGTGTTTG

ACAGACACAAACGTTTGGGCAAAGCAACAAGGTAATAGATTTTGGAAA ACAGACACAAACGTTTGGGCAAAGCAACAAGGTAATAGATTTTGGAAA

V_sebBL_ML13 ACAGACACAAACGTTTGGGCAAAGCAACAAGGTAATAGATTTTGGAAA

V_sebBL_ML13_2
V_sebBL_ML13_3
V_sebBL_RS435
V_sebBL_RS435_2
V_sebBL_RS503
V_sebBL_RS503_2
V_sebBL_RS503_3
V_sebBL_RS582
V_sebBL_RS582_2
V_sebBL_RS636
V_sebBL_RS636_2
V_lorSL_RS483
V_lorSL_RS483_2
V_sebSL_RS443
V_sebSL_RS443_2
V_sebSL_RS444
V_sebSL_RS464
V_sebSL_RS529
V_sebSL_RS529_2
V_sebSL_RS533
V_sebSL_RS533_2
V_lorBL_RS516
V_lorBL_RS516_2
V_lorBL_RS526
V_lorBL_RS526_2
V_lorBL_RS480
V_lorBL_RS480_2
V_lorBL_RS480_2
V_lorSL_RS452
V_lorSL_RS452_2
V_lorSL_RS452_3
V_lorSL_RS465
V_lorSL_RS465_2
V_lorSL_RS465_3
V_lorSL_RS465_4 V_sebBL_ML13
V_sebBL_ML13_2
V_sebBL_ML13_3
V_sebBL_RS435
V_sebBL_RS435_2 V_sebBL_RS503
V_sebBL_RS503_2 V_sebBL_RS503_3 V_sebBL_RS582
V_sebBL_RS582_2 V_sebBL_RS636 V_sebBL_RS636_2 V_lorSL_RS483 V_lorSL_RS483_2 V_sebSL_RS443 V_sebSL_RS443_2 V_sebSL_RS444 V_sebSL_RS464 V_sebSL_RS529 V_sebSL_RS529_2

ACAGACACAAACGTTTGGGCAAAGCAACAAGGTAATAGATTTTGGAAA ACAGACACAAACGTTTGGGCAAAGCAACAAGGTAATAGATTTTGGAAA

GATGTAGTGATGAATGCTAATATTGAGCACTCGATGTCCATAGTAAGA GATGTAGTGATGAATGCTAATATTGAGCACTCGATGTCCATAGTAAGA GATGTAGTGATGAATGCTAATATTGAGCACTCGATGTCCATAGTAAGA GATGTAGTGATGAATGCTAATATTGAGCACTCGATGTCCATAGTAAGA GATGTAGTGATGAATGCTAATATTGAGCACTCGATGTCCATAGTAAGA GATGTAGTGATGAATGCTAATATTGAGCACTCGATGTCCATAGTAAGA GATGTAGTGATGAATGCTAATATTGAGCACTCGATGTCCATAGTAAGA GATGTAGTGATGAATGCTAATATTGAGCACTCGATGTCCATAGTAAGA GATGTAGTGATGACTGCTAATATTGAGCACTCGATGTCCATAGTAAGA GATGTAGTGATGAATGCTAATATTGAGCACTCGATGTCCATAGTAAGA GATGTAGTGATGAATGCTAATATTGAGCACTCGATGTCCATAGTAAGA GATGTAGTGATGAATGCTAATATTGAGCACTCGATGTCCATAGTAAGA GATGTAGTGATGAATGCTAATATTGAGCACTCGATGTCCATAGTAAGA GATGTAGTGATGAATGCTAATATTGAGCACTCGATGTCCATAGTAAGA GATGTAGTGATGAATGCTAATATTGAGCACTCGATGTCCATAGTAAGA GATGTAGTGATGAATGCTAATATTGAGCACTCGATGTCCATAGCAAGA GATGTAGTGATGAATGCTAATATTGAGCACTCGATGTCCATAGTAAGA GATGTAGTGATAAATGCTAATATTGAGCACTCGATGTCCATAGTAAGA GATGTAGTGATGAATGCTAATATTGAGCACTCGATGTCCATAGTAAGA GATGTAGTGATGAATGCTAATATTGAGCACTCGATGTCCATAGTAAGA GATGTAGTGATGAATGCTAATATTGAGCACTCGATGTCCATAGTAAGA GATGTAGTGATGAATGCTAATATTGAGCACTCGATGTCCATAGTAAGA GATGTAGTGATGAATGCTAATATTGAGCACTCGATGTCCATAGTAAGA GATGTAGTGATGAATGCTAATATTGAGCACTCGATGTCCATAGTAAGA

V_sebSL_RS533 GATGTAGTGATAAATGCTAATATTGAGCACTCGATGTCCATAGTAAGA V_sebSL_RS533_2 GATGTAGTGATGAATGCTAATATTGAGCACTCGATGTCCATAGTAAGA

V_lorBL_RS516
V_lorBL_RS516_2
V_lorBL_RS526
V_lorBL_RS526_2
V_lorBL_RS480
V_lorBL_RS480_2
V_lorBL_RS480_2_
V_lorSL_RS452
GAGGCACACCATTTATTTATTGGGAACTACCCTGGATGGGCGGGGAAT GAGGCACACCATTTATTTATTGGGAACTACCCTGGATGGGCGGGGAAT GAGGCACACCATTTATTTATTGGGAACTACCCTGGATGGGCGGGGAAT GAGGCACACCATTTATTTATTGGGAACTACCCTGGATGGGCGGGGAAT GAGGCACACCATTTATTTATTGGGAACTACCCTGGATGGGCGGGGAAT GAGGCACACCATTTATTTATTGGGAACTACCCTGGATGGGCGGGGAAT GAGGCACACCATTTATTTATTGGGAACTACCCTGGATGGGCGGGGAAT GAGGCACACCATTTATTTATTGGGAACTACCCTGGATGGGCGGGGAAT V_lorSL_RS452_2 GAGGCACACCATTTATTTATTGGGAACTACCCTGGATGGGCGGGGAAT V_lorSL_RS452_3 V_lorSL_RS465
V_lorSL_RS465_2 V_lorSL_RS465_3 V_lorSL_RS465_4 V_sebBL_ML13
V_sebBL_ML13_2
V_sebBL_ML13_3
V_sebBL_RS435
V_sebBL_RS435_2
V_sebBL_RS503
V_sebBL_RS503_2
V_sebBL_RS503_3
V_sebBL_RS582
V_sebBL_RS582_2
V_sebBL_RS636
V_sebBL_RS636_2
V_lorSL_RS483
V_lorSL_RS483_2
V_sebSL_RS443
V_sebSL_RS443_2
V_sebSL_RS444
V_sebSL_RS464
V_sebSL_RS529
V_sebSL_RS529_2
V_sebSL_RS533
V_sebSL_RS533_2
V_lorBL_RS516
V_lorBL_RS516_2
V_lorBL_RS526
V_lorBL_RS526_2
V_lorBL_RS480
V_lorBL_RS480_2
V_lorBL_RS480_2_ V_lorSL_RS452
V_lorSL_RS452_2
V_lorSL_RS452_3 V_lorSL_RS465 V_lorSL_RS465_2 V_lorSL_RS465_3 V_lorSL_RS465_4 V_sebBL_ML13 V_sebBL_ML13_2 V_sebBL_ML13_3

