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2 Advisor’s Foreword

The great majority of artificial lifted oil wells are placed on sucker-rod pumping
all over the world. Due to the great importance of sucker-rod pumping the reduction
of production costs is a major drive in operating those installations. Because the most
significant element of production costs is related to the prime mover’s energy
requirement the improvement of power efficiency is a prime task of field personnel.
The proper choice of the pumping unit’s counterbalancing, the topic of this
candidate’s PhD Thesis, can substantially improve the power conditions of pumping
and thus can increase the profits of oil production.

The candidate’s choice of the topic of his PhD Thesis is especially appropriate
today because of the great number of rod pumped wells worldwide as well as in
Hungary. The results of the author’s interesting and important research will surely
help to increase pumping efficiency and, at the same time, increase the life of sucker-
rod pumping installations.

The Thesis is properly constructed and clearly proves the candidate’s skills in
scientific research and publication. His treatment of the gearbox’s torque loading
under different kinds of counterbalancing conditions is correct. One of the best parts
of the Thesis deals with unusual counterbalance arrangements that are very seldom
used in the industry. As the author proves, the use of asymmetric counterweight
arrangements, as compared to the traditional symmetric ones, can lead to definite
operational advantages. The author, for the first time in the literature, introduces the
use of Particle Swarm Optimization (PSO) method in the calculation of optimum
counterbalancing conditions. The novel methods and calculation models developed
by the author can be considered as new scientific achievements in the discipline of
sucker-rod pumping of oil wells.

Budapest, October 13, 2020.
Prof. Dr. Gabor Takacs

Petroleum Engineering Department
University of Miskolc

iv



3 Introduction

The initial objective of the presented thesis was the investigation of the effect of
using asymmetrical counterweight configuration in the counterbalancing of crank
balanced sucker-rod pumping units. During the research it became clear, that this
particular case of counterbalancing was not investigated in detail prior to this work.
Since the number of sucker-rod pumping installations operating worldwide is
approximately 750,000, it is important to ensure their optimal operation from both
engineering and economical points of view. (SPE) The profitability of these oil producing
units is increased by achieving the lowest power requirement possible for the desired
liquid flow rate, which depends on mainly the torque loading of the unit's gearbox.
Providing a sufficiently long lifetime for the installation by protecting the gearbox - its
most expensive part - from overloading also improves the economic value of the sucker-
rod pumping unit operation.

Before the optimization of the net gearbox torque can be carried out, the
knowledge of all distinct torque components acting on the gearbox throughout the
pumping cycle is necessary to accurately describe the actual torque conditions of the
investigated pumping unit. The improved torque analysis presented in this work is
based on the data provided by an electronic dynamometer, the routinely used
measurement tool for sucker-rod pumping units. This measurement technique is the
most widespread supervision type that has the required accuracy for a complete torque
analysis and can be carried out with little effort. The refined procedure of the
dynamometer survey evaluation is presented for four pumping unit geometries -
Conventional, Air balanced, Mark Il and Reverse Mark - but it can be modified to handle
any special geometry type with little effort. An example problem is introduced, and the
results of its evaluation are presented for every major calculation step to help the easier
interpretation of the proposed calculation method.

After studying the API Spec 11E (API, 2008) - the recommendation by the
American Petroleum Institute - it became apparent, that the evaluation method used in
the industry lacks the capability to handle the proper description of those sucker-rod
pumping units that have varying crank angular velocities throughout their pumping
cycle. This condition occurs when either the pumping unit is operated in an unbalanced
condition, or when a high slip, or ultra-high slip prime mover is used to drive the sucker-
rod pumping unit. Therefore, the improvement of the interpretation of dynamometer
surveys was the first crucial step after outlining the research goals.

Beside the literature research, the most widely used software in the petroleum
industry for the evaluation of dynamometer surveys - the Total Well Management by
Echometer - was inspected and its results were analyzed in detail. After identifying
shortcomings in the results of the TWM software and in the relevant literature, the
objectives of the research were expanded with the identification of the systematic
errors. A comprehensive calculation procedure is proposed that determines the
behavior of the sucker-rod pumping unit with higher accuracy than any already existing
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method; the findings of relevant publications in the topic are incorporated and new
solutions are presented to address previously unresolved calculation steps.

Finding the crank angle values at the measured times with the highest accuracy
possible is essential for the proper torque analysis because all torque components
depend on the crank angle versus time function, which is not included in the
dynamometer survey. The proposed method gives more accurate crank angle values
than the programs currently used in the industry. The determination of the angular
acceleration pattern of the crank arm and the walking beam are necessary for the
calculation of the inertial torques acting on the gearbox. Several methods are presented
and compared, providing the angular acceleration functions in time with the highest
precision possible using the calculated crank angle values. After the evaluation of the
kinematic behavior of the sucker-rod pumping unit, all torque components acting on the
gearbox in time are found. The knowledge of these torque functions is the basis of any
optimization procedure.

The second main objective of the research was to develop a calculation method to
optimize the mechanical net gearbox torque and to determine the corresponding
counterweight configuration for the investigated sucker-rod pumping unit. For this
purpose, a particle swarm optimization (PSO) algorithm was used, due to the size of the
solution space. By properly considering the effect of the asymmetrically placed
counterweights, the number of independent variables increases from three - in the case
of symmetrical counterweight configuration - to twelve; which makes the direct
determination of the optimal arrangement of the counterweights impossible. The
asymmetrically placed counterweights not only change the counterbalance torque by
introducing a secondary phase angle but will alter both the rotary inertial torques as
well. Hence the optimization procedure is more complex, but the resulting solution
provides better torque loading of the gearbox for a given operating condition. Using this
artificial intelligence technique, the resulting mechanical net gearbox torque function is
superior to the output of the investigated TWM software. A novel optimization strategy
was developed to maximize the cost savings of the operation of the sucker-rod pumping
units while preventing the overloading of the gearbox. A computer program has been
developed in C# to carry out the presented calculation steps.



4 Overview of Sucker-rod Pumping

Oil wells usually flow naturally in the early stages of their lives. At this point the
pressure at the well bottom is enough to lift the reservoir liquid to the surface
overcoming the pressure losses in the well. However, if the bottomhole pressure of a
given oil well decreases due to the liquid and gas production, at some point an artificial
production method has to be implemented to keep the wellhead pressure at the minimal
level, so that the reservoir liquid is lifted to the surface. The artificial lifting method
investigated in this thesis is sucker-rod pumping.

4.1 Relevance of Sucker-rod Pumping

The number of sucker-rod pumping installations can only be estimated, their exact
number is unknown. According to recent estimates, there are approximately 2 million
oil wells worldwide of which more than 50% are operated with some kind of artificial
lift (Lea, 2007). The share of different artificial production methods is shown in Figure 1
along with their respective production contribution based on the ALRDC (Artificial Lift
Research and Development Council) estimates. (Takacs, 2015)

Number of Wells Production Share

49% 1% - 1% 5% 0%

6%

21%

Flowing ® Plunger Lift Flowing ® Plunger Lift
SRP Other SRP Other

Gas Lift m ESP Gas Lift ESP

BCP PCP

Figure 1 The estimated number and production of different artificial lifting installations
(Takdcs, 2015), own edit

The current share of sucker-rod pumping is 21% globally, their production
contribution is 7%, therefore it is crucial to maintain optimum operating conditions for
such installations. The basic objective of production engineers is to safely operate wells
using the least amount of operating cost to meet the required liquid regime.



Power costs in sucker-rod pumping operations are related to the surface power
required to drive the pumping system. This power, in turn, depends mainly on the
mechanical net torque required at the gearbox of the pumping unit. Thus, proper
calculation of gearbox torque during the pumping cycle is essential to accurately
determine the power requirements and operating costs of sucker-rod pumping. (Takacs,
2003)

4.2 Operation of Sucker-Rod Pumps

Sucker-rod pumping was the first artificial lifting method used in the petroleum
industry. In the early years, cable tool drilling was the dominant drilling method, in
which the drilling bit was dropped and retrieved repeatedly by a connected cable. After
the flowing state of the well stopped, a bottomhole plunger pump was placed in the
bottom of the well and was operated by the walking beam. This was the ancestor of the
later widely used sucker-rod pumping systems. The materials used changed from wood
to steel, but the operational principles stayed the same ever since.

The schematic diagram of a typical sucker-rod pumping unit is shown in Figure 2.
The objective of the surface equipment’s design is to transform the rotational motion of
the prime mover into an alternating motion of the polished rod at the wellhead. This
reciprocating motion is used to operate a subsurface positive displacement pump
situated below the static liquid level. The connection between the surface and the
subsurface equipment is the polished rod with precisely manufactured surface that
ensures the proper seal at the stuffing box while moving in it. To protect the polished
rod from bending, it is only allowed to move vertically, this is ensured by the proper
design of the horsehead.

The connection between the polished rod and the downhole pump is provided by
the rod string. The rod string is tapered, having decreasing sizes towards the pump. The
optimal rod shape is a downward pointing cone, this shape is approximated with the
properly designed rod string to withstand the most common rod failure type, the fatigue
break. The pump consists of a stationary cylinder - the pump barrel - with a standing
valve, a travelling valve, and the plunger. The operation of the unit is powered by the
prime mover, which is usually an electric motor. The rotational speed of the motor is
decreased to operate the sucker-rod pumping system at a reasonable pumping speed.
The gear reducer - or gearbox - is the unit responsible for the decrease of the rotational
speed while simultaneously increasing the torque. During upstroke the prime mover
lifts the rod string along with the liquid column above the pump. While lifting the fluid
the travelling valve is closed and the standing valve is open. In downstroke however, the
rod string falls in the liquid with open travelling valve and closed standing valve. The
power requirement changes significantly during the pumping cycle. To achieve an
improved power draw from the motor, counterweights, or other applicable
counterbalancing methods are used. In the case of crank balanced units, the aim of the
counterweights is to brake the rod string in the downstroke, when the rod string is
falling in the liquid, and to help lift in the rod string and the produced liquid in the
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upstroke. In downstroke energy is stored in the counterweights by lifting them and the
motor is prevented from functioning like a generator. The stored energy is released
whilst upstroke, reducing the power requirement needed to lift the rod string.

Horse Head
""“‘--u./j Wall?ng Beam
Fitman Arm
Bridle — Counter Weight
Crank V-Belt
o
Polished Rod —— Stuffing o —~Prime Mover
~ Box N
il amson
-— I Post — Gear Reducer
== -Tee
Qﬂ_ .
Gas Tubing Suck'ﬂ‘r Rud Cement
e TITTTIr i- wallawa 'Y IIII ----------------- I
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1” i " I.“.'
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Down Hole Pump P + +
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Figure 2 The sucker-rod pumping system (Danel, 2015)

4.2.1 Gearboxes
Since the prime mover - usually an electric motor - has extremely high rotational

speed to turn the crank arm of a sucker-rod pumping unit directly, a gear reducer is
used to slow down the speed to a desired value and to increase the output torque
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simultaneously. The gear reducers are the most expensive parts of the sucker-rod
pumping units with around 50% Capex share. (Takacs, 2015) API Spec. 11E (API, 2008)
contains the relevant properties of the standardized gearboxes used in the petroleum
industry. Most gearboxes include double-, or triple-reduction gearings, but chained
reducers are used as well. The most widely used type is the double-reduction unit is
presented in Figure 3, where the three shafts and two corresponding gear-pairs are
shown. The prime mover drives the gearbox through a V-belt sheave, after the speed
reduction the crank arm of the pumping unit is driven by the slow-speed shaft. (Takacs,
2003) The most common tooth form is the herringbone due to their superior torque
reversal tolerance, which usually happens in every pumping cycle. The gear reduction of
gearboxes is around 30 to 1. The lubrication has key importance in protecting the
moving parts of the gearbox, without a lubricant of the proper viscosity the lifetime of
the gearbox significantly drops.

o \ 1 L/
—— , -
= M A " \ i
0 e \ 4 1. “\, | 1 ‘ E

—

G
.A;-'. i' _,= 13 ’.._.
Figure 3 A typical double-reduction gearbox used in
sucker-rod pumping (Pidenergy, 2016)

The most important parameter determining the lifetime of a gear reducer is the
relationship between the torque rating of the unit and the torque loading during its
operation. Figure 4 illustrates the effect of overloading, showing that just a 10%
increased torsional load compared to the rating can reduce the lifetime of the gearbox
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by half, a 20% overloading can result in only one-fifth of the lifetime specified by the
manufacturer.

25

= [ N
o w [e=]

Gear Life [years]

921

0

100 105 110 115 120 125 130
Gearbox Loading [%]

Figure 4 The projected lifetime change of a gearbox due to overloading
(Clegg, 2007), own edit

A common problem due to overloading is pitting - a type of surface fatigue - when
the stress on the surface of the gear tooth exceeds the limit of the material for periodic
loading. These surface cavities can lead to gear tooth failures for overloaded gear
reducers, according to the ANSI/AGMA 110.04, Nomenclature of Gear Tooth Failure
Modes. (BakerHughes, 2018) Therefore, achieving optimal torque loading improves the
lifetime of the most expensive part of the sucker-rod pumping installation. This can be
achieved by using the appropriate counterbalancing as discussed in later chapters.

4.3 Pumping Unit Geometries

Different pumping unit geometries were developed to increase the efficiency of the
petroleum production. In this chapter the four main geometries - Conventional, Air-
Balanced, Mark Il and Reverse Mark - are introduced in detail. Knowing the difference
between the pumping unit geometries is essential to properly evaluate the
dynamometer survey taken on one of these installations. For other geometry types the
presented calculation method can be easily adapted. The dashed line - defining 8, - in
Figure 5 through Figure 8 is parallel with the link K. All figures representing the
different geometries have the same scale (1:800) and are based on real API designations
with 168 in nominal stroke length.

4.3.1 Conventional Pumping Unit

The conventional pumping unit - the oldest and most common sucker-rod
pumping unit geometry - is based on the beam pumping unit first built in 1926 with the
invention of crank counterbalance, which works with the same principle as the cable-
tool drilling rig. The unit’s popularity is based on its simple operation, low maintenance
requirements and flexibility to cover a wide range of field applications. (Production
Technology 1, 2018) The schematic layout is shown in Figure 5. The walking beam
worKks like a double-arm lever that is driven at its rear end and drives the polished rod at

its front. To counterbalance the unit, counterweights are placed on the crank arm to
7



achieve a smoother torque loading of the gearbox. The unit can operate in both
clockwise and counterclockwise direction of rotation.

Figure 5 The schematic layout of the conventional sucker-rod pumping unit

4.3.2 Air Balanced Pumping Unit

The air balanced pumping units were developed in the 1920s. This configuration is
similar to the Mark II in their linkage connections, but the crank arm is significantly
smaller for the air balanced unit achieving the same stroke length, as seen in Figure 6.

Figure 6 The schematic layout of Air balanced sucker rod pumping unit



The main difference between this and the other geometries is the counterbalancing
method. The other investigated geometries use counterweights to even out the torque
load on the gearbox, in this case a compressed-air cylinder is used to achieve the same.
These units are way lighter due to the lack of heavy counterweights and are about 35%
shorter than their conventional counterparts. (Takacs, 2015) This sucker-rod pumping
unit can be driven in both directions.

4.3.3 Mark Il Pumping Unit

The Mark II sucker-rod pumping unit was invented by ]. P. Byrd, it was patented in
1958 (Takacs, 2015). The main objective of its development was to decrease the torque
requirements, and consequently to decrease the power requirements of the operation
compared to the conventional beam pumping units. Contrary to the conventional
geometry, the walking beam works like a single-arm lever and it can only operate in the
counterclockwise direction, shown in Figure 7.

Figure 7 The schematic layout of Mark Il sucker rod pumping unit

For the same pumping task, the Mark II unit will have a lower peak torque and a
more uniform net gearbox torque distribution compared to an equivalent conventional
pumping unit during the pumping cycle. (Production Technology 2, 2018) The rotary
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counterweights are placed on separate counterbalance arms that are directed opposite
to the crank arm and are phased by 7, which is usually between 19° and 28°.

4.3.4 Reverse Mark Pumping Unit

The Reverse Mark - initially under the name TorqMaster - unit was developed in
the 1980s by R. Gault, who analyzed the properties of already existing geometries, to
combine all the good properties of the already existing geometries and to eliminate their
disadvantages. (Takacs, 2015) It was achieved by analyzing the previous geometries by
computer and the results were incorporated in the design of the Reverse Mark unit. The
schematic layout is shown in Figure 8.

At first, the Reverse Mark unit looks similar to the conventional geometry, the two
main differences are the increased horizontal distance of the gearbox from the saddle
bearing, and the phased counterweight placement on the crank arm. The maximum
counterbalance moment is lagging behind the driven crank with a phase angle usually
between 8-15°. By having a phase angle, the rotation of the unit is fixed in the clockwise
direction, as shown in Figure 8. These modifications reduce the torque loading on the
gearbox compared to the conventional unit while having the same operating conditions
otherwise.

Figure 8 The schematic layout of Reverse Mark sucker rod pumping unit
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5 Determination of the Net Gearbox Torque from

Dynamometer Surveys

The complex interactions between the subsurface equipment, the produced liquid
and the surface equipment during production make it nearly impossible to evaluate the
operating condition of a sucker-rod pumping unit without measurement. The most
widely used measurement technique is carried out by using an electronic dynamometer.
The net mechanical gearbox torque can be determined by interpreting the dynamometer
survey. The detailed solution of an example problem is presented in the thesis to
illustrate the differences between the proposed evaluation method and the widely used
TWM software; the relevant input data is given in Table 1. The variables used are
consistent with the API Spec 11E (API, 2008).

Table 1 Input data for the example problem

Pumping unit designation

C-640D-365-168

Manufacturer Lufkin
Geometry type Conventional
Maximum torque loading of the gearbox | 640,000 in1b
Maximum polished rod load 36,500 1b
Nominal stroke length 168 in
Structural unbalance -1,5001b
Crank type 94110CA
Gearbox mass moment of inertia 3,920 lby, ft2

Beam mass moment of inertia

1,047,183 lbn ft?

Rotation Clockwise

Counterweights 4pcs. ORO, placed 10 in
from long end of crank

Crank moment 470,810in1b

Crank mass moment of inertia (2 cranks) | 247,244 lby, ft2

Crank length 110 in

Crank half-width 11.51in

Pumping speed 5.96 SPM

11



5.1 The Dynamometer Survey

Mechanical dynamometers were the first measurement equipment for sucker-rod
pumping units. The mechanical dynamometers can only register the surface
dynamometer card, which is a continuous plot of the polished rod load versus the
polished rod displacement, whereas the new electronic devices measure both the
polished rod load and polished rod position in time. Figure 9 is the dynamometer card
for the investigated pumping unit.

30
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Figure 9 The dynamometer card of the example problem

The independent polished rod load and polished rod position functions in time are
essential in an in-depth investigation of the pumping unit. Adequately determining the
operating condition of a sucker-rod pumping unit can be carried out using a polished
rod electronic dynamometer, or a polished rod transducer. Figure 10 shows a
horseshoe type electronic dynamometer and a rod transducer. The frequency of the data
acquisition is usually greater than 20 Hz for modern electronic dynamometers; its value
is 30 Hz for the example problem. 302 data points were registered in total for the
investigated pumping cycle.
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Figure 10 A modern electronic horseshoe dynamometer and a
polished rod transducer (Echometer, 2011)

5.1.1 The Procedure of the Measurement

The dynamometer measurement is the easiest and most routinely used in the
industry to obtain the required information for a complex torque analysis for sucker-rod
pumping units. By installing the dynamometer between the polished rod clamp and the
carrier bar it can record the load acting on the polished rod in time. During its normal
operation, there is no space between the polished rod clamp and the carrier bar, see
Figure 11.

The pumping unit must be stopped at the bottom of the stroke to begin the
installation process by attaching a temporary rod clamp on the polished rod above the
stuffing box. After restarting the pumping unit, a knock-off block is placed on the stuffing
box, in downstroke the motor is shut down, and the brakes are activated when the unit
reaches the bottom of the stroke. Due to this operation, the knock-off block will contact
the previously installed temporary clamp releasing the load from the carrier bar. If the
operation is carried out appropriately, there is enough space for the installation of the
dynamometer, as seen in Figure 11.
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Figure 11 Placement of the dynamometer (Echometer, 2011), own edit

After restarting the unit and removing the knock-off, the loads in the polished rod
will act on the dynamometer, making the measurement of the polished rod load
possible. To measure the loads, the dynamometers usually use strain gauges. Figure 12
shows the measured rod load variation in time for the example case, the measured
polished rod positions are shown in Figure 13.
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Figure 12 Measured rod loads for the example problem
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For the position measurement usually data from a built-in accelerometer is used.
The polished rod position values are determined by integrating the measured
acceleration twice.
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Figure 13 Measured polished rod positions for the example problem

At the start of the pumping the liquid level in the annulus will be at a higher
position than the dynamic liquid level corresponding to the given pumping rate. No
measurements must be done before the liquid level drops to its dynamic value. The time
required to achieve the equilibrium liquid level depends on the inflow parameters of the
well, the properties of the produced liquid, the configuration of the subsurface
equipment and the type and operation of the surface elements of the sucker-rod
pumping unit. The motion of the crank arm becomes periodic, when the operation of the
pumping unit has been stabilized, so that the position of the dynamic liquid level is
constant at the start of every upstroke.

The measurement with polished rod transducers is much simpler, it can be
clamped under the carrier bar on the polished rod, but the provided accuracy is not
sufficiently high for the complete torque analysis of the sucker-rod pumping unit.

