

Abstract— Error prevention is most significant to usability, and

consequently also to safety and positive UX. This article describes a

long-range study of the sources of errors, and ways for preventing them

by design. Accident analysis indicates that errors typically result from

difficulties of operating in exceptional conditions, when crossing the

performance envelope. These findings apply also to consumer

products and mission-critical systems. The article proposes a

framework for preventing exceptions, and for enforcing seamless

rebounding from the exceptional conditions. The framework

comprises a universal model of the system behavior, methods, and

guidelines for exception prevention and management, and a waterfall

model of integrating these capabilities in the system development. The

article calls for developing tools for recording and analysis of the

system activity during the operation, which may be used to implement

and validate the model.

Keywords— performance, utility, risks, complexity, errors,

exceptions, interaction, modeling, performance envelope, protection

envelope

I. ERRORS

A. Incidences

We may distinguish between two types of errors: those due

to rare events and those due to daily, low-cost events. Taleb

(2007) [49] argued that it is impossible to predict incidences

due to Black Swans (rare events) because a priori we do not

have the data required for the prediction.

The following figure illustrates a way to classify errors by

costs and frequency:

Figure 1: Incidences in various industries

B. Errors and incidences

The meaning of the term "human error" or “improper usage”

is ambiguous. Accident analyses indicate the most of these

instances involve several factors, the most notable are

component malfunctions. Often, the error is attributed in

hindsight to the person who happened to be nearby, typically,

the operator who was on duty (Dekker, 2007) [11].

C. Accidents

Studies about the sources of accidents indicate that most of

them are typically attributed to human errors or improper usage.

The factors mentioned by the reviewer are in the category of

human errors. Human errors explain most accidents in the air

(60%, PlaneCrashInfo 2014) [39] sea (80%, Baker & Seah

2004) [2], driving (90%, Singh 2015) [46], and in the industry

(60-80%, Kariuki & Löwe 2006) [33].

D. Daily incidences

Daily errors are typical of consumer products,

communication systems, and office software. For example,

informal studies on productivity in text editing indicate that

about half of the time is wasted in recovery from errors.

However, daily incidences are mostly latent because people are

often keen to blame themselves when objects appear to

malfunction, due to the lack of intuitive guidance that should be

present in the design (Norman, 1988) [37].

E. Errors and mistakes

Norman (1983) [36] classified activity errors due to

omission, or to taking the wrong action. A wrong action may be

either a slip or a mistake. A mistake may be in situation

perception or in deciding which action to take. However,

following Bainbridge's observation about ironies of automation

(1983) [1], Weiler & Harel (2011) [51] argue that judgment

errors under stress are due to relying on irrelevant prior

experience.

F. Performance

A common measure of the system value is in terms of

performance. Typically, the meaning of this term depends on

the purpose and functions of the system. Ideally, it is associated

with metrics such as throughput, bandwidth, power

consumption, etc. However, the perceived performance is

typically industry and domain-specific. In practice, it depends

also on implicit factors, which are not tangible or testable.

Often, the implicit factors are more significant than the

measurable and testable factors. Typically, the term refers to the

perceived efficiency, namely, how well the system performs.

G. Operational Envelopes

The limits of performance may be defined by the

performance envelope. The performance envelope is an

Avi Harel

Ergolight, Haifa, Israel

ergolight@gmail.com

Preventing Human Errors:

A Framework for Rule-based Operation Control

extension of the concept of flight protection envelope. For

example, the speed of an airplane is limited by the stall threat

and the Mach number, and the altitude is limited by the Coffin

Corner (Swatton, 2011) [48]. These conditions should be

considered setting the performance goal. The performance

envelope may be optimized by design supporting the seamless

operation.

The system utility may be derived from the performance of

the primary functions, and by the limits imposed by the

operational envelopes, as illustrated in the following figure:

Figure 2: The role of operational envelopes

Incidences of crossing the operational envelopes might result

in productivity loss and user frustration. When the utility

variable is safety or mission-critical, incidences sometimes

might result in accidents.

H. The Hidden Costs of Errors

Typically, most incidences are latent, and therefore their

costs are unknown. To measure the costs of errors, we need to

capture the incidences of crossing the performance boundaries

and to measure the costs of these incidences.

Besides the costs of latent incidences, there are the indirect

costs of the negative UX due to evident incidences, resulting in

slowing down to avoid making more errors.

I. Effect on the System Value

The accumulated costs of crossing the performance envelope

may be expressed by:

Value = ꭍlife-cyclePerformance(t)dt - Σlife-cycleCosts(Incidences)

The accumulated effect of incidences on the operational

utility is illustrated in the following figure:

Figure 3: The effect of incidences on the operational utility

II. THE ENVELOPE OF HUMAN PERFORMANCE

The traditional view of performance is based on the wrong

assumption that the operators may do their job perfectly. The

human factors view of performance focuses on bottlenecks due

to the limitations of the human operators, such as attention

deficit, stress, when the attention demands are high, such as in

uncertainty, or in multi-tasking (e.g. Wickens, 1992) [54].

A. Slips

A slip is an instance of action not as intended. For example,

the unintentional activation of the wrong control state, as was

in the Torrey Canyon accident.

B. Limited attention capacity

The human attention capacity is limited. When under stress

the operators are liable to err, even when they pay their full

attention to the operation (Clark and Dukas, 2003) [8]. For

example, under stress, the operators may focus on solving a

problem suggested by a particular alarm, and miss indications

about other critical problems.

C. Situation awareness

This concept is about the operator’s failure to perceive the

system and environmental elements as expected, or to

comprehend the significance of the situation perception.

Situation awareness is critical for successful decision-making

across a broad range of systems (Endsley, 1995) [13]. For

example, Harel (2006) [18] explained that operational

reliability and quality are critical for enforcing proper reaction

to the alarms.

D. Decision making

Barriers to seamless operation include instances of confusion

and hesitation of the operators, due to anxiety about potential

loss. Often, the confusion is attributed in hindsight to the

operator’s errors. Typically, we expect the operators to be

rational. However, as prior studies demonstrated the meaning

of the term rationality is vague (Harel, 2020) [22]. Rationality

relies on the information that the operators perceive. However,

the information that they receive is not stable and not objective.

It is subjective and dynamic.

E. Control confusion

Control confusion is an instance of applying a wrong control

due to similarity or proximity, as illustrated in the following

figure:

Fig. 4: Timer confusion

This type of confusion applies to many consumer systems,

such as home appliances: Laundry, drier, air conditioner,

furnace, and oven. It also applied the many B-17 accidents in

WW II. Control confusion may be resolved within the

discipline of human-centered design (HCD), based on the

concept proposed by Norman and Draper (1986) [38]. Often,

control confusion may be resolved by redundancy analysis,

according to the principle of Occam’s Razor.

F. Mode confusion

Mode confusion is an instance of activating a control in the

wrong mode, resulting in an unintentional effect. Examples of

critical mode confusion are of activating setup or maintenance

features during functional operation. These errors are typical of

daily problems using consumer and office products and are key

to friendly fire accidents, as well as many other famous

accidents.

G. Extreme situations

Bainbridge (1983) [1] observed that operators are likely to

fail in the task of coping with rare situations. Hollnagel (2006)

[29] suggested that system failure is often associated with

operating in extreme conditions. In hindsight, investigators

attribute the coordination problem to operator’s errors,

assuming that the operators could have managed the

exceptional situation.

Most accidents may be attributed to human limitations to

perform perfectly in extreme conditions, such as exceptional

situations due to design mistakes and bugs. Therefore, a key

design challenge is to ensure coordination by design.

H. From theory to practice

The theory of errors in the 3rd industrial revolution was

developed based on learning from accidents. The focus was on

understanding the sources of errors, attributing the errors to

misbehavior of the operators.

