NPC Natural Product Communications

2010 Vol. 5 No. 12 1951 - 1954

Essential Oil Composition of Four Endemic *Ferulago* Species Growing in Turkey

Ceyda Sibel Kılıç^{a*}, Ayşe Mine Gençler Özkan^a, Betül Demirci^b, Maksut Coşkun^a and Kemal Hüsnü Can Başer^{b,*}

^aAnkara University, Faculty of Pharmacy, Department of Pharmaceutical Botany, 06100 Tandoğan, Ankara, Turkey

^bAnadolu University, Faculty of Pharmacy, Department of Pharmacognosy, 26470 Eskişehir, Turkey

erdurak@pharmacy.ankara.edu.tr

Received: September 17th, 2010; Accepted: October 16th, 2010

The essential oils from aerial parts of *Ferulago pachyloba* (Fenzl) Boiss., *F. platycarpa* Boiss. & Bal., *F. isaurica* Peşmen, and *F. longistylis* Boiss. (Apiaceae) were obtained by hydrodistillation and analyzed by GC and GC-MS. The highest oil yield (1.50%) was obtained from *F. pachyloba* followed by *F. longistylis* (0.16%), *F. isaurica* (0.08%) and *F. platycarpa* (0.07%). Fifty-three compounds were identified in the oil of *F. pachyloba* with (*Z*)- β -ocimene (25.7%) and α -pinene (9.8%) as main constituents; sixty-seven in the oil of *F. platycarpa* with 2,3,6-trimethylbenzaldehyde (29.8%) and hexadecanoic acid (14.8%) as main constituents; and fifty-nine in the oil of *F. longistylis* with 2,3,6-trimethylbenzaldehyde (32.7%) and bornyl acetate (12.6%) as main components. Quantitative and qualitative differences in the oil compositions of these four species were observed.

Keywords: *Ferulago pachyloba, F. platycarpa, F. isaurica, F. longistylis*, Apiaceae, essential oil composition, GC analysis, GC-MS analysis.

Ferulago W. Koch. is a perennial genus of the Apiaceae family represented by nearly forty species, thirty-two of which exist in the flora of Turkey, seventeen being endemic. This suggests that the gene centre for this genus is Anatolia [1-7]. The species of this genus are known as kuzukemirdi, kuzukişnişi, kuzubaşı, çakşırotu, cağşır, asaotu and kişniş in different regions of Turkey.

Ferulago species have been used since antiquity for the treatment of intestinal worms, hemorrhoids and as a sedative, tonic and digestive. Moreover, they are used against ulcers, snake bites, spleen diseases and headache [8]. It has also been reported that gums obtained from the incision of the roots of some species are used as seasoning and as a carminative [9]. However, the plants are mainly known as aphrodisiacs and as a preferred fodder to increase animal productivity [10].

Ferulago species have been reported to contain flavonoids, quinones, coumarin esters, sesquiterpenes, coumarins, furanocoumarins and aromatic compounds [11-17]. The genus is rich in essential oil and several species have been studied; *F. angulata* (Schlecht.) Boiss., *F. asparagifolia* Boiss., *F. galbanifera* (Mill.)

W. D. J. Koch, F. humilis Boiss., F. sandrasica Pesmen et Quézel, F. aucheri Boiss., F. confusa Velen, F. idaea Özhatay et E. Akalın, F. macrosciadia Boiss. et Bal., F. mughlae Pesmen, F. silaifolia (Boiss.) Boiss, F. bernardii L. Tomkovich & M. Pimenov. F. carduchorum Boiss. et Hausskn., F. contracta Boiss. et Hausskn, F. isaurica Pesmen, F. syriaca Boiss., F. nodosa (L.) Boiss., F. thyrsiflora (Sm.) W. D. J. Koch, F. phialocarpa Rech. f. et Riedl, F. sylvatica (Besser) Reichb., F. thirkeana (Boiss.) Boiss., F. trachycarpa Boiss., F. longistylis Boiss. The major constituents of the oils of these foregoing species were β -ocimene, α -pinene, α - and β -phellandrene, limonene, myrcene and *p*-cymene [18]. The aim of this paper is to present and compare the chemical composition of the essential oils of four endemic Ferulago species; F. pachyloba, F. platycarpa, F. isaurica and F. longistvlis growing in Turkey. Gas chromatographic (GC) and gas chromatographic-mass spectroscopic (GC-MS) analysis helped us to establish the composition and the relationship of the essential oil constituents. To the best of our knowledge, this is the first report on the chemical analysis of F. pachyloba and F. platycarpa. The identified constituents are presented in Table 2.