5.2 Investigation of the Torque Loading of the Gearbox

There are two distinct cases in the calculation of gearbox torques based on the
angular acceleration pattern of the crankshaft. The API Spec 11E (API, 2008) provides a
calculation method for constant crankshaft velocities. But when the angular velocity of
the crank changes more than 15% during the pumping cycle, the APl method can lead to

errors greater than 10%; this can result in operating decisions that overload the unit. As
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previously shown in Figure 4, the overloading drastically decreases the lifetime of the
gearbox, therefore it is of paramount importance to determine the mechanical net
gearbox torque adequately.

Having a non-zero crank angular acceleration is usually a consequence of using
either a high-slip, or even an ultra-high-slip electric motor as the prime mover. In these
cases, the crank angular velocity is a function of the torsional loading of the gearbox; at
light loads the crank accelerates and achieves a higher speed, consequently at heavier
loads it decelerates and slows down. This circumstance will produce a new torque
component emerging in the calculation of the net gearbox torque calculations. In this
case there are four different torque components acting on the gearbox of a sucker-rod
pumping unit during its operating cycle. These torques are the rod torque, the
counterbalance torque, the rotary moment of inertia and the articulating moment of
inertia. The calculation of these torques requires the interpretation of a dynamometer
survey. As a result of the analysis of the current operating condition, the net torque is
determined throughout the pumping cycle by summing up the calculated torque
components.

The basis of the torque analysis of sucker-rod pumping units is the knowledge of
the crank angle variation in time throughout the pumping cycle. In this chapter the
crank angles are assumed to be known, and the torque components acting on the slow-
speed shaft are determined accordingly. The in-depth calculation of the crank angle
function versus time is detailed in Chapter 5.3, the determination of the angular
acceleration pattern of the crank arm and the walking beam are introduced in Chapter
5.4 and Chapter 5.5, respectively.

Unlike in previous works, the variation of every angle calculated from the
measured polished rod positions are presented in time, not as a function of the crank
angle. This is also true for the angular velocities and angular accelerations computed by
the newly proposed methods. To determine the aforementioned angles, the knowledge
of the crank angle is required, which is not necessarily changing linearly in time, as
assumed in prior works.

5.2.1 Flowchart of the Torque Calculation Procedure

As previously discussed, four different torque components must be determined to
find the mechanical net gearbox torque. All torque components can be calculated by
interpreting the dynamometer survey. The simplified flowchart representing the
calculation of the torque components from the dynamometer survey is shown in Figure
14. The in-depth determination of these torque functions in time is shown in Chapter
5.2.2 through Chapter 5.2.4.
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Figure 14 Simplified flowchart of the determination of every torque component

5.2.2 Rod Torque

The rod torque is required to overcome the sum of the weight of the rod string and
the produced liquid, the frictional losses, and the dynamic losses during production. The
formula which determines the rod torque is given in Equation 1. (Takacs, 2015)

Troa(t) = TF(t) - (F(t) —SU) (1)
where:
Troa(t) Rod torque in time [in 1b],
TF(t) Torque factor in time [in],
F(t) Polished rod load in time [lb], and
SU Structural unbalance [lb].

The structural unbalance is the force requirement to balance the walking beam
horizontally with disconnected pitmans from the cranks. A sucker-rod pumping unit can
be tail heavy - if a downward pointing force must be exerted on the horsehead side to
maintain the balance - or horsehead heavy in the opposite case. (Takacs, 2003) The rod
torque calculated for the example problem is shown in Figure 15 with the results from
TWM.
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Figure 15 Calculated rod torque for the example problem

The value of the structural unbalance is considered positive when it is pointing
downwards, therefore it depends on the rotation of the pumping unit. The structural
unbalance is given for every pumping unit by the manufacturer.

5.2.2.1 Torque Factor

For the calculation of the rod torque the knowledge of the torque factor - the
imaginary lever arm - throughout the pumping cycle is required, which is calculated
from the crank angles using the geometry type and the linkage lengths of the pumping
unit. In Equation 1 the polished rod loads are obtained directly from the dynamometer
survey; the structural unbalance is provided by the manufacturer. The objective is to
determine the torque factor as a function of time for the calculation of the rod torque,
which is not included in the dynamometer measurement. The torque factor at a given
time can be calculated using Equation 2. Both the torque factor and the auxiliary angles
used depend on the crank angle, which was the basis of the previous torque analysis
methods. If the crank angle variation in time is known, the change of these variables in
time can be considered. Figure 16 shows the calculated torque factor values for the
example problem.

_R-A sin(a)
TE= Cc sin(B) (2)
where:
TF Torque factor [in],
R, AC Linkage dimensions [in], and
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a,f Auxiliary angles defined in Table 2 [rad].
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Figure 16 Torque factors calculated for the example problem

The angles on the right side of Equation 2 depend on the crank angle as seen in
Figure 5 through Figure 8; therefore, the crank angle has to be calculated first in order
to determine the torque factor at a given position of rods. Once the crank angle, 9, is
found, the corresponding a and f angles are found using the equations in Table 2. (API,

2008) (Takécs, 2015)

Table 2 Formulae used in the calculation of the torque factor

Conventional and Reverse Mark

Mark I1

Air Balanced

0,=2m—0+¢

C*+P>—R?>—K?*+4+2-K-R-cos(6,)

B =cos™t (

2-C-P

)

J=+RZ+K2—2-K-R-cos(6,)

2+K2_R2
p =cos™! <]—)b

p =sint (? - sin(92)>

2-]-K
J? +C? — P? (P
— -1 — -1(_.
X = cos < 27C ) X =Ssin <] 51"(3))
Yp=x-—p Y=x+p
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a=p+yp—(0—¢) a=0-¢p—(B+P) |a=p+1+(0-¢)

The parameter b in Table 2 is defined by Equation 3. The calculated torque factors

are shown in Figure 16 along with the data from the Total Well Management software.
-1if0<6,<m
b= (3)
lifnr<6,<2m
5.2.3 Counterbalance Torque
The load difference on the polished rod between the upstroke and the downstroke
necessitates the utilization of counterbalancing, to achieve a possibly smooth torque
loading during the pumping cycle. On crank balanced sucker-rod pumping units it is
achieved by installing counterweights on the crank arms. On the main counterweights
auxiliary weights can be placed. On beam balanced units the counterweights are placed
on the end of the walking beam. On air balanced units the counterbalancing is achieved
by installing a compressed air cylinder to the walking beam between the horsehead and
the saddle bearing. Since the beam balanced units are generally much smaller and
produce only a tiny fraction compared to a crank balanced one, the counterbalancing of
these units is not detailed. The detailed description of counterbalancing of air balanced
pumping units are omitted because it can be found in the literature in detail. (API, 2008)

5.2.3.1 Crank Balanced Pumping Units

The placement of the main counterweights on the crank arm is shown in Figure
17. The travel (T), the maximum distance (M), and the vertical component of the center
of gravity (Y.,) depend on the type of the counterweight used.

T Ay
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Figure 17 Counterweight placement on the crank arm (Takdcs, 2015), own edit

The list of applicable counterweights depends on the crank arm installed on the
pumping unit. Table 3 contains the compatible counterweights for the 94110CA crank
arm of the investigated C-640D-365-168 pumping unit. The counterweights’ masses and
mass moments of inertia about their center of gravity is included. Table 3 also includes
the compatible auxiliary counterweights - highlighted with gray color - with their
relevant properties. These parameters are usually given by the manufacturer.

Table 3 The relevant properties of the compatible counterweights
and auxiliary weights to crank 94110C (Lufkin, 1997)

Index | CW. Type | Mass [Ib] I [Ib ft?] Y [in] M [in] T [in]
7RO 315 114

1 8.6 96.3 84.58
7S 141 51
6RO 504 229

2 9.9 94.65 81.58
6S 190 83
5CRO 662 430

3 11.8 93.1 78.84
5CS 327 220
5ARO 913 707

4 13.4 91.91 77.34
5S 366 272
3CRO 1,327 1,384

5 13.3 87.4 83.96
3BS 572 562
2RO 1,708 2,458

6 14.2 84.34 80.84
2S 612 756
1RO 2,075 3,478

7 15.4 83.4 79.84
1S 638 1,222
OARO 2,700 5,268

8 18.5 82.4 78.84
0AS 836 1,505
ORO 3,397 8,017

9 19 77.4 73.77
0S 1,128 2,290
OORO 3,894 9,960

10 20 77.4 63.77
00S 1,175 2,490

In Table 3 the maximum distance of the specific counterweight’s center of gravity
from the long end of the crank is provided with the maximum travel distance of the
counterweight on the crank arm, the length T, see Figure 17. On the same crank the
smaller counterweights’ center of gravity can be placed further from the crankshaft, and
they have a longer travel distance as well. Using the same counterweight on smaller
cranks the maximum distance and the travel of the counterweight are shorter.

For cases when the mass moment of inertia is unknown for a specific
counterweight, I have developed Equation 4 based on the data in Table 3 to find an
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approximate value from its mass. To find the best parabolic function possible the least
squares method was used; the equation proposed has 98.07% accuracy based on the
input data listed in Table 3. Since only the counterweight masses are listed in
(BakerHughes, 2018), this formula can be used in this case to provide reasonably good

approximation.
Icg, = 4.052-107* - w? 4+ 0.9734 - w — 68.032 (4)
where:
Icg, Approximate counterweight mass moment of inertia about its
center of gravity [lbm ftZ], and
w Mass of the counterweight [1bm].

5.2.3.2 Using Identical Counterweights on the Crank Arms

The counterbalance torque calculation is based on the calculated crank angle
variation in time. The counterbalance torque versus time function is described by
Equation 5, if the same main and auxiliary counterweights are used on the opposing
sides of the crank arms. The maximum counterbalance moment in Equation 5 can be
determined from the moment of the crank arms of the sucker-rod pumping unit and the
knowledge of the configuration of the applied counterweights on the cranks.

Tep(t) = —Tcp,,,, - Sin(0(t) + 1) (5)
where:
Tcp(t) Counterbalance torque in time [in Ib],
TeBg, Maximum counterbalance moment [in 1b],
6(t) Crank angle variation in time [rad], and
T Phase angle [rad].

When two identical counterweights are used on a crank, the combined center of
gravity for the crank arm and the counterweights - the only purely rotating components
that create the counterbalance torque - is aligned on the symmetry line of the crank
arm. The value of the phase shift - 7 - is zero for Conventional pumping units; it is
specified by the manufacturer for the Mark Il and Reverse Mark pumping units. If the
counterweights on both sides of the crank arms are of the same type and are placed at
the same distance from the end of the crank, the maximum counterbalance moment is
calculated using Equation 6. (Bommer & Podio, 2012)

CBmax — Terank + (M — D) - (n-w+ng-w,) (6)
where:
Terank Crank moment [in lb],
M Maximum lever arm of the counterweights [in],
D Counterweight distance from the long end of the crank [in],
n Total number of main counterweights [-],
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w Weight of the one main counterweight [Ib],
ng Total number of auxiliary weights [-], and
w, Weight of one auxiliary weight [1b].

Since in the example problem all counterweights are the same, and their positions
from the long end of the crank are also equal, Equation 6 can be used to find the
maximum counterbalance moment, and Equation 5 produces the counterbalance torque
function throughout the pumping cycle. The maximum counterbalance moment for the
example case is found to be 1,386 k in lbs. The variation of the counterbalance torque for
the example problem is shown in Figure 18. It does not have a perfectly sinusoidal
shape because the crank angle values are not changing linearly with time, the crank does
not turn at constant speed during the pumping cycle.
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Figure 18 Calculated counterbalance torque for the example problem

The counterweights can be placed at different distances from the end of the crank
arm, the vertical component of the center of gravity for the aforementioned system is
unchanged, only the magnitude of the counterbalance torque will be different. This
phenomenon is illustrated in Figure 19. T¢p,4,, refers to the topmost case illustrated in
the right portion of the figure. Equation 7 is used to determine the maximum
counterbalance moment accurately in the case of having identical counterweights at
different positions on the cranks.
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Figure 19 Effect of differently positioned identical counterweights on the
counterbalance torque function
n
TCBmax = Terank + Z((M —D)-(w+ng- Wa)) (7)
i=1
where:
Terank Crank moment [in 1b],
n Total number of main counterweights [-],
M Maximum lever arm for the counterweights [in],
D; ith counterweight distance from the long end of the crank [in],
w Weight of one main counterweight [1b],
ng Number of auxiliary weights on one main counterweight [-], and
w, Weight of one auxiliary weight [1b].

5.2.3.3 Using Different Counterweights on the Crank Arms

The asymmetrical counterweight configuration means that on at least one crank
arm different counterweights are used on its opposing sides. In the production practice
the most common case for this type of counterbalancing occurs when only one main
counterweight is used on one crank arm, but they are placed on different sides of the
crank arm. In this case the counterbalance torque is exactly half compared to using four
main counterweights.

(BakerHughes, 2018) specifically cautions the user to place only one
counterweight on the same side of the cranks as shown in Figure 20 if two
counterweights are used. In this case the maximum counterbalance moment is in phase
with the symmetry line of the crank arm, similarly to the symmetrical counterbalancing
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scenario. By having the counterweights on the same sides of the crank arms, a phase
angle is introduced that shifts the counterbalance torque. It is important to state that
this installation and operations manual was created in 2018 and it only refers to the
possibility of overloading without an in-depth analysis or explanation. Note that for
some pumping units, this phase angle can help to create a better net torque loading, but
this must be determined strictly on case-by-case basis. The torque calculation model
presented here can determine how this way of counterbalancing will act on the
mechanical net gearbox torque function in time.

It is recommended that when using less than 4
master counterweights and/or auxiliary
counterweights, operators should keep weight
balanced between the leading and the lagging sides
of the cranks. Failure to do so will induce a phase
angle that could cause the gearbox to be
overloaded.

A CAUTION
X

v/

Figure 20 Caution against placing the counterweights on the same side of the crank arms
(BakerHughes, 2018)

Asymmetrical counterbalancing occurs, when different main and auxiliary
counterweights are used on one crank arm, or when only one counterweight is applied
to the same side of the crank arm. These cases will not only change the amplitude of the
counterbalance torque; an additional phase angle is introduced to the counterbalance
torque versus time function. Equation 8 describes the calculation of counterbalance
torque for the asymmetrically placed counterweights case.

Tep(t) = —Tepmax - SIN(O() + T+ T) (8)
where:
Teemax Maximum counterbalance moment [in lb],
6(t) Crank angle variation in time [rad],
T Phase angle [rad], and
T’ Secondary phase angle [rad].
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[ have developed Equation 9, that defines the maximum counterbalance moment

for asymmetrically placed counterweight configurations. This equation is the

generalized form of Equation (7). With this new equation the maximum counterbalance

moment can be determined for any counterweight configuration.

where:

~

crank

Way;

CBmax

n Na;
= Terank + Z (M; = D) | w; + Z Waij 9)
i=1 =

Crank moment [in 1b],

Total number of counterweights [-],

Maximum lever arm for the ith counterweight [in],

ith counterweight distance from the long end of the crank [in],
Weight of the ith counterweight [lb],
Number of auxiliary weights on the ith counterweight [-], and

Weight of the jth auxiliary weight on the ith counterweight [1b].

Figure 21 illustrates the connection between the changes in the counterweight

configurations and the resulting counterbalance torque functions for three sample cases.

As shown, the combined center of gravity of the crank and counterweight system

produces the evolution of a secondary phase angle.
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Figure 21 Effect of different asymmetrical counterweight configurations on the

counterbalance torque function

The secondary phase angle - t' - represents the lead or lag of the maximum

counterbalance torque from the symmetry line of the crank arm, as shown in Figure 21.

This value can be positive and negative, depending on the counterweight configuration
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and the direction of rotation. To calculate this angle, the center of gravity for the system
containing the crank arm and the counterweights must be determined.

Knowing the vertical and horizontal distance of the center of gravity of the
aforementioned system from the crankshaft, the secondary phase angle can be found
using Equation 10, see Figure 21.

Y
T =tan™?! <}> (10)
where:
Y Vertical distance of the center of gravity of the system containing
the crank and the counterweights from the crankshaft [in], and
X Horizontal distance of the center of gravity of the system containing

the crank and the counterweights from the crankshaft [in].

To find the center of gravity of this system, the required data are the mass of the
counterweights and the crank arm, the horizontal and vertical distance of their centers
of gravity from the crankshaft, as defined by Equation 11 and Equation 12, respectively.
The coordinate system used to describe the geometrical parameters used in these
equations is illustrated in Figure 17. The value of Y, is positive if the counterweight
precedes the crank arm in the direction of rotation, and is negative if it is on the opposite
side of the crank arm. The auxiliary counterweights installed on the main
counterweights are assumed to have the same center of gravity, as the main
counterweight in Equation 11 and Equation 12.

Xer =Mepr + Z?:l < (mcwl + Z] 1mcwa ]>>

X= (11)
M+ i (Mew, + )% M, )

where:
Xeor Horizontal distance of the center of gravity of the crank from the
crankshaft [in],
My Mass of the crank arm [lbn],
Xew, Horizontal distance of the center of gravity of the ith counterweight
from the crankshaft [in],
My, Mass of the ith counterweight [lbm], and
Me,, Mass of the jth auxiliary weight on the ith counterweight [lbm].
J
=1 <(YCWi + HW,,) - (mcw + 2] 1 mcwa 1))
Y = (12)
mCT + Zl 1 (mCW + 2] 1mCWa j)
where
Yew, Vertical distance of the center of gravity of the ith counterweight

from its base [in].
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The mass for every counterweight is given by the manufacturer, but the mass of
the crank arm is not always known. Some manufacturers publish the mass of the
gearbox and the two cranks combined, helping the installation procedure of the
pumping unit, but the individual mass of the crank is usually unspecified. (BakerHughes,
2018) If the mass of the crank must be approximated, I have developed Equation 13 to
provide a reasonable value for the calculation based on the equation used in (Serway,
1986). Equation 13 assumes the crank arm to have a perfectly cuboid shape and its
center of rotation is taken at the middle point of its shorter side closest to the

crankshaft.
12 - ICTr
m kg — 13
cran (2 .&)2 +4. (HM/Cr)Z ( )
12 12

where:

Merank, Approximate mass of the crank [lb],

I Mass moment of inertia of the cranks [lb ft2],

Xor Length of the crank arm [in], and

HW,, Half-width of the crank arm [in].

The approximate mass of one crank for the example problem is 4,366 lb, which is
comparable with a value provided by a different manufacturer for a unit with the same
designation. (Schlumberger, 2019) provides 4,699 Ib crank mass for their C-640D-365-
168 sucker-rod pumping unit. This comparison validates the applicability of Equation
(13) for the example problem.

5.2.4 Inertial Torques

The inertial torques are results of the energy release and dissipation of the parts
that are moving at varying speeds. Two different types of inertial torques are
distinguished in the operation of sucker-rod pumping units: articulating moment of
inertia and rotary moment of inertia. (Takacs, 2015) These torques have a small
magnitude compared to the rod torque and the counterbalance torque, and therefore
are often omitted from the calculation of the mechanical net gearbox torque. But since
the counterbalance torque tries to reduce the torque loading on the gearbox by
counteracting the rod torque, the inertial torques can play a significant role on the value
of the net gearbox torque, when the two main torques have a similar magnitude. By
neglecting the inertial torques from the torque calculations, the resulting suggested
counterweight configuration can in fact overload the pumping unit.

5.2.4.1 Articulating Inertial Torque

Since some parts of the pumping unit have an alternating movement during the
pumping cycle - beam, horsehead, equalizer, pitmans etc. - the accelerations and
decelerations introduce a new torque type, the articulating inertial torque. This torque

component exists even at constant pumping speeds. (Gibbs, 1975) This torque
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component is directly proportional to the angular acceleration of the beam as seen in
Equation 14. The value of I}, only depends on the pumping unit designation, its value is
supplied by the manufacturer of the pumping unit.

2
Tiat) = 5 TF(D) 2 0 (19

where:

T;q (t) Articulating inertial torque in time [in Ib],

TF(t) Torque factor in time [in],

I, Mass moment of inertia of the beam, horsehead, equalizer, and

bearings referred to the saddle bearing [Ibm ft2],
A Linkage dimension [in], and
% Angular acceleration of the walking beam [rad/sec?].

The beam angular acceleration can be obtained using three different methods as
seen in Figure 14. The first method involves the calculation of the crank angles as the
first step, then using the calculation procedure proposed by (Svinos, 1983) to get the
required beam acceleration versus time function. This method is exact, but cumbersome,
it requires the calculation of angular velocities and accelerations of the cranks and the
pitmans, using complex equations, as shown in Chapter 5.5.1.

The second calculation procedure is based on the work of (Gibbs, 1975) and is
detailed in Chapter 5.5.2, that determines the beam acceleration by differentiating the
measured polished rod displacements twice and then dividing them with the length of
link A. Fourier series method is applied to the measured polished rod position points to
make the differentiation simple and also to maintain a sufficient accuracy. The error of
the method depends on the number of coefficients used in the truncated Fourier series,
this behavior is investigated in detail in Chapter 5.5.2. Based on this evaluation, the
proposed number of coefficients used in the Fourier series is 10, which provides nearly
identical results to the exact calculation method proposed by (Svinos, 1983), see Figure
22.