In the 4th industrial revolution, we focus on applying this

understanding to engineering that compensates for the

limitations of human performance. The envelope of human

performance consists of potential errors. Most of the operator’s

errors may be attributed to operational confusion, namely,

failure to perceive the UI components as expected by the

developers and to act according to their intentions. We may

identify two forms of confusion: physical, such as control

confusion, and logical, such as mode confusion.

III. SOURCES OF ERRORS

Errors are incidental. Weinberg (1971) [52] reported on

typical subconscious design mistakes, due to egocentric

programming, hampering the productivity of the computer

users. Shneiderman (1980) [44] promoted the concept of

empathic programming suggested by Weinberg and proposed a

few principles for avoiding such design mistakes.

A. Unexpected Events

Errors are due to operating under risk in ways not predicted

at design time (Taleb, 2007) [49]. Unexpected events are those

not specified in the requirement documents, or not as intended.

Examples include various modes of failure of critical

components, operator’s unintentional or mistaken actions,

software bugs, and design mistakes. They should be attributed

to the operational conditions, rather than the trigger, as

illustrated in the following figure:

Figure 5: The trigger and the error

B. Operational Risks

Common operational failures are associated with at least four

patterns of risks:

 Performance-related risks: In normal operation, the values of each

performance variable are expected to be in a specified range.

Diversion from the range may often be regarded as a risk.

 Situational risks: Situational changes due to unexpected events.

The risky situations may be problems of inter-unit situation

coordination, such as during situation synchronization. Many

friendly fire accidents are due to inter-unit coordination failure.

 Activity risks: Problems of activating controls while in the wrong

situation. Many usability problems of productivity-critical systems

and consumer products, due to enabling maintenance-only features

in functional operation, are due to operating in the wrong situation.

 Timing risks: In normal operation, each process and each event is

expected to take some time, and the value is expected to be in a

specified range. Diversion from the range may be regarded as a

risk.

C. Operating in exceptional situations

A key hurdle to maximizing the system utility is the

difficulties that the operators experience when the system is in

exceptional situations (Zonnenshain & Harel, 2015) [58]. The

reason for this is that regular training targets normal conditions.

During normal operation, the operators encounter exceptional

situations only occasionally, which is not sufficient for effective

learning. Whenever they encounter an exceptional situation,

they waste too much time trying to find their way around it. For

example, informal studies on productivity in text editing

indicate that about half of the time is wasted in recovery from

errors.

The means to avoid exceptional situations and to support

exception management may be integrated into the model used

in the system design.

D. Terminological biasing

Following Hollnagel (1983) [28] the model presented here

assumes that the term “error” is an engineering bias, diverting

the accountability for design mistakes, resulting in failure to

assist in the collaboration with the operators. Harel, (2010) [20]

suggested that “in attributing the incident to the trigger, instead

of the situation, the system stakeholders typically become

sloppy and careless about the design features that could have

prevented the incident”.

E. Engineering biasing

According to Zonnenshain & Harel (2015) [58], the term

“error” refers to activities of the responsible organization

intended to divert the focus of investigations from the

management to the operators. For example, Harel (2011) [21]

analyzed various ways in which vendors of equipment for

medical alarms infect the standards by diverting the

accountability for failure to the operators. This observation

implies that we need to balance the interests of the various

stakeholders with those of the operators. Typically, the

stakeholders react to accidents. If usability is of higher priority

than the hidden interests of the stakeholders, then the design

should be proactive, focusing on preventing failure.

Failure is often attributed to latent defects, wear-out,

unexpected environmental conditions, and improper usage

(both accidental and malicious). Many developers are not aware

of the risks of operating in exceptional situations. Therefore,

they do not gain the education and resources required to

mitigate these risks.

F. Operational reliability

Operational reliability is the system's capability to minimize

the costs of operating in exceptional conditions. Operational

reliability may be defined as “The ability of an apparatus,

machine, or system to consistently perform its intended or

required function or mission, on-demand and without

degradation or failure” (Berard, 2013) [5].

G. Operational complexity

A primary hurdle to operational reliability is operational

complexity. Following Weaver (1948) [50], complexity may be

defined as the degree of difficulty in predicting the properties

of a system if the properties of the system's parts are given.

Sheard and Mostashari (2009) [42] categorized complexity as

either structural, dynamic, or socio-political. The number of

situations grows exponentially with the number of states. Most

of them are exceptional.

Many incidences of operational difficulties are due to

inconsistent system response to events, such as the operator’s

commands. Operational complexity is about possible

confusion, and it applies also to very simple systems.

Accordingly, we may define operational complexity in terms of

the amount and variety of condition-dependent activities.

Specifically, it may be defined in terms of conditional activity,

such as the conditions for human-machine interaction or inter-

unit coordination. If the design enables various reactions to a

specific event, depending on the operational scenario, then this

event is error-prone, contributing to the complexity. Reducing

operational complexity is critical for maximizing operational

utility.

H. The Costs of Late Integration

The methodology of agile development advocates gradual,

iterative, incremental system development. At each stage, we

typically follow two phases: first, functional implementation,

then, integration. The weak part of this methodology is the

integration, in which many of the failure modes remain latent:

many integration problems are detected and fixed at each cycle;

yet, many critical problems are realized only after the

deployment, namely, when it is too late. The challenge

promoted here is to enforce error-free integration proactively,

rather than reactively.

IV. DESIGN CHALLENGES

The article assumes the proactive version of Murphy’s Law,

attributing operational problems to design defects, of enabling

the operational problems. The article assumes a variant of

Taleb’s Black Swan theory (2007) [49], illustrated in the

following figure:

Fig. 6: Operator’s errors are due to design mistakes

The figure illustrates that failure attributed to the operators

should rather be attributed to design mistakes. Most design

mistakes are latent, waiting for the opportunity to emerge. Only

those with costly results are observed and consequently

attributed to operator errors.

A. Usability

Believing that it is the designer’s responsibility to reduce the

costs of operation, Norman and Draper (1986) [38] explained

that to avoid the loss, the system design should be user-

centered. Shneiderman (1986) [45] proposed eight golden rules

for user interface design, based on principles of usability

assurance. The quality of the system usability affects the

operator’s productivity, system safety, and the experience of

using consumer products.

B. The proactive version of Murphy’s Law

The article advocates the Human Factors (HF) version of

Murphy’s Law: if the design enables the operators to fail,

eventually they will. In particular, improper usage such as

failure to handle situations with which the operators are not

familiar should be attributed to design mistakes. Therefore, the

article advocates a design goal of protecting the system from

human errors. According to the proactive version of Murphy’s

Law, it is the design’s responsibility to prevent situations in

which the operators might fail (Harel, 2011) [21].

C. System Integration

Prior studies indicate that HCD may prevent flaws in the user

interface design, but not those in the system integration. Indeed,

many accidents are due to the operator’s inability to detect,

recognize, or identify situations in which not all units assume

the same operational conditions. Examples of such accidents

are Therac 25, Torrey Canyon, TMI, Bhopal, and many friendly

fire accidents.

D. Human-System Integration

In many accidents, the coordination problem was between

the operator and the technical system. The HCD view of these

incidents is of the operator’s situation awareness, attributing the

failure to the human operators. Human-System Integration

(HSI) is a special sub-discipline of system integration,

attributing coordination failure to the system design, rather than

the operators. Accordingly, HSI engineering descends from

systems engineering.

E. Operational constraints

According to the principles of cybernetics, to avoid failure,

the system should control its behavior, similarly to animals

(Wiener, 1948) [55]. This principle is key to endorsing HSI

reliability. HSI reliability relies on operating according to rules.

In 1972 Alain Colmerauer and Philippe Roussel developed

Prolog, a rule-based computer language (Cohen, 2001) [9].

Shapiro (1983) [40] studies the using Prolog for algorithmic

program debugging. Leveson (2004) [34] adopted the

principles of cybernetics and proposed the System Theoretic

Accident Method and Process (STAMP) paradigm, applying

the principle of self-control in a hierarchy of system views. The

Prolog language demonstrates the feasibility of the STAMP

paradigm. Operational constraints are operational rules

constraining the system operational (Harel & Zonneshain,

2019) [25]. Typically, these constraints are scenario-dependent.

