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2 Advisor’s Foreword 

The great majority of artificial lifted oil wells are placed on sucker-rod pumping 

all over the world. Due to the great importance of sucker-rod pumping the reduction 

of production costs is a major drive in operating those installations. Because the most 

significant element of production costs is related to the prime mover’s energy 

requirement the improvement of power efficiency is a prime task of field personnel. 

The proper choice of the pumping unit’s counterbalancing, the topic of this 

candidate’s PhD Thesis, can substantially improve the power conditions of pumping 

and thus can increase the profits of oil production. 

The candidate’s choice of the topic of his PhD Thesis is especially appropriate 

today because of the great number of rod pumped wells worldwide as well as in 

Hungary. The results of the author’s interesting and important research will surely 

help to increase pumping efficiency and, at the same time, increase the life of sucker-

rod pumping installations. 

The Thesis is properly constructed and clearly proves the candidate’s skills in 

scientific research and publication. His treatment of the gearbox’s torque loading 

under different kinds of counterbalancing conditions is correct. One of the best parts 

of the Thesis deals with unusual counterbalance arrangements that are very seldom 

used in the industry. As the author proves, the use of asymmetric counterweight 

arrangements, as compared to the traditional symmetric ones, can lead to definite 

operational advantages. The author, for the first time in the literature, introduces the 

use of Particle Swarm Optimization (PSO) method in the calculation of optimum 

counterbalancing conditions. The novel methods and calculation models developed 

by the author can be considered as new scientific achievements in the discipline of 

sucker-rod pumping of oil wells. 

 

 

 

Budapest, October 13, 2020.  

 

Prof. Dr. Gábor Takács 

Petroleum Engineering Department 

University of Miskolc 
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3 Introduction 

The initial objective of the presented thesis was the investigation of the effect of 

using asymmetrical counterweight configuration in the counterbalancing of crank 

balanced sucker-rod pumping units. During the research it became clear, that this 

particular case of counterbalancing was not investigated in detail prior to this work. 

Since the number of sucker-rod pumping installations operating worldwide is 

approximately 750,000, it is important to ensure their optimal operation from both 

engineering and economical points of view. (SPE) The profitability of these oil producing 

units is increased by achieving the lowest power requirement possible for the desired 

liquid flow rate, which depends on mainly the torque loading of the unit’s gearbox. 

Providing a sufficiently long lifetime for the installation by protecting the gearbox – its 

most expensive part – from overloading also improves the economic value of the sucker-

rod pumping unit operation.  

Before the optimization of the net gearbox torque can be carried out, the 

knowledge of all distinct torque components acting on the gearbox throughout the 

pumping cycle is necessary to accurately describe the actual torque conditions of the 

investigated pumping unit. The improved torque analysis presented in this work is 

based on the data provided by an electronic dynamometer, the routinely used 

measurement tool for sucker-rod pumping units. This measurement technique is the 

most widespread supervision type that has the required accuracy for a complete torque 

analysis and can be carried out with little effort. The refined procedure of the 

dynamometer survey evaluation is presented for four pumping unit geometries – 

Conventional, Air balanced, Mark II and Reverse Mark – but it can be modified to handle 

any special geometry type with little effort. An example problem is introduced, and the 

results of its evaluation are presented for every major calculation step to help the easier 

interpretation of the proposed calculation method. 

After studying the API Spec 11E (API, 2008) – the recommendation by the 

American Petroleum Institute – it became apparent, that the evaluation method used in 

the industry lacks the capability to handle the proper description of those sucker-rod 

pumping units that have varying crank angular velocities throughout their pumping 

cycle. This condition occurs when either the pumping unit is operated in an unbalanced 

condition, or when a high slip, or ultra-high slip prime mover is used to drive the sucker-

rod pumping unit. Therefore, the improvement of the interpretation of dynamometer 

surveys was the first crucial step after outlining the research goals. 

Beside the literature research, the most widely used software in the petroleum 

industry for the evaluation of dynamometer surveys – the Total Well Management by 

Echometer – was inspected and its results were analyzed in detail. After identifying 

shortcomings in the results of the TWM software and in the relevant literature, the 

objectives of the research were expanded with the identification of the systematic 

errors. A comprehensive calculation procedure is proposed that determines the 

behavior of the sucker-rod pumping unit with higher accuracy than any already existing 
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method; the findings of relevant publications in the topic are incorporated and new 

solutions are presented to address previously unresolved calculation steps. 

Finding the crank angle values at the measured times with the highest accuracy 

possible is essential for the proper torque analysis because all torque components 

depend on the crank angle versus time function, which is not included in the 

dynamometer survey. The proposed method gives more accurate crank angle values 

than the programs currently used in the industry. The determination of the angular 

acceleration pattern of the crank arm and the walking beam are necessary for the 

calculation of the inertial torques acting on the gearbox. Several methods are presented 

and compared, providing the angular acceleration functions in time with the highest 

precision possible using the calculated crank angle values. After the evaluation of the 

kinematic behavior of the sucker-rod pumping unit, all torque components acting on the 

gearbox in time are found. The knowledge of these torque functions is the basis of any 

optimization procedure.  

The second main objective of the research was to develop a calculation method to 

optimize the mechanical net gearbox torque and to determine the corresponding 

counterweight configuration for the investigated sucker-rod pumping unit. For this 

purpose, a particle swarm optimization (PSO) algorithm was used, due to the size of the 

solution space. By properly considering the effect of the asymmetrically placed 

counterweights, the number of independent variables increases from three – in the case 

of symmetrical counterweight configuration – to twelve; which makes the direct 

determination of the optimal arrangement of the counterweights impossible. The 

asymmetrically placed counterweights not only change the counterbalance torque by 

introducing a secondary phase angle but will alter both the rotary inertial torques as 

well. Hence the optimization procedure is more complex, but the resulting solution 

provides better torque loading of the gearbox for a given operating condition. Using this 

artificial intelligence technique, the resulting mechanical net gearbox torque function is 

superior to the output of the investigated TWM software. A novel optimization strategy 

was developed to maximize the cost savings of the operation of the sucker-rod pumping 

units while preventing the overloading of the gearbox. A computer program has been 

developed in C# to carry out the presented calculation steps. 
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4 Overview of Sucker-rod Pumping 

Oil wells usually flow naturally in the early stages of their lives. At this point the 

pressure at the well bottom is enough to lift the reservoir liquid to the surface 

overcoming the pressure losses in the well. However, if the bottomhole pressure of a 

given oil well decreases due to the liquid and gas production, at some point an artificial 

production method has to be implemented to keep the wellhead pressure at the minimal 

level, so that the reservoir liquid is lifted to the surface. The artificial lifting method 

investigated in this thesis is sucker-rod pumping. 