GAGGCACACCATTTATTTATTGGGAACTACCCTGGATGGGCGGGGAAT GAGGCACACCATTTATTTATTGGGAACTACCCTGGATGGGCGGGGAAT GAGGCACACCATTTATTTATTGGGAACTACCCTGGATGGGCGGGGAAT GAGGCACACCATTTATTTATTGGGAACTACACTGGATGGGCGGGGAAT GAGGCACACCATTTATTTATTGGGAACTACACTGGATGGGCGGGGAAT GAGGCACACCATTTATTTATTGGGAACTACCCTGGATGGGCGGGGAAT GAGGCACACCATTTATTTATTGGGAACTACCCTGGATGGGCGGGGAAT GAGGCACACCATTTATTTATTGGGAACTACACTGGATGGGCGGGGAAT GAGGCACACCATTTATTTATTGGGAACTACCCTGGATGGGCGGGGAAT GAGGCACACCATTTATTTATTGGGAACTACCCTGGATGGGCCGGGAAT GAGGCACACCATTTATTTATTGGGAACTACCCTGGATGGGCGGGGAAT GAGGCACACCATTTATTTATTGGGAACTACCCTGGATGGGCGGGGAAT GAGGCACACCATTTATTTATTGGGAACTACCCTGGATGGGCGGGGAAT GAGGCACACCATTTATTTATTGGGAACTACCCTGGATGGGCGGGGAAT GAGGCACACCATTTATTTATTGGGAACTACCCTGGATGGGCGGGGAAT GAGGCACACCATTTATTTATTGGGAACTACCCTGGATGGGCCGGGAAT GAGGCACACCATTTATTTATTGGGAACTACCCTGGATGGGCGGGGAAT GAGGCACACCATTTATTTATTGGGAACTACCCTGGATGGGCGGGGAAT GAGGCACACCATTTATTTATTGGGAACTACCCTGGATGGGCGGGGAAT GAGGCACACCATTTATTTATTGGGAACTACCCTGGATGGGCGGGGAAT GAGGCACACCATTTATTTATTGGGAACTACCCTGGATGGGCGGGGAAT GAGGCACACCATTTATTTATTGGGAACTACCCTGGATGGGCGGGGAAT GAGGCACACCATTTATTTATTGGGAACTACCCTGGATCGGCGGGGAAT GAGGCACACCATTTATTTATTGGGAACTACCCTGGATGGGCGGGGAAT GAGGCACACCATTTATTTATTGGGAACTACCCTGGATGGGCGGGGAAT GAGGCACACCATTTATTTATTGGGAACTACCCTGGATGGGCGGGGAAT GAGGCACACCATTTATTTATTGGGAACTACCCTGGATCGGCGGGGAAT

ATTGCAAAAAATTTCAGCAGTGGGACTGTCCTAGACACTGATATTGAC ATTGCAAAAAATTTCAGCAGTGGGACTATCCTAGACACTGATATTGAC ATTGCAAAAAATTTCAGCAGTGGGACTATCCTAGACACTGATATTGAC ATTGCAAAAAATTTCAGCAGTGGGACTATCCTAGACACTGATATTGAC ATTGCAAAAAATTTCAGCAGTCGGACTATCCTAGACACTGATATTGAC ATTGCAAAAAATTTCAGCAGTGGGACTATCCTAGACACTGATATTGAC ATTGCAAAAAATTTCAGCAGTCGGACTATCCTAGACACTGATATTGAC ATTGCAAAAAATTTCAGCAGTGGGACTGTCCTAGACACTGATATTGAC ATTGCAAAAAATTTCAGCAGTGGGACTGTCCTAGACACTGATATTGAC ATTGCAAAAAATTTCAGCAGTGGGACTGTCCTAGACACTGATATTGAC ATTGCAAAAAATTTCAGCAGTGGGACTGTCCTAGACACTGATATTGAC ATTGCAAAAAATTTCAGCAGTGGGACTATCCTAGACACTGATATTGAC ATTGCAAAAAATTTCAGCAGTGGGACTATCCTAGACACTGATATTGAC ATTGCAAAAA-TTTCAGCAGTGGGACTATCCTAGACACTGATATTGAC ATTGCAAAAAATTTCAGCAGTGGGACTGTCCTAGACACTGATATTGAC ATTGCAAAAAATTTCAGCAGTGGGACTATCCTAGACACTGATATTGAC ATTGCAAAAAATTTCAGCAGTGGGACTATCCTAGACACTGATATTGAC
V_sebBL_RS435 ATTGCAAAAAATTTCAGCAGTCGGACTATCCTAGACACTGATATTGAC V_sebBL_RS435_2 ATTGCAAAAAATTTCAGCAGTGGGACTATCCTAGACACTGATATTGAC V_sebBL_RS503 ATTGCAAAAAATTTCAGCAGTCGGACTATCCTAGACACTGATATTGAC V_sebBL_RS503_2 ATTGCAAAAAATTTCAGCAGTGGGACTATCCTAGACACTGATATTGAC V_sebBL_RS503_3 ATTGCAAAAAATTTCAGCAGTGGGACTATCCTAGACACTGATATTGAC V_sebBL_RS582 ATTGCAAAAAATTTCAGCAGTCGGACTATCCTAGACACTGATATTGAC V_sebBL_RS582_2 ATTGCAAAAAATTTCAGCAGTGGGACTATCCTAGACACTGATATTGAC V_sebBL_RS636 V_sebBL_RS636_2 V_lorSL_RS483 V_lorSL_RS483_2 V_sebSL_RS443 V_sebSL_RS443_2 V_sebSL_RS444 V_sebSL_RS464 V_sebSL_RS529 V_sebSL_RS529_2 V_sebSL_RS533 V_sebSL_RS533_2
V_lorBL_RS516
V_lorBL_RS516_2
V_lorBL_RS526
V_lorBL_RS526_2 V_lorBL_RS480 V_lorBL_RS480_2 V_lorBL_RS480_2 V_lorSL_RS452 V_lorSL_RS452_2 V_lorSL_RS452_3 V_lorSL_RS465 V_lorSL_RS465_2 V_lorSL_RS465_3 V_lorSL_RS465_4 V_sebBL_ML13 V_sebBL_ML13_2 V_sebBL_ML13_3 V_sebBL_RS435 V_sebBL_RS435_2 V_sebBL_RS503 V_sebBL_RS503_2 V_sebBL_RS503_3 V_sebBL_RS582 V_sebBL_RS582_2 V_sebBL_RS636 V_sebBL_RS636_2 V_lorSL_RS483 V_lorSL_RS483_2 V_sebSL_RS443 V_sebSL_RS443_2 V_sebSL_RS444 V_sebSL_RS464 V_sebSL_RS529 V_sebSL_RS529_2 V_sebSL_RS533 V_sebSL_RS533_2

