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Introduction
Since the second half of the 20th century integrated pest management (IPM) 
has been the alternative paradigm to chemically-intensive pest control systems.  
IPM seeks, in the foundations of the ecological sciences, the means to keep pest 
populations below the level at which they can cause economically significant 
crop losses.  To achieve this goal IPM taps a rich array of physical, cultural, 
and biological control methods conceived on the basis of an understanding 
of the principles of species, population, community, and ecosystems ecology.  
Chemical controls, within an IPM system, are used strictly as needed and in a 
way that minimizes any adverse environmental effects, particularly any negative 
impact on those biological methods of control. This collection reviews the latest 
research on optimizing IPM with a focus on management of insect pests. 

Part 1  Ecological foundations of IPM
Chapters in Part 1 review the foundations on which successful IPM programs 
need to be based. Chapter 1 reviews the continuing challenges and advances 
in identifying and quantifying pests. The chapter emphases the importance of 
taxonomic expertise and reference collections as well as the increasing role of 
bioinformatics. It discusses developments in quantifying pests and assessing 
their spatial distribution as a foundation for planning an IPM program. 

Once pests are identified, it is critical then to understand their life cycle 
and the environmental factors determining their development. A key tool 
here is phenology modeling. Chapter 2 reviews steps in model construction, 
including the major sources of error in phenology model development and 
implementation, as well the use of linear and non-linear approaches to modeling 
temperature-driven development data. The chapter includes an exemplary life 
cycle systems model for the spotted wing drosophila, Drosophila suzukii, a 
major fruit crop pest in the US and Europe, which provides a foundation for the 
development of IPM programs.

Effective IPM programs depend not just on understanding particular 
pests but the broader environment in which they interact with their hosts. 
Agroecology analyses the different components that make up an ecosystem 
such as soils, climate, plants and animals, and their interactions within agricultural 
landscapes. Chapter 3 explores agroecology and pest management practices, 
using the example of a particular agroecosystem: rice paddies in Japan. It 
discusses how an understanding of agroecosystem dynamics explains the 
limitations of early attempts at chemical pest control. It also shows how this 
understanding has informed the development of IPM strategies based on the 
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enhancement of biodiversity in paddy rice ecosystems. The chapter explores 
how agroecological concepts can help address challenges such as invasive 
species and climate change.

Complementing the previous chapter, Chapter 4 discusses the changes 
needed to achieve IPM programs based on agroecological principles. It 
highlights the need to shift focus from particular commodities to diversified 
landscapes and agroecosystems, from pest suppression to promotion of 
ecosystem services, from technological inputs to ecological knowledge 
and experience, and from management by individuals to management by 
organizations at the landscape scale. The chapter presents detailed case 
studies of effective IPM via agroecosystem management and looks ahead to 
future research trends in this area. Building on both Chapters 3 and 4, Chapter 5 
focuses on the particular and growing problems of invasive species. As the 
chapter points out, all biological invasions progress through similar stages of 
arrival, establishment, spread, and impact.  Understanding invasive species 
ecology makes it possible to improve preventative measures, develop rapid 
response systems as well as develop techniques for suppressing invasive pests 
and then rehabilitating agroecosystems. 

The interactions between plants and the arthropod herbivores that 
feed on them are intricate and multifaceted. Plant resistance results when a 
plant expresses traits that disrupt one or more aspects of a plant-arthropod 
interaction. Chapter 6 defines what we know about the fundamentals of plant 
resistance, outlining processes of resistance including host-plant selection 
and host-plant utilization. The chapter examines phenotypic plasticity in plant 
resistance, the mechanistic bases of plant resistance and tolerance and insect 
counter-defenses, as well as the genetic basis of plant resistance and its use in 
IPM. The chapter looks ahead to future research trends in this area.

Part 2  Cultural and physical methods in IPM
Chapters in Part 2 review cultural and physical tools available for use in IPM 
programs. Over the last sixty years, research involving the development 
and deployment of insect-resistant crop cultivars has led to significant 
crop improvements in the major food producing areas of the world. 
Chapter 7 provides a comprehensive review of the history, status, latest 
methods and challenges of breeding insect-resistant varieties as an ecological 
approach to managing crop pests, using the example of rice. The chapter 
assesses types and mechanisms of plant resistance and the various methods of 
screening for resistance traits based on  insect feeding behavior. It then looks at 
advances in molecular breeding techniques including emerging methods such 
as gene editing. The chapter also discusses potential constraints, interactions 
with other control methods such as cultural, biological and chemical controls.  
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Complementing the previous chapter, Chapter 8 provides a broad review of the 
application of genetically-engineered (GE) host plant resistance within an IPM 
context. Focusing on Bt crops, the chapter explores the basis of GE-based host 
resistance, its integration into IPM, and methods of resistance management. 
The chapter looks ahead to the future of GE in such areas as RNAi  and CRISPR/
Cas-based crops.

Chapter 9 broadens the scope by reviewing the range of biotechnology 
applications in pest management including pest diagnostic and genetic 
characterization of pests, molecular breeding for insect and disease resistance, 
genetically-engineered crops as well as the use of emerging genome-
editing approaches for pest management. These applications provide 
additional options in IPM programs and in turn help reduce pest damage 
and crop losses, decrease the use of toxic chemical pesticides, and enhance 
agricultural productivity, economic growth and global food security as well 
as improve environmental quality. The chapter also highlights policy issues 
including intellectual property rights, biosafety, regulatory, communication, 
and stewardship aspects surrounding the access, utilization, deployment and 
management of biotechnology tools in pest management programs.

Chapter 10 shifts the focus to developments in physical control methods in 
IPM. The evidence is mounting for pesticide failures on many fronts, including 
environmental contamination and pest resistance to chemical products. As an 
alternative, physical management methods are environmentally friendly, are 
not subject to the development of resistance, leave no residues, and require no 
complicated registration procedures. In this chapter, recent advances in physical 
control methods are reviewed, and how they are applied to both pre-harvest 
and post-harvest stages of production, notably for fresh fruits, vegetables and 
flowers. Pre-harvest techniques reviewed include soil solarization and mulches 
as well as barrier techniques such as screened greenhouses, floating row 
covers, insecticide-impregnated nets and leaf shredding. Post-harvest methods 
discussed include developments in pest exclusion, early detection, the use 
of thermal techniques and ionizing irradiation, as well as computer-assisted 
decision support tools. The chapter concludes by discussing the future of 
post-harvest phytosanitary measures, which includes the possibility of artificial 
intelligence coupled with affordable sensors. 