Finally, a basic numerical method is used to validate the results of the previous two
methods. This method is presented in detail in Chapter 5.5.3 in detail; its results contain
a relatively high fluctuation, but it is helpful to validate the previous two methods, due to
the exceptional fit shown in Figure 22. These calculation models were investigated in
detail by (Takacs & Kis, 2014). With increased pumping speed the magnitude of the
articulating inertial torque increases, although the correlation is not linear. To find the
articulating inertial torque function, the application of the second method proposed by
(Gibbs, 1975) is recommended due to its high accuracy combined with little calculation
effort.
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Figure 22 Calculated articulating inertial torques for the example problem

5.2.4.2 Rotary Inertial Torque

Unlike the articulating inertial torque, the rotary inertial torque only exists if the
crank is turning at varying speeds during the pumping cycle, which is likely when a high
slip or ultra-high slip prime mover drives the pumping unit. (Gibbs, 1975) This torque
component is directly proportional to the crank angular acceleration, as shown in
Equation 15.

2
Tir(t) :3:;%'15'3?2 (15)
where:
T;,-(t) Rotary inertial torque in time [in Ib],
I Mass moment of inertia of the counterweights, cranks and slow-
speed gearing referred to the crankshaft [lby, ft2], and
3272 Angular acceleration of the crank arm [rad/sec?].

The calculation of the crank angular acceleration in time is carried out in Chapter
5.4. Similarly to the determination of the beam angular acceleration, a simple numerical
model is used for validation purposes. I is the sum of the mass moments of the listed
purely rotating components of the sucker-rod pumping unit, see Equation 16.
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Iy =l + 1 + 1y, (16)

where:
I Total mass moment of inertia of the rotating components [lbn ft2],
Iy Mass moment of inertia of the crank arms [lbn, ft?],
Iy Mass moment of inertia of the slow speed gearings [lbn ft?], and
Iow Mass moment of inertia of the counterweights [l1bm ft2].

The value of the cranks’ and the slow speed gearings’ mass moment of inertia is
provided by the manufacturer. Therefore, only the calculation of the counterweights’
mass moment of inertia is required to find the value of I;. Having a symmetrical
counterweight configuration, Equation 17 should be used to find the mass moment of

inertia of the counterweights.
2

H
Iw=nIg+ng Iy, + (M My +ng Mmey,) <E> (17)
where:
Iy Mass moment of inertia of one main counterweight about its center
of gravity [lbm ft?],
Ieg, Mass moment of inertia of one auxiliary counterweight about its
center of gravity [lbn ft?],
n Number of main counterweights [-],
ng Number of auxiliary counterweights [-],
My Mass of one main counterweight [lbn],
Mew, Mass of one auxiliary counterweight [lbn], and
H Distance between the crankshaft and the center of gravity of the

main counterweight [in].

Equation 18 is used to find the distance between the crankshaft and the center of
gravity of a main counterweight:

H = /(M = D)2 + (HWy + Yey,)? (18)
where:
M Maximum distance of the counterweight’s center of gravity from
the long end of the crank [in],
D Distance of the counterweight from the long end of the crank [in],
HW,, Half-width of the crank [in], and
Yew Vertical distance of the center of gravity of the counterweight from

its base [in].

Since the counterweight configuration in the example case is symmetrical,
Equation 17 can be used to find the missing mass moment of inertia from Equation 16.
The mass moment of inertia for the counterweights in the case of the example problem

31



is 614,466 lbn ft2, the resulting total mass moment of the purely rotating parts, I is
866,110 lby ft2. The resulting rotating moment of inertia function in time for the
example problem is shown in Figure 23.
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Figure 23 Calculated rotary inertial torque for the example problem

If identical counterweights are used, but their placement is different on the crank
arm, I developed Equation 19 to properly provide the mass moment of inertia in this

case.
. HAZ) Hi\?
Loy =n-legg+ng-Ieg, + z Mey; (E) + Z Mewy, <E> (19)
i=1 i=1
where:
Iy Mass moment of inertia of one main counterweight about its center
of gravity [Ibm ftZ],
Ieg, Mass moment of inertia of one auxiliary counterweight about its
center of gravity [lbn ft?],
n Number of main counterweights [-],
ng Number of auxiliary counterweights [-],
My, Mass of the ith counterweight [1bm],
cwa, Mass of the ith auxiliary weight [1bm], and
H; Distance between the crankshaft and the center of gravity of the ith

main counterweight [in].
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For asymmetrical counterweight configurations I created Equation 20, that defines
the counterweights’ mass moment of inertia for any counterbalancing scenario on crank
balanced sucker-rod pumping units.

n

ng; Ng;
H;\*
Loy = z Icgi + Z Icga., + Mew;, + Z Mew,. |° <_> (20)
L = lj = lj 12
= J=

where:

n Number of main counterweights [-],

Iey, Mass moment of inertia of the it main counterweight about its
center of gravity [lbn ft?],

Ng; Number of auxiliary weights on the it main counterweight [-],

Icgai. Mass moment of inertia of the jth auxiliary weight on the ith main
counterweight about its center of gravity [lbm ft?],

Mey, Mass of the ith main counterweight [Ibm], and

mCWaij Mass of the jth auxiliary weight on the ith main counterweight [1bm].

5.2.5 Net Gearbox Torque

The net gearbox torque is the sum of all torque components acting on the slow-
speed shaft of the gearbox. Its variation throughout the pumping cycle is shown in
Figure 24 for the example problem along with the calculated individual torque

components.
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Figure 24 Torque components acting on the gearbox for the example problem

The inertial torques have smaller amplitude than the other two main torques, but
their influence can be significant. The determination, whether the torsional loading of
the gearbox exceeds the maximum allowed torque is essential to maintain a sufficiently
long lifetime of the gear reducer, as illustrated previously in Figure 4.

For the example case, the comparison of the net gearbox torque found using the
newly introduced method in the thesis to the result of the TWM software is shown in
Figure 25. By neglecting the inertial torques, the TWM finds the pumping unit to be
overloaded. In contrast, this conclusion is incorrect, based on the results of the complete
torque analysis.
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Figure 25 Comparison of net gearbox torque variations

5.3 Determination of the Crank Angle vs Time

Modern electronic dynamometers register polished rod displacements and loads in
function of time at uniform time intervals throughout the measurement. But all four
torque components acting on the gearbox are functions of the crank angle, not recorded
in the dynamometer survey. This circumstance necessitates the determination of the
crank angles in time from the measured polished rod displacements. To handle this
problem, a successive approximation was introduced by (Takéacs, Kis, & Koncz, 2015).
For this calculation, in addition to the measured data, only the rotation and the API
designation of the sucker-rod pumping unit is required. The corresponding linkage
lengths are found in the tables provided by the manufacturer of the pumping unit.
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The determination of the crank angle variation in time is the cornerstone of a
proper calculation of the mechanical net gearbox torque. The crank angle values
produced by the proposed calculation method are compared to the Total Well Manager
results. TWM has slight error in the determination of the crank angles, but it is
important to find these values with the highest accuracy, because it is the first major
calculation step in the evaluation of the dynamometer survey. Any error in this step will
reduce the precision of every calculation based on the calculated crank angles.

5.3.1 Necessity of a Numerical Method

From a measured polished rod displacement, the direct calculation of the
corresponding crank angles is impossible because for every polished rod position there
is one corresponding crank angle on the up- and downstroke. Since an explicit
relationship does not exist between the position of rods and the crank angle, a numerical
calculation method must to be used in order to determine the crank angles
corresponding to the measured polished rod positions.

To infer the crank angles, the pumping unit’s kinematic parameters are used. This
process is complete, when the measured polished rod position is equal to the position
determined from the kinematic analysis of the pumping unit, see Equation 21. The crank
angle that produces the appropriate dimensionless position of rods value corresponds to
the measured time. (Takacs, Kis, & Koncz, 2015)

s; =S+ PR(Bcaic) (21)
where:
S; ith element of the measured polished rod position array [in],
S Stroke length [in], and

PR(O.q1c) Dimensionless position of rods at crank angle 6., [-]-

This process is carried out for each measured polished rod position, the product of
this procedure is the series of crank angle values valid at the measured times. (Takacs,
Kis, & Koncz, 2016) For this purpose, a successive approximation numerical method is
proposed, it is presented in detail in the following subchapter. This calculation method
can provide the crank angle values at the measured data points with any desired
precision.

5.3.2 Successive Approximation Numerical Method

This method is used to determine the crank angles, 8, that produce the same PR
(position of rod) values as the measured polished rod displacements, its flowchart is
shown in Figure 26.
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measured polished rod positions,
direction of rotation, geometry type,
linkage dimensions, crank angle increment

.

Subroutine 1

Y2 = Norm(y; + Ay)

A 4

Subroutine 2

y1 = Norm(y; + Ay)

A

e diff > 0

Yz = Norm(y; + 4y)

false

y

Oi=(y1+v2) /2

A

A

Subroutine 3(6;)

true

i<N

false

Subroutine 4

o )

Figure 26 Flowchart of the successive approximation numerical method that finds

the crank angles corresponding to the measured polished rod positions
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This numerical method can be applied to any dynamometer survey carried out on
Conventional, Reverse Mark, Mark Il and Air Balanced units. The Conventional and Air
Balanced units can operate with both clockwise and counter-clockwise direction of
rotation. In their counter-clockwise rotational case the crank angles - also the y; and y,
auxiliary crank angles - have to be recalculated with Equation 22.

Ocew = 2m — Ocw (22)
where:
Occw,Ocw  Crank angle in counter-clockwise and clockwise direction,
respectively [rad].

The fundamental idea of the calculation method is to create a moving pair of
auxiliary crank angles - y;and y, - and to determine, when the crank angle
corresponding to the measured position of rods is between those two. These two angles
are always the same distance apart, namely the used crank angle increment, Ay. At these
angles the corresponding position of rods values - PR(y;) and PR(y;), respectively - are
evaluated using the API kinematic model for sucker-rod pumping units API Spec. 11E
(API, 2008).

The crank angle of the sucker-rod pumping unit is always non-negative and
smaller than 2x. If the value of y; or y,, reaches, or exceeds 2m during the numerical
calculation, the Norm function adjusts their value, so it will be in the [0, 2r[ interval. The
output of this procedure, as discussed before, is the crank angle array valid at the
measured polished rod positions. The calculated crank angle values vs time for the
example problem are presented in Figure 27, along with the results of the TWM
software.
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Figure 27 Crank angles calculated for the example problem

Figure 28 shows the difference between the calculated crank angles by the
previously described method and the results of the TWM software, indicated with blue
circles. The TWM software underestimates the crank angles at every data point, the
difference between the results is between 0.5 deg and 2.2 deg with an average of 1.2 deg.
The reason behind the outlier values at the beginning of the upstroke and downstroke is
the fact that the difference of the measured positions by the dynamometer in these
regions are comparable to the accuracy of the equipment. This difference in the crank
angle calculation is magnified mainly in the inertial torque calculations.
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Figure 28 Crank angle differences between the proposed method and the TWM results

5.3.2.1 Subroutine 1 of the Successive Approximation Method

Subroutine 1 produces the fand 1) angles corresponding to the topmost and
lowermost positions of the polished rod, determines the stroke length and creates the
dimensionless position of rods array from the measured polished rod positions. Its
flowchart is shown in Figure 29 and the formulae for the four investigated sucker-rod
pumping units are presented in Table 4. The formulae introduced in Table 4 are in
accordance with the API Spec. 11E (API, 2008).

( START )

Calculate Yy, Yy, 6., 04

|

Calculate S

|

Calculate PR, array

|

Y11= 0.

END

Figure 29 The flowchart of Subroutine 1

Table 4 Formulae used in Subroutine 1
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In the first step of Subroutine 1 the auxiliary angles corresponding to the start of
the upstroke and downstroke of the unit are determined. Thereafter the stroke length of
the pumping unit is calculated using Equation 23.

S=A-(p =) (23)
where:
A Linkage dimension [in], and
Yp, Pt Auxiliary angle at the bottommost and topmost position of the

polished rod, respectively [rad].

For a given sucker-rod pumping unit the stroke length can be changed by attaching
the pitmans to a different wrist pin bearing, therefore modifying the length of link R. The
calculated stroke length for the example problem is 169.82 in. Based on the measured
polished rod positions, s(i), the calculation of the appropriate dimensionless positions is
possible using Equation (24).

s.
PRm(6): =< (24)
where:
PR,,(0); Dimensionless polished rod position for the ith measured point [in],
S; ith measured polished rod position [in], and
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S Stroke length [in].

The start of the measured data points of the dynamometer survey should begin
with the first point in the upstroke region to cover the whole pumping cycle. In this case
the suggested starting value of y; is equal to 8, calculated by Subroutine 1. Otherwise,
choosing a higher starting value for the auxiliary angle y; can cause the faulty calculation
of the crank angle in the downstroke corresponding to the position of rods. The next
step of the calculation is to check whether the given PR value is equal to 0 or 1. In these
cases the exact crank angles - 6,and 8,respectively - are previously calculated by
Subroutine 1 and are added to the crank angle array.

5.3.2.2 Subroutine 2 of the Successive Approximation Method

The second subroutine determines the relative position of rods for the two
auxiliary crank angles, by producing an indicative parameter, diff. The position of rods
corresponding to a given crank angle is calculated using Equation 25. The flowchart of
the second subroutine is shown in Figure 30.

W)
RO = w0 =)

where:
PR(0) Position of rods [-],
Y Auxiliary angle defined in Figure 5 through Figure 8 [rad], and
Yp, Pt Angle 1 at the start of the up- and downstroke, respectively [rad].

( START )

Subroutine 3(y;)
Subroutine 3(y;)

y

diff = (PR(y1) - PRm;) - (PR(yz) - PRm;)

END

Figure 30 The flowchart of Subroutine 2

5.3.2.3 Subroutine 3 of the Successive Approximation Method

The calculation of the position of rods at the auxiliary crank angle pair is done by using
Subroutine 3. The flowchart of this subroutine is shown in Figure 31, the governing
equations are shown in Table 2 for the investigated pumping unit geometries.
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( START )

Calculate 6,

y

Calculate g, J

y

Calculate p, y

y

Calculate ¥

y

Calculate PR, a

END

Figure 31 The flowchart of Subroutine 3

This calculation is straightforward if the direction of rotation, the geometry, and
the length of the linkage dimensions of the investigated pumping unit are known. The
input of this subroutine is a crank angle, the outputs are the necessary auxiliary angles
listed in Table 2 and the position of rods calculated by using Equation 25. The auxiliary
angles used in this subroutine are defined for every pumping unit geometry in Figure 5
through Figure 8. This calculation process is carried out in Subroutine 2 and in the main
calculation of the successive approximation method as seen in Figure 30 and Figure 26,
respectively.

After finishing the calculations described in Subroutine 2, the calculated positions
of rods are compared with the ith measured dimensionless position from the
dynamometer survey. Their difference from the given PR, value are multiplied,
therefore the parameter diff has a negative value if the position of rods from the
dynamometer survey is between the calculated PR(y;) and PR(Yy,), and has a positive
value otherwise, see Figure 26. If the value of diff is positive, then both y; and y, are
increased by Ay, and Subroutine 2 is repeated with the updated auxiliary crank angle
pair. When diff has a negative value the crank angle corresponding to the measured
relative polished rod position is between the two auxiliary crank angles; its value is
obtained averaging y; and y,. Because of the sufficiently small crank angle increment
used in the program (Ay = 0.1°), a linear approximation is more than enough to find the
crank angle that satisfies Equation 24. The maximum error of this procedure is half of
the used increment, Ay, which is sufficiently small for the purpose. To determine all
crank angles corresponding to the measured relative polished rod positions, the
previously detailed steps are repeated until the number of the measured polished rod
positions in the dynamometer survey for the investigated pumping cycle is reached.
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5.3.2.4 Subroutine 4 of the Successive Approximation Method

When the sampling rate is low compared to the pumping speed of the unit, the
topmost and lowermost polished rod positions may be missing from the dynamometer
survey. In such cases, for the proper crank angle calculation an additional validation step
is required, as illustrated in Figure 32.

The black dots in Figure 32 represent the data from the original dynamometer
survey, the orange circles show the case when the sampling rate of the measurement is
halved. The neighborhood of the crank angle at the start of the downstroke, 8, is focused
for better representation of the problem. As discussed previously, apart from the
topmost and lowermost positions, there is one crank angle both in the upstroke and
downstroke that corresponds to the measured position of rods.

An error emerges in the crank angle calculation, when the last measured position
of rods in the upstroke is smaller than the first measured position in the downstroke,
which is true in the illustrated scenario. In this particular case the calculation method
presented gives the wrong crank angle as the solution. Instead of calculating the crank
angle that corresponds to the position in the downstroke, the crank angle in the
upstroke is calculated, which is shown with a green circle in the figure.

Since the dynamometer survey contains data measured at constant time intervals,
this incorrect calculation will produce a smaller crank angle change in the upstroke, and
to compensate this, a greater change in the beginning of the downstroke is introduced.
These crank angle differences are visualized by the green horizontal lines. Even if the
crank angular velocity is not constant, the variation of the crank angle is smooth, which
is represented by the brown horizontal lines corresponding to the properly calculated
crank angles.
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Figure 32 Calculation of the incorrect crank angle without validation

If this faulty calculation is not corrected and crank angles without verification are
used, the crank angular velocity and crank angular acceleration functions can have
extreme variations compared to the rest of the pumping cycle. This will consequently be
transferred to the inertial torque calculations. Subroutine 4 tackles these calculation
errors, its flowchart is shown in Figure 33.

First, it checks whether the dimensionless PR 0 and 1 are in the calculated position
of rods array. If at least one of the two extremes is missing, Subroutine 4 determines,
whether the measured positions create the possibility of the miscalculation, and corrects
the crank angle if the relationship between the measured positions fulfills the condition.
Usually the magnitude of the inertial torques are at least one order of magnitude smaller
than the rod torque, or the counterbalance torque, but using this incorrectly calculated
crank and beam angular acceleration functions, their value can fundamentally change
the net torque variation.
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Figure 33 Flowchart of Subroutine 4

5.4 Calculation of the Crank’s Angular Acceleration

To find the crank angular acceleration from the calculated crank angle values, first
the angular velocity of the crank must be determined. Since the motion of the crank arm
is periodic, every property, that describes the pumping unit has the same values at the
start and end of the stroke. In the present chapter the determination of the crank
angular velocity using multiple methods is presented. The first method is a basic
numerical method, that is used for verification purposes. The second and third methods
use Fourier series in different ways to describe the crank angular velocity function.
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5.4.1 Importance of Using a Simple Numerical Method

The application of simple numerical methods is advantageous in the validation of
more complex procedures. It is vitally important, that the results of any calculation
should not have any methodical errors. The proposed numerical method produces the
crank angular velocities by using Equation 26.

A6 Norm(6;,1 — 6;
d — ( i+1 1) (26)
Atnumi liv1 — L
where:
AA—f ith element of the numerically calculated crank angular velocity
num;
array [rad/s],
0; ith element of the calculated crank angle array [rad], and
t; ith element of the time array for the calculated crank angle array
[sec].

This method approximates the tangent of the crank angle function in between the
measured times with the secant created by the two neighboring crank angle points. This
method creates a crank velocity array that contains one less element than the original
crank angle array. The times at which the calculated crank angular velocities are valid
can be determined using Equation 27. This process produces a rough estimate of the
crank angular velocity variation throughout the pumping cycle.

ity

tnumi - 2 (27)
where:
thum; ith element of the time array for the calculated crank angular
velocities [sec], and
t; ith element of the time array for the calculated crank angle array

[sec].

5.4.2 Using Fourier Series to Describe Periodic Behavior Based on Measured Data

Generally, the best approach to describe complex periodic behavior is to use
Fourier series. The general formula of the Fourier series is given in Equation 28. The
function of the Fourier approximation requires the determination of the a and b
coefficient arrays. In Equation 28, a,is the constant coefficient, moving the function in
the vertical direction, while the a and b arrays contain the information of the variation
of the function over the investigated period.
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F(x) = % + z ay * Cos (%#) + by, - sin (%#) (28)
k=1
where:
F(x) Fourier series function [var.],
ao Constant coefficient of the Fourier series [-],
Ng Number of coefficients in the Fourier series [-],
k Index of the coefficients in the Fourier series [-],
Ay, by kth coefficients of the Fourier series [-], and
P Period of the Fourier series [sec].

The advantage of the Fourier series is that it can create the best fitting function
based on available points with user defined period times. The period time
corresponding to the investigated stroke can be found from the calculated crank angle
data. If the bottommost position of the polished rod is in the dynamometer survey in
both the start and at the end of the stroke, the time required to complete a whole stroke
is just the time difference of the last and first measured point in the dynamometer
survey. However, if the bottommost position is not the recorded at the end of the stroke,
the last data point is the last one that has a smaller crank angle value corresponding to it
than 6. Using the calculated crank angle array, the time required to complete a whole
pumping cycle is determined by Equation 29. The calculated period time for the example
problem is 10.06 sec.

_ 21 ty
r= (Norm(6y — 6;) + 2m) (29)
where:
T Period time [sec],
ty Time of the last measured point from the first one [sec], and
01,0y Crank angles at the first and last measured point, respectively [rad].

For the determination of the coefficients, a custom Fourier time array must be
created over the previously calculated period. This is achieved by using Equation 30

te, = (30)
where:
tr; ith element of the Fourier time array [sec],
i Index that goes from 0 to N-1 [-], and
N Number of measured data points [-].