ATTGCAAAAAATTTCAGCAGTGGGACTATCCTAGACACTGATATTGAC ATTGCAAAAAATTTCAGCAGTGGGACTATCCTAGACACTGATATTGAC ATTGCAAAAAATTTCAGCAGTGGGACTGTCCTAGACACTGATATTGAC ATTGCAAAAAATTTCAGCAGTGGGACTATCCTAGACACTGATATTGAC ATTGCAAAAAATTTCAGCAGTGGGACTATCCTAGACACTGATATTGAC ATTGCAAAAAATTTCAGCAGTGGGACTATCCTAGACACTGATATTGAC ATTGCAAAAAATTTCAGCAGTGGGACTATCCTAGACACTGATATTGAC ATTGCAAAAAATTTCAGCAGTGGGACTATCCTAGACACTGATATTGAC ATTGCAAAAAATTTCAGCAGTGGGACTATCCTAGACACTGATATTGAC ATTGCAAAAAATTTCAGCAGTGGGACTATCCTAGACACTGATATTGAC ATTGCAAAAAATTTCAGCAGTGGGACTATCCTAGACACTGATATTGAC ATTGCAAAAAATTTCAGCAGTGGGACTATCCTAGACACTGATATTGAC

AACTTTTGCCCCAGTGAATGTTGACCATATGTGTTTTTTT---GAACT AACTTTTGCCCCAGTGAATGTTGACCATATGTGTTTTTTT---GAACT AACTTTTGCCCCAGTGAATGTTGACCATATATGTGTTTTTTT-GAACT AACTTTTGCCCCAGTGAATGTTGACCATATGTGTTTTTTT---GAACT AACTTTTGCCCCAGTGAATGTTGACCATATGTGTTTTTTTTTT-AACT AACTTTTGCCCCAGTGAATGTTGACCATATGTGTTTTTTTTTT-AACT AACTTTTGCCCCAGTGAATGTTGACCATATGTGTTTTTTTTTT-AACT AACTTTTGCCCCAGTGAATGTTGACCATATGTGTTTTTTT---GAACT AACTTTTGCCCCAGTGAATGTTGACCATATGTGTTTTTTT---GAACT AACTTTTGCCCCAGTGAATGTTGACCATATGTGTTTTTTT---GAACT AACTTTTGCCCCAGTGAATGTTGACCATATGTGTTTTTTT---GAACT AACTTTTGCCCCAGTGAATGTTGACCATATGTGTTTTTTT---GAACT AACTTTTGCCCCAGTGAATGTTGACCATATGTGTTTTTTTTT--AACT AACTTTTGCCCCAGTGAATGTTGACCATATGTGTTTTTTTTT--AACT AACTTTTGCCCCAGTGAATGTTGACCATATGTGTTTTTTT---GAACT AACTTTTGCCCCAGTGAATGTTGACCATATGTGTTTTTTT---GAACT AACTTTTGCCCCAGTGAATGTTGACCATATGTGTTTTTTTTT--AACT AACTTTTGCCCCAGTGAATGTTGACCACATGTGTTTTTTTTTT-AACT AACTTTTGCCCCAGTGAATGTTGACCATATGTGTTTTTTT---GAACT AACTTTTGCCCCAGTGAATGTTGACCATATGTGTTTTTTTTTT-AAAT AACTTTTGCCCCAGTGAATGTTGACCATATGTGTTTTTTTCTT-AACT AACTTTTGCCCCAGTGAATGTTGACCATATGTGTTTTTTTCTT-AACT AACTTTTGCCCCAGTGAATGTTGACCATATGTGTTTTTTTTTT-AACT AACTTTTGCCCCAGTGAATGTTGACCATATGTGTTTTTTT---GAACT AACTTTTGCCCCAGTGAATGTTGACCATATGTGTTTTTTT---GAACT AACTTTTGCCCCAGTGAATGTTGACCATATGTGTTTTTTT---GAACT AACTTTTGCCCCAGTGAATGTTGACCATATGTGTTTTTTT---GAACT AACTTTTGCCCCAGTGAATGTTGACCATATGTGTTTTTTTTTT-AACT AACTTTTGCCCCAGTGAATGTTGACCATATGTGTTTTTTTTT--AACT AACTTTTGCCCCAGTGAATGTTGACCATATGCGTTTTTTTCTT-AACT AACTTTTGCCCCAGTGAATGTTGACCATATGTGTTTTTTTTT--AACT TACTTTTGCCCCAGTGAATGTTGACCATATGTGTTTTTTTCTT-AACT AACTTTTGCCCCAGTGAATGTTGACCATATGTGTTTTTTTTT--AACT AACTTTTGCCCCAGTGAATGTTGACCATATGTGTTTTTTTTT--AACT AACTTTTGCCCCAGTGAATGTTGACCATATGTGTTTTTTTTT--AACT tacttttgccccagtgaitgttgaccatatgtgittitttcti-anct

