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Abstract: The present study proposes a simple synthesis technique for producing bunsenite cadmium
oxide nanoparticles. A variety of techniques were used to determine the structure, morphology, ele-
mental content, and optical properties of bunsenite cadmium oxide nanoparticles. The samples’ XRD
spectra at 500 ◦C and above confirmed the presence of cubic bunsenite and cadmium oxide structures.
The crystallite size was increased from 29 nm to 62 nm as the calcined temperature increased from
500 ◦C to 800 ◦C. The dispersion of the particles of bunsenite cadmium oxide improved with an
increasing calcination temperature. An equivalent increasing trend was indicated by the mean grain
size displayed via field emission scanning electron microscopy (FESEM) micrographs. Furthermore,
the UV-Vis spectra showed that multiple energy band gaps attenuated as the calcination temperature
increased. The mean particle size, as measured by transmission electron micrographs, appeared to
increase in tandem with the calcination temperature. The obtained bunsenite and cadmium oxide
nanoparticles have potential for employment in a wide range of semiconductor applications.

Keywords: bunsenite cadmium oxide nanoparticles; polyvinylpyrrolidone; thermal technique

1. Introduction

Transition metal oxide nanoparticles have unique structural, optical, magnetic, and
electrical properties that allow them to have small crystallite sizes, large surface areas, and
quantum dimensions [1,2]. These nanoparticles have lately been exploited in biological,
physical, chemical, and electrical applications as a result of their properties [3–6]. Cadmium
oxide (CdO) is an n-type semiconductor with a direct bandgap ranging from 2.2 to 2.5 eV
and an indirect bandgap ranging from 1.36 to 1.98 eV [7–9]. It is very electrically conductive,
has a high carrier concentration, is highly chemically stable, widely available, highly trans-
parent in the visible electromagnetic spectrum region, and is relatively inexpensive [10,11].
Consequently, it is compatible with many applications, including solar cells, photodiodes,
photoresistors, photosensors, and transparent electrodes [12–14]. A semiconductor of the
p-type, bunsenite (NiO) has a broad bandgap between 3.6 and 4.0 eV [15–18]. Its electronic,
magnetic, chemical, and electrical properties [19–21] make it appropriate for catalysis, the
storage of energy, and conversion in many applications [20,22–24].

The properties of distinct individual oxides have been improved by combining mul-
tiple metal oxides to form innovative nanocomposites for usage in a variety of applica-
tions [25–27]. Because of parameters such as chemical composition, crystallite size, and con-
stituent phase volume, the physical properties of the nanocomposites differ from those of
bulk materials [28–35]. Additionally, nanocomposites may have features that complement
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one another. For example, several band gaps can form from both oxide semiconductors,
which may or may not share properties with the constituents of individual metal and metal
oxide nanoparticles [36–38]. As a result, a composite arising from the suitable integration
of bunsenite cadmium oxide nanoparticles and other metal oxides could potentially boost
photocatalytic activity [25,39,40]. However, there are some advantages to using a thermal
treatment strategy to synthesize bunsenite cadmium oxide nanocomposites, such as scala-
bility, product stability, low cost, and ease of handling. Because it is capable of absorbing
specific solar energy wavelengths, this approach enables exact particle size control and
great purity, making it perfect for use in solar cell energy applications.

Bunsenite and cadmium oxide nanoparticles have been produced using a simple ther-
mal treatment approach. This process does not necessitate the use of hazardous chemicals,
does not generate hazardous waste, and does not flush hazardous materials down the
drain [27]. In this study, a bunsenite cadmium oxide nanoparticle was synthesized using
nickel nitrate, deionized water, cadmium nitrate, and polyvinylpyrrolidone (PVP). Ther-
mogravimetric analysis (TGA), X-ray diffraction (XRD), field emission scanning electron
microscopy (FESEM), energy dispersive X-ray (EDX) scanning, Fourier transform infrared
(FTIR) spectroscopy, and UV-Vis were used to characterize the prepared samples.