F. Operational exceptions

An exception is a situation intruding on the performance

envelope. HSI exception extends the concept of software

exceptions, introduced in the LISP programming language

(Gabriel & Steele, 2008) [15]. The extension is in the structures

of static, dynamic, or behavioral exceptions. The original

software exception has two components: a probe in the

program, and an exception handler. The probe is actuated when

the program reaches this probe. In contrast, operational

exceptions reside in the system situations and events. The

exceptional situations are handled by scanning the situational

constraints, and the exceptional events are handled at the event

handling. Applying system thinking (Leveson, 2004) [34], HSI

focuses on rare situations, and the HSI models focus on

operational rules (Harel & Zonnenshain, 2019) [25].

G. Operational hazard control

A hazard is a potential source of loss. Hazard control is used

in industry to mitigate the risks of hazards. Operational hazard

control is a method of hazard control focusing on HSI. It is

inspired by methods of Statistical Process Control (SPC,

Wheeler & Chambers, 1992) [53] and of Statistical Quality

Control (SQC, Shewhart, 1931) [43]. Operational hazard

control eliminates the risks of exceptional events and of

operating in exceptional situations.

H. Operational resilience

According to the INCOSE Resilient Systems Working Group

(RSWG), resilience is “the ability to maintain required

capability in the face of adversity”. Jackson and Ferris (2013)

[31] presented principles for assessing and improving the

resilience of engineered systems across their life cycle.

Operational resilience is about HSI factors in resilience

assurance (Zonnenshain & Harel, 2015) [58].

For example, we may explore various collaboration options

in a minimal system, consisting of a simple engine with two

states: On and Off, operated by a switch with states: On and

Off. The functional option is complicated when the operator is

required to support early detection and identification of

malfunction. How will the operators know about instances of

malfunction? How will they know if the problem is with the

engine or with the switch? How will they identify problems in

the connections? How will they know when the engine starts

too slowly?

V. MODELING

Scientific findings are documented in models, obtained in

frameworks of meta-models of information behavior (Wilson,

1999) [56]. For example, Following Fuhs's (2008) [14]

description of hybrid vehicles, Boy (2012) [6] suggested

modeling the system operation in the form of orchestrating

human-centered design.

Models enable participation by diverse SMEs. Model-based

engineering enables agile development of complicated systems.

For example, Harel (1999) [17] demonstrated a model-based

approach to usability testing, by capturing and analysis of

instances of difficulties in using Windows applications. Also,

Harel et al. (2008) [24] demonstrated a model-based method for

automated analysis of website navigation based on usage

statistics. Through simulation, models provide a gradual,

seamless, reliable, modular transition from requirements to the

implementation of digital twins and the final system.

A. Model-based system integration (MBSI)

The methodology of model-based engineering is inspired by

a similar methodology of rapid prototyping, developed in the

framework of software engineering in the 70s (Grimm, 1998)

[16].

MBSI is the modern systems engineering version of software

prototyping, a concept explored in the 80s Model-based system

integration (MBSI) enables early integration by simulation,

resulting in shortening the integration phase and reducing the

development costs. (Luqi, 1989) [35]. MBSI may consist of

https://www.sebokwiki.org/wiki/Life_Cycle_(glossary)

project-specific, functional features, as well as universal

features applicable to maintenance, resilience, training, etc. The

universal features may apply to various domains and industries.

B. Model-based HSI

Model-based HSI (MBHSI) is part of model-based

engineering, focusing on the integration between the system

and its operators. Model-based design enables seamless

adaptation to design changes. Rule-based models enforce

mitigating the risk of operational complexity. Model-based HSI

facilitates the implementation of the HSI part of the digital twin

(Barricelli et al., 2019) [3].

C. The operator’s view

Jacobson (1987) [32] described a technique used at Ericson

to capture and specify system requirements based on use cases.

Today this technique is part of the Universal Meta Language

(UML), commonly used in software design. The concept of use

cases was migrated to systems engineering, in the framework

of System Meta Language (SysML). They are key to describing

the designer’s view of the system behavior, required to support

Model-based Systems Engineering (MBSE). The operator’s

view of the use cases is called usage scenarios (Spool, 2014)

[47].

The model may be described by an HSI Meta Language

(HSIML), namely, a meta-language used for the HSI design.

D. Modeling the system operation

Hollnagel (2006) [29] proposed two ways for modeling the

system operation. The proactive approach is about how to

describe normal behavior, and the reactive approach is about

how to describe extreme events. HSI modeling focuses on

universal methodologies of rule-based design, for the sake of

reducing the operational complexity. According to the

proactive approach to failure, the system design should support

the operation also in extreme conditions. HSI modeling is a

hybrid approach, in which we define normal behavior

proactively, and we apply learning from failure. The orchestra

illustration is proactive-oriented. The reactive part is by

serendipitous learning from incidences (e.g. Copeland, 2020)

[10].

E. Evidence-based modeling

Modeling may be based on the gradual abstraction of

incidences and solutions. An incidence is an instance of

crossing the limits of the performance envelope. The reactive

part in HSI modeling is by cross-domain learning from

incidences.

The first stage in the modeling is to create a bank of generic

failure modes, based on failure analysis. Incidence modeling

may be based on four types of evidence: anecdotal, statistical,

causal, and expert evidence (Hornikx, 2018) [30]. By its nature,

anecdotal evidence is subject to systematic deviation from the

norm and/or rationality in judgment (Haselton et al. 2005) [26].

The expert investigation is also biased: Drury et al. (2002) [12]

found that during the investigation stage the number of facts

considered grows, but then decreases at the reporting stage.

They conclude that the incident reports may not consider all

causal factors. In HSI reliability studies, these biases need

special attention.

F. Learning from accidents

The method applied in this study is a variant of Soft System

Methodology (SSM), which is critical system thinking, in

generating patterns of system resilience (Checkland, 2001) [7],

which is in the domain of Concept-Knowledge (C-K) theory

employed in the design of social systems (Hatchuel et al., 2011)

[27]. The goal is to identify patterns of failure and to assign

methods employed in various industries. The methodology for

pattern generation is based on the abstraction of the system

elements and activity and matching abstracted elements of

various incidences. This is illustrated in the following figure:

Fig. 7: Modeling the operation control

G. Application to daily incidences

The methodology of learning from incidents does not apply

to daily incidences, which are typically latent. However,

analysis of the models obtained for accident description

indicates that they may apply also to daily incidences. For

example, by analysis of many accidents, we obtain a model of

system failure due to activating maintenance-only features

while in functional operation. Evidently, this kind of failure

applies also to daily incidences in operating office applications

and operating consumer products. The implication is also the

same: in the design of any system, we should always apply

many of the models obtained by accident analysis, such as

constraining maintenance-only features to operate in

maintenance scenarios only.

H. Model-based investigation

The following figure illustrates a way to document failure

analysis when applied to the TMI accident:

Fig. 8: Event flow in accident investigation

The second stage is modeling. We accumulated evidence

from other systems with similar problems. For example, there

are several types of appliances that share the same redundant

Delay feature.

I. Sampling

A preliminary version of the model was developed earlier by

Zonnenshain & Harel (2015) [58]. These corresponding rules

were defined by analysis of 67 incidences, as patterns of typical

system activity involved in the incidence. The present study

repeated the analysis of these incidences, based on knowledge

gained by analysis of additional case studies.

The study was based on 67 case studies reported elsewhere.

The case studies are of three categories. Most of them are well-

documented accidents. Others are anecdotal incidences due to

minor flaws, reported by members of working groups on

resilience assurance. Few case studies are of recurring, low-cost

incidences.

An example of a case study is of the Three Miles Island

accident, presenting two modes of failure of safety features:

 The backup pump was disabled during power generation

 PORV did not close after pressure release, backup

pressure release was not provided.