V_lorBL_RS516 TTCCATTTATAATCCTCAAAATTCCTCCAAACAGTAGCTAAAATCGTT V_lorBL_RS516_2 TTCCATGTATAATCCTCAAAATTCCTCCAAACAGTAGCTAAAATCATT

V_lorBL_RS526
V_lorBL_RS526_2
V_lorBL_RS480
V_lorBL_RS480_2 V_lorBL_RS480_2 V_lorSL_RS452 V_lorSL_RS452_2 V_lorSL_RS452_3 V_lorSL_RS465 V_lorSL_RS465_2 V_lorSL_RS465_3 V_lorSL_RS465_4 V_sebBL_ML13 V_sebBL_ML13_2 V_sebBL_ML13_3 V_sebBL_RS435 V_sebBL_RS435_2 V_sebBL_RS503 V_sebBL_RS503_2 V_sebBL_RS503_3 V_sebBL_RS582 V_sebBL_RS582_2 V_sebBL_RS636 V_sebBL_RS636_2 V_lorSL_RS483 V_lorSL_RS483_2 V_sebSL_RS443 V_sebSL_RS443_2 V_sebSL_RS444 V_sebSL_RS464 V_sebSL_RS529 V_sebSL_RS529_2 V_sebSL_RS533 V_sebSL_RS533_2

V_lorBL_RS516 V_lorBL_RS516_2 V_lorBL_RS526 V_lorBL_RS526_2 V_lorBL_RS480 V_lorBL_RS480_2 V_lorBL_RS480_2 V_lorSL_RS452 V_lorSL_RS452_2 V_lorSL_RS452_3 V_lorSL_RS465 V_lorSL_RS465_2 V_lorSL_RS465_3 V_lorSL_RS465_4 V_sebBL_ML13 V_sebBL_ML13_2 V_sebBL_ML13_3 V_sebBL_RS435 V_sebBL_RS435_2 V_sebBL_RS503 TTCCATTTATAATCCTCAAAATTCCTCCAAACAGTAGCTAAAATCATT TTCCATGTATAATCCTCAAAATTCCTCCAAACAGTAGCTAAAATCATT TTCCATTTATAATCCTCAAAATTCCTCCAAACAGTAGCTAAAATCATT TTCCATTTATAATCCTCAAAATTCCTCCAAACAGTAGCTAAAATCATT TTCCATTTATAATCCTCAAAATTCCTCCAAACAGTAGCTAAAATCATT TTCCATTTATAATCCTCAAAATTCCTCCAAACAGTAGCTAAAATCGTT TTCCATTTATAATCCTCCAAATTCCTCCAAACAGTAGCTAAAATCGTT TTCCATTTATAATCCTCAAAATTCCTCCAAACAGTAGCTAAAATCGTT TTCCATTTATAATCCTCCAAATTCCTCCAAACAGTAGCTAAAATCGTT TTCCATTTATAATCCTCAAAATTCCTCCAAACAGTAGCTAAAATCATT TTCCATTTATAATCCTCAAAATTCCTCCAAACAGTAGCTAAAATCATT TTCCATTTATAATCCTCAAAATTCCTCCAAACAGTAGCTAAAATCATT TTCCATTTATAATCCTCAAAATTCCTCCAAACAGTAGCTAAAATCATT TTCCATTTATAATCCTCAAAATTCCTCCAAACAGTAGCTAAAATCATT TTCCATTTATAATCCTCAAAATTCCTCCAAACAGTAGCTAAAATCATT TTCCATTTATAATCCTCAAAATTCCTCCAAACAGTACCTAAAATCATT TTCCATTTATAATCCTCAAAATTCCTCCAAACAGTAGCTAAAATCATT TTCCATTTATAATCCTCAAAATTCCTCCAAACAGTAGCTAAAATCATT TTCCATTTATAATCCTCAAAATTCCTCCAAACAGTAGCTAAAATCATT TTCCATTTATAATCCTCAAAATTCCTCCAAACAGTAGCTAAAATCATT TTCCATTTATAATCCTCAAAATTCCTCCAAACAGTAGCTAAAATCATT TTCCATTTATAATCCTTAAAATTCCTCCAAACAGTAGCTAAAATCATT TTCCATTTATAATCCTCAAAATTCCTCCAAACAGTAGCTAAAATCATT TTCCATTTATAATCCTCAAAATTCCTCCAAACAGTAGCTAAAATCATT TTCCATTTATAATCCTCAAAATTCCTCCAAACAGTAGCTAAAATCGTT TTCCATTTATAATCCTCAAAATTCCTCCAAACAGTAGCTAAAATCATT TTCCATTTATAATCCTCAAAATTCCTCCAAACAGTAGCTAAAATCATT TTCCATTTATAATCCTCAAAATTCCTCCAAACAGTAGCTAAAATCATT TTCCATTTATAATCCTCAAAATTCCTCCAAACAGTAGCTAAAATCATT TTCCATTTATAATCCTCAAAATTCCTCCAAACAGTAGCTAAAATCATT TTCCATTTATAATCCTCAAAATTCCTCCAAACAGTAGCTAAAATCATT TTCCATTTATAATCCTCAAAATTCCTCCAAACAGTAGCTAAAATCATT TTCCATTTATAATCCTCAAAATTCCTCCAAACAGTAGCTAAAATCATT TTCCATTTATAATCCTCAAAATTCCTCCAAACAGTAGCTAAAATCATT