4.1 Relevance of Sucker-rod Pumping 

The number of sucker-rod pumping installations can only be estimated, their exact 

number is unknown. According to recent estimates, there are approximately 2 million 

oil wells worldwide of which more than 50% are operated with some kind of artificial 

lift (Lea, 2007). The share of different artificial production methods is shown in Figure 1 

along with their respective production contribution based on the ALRDC (Artificial Lift 

Research and Development Council) estimates. (Takács, 2015)  

 

 

Figure 1 The estimated number and production of different artificial lifting installations 

(Takács, 2015), own edit 

The current share of sucker-rod pumping is 21% globally, their production 

contribution is 7%, therefore it is crucial to maintain optimum operating conditions for 

such installations. The basic objective of production engineers is to safely operate wells 

using the least amount of operating cost to meet the required liquid regime. 
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Power costs in sucker-rod pumping operations are related to the surface power 

required to drive the pumping system. This power, in turn, depends mainly on the 

mechanical net torque required at the gearbox of the pumping unit. Thus, proper 

calculation of gearbox torque during the pumping cycle is essential to accurately 

determine the power requirements and operating costs of sucker-rod pumping. (Takács, 

2003) 

4.2 Operation of Sucker-Rod Pumps 

Sucker-rod pumping was the first artificial lifting method used in the petroleum 

industry. In the early years, cable tool drilling was the dominant drilling method, in 

which the drilling bit was dropped and retrieved repeatedly by a connected cable. After 

the flowing state of the well stopped, a bottomhole plunger pump was placed in the 

bottom of the well and was operated by the walking beam. This was the ancestor of the 

later widely used sucker-rod pumping systems. The materials used changed from wood 

to steel, but the operational principles stayed the same ever since. 

The schematic diagram of a typical sucker-rod pumping unit is shown in Figure 2. 

The objective of the surface equipment’s design is to transform the rotational motion of 

the prime mover into an alternating motion of the polished rod at the wellhead. This 

reciprocating motion is used to operate a subsurface positive displacement pump 

situated below the static liquid level. The connection between the surface and the 

subsurface equipment is the polished rod with precisely manufactured surface that 

ensures the proper seal at the stuffing box while moving in it. To protect the polished 

rod from bending, it is only allowed to move vertically, this is ensured by the proper 

design of the horsehead. 

The connection between the polished rod and the downhole pump is provided by 

the rod string. The rod string is tapered, having decreasing sizes towards the pump. The 

optimal rod shape is a downward pointing cone, this shape is approximated with the 

properly designed rod string to withstand the most common rod failure type, the fatigue 

break. The pump consists of a stationary cylinder – the pump barrel – with a standing 

valve, a travelling valve, and the plunger. The operation of the unit is powered by the 

prime mover, which is usually an electric motor. The rotational speed of the motor is 

decreased to operate the sucker-rod pumping system at a reasonable pumping speed. 

The gear reducer – or gearbox – is the unit responsible for the decrease of the rotational 

speed while simultaneously increasing the torque. During upstroke the prime mover 

lifts the rod string along with the liquid column above the pump. While lifting the fluid 

the travelling valve is closed and the standing valve is open. In downstroke however, the 

rod string falls in the liquid with open travelling valve and closed standing valve. The 

power requirement changes significantly during the pumping cycle. To achieve an 

improved power draw from the motor, counterweights, or other applicable 

counterbalancing methods are used. In the case of crank balanced units, the aim of the 

counterweights is to brake the rod string in the downstroke, when the rod string is 

falling in the liquid, and to help lift in the rod string and the produced liquid in the 
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upstroke. In downstroke energy is stored in the counterweights by lifting them and the 

motor is prevented from functioning like a generator. The stored energy is released 

whilst upstroke, reducing the power requirement needed to lift the rod string.  

 

 

Figure 2 The sucker-rod pumping system (Danel, 2015) 

4.2.1 Gearboxes 

Since the prime mover – usually an electric motor – has extremely high rotational 

speed to turn the crank arm of a sucker-rod pumping unit directly, a gear reducer is 

used to slow down the speed to a desired value and to increase the output torque 
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simultaneously. The gear reducers are the most expensive parts of the sucker-rod 

pumping units with around 50% Capex share. (Takács, 2015) API Spec. 11E (API, 2008) 

contains the relevant properties of the standardized gearboxes used in the petroleum 

industry. Most gearboxes include double-, or triple-reduction gearings, but chained 

reducers are used as well. The most widely used type is the double-reduction unit is 

presented in Figure 3, where the three shafts and two corresponding gear-pairs are 

shown. The prime mover drives the gearbox through a V-belt sheave, after the speed 

reduction the crank arm of the pumping unit is driven by the slow-speed shaft. (Takács, 

2003) The most common tooth form is the herringbone due to their superior torque 

reversal tolerance, which usually happens in every pumping cycle. The gear reduction of 

gearboxes is around 30 to 1. The lubrication has key importance in protecting the 

moving parts of the gearbox, without a lubricant of the proper viscosity the lifetime of 

the gearbox significantly drops. 

 

 

Figure 3 A typical double-reduction gearbox used in  

sucker-rod pumping (Pidenergy, 2016) 

The most important parameter determining the lifetime of a gear reducer is the 

relationship between the torque rating of the unit and the torque loading during its 

operation. Figure 4 illustrates the effect of overloading, showing that just a 10% 

increased torsional load compared to the rating can reduce the lifetime of the gearbox 
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by half, a 20% overloading can result in only one-fifth of the lifetime specified by the 

manufacturer. 

 

Figure 4 The projected lifetime change of a gearbox due to overloading 

(Clegg, 2007), own edit 

A common problem due to overloading is pitting – a type of surface fatigue – when 

the stress on the surface of the gear tooth exceeds the limit of the material for periodic 

loading. These surface cavities can lead to gear tooth failures for overloaded gear 

reducers, according to the ANSI/AGMA 110.04, Nomenclature of Gear Tooth Failure 

Modes. (BakerHughes, 2018) Therefore, achieving optimal torque loading improves the 

lifetime of the most expensive part of the sucker-rod pumping installation. This can be 

achieved by using the appropriate counterbalancing as discussed in later chapters. 

4.3 Pumping Unit Geometries 

Different pumping unit geometries were developed to increase the efficiency of the 

petroleum production. In this chapter the four main geometries – Conventional, Air-

Balanced, Mark II and Reverse Mark – are introduced in detail. Knowing the difference 

between the pumping unit geometries is essential to properly evaluate the 

dynamometer survey taken on one of these installations. For other geometry types the 

presented calculation method can be easily adapted. The dashed line – defining 𝜃𝑝 – in 

Figure 5 through Figure 8 is parallel with the link 𝐾. All figures representing the 

different geometries have the same scale (1:800) and are based on real API designations 

with 168 in nominal stroke length. 