Table 1: Collection data for the investigated Ferulago species.

Code	Ferulago species	Specimen Herbarium	Collection place, and altitude	Collection date	Oil Yield [¥] (%)
		Number			
Α	F. pachyloba	GAZI^Φ	Niğde, Aladağlar,	August	1.5
			around Demirkazık,	2007	
			rocky slopes, 2600 m		
В	F. platycarpa	AEF*	Nevşehir, Üçhisar,	July	0.07
		23173	Gemil Mount,	2004	
			northern slopes, 1450		
			m		
С	F. isaurica	AEF 22957	Alanya – Antalya	September	0.08
			road, 6 km after	2002	
			Derince turn, rocky		
			slopes, 1110 m		
D	F. longistylis	AEF	Erzincan, Sakaltutan	July	0.16
		23795	Pass, roadsides,	2006	
			2000 m		

^Φ Herbarium of Gazi University Faculty of Arts and Sciences

* Herbarium of Ankara University Faculty of Pharmacy

[¥]Yields are given on moisture free basis

A total of fifty-three compounds representing 96.6% of the oil were identified in the essential oil of F. pachyloba. (Z)- β -ocimene. α -pinene. sabinene and δ -cadinene were the major components, amounting to 25.7%, 9.8%, 6.3% and 5.6%, respectively. The analysis of F. platycarpa resulted in the identification of sixtyseven volatile compounds representing 94.1% of the oil. 2.3.6-Trimethylbenzaldehyde at 29.8% was the most abundant compound in the volatile oil, followed by cis-chrysanthenyl acetate (24.2%), nonacosane (7.7%) and α -pinene (4.2%). Seventy-eight compounds were characterized in the oil of F. isaurica representing 86.3% of the oil. The major constituents were nonacosane (25.5%), hexadecanoic acid (14.8%), bornyl acetate (5.3%) and terpinen-4-ol (4.6%). Fifty-nine compounds, representing 92.5% of the oil, were identified in the oil of F. longistylis with 2,3,6trimethylbenzaldehyde (32.7%), bornyl acetate (12.6%), *p*-cymene (11.9%) and *cis*-chrysanthenyl acetate (4.2%), as main components.

Considering the different groups of compounds, monoterpene hydrocarbons contributed most to the oils obtained from *F. pachyloba* (57.7%) and *F. longistylis* (22.4%), whereas oxygenated monoterpenes formed the main portion of the oils of *F. platycarpa* (33.1%) and *F. isaurica* (18.0%). Comparison of the main constituents of these four species (Table 2) shows that each species has a different set of dominant compounds. However, previous studies of the oils of *Ferulago* species [18] revealed that the three compounds detected in high percentages in this study, namely (*Z*)- β -ocimene, α -pinene and *p*-cymene have also been detected as major components in many other species. Erdurak *et al.* reported the essential oil contents of the fruit and root of *F. isaurica* [19] in 2006. The oils obtained from the different parts of this species did not show much qualitative resemblance. The major constituents detected, namely α -pinene, limonene, and myrcene in the fruit, and terpinolene and myrcene in the root were not identified in the oil from the aerial parts of *F. isaurica*. Analysis of the fruit oil of *F. longistylis* conducted in 2008 showed 2,3,6-trimethylbenzaldehyde and bornyl acetate as the major compounds, in accordance with the results obtained for the aerial parts of the same species in this study [18].

Chemical profiling of the volatiles may be useful in taxonomical classification. The results presented in this study confirm some specific features of the oil composition of *Ferulago* species in Turkey and contribute to a better knowledge of this genus.