2. Materials and Methods
2.1. Materials

As precursors, nickel nitrate (Ni(NO3)2•6H2O) metallic salt and cadmium nitrate
(Cd(NO3)2•4H2O) salt were used. Polyvinyl pyrrolidone (PVP) was employed as a capping
agent, and deionized water was used as a solvent to disperse the nanoparticles. Sigma–
Aldrich provided all chemical ingredients, including Ni(NO3)2•6H2O, Cd(NO3)2•4H2O,
and PVP, which were all 99 percent pure.

2.2. Methodology

The process by which the bunsenite cadmium oxide nanoparticles were produced
was used in several procedures. One procedure involved the dissolution of 0.4 mmol
Ni(NO3)2•6H2O, 0.6 mmol Cd(NO3)2•4H2O [4:6 of Ni to Cd] and 4 g of PVP, followed by
vigorous mixing to produce a standardized solution. It was placed on a glass plate and
exposed to 80 ◦C for 24 h to induce dehydration in the latter. Pulverization of the sample
was the next step. Temperatures ranged from 500 to 800 ◦C for four independent samples,
which were then subjected to XRD and FTIR investigations at 30 ◦C for a portion of the
sample set aside for these tests.

2.3. Characterization

To analyze the prepared samples produced in the method described here, a variety
of characterization techniques were used. A Perkin Elmer thermogravimetric analyzer
was used for thermal analysis. The parameters of analysis included nitrogen as a purging
gas, a heating rate of 10 ◦C/minute, and a temperature range of 30–900 ◦C. A Shimadzu
6000 X-ray diffractometer was used to analyze the samples’ crystalline structure. Further-
more, CuK (0.154 nm) was employed as the radiation source to produce diffraction patterns
at temperatures ranging from 20 to 80 degrees Celsius. An FESEM was used to investi-
gate the consistency and morphology of the nanoparticles, while an EDX spectrometer
was utilized to study the elemental composition of the samples, which had been coated
with gold before being studied with an EDX spectrometer. The samples’ infrared spectra
(280–4000 cm−1) were analyzed using a KBr-based Fourier transform infrared (FTIR) spec-
trometer (Perkin Elmer 1650 model). This allowed us to assess whether an inorganic sample
composite was present after calcination and ensure that the capping agent had been re-
moved. Finally, the optical characteristics of the samples were studied at room temperature
(200–800 nm) using a UV-visible spectrophotometer (Shimadzu UV-3600 model).



Appl. Sci. 2023, 13, 438 3 of 15

3. Results
3.1. Formation of Bunsenite Cadmium Oxide NPs

The interaction of the capping agent (PVP) with the Ni2+ and Cd2+ ions is depicted
in Figure 1, which is held together by the strong ionic interactions generated between
the metallic ions and the polymer chain amide groups. Metallic salts have been observed
to dissolve in the presence of amide groups in pyrrolidone rings and methylene groups
in polymers due to the constant advancement of electrostatic and steric stabilization
while the sample is still in the solution stage. The metallic ions are frequently enclosed
by shorter polymer chains after surface absorption [30,31,41–43], which probably arose
initially due to some degree of crumbling in the PVP stabilizer. Short polymer chain
capping allowed for the homogeneous scattering of metallic ions in the material’s vacant
spaces and networks. Furthermore, the calcination procedure, which oxidized Ni2+ and
Cd2+ ions, led to the formation of bunsenite cadmium oxide nanoparticles. A solid-state
interaction between NiO and CdO was initiated at high temperatures during the be-
ginning of the metal phase growth, resulting in binary nanoparticles. During this step,
organic components were removed, and the nanoparticles began to combine as a result
of the action of higher calcination temperatures. Organic compound-containing gases,
such as NO, N2, CO, or CO2, disintegrated during the subsequent calcining process.
Furthermore, the other organic components were removed during the calcination stage,
and the increased temperature causes fusion among the nanoparticles, increasing parti-
cle size while obtaining the lowest surface energy. The use of PVP has a purpose that
extends beyond the solution and drying stages, as the nucleation of bunsenite cadmium
oxide nanoparticles is stimulated throughout the calcination process. The formation of
smaller nanoparticles was decreased due to the high molecular weight and the creation
of repulsive forces by the polyvinyl groups. As a result, particles grew larger with lower
surface energy. The PVP addition had an effect that extended beyond the solution and
drying stages, as evidenced by its ability to enhance bunsenite cadmium oxide nanopar-
ticle nucleation throughout the calcination process. Smaller nanoparticles grouped to
a lesser amount when PVP was absent due to their high molecular weight and the
electrostatic repulsion created by polyvinyl groups [21,44]. The capping agent action of
PVP can have a considerable impact on the formation of bunsenite and cadmium oxide
nanoparticles. PVP also regulates nanoparticle growth by capping them, decreasing
the rate of accumulation, improving crystallinity, and assisting in the consistency of the
prepared samples’ characterization [41,45].