4.3.1 Conventional Pumping Unit 

The conventional pumping unit – the oldest and most common sucker-rod 

pumping unit geometry – is based on the beam pumping unit first built in 1926 with the 

invention of crank counterbalance, which works with the same principle as the cable-

tool drilling rig. The unit’s popularity is based on its simple operation, low maintenance 

requirements and flexibility to cover a wide range of field applications. (Production 

Technology 1, 2018) The schematic layout is shown in Figure 5. The walking beam 

works like a double-arm lever that is driven at its rear end and drives the polished rod at 

its front. To counterbalance the unit, counterweights are placed on the crank arm to 
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achieve a smoother torque loading of the gearbox. The unit can operate in both 

clockwise and counterclockwise direction of rotation.  

 

Figure 5 The schematic layout of the conventional sucker-rod pumping unit 

4.3.2 Air Balanced Pumping Unit 

The air balanced pumping units were developed in the 1920s. This configuration is 

similar to the Mark II in their linkage connections, but the crank arm is significantly 

smaller for the air balanced unit achieving the same stroke length, as seen in Figure 6. 

 

 

Figure 6 The schematic layout of Air balanced sucker rod pumping unit 
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The main difference between this and the other geometries is the counterbalancing 

method. The other investigated geometries use counterweights to even out the torque 

load on the gearbox, in this case a compressed-air cylinder is used to achieve the same. 

These units are way lighter due to the lack of heavy counterweights and are about 35% 

shorter than their conventional counterparts. (Takács, 2015) This sucker-rod pumping 

unit can be driven in both directions.  

4.3.3 Mark II Pumping Unit 

The Mark II sucker-rod pumping unit was invented by J. P. Byrd, it was patented in 

1958 (Takács, 2015). The main objective of its development was to decrease the torque 

requirements, and consequently to decrease the power requirements of the operation 

compared to the conventional beam pumping units. Contrary to the conventional 

geometry, the walking beam works like a single-arm lever and it can only operate in the 

counterclockwise direction, shown in Figure 7. 

 

 

Figure 7 The schematic layout of Mark II sucker rod pumping unit 

For the same pumping task, the Mark II unit will have a lower peak torque and a 

more uniform net gearbox torque distribution compared to an equivalent conventional 

pumping unit during the pumping cycle. (Production Technology 2, 2018) The rotary 
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counterweights are placed on separate counterbalance arms that are directed opposite 

to the crank arm and are phased by 𝜏, which is usually between 19° and 28°. 

4.3.4 Reverse Mark Pumping Unit 

The Reverse Mark – initially under the name TorqMaster – unit was developed in 

the 1980s by R. Gault, who analyzed the properties of already existing geometries, to 

combine all the good properties of the already existing geometries and to eliminate their 

disadvantages. (Takács, 2015) It was achieved by analyzing the previous geometries by 

computer and the results were incorporated in the design of the Reverse Mark unit. The 

schematic layout is shown in Figure 8. 

At first, the Reverse Mark unit looks similar to the conventional geometry, the two 

main differences are the increased horizontal distance of the gearbox from the saddle 

bearing, and the phased counterweight placement on the crank arm. The maximum 

counterbalance moment is lagging behind the driven crank with a phase angle usually 

between 8-15°. By having a phase angle, the rotation of the unit is fixed in the clockwise 

direction, as shown in Figure 8. These modifications reduce the torque loading on the 

gearbox compared to the conventional unit while having the same operating conditions 

otherwise. 

 

 

Figure 8 The schematic layout of Reverse Mark sucker rod pumping unit 
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5 Determination of the Net Gearbox Torque from 

Dynamometer Surveys 

The complex interactions between the subsurface equipment, the produced liquid 

and the surface equipment during production make it nearly impossible to evaluate the 

operating condition of a sucker-rod pumping unit without measurement. The most 

widely used measurement technique is carried out by using an electronic dynamometer. 

The net mechanical gearbox torque can be determined by interpreting the dynamometer 

survey. The detailed solution of an example problem is presented in the thesis to 

illustrate the differences between the proposed evaluation method and the widely used 

TWM software; the relevant input data is given in Table 1. The variables used are 

consistent with the API Spec 11E (API, 2008).  

Table 1 Input data for the example problem 

Pumping unit designation C-640D-365-168 

Manufacturer Lufkin 

Geometry type Conventional 

Maximum torque loading of the gearbox 640,000 in lb 

Maximum polished rod load 36,500 lb 

Nominal stroke length 168 in 

Structural unbalance -1,500 lb 

Crank type 94110CA 

Gearbox mass moment of inertia 3,920 lbm ft2 

Beam mass moment of inertia 1,047,183 lbm ft2 

Rotation Clockwise 

Counterweights 
4pcs. ORO, placed 10 in 

from long end of crank 

Crank moment 470,810 in lb 

Crank mass moment of inertia (2 cranks) 247,244 lbm ft2 

Crank length 110 in 

Crank half-width 11.5 in 

Pumping speed 5.96 SPM 
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5.1 The Dynamometer Survey 

Mechanical dynamometers were the first measurement equipment for sucker-rod 

pumping units. The mechanical dynamometers can only register the surface 

dynamometer card, which is a continuous plot of the polished rod load versus the 

polished rod displacement, whereas the new electronic devices measure both the 

polished rod load and polished rod position in time. Figure 9 is the dynamometer card 

for the investigated pumping unit. 

 

 

Figure 9 The dynamometer card of the example problem 

The independent polished rod load and polished rod position functions in time are 

essential in an in-depth investigation of the pumping unit. Adequately determining the 

operating condition of a sucker-rod pumping unit can be carried out using a polished 

rod electronic dynamometer, or a polished rod transducer. Figure 10 shows a 

horseshoe type electronic dynamometer and a rod transducer. The frequency of the data 

acquisition is usually greater than 20 Hz for modern electronic dynamometers; its value 

is 30 Hz for the example problem. 302 data points were registered in total for the 

investigated pumping cycle.  
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Figure 10 A modern electronic horseshoe dynamometer and a 

polished rod transducer (Echometer, 2011) 

5.1.1 The Procedure of the Measurement 

The dynamometer measurement is the easiest and most routinely used in the 

industry to obtain the required information for a complex torque analysis for sucker-rod 

pumping units. By installing the dynamometer between the polished rod clamp and the 

carrier bar it can record the load acting on the polished rod in time. During its normal 

operation, there is no space between the polished rod clamp and the carrier bar, see 

Figure 11.  