The final chapter in Part 2, Chapter 11, focuses on the incorporation of 
robotics and automation in IPM programs. Echoing some of the challenges 
highlighted in Chapter 1, it reviews ways of automatically detecting and 
identifying pests based on inputs such as vision and odor, including pheromone-
based insect detection systems. It also reviews the potential use of unmanned 
autonomous vehicles (UAVs) in such areas as soil sampling and delivery of 
insecticides or biocontrol agents.
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Part 3  Biological methods in IPM
Part 3 reviews the rich body of research on developing and enhancing biological 
methods of control in IPM programs. Chapter 12 reviews advances in classical 
biological control to support IPM in perennial crops. The chapter examines 
the key steps required in the development of a successful classical biological 
control program for managing invasive insect pests. These include identifying 
and sourcing natural enemies, evaluating host specificity and host range of 
natural enemies as well as planning release and establishment programs. The 
chapter includes a detailed case study of classical control of Asian citrus psyllid, 
Diaphorina citri, an invasive pest of California citrus

Chapter 13 reviews developments in conservation biological control 
and habitat management as key components of IPM programs.  There have 
been substantial advances in such areas as understanding insect ecology 
and agroecosystem dynamics at the landscape and regional scale. It looks at 
the way this understanding has been used to improve habitat management 
at both the farm and landscape scale in such areas as banker plants for mite 
management and soil habitat management to control pests whilst supporting 
beneficial insect species. 

Complementing the previous two chapters, Chapter 14 assesses advances 
in augmentative biological control in IPM. Augmentative biological control 
uses mass-reared natural enemies for releases in large numbers to reduce pest 
populations. The chapter describes the role of augmentative biological control 
in IPM, its advantages and disadvantages as well as when the technique is best 
deployed. It reviews the range of natural enemies commercially available and 
techniques for their mass production and release. It also includes examples of 
the successful use of augmentative control both to control sugarcane pests in 
Brazil and greenhouse pests in The Netherlands. 

As Chapter 15 points out, production in greenhouses, high tunnels and 
other protected environments is expanding worldwide to allow for more 
intensive and continual cultivation to mitigate the effects of climate change.  
IPM practices in greenhouses and high tunnels are unique and specific to the 
target pest, geographical location and crop. This chapter describes the process 
of scouting for both pests and beneficials in the greenhouse environment, 
before discussing plant-mediated IPM systems, including the use of trap, 
banker, habitat and guardian plants. It also discusses the use of biocontrol 
agents. Entomopathogenic fungi and UV light. The chapter includes case 
studies on IPM for greenhouse ornamentals in both developed countries (USA) 
and developing countries (Lebanon). 

Building on a theme in Chapter 15, Chapter 16 reviews the use of 
entomopathogenic fungi to control insect pests which has been expanding 
in recent years with improvements in formulation and more commercial 
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applications. The chapter summarizes what we know about the way 
entomopathogenic fungi work and the range of products available. It reviews 
ways of integrating the use of entomopathogenic fungi with other control 
measures, including combinations with lower doses of pesticides, as well as 
use alongside predators and parasitoids. entomopathogenic bacteria and 
nematodes as well as botanical extracts. The chapter also looks at ways of 
optimizing environmental conditions to support fungal activity against pests, 
the use of attractants and vectors to promote pest contact with fungi, as well 
as the potential use of endophytic entomopathogenic fungi in suboptimal 
conditions. The chapter includes case studies on the use of entomopathogenic 
fungi such as B. bassiana to control coffee berry borer and cotton aphid as well 
in greenhouse cultivation.

Chapter 17 addresses the use of entomopathogenic viruses such as 
baculoviruses in IPM programs. These are highly target pest-specific, have no 
detrimental side effects, are often as effective as chemical alternatives, and leave 
no detectable residues. The chapter discusses ways of using entomopathogenic 
viruses alongside other biocontrol measures such as parasitoids and predators, 
as well as how to overcome the challenges associated with their usage including  
slow speed of kill, a narrow host range, limited shelf life, cost and the possibility 
of resistance development. Three baculovirus biopesticide case studies are 
included to show the practical benefits of using baculoviruses in IPM systems. 

The final chapter in Part 3, Chapter 18, looks at advances in use 
of entomopathogenic nematodes in IPM. As the chapter points out, 
entomopathogenic nematodes in the genera Heterorhabditis and Steinernema 
are potent biological control agents that have been commercialized widely 
for control of economically important insect pests. This chapter describes the 
latest research on the foraging and infection behaviour of nematodes and the 
production, formulation, application technology and commercialization of 
entomopathogenic nematodes. The chapter considers the factors affecting the 
efficacy of nematodes in IPM and methods to improve their efficacy. Finally, the 
chapter looks ahead to future research trends in this area.

Part 4  Chemical methods in IPM
Part 4 explores the future of pesticides as part of IPM programs. Chapter 19 
discusses advances in pesticide formulation and use including the development 
of more selective pesticides, the importance of dose selection, timing of 
chemical pesticide treatments, and changes in pesticide application technology 
to improve targeting. The chapter also offers an overview of biopesticides 
such as baculoviruses and bacterial biopesticides, as well as the application of 
entomopathogenic nematodes, release of predators and parasitoids and the 
use of pheromones to complement pesticide use.
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Poorly-managed pesticide use can exacerbate pest problems by affecting 
the natural enemies that control pests. Chapter 20 reviews what we know 
about the ecological impacts of pesticides and the ways they can be mitigated, 
including a better understanding of pesticide resistance in natural enemies, 
mechanisms of pesticide toxicity and amounts of chemicals to apply. The 
chapter includes a detailed case study on optimising pesticide use as part of 
an overall IPM program to control the diamondback moth. 