Experimental

Plant materials: Aerial parts of 4 *Ferulago* species were collected by the authors from their natural habitats in different localities of Turkey by random sampling from a single established population, as shown in Table 1; the plants were identified by Prof. Dr. Hayri Duman and voucher specimens were deposited in GAZI and in AEF.

Essential oil isolation: Air dried aerial parts of plants (50 g) were subjected hydrodistillation for 3 h using a Clevenger-type apparatus according to the method recommended in the European Pharmacopoeia [20]. The obtained oils were dried over anhydrous sodium sulfate and stored in sealed vials at $+4^{\circ}$ C in the dark until analyzed and tested. All oils were pleasant smelling, transparent with a faint yellow color.

GC/MS analysis: GC-MS analysis was carried out with an Agilent 5975 GC-MSD system. An Innowax FSC column (60 m x 0.25 mm, 0.25 μ m film thickness) was used with helium as carrier gas (0.8 mL/min). The GC oven temperature was kept at 60°C for 10 min and programmed to 220°C at a rate of 4°C/min, and kept constant at 220°C for 10 min and then programmed to 240°C at a rate of 1°C/min. The split ratio was adjusted at 40:1. The injector temperature was set at 250°C. Mass spectra were recorded at 70 eV. The mass range was from *m*/*z* 35 to 450.

GC analysis: The GC analysis was carried out using an Agilent 6890N GC system. The FID detector temperature was 300°C. To obtain the same elution order with GC/MS, simultaneous autoinjection was used on a duplicate column applying the same operational conditions. Relative percentage amounts of the separated compounds were calculated from FID chromatograms.

Table 2: Composition of the essential oils of A: *Ferulago pachyloba*, B: *F. platycarpa*, C: *F. isaurica*, and D: *F. longistylis*.

RRI	Compound	A (%)	B (%)	C (%)	D (%)	
1032	α-Pinene	9.8	4.2	-	3.5	
1035	α-Thujene	0.3	0.1	-	0.1	
1076	Camphene	0.8	0.2	-	0.2	
1118	β-Pinene	0.6	0.3	-	0.2	
1132	Sabinene	6.3	1.6	-	0.4	
1159	δ-3-Carene	3.0	-	-	-	
1174	Myrcene	1.9	1.7	-	1.4	
1176	α-Phellandrene	0.5	-	-	-	
1195	Dehydro-1,8-cineole	0.1	-	tr	-	
