
 

 

Abstract— Error prevention is most significant to usability, and 

consequently also to safety and positive UX. This article describes a 

long-range study of the sources of errors, and ways for preventing them 

by design. Accident analysis indicates that errors typically result from 

difficulties of operating in exceptional conditions, when crossing the 

performance envelope. These findings apply also to consumer 

products and mission-critical systems. The article proposes a 

framework for preventing exceptions, and for enforcing seamless 

rebounding from the exceptional conditions. The framework 

comprises a universal model of the system behavior, methods, and 

guidelines for exception prevention and management, and a waterfall 

model of integrating these capabilities in the system development. The 

article calls for developing tools for recording and analysis of the 

system activity during the operation, which may be used to implement 

and validate the model. 
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I. ERRORS 

A. Incidences 

We may distinguish between two types of errors: those due 

to rare events and those due to daily, low-cost events. Taleb 

(2007) [49] argued that it is impossible to predict incidences 

due to Black Swans (rare events) because a priori we do not 

have the data required for the prediction. 

The following figure illustrates a way to classify errors by 

costs and frequency: 

 

 

Figure 1: Incidences in various industries 

B. Errors and incidences 

The meaning of the term "human error" or “improper usage” 

is ambiguous. Accident analyses indicate the most of these 

instances involve several factors, the most notable are 

component malfunctions. Often, the error is attributed in 

hindsight to the person who happened to be nearby, typically, 

the operator who was on duty (Dekker, 2007) [11].  

C. Accidents 

Studies about the sources of accidents indicate that most of 

them are typically attributed to human errors or improper usage. 

The factors mentioned by the reviewer are in the category of 

human errors. Human errors explain most accidents in the air 

(60%, PlaneCrashInfo 2014) [39] sea (80%, Baker & Seah 

2004) [2], driving (90%, Singh 2015) [46], and in the industry 

(60-80%, Kariuki & Löwe 2006) [33]. 

D. Daily incidences 

Daily errors are typical of consumer products, 

communication systems, and office software. For example, 

informal studies on productivity in text editing indicate that 

about half of the time is wasted in recovery from errors. 

However, daily incidences are mostly latent because people are 

often keen to blame themselves when objects appear to 

malfunction, due to the lack of intuitive guidance that should be 

present in the design (Norman, 1988) [37].  

E. Errors and mistakes 

Norman (1983) [36] classified activity errors due to 

omission, or to taking the wrong action. A wrong action may be 

either a slip or a mistake. A mistake may be in situation 

perception or in deciding which action to take. However, 

following Bainbridge's observation about ironies of automation 

(1983) [1], Weiler & Harel (2011) [51] argue that judgment 

errors under stress are due to relying on irrelevant prior 

experience. 

F. Performance 

A common measure of the system value is in terms of 

performance. Typically, the meaning of this term depends on 

the purpose and functions of the system. Ideally, it is associated 

with metrics such as throughput, bandwidth, power 

consumption, etc. However, the perceived performance is 

typically industry and domain-specific. In practice, it depends 

also on implicit factors, which are not tangible or testable. 

Often, the implicit factors are more significant than the 

measurable and testable factors. Typically, the term refers to the 

perceived efficiency, namely, how well the system performs.  

G. Operational Envelopes 

The limits of performance may be defined by the 

performance envelope. The performance envelope is an 
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extension of the concept of flight protection envelope. For 

example, the speed of an airplane is limited by the stall threat 

and the Mach number, and the altitude is limited by the Coffin 

Corner (Swatton, 2011) [48]. These conditions should be 

considered setting the performance goal. The performance 

envelope may be optimized by design supporting the seamless 

operation. 

The system utility may be derived from the performance of 

the primary functions, and by the limits imposed by the 

operational envelopes, as illustrated in the following figure: 

 

 

Figure 2: The role of operational envelopes 

Incidences of crossing the operational envelopes might result 

in productivity loss and user frustration. When the utility 

variable is safety or mission-critical, incidences sometimes 

might result in accidents.   

H. The Hidden Costs of Errors 

Typically, most incidences are latent, and therefore their 

costs are unknown. To measure the costs of errors, we need to 

capture the incidences of crossing the performance boundaries 

and to measure the costs of these incidences.  

Besides the costs of latent incidences, there are the indirect 

costs of the negative UX due to evident incidences, resulting in 

slowing down to avoid making more errors. 

I. Effect on the System Value 

The accumulated costs of crossing the performance envelope 

may be expressed by: 

Value = ꭍlife-cyclePerformance(t)dt -  Σlife-cycleCosts(Incidences) 

The accumulated effect of incidences on the operational 

utility is illustrated in the following figure: 

 

 

Figure 3: The effect of incidences on the operational utility 

II. THE ENVELOPE OF HUMAN PERFORMANCE 

The traditional view of performance is based on the wrong 

assumption that the operators may do their job perfectly. The 

human factors view of performance focuses on bottlenecks due 

to the limitations of the human operators, such as attention 

deficit, stress, when the attention demands are high, such as in 

uncertainty, or in multi-tasking (e.g. Wickens, 1992) [54]. 

A. Slips 

A slip is an instance of action not as intended. For example, 

the unintentional activation of the wrong control state, as was 

in the Torrey Canyon accident. 

B. Limited attention capacity 

The human attention capacity is limited. When under stress 

the operators are liable to err, even when they pay their full 

attention to the operation (Clark and Dukas, 2003) [8]. For 

example, under stress, the operators may focus on solving a 

problem suggested by a particular alarm, and miss indications 

about other critical problems. 

C. Situation awareness 

This concept is about the operator’s failure to perceive the 

system and environmental elements as expected, or to 

comprehend the significance of the situation perception. 

Situation awareness is critical for successful decision-making 

across a broad range of systems (Endsley, 1995) [13]. For 

example, Harel (2006) [18] explained that operational 

reliability and quality are critical for enforcing proper reaction 

to the alarms. 

D. Decision making 

Barriers to seamless operation include instances of confusion 

and hesitation of the operators, due to anxiety about potential 

loss. Often, the confusion is attributed in hindsight to the 

operator’s errors. Typically, we expect the operators to be 

rational. However, as prior studies demonstrated the meaning 

of the term rationality is vague (Harel, 2020) [22]. Rationality 

relies on the information that the operators perceive. However, 

the information that they receive is not stable and not objective. 

It is subjective and dynamic. 