As well as ecological and environmental damage, inappropriate use 
of pesticides can have serious effects on human health. Chapter 21 looks at 
developments in monitoring exposure to pesticides, including ways to collect 
data, and how to minimize human health risks related to their use. The chapter 
includes a case study on health risks from pesticides amongst smallholder 
farmers in the Republic of Benin. It shows that pesticide poisoning remains a 
significant problem in many low- and middle-income countries (LMICs).

Building on the previous chapters, Chapter 22 explores new research to 
develop more environmentally-friendly, selective insecticides and biocides 
for use in the production of food crops. As insect hormone neuropeptides 
govern almost all aspects of insect physiology and survival, neuropeptide-
based insecticides provide a promising solution. The chapter reviews the key 
steps in developing this new class of biopesticide, including neuropeptide 
profiling, neuropeptide families, peptide modifications,  synthetic chemistry 
and validation, as well as the assessment of peptide effects on insects.

Part 5 Implementation
The final part of the book looks at ways of implementing IPM programs in practice. 
Chapter 23 reviews advances in integrated management of nematode pests 
of crops. As the chapter points out, there is still limited research on the long-
term impact of IPM programs to combat nematodes. This particularly applies 
to major cereal (maize, wheat and rice) and leguminous (peanut, soybean 
and sunflower) crops on which this chapter focuses, and the economically 
most important nematode pests (root-knot, cyst and root-lesion nematodes) 
damaging such crops. The chapter summarizes what is known about the basic 
biology and morphology of nematodes as well as the effectiveness of the main 
control strategies (cultural, biological and chemical control and host plant 
resistance) used worldwide. A case study demonstrates ways of integrating 
multiple nematode control strategies. The chapter also discusses the novel 
use of transgenic crops with nematode resistance, challenges faced in terms 
of nematode management under changing environmental conditions and 
practices (focusing on minimal disturbance of soil and conservation of soil-
fauna communities), and the challenge posed by weeds as hosts of major 
nematode pests.
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As Chapter 24 highlights, plant feeding mites are major pests of agricultural 
crops and ornamentals. They disrupt physiological processes, change the 
physical appearance of the plant and transmit diseases to crops. This chapter 
takes a holistic approach to integrated mite management (IMM) by reviewing 
the basics of mite taxonomy and morphology and then studying key plant mite 
families, focusing on major plant feeding mite pests as well as natural predators 
that regulate these mite populations. 

A key aspect of implementing any pest management program is economic 
viability. Besides reducing health and ecological risks of pest control, IPM seeks 
to increase farm income. Economic constraints also act as barriers to adoption 
of IPM practices. An understanding of how IPM affects the farm ‘bottom line’ is 
crucial to efforts to encourage IPM. Chapter 25 discusses methods for estimating 
the economic impacts of IPM, devoting special attention to advances in 
statistical methods to account for sample selection bias in program evaluation. 
The chapter also discusses methods for estimating economic values of reduced 
environmental risks. Finally, the chapter examines the effectiveness of farmer 
field schools in promoting pest management knowledge, IPM adoption, and 
farm income and discusses ways to improve economic assessments of IPM 
programs.

The concluding chapter in the book reviews the future evolution of IPM. 
It identifies the ways modern agriculture has disrupted plant defences and 
the control of pests by their natural enemies. The chapter discusses ways of 
restoring and enhancing these controls both through breeding and the use 
of biological methods. It demonstrates how IPM can be taken to the next level 
of integration with a case study of a pome fruit IPM program in the Pacific 
Northwest of the United States.



Part 1
Ecological foundations of IPM
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1 �Introduction
The practice now termed ‘integrated pest management’ had its beginnings 
in the 1940s, during and just after the Second World War, when synthetic 
pesticides, particularly dichlorodiphenyltrichloroethane (DDT), first became 
commercially available. A miracle therapy, it countered the ravages of insect 
pests and before long was widely applied, among other places, to cotton 
fields in the Cañete Valley of southern Peru to control Helicoverpa zea (Boddie) 
(Lepidoptera: Noctuidae), referred to by various common names (e.g. the 
‘cotton  bollworm’ or ‘corn earworm’), a devastating pest that soon became 
resistant to the synthetic pesticide. The resistant population of H. zea began 
to flourish in agroecosystems where the pest’s natural enemies had been 
appreciably reduced and rendered ineffective by the synthetic chemical 
(Luckmann and Metcalf, 1994; Peshin et al., 2009). After a short time with 
drastically reduced harvests, a group of Peruvian entomologists, realizing the 
problem, convinced the government of Peru to pass legislation prohibiting the 
use of synthetic pesticides in the Cañete region. In fact, the only chemical control 
allowed there was the sparse and sporadic use of inorganic arsenic. Within a 
short period of time, the agroecosystem, particularly the natural enemies’ 
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component, rebounded, and cotton production again became economically 
viable. This was, as far as we are aware, the first instance of managing pests in 
an agricultural setting through the elimination of synthetic pesticides.

During the 1950s, entomologists, led by the late Ray F. Smith (Adkisson 
et al., 2001) of the University of California, Berkeley, laid the foundation for a new 
approach to pest control (Smith, 1969) by focusing theory, experimentation, 
and outreach on four components: (1) insects become resistant to synthetic 
pesticides (Kogan et al., 1999), (2) chemicals eliminate natural control agents 
(Newsom, 1967), (3) the environment and human health must be protected 
(President’s Science Advisory Committee, 1965), and (4) harvestable products 
must be profitable (Stern et al., 1959; Stern, 1965). Over the next several 
years, entomologists, in addition to the team led by Smith (including Rabb 
(1972), Newsom (1967, 1980), Adkisson (1969), Glass (Glass and Hoyte, 1972), 
and others), were instrumental in pushing the boundaries of the emerging 
concept. Since then, integration of management efforts based on advanced 
technologies and multiple pest assessments in multi-field and areawide venues 
(Koul et al., 2008) has led to a host of sophisticated approaches that will shape 
the discipline in the future. From the initial efforts in Cañete to the present, 
the concept of pest control has evolved into the ecological, economic, and 
sociological paradigm known as integrated pest management (IPM).