The pumping unit must be stopped at the bottom of the stroke to begin the 

installation process by attaching a temporary rod clamp on the polished rod above the 

stuffing box. After restarting the pumping unit, a knock-off block is placed on the stuffing 

box, in downstroke the motor is shut down, and the brakes are activated when the unit 

reaches the bottom of the stroke. Due to this operation, the knock-off block will contact 

the previously installed temporary clamp releasing the load from the carrier bar. If the 

operation is carried out appropriately, there is enough space for the installation of the 

dynamometer, as seen in Figure 11. 
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Figure 11 Placement of the dynamometer (Echometer, 2011), own edit 

After restarting the unit and removing the knock-off, the loads in the polished rod 

will act on the dynamometer, making the measurement of the polished rod load 

possible. To measure the loads, the dynamometers usually use strain gauges. Figure 12 

shows the measured rod load variation in time for the example case, the measured 

polished rod positions are shown in Figure 13. 

 

 

Figure 12 Measured rod loads for the example problem 
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For the position measurement usually data from a built-in accelerometer is used. 

The polished rod position values are determined by integrating the measured 

acceleration twice.  

 

 

Figure 13 Measured polished rod positions for the example problem 

At the start of the pumping the liquid level in the annulus will be at a higher 

position than the dynamic liquid level corresponding to the given pumping rate. No 

measurements must be done before the liquid level drops to its dynamic value. The time 

required to achieve the equilibrium liquid level depends on the inflow parameters of the 

well, the properties of the produced liquid, the configuration of the subsurface 

equipment and the type and operation of the surface elements of the sucker-rod 

pumping unit. The motion of the crank arm becomes periodic, when the operation of the 

pumping unit has been stabilized, so that the position of the dynamic liquid level is 

constant at the start of every upstroke. 

The measurement with polished rod transducers is much simpler, it can be 

clamped under the carrier bar on the polished rod, but the provided accuracy is not 

sufficiently high for the complete torque analysis of the sucker-rod pumping unit.  

5.2 Investigation of the Torque Loading of the Gearbox 

There are two distinct cases in the calculation of gearbox torques based on the 

angular acceleration pattern of the crankshaft. The API Spec 11E (API, 2008) provides a 

calculation method for constant crankshaft velocities. But when the angular velocity of 

the crank changes more than 15% during the pumping cycle, the API method can lead to 

errors greater than 10%; this can result in operating decisions that overload the unit. As 
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previously shown in Figure 4, the overloading drastically decreases the lifetime of the 

gearbox, therefore it is of paramount importance to determine the mechanical net 

gearbox torque adequately.  

Having a non-zero crank angular acceleration is usually a consequence of using 

either a high-slip, or even an ultra-high-slip electric motor as the prime mover. In these 

cases, the crank angular velocity is a function of the torsional loading of the gearbox; at 

light loads the crank accelerates and achieves a higher speed, consequently at heavier 

loads it decelerates and slows down. This circumstance will produce a new torque 

component emerging in the calculation of the net gearbox torque calculations. In this 

case there are four different torque components acting on the gearbox of a sucker-rod 

pumping unit during its operating cycle. These torques are the rod torque, the 

counterbalance torque, the rotary moment of inertia and the articulating moment of 

inertia. The calculation of these torques requires the interpretation of a dynamometer 

survey. As a result of the analysis of the current operating condition, the net torque is 

determined throughout the pumping cycle by summing up the calculated torque 

components. 

The basis of the torque analysis of sucker-rod pumping units is the knowledge of 

the crank angle variation in time throughout the pumping cycle. In this chapter the 

crank angles are assumed to be known, and the torque components acting on the slow-

speed shaft are determined accordingly. The in-depth calculation of the crank angle 

function versus time is detailed in Chapter 5.3, the determination of the angular 

acceleration pattern of the crank arm and the walking beam are introduced in Chapter 

5.4 and Chapter 5.5, respectively. 

Unlike in previous works, the variation of every angle calculated from the 

measured polished rod positions are presented in time, not as a function of the crank 

angle. This is also true for the angular velocities and angular accelerations computed by 

the newly proposed methods. To determine the aforementioned angles, the knowledge 

of the crank angle is required, which is not necessarily changing linearly in time, as 

assumed in prior works. 

5.2.1 Flowchart of the Torque Calculation Procedure 

As previously discussed, four different torque components must be determined to 

find the mechanical net gearbox torque. All torque components can be calculated by 

interpreting the dynamometer survey. The simplified flowchart representing the 

calculation of the torque components from the dynamometer survey is shown in Figure 

14. The in-depth determination of these torque functions in time is shown in Chapter 

5.2.2 through Chapter 5.2.4. 
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Figure 14 Simplified flowchart of the determination of every torque component 

5.2.2 Rod Torque 

The rod torque is required to overcome the sum of the weight of the rod string and 

the produced liquid, the frictional losses, and the dynamic losses during production. The 

formula which determines the rod torque is given in Equation 1. (Takács, 2015) 

 

 𝑇𝑅𝑜𝑑(𝑡) = 𝑇𝐹(𝑡) ∙ (𝐹(𝑡) − 𝑆𝑈) (1) 

where: 

𝑇𝑅𝑜𝑑(𝑡) Rod torque in time [in lb], 

𝑇𝐹(𝑡) Torque factor in time [in], 

𝐹(𝑡) Polished rod load in time [lb], and 

𝑆𝑈 Structural unbalance [lb]. 

 

The structural unbalance is the force requirement to balance the walking beam 

horizontally with disconnected pitmans from the cranks. A sucker-rod pumping unit can 

be tail heavy – if a downward pointing force must be exerted on the horsehead side to 

maintain the balance – or horsehead heavy in the opposite case. (Takács, 2003) The rod 

torque calculated for the example problem is shown in Figure 15 with the results from 

TWM. 
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Figure 15 Calculated rod torque for the example problem 

The value of the structural unbalance is considered positive when it is pointing 

downwards, therefore it depends on the rotation of the pumping unit. The structural 

unbalance is given for every pumping unit by the manufacturer. 

5.2.2.1 Torque Factor 

For the calculation of the rod torque the knowledge of the torque factor – the 

imaginary lever arm – throughout the pumping cycle is required, which is calculated 

from the crank angles using the geometry type and the linkage lengths of the pumping 

unit. In Equation 1 the polished rod loads are obtained directly from the dynamometer 

survey; the structural unbalance is provided by the manufacturer. The objective is to 

determine the torque factor as a function of time for the calculation of the rod torque, 

which is not included in the dynamometer measurement. The torque factor at a given 

time can be calculated using Equation 2. Both the torque factor and the auxiliary angles 

used depend on the crank angle, which was the basis of the previous torque analysis 

methods. If the crank angle variation in time is known, the change of these variables in 

time can be considered. Figure 16 shows the calculated torque factor values for the 

example problem. 