E. Control confusion 

Control confusion is an instance of applying a wrong control 

due to similarity or proximity, as illustrated in the following 

figure: 

 

Fig. 4: Timer confusion 



 

 

This type of confusion applies to many consumer systems, 

such as home appliances: Laundry, drier, air conditioner, 

furnace, and oven. It also applied the many B-17 accidents in 

WW II. Control confusion may be resolved within the 

discipline of human-centered design (HCD), based on the 

concept proposed by Norman and Draper (1986) [38]. Often, 

control confusion may be resolved by redundancy analysis, 

according to the principle of Occam’s Razor. 

F. Mode confusion 

Mode confusion is an instance of activating a control in the 

wrong mode, resulting in an unintentional effect. Examples of 

critical mode confusion are of activating setup or maintenance 

features during functional operation. These errors are typical of 

daily problems using consumer and office products and are key 

to friendly fire accidents, as well as many other famous 

accidents. 

G. Extreme situations  

Bainbridge (1983) [1] observed that operators are likely to 

fail in the task of coping with rare situations. Hollnagel (2006) 

[29] suggested that system failure is often associated with 

operating in extreme conditions. In hindsight, investigators 

attribute the coordination problem to operator’s errors, 

assuming that the operators could have managed the 

exceptional situation.  

Most accidents may be attributed to human limitations to 

perform perfectly in extreme conditions, such as exceptional 

situations due to design mistakes and bugs. Therefore, a key 

design challenge is to ensure coordination by design. 

H. From theory to practice 

The theory of errors in the 3rd industrial revolution was 

developed based on learning from accidents. The focus was on 

understanding the sources of errors, attributing the errors to 

misbehavior of the operators.  

In the 4th industrial revolution, we focus on applying this 

understanding to engineering that compensates for the 

limitations of human performance. The envelope of human 

performance consists of potential errors. Most of the operator’s 

errors may be attributed to operational confusion, namely, 

failure to perceive the UI components as expected by the 

developers and to act according to their intentions. We may 

identify two forms of confusion: physical, such as control 

confusion, and logical, such as mode confusion. 

III. SOURCES OF ERRORS 

Errors are incidental. Weinberg (1971) [52] reported on 

typical subconscious design mistakes, due to egocentric 

programming, hampering the productivity of the computer 

users. Shneiderman (1980) [44] promoted the concept of 

empathic programming suggested by Weinberg and proposed a 

few principles for avoiding such design mistakes.  

A. Unexpected Events 

Errors are due to operating under risk in ways not predicted 

at design time (Taleb, 2007) [49]. Unexpected events are those 

not specified in the requirement documents, or not as intended. 

Examples include various modes of failure of critical 

components, operator’s unintentional or mistaken actions, 

software bugs, and design mistakes. They should be attributed 

to the operational conditions, rather than the trigger, as 

illustrated in the following figure: 

 

 

Figure 5: The trigger and the error 

B. Operational Risks 

Common operational failures are associated with at least four 

patterns of risks:  

 Performance-related risks: In normal operation, the values of each 

performance variable are expected to be in a specified range. 

Diversion from the range may often be regarded as a risk. 

 Situational risks: Situational changes due to unexpected events. 

The risky situations may be problems of inter-unit situation 

coordination, such as during situation synchronization. Many 

friendly fire accidents are due to inter-unit coordination failure.  

 Activity risks: Problems of activating controls while in the wrong 

situation. Many usability problems of productivity-critical systems 

and consumer products, due to enabling maintenance-only features 

in functional operation, are due to operating in the wrong situation. 

 Timing risks: In normal operation, each process and each event is 

expected to take some time, and the value is expected to be in a 

specified range. Diversion from the range may be regarded as a 

risk. 

C. Operating in exceptional situations 

A key hurdle to maximizing the system utility is the 

difficulties that the operators experience when the system is in 

exceptional situations (Zonnenshain & Harel, 2015) [58]. The 

reason for this is that regular training targets normal conditions. 

During normal operation, the operators encounter exceptional 

situations only occasionally, which is not sufficient for effective 

learning. Whenever they encounter an exceptional situation, 

they waste too much time trying to find their way around it. For 

example, informal studies on productivity in text editing 

indicate that about half of the time is wasted in recovery from 

errors. 

The means to avoid exceptional situations and to support 

exception management may be integrated into the model used 

in the system design. 

D. Terminological biasing 

Following Hollnagel (1983) [28] the model presented here 

assumes that the term “error” is an engineering bias, diverting 



 

 

the accountability for design mistakes, resulting in failure to 

assist in the collaboration with the operators. Harel, (2010) [20] 

suggested that “in attributing the incident to the trigger, instead 

of the situation, the system stakeholders typically become 

sloppy and careless about the design features that could have 

prevented the incident”. 

E. Engineering biasing 

According to Zonnenshain & Harel (2015) [58], the term 

“error” refers to activities of the responsible organization 

intended to divert the focus of investigations from the 

management to the operators. For example, Harel (2011) [21] 

analyzed various ways in which vendors of equipment for 

medical alarms infect the standards by diverting the 

accountability for failure to the operators. This observation 

implies that we need to balance the interests of the various 

stakeholders with those of the operators. Typically, the 

stakeholders react to accidents. If usability is of higher priority 

than the hidden interests of the stakeholders, then the design 

should be proactive, focusing on preventing failure. 

Failure is often attributed to latent defects, wear-out, 

unexpected environmental conditions, and improper usage 

(both accidental and malicious). Many developers are not aware 

of the risks of operating in exceptional situations. Therefore, 

they do not gain the education and resources required to 

mitigate these risks.  

F. Operational reliability 

Operational reliability is the system's capability to minimize 

the costs of operating in exceptional conditions. Operational 

reliability may be defined as “The ability of an apparatus, 

machine, or system to consistently perform its intended or 

required function or mission, on-demand and without 

degradation or failure” (Berard, 2013) [5].  

G. Operational complexity 

A primary hurdle to operational reliability is operational 

complexity. Following Weaver (1948) [50], complexity may be 

defined as the degree of difficulty in predicting the properties 

of a system if the properties of the system's parts are given. 

Sheard and Mostashari (2009) [42] categorized complexity as 

either structural, dynamic, or socio-political. The number of 

situations grows exponentially with the number of states. Most 

of them are exceptional.  

Many incidences of operational difficulties are due to 

inconsistent system response to events, such as the operator’s 

commands. Operational complexity is about possible 

confusion, and it applies also to very simple systems. 

Accordingly, we may define operational complexity in terms of 

the amount and variety of condition-dependent activities. 

Specifically, it may be defined in terms of conditional activity, 

such as the conditions for human-machine interaction or inter-

unit coordination. If the design enables various reactions to a 

specific event, depending on the operational scenario, then this 

event is error-prone, contributing to the complexity. Reducing 

operational complexity is critical for maximizing operational 

utility. 