3.2. TGA Analysis

PVP and bimetal nitrate were thermally examined through thermogravimetric
(TGA) analysis, which also helped to determine the ideal temperature at which the
process of calcination should start. Figure 2 depicts the TGA curve correlated with
the generated compound containing PVP and bimetallic nitrates prior to calcination.
Weight loss occurred in three stages following calcination. The first phase appeared at
temperatures less than 160 ◦C and was thought to be caused by moisture trapped in
the sample. Meanwhile, the minor peak at 393 ◦C was attributed to the breakdown of
NOx molecules [33]. At 452 ◦C, the majority of the PVP content was broken down and
a significant quantity of weight was lost. The weight loss as a function of temperature
became insignificant at 494 ◦C because the remaining polymer composition had been
converted into carbonaceous yields [34], and no additional weight was lost at tempera-
tures above 496 ◦C because the carbonaceous material had indeed been eliminated from
either sample in the temperature range 438–488 ◦C [46].
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Figure 2. Thermogravimetric analysis (TGA) curve for bimetallic nitrates and PVP.
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3.3. Structural Analysis

After drying at 80 ◦C, nickel nitrate, cadmium nitrate, and PVP content were analyzed.
Because no diffraction peaks were observed in Figure 3a, it was concluded that the sample
remained amorphous prior to calcination. Figure 3 depicts the XRD patterns associated
with the samples that were calcined at room temperature, 500, 600, 700, and 800 ◦C. The
diffraction peaks for CdO and NiO nanoparticles were marked by a star and a sharp,
respectively, in the samples that had been calcined. The cadmium oxide nanoparticles’
diffraction peaks corresponded to (111), (002), (022), (113), and (222), and the plane signs
have been identified at 2θ 33.70◦, 38.50◦, 55.26◦, 65.50◦, and 69.08◦, respectively. Meanwhile,
the bunsenite nanoparticles’ diffraction peaks corresponded to (111), (002), (022), (113),
and (222), and the plane signs have been identified at 2θ 37.02◦, 43.20◦, 62.29◦, 75.34◦,
and 79.21◦. The nanoparticles were equivalent to the standard card diffraction patterns
associated with bunsenite oxide (JCPDS cards 36-1451 data) and cadmium oxide (PDF
card No: 005-0640 data) [21,36]. Furthermore, given that the crystallite size parameters
were established to increase as the temperature of calcination rose, the Scherrer formula
(Formula (1)) was employed to determine the average crystallite size at all peaks. The full
width of the half maximum broadening of the CdO and NiO peaks of the XRD patterns
was applied to calculate the average crystallite size using the Scherrer formula:

D = 0.9 λ/βcos θ (1)