1203	Limonene	2.2	0.6	0.9	0.5	
1218	β-Phellandrene	0.2	0.1	-	0.1	
1246	(Z) - β -Ocimene	25.7	0.2	-	2.3	
1255	y-Terpinene	3.1	0.3	0.3	1.4	
1266	(<i>E</i>)-β-Ocimene	1.9	0.4	-	0.4	
1280	<i>p</i> -Cymene	1.2	1.5	0.2	11.9	
1286	Isoterpinolene	0.2	-	-	-	
1290	Terpinolene	1.2	-	0.2	-	
1294	1,2,4-Trimethyl benzene	-	0.8	-	1.8	
1355	1,2,3-Trimethyl benzene	-	0.3	-	0.7	
1382	cis-Alloocimene	0.2	-	-	-	
1429	Perillen	-	0.1	-	-	
1439	γ-Campholene aldehvde	-	0.1	-	0.1	
1441	(E)-2-Octenal	-	0.1	-	-	
1446	2.6-Dimethyl-1.3(E).5(Z).7-		0.1			
1110	octatetraene	0.1	-	-	-	
1452	α <i>p</i> -Dimethylstyrene	_	0.1	0.2	0.2	
1476	(Z)-B-Ocimene enovide	-	tr	-	0.1	
1479	δ_Elemene	_	0.1	_	-	
1/02	Cyclosativene	_	0.1	- tr	-	
1492		0.2	0.1	0.2	- tr	
1497	α-Copaene	0.2	0.2	0.3	u 0.7	
1499	α -Campholene aldenyde	-	0.6	0.1	0.7	
1528	α-Bourbonene	-	-	0.1	-	
1535	β-Bourbonene	0.1	0.1	0.5	0.2	
1553	Linalool	-		0.7	-	
1562	Octanol	-	0.1	tr	-	
1571	trans-p-Menth-2-en-1-ol	-	0.1	0.3	tr	
1582	cis-Chrysanthenyl acetate	-	24.2	-	4.2	
1586	Pinocarvone	0.1	-	-	-	
1589	β-Ylangene	-	-	0.1	-	
1591	Bornyl acetate	0.9	2.1	5.3	12.6	
1597	β-Copaene	tr	-	0.1	-	
1600	β–Elemene	0.6	0.2	1.2	-	
1611	Terpinen-4-ol	-	1.3	4.6	0.4	
1612	β-Caryophyllene	4.4	-	-	0.3	
1639	trans-p-Mentha-2,8-dien-1-ol	-	-	0.3	-	
1639	Cadina-3,5-diene	0.1	-	-	-	
1645	cis-Verbenyl acetate	-	-	-	0.3	
1648	Myrtenal	-	0.3	0.1	0.2	
1650	γ–Elemene	-	-	-	-	
1661	trans-Pinocarvyl acetate	0.3	0.9	-	1.0	
1670	trans-Pinocarveol	-	0.7	0.4	0.4	
1678	cis-p-Mentha-2,8-dien-1-ol	-	-	0.1	-	
1683	trans-Verbenol	-	0.7	0.2	-	
1687	α-Humulene	0.6	-	0.2	-	
1700	<i>p</i> -Mentha-1,8-dien-4-ol	-	-	0.8	-	
	(=Limonen-4-ol)					
1704	Myrtenyl acetate	0.1	-	-	-	
1704	γ-Muurolene	0.2	-	-	-	
1706	α-Terpineol	-	-	0.5	-	
1719	Borneol	-	0.1	0.3	0.3	
1725	Verbenone	-	0.1	tr	0.1	
1726	Germacrene D	1.9	-	1.7	-	
1738	p-Mentha-1,5-dien-8-ol	-	-	-	0.7	
1740	α-Muurolene	0.8	-	-	-	
1741	β–Bisabolene	-	-	-	-	
1742	β–Selinene	-	0.3	-	-	
1744	α-Selinene	-	tr	0.2	-	
1751	Carvone	-	0.1	0.7	-	
1755	Bicyclogermacrene	1.2	-	-	-	
1758	cis-Piperitol	-	tr	0.2	-	
1763	Naphthalene	-	-	0.2	0.3	
1764	cis-Chrysanthenol	-	0.7	-	-	