J. Model development

The model of operation control was developed gradually. An

initial set of 11 patterns was proposed in 2008 in a working

group on risk management of the Israeli chapter of INCOSE.

After going through a bunch of failure modes, proposed by the

workshop participants, we may come up with a simple model

of system failure such as the one depicted in the following

figure:

Fig. 09: Basic situation transitions

The operational rules may be developed gradually as

incidences of new domains are added to the sample. Each cycle

includes the following activities:

 Behavior abstraction. This activity is the outcome of the

incidence analysis. The goal of behavior abstraction is to

transform domain-specific terms into universal, cross-

domain terms. The abstract version of a specific incidence

is an incidence model.

 Model matching. The objective of model matching is to

identify common failure modes, namely, patterns of

activities leading to incidences.

 Protection evaluation. The goal of protection evaluation

is to detect and evaluate design features that may enhance

reliability, namely, that may cope with the failure mode.

Typically, this activity is serendipitous.

K. Preliminary results

Finally, we had a validation test of the patterns. Matched the

patterns with each of the incidences in our sample, and we

obtained a pie chart representing the power of the test, as

follows:

Fig. 10: Distribution of the effects of the 2015 model

For 96% of the incidences, we matched at least one pattern

from our collection. This was in 2015. Today our models are

much more elaborated.

VI. RULE-BASED OPERATION CONTROL

Root-cause analysis of operator errors indicates that often

they result from an uncoordinated activity, due to overriding

interaction rules. Often, the reason for this is that the rules are

not stated explicitly in the requirements documents. A key

design goal is to enforce operating according to the rules.

A. A generic model of operation control

Then we established a dedicated working group on system

resilience, in which we examined the various failure modes

found in 67 incidences. The outcome of this examination was a

comprehensive model of system resilience. The model was

reported in the 2015 INCOSE conference (Zonnenshain &

Harel, 2015) [58]. An updated version of this model is

demonstrated in the following figure.

Fig. 11: A model of exception management

Based on this model, we examined a pattern of failure modes

of activating a maintenance-only feature in functional

operation, as described above. We looked at common methods

for protecting from incidences employed in the industry and we

came up with two approaches: a. disabling the activation of

maintenance-only features during functional operation, and b.

warning about such instances. This defines two patterns of

preventing such mishaps, defined as operational rules.

B. HSI scenarios

HSI scenarios are the HSI view of use cases/ usage scenarios.

They are used for both design and testing. Operational

complexity may be reduced by assigning the activity to

scenarios.

Scenario-based design enforces the coordination between the

system elements and enables enforcing operation by the rules.

It is essential to enabling seamless, carefree operation.

Scenario-based modeling (SBM) is a procedure of activity

design, in which the system activity is expressed in terms of

operational scenarios. The objective of SBM is to support the

design of seamless, robust, coordinated interaction by the rules.

Trackers should be developed and integrated into systems, to

enable evaluation of the effectiveness of this methodology.

C. Formalizing the operation control

Recently, Harel (2021) [23] has proposed a universal model

of error-free system integration, consisting of seven layers of

generic mini models (GMMs). The universal model was

developed in two stages: first, defining the GMMs, and then

organizing them in a structure.

The structure definition was based on an analysis of the

relationships between various entities that define the system

behavior: functions, units, risks, states, events, reactions, and

resilience. A prototype of a universal HSI model presented here

consists of seven layers of GMMs as illustrated in the following

figure:

Fig. 12: GMMs in layers of data definition

The universal HSI model highlights the role of situational

exceptions, as well as the role of scenarios, which should reduce

operational complexity by information hiding, in support of

direct mapping from intention to action.

A structural layer. This layer includes a breakdown of the

system elements, including human agents (users, operators,

artificial agents (processes, tools …), and subsystems. The

system is socio-technical, in which the operators are part of the

system, but the users are external. The subsystems are coupled

strongly with the operators, and loosely with the users.

A functional layer. This layer includes descriptions of the

operational context and features required to accomplish an

operator’s task, intended to maximize the system utility.

A situational layer. This layer contains representations of

the operational situations. The design goal is to notify the

operators about the system operating in exceptional situations.

The core of the static model is an abstraction of the system

situations, with a focus on exceptional situations.
An activity layer. This layer includes representations of the

system dynamics. The design goal is to alert the operators about

transitions from normal to exceptional situations. The core of

the dynamic model is an abstraction of the system events, with

a focus on unexpected events.

A behavioral layer. This layer includes definitions of the

responses to events in various conditions. The design goal is to

mitigate the risks of wrong responses to events. The core of the

behavioral layer is an abstraction of typical system responses to

exceptional events, with a focus on risk reduction. The focus is

on assisting the operators in responding to rebound messages,

in perceiving properly the risks associated with the alarms, and

in troubleshooting.
A resilience layer. This layer includes representations of

safety backups. The design goal is to mitigate the risks of

operating with backup features missing or unavailable. The core

of the resilience model is an abstraction of secondary risks due

to the failure of safety features.

D. Implications to error-proofing

An error-proof design may include sensors of the engine and

switch states, and an indication when the states are not

compatible with each other. In addition, the design may include

an indication of these states, to facilitate the troubleshooting.

The sensors may also be used to notify on problems of starting

or stopping the engine too fast or too slowly. The following

figure illustrates the inter-state transitions as system variables.

Fig. 13: Inter-unit state transitions

E. Scenario models

A scenario model is a structure used to describe relationships,

such as hierarchy and transitions between scenarios. It is the

baseline for informal, normative, human-oriented, task-driven

interaction design, as well as for disciplined system-oriented

activity design. Often, it is a bundle of tree structures of

scenarios associated with various system components.

The description may be similar to state charts. Typical top-

level scenarios of the system-level tree structure are generic,

primary scenarios, such as installation, initial setting, functional

operation, initial training, advanced training, maintenance,

testing, and problem-solving. Typically, the problem-solving

scenario may break down into generic sub scenarios, such as:

under hazard, under alarm, troubleshooting, safe-mode

operation, resetting, recovery, and reporting. Further down, the

“under alarm” scenario may be broken down into sub scenarios

such as low risk, high risk, and emergency.

Often, the lower levels are mostly domain-specific. For

example, the functional scenario of a commercial airplane may

own three primary sub scenarios: takeoff, navigation, and

landing. Further down the tree, the navigation scenario may

own two sub-scenarios: manual navigation and automatic

navigation. The bottom level may comprise project-specific

scenarios.

Component-level scenarios may be described by simple state

trees, representing states about availability, reliability,

activation, performance level, etc.

Scenario models may serve as a common vocabulary and a

guide to system development. They simplify the definition of

human-centered normative behavior, as well as features for

enabling robust, carefree interaction.

The definition of scenario models may involve the

participation of customer, operator, and user representatives.

F. Normative interaction models

The goal of normative models is to envision how the system

may be operated in normal scenarios. An interaction model is a

presentation of the operation of primary tasks in terms of the

scenario model. The modeling is based on participatory

exploration by users and operators, by soliciting, analyzing, and

elaborating stories about optional operational episodes and

design alternatives.

The exploration may be employed using light, sketchy, agile

simulation of the system operation. The simulation may have

various forms, such as narratives, animation, role-play, board

games, drama, or computer programs. The simulation may

employ various media, such as text, storyboards, video

mockups, scripted, emulated, or real prototypes, or virtual

reality.

G. Application to UI design

The root cause for many operator errors, such as in using

consumer products, is due to erroneous activation of a feature

that should be available in different scenarios. For example, a

prominent problem in operating home appliances is the

unintentional activation of setting features. This failure mode is

the source of several famous accidents, such as the B-17

accidents due to control substitution in WW II, and the Torrey

Canyon supertanker crash in 1967.

The scenario model may serve for designing the screens and

panels, to prevent erroneous activation of features that do not

comply with the active scenario.