ATATTCTTTTACTTTAAGGCTGTGACCCACCCAATGGATGAATGGTTC ATATTCTTTTACTTTAAGGCTGTGACCCACCCAATGGATGAATGGTTC ATAGTCTTTTACTTTAAGGCTGTGACCCACCCAATGGATGAATGGTTC ATATTCTTTTACTTTAAGGCTGTGACCCACCCAATGGATGAATGGTTC ATAGTCTTTTACTTTAAGGCTGTGACCCACCCAATGGATAAATGGTTC ATAGTCTTTTACTTTAAGGCTGTGACCCGCCCAATGGATAAATGGTTC ATAGTCTTTTACTTTAAGGCTGTGACCCACCCAATGGATAAATGGTTC ATATTCTTTTACTTTAAGGCTGTGACCCACCCAATGGATGAATGGTTC ATATTCTTTTACTTTAAGGCTGTGACCCACCCAATGGATGAATGGTTC ATATTCTTTTACTTTAAGGCTGTGACCCACCCAATGGATGAATGGTTC ATATTCTTTTACTTTAAGGCTGTGACCCACCCAATGGATGAATGGTTC ATATTCTTTTACTTTAAGGCTGTGACCCACCCAATGGATGAATGGTTC ATATTCTTTTACTTTAAGGCTGTGACCCACCCAATGGATATATGGTTC ATATTCTTTTACTTTAAGGCTGTGACCCACCCAATGGATATATGGTTC ATATTCTTTTACTTTAAGGCTGTGACCCACCCAATGGATGAATGGTTC ATATTCTTTTACTTTAAGGCTGTGACCCACCCAATGGATGAATGGTTC ATATTCTTTTACTTTAAGGCTGTGACCCACCCAATGGATATATGGTTC ATAGTCTTTTACTTTAAGGCTGTGACCCACCCAATGGATAAATGGTTC ATATTCTTTTACTTTAAGGCTGTGACCCACCCAATGGATGAATGGTTC ATAGTCTTTTACTTTAAGGCTGTGACCCACCCAATGGATAAATGGTTC

V_sebBL_RS503_2 ATATTCTTTTACTTTAAGGCTGTGACCCACCCAATGGATAAATGGCTC V_sebBL_RS503_3 ATATTCTTTTACTTTAAGGCTGTGACCCACCCAATGGATAAATGGTTC

V_sebBL_RS582
V_sebBL_RS582_2 V_sebBL_RS636
V_sebBL_RS636_2
V_lorSL_RS483
V_lorSL_RS483_2
V_sebSL_RS443
V_sebSL_RS443_2
V_sebSL_RS444
V_sebSL_RS464
V_sebSL_RS529
V_sebSL_RS529_2
V_sebSL_RS533
V_sebSL_RS533_2

V_lorBL_RS516_2
V_lorBL_RS526
V_lorBL_RS526_2
V_lorBL_RS480
V_lorBL_RS480_2
V_lorBL_RS480_2
V_lorSL_RS452
V_lorSL_RS452_2
V_lorSL_RS452_3
V_lorSL_RS465
V_lorSL_RS465_2
V_lorSL_RS465_3
V_lorSL_RS465_4
V_sebBL_ML13
V_sebBL_ML13_2
V_sebBL_ML13_3
V_sebBL_RS435
V_sebBL_RS435_2
V_sebBL_RS503
V_sebBL_RS503_2
V_sebBL_RS503_3
V_sebBL_RS582
V_sebBL_RS582_2
V_sebBL_RS636
V_sebBL_RS636_2
V_lorSL_RS483
V_lorSL_RS483_2
V_sebSL_RS443
V_sebSL_RS443_2
V_sebSL_RS444
V_sebSL_RS464
V_sebSL_RS529
V_sebSL_RS529_2
V_sebSL_RS533
V_sebSL_RS533_2
V_lorBL_RS516
V_lorBL_RS516_2 V_lorBL_RS526

V_lorBL_RS516 AATTCTCATGAAGGTGTGACATTTGTAAGATGATATGAGTGCCTGAGA ATAGTCTTTTACTTTAAGGCTGTGACCCACCCAATGGATAAATGGTTC ATATTCTTTTACTTTAAGGCTGTGACCCACCCAATGGATGAATGGTTC ATATTCTTTTACTTTAAGGCTGTGACCCACCCAATGGATGAATGGTTC ATATTCTTTTACTTTAAGGCTGTGACCCACCCAATGGATGAATGGTTC ATATTCTTTTACTTTAAGGCTGTGACCCACCCAATGGATGAATGGTTC ATATTCTTTTACTTTAAGGCTGTGACCCACCCAATGGATAAATGGTTC ATATTCTTTTACTTTAAGGCTGTGACCCACCCAATGGATAAATGGTTC ATATTCTTTTACTTTAAGGCTGTGACCCACCCAATGGATAAATGGTTC ATATTCTTTTACTTTAAGGCTGTGACCCACCCAATGGATAAATGGTTC ATATTCTTTTACTTTAAGGCTGTGACCCACCCAATGGATAAATGGTTC ATATTCTTTTACTTTAAGGCTGTGACCCACCCAATGGATAAATGGTTC ATATTCTTTTACTTTAAGGCTGTGACCCACCCAATGGATAAATGGTTC ATATTCTTTTACTTTAAGGCTGTGACCCACCCAATGGATAAATGGTTC ATATTCTTTTACTTTAAGGCTGTGACCCACCCAATGGATAAATGGTTC AATTCTCATGAAGGTGTGACATTTGTAAGATGATAAGAGTGCCTGAGA AATTCTCATGAAGGTGTGACATTTGTAAGATGATATGAGTGCCTGAGA AATTCTCATGAAGGTGTGACATTTGTAAGATGATAAGAGTGCCTGAGA AATTCTCATGAAGGTGTGACATTTGTAAGATGATATGAGTGCCTGAGA AATTCTCATGAAGGTGTGACATTTGTAAGATGATATGAGTGCCTGAGA AATTCTCATGAAGGTGTGACATTTGTAAGATGATATGAGTGCCTGAGA AATTCTCATGAAGGTGTGACATTTGTAAGATGATATGAGTGCCTGAGA AATTCTCATGAAGGTGTGACATTTGTAAGATGATATGAGTGCCTGAGA AATTCTCATGAAGGTGTGACATTTGTAAGATGATATGAGTGCCTGAGG AATTCTCATGAAGGTGTGACATTTGTAAGATGATATGAGTGCCTGAGA AATTCTCATGAAGGTGTGACATTTGTAAGATGATATGAGTGCCTGAGA AATTCTCATGAAGGTGTGACATTTGTAAGATGATATGAGTGCCTGAGA AATTCTCGTGAAGGTGTGACATTTGTAAGATGATATGAGTGCCTGAGA AATTCTCATGAAGGTGTGACATTTGTAAGATGATATGAGTGCCTGAGA AATTCTCATGAAGGTGTGACATTTGTAAGATGATATGTGTGCCTGAGA AATTCTCATGAAGGTGTGACATTTGTAAGATGATATGAGTGCCTGAGA AATTCTCATGAAGGTGTGACATTTGTAAGATTATATGAGTGCCTGAGA AATTCTCATGAAGGTGTGACATTTGTAAGATGATATGAGTGCCTGAGA AATTCTCATGAAGGTGTGACATTTGTAAGATGATATGAGTGCCTGAGA AATTCTCATGAAGGTGTGACATTTGTAAGATGATATGAGTGCCTGAGA AATTCTCATGAAGGTGTGACATTTGTAAGATGATATGAGTGCCTGAGA AATTCTCATGAAGGTGTGACATTTGTAAGATGATATGAGTGCCTGAGA AATTCTCTTGAAGGTGTGACATTTGTAAGATGATATGAGTGCCTGAGA AATTCTCATGAAGGTGTGACATTTGTAAGATGATATGAGTGCCTGAGA AATTCTCATGAAGGTGTGACATTTGTAAGATGATATGAGTGCCTGAGA CGTAACAAATAAGGAGTGCAGGAAAGATTTCTCATATATATGATTTGA CGTAACAAATAAGGAGTGCAGGAAAAATTTCTCATATATATGATTTGA