H. The Costs of Late Integration 

The methodology of agile development advocates gradual, 

iterative, incremental system development. At each stage, we 

typically follow two phases: first, functional implementation, 

then, integration. The weak part of this methodology is the 

integration, in which many of the failure modes remain latent: 

many integration problems are detected and fixed at each cycle; 

yet, many critical problems are realized only after the 

deployment, namely, when it is too late. The challenge 

promoted here is to enforce error-free integration proactively, 

rather than reactively. 

IV. DESIGN CHALLENGES 

The article assumes the proactive version of Murphy’s Law, 

attributing operational problems to design defects, of enabling 

the operational problems. The article assumes a variant of 

Taleb’s Black Swan theory (2007) [49], illustrated in the 

following figure: 

 

 

Fig. 6: Operator’s errors are due to design mistakes 

The figure illustrates that failure attributed to the operators 

should rather be attributed to design mistakes. Most design 

mistakes are latent, waiting for the opportunity to emerge. Only 

those with costly results are observed and consequently 

attributed to operator errors. 

A. Usability 

Believing that it is the designer’s responsibility to reduce the 

costs of operation, Norman and Draper (1986) [38] explained 

that to avoid the loss, the system design should be user-

centered. Shneiderman (1986) [45] proposed eight golden rules 

for user interface design, based on principles of usability 

assurance. The quality of the system usability affects the 

operator’s productivity, system safety, and the experience of 

using consumer products. 

B. The proactive version of Murphy’s Law 

The article advocates the Human Factors (HF) version of 

Murphy’s Law: if the design enables the operators to fail, 

eventually they will. In particular, improper usage such as 

failure to handle situations with which the operators are not 

familiar should be attributed to design mistakes. Therefore, the 



 

 

article advocates a design goal of protecting the system from 

human errors. According to the proactive version of Murphy’s 

Law, it is the design’s responsibility to prevent situations in 

which the operators might fail (Harel, 2011) [21]. 

C. System Integration  

Prior studies indicate that HCD may prevent flaws in the user 

interface design, but not those in the system integration. Indeed, 

many accidents are due to the operator’s inability to detect, 

recognize, or identify situations in which not all units assume 

the same operational conditions. Examples of such accidents 

are Therac 25, Torrey Canyon, TMI, Bhopal, and many friendly 

fire accidents.  

D. Human-System Integration  

In many accidents, the coordination problem was between 

the operator and the technical system. The HCD view of these 

incidents is of the operator’s situation awareness, attributing the 

failure to the human operators. Human-System Integration 

(HSI) is a special sub-discipline of system integration, 

attributing coordination failure to the system design, rather than 

the operators. Accordingly, HSI engineering descends from 

systems engineering.  

E. Operational constraints 

According to the principles of cybernetics, to avoid failure, 

the system should control its behavior, similarly to animals 

(Wiener, 1948) [55]. This principle is key to endorsing HSI 

reliability. HSI reliability relies on operating according to rules. 

In 1972 Alain Colmerauer and Philippe Roussel developed 

Prolog, a rule-based computer language (Cohen, 2001) [9]. 

Shapiro (1983) [40] studies the using Prolog for algorithmic 

program debugging. Leveson (2004) [34] adopted the 

principles of cybernetics and proposed the System Theoretic 

Accident Method and Process (STAMP) paradigm, applying 

the principle of self-control in a hierarchy of system views. The 

Prolog language demonstrates the feasibility of the STAMP 

paradigm. Operational constraints are operational rules 

constraining the system operational (Harel & Zonneshain, 

2019) [25]. Typically, these constraints are scenario-dependent. 

F. Operational exceptions 

An exception is a situation intruding on the performance 

envelope. HSI exception extends the concept of software 

exceptions, introduced in the LISP programming language 

(Gabriel & Steele, 2008) [15]. The extension is in the structures 

of static, dynamic, or behavioral exceptions. The original 

software exception has two components: a probe in the 

program, and an exception handler. The probe is actuated when 

the program reaches this probe. In contrast, operational 

exceptions reside in the system situations and events. The 

exceptional situations are handled by scanning the situational 

constraints, and the exceptional events are handled at the event 

handling. Applying system thinking (Leveson, 2004) [34], HSI 

focuses on rare situations, and the HSI models focus on 

operational rules (Harel & Zonnenshain, 2019) [25]. 

G. Operational hazard control 

A hazard is a potential source of loss. Hazard control is used 

in industry to mitigate the risks of hazards. Operational hazard 

control is a method of hazard control focusing on HSI. It is 

inspired by methods of Statistical Process Control (SPC, 

Wheeler & Chambers, 1992) [53] and of Statistical Quality 

Control (SQC, Shewhart, 1931) [43]. Operational hazard 

control eliminates the risks of exceptional events and of 

operating in exceptional situations.  

H. Operational resilience 

According to the INCOSE Resilient Systems Working Group 

(RSWG), resilience is “the ability to maintain required 

capability in the face of adversity”. Jackson and Ferris (2013) 

[31] presented principles for assessing and improving the 

resilience of engineered systems across their life cycle. 

Operational resilience is about HSI factors in resilience 

assurance (Zonnenshain & Harel, 2015) [58]. 

For example, we may explore various collaboration options 

in a minimal system, consisting of a simple engine with two 

states: On and Off, operated by a switch with states: On and 

Off. The functional option is complicated when the operator is 

required to support early detection and identification of 

malfunction. How will the operators know about instances of 

malfunction? How will they know if the problem is with the 

engine or with the switch? How will they identify problems in 

the connections? How will they know when the engine starts 

too slowly?  

V. MODELING 

Scientific findings are documented in models, obtained in 

frameworks of meta-models of information behavior (Wilson, 

1999) [56]. For example, Following Fuhs's (2008) [14] 

description of hybrid vehicles, Boy (2012) [6] suggested 

modeling the system operation in the form of orchestrating 

human-centered design.  

Models enable participation by diverse SMEs. Model-based 

engineering enables agile development of complicated systems. 

For example, Harel (1999) [17] demonstrated a model-based 

approach to usability testing, by capturing and analysis of 

instances of difficulties in using Windows applications. Also, 

Harel et al. (2008) [24] demonstrated a model-based method for 

automated analysis of website navigation based on usage 

statistics. Through simulation, models provide a gradual, 

seamless, reliable, modular transition from requirements to the 

implementation of digital twins and the final system. 

A. Model-based system integration (MBSI) 

The methodology of model-based engineering is inspired by 

a similar methodology of rapid prototyping, developed in the 

framework of software engineering in the 70s (Grimm, 1998) 

[16].   