In Formula (1), the crystallite size measured in nm is denoted by D, the entire width of
the diffraction line at half of the maximum intensity measured in radians is denoted by β,
the X-ray wavelength of Cu Kα 0.154 nm is denoted by λ, and the Bragg angle is denoted by
θ. Table 1 shows the calculation crystallite size of bunsenite cadmium oxide nanoparticles
for each peak using the Scherrer formula at a temperature of 800 ◦C. Table 1 shows the
crystallite size enlargement calculated with the Scherrer formula for the prepared samples
calcined in ranging temperatures from 500 to 800 ◦C. The crystallite size increased in direct
proportion to the increase in calcination temperature, which was ascribed to particle size
enlargement. Furthermore, the sharper and narrower diffraction peaks with more intensity
(Figure 3b–e) indicate that crystallinity was significantly improved. This is because the
temperature of the calcination process was increased.

Table 1. XRD results of the prepared sample were calculated using diffraction peak by Scherrer
formula at temperatures of 800 ◦C.

2 Theta Sample hkl FWHM Calculation of the Crystallite Size Using
Scherrer Formula at Temperature 800 ◦C

33.70◦ CdO 111 0.182 45

37.02◦ NiO 111 0.184 67

38.50◦ CdO 002 0.183 46

43.20◦ NiO 002 0.137 62

55.26◦ CdO 022 0.131 69

62.29◦ NiO 022 0.163 56

65.50◦ CdO 113 0126 63

69.08◦ CdO 222 0.143 67

75.34◦ NiO 113 0.151 66

79.21◦ NiO 222 0.130 79

Average 62
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Figure 3. XRD results of the prepared samples in calcinations of (a) room temperature, (b) 500, (c) 600,
(d) 700, and (e) 800 ◦C.

3.4. SEM Analysis

The morphology of the prepared samples was investigated via field emission scan-
ning electron microscopy (FESEM) at temperatures between ambient temperature and
500–800 ◦C. Figure 4 shows micrographs associated with the bunsenite cadmium oxide
nanoparticles at ambient temperatures of 500, 600, 700, and 800 ◦C. At room temperature,
the sample exhibited a form that was neither homogenous nor regular (Figure 4a); however,
at temperatures of 500 ◦C and higher, it assumed a form that was aggregated, spherical, and
regular (Figure 4b,e) [21,36]. As the calcination temperature increases, the grains enlarged
individually, so that the sample exhibited better distribution and uniformity (Figure 4c,d).
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3.5. EDX-Based Analysis of the Elemental Composition

Figure 5 illustrates the EDX spectra as well as the atomic composition of prepared
samples synthesized at a temperature of 700 ◦C. The occurrence of corresponding nickel,
cadmium, and oxygen peaks in the sputtered sample confirmed that bunsenite cadmium
oxide nanoparticles were present. The [Ni:O] atomic composition, which was [20.10:19.20],
and the [Cd:O] atomic composition, which was [30.67:30.03], were used to establish the 4:6
of Ni to Cd precursors, which was equivalent to their proportions in the chemical formula
of bunsenite cadmium oxide. The peaks of Au shown in the spectrum were formed using
the sputtering procedure of coating with gold, used during the preparation of the sample
for EDX testing. The EDX analysis confirmed the presence of bunsenite cadmium oxide
nanoparticles. The fact that no elements were lost during this process proved that the
thermal treatment route was well controlled.
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3.6. FTIR-Based Analysis of Phase Composition

The sample FTIR spectra are illustrated in Figure 6 at (a) ambient temperature, (b) 500,
(c) 600 (d) 700, and (e) 800 ◦C in the 280–4500 cm−1 range. Figure 6a also shows the absorp-
tion peaks for PVP and bimetal nitrate. N–H, C–H, and C=O stretching vibrations were
identified as the sources of the absorption peaks at wavenumbers 3414, 2945, and 1646 cm−1

before calcination. It was considered that the absorption peaks at 1428 cm−1 and 1277 cm−1