	Identified compounds Total	0.1 53.0 96.6	42.2 67. 0 94.1	54.5 78. 0 86.3	43.7 59.0 92.5
	Fatty acid	-	0.5 4.0	5. U 15.4	0.2 1.7
	Oxygenated Sesquiterpenes	18.6	2.0	7.2	1.7
	Oxygenated Monoterpenes Sesquiterpene Hydrocarbones	2.9 17.3	33.1 1.1	18 5.0	21.9 0.9
	Monoterpene Hydrocarbons	57.7	11.2	1.4	22.4
2931	Hexadecanoic acid	-	3.9	14.8	1.7
2822 2900	Pentadecanoic acid Nonacosane	-	tr 7.7	tr 25.5	tr 2.7
2700	Heptacosane	-	-	0.6	tr
2633 2670	Tetradecanoic acid	-	0.1	0.6	tr
2622	Phytol Benzyl benzoate	tr	0.4	3.9 0.6	0.2
2500	Pentacosane	-	0.7	0.7	0.2
	(=Caryophyllenol II)	-	-	-	0.4
2384 2392	r arnesyl acetone Carvophylla-2(12) 6-dien-58-ol	-	-	1.0	-
2384	Hexadecanol	-	-	-	0.2
2369	Eudesma-4(15),7-dien-1β-ol	-	-	1.1	0.3
	5α -ol (=Caryophylladienol II)	-	-	0.5	0.3
∠300 2324	Caryophylla-2(12).6(13)-dien-	-	0.2	0.0	0.1
2296	Myristicine Tricosane	-	-	3.4	-
2278	Torilenol	-	tr	0.4	-
2269	Dimyrcene II-b	-	-	0.4	-
2233 2269	α-cadinoi Guaia-6.10(14)-dien-48-ol	4.2	12	0.3	-
2250 2255	α-Eudesmol	0.2 4 2	-	- tr	-
2226	Methyl hexadecanoate	-	tr	0.3	-
2219	Dimyrcene II-a	-	0.1	0.7	-
2200 2209	T-Muurolol	-	0.1	-	-
2187	T-Cadinol	1.8	-	-	-
2179	Tetradecanol	-	0.2	0.3	-
2144 2148	(Z)-3-Hexen-1-yl benzoate	1.1 -	-	-	0.9
2131 2144	Hexahydrofarnesyl acetone Snathulenol	- 11	0.3	0.8 0.9	-
2130	Salviadienol	-	-	0.3	0.2
2122	Hedycaryol	1.9	-	-	-
2100 2103	Guaiol	- 0.6	U.1 -	-	-
2088	1-epi-Cubenol Heneicosane	0.2	-	-	-
2080	Cubenol	0.2	-	-	-
2073	p-Mentha-1,4-dien-7-ol	-	-	0.1	-
2009	Humulene epoxide-II	5.5 -	0.1	0.2	0.1
2050 2069	(<i>E</i>)-Nerolidol Germagrane D 40 al	- 5 2	-	0.5	-
2037	Salvial-4(14)-en-1-one	-	-	0.3	0.1
2019	2,3,6-Trimethylbenzaldehyde	-	29.8	0.7	32.7
1973 2008	Dodecanol Carvophyllene oxide	0.5	0.1	- 17	0.2
1958	(<i>E</i>)-β-Ionone	-	-	0.1	-
1957	Cubebol	0.6	-	-	-
1945	1,5-Epoxy-salvial(4)14-ene	-	-	-	0.1
1925 1941	2,3,4-Trimethyl benzaldehyde	- 0.1	1.5	- 0.1	3.1 -
1900	<i>epi</i> -Cubebol	0.5	-	-	-
1896	cis-p-Mentha-1(7),8-diene-2-ol	-	-	0.1	-
1882	cis-Carveol	-	-	0.4	-
1864	<i>p</i> -Cymen-8-ol	-	0.3	0.8	0.4
1857	Geraniol	-	-	0.3	-
1845	trans-Carveol	-	0.4	0.9	0.3
1827	(E,E)-2,4-Decadienal (E)-B-Damascenone	-	0.1	0.1	0.1
1811	trans-p-Mentha-1(7),8-dien-2-ol	-	-	0.3	-
1804	Myrtenol	-	0.2	0.1	-
1797	Cadina-1.4-diene (=Cubenene)	0.1	-	-	-
1786	ar-Curcumene	-	0.1	-	0.4
1785	7-epi-α-Selinene	0.2	-	-	-
1776	γ-Cadinene	1.2	-	0.2	-
1773	& Cadinana	5.6	-	03	-