MBSI is the modern systems engineering version of software 

prototyping, a concept explored in the 80s Model-based system 

integration (MBSI) enables early integration by simulation, 

resulting in shortening the integration phase and reducing the 

development costs. (Luqi, 1989) [35]. MBSI may consist of 

https://www.sebokwiki.org/wiki/Life_Cycle_(glossary)


 

 

project-specific, functional features, as well as universal 

features applicable to maintenance, resilience, training, etc. The 

universal features may apply to various domains and industries.   

B. Model-based HSI 

Model-based HSI (MBHSI) is part of model-based 

engineering, focusing on the integration between the system 

and its operators. Model-based design enables seamless 

adaptation to design changes. Rule-based models enforce 

mitigating the risk of operational complexity. Model-based HSI 

facilitates the implementation of the HSI part of the digital twin 

(Barricelli et al., 2019) [3]. 

C. The operator’s view 

Jacobson (1987) [32] described a technique used at Ericson 

to capture and specify system requirements based on use cases. 

Today this technique is part of the Universal Meta Language 

(UML), commonly used in software design. The concept of use 

cases was migrated to systems engineering, in the framework 

of System Meta Language (SysML). They are key to describing 

the designer’s view of the system behavior, required to support 

Model-based Systems Engineering (MBSE). The operator’s 

view of the use cases is called usage scenarios (Spool, 2014) 

[47].  

The model may be described by an HSI Meta Language 

(HSIML), namely, a meta-language used for the HSI design.  

D. Modeling the system operation 

Hollnagel (2006) [29] proposed two ways for modeling the 

system operation. The proactive approach is about how to 

describe normal behavior, and the reactive approach is about 

how to describe extreme events. HSI modeling focuses on 

universal methodologies of rule-based design, for the sake of 

reducing the operational complexity. According to the 

proactive approach to failure, the system design should support 

the operation also in extreme conditions. HSI modeling is a 

hybrid approach, in which we define normal behavior 

proactively, and we apply learning from failure. The orchestra 

illustration is proactive-oriented. The reactive part is by 

serendipitous learning from incidences (e.g. Copeland, 2020) 

[10].   

E. Evidence-based modeling 

Modeling may be based on the gradual abstraction of 

incidences and solutions. An incidence is an instance of 

crossing the limits of the performance envelope. The reactive 

part in HSI modeling is by cross-domain learning from 

incidences.  

The first stage in the modeling is to create a bank of generic 

failure modes, based on failure analysis. Incidence modeling 

may be based on four types of evidence: anecdotal, statistical, 

causal, and expert evidence (Hornikx, 2018) [30]. By its nature, 

anecdotal evidence is subject to systematic deviation from the 

norm and/or rationality in judgment (Haselton et al. 2005) [26]. 

The expert investigation is also biased: Drury et al. (2002) [12] 

found that during the investigation stage the number of facts 

considered grows, but then decreases at the reporting stage. 

They conclude that the incident reports may not consider all 

causal factors. In HSI reliability studies, these biases need 

special attention.  

F. Learning from accidents 

The method applied in this study is a variant of Soft System 

Methodology (SSM), which is critical system thinking, in 

generating patterns of system resilience (Checkland, 2001) [7], 

which is in the domain of Concept-Knowledge (C-K) theory 

employed in the design of social systems (Hatchuel et al., 2011) 

[27]. The goal is to identify patterns of failure and to assign 

methods employed in various industries. The methodology for 

pattern generation is based on the abstraction of the system 

elements and activity and matching abstracted elements of 

various incidences. This is illustrated in the following figure: 

 

 

Fig. 7: Modeling the operation control 

G. Application to daily incidences 

The methodology of learning from incidents does not apply 

to daily incidences, which are typically latent. However, 

analysis of the models obtained for accident description 

indicates that they may apply also to daily incidences. For 

example, by analysis of many accidents, we obtain a model of 

system failure due to activating maintenance-only features 

while in functional operation. Evidently, this kind of failure 

applies also to daily incidences in operating office applications 

and operating consumer products. The implication is also the 

same: in the design of any system, we should always apply 

many of the models obtained by accident analysis, such as 

constraining maintenance-only features to operate in 

maintenance scenarios only. 

H. Model-based investigation 

The following figure illustrates a way to document failure 

analysis when applied to the TMI accident: 

 



 

 

 

Fig. 8: Event flow in accident investigation 

The second stage is modeling. We accumulated evidence 

from other systems with similar problems. For example, there 

are several types of appliances that share the same redundant 

Delay feature. 

I. Sampling 

A preliminary version of the model was developed earlier by 

Zonnenshain & Harel (2015) [58]. These corresponding rules 

were defined by analysis of 67 incidences, as patterns of typical 

system activity involved in the incidence. The present study 

repeated the analysis of these incidences, based on knowledge 

gained by analysis of additional case studies.  

The study was based on 67 case studies reported elsewhere. 

The case studies are of three categories. Most of them are well-

documented accidents. Others are anecdotal incidences due to 

minor flaws, reported by members of working groups on 

resilience assurance. Few case studies are of recurring, low-cost 

incidences. 

An example of a case study is of the Three Miles Island 

accident, presenting two modes of failure of safety features:  

 The backup pump was disabled during power generation 

 PORV did not close after pressure release, backup 

pressure release was not provided. 

J. Model development  

The model of operation control was developed gradually. An 

initial set of 11 patterns was proposed in 2008 in a working 

group on risk management of the Israeli chapter of INCOSE. 

After going through a bunch of failure modes, proposed by the 

workshop participants, we may come up with a simple model 

of system failure such as the one depicted in the following 

figure: 

 

 

Fig. 09: Basic situation transitions 

The operational rules may be developed gradually as 

incidences of new domains are added to the sample. Each cycle 

includes the following activities: 

 Behavior abstraction. This activity is the outcome of the 

incidence analysis. The goal of behavior abstraction is to 

transform domain-specific terms into universal, cross-

domain terms. The abstract version of a specific incidence 

is an incidence model. 

 Model matching. The objective of model matching is to 

identify common failure modes, namely, patterns of 

activities leading to incidences.  

 Protection evaluation. The goal of protection evaluation 

is to detect and evaluate design features that may enhance 

reliability, namely, that may cope with the failure mode. 

Typically, this activity is serendipitous. 

K. Preliminary results 

Finally, we had a validation test of the patterns. Matched the 

patterns with each of the incidences in our sample, and we 

obtained a pie chart representing the power of the test, as 

follows: 

 

 

Fig. 10: Distribution of the effects of the 2015 model 

For 96% of the incidences, we matched at least one pattern 

from our collection. This was in 2015. Today our models are 

much more elaborated. 