V_lorBL_RS526_2 V_lorBL_RS480 V_lorBL_RS480_2 V_lorBL_RS480_2_ V_lorSL_RS452 V_lorSL_RS452_2 V_lorSL_RS452_3 V_lorSL_RS465 V_lorSL_RS465_2 V_lorSL_RS465_3 V_lorSL_RS465_4 V_sebBL_ML13
V_sebBL_ML13_2 V_sebBL_ML13_3 V_sebBL_RS435 V_sebBL_RS435_2 V_sebBL_RS503 V_sebBL_RS503_2 V_sebBL_RS503_3 V_sebBL_RS582 V_sebBL_RS582_2 V_sebBL_RS636 V_sebBL_RS636_2 V_lorSL_RS483 V_lorSL_RS483_2 V_sebSL_RS443 V_sebSL_RS443_2 V_sebSL_RS444 V_sebSL_RS464 V_sebSL_RS529 V_sebSL_RS529_2 V_sebSL_RS533 V_sebSL_RS533_2

V_lorBL_RS516 V_lorBL_RS516_2 V_lorBL_RS526 V_lorBL_RS526_2 V_lorBL_RS480 V_lorBL_RS480_2 V_lorBL_RS480_2 V_lorSL_RS452 V_lorSL_RS452_2 V_lorSL_RS452_3 V_lorSL_RS465 V_lorSL_RS465_2 V_lorSL_RS465_3 V_lorSL_RS465_4 V_sebBL_ML13 V_sebBL_ML13_2 V_sebBL_ML13_3 V_sebBL_RS435 V_sebBL_RS435_2 V_sebBL_RS503 V_sebBL_RS503_2 V_sebBL_RS503_3 V_sebBL_RS582

CGTAACAAATAAGGAGTGCAGGAAAGATTTCTCATATATATGATTTGA CGTAACAAATAAGGAGTGCAGGAAAAATTTCTCATATATATGATTTGA CGTAACAAATAAGGAGTGCAGGAAAAATTTCTCATATATATGATTTGA CGTAACAAATAAGGAGTGCAGGAAAAATTTCTCATATATATGATTTGA CGTAACAAATAAGGAGTGCAGGAAAGATTTCTCATATATATGATTTGA CGTAACAAATAAGGAGTGCAGGAAAGATTTCTCATATATATGATTTGA CGTAACAAATAAGGAGTGCAGGAAAGATTTCTCATATATATGATTTGA CGTAACAAATAAGGAGTGCAGGAAAGATTTCTCATATATATGATTTGA CGTAACAAATAAGGAGTGCAGGAAAGATTTCTCATATATATGATTTGA CGTAACAAATAAGGAGTGCAGGAAAGATTTCTCATATATATGATTTGT CGTAACAAATAAGGAGTGCAGGAAAGATTTCTCATATATATGATTTGT CGTAACAAATAAGGAGTGCAGGAAAAAATTCTCATATATATGATTTGA CGTAACAAATAAGGAGTGCAGGAAAAATTTCTCATATATATGATTTGA CGTAACAAATAAGGAGTGCAGGAAAGATTTCTCATATATATGATTTGT CGTAACAAATAAGGAGTGCAGGAAAAATTTCTCATATATATGATTTGA CGTAACAAATAAGGAGTGCAGGAAAAATTTCTCATATATATGATTTGA CGTAACAAATAAGGAGTGCAGGAAAAATTTCTCATATATATGATTTGA CGTAACAAATAAGGAGTGCAGGAAAAATTTCTCATATATATGATTTGA CGTAACAAATAAGGAGTGCAGGAAAAATTTCTCATATATATGATTTGA CGTAACAAATAAGGAGTGCAGGAAAAATTTCTCATATATATGATTTGA CGTAACAAATAAGGAGTGCAGGAAAAATTTCTCATATATATGATTTGA CGTAACAAATAAGGAGTGCAGGAAAAATTTCTCATATATATGATTTGA CGTAACAAATAAGGAGTGCAGGAAAAATTTCTCATATATATGATTTGA CGTAACAAATAAGGAGTGCAGGAAAGATTTCTCATATATATGATTTGA CGTAACAAATAAGGAGTGCAGGAAAAATTTCTCATATATATGATTTGA CGTAACAAATAAGGAGTGCAGGAAAAATTTCTCATATATATGATTTGA TGTAACAAATAAGGAGTGCAGGAAAAATTTCTCATATATATGATTTGA CGTAACAAATAAGGAGTGCAGGAAAAATTTCTCATATATATGATTTGA CGTAACAAATAAGGAGTGCAGGAAAAATTTCTCATATATATGATTTGA CGTAACAAATAAGGAGTGCAGGAAAAATTTCTCATATATATGATTTGA CGTAACAAATAAGGAGTGCAGGAAAAATTTCTCATATATATGATTTGA CGTAACAAATAAGGAGTGCAGGAAAAATTTCTCATATATATGATTTGA CGTAACAAATAAGGAGTGCAGGAAAAATTTCTCATATATATGATTTGA