IPM has two primary audiences: the largest and most obvious encompasses 
those who implement IPM packages by following previously developed and 
accepted management guidelines—farmers, growers, producers, ranchers, 
nursery personnel, and pest management practitioners, scouts, and consultants, 
to name a few. The second comprises the team or teams of researchers, 
technocrats, modelers, engineers, and others who, individually and collectively, 
design, develop, assemble, and test the reliance of and confidence in IPM 
packages. It is the second audience that develops and constructs appropriate 
algorithms and provides critical background for validating IPM packages. 
This chapter is written for both audiences, although more space is devoted to 
supporting the latter.

Conceptually, an IPM program consists of three tiers of information: 
fundamental (perhaps more appropriately termed foundational), tactical, 
and operational (Irwin, 1999). This chapter, the first in a book focused on 
advances in IPM, explores two of the most foundational components of the 
IPM paradigm: (1) accurate identification of the pivotal species impacting 
the biological, economic, and social dynamics of the ecosystem under 
assessment and (2) measurement and evaluation of these influential species 
through time and space. The chapter emphasizes evolving principles of these 
two bedrock components of IPM, both pertinent to managing annual and 
perennial fruit, grain, vegetable, and greenhouse crops, and ornamentals. 
Even though the emphasis is placed on recently formulated and emerging 
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technologies and their current and future impacts on the two foundational 
IPM components covered here, a glimpse into the status quo is also provided 
as are insights into constraints imposed by the state of technology and by 
society at large.

2 �Detection and identification
Imagine a grower who has just inspected the family farm and found some 
strange-looking organisms that appear to be methodically devouring the 
crop. His/her initial instinct might be, ‘How do I rid the crop of this infestation?’ 
However, that first question should be, ‘What organism is it?’ That grower’s next 
concern should be, ‘Is it having a negative impact on the harvest and therefore 
on my earnings potential?’ Only after that the grower ought to decide if the 
target organism needs to be controlled and at what cost, both economically 
and environmentally. Addressing the question ‘What is it?’ is the subject of 
this section.

2.1 �Common names versus scientific names

The act of identifying a target organism, that is, determining the species name, 
is critical and is discussed below. Vernacular or ‘common’ names, often used in 
local settings, are easy to recall and can, to a limited degree, help in searching 
the internet, the literature, pamphlets, and other sources for the organism’s 
life history traits and its potential to do harm. A common name, however, is 
often far from unique to a species and a single species can have more than one 
common name. Information about a different organism with the same common 
name can lead to spurious, even misleading information and referring to only 
one of a number of common names for a species limits the information that can 
be uncovered.

According to the Linnaean system of binomial nomenclature (herein 
termed ‘Latin binomial’), a species name is composed of two components, both 
italicized: (1) a genus name, capitalized, followed by (2) a specific epithet, not 
capitalized. For example, Helicoverpa zea is the scientific name of the species 
commonly known as the cotton bollworm or the corn earworm (Helicoverpa 
is the genus name and zea is the specific epithet). In formal writing, scientific 
names are often followed by the last name of the person who originally 
described the species and, occasionally, the year the original description was 
published. This system, used throughout the world, provides species with a 
truly unique identity.1

1 �Cases arise when the same name is ascribed to a different species, but when this happens, the two names are termed 
the senior (first named) and junior (last named) homonyms; this occurs rarely and the species bearing the junior 
homonym must be given a different binomial so that both species have unique names.
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The scientific name (genus + species) affords two lines of evidence for 
revealing information about the target organism: it provides the link to (1) all 
published knowledge of that species, which is often extensive, including its 
life history traits, distribution, and its natural enemies; and (2) all published 
knowledge of the species’ closest relatives, that is, all other species classified 
in the same genus or closely related genera. If little information is discovered 
through literature searches of the species’ binomial itself, a further search of its 
close relatives can reveal noteworthy, commonly held life history traits to help 
inform an effective IPM implementation plan. In contrast, common names are 
not unique and lack the nested hierarchy needed to place organisms into an 
evolutionary framework. Therefore, when at all possible, search out and utilize 
scientific names (Latin binomials).

Beyond the close kinship of species nested in the same genus, the entire 
evolutionary hierarchy can provide valuable information. This hierarchy involves 
populations nested within races, varieties, subspecies, or other subspecific 
categories, which are in turn nested within species, and those are nested within 
genera, families, orders, and even higher levels of classification. To which 
level of these various nested groupings, one might ask, should the organism 
be identified? The answer is not clear-cut; it takes more effort to identify 
a population than a subspecies, more to identify the subspecies than the 
species, and, similarly, more to identify a species than a genus. In most cases, 
identifications to the species level are adequate, but in some cases, realizing 
that a specific population, race, or subspecies has gained resistance to some 
crop variety or some pesticide, or has adapted to feeding on a different crop 
may be essential knowledge.

Even at the higher classification categories of tribe, family, order, 
superorder, and subclass, some vital information can be gained. For instance, 
knowing the target organism belongs to the order Hemiptera (true bugs) 
immediately confirms that the adult developed from a nymph rather than, like 
members of the Superorder Holometabola, through larval and pupal stages. 
That classification placement suggests that true bugs probably spent their 
entire lives (egg, nymph, adult) feeding on the same species of host plant, 
probably within the same field. Even more specifically, if, as suggested above, 
it proved to belong to the order Hemiptera, it will have piercing-sucking 
mouthparts, and that provides an important clue to its life history traits and, 
thus, how it might be managed. If, on the other hand, the target organisms 
were classified within the order Lepidoptera (moths and butterflies), it would 
belong to the Holometabola and adults would have spent most of their 
feeding lives as caterpillars (larvae), often in a very different habitat than the 
adult. And the larvae too would have chewing mouthparts and the type of 
injury to the crop would differ from that of the piercing-sucking habit of true 
bugs.
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2.2 �Detecting the pest