VI. RULE-BASED OPERATION CONTROL 

Root-cause analysis of operator errors indicates that often 

they result from an uncoordinated activity, due to overriding 

interaction rules. Often, the reason for this is that the rules are 



 

 

not stated explicitly in the requirements documents. A key 

design goal is to enforce operating according to the rules. 

A. A generic model of operation control 

Then we established a dedicated working group on system 

resilience, in which we examined the various failure modes 

found in 67 incidences. The outcome of this examination was a 

comprehensive model of system resilience. The model was 

reported in the 2015 INCOSE conference (Zonnenshain & 

Harel, 2015) [58]. An updated version of this model is 

demonstrated in the following figure. 

 

 

Fig. 11: A model of exception management 

Based on this model, we examined a pattern of failure modes 

of activating a maintenance-only feature in functional 

operation, as described above. We looked at common methods 

for protecting from incidences employed in the industry and we 

came up with two approaches: a. disabling the activation of 

maintenance-only features during functional operation, and b. 

warning about such instances. This defines two patterns of 

preventing such mishaps, defined as operational rules.  

B. HSI scenarios 

HSI scenarios are the HSI view of use cases/ usage scenarios. 

They are used for both design and testing. Operational 

complexity may be reduced by assigning the activity to 

scenarios.  

Scenario-based design enforces the coordination between the 

system elements and enables enforcing operation by the rules. 

It is essential to enabling seamless, carefree operation. 

Scenario-based modeling (SBM) is a procedure of activity 

design, in which the system activity is expressed in terms of 

operational scenarios. The objective of SBM is to support the 

design of seamless, robust, coordinated interaction by the rules. 

Trackers should be developed and integrated into systems, to 

enable evaluation of the effectiveness of this methodology. 

C. Formalizing the operation control 

Recently, Harel (2021) [23] has proposed a universal model 

of error-free system integration, consisting of seven layers of 

generic mini models (GMMs). The universal model was 

developed in two stages: first, defining the GMMs, and then 

organizing them in a structure. 

The structure definition was based on an analysis of the 

relationships between various entities that define the system 

behavior: functions, units, risks, states, events, reactions, and 

resilience. A prototype of a universal HSI model presented here 

consists of seven layers of GMMs as illustrated in the following 

figure:   

 

Fig. 12: GMMs in layers of data definition 

The universal HSI model highlights the role of situational 

exceptions, as well as the role of scenarios, which should reduce 

operational complexity by information hiding, in support of 

direct mapping from intention to action. 

A structural layer. This layer includes a breakdown of the 

system elements, including human agents (users, operators, 

artificial agents (processes, tools …), and subsystems. The 

system is socio-technical, in which the operators are part of the 

system, but the users are external. The subsystems are coupled 

strongly with the operators, and loosely with the users. 

A functional layer. This layer includes descriptions of the 

operational context and features required to accomplish an 

operator’s task, intended to maximize the system utility.   

A situational layer. This layer contains representations of 

the operational situations. The design goal is to notify the 

operators about the system operating in exceptional situations. 

The core of the static model is an abstraction of the system 

situations, with a focus on exceptional situations.  
An activity layer. This layer includes representations of the 

system dynamics. The design goal is to alert the operators about 

transitions from normal to exceptional situations. The core of 

the dynamic model is an abstraction of the system events, with 

a focus on unexpected events. 

A behavioral layer. This layer includes definitions of the 

responses to events in various conditions. The design goal is to 

mitigate the risks of wrong responses to events. The core of the 

behavioral layer is an abstraction of typical system responses to 

exceptional events, with a focus on risk reduction. The focus is 

on assisting the operators in responding to rebound messages, 

in perceiving properly the risks associated with the alarms, and 

in troubleshooting. 
A resilience layer. This layer includes representations of 

safety backups. The design goal is to mitigate the risks of 

operating with backup features missing or unavailable. The core 

of the resilience model is an abstraction of secondary risks due 

to the failure of safety features.  



 

 

D. Implications to error-proofing  

An error-proof design may include sensors of the engine and 

switch states, and an indication when the states are not 

compatible with each other. In addition, the design may include 

an indication of these states, to facilitate the troubleshooting. 

The sensors may also be used to notify on problems of starting 

or stopping the engine too fast or too slowly. The following 

figure illustrates the inter-state transitions as system variables.  

 

 

Fig. 13: Inter-unit state transitions 

E. Scenario models  

A scenario model is a structure used to describe relationships, 

such as hierarchy and transitions between scenarios. It is the 

baseline for informal, normative, human-oriented, task-driven 

interaction design, as well as for disciplined system-oriented 

activity design. Often, it is a bundle of tree structures of 

scenarios associated with various system components.  

The description may be similar to state charts. Typical top-

level scenarios of the system-level tree structure are generic, 

primary scenarios, such as installation, initial setting, functional 

operation, initial training, advanced training, maintenance, 

testing, and problem-solving. Typically, the problem-solving 

scenario may break down into generic sub scenarios, such as: 

under hazard, under alarm, troubleshooting, safe-mode 

operation, resetting, recovery, and reporting. Further down, the 

“under alarm” scenario may be broken down into sub scenarios 

such as low risk, high risk, and emergency. 

Often, the lower levels are mostly domain-specific. For 

example, the functional scenario of a commercial airplane may 

own three primary sub scenarios: takeoff, navigation, and 

landing. Further down the tree, the navigation scenario may 

own two sub-scenarios: manual navigation and automatic 

navigation. The bottom level may comprise project-specific 

scenarios. 

Component-level scenarios may be described by simple state 

trees, representing states about availability, reliability, 

activation, performance level, etc. 

Scenario models may serve as a common vocabulary and a 

guide to system development. They simplify the definition of 

human-centered normative behavior, as well as features for 

enabling robust, carefree interaction. 

The definition of scenario models may involve the 

participation of customer, operator, and user representatives. 

F. Normative interaction models 

The goal of normative models is to envision how the system 

may be operated in normal scenarios. An interaction model is a 

presentation of the operation of primary tasks in terms of the 

scenario model. The modeling is based on participatory 

exploration by users and operators, by soliciting, analyzing, and 

elaborating stories about optional operational episodes and 

design alternatives.  

The exploration may be employed using light, sketchy, agile 

simulation of the system operation. The simulation may have 

various forms, such as narratives, animation, role-play, board 

games, drama, or computer programs. The simulation may 

employ various media, such as text, storyboards, video 

mockups, scripted, emulated, or real prototypes, or virtual 

reality.  