 

 
𝑇𝐹 =

𝑅 ∙ 𝐴

𝐶
 
𝑠𝑖𝑛 (𝛼)

𝑠𝑖𝑛 (𝛽)
 (2) 

where: 

𝑇𝐹 Torque factor [in], 

𝑅, 𝐴, 𝐶 Linkage dimensions [in], and 



 

19 
 

𝛼, 𝛽 Auxiliary angles defined in Table 2 [rad]. 

 

Figure 16 Torque factors calculated for the example problem 

The angles on the right side of Equation 2 depend on the crank angle as seen in 

Figure 5 through Figure 8; therefore, the crank angle has to be calculated first in order 

to determine the torque factor at a given position of rods. Once the crank angle, 𝜃, is 

found, the corresponding 𝛼 and 𝛽 angles are found using the equations in Table 2. (API, 

2008) (Takács, 2015)  

Table 2 Formulae used in the calculation of the torque factor 

Conventional and Reverse Mark Mark II Air Balanced 

𝜃2 = 2𝜋 − 𝜃 + 𝜙 

𝛽 = 𝑐𝑜𝑠−1 (
𝐶2 + 𝑃2 − 𝑅2 − 𝐾2 + 2 ∙ 𝐾 ∙ 𝑅 ∙ cos (𝜃2)

2 ∙ 𝐶 ∙ 𝑃
) 

𝐽 = √𝑅2 + 𝐾2 − 2 ∙ 𝐾 ∙ 𝑅 ∙ cos (𝜃2) 

𝜌 = 𝑐𝑜𝑠−1 (
𝐽2 + 𝐾2 − 𝑅2

2 ∙ 𝐽 ∙ 𝐾
) ∙ 𝑏 𝜌 = 𝑠𝑖𝑛−1 (

𝑅

𝐽
∙ 𝑠𝑖𝑛 (𝜃2)) 

𝜒 = 𝑐𝑜𝑠−1 (
𝐽2 + 𝐶2 − 𝑃2

2 ∙ 𝐽 ∙ 𝐶
) 𝜒 = 𝑠𝑖𝑛−1 (

𝑃

𝐽
∙ 𝑠𝑖𝑛 (𝛽)) 

𝜓 = 𝜒 − 𝜌 𝜓 = 𝜒 + 𝜌 
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𝛼 = 𝛽 + 𝜓 − (𝜃 − 𝜙) 𝛼 = 𝜃 − 𝜙 − (𝛽 + 𝜓) 𝛼 = 𝛽 + 𝜓 + (𝜃 − 𝜙) 

The parameter 𝑏 in Table 2 is defined by Equation 3. The calculated torque factors 

are shown in Figure 16 along with the data from the Total Well Management software. 

 
𝑏 = {

−1 𝑖𝑓 0 < 𝜃2 ≤ 𝜋
 

1 𝑖𝑓 𝜋 < 𝜃2 ≤ 2𝜋
 (3) 

5.2.3 Counterbalance Torque 

The load difference on the polished rod between the upstroke and the downstroke 

necessitates the utilization of counterbalancing, to achieve a possibly smooth torque 

loading during the pumping cycle. On crank balanced sucker-rod pumping units it is 

achieved by installing counterweights on the crank arms. On the main counterweights 

auxiliary weights can be placed. On beam balanced units the counterweights are placed 

on the end of the walking beam. On air balanced units the counterbalancing is achieved 

by installing a compressed air cylinder to the walking beam between the horsehead and 

the saddle bearing. Since the beam balanced units are generally much smaller and 

produce only a tiny fraction compared to a crank balanced one, the counterbalancing of 

these units is not detailed. The detailed description of counterbalancing of air balanced 

pumping units are omitted because it can be found in the literature in detail. (API, 2008) 

5.2.3.1 Crank Balanced Pumping Units 

The placement of the main counterweights on the crank arm is shown in Figure 

17. The travel (𝑇), the maximum distance (𝑀), and the vertical component of the center 

of gravity (𝑌𝐶𝑊) depend on the type of the counterweight used. 
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Figure 17 Counterweight placement on the crank arm (Takács, 2015), own edit 

The list of applicable counterweights depends on the crank arm installed on the 

pumping unit. Table 3 contains the compatible counterweights for the 94110CA crank 

arm of the investigated C-640D-365-168 pumping unit. The counterweights’ masses and 

mass moments of inertia about their center of gravity is included. Table 3 also includes 

the compatible auxiliary counterweights – highlighted with gray color – with their 

relevant properties. These parameters are usually given by the manufacturer.  

Table 3 The relevant properties of the compatible counterweights 

and auxiliary weights to crank 94110C (Lufkin, 1997) 

 
 

In Table 3 the maximum distance of the specific counterweight’s center of gravity 

from the long end of the crank is provided with the maximum travel distance of the 

counterweight on the crank arm, the length 𝑇, see Figure 17. On the same crank the 

smaller counterweights’ center of gravity can be placed further from the crankshaft, and 

they have a longer travel distance as well. Using the same counterweight on smaller 

cranks the maximum distance and the travel of the counterweight are shorter. 

For cases when the mass moment of inertia is unknown for a specific 

counterweight, I have developed Equation 4 based on the data in Table 3 to find an 

Index CW. Type Mass [lb] ICG [lb ft2] Y [in] M [in] T [in]

7RO 315 114

7S 141 51

6RO 504 229

6S 190 83

5CRO 662 430

5CS 327 220

5ARO 913 707

5S 366 272

3CRO 1,327 1,384

3BS 572 562

2RO 1,708 2,458

2S 612 756

1RO 2,075 3,478

1S 638 1,222

OARO 2,700 5,268

OAS 836 1,505

ORO 3,397 8,017

OS 1,128 2,290

OORO 3,894 9,960

OOS 1,175 2,490

7

8

9

10

1

2

3

4

5

6

9.9 94.65 81.58

8.6 96.3 84.58

13.4 91.91 77.34

11.8 93.1 78.84

14.2 84.34 80.84

13.3 87.4 83.96

18.5 82.4 78.84

15.4 83.4 79.84

20 77.4 63.77

19 77.4 73.77
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approximate value from its mass. To find the best parabolic function possible the least 

squares method was used; the equation proposed has 98.07% accuracy based on the 

input data listed in Table 3. Since only the counterweight masses are listed in 

(BakerHughes, 2018), this formula can be used in this case to provide reasonably good 

approximation. 

 

 𝐼𝐶𝐺𝑎
= 4.052 ∙ 10−4 ∙ 𝑤2 + 0.9734 ∙ 𝑤 − 68.032 (4) 

where: 

𝐼𝐶𝐺𝑎
 Approximate counterweight mass moment of inertia about its 

center of gravity [lbm ft2], and 

𝑤 Mass of the counterweight [lbm]. 