were, respectively, caused by C-H bending vibration and C-N stretching vibration [41].
Furthermore, the bands that contained peaks at 839, 736, and 639 cm−1 were mapped to
NO3 groups, with the C-C ring and C-N=O bending being the cause of the vibrations.
Meanwhile, Cd-OH band and Ni-OH vibrations were deemed to have caused the peaks
at 582 and 608 cm−1. Most broadband absorption disappears, as shown in Figure 6b–e
for a calcined sample at 500 ◦C, except for absorption at 3404 cm−1. For the samples at
temperatures over 500 ◦C, the peaks at (447, 424, 413, 408) and (404, 396, 387, 374) cm−1

were assigned to the Ni-O and Cd-O bands, respectively. The two-fold absorption peak was
attributed to quite pure sample nanoparticles, as evidenced by the verified shift in wave
number for the product nanoparticles’ spectra as calcination temperatures increased. This
means that there are no other contaminants in the samples. Thus, the proposed technique
of thermal treatment was validated to improve the crystallinity of synthesized bunsenite
cadmium oxide nanoparticles.

3.7. UV-Visible Analysis

The diffuse reflectance spectra of bunsenite cadmium oxide nanoparticles were mea-
sured using a UV-visible spectrophotometer. Figure 7 shows the reflectance spectra of the
produced samples that were calcined at various temperatures in a wavelength range of
220–800 nm. Regarding the two reflection peaks at around 357 nm and 625 nm, Figure 7
illustrates the Ni2+ and Cd2+ species identified in the prepared samples. These (357 nm and
625 nm) were assumed to be the origins of the reflection peaks at 340–400 and 625 nm. All
of the samples also showed an absorption band at around 340–400 and 625 nm, which were
assumed to be caused by a charge transfer transition from oxygen to metal. The presence
of both Ni2+ and Cd2+ ions in all samples confirms the production of bunsenite cadmium
oxide nanoparticles [21,33]. The relatively high intensity of the aforementioned peaks, as
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well as the blue shift in their wavelengths, attested to this. The band at 589 nm indicated
that Cd2+ was present in the samples and was caused by Cd2+ ions. This band was found
in all of the prepared samples, regardless of the temperature they were calcined at [30].
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An absorption broadband of between 340 and 625 nm was exhibited by every sample
as well. This band was considered to originate from an O2-Ni2+ charge transfer transition.
The confirmation that all samples contained both Ni2+ and Cd2+ ions validated the synthesis
of bunsenite cadmium oxide. The results from Figure 7 were employed to determine the
absorption coefficient from the Kubelka–Munk (KM) function based on Formula (2):

F (R∞) = (α/S) = (1 − R∞)/2R) (2)

In Formula (2), the absorption coefficient, scattering coefficient, and KM function are
respectively signified by α, S, and F(R∞).

The KM function could be used instead of α for the diffused reflectance spectra to
measure the optical absorption edge energy. It was observed that a plot of F(R∞) E with E
was linear near the edge for the direct allowed transition (η = 1/2). The value of that energy
for the sample is indicated by the intercept of the line on the abscissa (F(R∞) E = 0) [9,33,47].
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The Kubelka–Munk equation and reflectance spectra data were employed to determine the
optical band gap for every sample subjected to calcination [48]:

(F (R∞) · hv)2 = (A (hv − Eg)) (3)