G. Application to UI design 

The root cause for many operator errors, such as in using 

consumer products, is due to erroneous activation of a feature 

that should be available in different scenarios. For example, a 

prominent problem in operating home appliances is the 

unintentional activation of setting features. This failure mode is 

the source of several famous accidents, such as the B-17 

accidents due to control substitution in WW II, and the Torrey 

Canyon supertanker crash in 1967. 

The scenario model may serve for designing the screens and 

panels, to prevent erroneous activation of features that do not 

comply with the active scenario.  

H. Model realization  

Coordination failure is often due to scenario ambiguity, in 

which different system elements assume different scenarios. 

For example, the friendly fire accident in Afghanistan (2001) is 

due to inconsistent assumptions about the operational scenario. 

Also, in other friendly fire accidents the fire support unit 

assumed a wrong phase of the fire plan. To enforce inter-

element coordination, the design should include declaration and 

realization of the active scenario, to which all the relevant 

system elements should refer. 

I. Situational models 

A situational model is an expression of the system situation 

in various scenarios. The system situation may be defined in 

terms of the states of system elements, such as units, agents, 

components, variables, procedures, and interaction options. In 

a situational model, these are associated with scenarios. We 

may refer to these situations as the situational scope of the 

scenario.  

A simple illustration of a situational model is an elementary 

system containing a device that may be On or Off, and a switch 

with two states used to control the device. The functional 

scenario of the situational model may comprise two sub 

scenarios of normal operation: 

 Operative: both the device and the switch are On 

 Idle: both the device and the switch are Off. 

Another example, illustrating the need for situational 

modeling, is demonstrated by the accident involved in operating 



 

 

Therac 25 radiotherapy equipment, which was operated in two 

normal functional scenarios: 

 X-ray testing: obtained by high current, moderated 

electron beam 

 E-beam treatment: obtained by low current, full 

electron beam 

The accident was due to operating in an exceptional situation, 

of high current, full electron beam. 

Other combinations of the device and switch states are out of 

the scope of the functional scenario and are regarded as 

exceptional. The Torrey Canyon supertanker loss of control 

accident (LOCA) demonstrates the need to impose operation 

based on situational models. In this supertanker, the navigation 

control lever had three positions: manual, automated, and 

special position, disconnecting the rudder from the wheel. The 

special position was intended for use in maintenance only. The 

LOCA resulted from the accidental selection of the special 

position while on board. 

Continuous variables may be associated with scenarios by 

their distribution functions. For example, the available disk 

space of a computer may be either normal or critical. 

Accordingly, the situational model of the computer disk space 

may own two scenarios. 

Thresholds of any continuous variable, such as container 

temperature, may define various performance scenarios, such 

as normal, low risk, and high risk. The Bhopal disaster 

demonstrates the need to enforce operations based on 

situational models of continuous variables. 

Continuous variables may also represent scenarios about 

external, contextual, or environmental situations, such as 

ambient humidity, as well as about time measurements of 

repeating activities. 

J. Situational rules  

Situational models enable structuring a framework of 

operational rules. According to the principles of cybernetics, 

adopted for the STAMP paradigm, systems should operate 

according to rules. Many incidences may be attributed to 

ambiguous, implicit operational rules. For example, the rules 

defining the properness of the operation of the elementary 

system are derived from the situational models of the Operative 

and Idle scenarios. If these rules are implicit, then the system 

might not detect exceptional situations, such as when the switch 

is Off and the device is On.  

Situational rules may consist of conditions and reactions. The 

conditions may be expressed as boolean expressions of states. 

The reaction may be preventive, by enforcing a proper 

operation, or defensive, for example, by rebounding or 

notifying the operators about the rule violation. The reaction 

part may reflect our prediction of the costs of the reaction 

options.  

Situational rules are attributes of scenarios. Examples of 

situational rules are: 

 In functional computer operation, when the available 

disk space is critically low, the system should advise 

the operator to clean it. 

 In the production of dangerous materials, when the 

container temperature is higher than a safety threshold, 

the system should notify the operators and enforce 

safe-mode operation. 

Examples of generic rules: 

 When in a functional scenario, risky features should be 

disabled. The need for imposing this rule is 

demonstrated by the Torrey Canyon and the friendly 

fire accident in Afghanistan, and many others. 

 During the operation of safety-critical scenarios, 

safety backup features should always be available and 

enabled. The TMI accident (1979) demonstrates the 

risks of erroneous disabling of the backup pump. 

Typically, the definition of situational rules is in the scope of 

systems engineering. The validation of the situational rules may 

be based on faking exceptional situations and evaluating the 

HSI reaction to the faked situations. 

K. Rule-based exceptional handling 

A situation is regarded as exceptional if it does not comply 

with the rules applicable to the active scenario. The best design 

strategy to enforce compliance with the rules is by disabling or 

avoiding exceptional situations. Method for avoiding 

exceptions include rebounding from errors or providing the 

operator with a forecast of the effect of optional events. 

Exception handling is required when we cannot prevent the 

exception, in cases when the exception is due to an external 

hazard, a hardware fault, a power failure, or a communication 

interrupt, or a design or implementation mistake. The design 

should provide means to accommodate them, by notifying the 

operators about operating in high-risk situations, by prompting 

the operators to take action, and by guiding them in the recovery 

procedure. 

L. Unexpected situations 

The situational model includes only part of the situations, 

those included in the situation scope of the scenarios. Most of 

the situations are not included in the scope of any of the 

scenarios. For example, in the elementary system described 

earlier, only two of the four combinations are expected. 

Similarly, in the Therac 25 example, only two of the four 

combinations of current- electron beam are expected. In 

hindsight, we know that the Therac 25 accidents are due to 

operating the system in a mixed mode of high current and full 

electron beam, which is not in the situational scope of X-ray 

testing scenario, nor of the E-beam treatment scenario. These 

situations are unexpected, and their root may be in mistakes in 

the definition of the situational rules, or due to bugs. 

The challenge is of handling unexpected situations: the 

system design should prevent them, and notify the operators 

about operating in such situations. Special safe-mode 

procedures may be designed to handle them.  

M. Activity models 

The system activity may be defined in terms of the system 

reaction to events. Typically, the reaction depends on the 

operational conditions, which are defined by the system 

situation and by external conditions. An activity model is a 



 

 

description of the activities constrained by scenarios. It may be 

expressed in terms of activity rules.  

N. Activity rules 

The activity rules define the reaction to events in terms of 

scenarios. An activity rule may describe normal interaction or 

ways to prevent diversion from normal to exceptional 

situations. Interaction rules define optional responses to an 

event, in a particular situation, depending on the scenario. 