Let’s inspect the grower’s field mentioned above. Assuming the field is not 
drenched in organic pesticides, several dozens to hundreds of arthropod 
species are likely present. (At the upper extreme, alfalfa, grown for its seed in 
parts of southern California, is known to harbor up to 1200 species (Schlinger, 
pers. comm.)). Some of these species will be more difficult to detect than others. 
The only sign of an infestation might be the wilting of scattered or clustered 
plants within the field. The cause of wilting could be difficult to detect and 
thus determine. It might be root-feeding beetle grubs or the larvae of stem-
boring moths. Indeed, it might not be an insect at all, but rather an organism 
outside the scope of this book, such as a fungus or bacterium. Some observed 
problems might have been caused by nonbiological phenomena, such as the 
lack of fertilizers—or their excess—or even overly wet or dry field conditions. The 
grower or IPM practitioner must examine plants showing symptoms, looking 
closely at the underside of leaves along the entire architecture of the plant, 
digging the plant up and dissecting the stems and roots to expose the causal 
agent. Once the target species is detected and in hand, it can be identified. 
That will provide the evidence needed to give it a Latin binomial, opening a 
gateway into baseline data needed to pursue a course of action regarding the 
organism’s presence in the field.

Plants in a field that are notably different (i.e. stunted; have elongated, 
spindly stems; or pitted or blotchy, often yellow, leaves) might be infected 
by a plant virus or a phytoplasma, most of which are transmitted by specific 
insect groups (e.g. thrips, beetles, aphids, leafhoppers, psyllids, mealybugs, 
planthoppers) and other organisms (e.g. mites, nematodes, fungi). The 
pathogen has likely entered the field with the vector and, as the vector probes 
or feeds, is transmitted to the plant. (A few viruses, however, are seed borne and 
are present in a field as soon as plants emerge, while others are mechanically 
transmitted by humans, livestock, and human-operated machinery). Some 
vectors are able to spread viruses rapidly and are transitory within a field. 
Therefore, not all agents or their vectors contributing to the proliferation of 
malformed, low-yielding plants can be easily detected or are confined to pest 
species that take up residence in the crop ecosystem itself.

2.3 �Identification: providing critical Latin binomials

Even assuming all of the species in a field could be tracked down (an extremely 
difficult task), it would take an herculean effort for that grower or a pest 
management specialist, or, for that matter, anyone else, to identify all of the 
species, providing each with an accurate Latin binomial. Fortunately, for an IPM 
program, the identity of only a small portion of these organisms is required. 
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The grower or IPM practitioner ought to know the identity of those organisms 
germane to the well-being of the crop (i.e. those species that could directly or 
indirectly cause stress to the crop), and, ultimately, to the economic impact they 
could have on the crop’s harvestable products. Not surprisingly, experienced 
growers, IPM practitioners, and regional IPM extension agents will be well 
aware of these key species.

2.3.1 �Accuracy of determinations

Many factors are influenced by the accuracy of identifications. Closely related 
species are one such concern because they can easily be mistaken for one 
another. A target species, if incorrectly identified as belonging to a closely 
or even distantly related ‘cryptic’ species, is likely the host of a parasitoid 
that  differs  from the parasitoid that attacks the target pest. Misidentifying 
cryptic pest species can lead to the release of the wrong species of host-
specific parasitoid, resulting in a complete classical biological control failure 
(Rosen, 1978). Similarly, an exotic, invasive species can rapidly gain pest 
status in a region well before its identity is widely recognized. Determinations 
of these pests by all but taxonomic experts can miss the mark, providing yet 
another source of spurious information. This is also true when an undetermined 
or incorrectly determined pest has a high degree of resistance to specific 
pesticides or is highly tolerant of specific cultivars, varieties, or isolates of a 
given host plant. Initiating management tactics for a species not properly 
identified can lead to utter control failure. When a pest appears a bit unusual 
or behaves a bit differently than those normally observed, having an expert 
taxonomist identify it is prudent and well worth the effort.

2.3.2 �Literature and digital searches

Literature that will help identify a pest organism is abundant and rich. The 
concept of identification has been honed over generations and is summarized 
in a book edited by Hawksworth (1994), which includes information on 
biosystematic services, information, and methodologies. If both the crop species 
and the region are known, a search of the literature and internet will, in most 
instances, provide valuable information concerning the major pest species. 
As an example, the University of California, Division of Agricultural Sciences, 
has, through the years, published a number of pest management guides for 
various crops in California. Its publication No. 4105 (Flaherty et al., 1981) not 
only lays out the pests (diseases, arthropods, nematodes, and others) of grapes 
in California, it also furnishes Latin binomials for them and their most effective 
natural enemies and provides photographs of the pests and the injury they 
cause to the vines and fruit. It also provides information on how to best manage 
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each of the pests. Similar guides take on landscape or areawide perspectives of 
IPM (Krischik and Davidson, 2004), which provide clear illustrations of the pests 
and their natural enemies. Detailed accounts can be found about most pest 
species by searching the internet. Thus, using digital and printed resources, 
Latin binomials can be obtained for most pest species, providing most growers 
and IPM practitioners a means to unlock the countless windows into the written 
knowledge banks of those organisms.

Literature focused on the systematics of biological control agents in 
IPM exists as well. Schlinger and Doutt (1964) explore theoretical aspects of 
systematics of biological control agents and provide a number of dichotomous 
keys for identifying families of natural enemies—both predators and parasitoids—
within the class Insecta. A digital or literature search of the crop and its pests 
can lead to pertinent information on most other relevant species that inhabit 
an agroecosystem under assessment, specifically those that directly impact the 
biological, economic, and social dynamics of that system; their determinations 
can lead to sounder and more comprehensive approaches to managing the 
crop and its pests.