5.2.3.2 Using Identical Counterweights on the Crank Arms 

The counterbalance torque calculation is based on the calculated crank angle 

variation in time. The counterbalance torque versus time function is described by 

Equation 5, if the same main and auxiliary counterweights are used on the opposing 

sides of the crank arms. The maximum counterbalance moment in Equation 5 can be 

determined from the moment of the crank arms of the sucker-rod pumping unit and the 

knowledge of the configuration of the applied counterweights on the cranks. 

 

 𝑇𝐶𝐵(𝑡) = −𝑇𝐶𝐵𝑚𝑎𝑥
∙ 𝑠𝑖𝑛(𝜃(𝑡) + 𝜏) (5) 

where: 

𝑇𝐶𝐵(𝑡) Counterbalance torque in time [in lb], 

𝑇𝐶𝐵𝑚𝑎𝑥
 Maximum counterbalance moment [in lb], 

𝜃(𝑡) Crank angle variation in time [rad], and  

𝜏 Phase angle [rad]. 

 

When two identical counterweights are used on a crank, the combined center of 

gravity for the crank arm and the counterweights – the only purely rotating components 

that create the counterbalance torque – is aligned on the symmetry line of the crank 

arm. The value of the phase shift – 𝜏 – is zero for Conventional pumping units; it is 

specified by the manufacturer for the Mark II and Reverse Mark pumping units. If the 

counterweights on both sides of the crank arms are of the same type and are placed at 

the same distance from the end of the crank, the maximum counterbalance moment is 

calculated using Equation 6. (Bommer & Podio, 2012) 

 

 𝑇𝐶𝐵𝑚𝑎𝑥
= 𝑇𝑐𝑟𝑎𝑛𝑘 + (𝑀 − 𝐷) ∙ (𝑛 ∙ 𝑤 + 𝑛𝑎 ∙ 𝑤𝑎) (6) 

where: 

𝑇𝑐𝑟𝑎𝑛𝑘 Crank moment [in lb], 

𝑀 Maximum lever arm of the counterweights [in], 

𝐷 Counterweight distance from the long end of the crank [in], 

𝑛 Total number of main counterweights [-], 
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𝑤 Weight of the one main counterweight [lb], 

𝑛𝑎 Total number of auxiliary weights [-], and 

𝑤𝑎 Weight of one auxiliary weight [lb]. 

Since in the example problem all counterweights are the same, and their positions 

from the long end of the crank are also equal, Equation 6 can be used to find the 

maximum counterbalance moment, and Equation 5 produces the counterbalance torque 

function throughout the pumping cycle. The maximum counterbalance moment for the 

example case is found to be 1,386 k in lbs. The variation of the counterbalance torque for 

the example problem is shown in Figure 18. It does not have a perfectly sinusoidal 

shape because the crank angle values are not changing linearly with time, the crank does 

not turn at constant speed during the pumping cycle.  

 

 

Figure 18 Calculated counterbalance torque for the example problem 

The counterweights can be placed at different distances from the end of the crank 

arm, the vertical component of the center of gravity for the aforementioned system is 

unchanged, only the magnitude of the counterbalance torque will be different. This 

phenomenon is illustrated in Figure 19. 𝑇𝑐𝑏𝑚𝑎𝑥1
 refers to the topmost case illustrated in 

the right portion of the figure. Equation 7 is used to determine the maximum 

counterbalance moment accurately in the case of having identical counterweights at 

different positions on the cranks. 
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Figure 19 Effect of differently positioned identical counterweights on the  

counterbalance torque function 

 
𝑇𝐶𝐵𝑚𝑎𝑥

= 𝑇𝑐𝑟𝑎𝑛𝑘 + ∑((𝑀 − 𝐷𝑖) ∙ (𝑤 + 𝑛𝑎 ∙ 𝑤𝑎))

𝑛

𝑖=1

 (7) 

where: 

𝑇𝑐𝑟𝑎𝑛𝑘 Crank moment [in lb], 

𝑛 Total number of main counterweights [-], 

𝑀 Maximum lever arm for the counterweights [in], 

𝐷𝑖  ith counterweight distance from the long end of the crank [in], 

𝑤 Weight of one main counterweight [lb], 

𝑛𝑎 Number of auxiliary weights on one main counterweight [-], and 

𝑤𝑎 Weight of one auxiliary weight [lb]. 

5.2.3.3 Using Different Counterweights on the Crank Arms 

The asymmetrical counterweight configuration means that on at least one crank 

arm different counterweights are used on its opposing sides. In the production practice 

the most common case for this type of counterbalancing occurs when only one main 

counterweight is used on one crank arm, but they are placed on different sides of the 

crank arm. In this case the counterbalance torque is exactly half compared to using four 

main counterweights.  

(BakerHughes, 2018) specifically cautions the user to place only one 

counterweight on the same side of the cranks as shown in Figure 20 if two 

counterweights are used. In this case the maximum counterbalance moment is in phase 

with the symmetry line of the crank arm, similarly to the symmetrical counterbalancing 
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scenario. By having the counterweights on the same sides of the crank arms, a phase 

angle is introduced that shifts the counterbalance torque. It is important to state that 

this installation and operations manual was created in 2018 and it only refers to the 

possibility of overloading without an in-depth analysis or explanation. Note that for 

some pumping units, this phase angle can help to create a better net torque loading, but 

this must be determined strictly on case-by-case basis. The torque calculation model 

presented here can determine how this way of counterbalancing will act on the 

mechanical net gearbox torque function in time.  

 

 

Figure 20 Caution against placing the counterweights on the same side of the crank arms 

(BakerHughes, 2018) 

Asymmetrical counterbalancing occurs, when different main and auxiliary 

counterweights are used on one crank arm, or when only one counterweight is applied 

to the same side of the crank arm. These cases will not only change the amplitude of the 

counterbalance torque; an additional phase angle is introduced to the counterbalance 

torque versus time function. Equation 8 describes the calculation of counterbalance 

torque for the asymmetrically placed counterweights case. 

 

 𝑇𝐶𝐵(𝑡) = −𝑇𝐶𝐵𝑀𝑎𝑥 ∙ 𝑠𝑖𝑛(𝜃(𝑡) + 𝜏 + 𝜏′) (8) 

where: 

𝑇𝐶𝐵𝑀𝑎𝑥 Maximum counterbalance moment [in lb], 

𝜃(𝑡) Crank angle variation in time [rad], 

𝜏 Phase angle [rad], and 

𝜏′ Secondary phase angle [rad]. 
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I have developed Equation 9, that defines the maximum counterbalance moment 

for asymmetrically placed counterweight configurations. This equation is the 

generalized form of Equation (7). With this new equation the maximum counterbalance 

moment can be determined for any counterweight configuration. 