GATGTCTATAGACAGAGAAATGGCCTTCACTAATGTTCTTTGTCCTTT GATGTCTATAGACAGAGAAATGGCCTTCACTAATGTTCTTTGTCCTTT GATGTCTATAGACAGAGAAATGGCCTTCACTAATGTTCTCTGTCCTTT GATGTCTATAGACAGAGAAATGGCCTTCACTAATGTTCTTTGTCCTTT GATGTCTATAGACAGAGAAATGGCCTTCACTAATGTTCTTTGTCCTTT GATGTCTATAGACAGAGAAATGGCCTTCACTAACGTTCTTTGTCCTTT GATGTCTATAGACAGAGAAATGGCCTTCACTAATGTTCTTTGTCCTTT GATGTCTATAGACAGAGAAATGGCCTTCACTAACGTTCTTTGTCCTTT GATGTCTATAGACAGAGAAATGGCCTTCACTAATGTTCTTTGTCCTTT GATGTCTATAGACAGAGAAATGGCCTTCACTAATGTTCTTTGTCCTTT GATGCCTATAGACAGAGAAATGGCCTTCACTAATGTTCTTTGTCCTTT GATGTCTATAGACAGAGAAATGGCCTTCACTAATGTTCTTTGTCCTTT GATGTCTATAGACAGAGAAATGGCCTTCACTAATGTTCTTTGTCCTTT
\begin{tabular}{|c|c|}
\hline V_sebBL_RS582_2 & GATGTCTATAGACAGAGAAATGGCCTTCACTAATGTTCTTTGTCCTTT \\
\hline V_sebBL_RS636 & GATGTCTATAGACAGAGAAATGGCCTTCACTAATGTTCTTTGTCGTTT \\
\hline V_sebBL_RS636_2 & GATGTCTATAGACAGAGAAATGGCCTTCACTAATGTTCTTTGTCCTTT \\
\hline V_lorSL_RS483 & GATGTCTATAGACAGAGAAATGGCCTTCACTAATGTTCTTTGTCCTTT \\
\hline V_lorSL_RS483_2 & GATGTCTATAGACAGAGAAATGGCCTTCACTAATGTTCTTTGTCCTTT \\
\hline V_sebSL_RS443 & GATGTCTATAGACAGAGAAATGGCCTTCACTAATGTTCTTTGTCCTTT \\
\hline V_sebSL_RS443_2 & GATGTCTATAGACAGAGAAATGGCCTTCACTAATGTTCTTTGTCCTTT \\
\hline V_sebSL_RS444 & GATGTCTATAGACAGAGAAATGGCCTTCACTAATGTTCTTTGTCCTTT \\
\hline V_sebSL_RS464 & GATGTCTATAGACAGAGAAATGGCCTTCACTAATGTTCTTTGTCCTTT \\
\hline V_sebSL_RS529 & GATGTCTATAGACAGAGAAATGGCCTTCACTAATGTTCTTTGTCCTTT \\
\hline V_sebSL_RS529_2 & GATGTCTATAGACAGAGAAATGGCCTTCACTAATGTTCTTTGTCCTTT \\
\hline V_sebSL_RS533 & GATGTCTATAGACAGAGAAATGGCCTTCACTAATGTTCTTTGTCCTTT \\
\hline V_sebSL_RS533_2 & GATGTCTATAGACAGAGAAATGGCCTTCACTAATGTTCTTTGTCCTTT \\
\hline V_lorBL_RS516 & TTAAATGTAGG \\
\hline V_lorBL_RS516_2 & TTAAATGTAGG \\
\hline V_lorBL_RS526 & TTAAATGTAGG \\
\hline V_lorBL_RS526_2 & TTAAATGTAGG \\
\hline V_lorBL_RS480 & TTAAATGTAGG \\
\hline V_lorBL_RS480_2 & TTAAATGTAGG \\
\hline V_lorBL_RS480_2 & TTAAATGTAGG \\
\hline V_lorSL_RS452 & TTAAATGTAGG \\
\hline V_lorSL_RS452_2 & TTAAATGTAGG \\
\hline V_lorSL_RS452_3 & TTAAATGTAGG \\
\hline V_lorSL_RS465 & TTAAATGTAGG \\
\hline V_lorSL_RS465_2 & TTAAATGTAGG \\
\hline V_lorSL_RS465_3 & TTAAATGTAGG \\
\hline V_lorSL_RS465_4 & TTAAATGTAGG \\
\hline V_sebBL_ML13 & TTAAATGTAGG \\
\hline V_sebBL_ML13_2 & TTAAATGTAGG \\
\hline V_sebBL_ML13_3 & TTAAATGTAGG \\
\hline V_sebBL_RS435 & TTAAATGTAGG \\
\hline V_sebBL_RS435_2 & TTAAATGTAGG \\
\hline V_sebBL_RS503 & TTAAATGTAGG \\
\hline V_sebBL_RS503_2 & TTAAATGTAGG \\
\hline V_sebBL_RS503_3 & TTAAATGTAGG \\
\hline V_sebBL_RS582 & TTAAATGTAGG \\
\hline V_sebBL_RS582_2 & TTAAATGTAGG \\
\hline V_sebBL_RS636 & TTAAATGTAGG \\
\hline V_sebBL_RS636_2 & TTAAATGTAGG \\
\hline V_lorSL_RS483 & TTAAATGTAGG \\
\hline V_lorSL_RS483_2 & TTAAATGTAGG \\
\hline V_sebSL_RS443 & TTAAATGTAGG \\
\hline V_sebSL_RS443_2 & TTAAATGTAGG \\
\hline V_sebSL_RS444 & TTAAATGTAGG \\
\hline V_sebSL_RS464 & TTAAATGTAGG \\
\hline V_sebSL_RS529 & TTAAATGTAGG \\
\hline V_sebSL_RS529_2 & TTAAATGTAGG \\
\hline V_sebSL_RS533 & TTAAATGTAGG \\
\hline V_sebSL_RS533_2 & TTAAATGTAGG \\
\hline
\end{tabular}```