2.3.3 �Taxonomic expertise

Recognizing when a pest cannot accurately be identified through various 
means available to the grower and pest management practitioner is critical. 
When the identity of a pest or its various natural enemies is in doubt, or prior 
determinations need confirmation, it is prudent to seek advice from an expert 
taxonomist. However, few taxonomists are able to identify species across the 
insect realm. Most specialize on taxonomic groups consisting of hundreds to 
thousands of species in related genera or even related families, for which they 
build mental databases of diagnostic features and their linked Latin binomials. 
Taxonomists require years of study to learn and hone their identification skills. 
So, just getting the material in question to an insect taxonomist is insufficient; 
you must get your organisms to the appropriate taxonomist. In other words, it 
helps to know a bit about the taxonomy of the target organism so that it can be 
directed to the appropriate authority. Although this might seem daunting to a 
grower or lay person, most practitioners and extension agents specializing in 
entomology or IPM are aware of who studies which groups of insects and from 
whom to seek further advice.

2.3.4 �Collections and taxonomists: vital resources

Hundreds of insect collections are situated across the United States and, 
indeed, the world, each housing many hundreds of thousands to millions of 
arthropod specimens, for the most part each specimen associated with its 
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unique Latin binomial and arranged in a fashion that allows curators, collection 
managers, and expert identifiers (i.e. arthropod taxonomists) to critically and 
efficiently compare specimens they are charged with identifying with those 
in their respective collections. These collections not only contain accurately 
identified specimens, they also house extensive literature devoted to the 
taxonomy and identification of a vast array of arthropod taxa; these literature 
sources feature dichotomous keys, more flexible multi-entry key formats such 
as LUCID and Delta, species descriptions, and other aids to assist taxonomic 
experts in tracking down and verifying binomials.

The US Department of Agriculture’s Agricultural Research Services has, 
nestled within the Smithsonian Institution in Washington, DC, with a component 
in Beltsville, MD, the Systematic Entomology Laboratory, a unit employing 
numerous taxonomic specialists, each assigned to identify specific groups of 
organisms sent to the laboratory for determination. They are particularly aware 
of the importance of timely IDs for insects sent to them from border entry 
checkpoints because the freshness of fruit or other perishable commodities 
entering our markets is dependent on a rapid turnaround of the specimens 
being identified. A task taken very seriously, all other work is set aside until 
those specimens are properly identified, provided Latin binomials, and the 
port authority alerted and given permission to proceed by either allowing the 
cargo to enter the country, demanding that the cargo undergo fumigation to 
eliminate the pest, or prohibiting its entry entirely.

A few states (e.g. California, Florida, Massachusetts, Illinois) also have 
identification services staffed with several expert taxonomists, and they too 
provide accurate Latin binomials for specimens sent to them, particularly those 
insects found in agricultural settings and those that are found at state-operated 
border agricultural checkpoints. Many other states (e.g. Oregon, Arizona) 
employ one or two insect taxonomists charged with the identification of insects 
sent to them from state agricultural extension specialists, quarantine facilities, 
and others within their respective states. They are attached to state institutions, 
each with an extensive insect collection and associated literature, including taxon 
descriptions, dichotomous and multi-entry keys, to aid in the determination of 
target insect species they are sent and charged with identifying. Moreover, 
many universities around the country (especially those that are designated 
as Land Grant Institutions), and indeed the world, maintain insect collections; 
their curators and collection managers are often responsible for identifying 
(i.e. placing binomials on) specimens sent to them. If state and university 
taxonomists lack the ability to provide accurate Latin binomials for organisms in 
question, they solicit help from other taxonomists, and those are often the state 
and national resources for species determination and confirmation, the most 
noteworthy being the Systematic Entomology Laboratory in Washington, DC. 
Thus, a nested network of tiered taxonomically focused identification services 
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exists within the United States and elsewhere around the globe, each with its 
curated arthropod collection and appropriate literature, and is responsible, 
among other things, for the identification of pest and beneficial arthropods 
(Foote, 1977). The taxonomists staffing these institutions work in harmony to 
assure that organisms sent to them are identified accurately and in a timely 
manner.

Most local extension entomologists and IPM practitioners are aware of the 
identification services offered locally and nationally. They rightly acknowledge 
the critical importance, timeliness, and monitory worth of the arthropod 
collection-based, identification-oriented institutional resources, including the 
dedication of the expert taxonomists who staff these institutions.

3 �Bioinformatics
Bioinformatics is increasingly becoming an important tool for acquiring and 
organizing large datasets, including data obtained from millions of curated 
insect specimens (Graham et al., 2004; Kampmeier and Irwin, 2009). Recent 
efforts in digitization and deep extraction of data from individual specimens 
from arthropod collections, coincidentally, are generating data that provide 
broad historical insights into the dynamic shifts of geographic ranges, host-
plant expansions, and much more for target pests, their natural enemies and 
other beneficials, information that can improve our ability to devise and execute 
anticipatory components of IPM programs (see Section 5.4, Anticipatory 
responses and IPM). As an example, examining, determining, and recording 
pollen grain adhering to archived insect specimens offers important ecological 
clues about which plants were visited over a long timeline (Roderick and Navajas, 
2017). Geographic range expansions of various species, including those that 
are alien and invasive (see Section 5.2, Invasive species and early detection), 
can be mapped out from collection-associated data and online databases 
when coupled with appropriate algorithms and modeling efforts (Roderick and 
Navajas, 2017). Mass digitization and deep extraction (Schuettpelz et al., 2017) 
will, using informatics tools, afford vastly enhanced information that can be a 
powerful means for fine-tuning identification, sampling protocols, and a host 
of other aspects of IPM. Bioinformatics is the discipline that can bring many 
parts of the puzzle together to inform appropriate IPM decision-making.

4 �The DNA transformation
Imagine a world where the complex task of identifying a specimen to the 
species level was as simple as inserting a probe into a target organism and 
having an associated display report the organism’s correct species name, along 
with all information known about that species and, when appropriate, how 
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best to manage it. Soon, the days of routinely sending specimens to expert 
taxonomists around the world for identification will be a thing of the past. Such 
specialists will be sought out only for the most obscure and least known species 
under scrutiny. It may sound like science fiction, but this scenario could become 
a reality, thanks to technological advances associated with acquiring and 
curating DNA sequence data from select regions of the genome of specimens 
identified by taxonomic experts.