 

𝑇𝐶𝐵𝑚𝑎𝑥
= 𝑇𝑐𝑟𝑎𝑛𝑘 + ∑((𝑀𝑖 − 𝐷𝑖) ∙ (𝑤𝑖 + ∑𝑤𝑎𝑖𝑗

𝑛𝑎𝑖

𝑗=1

))

𝑛

𝑖=1

 (9) 

where: 

𝑇𝑐𝑟𝑎𝑛𝑘 Crank moment [in lb], 

𝑛 Total number of counterweights [-], 

𝑀𝑖  Maximum lever arm for the ith counterweight [in], 

𝐷𝑖  ith counterweight distance from the long end of the crank [in], 

𝑤𝑖 Weight of the ith counterweight [lb], 

𝑛𝑎𝑖
 Number of auxiliary weights on the ith counterweight [-], and 

𝑤𝑎𝑖𝑗
 Weight of the jth auxiliary weight on the ith counterweight [lb]. 

 

Figure 21 illustrates the connection between the changes in the counterweight 

configurations and the resulting counterbalance torque functions for three sample cases. 

As shown, the combined center of gravity of the crank and counterweight system 

produces the evolution of a secondary phase angle.  

 

 
Figure 21 Effect of different asymmetrical counterweight configurations on the 

counterbalance torque function 

The secondary phase angle – 𝜏′ – represents the lead or lag of the maximum 

counterbalance torque from the symmetry line of the crank arm, as shown in Figure 21. 

This value can be positive and negative, depending on the counterweight configuration 
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and the direction of rotation. To calculate this angle, the center of gravity for the system 

containing the crank arm and the counterweights must be determined. 

Knowing the vertical and horizontal distance of the center of gravity of the 

aforementioned system from the crankshaft, the secondary phase angle can be found 

using Equation 10, see Figure 21. 

 
𝜏′ = 𝑡𝑎𝑛−1 (

𝑌

𝑋
) (10) 

where: 

𝑌 Vertical distance of the center of gravity of the system containing 

the crank and the counterweights from the crankshaft [in], and 

𝑋 Horizontal distance of the center of gravity of the system containing 

the crank and the counterweights from the crankshaft [in]. 

 

To find the center of gravity of this system, the required data are the mass of the 

counterweights and the crank arm, the horizontal and vertical distance of their centers 

of gravity from the crankshaft, as defined by Equation 11 and Equation 12, respectively. 

The coordinate system used to describe the geometrical parameters used in these 

equations is illustrated in Figure 17. The value of 𝑌𝑐𝑤𝑖
 is positive if the counterweight 

precedes the crank arm in the direction of rotation, and is negative if it is on the opposite 

side of the crank arm. The auxiliary counterweights installed on the main 

counterweights are assumed to have the same center of gravity, as the main 

counterweight in Equation 11 and Equation 12. 

 

𝑋 =

𝑋𝑐𝑟 ∙ 𝑚𝑐𝑟 + ∑ (𝑋𝑐𝑤𝑖
∙ (𝑚𝑐𝑤𝑖

+ ∑ 𝑚𝑐𝑤𝑎𝑖𝑗

𝑛𝑎𝑖

𝑗=1
))𝑛

𝑖=1

𝑚𝑐𝑟 + ∑ (𝑚𝑐𝑤𝑖
+ ∑ 𝑚𝑐𝑤𝑎𝑖𝑗

𝑛𝑎𝑖

𝑗=1
)𝑛

𝑖=1

 (11) 

where: 

𝑋𝑐𝑟 Horizontal distance of the center of gravity of the crank from the 

crankshaft [in], 

𝑚𝑐𝑟 Mass of the crank arm [lbm], 

𝑋𝑐𝑤𝑖
 Horizontal distance of the center of gravity of the ith counterweight 

from the crankshaft [in], 

𝑚𝑐𝑤𝑖
 Mass of the ith counterweight [lbm], and 

𝑚𝑐𝑤𝑎𝑖𝑗
 Mass of the jth auxiliary weight on the ith counterweight [lbm]. 

 

 

𝑌 =

∑ ((𝑌𝑐𝑤𝑖
+ 𝐻𝑊𝑐𝑟) ∙ (𝑚𝑐𝑤𝑖

+ ∑ 𝑚𝑐𝑤𝑎𝑖𝑗

𝑛𝑎𝑖

𝑗=1
))𝑛

𝑖=1

𝑚𝑐𝑟 + ∑ (𝑚𝑐𝑤𝑖
+ ∑ 𝑚𝑐𝑤𝑎𝑖𝑗

𝑛𝑎𝑖

𝑗=1
)𝑛

𝑖=1

 (12) 

where: 

𝑌𝑐𝑤𝑖
 Vertical distance of the center of gravity of the ith counterweight 

from its base [in]. 



 

28 
 

The mass for every counterweight is given by the manufacturer, but the mass of 

the crank arm is not always known. Some manufacturers publish the mass of the 

gearbox and the two cranks combined, helping the installation procedure of the 

pumping unit, but the individual mass of the crank is usually unspecified. (BakerHughes, 

2018) If the mass of the crank must be approximated, I have developed Equation 13 to 

provide a reasonable value for the calculation based on the equation used in (Serway, 

1986). Equation 13 assumes the crank arm to have a perfectly cuboid shape and its 

center of rotation is taken at the middle point of its shorter side closest to the 

crankshaft.  

 

 

𝑚𝑐𝑟𝑎𝑛𝑘𝑎
=

12 ∙
𝐼𝑐𝑟
2

(2 ∙
𝑋𝑐𝑟

12 )
2

+ 4 ∙ (
𝐻𝑊𝑐𝑟

12 )
2 (13) 

where: 

𝑚𝑐𝑟𝑎𝑛𝑘𝑎
 Approximate mass of the crank [lb], 

𝐼𝑐𝑟 Mass moment of inertia of the cranks [lb ft2], 

𝑋𝑐𝑟 Length of the crank arm [in], and 

𝐻𝑊𝑐𝑟 Half-width of the crank arm [in]. 

 

The approximate mass of one crank for the example problem is 4,366 lb, which is 

comparable with a value provided by a different manufacturer for a unit with the same 

designation. (Schlumberger, 2019) provides 4,699 lb crank mass for their C-640D-365-

168 sucker-rod pumping unit. This comparison validates the applicability of Equation 

(13) for the example problem. 