H. Model realization

Coordination failure is often due to scenario ambiguity, in

which different system elements assume different scenarios.

For example, the friendly fire accident in Afghanistan (2001) is

due to inconsistent assumptions about the operational scenario.

Also, in other friendly fire accidents the fire support unit

assumed a wrong phase of the fire plan. To enforce inter-

element coordination, the design should include declaration and

realization of the active scenario, to which all the relevant

system elements should refer.

I. Situational models

A situational model is an expression of the system situation

in various scenarios. The system situation may be defined in

terms of the states of system elements, such as units, agents,

components, variables, procedures, and interaction options. In

a situational model, these are associated with scenarios. We

may refer to these situations as the situational scope of the

scenario.

A simple illustration of a situational model is an elementary

system containing a device that may be On or Off, and a switch

with two states used to control the device. The functional

scenario of the situational model may comprise two sub

scenarios of normal operation:

 Operative: both the device and the switch are On

 Idle: both the device and the switch are Off.

Another example, illustrating the need for situational

modeling, is demonstrated by the accident involved in operating

Therac 25 radiotherapy equipment, which was operated in two

normal functional scenarios:

 X-ray testing: obtained by high current, moderated

electron beam

 E-beam treatment: obtained by low current, full

electron beam

The accident was due to operating in an exceptional situation,

of high current, full electron beam.

Other combinations of the device and switch states are out of

the scope of the functional scenario and are regarded as

exceptional. The Torrey Canyon supertanker loss of control

accident (LOCA) demonstrates the need to impose operation

based on situational models. In this supertanker, the navigation

control lever had three positions: manual, automated, and

special position, disconnecting the rudder from the wheel. The

special position was intended for use in maintenance only. The

LOCA resulted from the accidental selection of the special

position while on board.

Continuous variables may be associated with scenarios by

their distribution functions. For example, the available disk

space of a computer may be either normal or critical.

Accordingly, the situational model of the computer disk space

may own two scenarios.

Thresholds of any continuous variable, such as container

temperature, may define various performance scenarios, such

as normal, low risk, and high risk. The Bhopal disaster

demonstrates the need to enforce operations based on

situational models of continuous variables.

Continuous variables may also represent scenarios about

external, contextual, or environmental situations, such as

ambient humidity, as well as about time measurements of

repeating activities.

J. Situational rules

Situational models enable structuring a framework of

operational rules. According to the principles of cybernetics,

adopted for the STAMP paradigm, systems should operate

according to rules. Many incidences may be attributed to

ambiguous, implicit operational rules. For example, the rules

defining the properness of the operation of the elementary

system are derived from the situational models of the Operative

and Idle scenarios. If these rules are implicit, then the system

might not detect exceptional situations, such as when the switch

is Off and the device is On.

Situational rules may consist of conditions and reactions. The

conditions may be expressed as boolean expressions of states.

The reaction may be preventive, by enforcing a proper

operation, or defensive, for example, by rebounding or

notifying the operators about the rule violation. The reaction

part may reflect our prediction of the costs of the reaction

options.

Situational rules are attributes of scenarios. Examples of

situational rules are:

 In functional computer operation, when the available

disk space is critically low, the system should advise

the operator to clean it.

 In the production of dangerous materials, when the

container temperature is higher than a safety threshold,

the system should notify the operators and enforce

safe-mode operation.

Examples of generic rules:

 When in a functional scenario, risky features should be

disabled. The need for imposing this rule is

demonstrated by the Torrey Canyon and the friendly

fire accident in Afghanistan, and many others.

 During the operation of safety-critical scenarios,

safety backup features should always be available and

enabled. The TMI accident (1979) demonstrates the

risks of erroneous disabling of the backup pump.

Typically, the definition of situational rules is in the scope of

systems engineering. The validation of the situational rules may

be based on faking exceptional situations and evaluating the

HSI reaction to the faked situations.

K. Rule-based exceptional handling

A situation is regarded as exceptional if it does not comply

with the rules applicable to the active scenario. The best design

strategy to enforce compliance with the rules is by disabling or

avoiding exceptional situations. Method for avoiding

exceptions include rebounding from errors or providing the

operator with a forecast of the effect of optional events.

Exception handling is required when we cannot prevent the

exception, in cases when the exception is due to an external

hazard, a hardware fault, a power failure, or a communication

interrupt, or a design or implementation mistake. The design

should provide means to accommodate them, by notifying the

operators about operating in high-risk situations, by prompting

the operators to take action, and by guiding them in the recovery

procedure.

L. Unexpected situations

The situational model includes only part of the situations,

those included in the situation scope of the scenarios. Most of

the situations are not included in the scope of any of the

scenarios. For example, in the elementary system described

earlier, only two of the four combinations are expected.

Similarly, in the Therac 25 example, only two of the four

combinations of current- electron beam are expected. In

hindsight, we know that the Therac 25 accidents are due to

operating the system in a mixed mode of high current and full

electron beam, which is not in the situational scope of X-ray

testing scenario, nor of the E-beam treatment scenario. These

situations are unexpected, and their root may be in mistakes in

the definition of the situational rules, or due to bugs.

The challenge is of handling unexpected situations: the

system design should prevent them, and notify the operators

about operating in such situations. Special safe-mode

procedures may be designed to handle them.

M. Activity models

The system activity may be defined in terms of the system

reaction to events. Typically, the reaction depends on the

operational conditions, which are defined by the system

situation and by external conditions. An activity model is a

description of the activities constrained by scenarios. It may be

expressed in terms of activity rules.

N. Activity rules

The activity rules define the reaction to events in terms of

scenarios. An activity rule may describe normal interaction or

ways to prevent diversion from normal to exceptional

situations. Interaction rules define optional responses to an

event, in a particular situation, depending on the scenario.

Examples of preventive rules are.

 Safety features should not be disabled while in a

high-risk scenario.

 Transition to a functional scenario should be avoided

when any of the safety features are disabled.

Typically, the definition of activity rules is in the scope of

systems engineering.

O. Protective rules

Protective rules may be derived from situational rules by

examination of the possible transitions from normal situations

to exceptional situations.

For example, examine the situational rule about the

availability of safety features during safety-critical functional

scenarios. Depending on the costs of automated suspension of

the functional operation, the system may either suspend the

functional operation or notify the operators about the risks of

operating without the safety feature. Protective rules derived

from this situational rule are:

 The system should prevent or warn the operators about

disabling the safety feature while in a functional

scenario

 The system should prevent scenario transition from

maintenance to functional when the safety feature is

disabled.

The validation of the protection rules may be based on faking

exceptional situations or events.

P. Activity protocols

The activity rules may be formalized in terms of protocols of

event response. The responses to events may include changing

the operational scenario. The activity model may include

special protocols for handling the operator’s control. For

example, a protocol for responding to disabling a safety feature

in a functional scenario may consist of two steps:

1. Rebounding: prompting the operators to regret or to

confirm their intention

2. Switching to a safe scenario, such as maintenance,

idle, safe-mode, or shutting down.

Q. Transition synchronization

Following a request to change the active scenario, the system

needs to activate the situational rules that apply to the new

scenario. By definition, changing a situational rule of a scenario

involves changing the state of at least one system state machine.

Changing the state of a system element may be time-

consuming. The Therac 25 accident demonstrates a challenge

of responding gracefully to synchronization delays, and of

suspending the operation until the scenario transition is

complete.

Transient scenarios define the system response to events

during the transition. During a transient scenario, the system

may operate in a special sync mode. The design should include

special features for enforcing graceful synchronization, such as

disabling risky activity, notifying the operators while in

synchronization, warning the operators in case of failure, and

handling the recovery.

While in a transient scenario, the system may operate in a

special transition mode. The operation in the transition mode

may be initially automated, by default. If applicable, the

operators may have an option to override the automated

behavior.

R. Transition models

A transition model is a description of the procedure for

changing the situational rules during the scenario transition.