In 2003, scientists at the University of Guelph, Canada, introduced the 
concept of ‘DNA barcoding’ (i.e. identifying organisms to the species level 
using specific regions of the genome) (Hebert et al., 2003a,b). For each region 
of the genome, the patterns of the four DNA building blocks (the nucleotides A, 
C, T, and G) evolve, or change, over time, resulting in taxon-specific templates. 
In the first (and current) phase of DNA barcoding, a region of the mitochondrial 
genome, the cytochrome oxidase 1 gene (COI), was selected as the species-
specific sequence for use across the entire animal kingdom (the Metazoa).2 The 
concept relies on having a reference library or database of authority-verified 
species names attached to DNA sequence data from the COI gene. For example, 
barcode-based identifications of insects rely upon an extensive library of COI 
sequences with correct species names attached to each, providing a template, 
in effect, upon which all unknowns are compared and identified.

The reference library for the barcode effort is termed the Barcode of Life 
Database (BOLD), which currently contains 6.7 million sequences representing 
287 000 species of animals, plants, and microbes (Ratnasingham and Hebert, 
2007).3 The BOLD database has rigorous data quality standards that set it 
apart from other DNA sequence aggregators, such as GenBank. For example, 
to publish a barcoding sequence in BOLD, the following documentation must 
be provided: a photo of the specimen, label data including georeferences, 
the trace files from the DNA sequencing run, an accession number for the 
specimen in a natural history collection, and the name of the identifier. The very 
high-quality data standards demanded by the BOLD reduce the risk of species 
misidentifications.

While the resolving power of a single segment of the genome has so far 
been found insufficient to definitively reveal the identity of all species, DNA 
barcoding has proven exceptionally efficient at detecting and delimitating 
closely related species of various groups of insects and mites (Blaxter, 2004; 
Hebert et al., 2003b; Savolainen et al., 2005; Dasmahapatra and Mallet, 2006; 
Hajibabaei et al., 2007; Janzen et al., 2009; Ratnasingham and Hebert, 2013; 

2 �Non-metazoan barcode sequences (e.g., barcodes used to identify plants, fungi, and microbes) are found on other 
regions of the mitochondrial genome. Two segments of the chloroplast genome, rbcL and matK, were selected for 
land plants, a segment of the 16S ribosomal gene was selected for Bacteria and Archaea, and ITS was selected for 
Fungi.

3 �There are currently about 2,000,000 described and an estimated 10–100 million still undiscovered species.
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Hubert and Hanner, 2015; Kress et al., 2015; Miller et al., 2016; Chroni et al., 
2017; Pešić et al., 2017; Tyagi et al., 2017; Wilson et al., 2017; Gebiola et al., 
2017; Kim and Jung, 2018).

The DNA barcode was conceptually developed using Sanger sequencing 
technology (Hebert et al., 2003a,b). In that technology, DNA is first extracted 
from an individual specimen, then the barcode sequence is amplified using 
PCR, and, ultimately, the PCR product is sequenced. Using Sanger sequencing, 
one barcode sequence is obtained per individual. Recent advances in 
DNA sequencing technology have increased the usefulness of molecular 
barcoding at an exponential rate. An emerging technology, next-generation 
sequencing (NGS), in contrast, utilizes parallel, simultaneous sequencing of 
DNA to obtain many sequences from one individual or even barcodes from 
multiple species in multiple-species samples. After the sequencing step, the 
species-level barcodes are separated from one another using bioinformatics. 
NGS thus generates multiple barcodes at the same time, keeping the costs 
down. This technology opens many exciting avenues for research, including 
diet and gut content analyses (Leray et al., 2013; Krehenwinkel et al., 2017) 
and host–parasitoid relationships (Lefort et al., 2017; Sigut et al., 2017; Kitson 
et al., 2019).

Importantly, NGS technologies also allow the sequencing of barcodes 
from archived museum specimens, something that was impossible to 
accomplish before NGS became available. The most complete resource of 
expertly identified arthropod specimens is found in natural history collections. 
Dried, preserved specimens in these collections have not heretofore been 
used to generate barcode sequences because their DNA breaks down 
into smaller fragments over time, limiting its utility when using the more 
antiquated Sanger sequencing technology. However, the NGS methodology 
relies on small fragments or regions of DNA prior to sequencing, making 
even old, pinned museum specimens suitable candidates for DNA extraction 
and sequencing (Haran et al., 2018; Sproul and Maddison, 2017). Because 
historical specimens contain low amounts of total DNA, extractions are highly 
susceptible to contamination. Facilities established to safely extract DNA from 
older specimens are often called ‘Ancient DNA Laboratories,’ and through 
them, NGS  technology has opened the door for this new development to 
rapidly expand and enhance the COI reference library. This large increase in 
barcoding of specialist-identified specimens will provide a foundation for both 
identification and quantification of pests and beneficial insects in agriculture, 
ornamental horticulture, and the natural world in general.

At the same time, NGS technology is also transforming what we think of 
as a ‘barcode sequence.’ Because many copies of the mitochondrial genome 
exist in each cell, the entire mitochondrial genome, and often the entire 
ribosomal gene complex, is sequenced when using NGS methods. One of the 
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limitations of modern molecular barcoding is that the relatively small fragment 
of COI that was selected as the animal barcode is not entirely unique to each 
species and, therefore, is unable to resolve the identity of every species. In the 
future, perhaps the entire mitochondrial genome and the entire ribosomal 
gene complex will serve as ‘barcode regions’ for animals, thereby increasing 
the resolving power of the diagnostic procedure.

DNA barcoding techniques have also been employed for survey work to 
estimate species richness of a particular sample (e.g. a sweep net sample or 
malaise trap sample). In an approach known as community metabarcoding, the 
barcode gene is simultaneously sequenced for all the specimens in the sample 
(Taberlet et al., 2012; Yu et al., 2012). Metabarcoding makes it possible to 
rapidly assess the species composition of a given locality (Dejean et al., 2012) 
and quantify the turnover of species through time and space (Giguet-Covex 
et al., 2014; Yu et al., 2012). Thus, a sweep net sample, when subjected to 
metabarcoding, will reveal which species are present in that sample and which 
are different from those identified from the previously taken samples.