From the data points the values valid at the elements of the Fourier time array
must be interpolated. Since the difference between the it element of the measured time
array and the Fourier time array is relatively small (the maximum value is smaller than
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the time difference between the measured positions), a linear interpolation provides
sufficiently precise values to find the input data for the Fourier series.
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Figure 34 Flowchart of determining the Fourier coefficients

Equation 31 is used to find the data array suitable for the Fourier analysis. Once

these new arrays are created, the determination of the Fourier coefficients is possible
using the method described by Figure 34.
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tr, — t;

dp, = d; + (d; — d;i—1) . (31)
i -1
where:
dp; ith element of the Fourier input data array [var.],
d; ith element of the data array [var.],
tr; ith element of the Fourier time array [sec], and
t; ith element of the measured time array [sec].

Using the calculated coefficients, Equation 32 provides the truncated Fourier series
value at the measured times contained in the dynamometer survey.

Np
21 t; 21 t;
Fi=ao+Zak'cos<( nT l—n)-k>+bk'sin<< nT L—n)-k) (32)
=1

where:
F; ith solution of the Fourier series at the measured times [var.],
a Constant coefficient of the Fourier series [-],
Ay, by kth coefficients of the Fourier series [-],
t; ith element of the measured time array [sec],
T Period time [sec],
k Index of the coefficients in the Fourier series [-], and
Ng Number of coefficients in the Fourier series [-].

Since the Fourier series is a sum of different sine and cosine functions, its
differentiation is simple. After the values contained in the Fourier series for the original
data are calculated, its time derivative can be determined using Equation 33, the second
derivative is defined in Equation 34.

Np
dF 2k 27T'tl' 27T'ti
= =_.§ —q. - <i _ ). . ). 33
at; - ay sm(( T n) k>+bk cos(( T n) k) (33)

k=1
where:
dr , N . .
v First derivative of the result of the Fourier series at the measured
L
times [var.].
Np
sz —4 - kz 21 - ti i 21 - ti
Wi=T-zak-cos ( T —n)-k + by, * sin ( T —n)-k (34)
k=1
where:
d?F - . .
ey Second derivative of the result of the Fourier series at the measured
L

times [var.].
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5.4.3 Determination of the Crank Angular Velocity Using Fourier Series

5.4.3.1 Using Fourier Series on the Calculated Crank Angle Array

The most straightforward solution would be the application of Fourier series on
the calculated crank angle values, then the crank angular velocity and angular
acceleration can be derived using only differentiation. Since the movement of the crank
is periodic, the function regressed on the measured points should produce the same
values at the start and at the end of the interval. This statement is true, however, the
crank angle function is a sawtooth-like function with a discontinuity at the bottom of the
stroke. The reason for this behavior lies in the definition of the crank angle, it always
falls between 0 and 2.

Using the truncated Fourier series detailed in Chapter 5.4.2 on the crank angle
array describes the data poorly, as seen in Figure 35. The black dots represent the
calculated crank angle values; the blue curve shows the calculated truncated Fourier
series using the crank angle values as input. Since the operation of any sucker-rod
pumping unit is cyclical, all investigated variables are described by functions that have
the same value at the start of the upstroke and at the end of the downstroke. Functions
with discontinuity - like the crank angle function - cause oscillations of the used
truncated Fourier series to ensure identical values at the ends of the investigated time
interval.

As seen in Figure 35, the Fourier series provides even invalid crank angles, going
below 0 deg, and above 360 deg. To find the crank angular acceleration, this function
must be differentiated twice. The resulting acceleration pattern would surely be
unusable due to the extreme oscillation resulting from the deviation from the crank
angle data set. Therefore, this approach to find the acceleration pattern of the crank arm
is rejected.
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Figure 35 Using Fourier series on the crank angle array

5.4.3.2 Using Fourier Series on Numerically Calculated Crank Angular Velocity
Arrays

Using Fourier series on data points with a discontinuity in the investigated interval
provides unusable results, therefore, to apply the Fourier series properly, a data series
has to be created without any discontinuity. By using the numerically calculated crank
angular velocity array in Chapter 5.4.1 as the basis, the application of the Fourier series
becomes possible. Along with this basic numerically calculated array an improved
numerically calculated crank angular velocity array has been created using a five-step
stencil method. In this case Equation 35 is used to generate the elements of this array of
higher accuracy. This is a novel procedure that finds the crank angular velocity function
with improved accuracy compared to the prior works and the results of the TWM
software. Figure 36 shows the comparison between the results of the TWM software
and the presented calculation methods. The result of the TWM software has more
extreme differences than the two introduced methods. The introduced calculation
procedures produce similar crank angular velocities that correctly correlate with the
TWM results.

AG . Norm(—9i+2+8 ' 9i+1_8 ' 9i—1 + 91'_2) (35)
Atnumzi 12 (i1 — t)
where:
AA—f Numerically calculated crank angular velocity using the five-step
numa2;

stencil method [rad/sec],
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0; ith element of the calculated crank angle array [rad], and

t; ith element of the measured time array [sec].
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Figure 36 The calculated crank angular velocity function

The five-step stencil numerical method provides a smoother crank velocity array;
however, it does not provide results for the first and last two measured times. At these
times the crank angular velocity is approximated by the average of the first and last 4
calculated values, respectively. The increased precision of using the five-step stencil
method becomes visible in Figure 37.
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Figure 37 The calculated crank angular acceleration function

5.5 Determination of Beam Angular Acceleration

Knowledge of the angular acceleration pattern of the walking beam is necessary
for the calculation of the articulating inertial torque, as shown in Chapter 5.2.4.1. Three
different methods are presented in detail, and their results are compared to find the best
procedure providing the required acceleration of the beam throughout the pumping
cycle. The first method is based on the work of Svinos (Svinos, 1983) using vector
analysis to describe the kinematic behavior of the pumping unit, the second procedure
follows the proposal of Gibbs (Gibbs, 2012) to use Fourier series on the measured
polished rod positions to derive the beam angular acceleration, and the third numerical
method verifies the results of the two complex methods. (Takacs, Kis, & Koncz, 2016)

5.5.1 Calculation of the Beam Acceleration Based on the Svinos Method
The method proposed by Svinos uses complex vectors to describe the exact
kinematic behavior of the pumping unit and details a method to find the angular
acceleration of the walking beam based on the movement of the crank arm. (Svinos,
1983) In the referred paper, the model is using an auxiliary angle, 8, instead of the crank
angle, see Figure 5 through Figure 8 for its visual representation. Since 8, and 6 have
different orientations, their differentiated functions will have the same magnitude, but
different signs, see Equation 36 and Equation 37. To find 8, corresponding to the crank
angle, 6, use Table 2.
a0 -
dt dt
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The vector equation of the position of the equalizer bearing from the crankshaft is
defined in Equation 38. Both sides of the equation represent a vector pointing from the
crankshaft to the equalizer bearing.

K+C=R+P (38)
where:
I?, 5, ff,ﬁ Linkage vectors, oriented from the crankshaft along with their
respective linkage [in].

Equation 39 is found by converting Equation 38 into exponential form with
relative angles referred to linkage K.

K+C-etf =R-e02 4 p.elbp (39)
where:
K,C,R,P Linkage lengths [in], and
By, 06,,0, Auxiliary angles [rad].

The angles in Equation 39 are shown in Figure 5 through Figure 8 for the
investigated pumping unit geometries and the governing equations calculating them are
defined in Table 5. After rearranging Equation 39 to find 6,, both sides of the equation
are differentiated with respect to time to produce the time derivative of the beam angle,
0,. Solving the system of equations received after differentiation (using the Cramer-
rule) gives the angular velocity of links R, P and C. The angular velocity of the walking
beam is defined by Equation 40.

Table 5 Auxiliary angles for the Svinos method

Conventional and Reverse Mark Mark I1 ‘ Air Balanced

p 2:P-] p 2:P-]

Hsz[—ll)
d6, R sin(g, —6,) do

dt ~ C sin(6,—6,) dt (40)
where:
% Beam angular velocity [rad/sec],
R,C Linkage lengths [in],

0y, 02,06, Auxiliary angles [rad], and
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do
dt

Crank angular velocity [rad/sec].

By differentiating Equation 40 with respect to time, the angular acceleration of the

walking beam is defined by Equation 41.

where:
d26,
de?
a0y
dt
dze
dt?
do
dt
0y, 05,06,
de,
dt

d?6, do, [ gz

426 (dep B d9b) (dep N d_g)
dt dt de  dt

dez  dt o tan(6, — 65) ~ tan(6, — 6p)

(41)
de

Beam angular acceleration [rad/sec?],
Beam angular velocity [rad/sec],
Crank angular acceleration [rad/sec?],

Crank angular velocity [rad/sec],
Auxiliary angles [rad], and

Pitman angular velocity [rad/sec].

The required crank angular velocity and angular acceleration arrays are already

calculated in Chapter 5.4. Equation 41 needs the time derivative of the pitman auxiliary

angle as an input for the calculation. It is calculated using the same method that

produced the beam angular velocity defined in Equation 40. The pitman’s angular

velocity is found using Equation42.

where:
R,P
de
dt
Oy, 02, 6,

dé R sin(6, —06,) db
_pP___. # A (42)
dt P sin(6,—6,) dt

Linkage lengths [in],

Crank angular velocity [rad/sec], and

Auxiliary angles [rad].

Equation 41 can be used in cases, when the crank angular velocity is not constant

during the pumping cycle, as both the crank angular velocity and angular acceleration

are taken into account. After following the calculation method of these variables

throughout the pumping cycle introduced in Chapter 5.4, the beam angular acceleration

variation can be determined.
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5.5.2 Calculation of the Beam Acceleration Based on the Method Proposed by Gibbs

Gibbs introduced a different way to find the beam acceleration by using the fact,
that the polished rod vertical displacement is equal to the length of the arc covered by
the outer edge of link A, see Equation 43. (Gibbs, 2012)

s(t) =A-(0,(t) — 0y,) (43)
where:
s(t) Measured polished rod position [in],
A Linkage length [in],
0, Auxiliary beam angle [rad], and
Opy Auxiliary beam angle at the start of the upstroke [rad].

By expressing the angle 8, from Equation 43 and differentiating the resulting
equation twice with respect to time, the beam angular acceleration is described by the
resulting Equation 44.

d?s(t)
d*0, g2 (44)
dtz =~ A
where:
d?s(t) . S
e Polished rod acceleration [in/sec?], and
A Linkage length [in].

For this calculation only the polished rod positions registered in time —obtained
from a dynamometer survey - are required in addition to the length of linkage A. Due to
the complex nature of the operation of the sucker-rod pumping unit, the exact polished
rod position function, s(t), is not known. The easiest way to produce the required beam
angular accelerations is to fit a function on the measured polished rod position points
and differentiating it twice.

The best method to describe the polished rod position function is the application of
Fourier series on the measured data, introduced in Chapter 5.4.2. Finding the proper
coefficients to describe the variation of the polished rod position throughout the
pumping cycle provides the required function by Equation 44. Since the measured
polished rod position data describe a relatively smooth variation, as shown in Figure
13, the recommended number of coefficients required to produce a Fourier function,
that properly fits the measured data is 10. (Gibbs, 2012)

To visualize the effect of the number of coefficients used in the truncated Fourier
series, Figure 38 is introduced. If 5 coefficients are used, the accuracy of the regression
will not be at an acceptable level, as indicated with the purple curve. However, if the
number of coefficients greatly exceeds 10, the resulting function will follow the
systematic noise in the variation of the measured points, which is not desired. This is
presented with the red curve that uses 30 coefficients for the calculation. The absolute

56



error of the regression is decreased, but unwanted high frequency and low amplitude
oscillations are produced due to the unnecessarily high number of coefficients.
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Figure 38 Comparison of different number of coefficients used in the Gibbs method

5.5.3 A Simple Numerical Method

For validating purposes, a simple numerical method should be used to make sure,
that the more sophisticated methods produce correct results, as detailed in Chapter
5.4.1. A similar method is used in the Total Well Management, it is based on using
Equation 44. (Echometer, 2007) The acceleration of the walking beam is found from the
calculated polished rod acceleration. To find the polished rod acceleration pattern, first,
the polished rod velocity has to be determined with Equation 45, which is done by
numerical differentiation of the measured polished rod positions.

As(t)  sip1— s

= (45)
At it —
where:
Az(tt)_ ith element of the numerically calculated polished rod velocity array
l
[in/sec],
S; ith element of the measured polished rod position array [in], and
t; ith element of the measured time array [sec].
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These velocities are valid between the measured times, see Equation 27. Further
differentiating the polished rod velocity array, the acceleration of the polished rod is
determined, using Equation 46.

As(t)  As(®)

Azs(t) _ At 41 At (4‘6)
At? tiv1 — &
where:
2
2 Ast(zt), ith element of the numerically calculated polished rod acceleration
L
array [in/sec],
Az(tt)_ ith element of the numerically calculated polished rod velocity array
L
[in/sec], and
t; ith element of the measured time array [sec].

Using Equation 44 the beam angular acceleration can be calculated from the
polished rod acceleration values. The described method is the most basic numerical
method, therefore it has larger error compared to the previously detailed methods in
Chapter 5.5.1 and Chapter 5.5.2, but its most important advantage is the elimination of
systematic errors. Due to the nature of the numerical differentiation, the resulting
polished rod acceleration values are valid at the measured times registered in the
dynamometer survey, except two missing values, one at the start and one at the end of
the array. This is not a critical problem, since usually the measured points in one stroke
are in the hundreds range, and the results are used for justifying the results of other,
more complex - and therefore more accurate - methods, if their results show good
correlation.

5.5.4 Comparison of the Calculation Methods

Figure 39 contains the beam acceleration data calculated using the three
previously detailed methods along with the results of the TWM software. The strong
correlation between the results of the simple numerical method and the two more
sophisticated methods is clearly supported based on their visual representation, the
correlation parameter is 0.9615 between the numerical data set and the results of the
calculation based on the method proposed by Svinos. The correlation between the two
more accurate methods is 0.9868, this means that the results of the methods are nearly
identical. Based on this analysis, the result of the Svinos and Gibbs methods are
accepted.

The number of Fourier coefficients used in the Gibbs method is sufficient based on
the comparison with the exact calculation method developed by Svinos. Since the
application of the Fourier series is much less cumbersome in the method proposed by
Gibbs than the calculations required by the Svinos method, the usage of the former

method is recommended to find the angular acceleration pattern of the walking beam.
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The raw beam angular accelerations of the TWM software are acceptable, since they
nearly coincide with the numerically calculated values, however, the filtered

acceleration function is not properly calculated, as shown in Figure 39.
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Figure 39 Comparison of models calculating the beam angular acceleration
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6 Achieving Optimal Counterbalancing

Different theories on the optimal net gearbox torque are detailed in this chapter
based on extensive literature research. After the discussion on the different optimization
principles, the objective of this chapter is to provide the counterweight configuration
corresponding to the best net gearbox torque variation throughout the pumping cycle
for the investigated crank balanced sucker-rod pumping unit. By changing the
counterweight configuration valid at the dynamometer measurement to the optimum
arrangement the operation of the sucker-rod pumping unit can be improved
significantly.

For this purpose, an artificial intelligence program was developed in C#
programming language, due to the complexity of the emerging optimization problem.
Screenshots of the program, the input and output files are included in Appendix A.
Appendix B contains the most relevant parts of the source code.

The brute force method of checking every counterweight configuration is futile,
since the total number of cases for the example problem is between 2 - 107 and 6 - 107
in the asymmetrical counterbalancing case. These boundaries were calculated based on
the number of applicable counterweights on either side the crank arms, the travel of
each counterweight on the crank arm, and the number of auxiliary weights on each main
counterweight. There were 10 different applicable counterweight types, as shown in
Table 3, resulting in 11 different cases in total by including the scenario without a main
counterweight on the selected side of the crank arm. The travel of the main
counterweights varies between 63.77 in and 84.58 in, the increment of the
counterweight position was set to 0.1 in, resulting in 638 and 846 different positions,
respectively. On each main counterweight maximum 2 auxiliary weights were allowed in
the optimization procedure, resulting in 3 different cases for each counterweight.

6.1 Theoretical Background of Torque Optimization

The optimization of the net mechanical gearbox torque seems to be a well
discussed problem due to the fact that the torque loading of the pumping unit
determines the energy requirement, and therefore the cost of the oil production.
However, some new achievements are shown in this chapter regarding the selection of
the appropriate optimization procedure.

6.1.1 Optimization of the Maximum Net Gearbox Torque

The first optimization criterion was discussed as early as 1943 by (Kemler, 1943).
The result of not having optimal counterbalancing results in energy being wasted and in
some cases can lead to equipment damage due to overloading. The optimum
counterbalancing means that the rod torque is offset in the greatest extent possible,
resulting in the minimum net gearbox torque and therefore minimizing the peak
torsional loading on the prime mover. (Richards, 1957) The corresponding
counterweight configuration is found by selecting the counterbalance torque that
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equalizes the peaks of the net gearbox torque in the upstroke and downstroke. (Takacs,
2015) As discussed in (Rowlan, McCoy, & Podio, 2005) in a balanced operation the peaks
of the net gearbox torque function in the upstroke and downstroke are approximately
equal.

During the optimization, the changes in the rotary inertial torque should be
considered in addition to the changes of the counterbalance torque to improve accuracy.
Previous works did not include the in-depth investigation of asymmetrical
counterweight configurations in the torque optimization procedure. If identical
counterweights are used to counterbalance the pumping unit, only the magnitude of the
counterbalance torque is affected by their respective placements on the crank arms, as
shown in Figure 19. By using an asymmetrical counterweight configuration, the
secondary phase angle, T’ has to be considered, as shown in Figure 21. By having this
new degree of freedom in the optimization, the net gearbox torque can have the same
maximum value at three different times in one pumping cycle. This results in a smaller
peak net gearbox torque compared to using identical counterweights.

6.1.2 Optimization of the Cyclic Load Factor

The calculation method presented by (Takacs, 1990) focuses on introducing a
more advanced calculation method to produce the optimal counterbalance torque than
the one specified in the API Spec 11E (API, 2008). The objective of this optimization
procedure is to achieve the smallest cyclic load factor (CLF) using an iterative method;
CLF is defined by Equation 47. The merit behind this optimum is that the lowest power
requirement by the prime mover is obtained at the minimal CLF value. Using the least
amount of energy to produce a given liquid regime increases the profitability of the oil

production.
2 2
jfgfo(Tnet(e)) de
21
CLF =Y (47)
Joeo Tree(6)d6
21
where:
CLF Cyclic load factor [-], and
Thet (6) Net gearbox torque versus crank angle function [in lb].

The cost-efficiency of the sucker-rod pumping can be greatly increased using the
proper counterbalancing of the unit. In (Takacs, 1990) the optimized result improved
the CLF of the investigated unit from 1.594 to 1.400, and the overloading of the gearbox
from 157.5% to 123.3%. By optimizing for a different objective - reducing the peak net
gearbox torque - the overloading of the unit could have been reduced below 123.3%.
This condition slightly increases the cost of pumping but improves the lifetime of the
gearbox substantively, as shown in Figure 4.
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6.1.3 Introduction of the Modified Cyclic Load Factor

A modified CLF parameter was developed, that generalizes Equation 47 by
considering the varying crank angular acceleration in time. Using Equation 48, the
torque optimization of sucker-rod pumping units with varying crank angular speeds is

improved.
T 2
J Sy (Tree(8))"dt
T 48
CLFpoq = ~—7 (48)
ft:O Tnet (t)dt
T
where:
CLF 04 Modified cyclic load factor [-],
Thee () Net gearbox torque variation in time [in 1b], and
T Period time of the investigated pumping unit [sec].

In the past Equation (47) was used mainly because the crank angle was the basis of
the torque analysis, every parameter was calculated at equally distributed crank angle
values. In these cases, the constant increase of the crank angle function was assumed.
The basis of Equation (48) is time, therefore this new equation is capable to consider the
precisely calculated crank angle variation throughout the pumping cycle.

6.2 Change of Crank Acceleration due to Different Counterbalancing

By modifying the counterweight configuration, the acceleration pattern of the
walking beam and the crank arm will change, however, this effect cannot be determined
from only one dynamometer measurement. The operation of sucker-rod pumping
systems is too complex for the exact determination of these variations. Based on two
dynamometer measurements carried out on a M-640D-305-192 unit - its properties are
shown in Table 6 - before and after the counterweight modification, the acceleration
patterns are compared.

Table 6 Input data for the pumping unit in the investigation
of the change in crank angular acceleration

Pumping unit designation M-640D-305-192
Manufacturer Lufkin
Geometry type Mark I1

Maximum torque loading of the gearbox | 640,000 inlb

Maximum polished rod load 30,500 1b
Nominal stroke length 192 in
Structural unbalance -7,1601b
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Crank type 192130MRO

Gearbox mass moment of inertia 3,920 lby, ft?

Beam mass moment of inertia 4,621,470 lbn, ft2
Rotation Counterclockwise
Counterviights o ong et ofaatk
Crank moment 905,690 inlb

Crank mass moment of inertia (2 cranks) | 788,968 lby, ft?