Examples of preventive rules are. 

 Safety features should not be disabled while in a 

high-risk scenario. 

 Transition to a functional scenario should be avoided 

when any of the safety features are disabled. 

Typically, the definition of activity rules is in the scope of 

systems engineering.  

O. Protective rules 

Protective rules may be derived from situational rules by 

examination of the possible transitions from normal situations 

to exceptional situations.  

For example, examine the situational rule about the 

availability of safety features during safety-critical functional 

scenarios. Depending on the costs of automated suspension of 

the functional operation, the system may either suspend the 

functional operation or notify the operators about the risks of 

operating without the safety feature. Protective rules derived 

from this situational rule are:  

 The system should prevent or warn the operators about 

disabling the safety feature while in a functional 

scenario 

 The system should prevent scenario transition from 

maintenance to functional when the safety feature is 

disabled. 

The validation of the protection rules may be based on faking 

exceptional situations or events. 

P. Activity protocols 

The activity rules may be formalized in terms of protocols of 

event response. The responses to events may include changing 

the operational scenario. The activity model may include 

special protocols for handling the operator’s control. For 

example, a protocol for responding to disabling a safety feature 

in a functional scenario may consist of two steps: 

1. Rebounding: prompting the operators to regret or to 

confirm their intention  

2. Switching to a safe scenario, such as maintenance, 

idle, safe-mode, or shutting down. 

Q. Transition synchronization 

Following a request to change the active scenario, the system 

needs to activate the situational rules that apply to the new 

scenario. By definition, changing a situational rule of a scenario 

involves changing the state of at least one system state machine. 

Changing the state of a system element may be time-

consuming. The Therac 25 accident demonstrates a challenge 

of responding gracefully to synchronization delays, and of 

suspending the operation until the scenario transition is 

complete. 

Transient scenarios define the system response to events 

during the transition. During a transient scenario, the system 

may operate in a special sync mode. The design should include 

special features for enforcing graceful synchronization, such as 

disabling risky activity, notifying the operators while in 

synchronization, warning the operators in case of failure, and 

handling the recovery. 

While in a transient scenario, the system may operate in a 

special transition mode. The operation in the transition mode 

may be initially automated, by default. If applicable, the 

operators may have an option to override the automated 

behavior.  

R. Transition models 

A transition model is a description of the procedure for 

changing the situational rules during the scenario transition. 

Transition models may describe ways to capture and notify on 

exceptions and escape procedures, in response to exceptions.  

The transition model may include a special transient 

scenario, representing the operation until the new scenario is 

synchronized, and a special escape scenario, representing the 

case of transition failure. The operators need to know about 

such cases, and the system should provide an exception warning 

when the situation does not comply with the new constraints. 

The transition model may include special features for enforcing 

graceful delay or failure, such as disabling risky activity and 

notifying the operators while in the transient scenario.  

A generic synchronization model may be expressed using a 

standard protocol, including:  

 A transition request, pointing at the target scenario and 

setting a sync time out limit 

 Activating processes aimed at applying the rules 

associated with the target scenario 

 Waiting until the situation complies with the rules of 

the target scenario. While waiting, the system should 

indicate that the system is in a transient scenario 

 After complying with the rules of the target scenario, 

it becomes the active scenario 

 In case of reaching the timeout limit, provide a 

warning message, and initiate a recovery procedure.  

S. Transient timeout adjustment 

An initial value of the sync timeout may be defined in the 

transition specification, but this value might not fit all 

circumstances. The design may provide means for measuring 

the actual transition time, and for adjusting the timeout for each 

of the transitions, based on statistics of the measurements. The 

adjustment may be automated or manual. 

T. Recovery models 

A generic recovery model may be expressed using a standard 

protocol, including:  

 Notifying the operators about the transition failure, 

prompting to recover the situation before the transition 

request 

 Notifying the operators about the recovery results 

 Enter a special safe-mode operation. 



 

 

VII. ENGINEERING 

As discussed by Harel & Zonnenshain (2019) [25] the 

engineering of HSI is based on defining operational rules, 

which define exceptions by exclusion from normal behavior. 

A. Human-centered Design 

 This is the common practice today for preventing human 

errors. For example, a common practice for preventing 

unintentional mode setting is by impeding the transition, as 

illustrated in the following figure: 

 

Fig. 14: Preventing slips 

The article proposes to resolve this kind of problem by 

scenario-based design and testing.  

B. Beyond HCD 

By focusing on performance, engineers overlook usability 

limitations due to flaws in the system integration. The following 

figure illustrates the role of HSI design, and the added-value of 

HSI design, concerning HCD.   

 

 

Fig. 15: Beyond HCD 

The article suggests that the challenges of inter-unit 

coordination and mode errors are not in the scope of HCD. It is 

the responsibility of the HSID practitioners (systems engineer 

and/or the safety engineer) to select the proper patterns, and it 

is the responsibility of the HCD practitioner to design the 

warning messages, the rebound feedback, and the notifications 

to the operators.  

C. Extending the Exception Handling 

If the exception is expected, the system may respond 

automatically by rebounding, with or without prompting the 

operator to confirm the response. Otherwise, the system should 

notify the operators about the exception, and support 

troubleshooting procedures by proposing potential sources, 

obtained by Hazard – Effect simulation. 

To protect from exceptions, we need to define them formally. 

The rules may be applied to a particular project by parameter 

customization. The customized model may serve as a digital 

twin, which is a simulated prototype of the system. The digital 

twin may support agile development by gradual system 

development. 

D. Risk indicators 

The system may record the transition delays and generate 

distribution functions for these delays. The system design may 

make use of the distribution parameters, and include 

identification of extreme values, as well as extra means for 

alarming and emergency shut-down. The following figure 

illustrates how the design may define exceptional delays, and 

how the system may respond to exceptions: 

 

 

Fig. 16: Discretizing the system variables 

In the example, the threshold of sigma may be used for 

alarming, and the threshold of two-sigma may be used for safe-

mode operation, such as emergency shut down. 

E. HSI statecharts 

SysML offers a simplified version of UML state charts for 

graphical representation of state transitions. This kind of 

representation is not adequate for modeling the interaction 

between state machines. The problem is that events designed 

using SysML statecharts are error-prone. The HSI version of 

statecharts supports describing various attributes of mutual 

effects between state machines, as well as enforcing error-free 

state transitions.  

F. Evaluation 

For evaluating the model, we may employ the Layer Of 

Protection Analysis (LOPA) technique, commonly used in the 

process industry for assessing the protection needs. The 

evaluation is based on testing the effects of protection layers 

and calculating the potential risks (Baybutt, 2002) [4]. 