Metabarcoding projects have sometimes attempted to estimate species 
abundance (Elbrecht and Leese, 2015; Tang et al., 2015; Thomas et al., 2016). 
Abundance estimations are complicated; they are limited by inherent biases in 
each step of the barcode sequence acquisition process. Although the science 
and technology remain unsettled, researchers are attempting to resolve these 
biases in the datasets and to develop algorithms needed to verify abundance 
using NGS technology.

5 �Quantifying target organisms
Once detected and the identity (Latin binomial) assured, the grower must 
determine whether the pest is at a density high enough to severely stress the 
plants to the extent that the crop’s earnings potential is negatively impacted.4 
This subject addresses one of the most fundamental underpinnings of the IPM 
paradigm: the concept of economic injury. The economic injury level (EIL) is 
a finite value for economically acceptable pest population levels (Stern et al., 
1959). Ideally an EIL is a flexible figure, taking into account the amount of 
stress exerted on the crop by the pest, the crop’s physiological growth stage, 
the physical conditions of the field, including weather factors and forecasts, 
the pest’s developmental stage, the presence or absence of other pests and 
diseases that may exert additional stress on the crop, and economic and 
cultural factors such as the price the grower will receive when the harvest is 
sold and the quality and appeal of the harvested product (is the fruit blemished 
or somewhat misshapen and therefore will sell for less?).

4 �That is the essence of question-based monitoring (Lindenmayer and Likens, 2010).
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As suggested above, not only is the population density of a pest pertinent 
to establishing an appropriate EIL, of significant importance is the growth 
stage of the crop and of the target pest represented in that density count. 
As an example, the velvetbean caterpillar, Anticarsia gemmatalis (Hubner) 
(Lepidoptera: Noctuidae), is a recognized key defoliator of soybeans in the 
central and eastern parts of the United States. When young, during its first 
instar, each caterpillar consumes very little (about 1 cm2 over 3.6 days), but as 
it grows larger and more mature, it progressively consumes much more (about 
72 cm2 over 5 days during its sixth and last larval instar) (Herzog and Todd, 
1980). The EIL, therefore, needs to account not only for the growth stage of the 
crop when the sampling occurs (leaf surface available over time and amount 
of leaf surface needed to grow efficiently during that life stage), but also the 
physiological growth stage of the pest under scrutiny.

Establishing a reliable EIL is not something a grower can easily do; 
researchers, working with population dynamic, stochastic, and simulation 
modelers, can best establish them by applying data derived from carefully 
designed, replicated field and laboratory experiments to algorithms that 
integrate the various components mentioned above. That population level 
deemed sufficient to appreciably reduce yields, the EIL, can then be adjusted to 
accommodate the cost of implementing a tactic to reduce the population below 
that level, along with the potential delay in implementation timing, providing 
a slightly altered population density based on a ‘recommendation algorithm’ 
(Ruesink and Onstad, 1994), often referred to as an action threshold, that is, 
that population level at which some pest population-damping action should be 
initiated. These concepts, as central as they are to developing or carrying out an 
IPM implementation plan, are not discussed further in this chapter; instead we 
refer you to Ruesink (1976, 1980), Ruesink and Onstad (1994), and Higley and 
Pedigo (1996) for background theoretical, mathematic, and recommendation 
algorithm formulations, and definitions backstopping arthropod sampling in 
IPM programs. Here, we consider the background causes of pest buildup and 
decline and how those factors might impact sampling theory and, consequently, 
appropriate algorithms; we also discuss how to determine if an established EIL 
or one of its derivatives (e.g., the action threshold) has been met.

Supervised control, an early and ongoing, practical, field-oriented 
component of the IPM effort, requires the grower, IPM practitioner, or ‘scout’ 
to take timely, measured samples of the arthropods in a confined cropping unit 
(i.e. the field or orchard) to determine the pest species present and assess if 
population levels are high enough to cause economic injury to the crop (IPM 
Level I of Kogan, 1998, 2013). Supervised control often targets specific pest 
species and, far too frequently, fails to take into account multiple pest species 
that are simultaneously present in the samples (i.e. their collective stress on 
the crop) (IPM Level II of Kogan, 1998, 2013; Peterson et al., 2018) and the 
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Turbo-TeeJet nozzle  689
Tuta absoluta  212, 253
Twospotted spider mite (TSSM)  841, 871

UAVs. see Unmanned autonomous vehicles 
(UAVs)

Ultraviolet radiation  365
Ummeliata insecticeps  102
United States Agency for International 

Development (USAID)  29
University of California  8
University of California-Davis  345
University of Guelph  12
University of Illinois  17, 25
University of Wisconsin  55

Unmanned autonomous vehicles (UAVs)  404
Unrestricted Mesoscale Analysis (URMA)  75
USAID. see United States Agency for 

International Development (USAID)
USAID Collaborative Research Support 

Program  29
US Department of Agriculture (USDA)  10, 

57, 170, 176
USPEST.ORG  72, 74

Vapour heat  376
Vegetative insecticidal proteins (VIPs)  289, 

290, 318
Venturia inaequalis  370
Vertical/monogenic resistance  243
VIPs. see Vegetative insecticidal proteins 

(VIPs)
Vision-based robotic technology  393
Viteus vitifoliae  161
Volume median diameter (VMD)  689

WARM. see Water and Atmospheric Resources 
Monitoring Program (WARM)

Washington State University (WSU)  57, 
64, 73

Water and Atmospheric Resources 
Monitoring Program (WARM)  17

Water Framework Directive  681
Water scorpion. see Ranatra chinensis
‘Weather Systems Work Groups’  57
Wheat streak mosaic virus (WSMV)  856
Wheat (Triticum aestivum)  771, 798–799
Whole-genome microarray techniques  250
‘Wicked problems’  177–178
Willamette Valley of Oregon  943, 947
Willingness to pay (WTP)  897
WSMV. see Wheat streak mosaic virus 

(WSMV)
WSU. see Washington State University (WSU)
WTP. see Willingness to pay (WTP)

Xanthomonas citri  351
Xanthomonas oryzae  250
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