Transition models may describe ways to capture and notify on

exceptions and escape procedures, in response to exceptions.

The transition model may include a special transient

scenario, representing the operation until the new scenario is

synchronized, and a special escape scenario, representing the

case of transition failure. The operators need to know about

such cases, and the system should provide an exception warning

when the situation does not comply with the new constraints.

The transition model may include special features for enforcing

graceful delay or failure, such as disabling risky activity and

notifying the operators while in the transient scenario.

A generic synchronization model may be expressed using a

standard protocol, including:

 A transition request, pointing at the target scenario and

setting a sync time out limit

 Activating processes aimed at applying the rules

associated with the target scenario

 Waiting until the situation complies with the rules of

the target scenario. While waiting, the system should

indicate that the system is in a transient scenario

 After complying with the rules of the target scenario,

it becomes the active scenario

 In case of reaching the timeout limit, provide a

warning message, and initiate a recovery procedure.

S. Transient timeout adjustment

An initial value of the sync timeout may be defined in the

transition specification, but this value might not fit all

circumstances. The design may provide means for measuring

the actual transition time, and for adjusting the timeout for each

of the transitions, based on statistics of the measurements. The

adjustment may be automated or manual.

T. Recovery models

A generic recovery model may be expressed using a standard

protocol, including:

 Notifying the operators about the transition failure,

prompting to recover the situation before the transition

request

 Notifying the operators about the recovery results

 Enter a special safe-mode operation.

VII. ENGINEERING

As discussed by Harel & Zonnenshain (2019) [25] the

engineering of HSI is based on defining operational rules,

which define exceptions by exclusion from normal behavior.

A. Human-centered Design

 This is the common practice today for preventing human

errors. For example, a common practice for preventing

unintentional mode setting is by impeding the transition, as

illustrated in the following figure:

Fig. 14: Preventing slips

The article proposes to resolve this kind of problem by

scenario-based design and testing.

B. Beyond HCD

By focusing on performance, engineers overlook usability

limitations due to flaws in the system integration. The following

figure illustrates the role of HSI design, and the added-value of

HSI design, concerning HCD.

Fig. 15: Beyond HCD

The article suggests that the challenges of inter-unit

coordination and mode errors are not in the scope of HCD. It is

the responsibility of the HSID practitioners (systems engineer

and/or the safety engineer) to select the proper patterns, and it

is the responsibility of the HCD practitioner to design the

warning messages, the rebound feedback, and the notifications

to the operators.

C. Extending the Exception Handling

If the exception is expected, the system may respond

automatically by rebounding, with or without prompting the

operator to confirm the response. Otherwise, the system should

notify the operators about the exception, and support

troubleshooting procedures by proposing potential sources,

obtained by Hazard – Effect simulation.

To protect from exceptions, we need to define them formally.

The rules may be applied to a particular project by parameter

customization. The customized model may serve as a digital

twin, which is a simulated prototype of the system. The digital

twin may support agile development by gradual system

development.

D. Risk indicators

The system may record the transition delays and generate

distribution functions for these delays. The system design may

make use of the distribution parameters, and include

identification of extreme values, as well as extra means for

alarming and emergency shut-down. The following figure

illustrates how the design may define exceptional delays, and

how the system may respond to exceptions:

Fig. 16: Discretizing the system variables

In the example, the threshold of sigma may be used for

alarming, and the threshold of two-sigma may be used for safe-

mode operation, such as emergency shut down.

E. HSI statecharts

SysML offers a simplified version of UML state charts for

graphical representation of state transitions. This kind of

representation is not adequate for modeling the interaction

between state machines. The problem is that events designed

using SysML statecharts are error-prone. The HSI version of

statecharts supports describing various attributes of mutual

effects between state machines, as well as enforcing error-free

state transitions.

F. Evaluation

For evaluating the model, we may employ the Layer Of

Protection Analysis (LOPA) technique, commonly used in the

process industry for assessing the protection needs. The

evaluation is based on testing the effects of protection layers

and calculating the potential risks (Baybutt, 2002) [4].

G. Infrastructure

Utility-critical systems should incorporate means, including

sensors, trackers, recorders, and analyzers, for informing the

operators and the developers about the time they could save.

The infrastructure for model-based HSI may include special

means intended to save the time wasted in handling exceptional

situations. The means to avoid exceptional situations and to

support exception management may be integrated into the

model used to design the HSI. For example, they may include

model interpreters that enable customizing the model transition

to software units.

H. Data analytics

Tracking tools enable capturing and measuring the costs of

daily, low-cost events (Harel, 1999) [17]. Harel et al. (2008)

[24] demonstrated a way to apply data analytics in automated

usability testing, and Harel (2009) [19] demonstrated that data

analytics may be used to identify problem indicators. Universal

tracking is crucial also for enabling learning from rare events.

I. Digital twins

A digital twin is an executable virtual model of a physical

thing or system (Wright & Davidson, 2020) [57]. The concept

of digital twins is based on the concept of virtual prototyping,

dated in the 80s, in which a model was used to replace system

units by emulation. This feature enables early integration, by

using virtual units instead of the real components that are not

ready yet for the integration. This feature was recently adopted

for systems engineering in the form of digital twins.

J. Simulation

The transition from the customized model to a prototype

and/or digital twin should be automated. The automation may

be based on simulation of the orchestrated version of the

system, using standard software packages that process the

custom parameters.

K. Applying the Digital Twins

Once the rules are defined, we may establish a digital twin,

namely, a virtual prototype, which emulates the system. Besides

enabling gradual implementation and development, variants of

the twin may provide operational information to the operators,

facilitating the operators’ decision-making and troubleshooting

in run-time.

Figure 17: Applying the digital twins

The figure illustrates that besides supporting gradual

implementation by virtual prototyping (Schaaf & Thompson,

1997) [41], the model may also be used for customizing generic

digital twins, used to support operational tasks of predicting

future situations, troubleshooting, and exception detection.

L. Operation verification

Digital twins enable to control the system operation

according to the STAMP paradigm: post-deployment emulation

enables detection of incidences by comparing the output of the

emulated unit with that of the real unit, as depicted in the

following figure:

Fig. 18: Digital twins used for incidence detection

Incidences are defined as instances of unexpected

exceptions. The expected activity is obtained by emulation. The

incidences are instances in which the emulated output is

different from the actual output of the real units.

M. Predicting performance variables

Digital twins may be used for risk prediction based on

measurements of performance variables, as the following figure

illustrates:

Figure 19: Predicting performance variables

In this chart, t1 denotes the time of crossing the alarm limit,

and t2 denotes the elapsed time. The dotted curve right of t2

denotes the predicted values of the performance variable,

obtained by a digital twin.

N. Predicting the effect of option selection

Digital twins may also help in option selection by predicting

the changes in the performance variables in response to changes

in the parameters that affect the performance, as illustrated in

the following figure:

Figure 20: Predicting the effect of parameter changes

The left side of the figure represents part of the operator’s

interface used to control the values of four parameters. The

chart on the right side of the figure illustrates the predicted

system behavior in response to changes in the parameters. The

following figure illustrates one of the possible ways of applying

the predictors to enable operation control:

Figure 21: Controlling a performance variable

The figure illustrates that following an alarm, the operators

may manipulate the parameters by predicting the effect of

changes, and eventually resume normal operation.

O. Model-based troubleshooting

Digital twins may be used for root cause analysis by a display

of the potential effect of various faults in components or due to

errors in system variables. The design goal is to shorten the

troubleshooting by proposing to examine those sources that are

most likely, based on the estimated effects on the performance

variables. The method is by finding the possible cause with

predicted effect with the best fit to the measurements. The

following figure illustrates the effects of various sources,

compared to the measurements.

Figure 22: Troubleshooting by failure effect evaluation

The figure illustrates the differences between the effects

computed by the digital twins and the actual effect.