Crank length 130 in

Crank half-width 16 in

Pumping speed 6.32 SPM

In the original case 4pcs. 0ARO counterweights were placed 0 in from the long end
of the crank arm. After the counterbalance optimization of the TWM software the main
counterweights were moved 3.25 in towards the crankshaft and 4pcs. OAS auxiliary
counterweights were installed to increase the counterbalance torque. The net torque

curves and the crank angular acceleration curves before and after the modification of

the counterweight configuration are shown in Figure 40.
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Figure 40 Effect of different counterweight configuration on the crank acceleration
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When measuring correlation between two data series, Equation 49 is used to get a
quantitative result. If the value is 1, there is a stochastic positive relationship between
the two data series. At -1 correlation value, there is a negative and strong connection. As
the correlation value approaches 0, it indicates a weak or no correlation between the
two investigated data series. (Microsoft, 2019)

(G =0 - i =)

Correlation = (49)
\/Z?I:l(xi — 0% X, (i — 9)?
where:
N number of data points [-],
X, Vi ith element of the data series [var.], and
X,y average of the respective data series [var.].

The correlation between the changes in the net gearbox torque and the differences
in the crank and beam acceleration patterns are -0.16 and 0.085, respectively. These
values represent a poor correlation. As the peak torque decreases in the balanced case,
the resulting crank angular acceleration function also has lower peak values, but since
the correlation is not strong enough, the new crank angular acceleration function cannot
be approximated using the initial crank angle variation and the two net torque
variations throughout the pumping cycle. Creating a calculation procedure capable of
executing the aforementioned task would increase the accuracy of the net gearbox
torque optimization procedures. Since such a method is not available, the crank angular
acceleration values determined from the dynamometer survey are used to find the
inertial torques under different counterbalancing conditions.

6.3 Particle Swarm Optimization Technique

The particle swarm optimization (PSO) algorithms are metaheuristic artificial
intelligence techniques, that use an iterative process to find the optimum to a given
problem. There are numerous different methods in this group, their different properties
enable the engineers and mathematicians to solve a wide variety of optimization
problems by selecting the proper type. (Engelbrecht, 2007)

6.3.1 General Properties of the PSO Method

The use of a PSO technique is preferred, when the direct calculation of the
optimum condition is not possible, and when the other multi-dimensional algorithms fail
to find the global optimum because of the high number of the local optima in the
solution space. Another advantage of this method is its flexibility. The general
optimization method can be customized with little effort to the solve the task at hand
effectively by either modifying the calculation procedure, or changing the constants used
in the method to create an improved optimization process. This algorithm provides a
solution even if the specified fitness function is not continuously differentiable. Due to
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the nature of the method, the global optimum is not guaranteed to be the result of the
calculation, but the results are better than any direct calculation method available.
(Eberhart & Kennedy, 2001)

The method uses a given number of candidates, improving their position in the
solution space in each calculation step. The determination of the new positions is carried
out by minimizing the fitness - an error function value - of the candidates. The
visualization of this step-by-step improvement shows remarkable resemblance to the
movement of flock of birds, or school of fish. (Fernandez-Martinez, 2012) Figure 41
shows the simplified flowchart of the applied PSO algorithm.

As the first step of the optimization procedure the solution space is populated with
particles, then the fitness value of every candidate solution is determined. The
initialization of the particles is usually carried out by randomly generating their
positions, independently from each other. Each particle is defined by a vector; its
coordinates define the position of the particle in the respective dimensions. The
dimension of the required vector is determined by the number of independent variables
in the optimization procedure.

( START )

A 4

Initialize the particles

A 4

A

Calculate the fitness value for every particle

A 4

Find the best particle of the swarm

A 4

Determine the velocity of the other particles

A

Update the positions of the particles

Termination
criterion satisfied?

Figure 41 General flowchart of the particle swarm optimization method

The formula that defines the velocity vector for every particle is customizable to
produce a robust optimization procedure for the selected task. The objective of the
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following iteration steps is to improve the global best fitness value. A termination
criterion is specified to end the calculation process. This constraint is usually the
number of iteration steps, but this condition can be tailored to handle the specific
optimization task at hand.

The customizability is one of the main advantages of the PSO algorithm. The
intervals from which the parameters can take value is not always constant. Another
great benefit of the presented calculation method is the relatively easy modification of
the optimization goal. Changing the procedure to produce the fitness value for every
point using a different error function is straightforward.

6.3.2 Using the PSO Algorithm in the Net Gearbox Torque Optimization of Sucker-
Rod Pumping Units

The previously introduced general PSO algorithm is customized to handle the
necessary optimizations introduced in Chapter 6.1. The initialization of the particles is
done by randomly generating their position in the investigated hyperdimensional space.
Every component of their positions are generated independently using a uniform
distribution within the boundaries of the respective dimension. Every component of the
position vector must be non-negative, the upper limit is constant for the main
counterweight type and for the number of auxiliary weights used. The upper boundary
of the counterweight distance from the long end of the crank depends on the crank and
the main counterweight used. When the main counterweight type is changed, the upper
boundary of its position must be determined using data similar to Table 3.

The number of particles used in the optimization procedure mainly depends on the
smoothness of the search space. For smooth surfaces smaller swarm sizes are sufficient,
usually 30 particles provide the optimum solution in these cases. (Engelbrecht, 2007)
However, in the optimization of the net gearbox torque the fitness function is
discontinuous with numerous local optima. Based on the results of multiple test runs the
swarm size was set to 500. A smaller number of particles provided inferior results even
with increased number of iteration steps. Using more particles provided nearly identical
results with increased simulation times.

The calculation of the fitness value for every particle is carried out using the
criteria introduced in Chapter 6.1. The fitness functions are the maximum net gearbox
torque in the pumping cycle, and the modified cyclic load factor, introduced in Chapter
6.1.1 and Chapter 6.1.3, respectively. If the pumping speed varies during the pumping
cycle, the changes in the counterweights type and positions alters the value of I;.
Therefore, during the calculation of the new counterbalance torque the rotary inertial
torque must be determined with the new mass moment of inertia. This circumstance
makes the process more complex than the previous optimization methods, which
neglected the inertial torques.

The global best solution is then selected, that will attract the other points to
produce an improved counterweight configuration. The next step in the procedure is the
determination of the velocity of every particle using Equation 50. The relevant
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parameters to find the velocity vector are the current position, the position
corresponding to the lowest fitness value the selected candidate ever had, and the global
best position in the current iteration step.

Vigrj =W Vy;+Cy-Rnd, - (BP,j — P;;) + C, - Rnd, - (GBP; — P, ) (50)

where:

Vij jth velocity component of a particle in the ith iteration step [-],

w Damping factor [-],

Cy,C, Acceleration coefficients [-],

Rnd{,Rnd, Random numbers from [0,1] [-],

BP;; jtt component of the best position of a particle in the ith iteration
step [-],

P; jth component of the position of a particle in the ith iteration step [-],
and

GBP; jtt component of the global best position [-].

The damping factor decreases the maximum vector length at every iteration,
ensuring the convergence of the optimization. For the investigated torque optimization
problems, a damping factor of 0.99 provided a good convergence; if a smaller number is
used, the particles initially distant from the global best position cannot travel through
the solution space, therefore the optimization procedure can end prematurely.

The acceleration coefficients control the behavior of the particles, C; considers the
particles attraction to its own best position, C, determines the effect of the global best
position on the particle. Their ideal absolute and relative values depend on the
optimization task, usually a similar pair of values provide a robust and efficient
calculation procedure. (Engelbrecht, 2007) Both of these parameters were set to 2 after
series of testing, with these values the maximum velocity component was ideal. With
greater acceleration values the particles would have greater velocities and therefore
could miss optimum solutions on their trajectories. If smaller numbers were used, the
required number of iteration steps had to be increased to achieve similar accuracy.

The random numbers - Rnd; and Rnd, - included in Equation 50 create a more
robust and versatile optimization procedure by adding uncertainty to the stochastic
nature of the equation. These variables are chosen randomly and independently from
the [0, 1] interval.

Maximum and minimum values can be specified for every component of the
calculated velocity vector, and the resulting position coordinates. While solving the
example problem, the upper limit for the velocity vector was set to 10. Using a hard limit
ensures that the distant particles from the current best position will not immediately
move to its local vicinity and therefore possibly missing better solutions in the process.

The termination criterion was specified by the allowed number of iteration steps.
During extensive testing of the introduced PSO program, 30 iteration steps proved to be
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sufficient to find the optimal counterweight configuration considering the constraints of
the optimization process.

The optimization of the net gearbox torque is a complex task if all the relevant
torque components are considered. Even in the symmetrical counterweight
configuration case there are three independent variables: the weight of the
counterweights, the number of the used auxiliary counterweights and the counterweight
placement from the long end of the crank. In the asymmetrically placed counterweight
case however, the number of independent parameters rises to twelve: the type of the
main counterweight, the number of the used auxiliary counterweights and the distance
of the main counterweight from the end of the crank for both sides for both cranks
independently. A twelve-dimensional vector contains these data; therefore, the
optimization of the mechanical net gearbox torque has to be carried out in a twelve-
dimensional solution space. Every combination of the coefficients in the vector will alter
the resulting net torque variation during the production cycle.

Depending on the type of the main counterweight, the maximum travel distance on
the crank arm is defined in Table 3. This is the upper boundary of the counterweight
displacement used in the optimization, it must be reconsidered at each calculation step.
Additional constraints - like only allowing counterweights from the same type with
different positions on the crank arm - are implemented with little effort.

6.3.3 Investigating a Particle in the PSO Algorithm of the Example Problem

The calculation procedure defined in Figure 41 and detailed in Chapter 6.3.2 is
illustrated with the investigation of a selected particle in asymmetrical counterbalancing
case using the peak net gearbox torque as the optimization criterion. The selected
particle is randomly generated in the twelve-dimensional solution space considering the
proper upper and lower boundaries for each component of its position.

The first four elements of the vector determine the types of the main
counterweights used. Therefore, the fitness function is not continuously differentiable, it
has discontinuities at every main counterweight type change in these four dimensions.
To find the type of the main counterweight from the corresponding vector component,
its value is rounded to the nearest integer. The following four vector coordinates define
the counterweights’ distance from the long end of the crank (D in Figure 17). The last
four coordinates give the number of auxiliary weights used on the main counterweights,
limited to 2 pcs. The fitness function has discontinuities in these four dimensions as well.

The procedure of the PSO optimization to find the optimal net gearbox torque is
illustrated in Table 7. After randomly generating the first candidate - shown in the first
column - its fitness value is determined using the torque determination process detailed
in Chapter 5. In total, 500 particles are generated randomly, the best one in the first
iteration step is introduced in the second column. The candidate with the global best
position will attract every other particle based on their corresponding distance. The
velocity vector calculated using Equation 50 is included in the third column of Table 7.
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Even though the first four vector components represent the counterweight types,
numerical values must be used as vector coordinates in the calculation procedure. The
numerical values in these cases were rounded to the nearest integer and the
counterweight types were selected. In this case 0 meant that no counterweight was used
on the specific side of the crank arm. The index of the counterweights in Table 3 was
used to convert the numerical values into the counterweight types.

The position of the investigated particle in the second iteration step is determined
using the calculated velocity vector and its initial position. The fourth column of Table 7
contains the new position, resulting in a smaller fitness value compared to its initial
state. The improvement of the fitness value is not necessarily true for every particle at
every calculation step, but due to the robust nature of the algorithm, both the global best
fitness value and the average fitness value tends to decrease with every successful
iteration step.

During this investigation no additional constraints were used for the position
coordinates of the investigated particle. The implementation of such a limiting factor e.g.
specifying the usage of identical counterweights is added easily to the optimization
procedure.

Table 7 Detailed solution of the Example Problem with the PSO Algorithm
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. . Velocity of Position of the
Initial Position of C . .
the | ticated Best Particle in the the Investigated
€ nves. 1gate First Iteration Step |Investigated| Particle After the
Particle . . .
Particle | FirstIteration Step
Numerical Used value Numerical Used value Numerical [Numerical Used value
value value value value
1st CW. Type 4.78 5 (3CRO) 7.82 8 (OARO) 191 6.69 7 (1R0O)
2nd CW. Type 5.21 5 (3CRO) 8.13 8 (OARO) 0.21 5.42 5 (3CRO)
3rd CW. Type 8.34 8 (0OARO) 7.62 8 (OARO) -0.14 8.2 8 (OARO)
4th CW. Type 3.89 4 (5ARO0) 6.94 7 (1R0O) 6.94 10.83 | 10 (OORO)
1st CW. Distance 50.3 50.3 in 14.26 14.3 in -10 40.3 40.3 in
2nd CW. Distance 61.11 61.1in 11.58 11.6 in -10 51.11 51.1 in
3rd CW. Distance 4.06 4.1 in 10.16 10.2 in 9.91 13.97 14 in
4th CW. Distance 72.68 72.7 in 492 4.9 in -10 62.68 62.7 in
1st CW. No. Aux Weights 0.32 - 1.45 |1 pcs. OAS 0.51 0.83 1 pcs. 1S
2nd CW. No. Aux Weights 1.73 |2 pcs.3BS| 1.03 |1 pcs. OAS -0.68 1.05 1 pcs. 3BS
3rd CW. No. Aux Weights 1.12 |1 pcs. 0AS| 0.67 |1 pcs. OAS 0.32 144 | 1 pcs. OAS
4th CW. No. Aux Weights 137 |1pcs.5CS| 1.98 2 pcs. 1S 0.02 1.39 | 1 pcs. 00S
Peak Net T kin Ib
eak Net Torque [kinIbs]) \ o) oo | 1022 | 50495 | s05 98803 | 988
(Fitness Value)

At the end of every iteration step the best position is determined and is compared
to the global best position in the previous calculation step. The global best position is
replaced, when a new position is found with smaller fitness value. Figure 42 shows the
evolution of the peak net gearbox torque with the iteration steps. In total 30 iterations
were carried out, the solution was achieved after the 23t calculation step.
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Figure 42 The improvement in the peak net gearbox torque value with the iteration steps

6.4 Sensitivity Analysis

A traditional sensitivity analysis cannot be carried out because the applicable
counterweights have discrete masses and moments of inertia. For illustration purposes
only the simplest analysis can be presented, since in the introduced asymmetrical
counterbalancing case the number of the relevant dimensions is 12. Therefore, the
representation of the parameter sensitivity is shown for the symmetrical counterweight
configuration only, with fixed number of auxiliary weights. In this special case there are
only two independent parameters: the type of the main counterweights and their
displacement from the long end of the crank. Figure 43 shows the results for the
sensitivity analysis, where 2 auxiliary weights are used, the position of the main
counterweights is investigated between 0 and 59 in from the long end of the crank. In
this figure the peak net gearbox torque is shown as a function of the applied
counterweights and their respective position. It is clearly visible, that in this
oversimplified case there are multiple local optima; the determination of the global
optimum is difficult. The data used to create Figure 43 and a 3D representation is
included in Appendix C. The number of local optima increases rapidly as more
independent parameters allowed to influence the maximum net gearbox torque. The
introduced figure supports the previous assumptions on the necessity of a numerical
calculation method in the torque optimization procedure.
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Figure 43 Results of the sensitivity analysis in the simplest symmetrical case

6.5 Finding the Optimum Counterweight Configuration

The original counterweight configuration is 4pcs. ORO main counterweights placed
at 10 in from the long end of the crank arm, shown in Table 1. The resulting peak net
gearbox torque is 597.3 k in lbs, shown in Figure 44. The value of the calculated CLF,,,4
is 1.415. The calculation procedure detailed in Chapter 6.3 is used to produce the
optimal counterweight configurations along with the optimal net gearbox torque
functions with the specified constraints in the optimization procedure.

6.5.1 Optimization of the Peak Net Gearbox Torque

6.5.1.1 Using Identical Counterweights

In this case the counterweights and the auxiliary weights must be identical. When
only allowing symmetrical counterbalancing, the placement of the main counterweights
cannot differ. A different position of one counterweight only changes the amplitude of
the counterbalance torque and the rotary inertial torque, therefore the investigation of a
symmetrical solution is sufficient, because there is no benefit placing the same
counterweights at different positions on the crank arm.

The optimal symmetrical counterweight configuration is found to be 4pcs. OORO
main counterweights with 4 pcs. O0S auxiliary counterweights, placed at 25.9 in from
the long end of the crank arm. The maximum net gearbox torque is 491.8 k in lbs, the
CLF,,,q is 1.397. The net torque variation for the original case and the optimized case
are shown in Figure 44.
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Figure 44 Optimum net gearbox torque using symmetrical counterweight configuration

6.5.1.2 Using Different Counterweights

The optimal asymmetrical counterweight configuration is included in Table 8. No
restrictions were used in this scenario to limit the calculation process, all twelve
parameters shown in Table 7 can change independently.

Table 8 Asymmetrical optimum counterweight configuration

©
. . Distance
o Main Auxiliary
Position from long O
CW CW
end of crank
o)
1st crank top OORO | 2 pcs. 00S 31.8in
1st crank bottom | OORO | 1 pc. 00S 17.1in
©
2nd crank top OORO | 2 pcs. 00S 1.49 in [O
2nd crank bottom | 5AR0O | 2 pcs.5S 82 in L@J
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The resulting secondary phase angle is 7.43 deg, the maximum net gearbox torque
is 418.2 k in lbs, the CLF,,,4 is 1.429. The net torque variation is shown with blue in
Figure 45. The phase shift of the counterbalance torque causes the net gearbox torque
to have 3 maximum points instead of 2 in the symmetrical case. This lowers the peak net
torque by 73.6 k in lbs, which is nearly 11.5% of the rating of the gear reducer. It is
important to consider the drop of the minimum net gearbox torque since the negative
torques can also overload the gear reducer if the rating is exceeded.

900
800

—Original Net Gearbox Torque
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700 ---Torque Rating of the Gearbox

600 | ~ . ]
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Net Gearbox Torque [k in Ibs]
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Figure 45 Optimum net gearbox torque using asymmetrical counterweight configuration

6.5.2 Optimization of the Modified Cyclic Load Factor

In this case the fitness value is determined based on the CLF,,,4 value calculated
from the twelve-dimensional arrays used in the PSO calculation procedure. The
counterweight configuration resulting in the minimum CLF,,,4 is included in Table 9.
The resulting secondary phase angle is -0.03 deg, the maximum net gearbox torque is
484.1 k in b, the CLF,,,4 is 1.386. The net gearbox torque variation is shown in Figure
46.
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Table 9 Counterweight configuration providing minimum CLFmoa

&
. . Distance
. Main Auxiliary
Position from long O
CW CW
end of crank -
1st crank top OORO | 2 pcs. 00S 14.1in
1st crank bottom | ORO 1 pc.0S 8.1in
o\
2nd crank top 5CRO | 2pcs. 5CS 19.2in
(o
2nd crank bottom | 1RO 2 pcs. 1S 16 in W
900 —
—Original Net Gearbox Torque
800 — Optimized Net Gearbox Torque CLFmod
700 - --Torque Rating of the Gearbox
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Figure 46 Torque optimization producing minimal modified cyclic load factor

6.6 Comparison with TWM Optimization

Figure 47 shows the proposed symmetrical and asymmetrical optimized net
torque variation along with the results of the TWM software. By incorrectly neglecting
the inertial torques from the torque analysis, and only investigating symmetrical
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counterweight configurations, TWM gives an optimum peak net torque of 597.3 k in lbs
with a 1.42 CLF,,,, value. By improving the evaluation of the dynamometer survey and
the calculation of the mechanical net gearbox torque the resulting solution describes the
real operating conditions more accurately. Using these data, the optimization procedure
gives more reliable optimum counterweight configurations.

200 —TWM Optimal Net Gearbox Torque

800 — Optimized Net Gearbox Torque Asymmetrical
— Optimized Net Gearbox Torque Symmetrical
700 ---Torque Rating of the Gearbox
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Figure 47 Comparison of the torque optimization with TWM results

6.7 Conclusions of the Optimization Procedures

Optimizing the net gearbox torque of a sucker-rod pumping unit is essential to
prevent overloading and to save operating costs. Table 10 contains the results of the
torque optimization carried out on the example problem. The optimum result provided
by the TWM software neglects the inertial effects, therefore it mischaracterizes the net
gearbox torque.

The optimization procedure developed creates the optimum net gearbox torque
with different constraints on the corresponding counterweight configuration. The
introduced symmetrical counterweight configuration provides a slightly higher peak net
torque, but smaller modified cyclic load factor compared to the asymmetrical case. The
counterweight configuration corresponding to the minimal modified cyclic factor in the
investigated cases does not provide significantly better results, than the symmetrical
counterweight configuration.
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Table 10 Summary of the optimization results

N Peak Net ,
Optimization CLF,04 T
Obiective Gearbox Torque ] (deg]
V -
) [k in Ibs] &
Original Case - 597.31 1.415 0
TWM Optimum Result* - 597.33 1.420 0

Results of the Optimization

Identical Counterweights and

. Peak Torque 491.80 1.397 0
Positions
Peak Torque 418.20 1.429 7.43
No Constraint in the Optimization
CLF 04 484.09 1.386 | -0.03
S Count ight
amie LOHntenvels Peak Torque 419.20 1.555 | 10.69

Configuration on Both Cranks

If the overloading of the pumping unit can be prevented by solving the
optimization problem using the same main and auxiliary counterweights, the
symmetrical optimum counterweight configuration is recommended. However, if the
symmetrically placed counterweights cannot reduce the peak net torque acting on the
gearbox below its torque rating, using non-identical counterweights can prevent
overloading. The proper asymmetrical counterweight configuration will always result in
a lower peak net gearbox torque value, compared to the symmetrical cases.

6.8 Further research possibilities

There are possible future research paths based on the introduced calculation
procedures. The exact determination of the change in the crank and beam angular
acceleration as a function of the net gearbox torque would be a great addition, but it
seems unlikely, that a general solution exists for said problem.