[^0]:    V_sur_RS_501 GTGTTCTTTGACTGGAAAGACTACCTCAAGTTCTATAAGTTGGGTACATA
    C_cap_RS_551
    C_debilis_7209
    I_juru_RS_451
    I_laev_RS_460
    V_cadu_JJ_847
    V_spRADS3_RS_335
    V_spRADS3_RS_339
    V_peru_JJ_772
    V_calo_RS_430
    V_calo_RS_454
    V_calo_RS_481
    V_calo_RS_511
    V_spRADS1_RS_432
    V_spRADS1_RS_500
    V_spRADS1_R1_510 V_spRADS1_RS_561
    V_dix_RS_225
    V_elon_RS_437
    V_elon_RS_494
    V_elon_RS_502
    V_flex_RS_442
    V_flex_RS_522
    V_flex_RS_595
    V_multin_RS_107
    V_multin_RS_108
    V_loret_RS_480
    V_loret_RS_516
    V_loret_RS_526
    V_multi_RS_350
    V_multi_RS_429
    V_multi_RS_466
    V_multi_RS_543
    V_multi_RS_549
    V_sebBL_RS_584
    V_lorSL_RS_483
    V_lorSL_RS_507
    V_sebSL_RS_534
    V_sebSL_RS_552
    V_spRADS4_RS_213
    V_spRADS4_RS_214
    V_sur_RS_082
    V_sur_RS_083
    V_sur_RS_084
    V_sur_RS_216
    V_sur_RS_248
    V_sur_RS_324
    V_sur_RS_428
    V_sur_RS_489
    V_sur_RS_501
    C_cap_RS_551
    C_debilis_7209
    I_juru_RS_451
    I_laev_RS_460
    V_cadu_JJ_847
    TTGGCCCTACACACCTTCTATACAACTTTTGTATGGCCTGAGAGCAGCTT TTGGCCCTACACACCCTCTATACAACTTTTGTATGGCCTGAGAGCAGCTT TTGGCCCTACACACCTTCTATACAACTTTTGTATGGCCTGAGAGCAGCTT TTGGCCCTACACACCTTCTATACAACTTTTGTATGGCCTGAGAGCAGCTT TTGGCCCTACACACCTTCTATACAACTTTTGTATGGCCTGAGAGCATCTT TTGGCCCTACACACCTTCTATACATCTTTTGTATGGCCTGAGAGCAGCTT TTGGCCCTACACACCTTCTATACATCTTTTGTATGGCCTGAGAGCAGCTT TTGGCCCTACACACCTTCTATACATCTTTTGTATGGCCTGAGAGCAGCTT TTGGCCCTACACACCTTCTATACAACTTTTGTATGGCCTGAGAGCAGCTT TTGGCCCTACACACCTTCTATACAACTTTTGTATGGCCTGAGAGCAGCTT TTGGCCCTACACACCTTCTATACAACTTTTGTATGGCCTGAGAGCAGCTT TTGGCCCTACACACCTTCTATACAACTTTTGTATGGCCTGAGAGCAGCTT TTGGCCCTACACACCTTCTATACATCTTTTGTATGGCCTGAGAGCAGCTT TTGGCCCTACACACCTTCTATACATCTTTTGTATGGCCTGAGAGCAGCTT TTGGCCCTACACACCTTCTATACATCTTTTGTATGGCCTGAGAGCAGCTT TTGGCCCTACACACCTTCTATACATCTTTTGTATGGCCTGAGAGCAGCTT TTGGCCCTACACACCTTCTATACATCTTTTGTATGGCCTGAGAGCAGCTT TTGGCCCTACACACCTTCTATACATCTTTTGTATGGCCTGAGAGCAGCTT TTGGCCCTACACACCTTCTATACATCTTTTGTATGGCCTGAGAGCAGCTT TTGGCCCTACACACCTTCTATACATCTTTTGTATGGCCTGAGAGCAGCTT TTGGCCCTACACACCTTCTATACAACTTTTGTATGGCCTGAGAGCATCTT TTGGCCCTACACACCTTCTATACAACTTTTGTATGGCCTGAGAGCATCTT TTGGCCCTACACACCTTCTATACAACTTTTGTATGGCCTGAGAGCATCTT TTGGCCCTACACACCTTCTATACAACTTTTGTATGGCCTGAGAGCATCTT TTGGCCCTACACACCTTCTATACAACTTTTGTATGGCCTGAGAGCATCTT TTGGCCCTACACACCTTCTATACATCTTTTGTATGGCCTGAGAGCAGCTT TTGGCCCTACACACCTTCTATACATCTTTTGTATGGCCTGAGAGCAGCTT TTGGCCCTACACACCTTCTATACATCTTTTGTATGGCCTGAGAGCAGCTT TTGGCCCTACACACCTTCTATACAACTTTTGTATGGCCTGAGAGCATCTT TTGGCCCTACACACCTTCTATACAACTTTTGTATGGCCTGAGAGCATCTT TTGGCCCTACACACCTTCTATACAACTTTTGTATGGCCTGAGAGCATCTT TTGGCCCTACACACCTTCTATACAACTTTTGTATGGCCTGAGAGCATCTT TTGGCCCTACACACCTTCTATACAACTTTTGTATGGCCTGAGAGCATCTT TTGGCCCTACACACCTTCTATACATCTTTTGTATGGCCTGAGAGCAGCTT ?????????????????????????????????????????????????? TTGGCCCTACACACCTTCTATACATCTTTTGTATGGCCTGAGAGCAGCTT TTGGCCCTACACACCTTCTATACATCTTTTGTATGGCCTGAGAGCAGCTT TTGGCCCTACACACCTTCTATACATCTTTTGTATGGCCTGAGAGCAGCTT TTGGCCCTACACACCTTCTATACAACTTTTGTATGGCCTGAGAGCAGCTT TTGGCCCTACACACCTTCTATACAACTTTTGTATGGCCTGAGAGCAGCTT TTGGCCCTACACACCKTCTATACAACTTTTGTATGGCCTGAGAGCAGCTT TTGGCCCTACACACCGTCTATACAACTTTTGTATGGCCTGAGAGCAGCTT TTGGCCCTACACACCGTCTATACAACTTTTGTATGGCCTGAGAGCAGCTT TTGGCCCTACACACCGTCTATACAACTTTTGTATGGCCTGAGAGCAGCTT ?????????????????????????????????????????????????? ?????????????????????????????????????????????????? TTGGCCCTACACACCKTCTATACAACTTTTGTATGGCCTGAGAGCAGCTT TTGGCCCTACACACCGTCTATACAACTTTTGTATGGCCTGAGAGCAGCTT TTGGCCCTACACACCGTCTATACAACTTTTGTATGGCCTGAGAGCAGCTT

    TGGATCTCATATTTGTGGAAGGACTTGAAAATGTGTTTGACAGACACAAA TGGATCTCATATTTTTGGAAGGACTTGAAAATGTGTTTGACAGACACAAA TGGATCTCATATTTGTGGAAGGACTTGAAAATGTGTTTGACAGACACAAA TGGATCTCATATTTGTGGAAGGACTTGAAAATGTGTTTGACAGACACAAA TGGATCTCATATTTGAGGAAGGACTTGAAAATGTGTTTGACAGACACAAA