P. Twin development

Digital twins may be integrated into MBHSI, for seamless

change validation according to the following figure:

Fig. 23: The role of digital twins in model-based HSI

Q. Customizing

The seven-layer models are generic, applicable to various

domains and industries. To adapt it to a particular project these

models need customization. The customization process is

according to the order above, as the definition of each model

depends on that of the previous one.

R. System Integration

System integration is a multi-disciplinary activity, as

illustrated in the following figure:

 Figure 24: Error prevention in the system integration

The dotted blocks represent topics of the infrastructure

required to implement the proposed framework.

S. Model development

Models enable saving development costs by enforcing

seamless adaptation to design changes. The models should be

defined iteratively, each cycle is followed by evaluation.

Typically, the evaluation ends up with a list of requirements for

design changes, intended to reduce the operational complexity.

The development might end when it is obvious that all known

significant risks are removed. Criteria for ending the

development may be based on the Safety Integrity Level (SIL)

evaluation method commonly applied in the process industry

(Redmill, 2000) [41].

T. Testability

Testing rare events is challenging. To enable testing

exceptions the system should incorporate a special tester unit

that fakes various kinds of faults, in various conditions, that the

testing team can customize. A special scenario should be

defined, which is part of the operational conditions.

U. Adjustability

The setting of the alarm and safety thresholds of the various

risk indicators is a delicate design goal, aiming to balance

properly the rate of nuisance of the alarms. A special utility may

enable inform the system administrators about the margins of

alarms and safe-mode operation.

VIII. CONCLUSIONS

Primary barriers to maximizing the operational utility are

limitations of operating in exceptional situations, typically

attributed to errors, hampering the system’s usability. This

study presents a framework of rule-based operation control,

consisting of layers of GMMs. Principles of operation control

are formulated as scenario-based rules and protocols for risk

detection, recognition, and identification.

The article explores various protection patterns, but certainly

not for all possible design challenges. It may be interesting to

explore operational rules for various specific tasks.

Validation of the rules may be conducted by analysis of the

activity obtained by trackers of the system performance, using

statistical metrics, followed by traditional usability testing in

the corresponding scenarios.

General rules may be customized based on parameters

defined initially by domain experts, and tuned by statistics of

measurements of performance and risk variables.

ACKNOWLEDGMENT

I thank Avigdor Zonnenshain, Uzi Orion, Moshe Weiler,

Sharon Shoshani, Ami Harel, and other members of INCOSE-

IL, Gordon Center for Systems Engineering, Iltam, Israel

Resilience working group, Israeli HSI working group, and HSI

international working group for their support and for providing

helpful comments on previous works on the subject, and also

the HSI2021 reviewers who provided helpful comments on the

previous version of this article.

REFERENCES

[1] Bainbridge, L 1983, Ironies of automation. Automatica. 19 (6): 775–779.
doi:10.1016/0005-1098(83)90046-8. ISSN 0005-1098

[2] Baker, CC & Seah, AK 2004, Maritime Accidents and Human

Performance: the Statistical Trail Paper presented at MARTECH 2004,
Singapore, September 22-24

[3] Barricelli, BR, Casiraghi, E and Fogli, D 2019, ‘A Survey on Digital

Twin: Definitions, Characteristics, Applications, and Design
Implications’, IEEE Access, November, PP(99):1-1

[4] Baybutt, P 2002, Layers of Protection Analysis for human factors (LOPA-

HF), Process Safety Progress 21(2):119 – 129,
DOI:10.1002/prs.680210208

[5] Berard, J 2013, Accelerating Leadership Development: Practical
Solutions for Building Your Organization's Potential, John Wiley & Sons,

25 Jul 2013.

[6] Boy, GA, 2013, Orchestrating Human-Centered Design. New York:
Springer. ISBN 978-1-4471-4338-3

[7] Checkland, PB 2001, Soft Systems Methodology, in J. Rosenhead and J.

Mingers (eds), Rational Analysis for a Problematic World Revisited.
Chichester: Wiley

[8] Clark CW, & Dukas R 2003, The behavioral ecology of a cognitive

constraint: limited attention. Behav Ecol 14:151–156.

[9] Cohen, J 2001, A Tribute to Alain Colmerauer. Theory and Practice of

Logic Programming. 1 (6): 637–646.

[10] Copeland, S 2020, On serendipity in science: discovery at the intersection
of chance and wisdom, Synthese: an international journal for

epistemology, methodology and philosophy of science

[11] Dekker, S 2012, Just culture: Balancing safety and accountability,
Ashgate.

[12] Drury CG, Woodcock K, Richards I, Sarac A, Shyhalla K. A New Model

of how People Investigate Incidents. Proceedings of the Human Factors
and Ergonomics Society Annual Meeting. 2002;46(13):1210-1214.

doi:10.1177/154193120204601343

[13] Endsley, MR 1995, Toward a theory of situation awareness in dynamic
systems. Human Factors. 37 (1): 32–64.

doi:10.1518/001872095779049543

[14] Fuhs, A 2008. Hybrid vehicles: and the future of personal transportation.
CRC press.

[15] Gabriel, RP & Steele, GL 2008, A Pattern of Language Evolution.

LISP50: Celebrating the 50th Anniversary of Lisp. pp. 1–10.
[16] Grimm, T 1998, The Human Condition: A Justification for Rapid

Prototyping. Time Compression Technologies, vol. 3 no. 3. Accelerated

Technologies, Inc. May 1998
[17] Harel, A 1999, Automatic Operation Logging and Usability Validation,

Proceedings of HCI International '99, Munich, Germany, Vol. 1, pp.

1128-1133
[18] Harel, A 2006, Alarm Reliability, User Experience Magazine, Vol 5.,

Issue 3.

[19] Harel, A 2009, Statistical Analysis of the User Experience, Invited talk -
2nd Meeting of isENBIS, Hertzelia, Israel

[20] Harel, A 2010, Whose Error is This? Standards for Preventing Use Errors,

The 16th Conference of Industrial and Management Engineering, Tel-
Aviv

[21] Harel, A 2011, Comments on IEC 60601-1-8. Letter submitted to IEC/TC

62 working group.
[22] Harel, A 2020, System Thinking Begins with Human Factors: Challenges

for the 4th Industrial Revolution. in R.S. Kenett, R.S. Swarz and A.

Zonnenshain (Eds), Systems Engineering in the Fourth Industrial
Revolution: Big Data, Novel Technologies, and Modern Systems

Engineering, Wiley

[23] Hare, A 2021. Towards Model-based HSI Engineering: A Universal HSI
Model for Utility Optimization, to be published in Proceeding of the

second HSI conference, San Diego, US.

[24] Harel, A, Kenett, R & Ruggeri, F 2008, - Modeling Web Usability
Diagnostics on the basis of Usage Statistics. in: Statistical Methods in

eCommerce Research, W. Jank and G. Shmueli editors, Wiley.
[25] Harel, A & Zonnenshain, A 2019, Engineering the HSI. Proceedings of

the first HSI conference, Biarritz, France

[26] Haselton MG, Nettle D, Andrews PW 2005. ‘The evolution of cognitive
bias.’ (PDF). In Buss DM (ed.). The Handbook of Evolutionary

Psychology. Hoboken, NJ, US: John Wiley & Sons Inc. pp. 724–746.

[27] Hatchuel, A, Le Masson, P & Weil, B 2011, Teaching innovative design
reasoning: How concept–knowledge theory can help overcome fixation

effects. Published online by Cambridge University Press

[28] Hollnagel, E 1983, Human Error. Position Paper for NATO Conference

on Human Error. Bellagio, Italy.

[29] Hollnagel, E 2006, Resilience: The challenge of the unstable. In:
Hollnagel, E., Woods, D. D. & Leveson, N. C. (Eds.), Resilience

engineering: Concepts and precepts (p. 9-18). Aldershot, UK: Ashgate.

[30] Hornikx, J 2018, Combining Anecdotal and Statistical Evidence in Real-
Life Discourse: Comprehension and Persuasiveness. Discourse Processes

Vol 55, Issue 3.