The incorporation of the proposed asymmetrical counterbalancing calculations in
works like (Konz, 2018) would be beneficial. Using the introduced methods to update
the software evaluating the dynamometer surveys could result in more favorable
operating conditions for sucker-rod pumping units. The calculation procedure presented
can be modified to improve the results of a multi-balance technology introduced in
(Feng, Ding, & Jiang, 2015).

The method introduced can be modified and applied to sucker-rod pumping units
with variable speed drives, further improving their efficiency. For this, however, further
study of the complex interactions between the controlled crank angular acceleration
pattern by the used microcontroller and the resulting net gearbox torque function is
needed.
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7 New Scientific Results

7.1 Thesis 1

A successive approximation procedure was introduced in Chapter 5.3.2 that
produces the crank angle values corresponding to the measured polished rod positions
with a higher accuracy than previously existing methods. Since the crank angle variation
in time is not measured by a dynamometer survey, it must be calculated from the
measured polished rod positions and the kinematic parameters of the sucker-rod
pumping unit. The exact calculation procedure developed here has a high importance
because any errors in the crank angle vs time function affect almost every other
parameter in the evaluation of the torque conditions of sucker rod pumping units. By
minimizing the error in the first calculation step, the accuracy of torque calculations as
well as counterbalance optimizations are improved.

7.2 Thesis 2

A complex calculation method was developed in Chapter 5.4 and 5.5, that produces
the crank angular velocity, the crank angular acceleration and the beam angular
acceleration variation throughout the pumping cycle. The proposed method has
superior precision compared to the most widely used software in the industry. The
numerical calculation models presented have proved to be strong validating tools to
help verify the results of the more complex, but cumbersome calculation methods.

7.3 Thesis 3

The effects of asymmetrical counterweight configurations on the counterbalance
torque vs time function were investigated; that is an often ignored condition in the
professional literature. Asymmetrical counterweight placement affects the net gearbox
torque vs time function. In this work a secondary phase angle - 7" - was introduced to
adequately describe the deviation of the counterbalance torque from the symmetrical
cases. The new equations developed in Chapter 5.2.4 permit the accurate calculation of
inertial torques and were incorporated in the gearbox torque optimization procedures
introduced.

7.4 Thesis 4

A novel technique to solve the optimization of gearbox torque conditions was
developed using the particle swarm optimization (PSO) method. The -calculation
procedure can be used for both symmetrical and asymmetrical counterweight
configurations. It can perform optimizations for different scenarios: minimizing the peak
net torque or the cyclic load factor (CLF) values. As proved in this work, use of
asymmetrical counterweight placements can significantly reduce the peak net gearbox
torque; an often overlooked practice in the oil field.
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7.5 Thesis 5

A new calculation procedure was created to improve the crank angle values in the
proximity of the start of the upstroke and downstroke. This validation is required if the
dynamometer card does not contain the topmost or lowermost point in the
dynamometer survey. By using the proposed method, the incorrect calculation of the
crank angle in the wrong pumping phase is prevented, therefore, reducing the error in
the determination of the crank angular velocity and crank angular acceleration values.

7.6 Thesis 6

A modified cyclic load factor - CLF,,,; - was developed to describe the relative
power consumption of the prime mover with a higher accuracy. This new parameter
considers the varying crank angular velocity, therefore it gives improved results when a
sucker-rod pumping unit is driven by a high slip, or ultra-high slip electric motor.
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8 Summary

In the first part of the thesis the operation of the sucker-rod pumping installation
was detailed, followed by the introduction of the measurement by the most dominant
testing equipment, the electronic dynamometer.

The evaluation of the dynamometer survey was improved, compared to the
previous publications and software used in the petroleum industry. The first important
scientific result is the creation of a high-accuracy calculation method to find the crank
angles corresponding to the measured polished rod position values. With these more
accurate crank angles, the interpretation of the dynamometer survey and the torque
analysis will have smaller errors.

The calculation of the angular acceleration of the crank arm and the walking beam
was improved, ensuring the accurate description of the inertial torques during the
pumping cycle. Every calculation presented is able to consider the varying crank velocity
of pumping units driven by high slip or ultra-high slip prime movers. Several previously
published methods, basic numerical methods, and novel calculation procedures were
introduced and compared, to provide the variation of the necessary variables in time
with the highest accuracy possible. The application of Fourier series was essential to
improve the calculation of the relevant angles and their acceleration pattern during the
pumping cycle.

The complete calculation of the actual net gearbox torque variation was detailed
while solving an example problem to help the better understanding of the proposed
methods. The proper inclusion of the inertial torques can change the net gearbox torque
function significantly, as shown in the comparison with the results of the TWM software.

Most importantly, the in-depth investigation of the effect of asymmetrically placed
counterweights on the crank arms was carried out. In previous works application of
asymmetrically placed counterweights was not advised, because its effect on the net
gearbox torque was unknown. The secondary phase angle was defined to describe the
lead- or lag of the center of gravity of the system containing the counterweights and the
crank from the crank centerline.

Based on the proposed dynamometer survey interpretation, the determination of
the optimum net gearbox torque was carried out using two different optimization
criteria. A modified cyclic load factor was introduced to improve the efficiency
calculation of the sucker-rod pumping units with varying crank angular velocities. In
previous works the cases with non-constant crank angular velocities were not taken
properly into account. If the pumping unit is overloaded in the best cyclic load factor
case, then a different optimization criteria was used to protect the gearbox: the
maximum mechanical net gearbox torque.

A particle swarm optimization technique was developed to find the counterweight
configuration that produces the optimum torque loading of the gearbox. Using this
method, better torque loading was achieved than the results of previously published
methods and software used in the industry by considering the asymmetrical
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counterweight configurations. Using the secondary phase angle as an additional degree
of freedom in the optimization procedure, the results were superior compared to the
symmetrical counterbalancing cases.

The knowledge of numerous parameters is required by the complete torque
analysis, as seen in the proposed thesis. Some of these variables are usually unknown for
the production engineers, or would require extensive and expensive measurements to
determine their proper values. Several practical equations are introduced to give a
reasonable approximation of these parameters enabling the operators of the sucker-rod
pumping unit to carry out an in-depth torque analysis and therefore improve the
economic value of the installation.
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9 Osszefoglalas

Az értekezés els6 részében a himbdas-rudazatos mélyszivattydk miikodési
mechanizmusa részletesen bemutatasra keriilt, majd a legelterjedtebb mérési modszer -
az elektronikus dinamomeéter - ismertetése kovetkezett.

Ezt kovetéen a dinamométeres mérések a Kkorabbi publikiaciékhoz és az
olajiparban hasznalt szoftverekhez képest tovabbfejlesztett kiértékelési mdodszerének
bemutatasa kovetkezett. Az elsd fontos tudomanyos eredmény egy nagy pontossagu
szamitasi médszer 1étrehozasa a mért simarad pozicioknak megfelelé forgattyuszogek
meghatarozasahoz. Ezekkel a pontosabb forgattyuszog értékekkel a dinamométeres
mérés kiértékelése és a kozl6mi nyomatékelemzése kisebb hibakkal terhelt eredményt
hoz.

A forgattytkar és a himbagerenda széggyorsulasanak meghatarozasi modszerét
fejlesztettem, igy biztositva a tehetetlenségi nyomatékok pontos leirdsat az egész
szivattyuzasi ciklus alatt. Minden bemutatott szamitasi 1épés figyelembe veszi a nagy
szlip vagy ultra nagy szlipli elektromotorok altal hajtott szivattyuegységek valtozo
forgattylszog-sebességét.  Szamos  kordbban  publikdlt szamitasi modszert,
egyszerisitett numerikus megkozelitéseket és Uj szamitasi eljarasokat vezettem be és
hasonlitottam 6ssze, hogy a sziikséges valtozok idébeni valtozasanak lefrasat a lehetd
legnagyobb pontossaggal biztositsam. A Fourier sorok alkalmazasa elengedhetetlen volt
a szogek és gyorsulasi mintazatuk kiszamitasahoz a szivattyuzasi ciklus soran.

A kozlémil ereddényomaték-valtozasanak teljes kiszamitasanak maoddszerét
részletesen kidolgoztam, mikozben egy példa problémat megoldva segitettem a javasolt
modszerek konnyebb megértését. A tehetetlenségi nyomatékok megfelel6 beépitése a
szamitasi  modszerbe  jelentésen  megvaltoztathatia a  kozldmid  eredd
nyomatékterhelését, amit a TWM szoftver eredményeivel valé 0Osszehasonlitas is
alatamaszt.

Az értekezés legfontosabb szamitasi része az aszimmetrikusan elhelyezett
ellensulyok hatdsanak mélyrehaté vizsgalata volt. Korabbi publikaciékban és
munkaanyagokban az aszimmetrikusan elhelyezett ellenstlyok alkalmazdsa nem volt
ajanlott, mert annak hatasa a k6zl6mii eredényomatékara nem volt ismert. Definidltam a
masodlagos fazisszoget, ami pontosan leirja az ellensulyokat és a hajtokart tartalmazo
rendszer sulypontjanak szogeltérését a forgattyikar kézépvonalatdl.

A javasolt dinamométeres mérés értelmezése alapjan az optimalis eredd
kozldmiinyomaték meghatarozasa egy 4j optimalizalasi eljaras segitségével tortént, ahol
két kiilonbo6zé optimalizaldsi kritérium Kkertlt alkalmazasra. Modositott ciklikus
terhelési tényezdét vezettem be a himbdas-rudazatos szivattyuegységek hatékonysagi
szamitasanak javitasara valtozo6 forgattyuszog-sebességek esetére. Korabbi munkakban
a nem allandé hajtékar szogsebességli eseteket nem vették megfeleléen figyelembe. Ha a
szivattylegység a legjobb ciklikus terhelési tényez6 esetén tul van terhelve, akkor egy
masik optimalizalasi kritériumot hasznaltam a kozlé6mid védelmére: azon eredd
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k6zldmlinyomaték-fliggvény meghatdrozdsa, amelyhez a minimalis csticsnyomaték
tartozik.

Egyéni részecske raj optimalizalasi technikat fejlesztettem ki, hogy megtalaljam azt
az ellensuly konfiguraciot, amely biztositja a k6zl6mi{ optimalis nyomatékterhelését.
Ezzel a mddszerrel az aszimmetrikus ellensuly-elhelyezések figyelembevételével jobb
nyomatékterhelést értem el, mint a korabban publikalt mdédszerek és az iparban
hasznalt szoftverek eredményei. A masodlagos fazisszoget tovabbi szabadsagfokként
hasznalva az optimalizalasi eljarasban a minimalis csucsnyomatékok meghatarozasanak
eredményei jobbak lettek, mint a szimmetrikusan elhelyezett ellenstlyokat tartalmazé
esetek.

A kozl6mii teljes nyomatékelemzése szamos paraméter ismeretét igényli, amint azt
jelen értekezés is alatdmaszt. Ezen adatok némelyikét a termelési mérnokok altalaban
nem ismerik, vagy pontos értékeik megallapitasdhoz koltséges mérések sziikségesek.
Tobb egyenletet vezettem be, hogy az ismeretlen paraméterek megfeleléen
megbecsiilhet6k lehessenek, lehetévé téve a himbas-rudazatos mélyszivattyus egység
kezel6i szamara, hogy teljes nyomatékelemzést végezhessenek el, ezaltal javitva a
berendezés gazdasagi értékét.
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14.2 Appendix B Parts of the Source Code of the Created Program

public void IndependentFromCrankAngle()
{

if (Geometry == "Conventional” || Geometry == "TorqMaster")
{
Phi = Math.Round(Math.Asin(I / K) * 180 / Math.P], 4);
PsiBottom = Math.Round(Math.Acos((C*C+ K*K-(P+R)*(P+R)) /(2 *C*K)) * 180 / Math.P],
4);
PsiTop = Math.Round(Math.Acos((C*C+ K*K-(P-R)*(P-R)) /(2 *C*K))*180 / Math.PI, 4);
ThetaUpstroke = Math.Round(Norm(Phi - Math.Asin(C / (P + R) * Math.Sin(PsiBottom / 180 *
Math.PI)) * 180 / Math.PI), 4);
ThetaDownstroke = Math.Round(Norm(Phi - Math.Asin(C / (P - R) * Math.Sin(PsiTop / 180 *
Math.PI)) * 180 / Math.PI + 180), 4);

if (Rotation == "CCW" && Geometry == "Conventional")
{
ThetaUpstroke = 360 - ThetaUpstroke;
ThetaDownstroke = 360 - ThetaDownstroke;

if (Geometry == "Mark II")
{
Phi = Math.Round(Math.Asin(I / K) * 180 / Math.PI + 180, 4);
PsiTop = Math.Round(Math.Acos((C*C+ K*K- (P+R)*(P+R)) /(2 *C*K)) *180 / Math.P], 4);
PsiBottom = Math.Round(Math.Acos((C*C+K*K-(P-R) *(P-R)) /(2*C*K)) * 180 / Math.P],
4);
ThetaUpstroke = Math.Round(Norm(Phi - Math.Asin(C / (P - R) * Math.Sin(PsiBottom / 180 *
Math.PI)) * 180 / Math.PI + 180), 4);
ThetaDownstroke = Math.Round(Phi - Math.Asin(C / (P + R) * Math.Sin(PsiTop / 180 * Math.PI)) *
180 / Math.P], 4);

}

if (Geometry == "Air Balanced")
{
Phi = Math.Round(-Math.Asin(I / K) * 180 / Math.PI + 180, 4);
PsiTop = Math.Round(Math.Acos((C*C+K*K-(P+R)* (P +R)) /(2 *C*K))*180 / Math.P], 4);
PsiBottom = Math.Round(Math.Acos((C*C+K*K-(P-R)*(P-R)) /(2*C*K))* 180 / Math.P],
4);
ThetaUpstroke = Math.Round(Norm(Phi + Math.Asin(C / (P - R) * Math.Sin(PsiBottom / 180 *
Math.PI)) * 180 / Math.PI - 180), 4);
ThetaDownstroke = Math.Round(Norm(Phi + Math.Asin(C / (P + R) * Math.Sin(PsiTop / 180 *
Math.PI)) * 180 / Math.PI), 4);

if (Rotation == "CCW")
{
ThetaUpstroke = 360 - ThetaUpstroke;
ThetaDownstroke = 360 - ThetaDownstroke;
}

}
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Upstroke = Norm(ThetaDownstroke - ThetaUpstroke);
Downstroke = 360 - Upstroke;

StrokeLength = Math.Round(A * Math.Abs((PsiTop - PsiBottom)) / 180 * Math.P], 4);
}

public void CrankAngleCalculation()
{
double k = ThetaUpstroke; //Independent Crank Angle moving trough the whole interval
double diff=1; //Auxiliary variable to determine the correct Crank Angle
double Pos1, Pos2 = 0;
Epsilon = 0.0001;

StrokeLength = Convert.ToDouble(textBoxStrokeLengthOverWrite.Text);

for (intj = 0; j < twm.PolishedRodPosition.Count; j++)
{

if (twm.PolishedRodPosition[j] == StrokeLength)

{
calc.CrankAngle.Add(Math.Round(ThetaDownstroke, 3));
k = ThetaDownstroke;
DependentFromCrankAngle(k, true);
calc.Theta2.Add(Theta2);
calc.Theta3.Add(Theta3);
calc.Theta4.Add(Theta4);
calc.TorqueFactor.Add(0);

}

if (twm.PolishedRodPosition[j] == 0)

{
calc.CrankAngle.Add(Math.Round(ThetaUpstroke, 3));
k = ThetaUpstroke;
DependentFromCrankAngle(k, true);
calc.Theta2.Add(Theta2);
calc.Theta3.Add(Theta3);
calc.Theta4.Add(Theta4);
calc.TorqueFactor.Add(0);

}

if (twm.PolishedRodPosition[j] != 0 && twm.PolishedRodPosition[j] != StrokeLength)

{
while (diff > 0)

{
k = Norm(k + Epsilon);

DependentFromCrankAngle(k, true);

Pos1 = (PsiBottom - Psi) / (PsiBottom - PsiTop);

DependentFromCrankAngle(k + Epsilon, true);

Pos2 = (PsiBottom - Psi) / (PsiBottom - PsiTop);

diff = (Posl - twm.PolishedRodPosition[j] / StrokeLength) * (Pos2 -
twm.PolishedRodPosition[j] / StrokeLength);
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calc.CrankAngle.Add(Norm(Math.Round(k + Epsilon / 2, 3)));
calc.TorqueFactor.Add(Math.Round(TF, 3));
calc.Theta2.Add(Theta2);

calc.Theta3.Add(Theta3);

calc.Theta4.Add(Theta4);

diff=1;

calc.Beta.Add(Beta);
calc.].Add(]);
calc.Rho.Add(Rho);
calc.Ksi.Add(Ksi);
calc.Psi.Add(Psi);
calc.Alpha.Add(Alpha);

public void DependentFromCrankAngle(double Angle, bool samestart)
{
intb=0;
if (Geometry == "Conventional" || Geometry == "TorqMaster")
{
// Rotationation assign
if (Rotation == "CCW")
{
Theta = 360 - Angle;
}
else
{
Theta = Angle;
}

ThetaZ = Norm(360 - Theta + Phi);

if (Theta2 < 180 & Theta2 >=0)

{b=-1;}

else{b=1;}

Beta = Math.Acos((C*C+P*P-R*R-K*K+2*K*R*Math.Cos(Theta2 / 180 * Math.PI})) / (2 *
C*P))*180 / Math.P];

] = Math.Sqrt(K* K+ R* R - 2 * R * K * Math.Cos(Theta2 / 180 * Math.PI));

Rho = Math.Acos((J *J+ K*K-R*R) / (2*]*K)) * 180 / Math.PI * b;

if(J*J+K*K-R*R)/ (2*]*K)>1)

{Rho=0;}

if (J*]+K*K-R*R) / (2*] *K) <-1)

{Rho=0;}
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Ksi = Math.Acos((C*C+]J*]J-P*P)/(2*C*]J])) * 180 / Math.PI;

Psi = Ksi - Rho;

Theta3 = Math.Acos((P*P+]*]-C*C) /(2 *P *])) * 180 / Math.PI + Rho;
Theta4 = 180 - Psi;

Alpha = Beta + Psi - (Theta - Phi);

TF=R* A / C* Math.Sin(Alpha / 180 * Math.PI) / Math.Sin(Beta / 180 * Math.PI);

if (Geometry == "Mark I1")

{
Theta = Angle;

Theta2 = Phi - Theta;

Beta = Math.Acos((C*C+P*P-R*R-K*K+2*K*R*Math.Cos(ThetaZ / 180 * Math.PI)) / (2 *
C*P))*180 / Math.PI;

] = Math.Sqrt(K* K+ R*R -2 *R*K* Math.Cos(Theta2 / 180 * Math.PI));

Rho = Math.Asin((R /] * Math.Sin(Theta2 / 180 * Math.PI))) * 180 / Math.PI;

Ksi = Math.Asin((P /] * Math.Sin(Beta / 180 * Math.PI))) * 180 / Math.PI;

Psi = Ksi + Rho;

Theta3 = Math.Acos((P*P+]*]-C*C) /(2*P*])) * 180 / Math.PI - Rho;

Theta4 = 180 - Psi;

Alpha = -(Beta + Psi - (Theta - Phi));

TF=R*A / C*Math.Sin(Alpha / 180 * Math.PI) / Math.Sin(Beta / 180 * Math.PI);

if (Geometry == "Air Balanced")
{
// Rotationation assign
if (Rotation == "CCW")
{
Theta = 360 - Angle;
}
else
{
Theta = Angle;
}

Theta2 = Theta - Phi;

Beta = Math.Acos((C*C+P*P-R*R-K*K+2*K*R*Math.Cos(Theta2 / 180 * Math.PI})) / (2 *
C*P))*180 / Math.P];

if (Theta2 > 360)

{
Theta2 = Theta2 - 360;

}

] = Math.Sqrt(K* K+ R* R - 2 * R * K* Math.Cos(Theta2 / 180 * Math.PI));
Rho = Math.Asin((R /] * Math.Sin(Theta2 / 180 * Math.PI))) * 180 / Math.PI;
Ksi = Math.Asin((P /] * Math.Sin(Beta / 180 * Math.PI))) * 180 / Math.PI;
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Psi = Ksi + Rho;

Theta3 = Math.Acos((P*P+]J*]-C*C)/(2*P *])) * 180 / Math.PI - Rho;
Theta4 = 180 - Psi;

Alpha = Beta + Psi + (Theta - Phi);

TF=R* A / C* Math.Sin(Alpha / 180 * Math.PI) / Math.Sin(Beta / 180 * Math.PI);

}
}
private void SvinosCalculation()
{
for (inti=0; i < twm.Time.Count - 1; i++)
{

calc.BeamVelocityNumerical. Add((twm.PolishedRodPosition[i + 1] - twm.PolishedRodPosition[i])
/ twm.Time[1]);
}

calc.BeamAccelerationNumerical.Add(0);
for (inti=1;i < twm.Time.Count - 1; i++)

{

calc.BeamAccelerationNumerical.Add((calc.BeamVelocityNumerical[i] -
calc.BeamVelocityNumerical[i - 1]) / twm.Time[1] / A);

}

calc.BeamAccelerationNumerical[0] = calc.BeamAccelerationNumerical[1];

calc.BeamAccelerationNumerical.Add(calc.BeamAccelerationNumerical[calc.BeamAccelerationNumerical.
Count - 1]);