G. Infrastructure 

Utility-critical systems should incorporate means, including 

sensors, trackers, recorders, and analyzers, for informing the 



 

 

operators and the developers about the time they could save. 

The infrastructure for model-based HSI may include special 

means intended to save the time wasted in handling exceptional 

situations. The means to avoid exceptional situations and to 

support exception management may be integrated into the 

model used to design the HSI. For example, they may include 

model interpreters that enable customizing the model transition 

to software units. 

H. Data analytics 

Tracking tools enable capturing and measuring the costs of 

daily, low-cost events (Harel, 1999) [17]. Harel et al. (2008) 

[24] demonstrated a way to apply data analytics in automated 

usability testing, and Harel (2009) [19] demonstrated that data 

analytics may be used to identify problem indicators. Universal 

tracking is crucial also for enabling learning from rare events.  

I. Digital twins 

A digital twin is an executable virtual model of a physical 

thing or system (Wright & Davidson, 2020) [57]. The concept 

of digital twins is based on the concept of virtual prototyping, 

dated in the 80s, in which a model was used to replace system 

units by emulation. This feature enables early integration, by 

using virtual units instead of the real components that are not 

ready yet for the integration. This feature was recently adopted 

for systems engineering in the form of digital twins.  

J. Simulation 

The transition from the customized model to a prototype 

and/or digital twin should be automated. The automation may 

be based on simulation of the orchestrated version of the 

system, using standard software packages that process the 

custom parameters. 

K. Applying the Digital Twins 

Once the rules are defined, we may establish a digital twin, 

namely, a virtual prototype, which emulates the system. Besides 

enabling gradual implementation and development, variants of 

the twin may provide operational information to the operators, 

facilitating the operators’ decision-making and troubleshooting 

in run-time.  

 

 

Figure 17: Applying the digital twins 

The figure illustrates that besides supporting gradual 

implementation by virtual prototyping (Schaaf & Thompson, 

1997) [41], the model may also be used for customizing generic 

digital twins, used to support operational tasks of predicting 

future situations, troubleshooting, and exception detection. 

L. Operation verification 

Digital twins enable to control the system operation 

according to the STAMP paradigm: post-deployment emulation 

enables detection of incidences by comparing the output of the 

emulated unit with that of the real unit, as depicted in the 

following figure: 

 

  

Fig. 18: Digital twins used for incidence detection 

Incidences are defined as instances of unexpected 

exceptions. The expected activity is obtained by emulation. The 

incidences are instances in which the emulated output is 

different from the actual output of the real units.  

M. Predicting performance variables 

Digital twins may be used for risk prediction based on 

measurements of performance variables, as the following figure 

illustrates: 

 

 

Figure 19: Predicting performance variables 

In this chart, t1 denotes the time of crossing the alarm limit, 

and t2 denotes the elapsed time. The dotted curve right of t2 

denotes the predicted values of the performance variable, 

obtained by a digital twin. 

N. Predicting the effect of option selection 

Digital twins may also help in option selection by predicting 



 

 

the changes in the performance variables in response to changes 

in the parameters that affect the performance, as illustrated in 

the following figure: 

 

 

Figure 20: Predicting the effect of parameter changes 

The left side of the figure represents part of the operator’s 

interface used to control the values of four parameters. The 

chart on the right side of the figure illustrates the predicted 

system behavior in response to changes in the parameters. The 

following figure illustrates one of the possible ways of applying 

the predictors to enable operation control: 

 

 

Figure 21: Controlling a performance variable 

The figure illustrates that following an alarm, the operators 

may manipulate the parameters by predicting the effect of 

changes, and eventually resume normal operation. 

O. Model-based troubleshooting 

Digital twins may be used for root cause analysis by a display 

of the potential effect of various faults in components or due to 

errors in system variables. The design goal is to shorten the 

troubleshooting by proposing to examine those sources that are 

most likely, based on the estimated effects on the performance 

variables. The method is by finding the possible cause with 

predicted effect with the best fit to the measurements. The 

following figure illustrates the effects of various sources, 

compared to the measurements. 

 

 

Figure 22: Troubleshooting by failure effect evaluation 

The figure illustrates the differences between the effects 

computed by the digital twins and the actual effect.  

P. Twin development 

Digital twins may be integrated into MBHSI, for seamless 

change validation according to the following figure: 

 

 

Fig. 23: The role of digital twins in model-based HSI 

Q. Customizing 

The seven-layer models are generic, applicable to various 

domains and industries. To adapt it to a particular project these 

models need customization. The customization process is 

according to the order above, as the definition of each model 

depends on that of the previous one. 

R. System Integration 

System integration is a multi-disciplinary activity, as 

illustrated in the following figure: 

 

 



 

 

 Figure 24: Error prevention in the system integration 

The dotted blocks represent topics of the infrastructure 

required to implement the proposed framework. 

S. Model development 

Models enable saving development costs by enforcing 

seamless adaptation to design changes. The models should be 

defined iteratively, each cycle is followed by evaluation. 

Typically, the evaluation ends up with a list of requirements for 

design changes, intended to reduce the operational complexity. 

The development might end when it is obvious that all known 

significant risks are removed. Criteria for ending the 

development may be based on the Safety Integrity Level (SIL) 

evaluation method commonly applied in the process industry 

(Redmill, 2000) [41]. 

T. Testability 

Testing rare events is challenging. To enable testing 

exceptions the system should incorporate a special tester unit 

that fakes various kinds of faults, in various conditions, that the 

testing team can customize. A special scenario should be 

defined, which is part of the operational conditions. 

U. Adjustability 

The setting of the alarm and safety thresholds of the various 

risk indicators is a delicate design goal, aiming to balance 

properly the rate of nuisance of the alarms. A special utility may 

enable inform the system administrators about the margins of 

alarms and safe-mode operation. 

VIII. CONCLUSIONS 

 

Primary barriers to maximizing the operational utility are 

limitations of operating in exceptional situations, typically 

attributed to errors, hampering the system’s usability. This 

study presents a framework of rule-based operation control, 

consisting of layers of GMMs. Principles of operation control 

are formulated as scenario-based rules and protocols for risk 

detection, recognition, and identification.  

The article explores various protection patterns, but certainly 

not for all possible design challenges. It may be interesting to 

explore operational rules for various specific tasks. 

Validation of the rules may be conducted by analysis of the 

activity obtained by trackers of the system performance, using 

statistical metrics, followed by traditional usability testing in 

the corresponding scenarios.  

General rules may be customized based on parameters 

defined initially by domain experts, and tuned by statistics of 

measurements of performance and risk variables.  
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