[31] Jackson, S & Ferris, T 2013, Resilience Principles for Engineered System.
Systems Engineering, 16(2), 152-164. doi:10.1002/sys.21228.

[32] Jacobson, I 1987, Object-oriented development in an industrial

environment. ACM SIGPLAN Notices. 22 (12): 183–191.
[33] Kariuki, SG & Loewe, K 2006 Increasing Human Reliability in the

Chemical Process Industry Using Human Factors Techniques, Process

Safety and Environmental Protection 84(3):200-207
[34] Leveson, N 2004, A New Accident Model for Engineering Safer Systems.

Safety Science 42(4):237-270

[35] Luqi 1989, Software Evolution through Rapid Prototyping. IEEE
Computer. 22 (5): 13–25. doi:10.1109/2.27953. hdl:10945/43610

[36] Norman, DA 1983, Design Rules Based on Analyses of Human Error.

Communications of the ACM 26(4):254-258
[37] Norman, D 1988, The Design of Everyday Things. New York: Basic

Books. ISBN 978-0-465-06710-7

[38] Norman, DA and Draper, S 1986, User Centered System Design: New
Perspectives on Human-Computer Interaction Lawrence Erlbaum

Associates.

[39] PlaneCrashInfo, 2014, Causes of Fatal Accidents by Decade
http://planecrashinfo.com/cause.htm

[40] Shapiro, E. 1983, Algorithmic program debugging. Cambridge, Mass:

MIT Press. ISBN 0-262-19218-7
[41] Schaaf, JC & Thompson, FL 1997. Systems Concept Development with

Virtual Prototyping. 29th conference on Winter simulation. pp. 941–947.

CiteSeerX 10.1.1.74.2308
[42] Sheard, SA and Mostashari. A 2009, Principles of complex systems for

systems engineering. Systems Engineering, vol. 12, no. 4, pp. 295-311.

[43] Shewhart, WA 1931, Economic Control of Quality of Manufactured
Product ISBN 0-87389-076-0

[44] Shneiderman, B 1980, Software Psychology: Human Factors in

Computer and Information Systems. Little, Brown
[45] Shneiderman, B 1986, Designing the User Interface: Strategies for

Effective Human–Computer Interaction, 1st edition. Addison-Wesley

[46] Singh, S 2015, NHTSA CrashStat, Critical Reasons for Crashes

Investigated in the National Motor Vehicle Crash Causation Survey, DOT

HS 812 115
[47] Spool, JM. 2014, Scenarios and Journey Maps Help Designers Become

Storytellers. User Interface Engineering, May 7.

[48] Swatton, PJ 2011, "14.11", Principles of Flight for Pilots, Chichester, UK:
Wiley & Sons Ltd

[49] Taleb, NN 2007, The Black Swan: The Impact of the Highly Improbable.

Random House Trade Paperbacks.
[50] Weaver, W 1948. Science and complexity. American Science, vol. 36, pp.

536-544.

[51] Weiler, M & Harel, A 2011, Managing the Risks of Use Errors: The ITS
Warning Systems Case Study, The Sixth Conference of INCOSE-IL,

Hertzelia, Israel.

[52] Weinberg, GM 1971, The Psychology of Computer Programming. Van
Nostrand Reinhold.

[53] Wheeler, DJ & Chambers, DS 1992, Understanding Statistical Process

Control ISBN 0-945320-13-2
[54] Wickens, CD 1992, Engineering psychology and human performance

(2nd ed.). Harper Collins Publishers.

[55] Wiener, N 1948, Cybernetics; or, Control and communication in the
animal and the machine. Technology Press, Cambridge.

[56] Wilson, TD 1999, Models in information behaviour research, Journal of

Documentation, Vol. 55 Iss 3 pp. 249 – 270
[57] Wright, L., Davidson, S. How to tell the difference between a model and

a digital twin. Adv. Model. and Simul. in Eng. Sci. 7, 13 (2020).

https://doi.org/10.1186/s40323-020-00147-4
[58] Zonnenshain, A & Harel, A 2015, A practical guide to assuring the system

resilience to operational errors, INCOSE. Annual International

Symposium, Seattle.

https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1016%2F0005-1098%2883%2990046-8
https://en.wikipedia.org/wiki/ISSN_(identifier)
https://www.worldcat.org/issn/0005-1098
https://www.researchgate.net/profile/Barbara-Barricelli?_sg%5B0%5D=zFIveeKd4lQ6XhwKWfLWWMt8Yt5ZmsMZxFsx9H7zkmJjfPxEU0Cb3KCkglvxXfNKE3Y_aHY.zetd7K12nlM2-huA_IPynFU2YTPZfj1XvC3kHi9ZFSsnizMBxZmTppTu5ThCv8oF9b7cLe9sIN34jUN2jAcv9Q&_sg%5B1%5D=MZOrc5m3IJs1NFJy3m1n6ltwzEOi4_Mg1-NR4qdBs_MoPwW-LEVzmY9XMtlUM_1cSjFaQkM.5sgXX3ze_JnqupFC2IJGBq9cmDPZsm7-m0kyDP4EZpJX8mbpA7uH0d2e8aYdRYdeQtVx2d6VQJIhZe61QQQJYQ
http://dx.doi.org/10.1002/prs.680210208
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-1-4471-4338-3
https://research.tudelft.nl/en/publications/on-serendipity-in-science-discovery-at-the-intersection-of-chance
https://research.tudelft.nl/en/publications/on-serendipity-in-science-discovery-at-the-intersection-of-chance
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1518%2F001872095779049543
https://en.wikipedia.org/wiki/Richard_P._Gabriel
https://en.wikipedia.org/wiki/Guy_L._Steele,_Jr.
http://www.dreamsongs.com/Files/PatternOfLanguageEvolution.pdf
http://www.sscnet.ucla.edu/comm/haselton/papers/downloads/handbookevpsych.pdf
http://www.sscnet.ucla.edu/comm/haselton/papers/downloads/handbookevpsych.pdf
https://www.tandfonline.com/toc/hdsp20/current
https://www.tandfonline.com/toc/hdsp20/current
https://www.tandfonline.com/toc/hdsp20/55/3
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1109%2F2.27953
https://en.wikipedia.org/wiki/Hdl_(identifier)
https://hdl.handle.net/10945%2F43610
https://en.wikipedia.org/wiki/Basic_Books
https://en.wikipedia.org/wiki/Basic_Books
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-465-06710-7
http://planecrashinfo.com/cause.htm
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-262-19218-7
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-87389-076-0
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-945320-13-2

Avi Harel received his B.Sc. (1970) and M.Sc. (1972) degrees in mathematics
from the Technion, the Israeli Institute of Technology, in Haifa, Israel. For his

M.Sc. degree he received an outstanding grade. For his master's thesis he was

granted the Landau's award. Between the years 1985 and 1989 Avi studied
Behavioral and Management Sciences at the faculty of Industrial Engineering

of the Technion.

Between 1975-1992 he worked for Rafael, the Armament Development
Authority of Israel, during which he gained experience in working with a wide

range of applications, platforms, operating systems, programming languages

and development environments. Between 1977-1980 he was the manager of 30
people in the Software Department of Rafael's Division of Electronics. Between

1980-1983 he was the manager of the leading project of the Electronics
Division of Rafael. Between 1983-1985 he designed the software for a touch

operated telephone set for the Design Interpretive department of BNR, Canada.

Between 1985-1987 he developed a generator of user interfaces, for use by
frequent users. Between 1988-91 he conducted various projects in Human

Factors engineering in Rafael. His work experience includes software

engineering, system engineering and ergonomics in Rafael, Nortel, IBM,
Attunity and Ergolight. Since 2007 he focuses on developing and publishing

methods for preventing human errors in system operation. This activity is

conducted in collaboration with the Israeli branch of INCOSE and with the
Gordon Center for Systems Engineering of the Technion, Haifa.