In Formula (3), the apparent remission parameter or Kubelka–Munk function is de-
noted by F(R∞), the incident photon energy is denoted by hv, the constant given by the
transition probability is denoted by A, and the diffuse reflectance derived from the R∞ that
obtained from R∞ = Rsample/Rstandard [49]. The mapped values of (F(R∞)hv)2 against
hv are presented in Figure 6. The linear plot ranges with extrapolation to the (hv) axis
were employed to determine the values of the optical bandgap of the prepared samples
at various temperatures of calcination. Every sample subjected to calcination exhibited
the two optical band gaps presented in Figure 8 and Table 2. The initial band gaps at
3.94, 3.83, 3.67, and 3.53 eV, respectively corresponding to the calcination temperatures
of 500, 600, 700, and 800 ◦C, were explained by the presence of NiO nanoparticles in the
samples. The bunsenite oxide electronic transition was interpreted as a direct step from
oxygen to metal ns or np levels. Meanwhile, the second band gaps at 3.00, 2.96, 2. 87,
and 2.80 eV, respectively corresponding to the calcination temperatures of 500, 600, 700,
and 800 ◦C, were explained by the occurrence of cadmium oxide nanoparticles in the
samples. As the temperature of calcination and particle size increased, those energy band
gaps were observed to become smaller [43]. This phenomenon could be explained by the
quantum size effect [21,33]. This is due to a reduction in the band gaps between the valance
and conduction bands for the d-shell electrons of Ni2+ and Cd2+ ions. This implies that
transitions between these two bands could have occurred.
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Table 2. Summary of calcination temperatures and bandgaps values.

T ◦C 500 600 700 800

(NiO)x (CdO)1−x
Nanoparticles Eg (eV) Eg (eV) Eg (eV) Eg (eV)

(NiO)0.4
(CdO)0.6

3.95
3.05

3.81
3.00

3.58
2.91

3.35
2.84
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3.8. Transmission Electron Microscopy (TEM) Analyis

The transmission electron microscopy (TEM) images of calcined bunsenite cadmium
oxide nanoparticles at 500, 600, 700, and 800 ◦C (Figure 9a–d) reveal that all the produced
samples exhibited homogeneous morphology. TEM images show that the particle sizes
of the samples are consistently consistent throughout all temperature ranges measured
by XRD and TEM. Increasing the calcination temperature resulted in larger particles
(31, 44, 54, and 65 nm at temperatures of 500, 600, 700 and 800 ◦C, respectively), as
expected; the smallest crystal size was obtained at 500 ◦C. Several nearby particles
adhere to one another due to surface melting at higher temperatures, resulting in an
increase in particle size. The nanoparticles of the bunsenite cadmium oxide were found
to be spherical at all of the investigated calcination temperatures. Therefore, uniform
bunsenite cadmium oxide nanoparticles have been produced by this thermal treatment
method, with the presence of PVP acting as a restraint on the particle size via the
reduction in agglomeration.
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4. Conclusions

The XRD analysis of the samples revealed that the proposed technique of thermal
treatment generated nanocrystalline bunsenite cadmium oxide with face-centered cubic
structures at every temperature of calcination that was employed. The crystallite size
increased as temperature increased, from 29 nm at 500 ◦C to 62 nm at 800 ◦C. Furthermore,
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the peaks associated with Ni, Cd, and O that were highlighted by EDX analysis validated
the atomic composition of bunsenite and cadmium in proportions equivalent to those in
the original mixture. The fact that no element was lost during synthesis and that bunsenite
cadmium oxide nanoparticles were successfully produced demonstrated that the simple
technique of thermal treatment was effective. The integration of metal oxide bands at every
temperature of calcination was examined via FT-IR spectroscopy. In addition, an FTIR
investigation was performed to verify the best temperature greater than 500 ◦C with which
to remove organic compounds. This was observed to be pure bunsenite cadmium oxide
nanoparticles formed at calcination temperatures of 500◦C or higher. Moreover, as shown
by the reflectance spectra, the bandgap energy of bunsenite cadmium oxide nanoparticles
diminished as the calcination temperature rose. The mean particle size, as measured by
transmission electron micrographs, appeared to increase in tandem with the calcination
temperature. The results of this study indicate the proposed thermal treatment’s viability as
a simple and low-cost method for manufacturing extremely pure bunsenite cadmium oxide
nanoparticles. The process is preferable to others because it does not use chemical reagents
and has no environmental impacts. Furthermore, because the calcination temperature may
be modified, the process makes it easier to produce semiconductor materials with more
than one band gap. Because they can absorb particular wavelengths of solar energy, such
materials are suitable for energy applications.
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