Identification of components: Identification of the essential oil components was carried out either by comparison of their relative retention times with those of authentic samples or by comparison of their relative retention index (RRI) with a series of *n*-alkanes. Computer matching against commercial (Wiley GC/MS

Library, Adams Library, MassFinder 2.1 Library) [21,22], and in-house "Başer Library of Essential Oil Constituents" built up from genuine compounds and components of known oils, as well as MS literature data [23-25], was used for the identification.

References

- [1] Davis PH. (Ed.) (1972) Flora of Turkey and the East Aegean Islands, University Press, Edinburgh, Vol 4, pp. 462-464.
- [2] Akalın E. (**1999**) Pharmaceutical botanical investigation of *Ferulago* species growing in Western Turkey, Ph.D. Thesis, Istanbul University, Istanbul.
- [3] Davis PH, Mill RR, Tan K. (1988) Ferulago W. Koch. In Flora of Turkey and the East Aegean Islands. Davis PH, Mill RR, Tan K. (Eds), Vol. 10, Edinburgh University Press, Edinburgh, pp.152-153.
- [4] Özhatay N, Akalın E. (2000) A new Ferulago W. Koch (Umbelliferae) from NW Turkey. Botanical Journal of Linnean Society, 133, 535-542.
- [5] Akalın E, Pimenov MG. (2004) *Ferulago trojana* (Umbelliferae), a new species from Western Turkey. *Botanical Journal of the Linnean Society*, 146, 499-504.
- [6] Kandemir A, Hedge IC. (2007) An anomalous new *Ferulago* (Apiaceae) from Eastern Turkey, *Willdenowia*, 37, 273-276.
- [7] Erdemoğlu N, Akalın E, Akgöç M, Çıkrıkçı S, Bilsel G. (2008) Comparison of seeds oil of *Ferulago trachycarpa* Boiss. different localities with respect to fatty acids. *Records of Natural Products*, 2, 13-18.
- [8] Demetzos C, Perdetzoglou D, Gazouli M, Tan K, Economakis C. (2000) Chemical analysis and antimicrobial studies on three species of *Ferulago* from Greece. *Planta Medica*, *66*, 560-563.
- [9] Boulus L. (1983) Medicinal plants of North-Africa MI. Algonae, Michigan, USA. 183.
- [10] Baytop T. (**1999**) *Therapy with medicinal plants in Turkey past and present.* 2nd Ed., Nobel Tip Basimevi, Istanbul, Turkey. 348-349.
- [11] Miski M, Moubasher HA, Mabry TJ. (1990) Sesquiterpene aryl esters from *Ferulago antiochia*. *Phytochemistry*, 29, 881-886.
- [12] Doğanca S, Ulubelen A, Tuzlacı E. (1991) 1-Acetylhydroquinone 4-galactoside from *Ferulago aucheri*. *Phytochemistry*, 30, 2803-2805.
- [13] Doğanca S, Tuzlacı E, Ulubelen A. (1992) Constituents of *Ferulago asparagifolia*. *Fitoterapia*, 63, 552-552.
- [14] Giuseppe R, Cannizzo S, Amico V, Bizzini M, Piatelli M. (1994) Chemical constituents of *Ferulago nodosa*. Journal of Natural Products, 57, 1731-1733.
- [15] Jiménez B, Concepción Grande M, Anaya J, Torres P, Grande M. (2000) Coumarins from *Ferulago capillaris* and *F. brachyloba*. *Phytochemistry*, 53, 1025-1031.
- [16] Erdurak Kılıç CS, Coşkun M. (**2006**) Felamedin and prantschimgin content of chloroform fractions of *Ferulago isaurica* and *F. syriaca* growing in Turkey. *Chemistry of Natural Compounds*, **42**, 351-352.
- [17] Erdurak Kılıç CS, Okada Y, Coşkun M, Okuyama T. (**2006**) New furanocoumarins isolated from the roots of *Ferulago isaurica* Peşmen growing in Turkey. *Heterocycles*, **69**, 481-486.
- [18] Gençler Özkan AM, Demirci B, Demirci F, Başer KHC. (2008) Composition and antimicrobial activity of essential oil of *Ferulago longistylis* Boiss. fruits. *Journal of Essential Oil Research*, 20, 569-573.
- [19] Erdurak CS, Coskun M, Demirci B, Baser KHC. (**2006**) Composition of the essential oil of fruits and roots of *Ferulago isaurica* Pesmen and *F. syriaca* Boiss. (Umbelliferae) from Turkey. *Flavour and Fragrance Journal*, **21**, 118-121.
- [20] *European Pharmacopoeia*, (2005) Council of Europe, *Vol.1*, 5th Ed., Strasbourg, p.217.
- [21] McLafferty FW, Stauffer DB. (1989) The Wiley/NBS registry of mass spectral data. J Wiley and Sons, New York.
- [22] Joulain D, König WA, Hochmuth DH. (2001) Terpenoids and related constituents of essential oils. Library of MassFinder 2.1, Hamburg, Germany.
- [23] Joulain D, König WA. (1998) The atlas of spectra data of sesquiterpene hydrocarbons, EB-Verlag, Hamburg.
- [24] ESO 2000. (1999) The complete database of essential oils, Boelens Aroma Chemical Information Service, the Netherlands.
- [25] Jennings WG, Shibamoto T. (**1980**) *Quantitative analysis of flavor and fragrance volatiles by glass capillary GC*, Academic Press, New York.