FourierPreparation();

FourierPrepTheta2(calc.Theta2, twm.Time, calc.Theta2f, calc.TimeFourier);
FourierPrep(calc.Theta3, twm.Time, calc.Theta3f, calc.TimeFourier);
FourierPrep(calc.Theta4, twm.Time, calc.Theta4f, calc.TimeFourier);

FourierPrep(twm.PolishedRodLoad, twm.Time, calc.PolishedRodLoadF, calc.TimeFourier);

FourierPrep(twm.PolishedRodPosition, twm.Time, calc.PolishedRodPositionF10term,
calc.TimeFourier);

FourierPrep(calc.CrankAngle, twm.Time, calc.Theta2fDirectDummy, calc.TimeFourier);

Fourier(calc.DTheta5PointFourier, 10, calc.CrankAngularVelocity5Point,
calc.CrankAngularAcceleration5Point, calc.CrankAngularAccelerationChange5Point);

Fourier(calc.DThetaFourier, 10, calc.Theta2p, calc.Theta2pp,
calc.CrankAngularAccelerationChange);

Fourier(calc.Theta2fDirectDummy, 10, calc.Theta2fDirect, calc.Theta2pfDirect,
calc.Theta2ppfDirect);

Fourier(calc.PolishedRodLoadF, 200, calc.PolishedRodLoadFourier, calc. Dummy, calc.Dummy);

100



Fourier(calc.PolishedRodPositionF10term, 10, calc.PolishedRodPositionFourier10term,
calc.PolishedRodPositionpFourier10term, calc.PolishedRodPositionppFourier10term);

Fourier(calc.PolishedRodPositionF10term, 5, calc.PolishedRodPositionFourier5term,
calc.PolishedRodPositionpFourier5term, calc.PolishedRodPositionppFourier5term);

Fourier(calc.PolishedRodPositionF10term, 30, calc.PolishedRodPositionFourier20term,
calc.PolishedRodPositionpFourier20term, calc.PolishedRodPositionppFourier20term);

for (inti=0; i < twm.Time.Count; i++)

{
calc.BeamAccelerationFourier10term.Add(calc.PolishedRodPositionppFourier10term[i] / A);
calc.BeamAccelerationFourier5term.Add(calc.PolishedRodPositionppFourierSterm[i] / A);
calc.BeamAccelerationFourier20term.Add(calc.PolishedRodPositionppFourier20term[i] / A);

}

for (inti= 0; i < calc.Theta2p.Count; i++)
{
if (Rotation == "CW")
{
calc.Theta3p.Add(Math.Round(-R / P * calc.Theta2p[i] * Math.Sin((calc.Theta4f[i] -
calc.Theta2f[i]) / 180 * Math.PI) / Math.Sin((calc.Theta3f[i] - calc.Theta4f[i]) / 180 * Math.PI), 10));
calc.Theta4p.Add(Math.Round(-R / C * calc.Theta2p[i] * Math.Sin((calc.Theta3f[i] -
calc.Theta2f[i]) / 180 * Math.PI) / Math.Sin((calc.Theta3f[i] - calc.Theta4f[i]) / 180 * Math.PI), 10));

calc.Theta3pp.Add(Math.Round(calc.Theta3p[i] * (calc.Theta2pp[i] / calc.Theta2p[i] -
(calc.Theta3p[i] - calc.Theta4p[i]) / (Math.Tan((calc.Theta3f[i] - calc.Theta4f[i]) / 180 * Math.PI))
(calc.Theta4pl[i] + calc.Theta2p[i]) / (Math.Tan((calc.Theta4f[i] - calc.Theta2f[i]) / 180 * Math.PI))), 3));

+

calc.Theta4pp.Add(Math.Round(calc.Theta4p[i] * (calc.Theta2pp[i] / calc.Theta2pli]
(calc.Theta3p[i] - calc.Theta4p[i]) / (Math.Tan((calc.Theta3f[i] - calc.Theta4f[i]) / 180 * Math.PI))
(calc.Theta3pJi] + calc.Theta2p[i]) / (Math.Tan((calc.Theta2f[i] - calc.Theta3f[i]) / 180 * Math.PI}))), 3));

calc.Theta3p5p.Add(Math.Round(-R / P *  calc.CrankAngularVelocity5Point[i] *
Math.Sin((calc.Theta4f[i] - calc.Theta2f[i]) / 180 * Math.PI) / Math.Sin((calc.Theta3f[i] - calc.Theta4f[i]) /
180 * Math.PI), 10));

calc.Theta4p5p.Add(Math.Round(-R / C *  calc.CrankAngularVelocity5Point[i] *
Math.Sin((calc.Theta3f[i] - calc.Theta2f[i]) / 180 * Math.PI) / Math.Sin((calc.Theta3f[i] - calc.Theta4f[i]) /
180 * Math.PI), 10));

calc.Theta3pp5p.Add(Math.Round(calc.Theta3p[i] * (calc.CrankAngularAcceleration5Point[i] /
calc.CrankAngularVelocity5Point[i] - (calc.Theta3p[i] - calc.Theta4p[i]) / (Math.Tan((calc.Theta3f[i] -
calc.Theta4f[i]) / 180 * Math.PI)) + (calc.Thetad4p[i] + calc.CrankAngularVelocity5Point[i]) /
(Math.Tan((calc.Theta4f[i] - calc.Theta2f[i]) / 180 * Math.PI))), 3));

calc.Theta4pp5p.Add(Math.Round(calc.Theta4p[i] * (calc.CrankAngularAcceleration5Point[i] /
calc.CrankAngularVelocity5Point[i] - (calc.Theta3p[i] - calc.Theta4p[i]) / (Math.Tan((calc.Theta3f[i] -
calc.Theta4f[i]) / 180 * Math.PI)) - (calc.Theta3p[i] + calc.CrankAngularVelocity5Point[i]) /
(Math.Tan((calc.Theta2f[i] - calc.Theta3f[i]) / 180 * Math.PI))), 3));
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else
{
calc.Theta3p.Add(Math.Round((-R / P * calc.Theta2p[i] * Math.Sin((calc.Theta4f[i]
calc.Theta2f[i]) / 180 * Math.PI) / Math.Sin((calc.Theta3f[i] - calc.Theta4f[i]) / 180 * Math.PI)), 10));
calc.Theta4p.Add(Math.Round((-R / C * calc.Theta2p[i] * Math.Sin((calc.Theta3f[i]
calc.Theta2f[i]) / 180 * Math.PI) / Math.Sin((calc.Theta3f[i] - calc.Theta4f[i]) / 180 * Math.PI)), 10));

calc.Theta3pp.Add(Math.Round((calc.Theta3p[i] * (calc.Theta2pp[i] / calc.Theta2p[i]
(calc.Theta3pli] - calc.Theta4p[i]) / (Math.Tan((calc.Theta3f[i] - calc.Theta4f[i]) / 180 * Math.PI))
(calc.Theta4pl[i] + calc.Theta2p[i]) / (Math.Tan((calc.Theta4f[i] - calc.Theta2f[i]) / 180 * Math.PI)))), 3));

+

calc.Theta4pp.Add(Math.Round((calc.Theta4p[i] * (calc.ThetaZpp[i] / calc.ThetaZpli]
(calc.Theta3p[i] - calc.Theta4p[i]) / (Math.Tan((calc.Theta3f[i] - calc.Theta4f[i]) / 180 * Math.PI))
(calc.Theta3pli] + calc.Theta2pl[i]) / (Math.Tan((calc.Theta2f[i] - calc.Theta3f[i]) / 180 * Math.PI)))), 3));

calc.Theta3p5p.Add(Math.Round((-R / P * calc.CrankAngularVelocity5Point[i]  *
Math.Sin((calc.Theta4f[i] - calc.Theta2f[i]) / 180 * Math.PI) / Math.Sin((calc.Theta3f[i] - calc.Theta4f{[i]) /
180 * Math.PI)), 10));

calc.Theta4p5p.Add(Math.Round((-R / C * calc.CrankAngularVelocity5Point[i] *
Math.Sin((calc.Theta3f[i] - calc.Theta2f[i]) / 180 * Math.PI) / Math.Sin((calc.Theta3f[i] - calc.Theta4f{[i]) /
180 * Math.PI)), 10));

calc.Theta3pp5p.Add(Math.Round((calc.Theta3pl[i] * (calc.CrankAngularAcceleration5Point[i] /
calc.CrankAngularVelocity5Point[i] - (calc.Theta3p[i] - calc.Theta4p[i]) / (Math.Tan((calc.Theta3f[i] -
calc.Theta4f[i]) / 180 * Math.PI)) + (calc.Thetad4p[i] + calc.CrankAngularVelocity5Point[i]) /
(Math.Tan((calc.Theta4f[i] - calc.Theta2f[i]) / 180 * Math.PI)))), 3));

calc.Theta4pp5p.Add(Math.Round(-(calc.Theta4p[i] * (calc.CrankAngularAcceleration5Point[i]
/ calc.CrankAngularVelocity5Point[i] - (calc.Theta3p[i] - calc.Theta4p[i]) / (Math.Tan((calc.Theta3f[i] -
calc.Theta4f[i]) / 180 * Math.PI)) - (calc.Theta3p[i] + calc.CrankAngularVelocity5Point[i]) /
(Math.Tan((calc.Theta2f[i] - calc.Theta3f[i]) / 180 * Math.PI)))), 3));

public void Fourier(List<double> data, int order, List<double> dataf, List<double> datafd, List<double>
datafdd)
{

double a0 = 0;

double four = 0;

double fourd = 0;

double fourdd = 0;

double k= 0;

double ] = 0;
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List<double> af = new List<double>();
List<double> bf = new List<double>();
List<double> fouriertime = new List<double>();

for (inti= 0; i < data.Count; i++)

{
fouriertime.Add(-Math.PI + 2 * Math.PI *i / (data.Count));

}

a0 = Sum(data) / data.Count;

for (inti= 0; i < order; i++)
{
for (intj = 0; j < data.Count; j++)
{
k += data[j] * Math.Sin((i + 1) * fouriertime[j]);
1 += data[j] * Math.Cos((i + 1) * fouriertime[j]);
}

af.Add(Math.Round(k / data.Count * 2, 5));
bf.Add(Math.Round(l / data.Count * 2, 5));

k=0;

1=0;
}
for (inti= 0; i < fouriertime.Count; i++)
{

for (intj = 0; j < order; j++)

{

four = four + affj] * Math.Sin((twm.Time[i] * 2 * Math.PI / calc.PeriodTime - Math.PI) * (j + 1)) +
bf[j] * Math.Cos((twm.Time[i] * 2 * Math.PI / calc.PeriodTime - Math.PI) * (j + 1));

fourd = fourd + af[j] * (j + 1) * Math.Cos((twm.Time[i] * 2 * Math.PI / calc.PeriodTime - Math.PI)
*(+ 1)) - bf[j] * (j + 1) * Math.Sin((twm.Time[i] * 2 * Math.PI / calc.PeriodTime - Math.PI) * (j + 1));

fourdd = fourdd - affj] * (j + 1) * (j + 1) * Math.Sin((twm.Time[i] * 2 * Math.PI / calc.PeriodTime -
Math.PI) * (j + 1)) - bf[j] *  + 1) * (j + 1) * Math.Cos((twm.Time[i] * 2 * Math.PI / calc.PeriodTime -
Math.PI) * (j + 1));

dataf.Add(four + a0);
datafd.Add(fourd * 2 / Math.PI);
datafdd.Add(fourdd * 4 / Math.PI / Math.PI);

four = 0;

fourd = 0;
fourdd = 0;
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public void FourierPrep(List<double> data, List<double> time, List<double> dataf, List<double> timef,
bool mod)

{
if (mod)

{
dataf.Add(1);
intk=0;

for (inti=1; i < time.Count; i++)

{
if (i + k >= time.Count)
{
k--;
}
if (timef[i] > time[i + K])
{
k++;
}
if (i + k >= time.Count)
{
k--;
}
if (Math.Abs(data[i - 2 + k] - data[i + k- 1]) > 300)
{
if (data[i- 2 + k] < data[i + k- 1])
{

double change = time[i + k - 3];

while (dataf[i + k - 3] + (dataf[i + k - 3] - dataffi - 4 + k]) * (change - timef[i + k - 3]) / (timef[i
+ k- 3] -timef[i - 4 + k]) > 0)
{
change += 0.0001;

}

change = Math.Round(change, 5);

dataf[dataf.Count - 1] = Math.Round(dataf[i + k - 3] * (change - timef[i + k - 2]) / (change -
timef[i + k - 3]), 4);

}

else

{

MessageBox.Show("ThetaZ2 in the upper side of the seesaw curve :(");

}
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dataf. Add(Math.Round(data[i - 1 + k] + (data[i + k] - data[i - 1 + k]) * (timef[i] - time[i- 1 + K]) /
(time[i + K] - time[i - 1 + k]), 4));

}
dataf[0] = Math.Round(data[0] + (data[0] - data[1]) / (time[1] - time[0]) * time[0], 4);
}
}
public void FourierPrepTheta2(List<double> data, List<double> time, List<double> dataf, List<double>
timef)
{
dataf.Add(1);
intk=0;

for (inti=1;i < time.Count; i++)
{
if (data[i] < data[i - 1])
{
dataf.Add(Math.Round(data[i - 1] + (datali] - data[i - 1]) * (timefi] - time[i - 1]) / (time[i] -
time[i - 1]), 4));
}
else
{
dataf.Add(Norm(Math.Round(datal[i] + (360 + datali - 1] - data[i]) * (time[i] - timef[i]) / (time[i]
- time[i - 1]), 4)));
}

}
dataf[0] = Math.Round(data[0] + (data[0] - data[1]) / (time[1] - time[0]) * time[0], 4);

}

private void TorqueCalculation()

{

for (int j = 0; j < twm.PolishedRodPosition.Count; j++)
{
calc.RodTorque.Add(Math.Round(calc.TorqueFactor(j] * (twm.PolishedRodLoad[j]
StructuralUnbalance / 1000), 3));
calc.ArticulatinglnertialTorqueSvinos5p.Add(Math.Round(12 / 32.2 * calc.TorqueFactor[j] / A *
MassMomentBeam * calc.Theta4pp5p(j] / 1000, 3));
calc.ArticulatinglnertialTorqueGibbs10term.Add(Math.Round(12 / 32.2 * calc.TorqueFactor[j] / A
* MassMomentBeam * calc.BeamAccelerationFourier10term[j] / A / 1000, 3));
calc.ArticulatinglnertialTorqueGibbs5term.Add(Math.Round(12 / 32.2 * calc.TorqueFactor[j] / A *
MassMomentBeam * calc.BeamAccelerationFourier5term|[j] / A / 1000, 3));
calc.Articulatinglnertial TorqueGibbs20term.Add(Math.Round(12 / 32.2 * calc.TorqueFactor[j] / A
* MassMomentBeam * calc.BeamAccelerationFourier20term[j] / A / 1000, 3));
calc.ArticulatinglnertialTorqueNumerical. Add(Math.Round(12 / 32.2 * calc.TorqueFactor[j] / A *
MassMomentBeam * calc.Theta4pp5plj] / 1000, 3));
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CounterbalanceTorquecalculation(ActualCounterweightConfiguration);

for (intj = 0; j < twm.PolishedRodPosition.Count; j++)

{

calc.ActualNetGearboxTorque.Add(calc.RodTorque[j] + calc.ActualCounterbalanceTorquel[j] +
calc.ActualRotarylnertial Torque[j] + calc.ArticulatingInertial TorqueSvinos5p[j]);

}

SW = new Stopwatch();
SW.Start();

AsymmetricCBcalculation();
AsymmetricCBcalculationDouble();
SymmetricCBcalculation();
CLFOptimization();

double ElapsedTime = Convert.ToDouble(SW.ElapsedMilliseconds) / 1000;
SW.Stop();

private void AsymmetricCBcalculation()

{

GlobalBest.BestFitnessValue = double.Positivelnfinity;
Swarm = new Particle[SwarmSize];

for (inti = 0; i < SwarmSize; i++)

{

Swarm[i

Swarm[i].Speed = PSO_Rand(LowerLimits, UpperLimits2, DimensionSize);

Position = PSO_RandPosition(LowerLimits, UpperLimits, DimensionSize);
Swarm{[i].FitnessValue = FitnessCalculation(Swarm[i].Position, false, false);

Swarm{[i].BestPosition = (double[])Swarm[i].Position.Clone();

[i].

[i].

[i].

Swarm[i].BestFitnessValue = Swarm[i].FitnessValue;

[i].

Swarm[i].Tau = TauCalculation(Swarm[i].Position);
[i].

Swarm[i].CLF = CLFCalculation(Swarm[i].Position);

if (Swarm[i].BestFitnessValue <= GlobalBest.BestFitnessValue)

{

GlobalBest.BestPosition = (double[])Swarm[i].Position.Clone();
GlObalBeSt.BeStPOSitiOnTeXt = neW String[14] { llll’ llll’ llll, llll’ llll’ llll’ llll’ llll’ llll’ llll’ llll’ llll’ llll, nn };
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GlobalBest.BestPositionText[0] =
api.CounterweightName[Convert.Tolnt16(Math.Round(Swarm[i].Position[0], 0))];
GlobalBest.BestPositionText[1] =
api.CounterweightName[Convert.Tolnt16(Math.Round(Swarm[i].Position[1], 0))];
GlobalBest.BestPositionText[2] =
api.CounterweightName[Convert.Tolnt16(Math.Round(Swarm[i].Position[2], 0))];
GlobalBest.BestPositionText[3] =
api.CounterweightName[Convert.Tolnt16(Math.Round(Swarm[i].Position[3], 0))];

GlobalBest.BestPositionText[4] = Math.Round(Swarm[i].Position[4],1).ToString() + " in";
GlobalBest.BestPositionText[5] = Math.Round(Swarm[i].Position[5],1).ToString() + " in";
GlobalBest.BestPositionText[6] = Math.Round(Swarm[i].Position[6],1).ToString() + " in";
GlobalBest.BestPositionText[7] = Math.Round(Swarm[i].Position[7],1).ToString() + " in";

GlobalBest.BestPositionText[8] = Convert.Tolnt16(Math.Round(Swarm[i].Position[8],
0)).ToString() + " x" + api.AuxCounterweightName[Convert.Tolnt16(Math.Round(Swarm[i].Position[0],
0))1;

GlobalBest.BestPositionText[9] = Convert.Tolnt16(Math.Round(Swarm[i].Position[9],
0)).ToString() + " x" + api.AuxCounterweightName[Convert.Tolnt16(Math.Round(Swarm[i].Position[1],
0))1;

GlobalBest.BestPositionText[10] = Convert.Tolnt16(Math.Round(Swarm[i].Position[10],
0)).ToString() + " x" + api.AuxCounterweightName[Convert.Tolnt16(Math.Round(Swarm[i].Position[2],
0))1;

GlobalBest.BestPositionText[11] = Convert.Tolnt16(Math.Round(Swarm[i].Position[11],
0)).ToString() + " x" + api.AuxCounterweightName[Convert.Tolnt16(Math.Round(Swarm[i].Position[3],
0))1;

GlobalBest.BestPositionText[12] = Swarm[i].Tau.ToString() + " deg";

GlobalBest.BestPositionText[13] = Swarm[i].CLF.ToString();

GlobalBest.BestFitnessValue = Swarm[i].BestFitnessValue;
label7.Text = GlobalBest.BestFitnessValue.ToString();
Application.DoEvents();

for (int iter = 0; iter < MaxlIteration; iter++)

{

labelSwarmSize.Text = $"{iter}. iteration";

for (inti = 0; i < SwarmSize; i++)
{
labelMaxIteration.Text = $"{i}. swarm";
Application.DoEvents();
for (int j = 0; j < DimensionSize; j++)
{

Swarm[i].Speed[j] = W * Swarm[i].Speed[j] + C1 * Math.Round(Randd.NextDouble(), 5) *
(Swarm{[i].BestPosition[j] - Swarm[i].Position[j]) + C2 * Math.Round(Randd.NextDouble(), 5) *
(GlobalBest.BestPosition[j] - Swarm[i].Position[j]);

Swarm[i].Speed[j] = UpdateSwarmSpeed(Swarm[i].Speed[j]);
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if(j>3&&j<8)
{
UpperLimits[j] = CrankLength -
api.CounterweightdM[Convert.Tolnt16(Math.Round(Swarm[i].Position][j - 4], 0))];
LowerLimits[j] = api.Counterweightdm[Convert.Tolnt16(Math.Round(Swarm{[i].Position[j -
4], 0)1;
}
Swarm[i].Position[j] = UpdateSwarmPosition(Swarm[i].Position[j], Swarm][i].Speed[j],
UpperLimits[j], LowerLimits[j]);
}

Swarm[i].FitnessValue = FitnessCalculation(Swarm[i].Position, false, false);

if (Swarm[i].FitnessValue < Swarm[i].BestFitnessValue)

{
Swarm{[i].BestPosition = (double[])Swarm[i].Position.Clone();
Swarm[i].BestFitnessValue = Swarm[i].FitnessValue;

if (Swarm[i].BestFitnessValue < GlobalBest.BestFitnessValue)
{
calc.RotarylnertialTorque.Clear();
calc.CounterBalanceTorque.Clear();
calc.NetGearboxTorque.Clear();

GlobalBest.BestPosition = (double[])Swarm[i].Position.Clone();
GlobalBest.BestFitnessValue = Swarm[i].BestFitnessValue;

Positionlist. Add(Swarm{[i].Position.Clone());
Fitnesslist. Add(Swarm[i].BestFitnessValue);
label7.Text = GlobalBest.BestFitnessValue.ToString();

for (intj = 0; j < calc.RotarylnertialTorqueDummy.Count; j++)

{
calc.RotarylnertialTorque.Add(calc.Rotarylnertial TorqueDummyf(j]);
calc.CounterBalanceTorque.Add(calc.CounterBalanceTorqueDummy([j]);
calc.NetGearboxTorque.Add(calc.NetGearboxTorqueDummy([j]);

}
Draw();
}
}
}
W *= Wdamp;
}

public double[] PSO_RandPosition(double[] a, double[] b, int n)
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{

double[] x = new double[n];
for (inti=0;i<n; i++)
{

x[i] = PSO_Rand(a[i], b[i]);

if(i>3&&i<8)

{

x[i] = PSO_Rand(api.Counterweightdm[Convert.Tolnt16(Math.Round(x[i - 4], 0))], CrankLength
- api.CounterweightdM[Convert.Tolnt16(Math.Round(x[i - 4], 0))]);

}
}

return x;

}

public double[] PSO_Rand(double[] a, double[] b, int n)
{
double[] x = new double[n];
for (inti=0;i<n;i++)
{
x[i] = PSO_Rand(a[i], b[i]);
}

return x;

public double FitnessCalculation(double[] a, bool noinertia, bool CLF)
{
int Cw1topID = Convert.Tolnt16(Math.Round(a[0], 0));
int Cw1botID = Convert.Tolnt16(Math.Round(a[1], 0));
int Cw2toplD = Convert.Tolnt16(Math.Round(a[2], 0));
int Cw2botID = Convert.Tolnt16(Math.Round(a[3], 0));
double M1 = CrankLength - api.CounterweightdM[Cw1topID];
double M2 = CrankLength - api.CounterweightdM[Cw1botID];
double M3 = CrankLength - api.CounterweightdM[Cw2topID];
double M4 = CrankLength - api.CounterweightdM[Cw2botID];
double D1 = Math.Round(a[4], 1);
double D2 = Math.Round(a[5], 1);
double D3 = Math.Round(a[6], 1);
double D4 = Math.Round(a[7], 1);

)

if (D1 > M1)
{

D1 =M1;
}
if (D2 > M2)
{

D2 =M2;
}
if (D3 > M3)
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D3 = M3;

if (D4 > M4)
{

D4 = M4;
}

double Y1 = api.CounterweightY[Cw1topID];
double Y2 = api.CounterweightY[Cw1botID];
double Y3 = api.CounterweightY[Cw2topID];
double Y4 = api.CounterweightY[CwZ2botID];

double H1 = Math.Sqrt((Y1 + CrankHalfwidth) * (Y1 + CrankHalfwidth) + (M1 - D1) * (M1 - D1));
double H2 = Math.Sqrt((Y2 + CrankHalfwidth) * (Y2 + CrankHalfwidth) + (M2 - D2) * (M2 - D2));
double H3 = Math.Sqrt((Y3 + CrankHalfwidth) * (Y3 + CrankHalfwidth) + (M3 - D3) * (M3 - D3));
double H4 = Math.Sqrt((Y4 + CrankHalfwidth) * (Y4 + CrankHalfwidth) + (M4 - D4) * (M4 - D4));

int AuxCw1topID = Convert.Tolnt16(Math.Round(a[8], 0));
int AuxCw1botID = Convert.Tolnt16(Math.Round(a[9], 0));
int AuxCw2topID = Convert.Tolnt16(Math.Round(a[10], 0));
int AuxCw2botID = Convert.Tolnt16(Math.Round(a[11], 0));

double Icgl = api.CounterweightMoment[Cw1topID]
api.AuxCounterweightMoment[Cw1topID];

double Icg2 = api.CounterweightMoment[Cw1botID]
api.AuxCounterweightMoment[Cw1botID];

double Icg3 = api.CounterweightMoment[Cw2topID]
api.AuxCounterweightMoment[Cw2topID];

double Icg4 = api.CounterweightMoment[Cw2botID]
api.AuxCounterweightMoment[Cw2botID];

double mcwl = api.CounterweightMass[Cw1topID]
api.AuxCounterweightMass[Cw1topID];

double mcw?2 = api.CounterweightMass[Cw1botID]
api.AuxCounterweightMass[Cw1botID];

double mcw3 = api.CounterweightMass[CwZ2topID]
api.AuxCounterweightMass[Cw2topID];

double mcw4 = api.CounterweightMass[Cw2botID]
api.AuxCounterweightMass[Cw2botID];

double Icw1 =Icgl + mecw1 * (H1 / 12) * (H1 / 12);
double Icw2 =Icg2 + mew2 * (H2 / 12) * (H2 / 12);
double Icw3 =Icg3 + mcw3 * (H3 / 12) * (H3 / 12);
double Icw4 = Icg4 + mcw4 * (H4 / 12) * (H4 / 12);

double Icw = Icw1 + Icw2 + [cw3 + [cw4;

double Is = Icw + MassMomentCranks + MassMomentGearbox;

AuxCw1topID

AuxCw1botID

AuxCw2topID

AuxCw2botID

AuxCwl1topID

AuxCw1botID

AuxCwZ2topID

AuxCw2botID
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double Tcbmax = CrankTorque + mcw1 * (M1 - D1) + mcw2 * (M2 - D2) + mcw3 * (M3 - D3) + mcw4
* (M4 - D4);

double Sumx = (CrankMass * 2 * CrankLength / 2 + mcw1 * (M1 - D1) + mcw2 * (M2 - D2) + mcw3 *
(M3 -D3) + mcw4 * (M4 - D4)) / (CrankMass * 2 + mcw1 + mcw2 + mcw3 + mcw4);

double Sumy = (mcw1 * (Y1 + CrankHalfwidth) - mcw2 * (Y2 + CrankHalfwidth) + mcw3 * (Y3 +
CrankHalfwidth) - mcw4 * (Y4 + CrankHalfwidth)) / (CrankMass * 2 + mcw1 + mcw2 + mcw3 + mcw4);

double Taumod = Math.Round(Math.Atan(Sumy / Sumx) * 180 / Math.P], 2);

calc.RotaryInertial TorqueDummy.Clear();
calc.CounterBalanceTorqueDummy.Clear();
calc.NetGearboxTorqueDummy.Clear();

for (intj = 0; j < twm.PolishedRodPosition.Count; j++)
{
calc.CounterBalanceTorqueDummy.Add(Math.Round(-Math.Sin((Taumod + PhaseAngle +
calc.CrankAngle[j]) / 180 * Math.PI) * Tcbmax / 1000, 3));

}
if ('noinertia)
{
for (intj = 0; j < twm.PolishedRodPosition.Count; j++)
{
calc.Rotarylnertial TorqueDummy.Add(Math.Round(12 / 32.2 * Is *
calc.CrankAngularAcceleration5Point[j] / 1000, 3));
}
}
else
{
calc.Articulatinglnertial TorqueSymmetricalNolnertia.Clear();
for (intj = 0; j < twm.PolishedRodPosition.Count; j++)
{
calc.Rotarylnertial TorqueDummy.Add(0);
calc.ArticulatinglnertialTorqueSymmetricalNolnertia.Add(0);
}
}
if ('noinertia)
{
for (intj = 0; j < twm.PolishedRodPosition.Count; j++)
{
calc.NetGearboxTorqueDummy.Add(Math.Round(calc.RodTorque[j] +
calc.Articulatinglnertial TorqueSvinos5p[j] + calc.Rotarylnertial TorqueDummyf[j] +
calc.CounterBalanceTorqueDummy(j], 3));
}
}
else
{
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for (intj = 0; j < twm.PolishedRodPosition.Count; j++)
{
calc.NetGearboxTorqueDummy.Add(Math.Round(calc.RodTorque[j] +
calc.ArticulatingInertialTorqueSymmetricalNolnertia[j] + calc.Rotarylnertial TorqueDummy(j] +
calc.CounterBalanceTorqueDummy(j], 3));
}
}

double max = 0;

if (ICLF)
{
for (inti = 0; i < twm.PolishedRodPosition.Count; i++)
{
if (Math.Abs(calc.NetGearboxTorqueDummy/[i]) > max)
{
max = Math.Abs(calc.NetGearboxTorqueDummy[i]);
}
}
}

else
{
double Squaresum = 0;
double Sum = 0;
for (inti = 0; i < twm.PolishedRodPosition.Count - 1; i++)
{
Squaresum += (Math.Pow(calc.NetGearboxTorqueDummyf[i], 2) +
Math.Pow(calc.NetGearboxTorqueDummy([i + 1], 2)) / 2 * twm.Time[1];
Sum += (calc.NetGearboxTorqueDummy[i] + calc.NetGearboxTorqueDummy[i]) / 2 *
twm.Time[1];

}

max = Math.Round(Math.Sqrt(Squaresum / twm.Time[twm.Time.Count - 1]) / (Sum /
twm.Time[twm.Time.Count - 1]), 4);

}

return max;

}

public double TauCalculation(double[] a)
{
int Cw1topID = Convert.Tolnt16(Math.Round(a[0], 0));
int Cw1botID = Convert.Tolnt16(Math.Round(a[1], 0));
int Cw2topID = Convert.Tolnt16(Math.Round(a[2], 0));
int Cw2botID = Convert.Tolnt16(Math.Round(a[3], 0));
double M1 = CrankLength - api.CounterweightdM[Cw1topID];
double M2 = CrankLength - api.CounterweightdM[Cw1botID];
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double M3 = CrankLength - api.CounterweightdM[Cw2topID];
double M4 = CrankLength - api.CounterweightdM[Cw2botID];
double D1 = Math.Round(Math.Round(a[4] * 2.54, 0) / 2.54, 1);
double D2 = Math.Round(Math.Round(a[5] * 2.54, 0) / 2.54, 1);
double D3 = Math.Round(Math.Round(a[6] * 2.54, 0) / 2.54, 1);
double D4 = Math.Round(Math.Round(a[7] * 2.54, 0) / 2.54, 1);

if (D1 > M1)
{

D1 = M1;
}
if (D2 > M2)
{

D2 = M2;
}
if (D3 > M3)
{

D3 = M3;
}
if (D4 > M4)
{

D4 = M4;
}

double Y1 = api.CounterweightY[Cw1topID];
double Y2 = api.CounterweightY[Cw1botID];
double Y3 = api.CounterweightY[Cw2topID];
double Y4 = api.CounterweightY[Cw2botID];

double H1 = Math.Sqrt((Y1 + CrankHalfwidth) * (Y1 + CrankHalfwidth) + (M1 - D1) * (M1 - D1));
double H2 = Math.Sqrt((Y2 + CrankHalfwidth) * (Y2 + CrankHalfwidth) + (M2 - D2) * (M2 - D2));
double H3 = Math.Sqrt((Y3 + CrankHalfwidth) * (Y3 + CrankHalfwidth) + (M3 - D3) * (M3 - D3));
double H4 = Math.Sqrt((Y4 + CrankHalfwidth) * (Y4 + CrankHalfwidth) + (M4 - D4) * (M4 - D4));

int AuxCw1topID = Convert.Tolnt16(Math.Round(a[8], 0));
int AuxCw1botID = Convert.Tolnt16(Math.Round(a[9], 0));
int AuxCw2topID = Convert.Tolnt16(Math.Round(a[10], 0));
int AuxCw2botID = Convert.Tolnt16(Math.Round(a[11], 0));

double Icgl =
api.AuxCounterweightMoment[Cw1topID];
double Icg2 =
api.AuxCounterweightMoment[Cw1botID];
double Icg3 =
api.AuxCounterweightMoment[Cw2topID];
double Icg4 =
api.AuxCounterweightMoment[Cw2botID];

api.CounterweightMoment[Cw1topID]
api.CounterweightMoment[Cw1botID]
api.CounterweightMoment[Cw2topID]

api.CounterweightMoment[Cw2botID]

AuxCw1topID

AuxCw1botID

AuxCw2topID

AuxCw2botID
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double mcw1 = api.CounterweightMass[Cw1topID]
api.AuxCounterweightMass[Cw1topID];

double mcw?2 = api.CounterweightMass[Cw1botID]
api.AuxCounterweightMass[Cw1botID];

double mcw3 = api.CounterweightMass[Cw2topID]
api.AuxCounterweightMass[Cw2topID];

double mcw4 = api.CounterweightMass[Cw2botID]
api.AuxCounterweightMass[Cw2botID];

double Icw1 =Icgl + mcw1 * (H1 / 12) * (H1 / 12);
double Icw2 =Icg2 + mcw2 * (H2 / 12) * (H2 / 12);
double Icw3 =1cg3 + mcw3 * (H3 / 12) * (H3 / 12);
double Icw4 = Icg4 + mcw4 * (H4 / 12) * (H4 / 12);

double Icw = Iew1 + Icw2 + Icw3 + [cw4;

double Is = Icw + MassMomentCranks + MassMomentGearbox;

AuxCw1topID

AuxCw1botID

AuxCw2topID

AuxCw2botID

double Tcbmax = CrankTorque + mcw1 * (M1 - D1) + mcw2 * (M2 - D2) + mcw3 * (M3 - D3) + mcw4

* (M4 - D4);

double Sumx = (CrankMass * 2 * CrankLength / 2 + mcw1 * (M1 - D1) + mcw2 * (M2 - D2) + mcw3 *

(M3 -D3) + mcw4 * (M4 - D4)) / (CrankMass * 2 + mcw1 + mcw2 + mcw3 + mcw4);

double Sumy = (mcw1 * (Y1 + CrankHalfwidth) - mcw?2 * (Y2 + CrankHalfwidth) + mcw3 * (Y3 +

CrankHalfwidth) - mcw4 * (Y4 + CrankHalfwidth)) / (CrankMass * 2 + mcw1 + mcw?2 + mcw3 + mcw4);

double Taumod = Math.Round(Math.Atan(Sumy / Sumx) * 180 / Math.PI, 2);

return Taumod;

public double CLFCalculation(double][] a)
{

int Cw1topID = Convert.Tolnt16(Math.Round(a[0], 0));

int Cw1botID = Convert.Tolnt16(Math.Round(a[1], 0));

int Cw2topID = Convert.Tolnt16(Math.Round(a[2], 0));

int Cw2botID = Convert.Tolnt16(Math.Round(a[3], 0));

double M1 = CrankLength - api.CounterweightdM[Cw1topID];
double M2 = CrankLength - api.CounterweightdM[Cw1botID];
double M3 = CrankLength - api.CounterweightdM[Cw2topID];
double M4 = CrankLength - api.CounterweightdM[Cw2botID];
double D1 = Math.Round(Math.Round(a[4] * 2.54, 0) / 2.54, 1);
double D2 = Math.Round(Math.Round(a[5] * 2.54, 0) / 2.54, 1);
double D3 = Math.Round(Math.Round(a[6] * 2.54, 0) / 2.54, 1);
double D4 = Math.Round(Math.Round(a[7] * 2.54, 0) / 2.54, 1);

if (D1 > M1)
{

D1 =M1;
}
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if (D2 > M2)

{

D2 = M2;
}
if (D3 > M3)
{

D3 = M3;
}
if (D4 > M4)
{

D4 = M4;
}

double Y1 = api.CounterweightY[Cw1topID];
double Y2 = api.CounterweightY[Cw1botID];
double Y3 = api.CounterweightY[CwZ2topID];
double Y4 = api.CounterweightY[Cw2botID];

double H1 = Math.Sqrt((Y1 + CrankHalfwidth) * (Y1 + CrankHalfwidth) + (M1 - D1) * (M1 - D1));
double H2 = Math.Sqrt((Y2 + CrankHalfwidth) * (Y2 + CrankHalfwidth) + (M2 - D2) * (M2 - D2));
double H3 = Math.Sqrt((Y3 + CrankHalfwidth) * (Y3 + CrankHalfwidth) + (M3 - D3) * (M3 - D3));
double H4 = Math.Sqrt((Y4 + CrankHalfwidth) * (Y4 + CrankHalfwidth) + (M4 - D4) * (M4 - D4));

int AuxCw1topID = Convert.Tolnt16(Math.Round(a[8], 0));
int AuxCw1botID = Convert.Tolnt16(Math.Round(a[9], 0));
int AuxCw2topID = Convert.Tolnt16(Math.Round(a[10], 0));
int AuxCw2botID = Convert.Tolnt16(Math.Round(a[11], 0));

double Icgl =
api.AuxCounterweightMoment[Cw1topID];
double Icg2 =
api.AuxCounterweightMoment[Cw1botID];
double Icg3 =
api.AuxCounterweightMoment[Cw2topID];
double Icg4 =
api.AuxCounterweightMoment[Cw2botID];

api.CounterweightMoment[Cw1topID]
api.CounterweightMoment[Cw1botID]
api.CounterweightMoment[Cw2topID]

api.CounterweightMoment[Cw2botID]

double mcwl = api.CounterweightMass[Cw1topID]
api.AuxCounterweightMass[Cw1topID];

double mcw?2 = api.CounterweightMass[Cw1botID]
api.AuxCounterweightMass[Cw1botID];

double mcw3 = api.CounterweightMass[Cw2topID]
api.AuxCounterweightMass[Cw2topID];

double mcw4 = api.CounterweightMass[Cw2botID]

api.AuxCounterweightMass[Cw2botID];

double Icw1 =Icgl + mcwl * (H1 / 12) * (H1 / 12);
double Icw2 =Icg2 + mecw2 * (H2 / 12) * (H2 / 12);

AuxCw1topID

AuxCw1botID

AuxCwZ2ZtopID

AuxCw2botID

AuxCw1topID

AuxCw1botID

AuxCw2topID

AuxCw2botID
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double Icw3 =1cg3 + mcw3 * (H3 / 12) * (H3 / 12);
double Icw4 = Icg4 + mcw4 * (H4 / 12) * (H4 / 12);

double Icw = Iew1 + Icw2 + Icw3 + [cw4;
double Is = Icw + MassMomentCranks + MassMomentGearbox;

double Tcbmax = CrankTorque + mcw1 * (M1 - D1) + mcw2 * (M2 - D2) + mcw3 * (M3 - D3) + mcw4
* (M4 - D4);

double Sumx = (CrankMass * 2 * CrankLength / 2 + mcw1 * (M1 - D1) + mcw2 * (M2 - D2) + mcw3 *
(M3 - D3) + mcw4 * (M4 - D4)) / (CrankMass * 2 + mcw1 + mcw2 + mcw3 + mcw4);

double Sumy = (mcw1 * (Y1 + CrankHalfwidth) - mcw2 * (Y2 + CrankHalfwidth) + mcw3 * (Y3 +
CrankHalfwidth) - mcw4 * (Y4 + CrankHalfwidth)) / (CrankMass * 2 + mcw1 + mcw2 + mcw3 + mcw4);

double Taumod = Math.Round(Math.Atan(Sumy / Sumx) * 180 / Math.P], 2);

calc.Rotarylnertial TorqueDummy.Clear();
calc.CounterBalanceTorqueDummy.Clear();
calc.NetGearboxTorqueDummy.Clear();

for (intj = 0; j < twm.PolishedRodPosition.Count; j++)

{
calc.CounterBalanceTorqueDummy.Add(Math.Round(-Math.Sin((Taumod + PhaseAngle +

calc.CrankAngle[j]) / 180 * Math.PI) * Tcbmax / 1000, 3));
}

for (intj = 0; j < twm.PolishedRodPosition.Count; j++)

{
calc.RotarylnertialTorqueDummy.Add(Math.Round(12 / 32.2 * Is *

calc.CrankAngularAcceleration5Point[j] / 1000, 3));
}

for (int j = 0; j < twm.PolishedRodPosition.Count; j++)

{
calc.NetGearboxTorqueDummy.Add(Math.Round(calc.RodTorque[j] +

calc.Articulatinglnertial TorqueSvinos5p[j] + calc.Rotarylnertial TorqueDummyfj] +
calc.CounterBalanceTorqueDummy(j], 3));

}

double max = 0;

double Squaresum = 0;
double Sum = 0;
for (inti = 0; i < twm.PolishedRodPosition.Count - 1; i++)
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{

Squaresum += (Math.Pow(calc.NetGearboxTorqueDummy[i], 2) +
Math.Pow(calc.NetGearboxTorqueDummy([i + 1], 2)) / 2 * twm.Time[1];

Sum += (calc.NetGearboxTorqueDummy[i] + calc.NetGearboxTorqueDummyl[i]) / 2 *
twm.Time[1];

}

max = Math.Round(Math.Sqrt(Squaresum / twm.Time[twm.Time.Count - 1]) / (Sum /
twm.Time[twm.Time.Count - 1]), 4);

return max;

}

double UpdateSwarmPosition(double Pos, double Speed, double upperlimit, double lowerlimit)
{

double OutPos = Pos + Speed;

OutPos = Math.Max(Math.Min(OutPos, upperlimit), lowerlimit);

return OutPos;

double UpdateSwarmSpeed(double Speed)

{
double OutPos = Math.Max(Math.Min(Speed, ub_SpeedXi), Ib_SpeedXi);
return OutPos;

}

public struct Particle
{

public double[] Position;
public double[] Speed;
public double FitnessValue;
public double[] BestPosition;
public string[] BestPositionText;
public double BestFitnessValue;
public double Tau;
public double CLF;
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14.3 Appendix C Results of the Sensitivity Analysis
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