5.2.4 Inertial Torques 

The inertial torques are results of the energy release and dissipation of the parts 

that are moving at varying speeds. Two different types of inertial torques are 

distinguished in the operation of sucker-rod pumping units: articulating moment of 

inertia and rotary moment of inertia. (Takács, 2015) These torques have a small 

magnitude compared to the rod torque and the counterbalance torque, and therefore 

are often omitted from the calculation of the mechanical net gearbox torque. But since 

the counterbalance torque tries to reduce the torque loading on the gearbox by 

counteracting the rod torque, the inertial torques can play a significant role on the value 

of the net gearbox torque, when the two main torques have a similar magnitude. By 

neglecting the inertial torques from the torque calculations, the resulting suggested 

counterweight configuration can in fact overload the pumping unit.  

5.2.4.1 Articulating Inertial Torque 

Since some parts of the pumping unit have an alternating movement during the 

pumping cycle – beam, horsehead, equalizer, pitmans etc. – the accelerations and 

decelerations introduce a new torque type, the articulating inertial torque. This torque 

component exists even at constant pumping speeds. (Gibbs, 1975) This torque 
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component is directly proportional to the angular acceleration of the beam as seen in 

Equation 14. The value of 𝐼𝑏 only depends on the pumping unit designation, its value is 

supplied by the manufacturer of the pumping unit. 

 

 
𝑇𝑖𝑎(𝑡) =

12

32.2
∙ 𝑇𝐹(𝑡) ∙

𝐼𝑏
𝐴

∙
d2𝑏

d𝑡2
 (14) 

where: 

𝑇𝑖𝑎(𝑡) Articulating inertial torque in time [in lb], 

𝑇𝐹(𝑡) Torque factor in time [in], 

𝐼𝑏 Mass moment of inertia of the beam, horsehead, equalizer, and 

bearings referred to the saddle bearing [lbm ft2], 

𝐴 Linkage dimension [in], and 
d2𝑏

d𝑡2  Angular acceleration of the walking beam [rad/sec2]. 

 

The beam angular acceleration can be obtained using three different methods as 

seen in Figure 14. The first method involves the calculation of the crank angles as the 

first step, then using the calculation procedure proposed by (Svinos, 1983) to get the 

required beam acceleration versus time function. This method is exact, but cumbersome, 

it requires the calculation of angular velocities and accelerations of the cranks and the 

pitmans, using complex equations, as shown in Chapter 5.5.1. 

The second calculation procedure is based on the work of (Gibbs, 1975) and is 

detailed in Chapter 5.5.2, that determines the beam acceleration by differentiating the 

measured polished rod displacements twice and then dividing them with the length of 

link A. Fourier series method is applied to the measured polished rod position points to 

make the differentiation simple and also to maintain a sufficient accuracy. The error of 

the method depends on the number of coefficients used in the truncated Fourier series, 

this behavior is investigated in detail in Chapter 5.5.2. Based on this evaluation, the 

proposed number of coefficients used in the Fourier series is 10, which provides nearly 

identical results to the exact calculation method proposed by (Svinos, 1983), see Figure 

22. 

Finally, a basic numerical method is used to validate the results of the previous two 

methods. This method is presented in detail in Chapter 5.5.3 in detail; its results contain 

a relatively high fluctuation, but it is helpful to validate the previous two methods, due to 

the exceptional fit shown in Figure 22. These calculation models were investigated in 

detail by (Takács & Kis, 2014). With increased pumping speed the magnitude of the 

articulating inertial torque increases, although the correlation is not linear. To find the 

articulating inertial torque function, the application of the second method proposed by 

(Gibbs, 1975) is recommended due to its high accuracy combined with little calculation 

effort.  
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Figure 22 Calculated articulating inertial torques for the example problem 

5.2.4.2 Rotary Inertial Torque 

Unlike the articulating inertial torque, the rotary inertial torque only exists if the 

crank is turning at varying speeds during the pumping cycle, which is likely when a high 

slip or ultra-high slip prime mover drives the pumping unit. (Gibbs, 1975) This torque 

component is directly proportional to the crank angular acceleration, as shown in 

Equation 15. 

 
𝑇𝑖𝑟(𝑡) =

12

32.2
∙ 𝐼𝑠 ∙

d2𝜃

d𝑡2
 (15) 

where: 

𝑇𝑖𝑟(𝑡) Rotary inertial torque in time [in lb], 

𝐼𝑠 Mass moment of inertia of the counterweights, cranks and slow-

speed gearing referred to the crankshaft [lbm ft2], and 
d2𝜃

d𝑡2  Angular acceleration of the crank arm [rad/sec2]. 

 

The calculation of the crank angular acceleration in time is carried out in Chapter 

5.4. Similarly to the determination of the beam angular acceleration, a simple numerical 

model is used for validation purposes. 𝐼𝑠 is the sum of the mass moments of the listed 

purely rotating components of the sucker-rod pumping unit, see Equation 16.  
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 𝐼𝑠 = Icr + 𝐼𝑔 + 𝐼𝑐𝑤 (16) 

where: 

𝐼𝑠 Total mass moment of inertia of the rotating components [lbm ft2], 

𝐼𝑐𝑟 Mass moment of inertia of the crank arms [lbm ft2], 

𝐼𝑔 Mass moment of inertia of the slow speed gearings [lbm ft2], and 

𝐼𝑐𝑤 Mass moment of inertia of the counterweights [lbm ft2]. 

 

The value of the cranks’ and the slow speed gearings’ mass moment of inertia is 

provided by the manufacturer. Therefore, only the calculation of the counterweights’ 

mass moment of inertia is required to find the value of 𝐼𝑠. Having a symmetrical 

counterweight configuration, Equation 17 should be used to find the mass moment of 

inertia of the counterweights. 

 
𝐼𝑐𝑤 = 𝑛 ∙ 𝐼𝑐𝑔 + 𝑛𝑎 ∙ 𝐼𝑐𝑔𝑎

+ (𝑛 ∙ 𝑚𝑐𝑤 + 𝑛𝑎 ∙ 𝑚𝑐𝑤𝑎
) ∙ (

𝐻

12
)
2

 (17) 

where: 

𝐼𝑐𝑔 Mass moment of inertia of one main counterweight about its center 

of gravity [lbm ft2], 

𝐼𝑐𝑔𝑎
 Mass moment of inertia of one auxiliary counterweight about its 

center of gravity [lbm ft2], 

𝑛 Number of main counterweights [-], 

𝑛𝑎 Number of auxiliary counterweights [-], 

𝑚𝑐𝑤 Mass of one main counterweight [lbm], 

𝑚𝑐𝑤𝑎
 Mass of one auxiliary counterweight [lbm], and 

𝐻 Distance between the crankshaft and the center of gravity of the 

main counterweight [in]. 

 

Equation 18 is used to find the distance between the crankshaft and the center of 

gravity of a main counterweight: 

 

 𝐻 = √(𝑀 − 𝐷)2 + (𝐻𝑊𝑐𝑟 + 𝑌𝑐𝑤)2 (18) 

where: 

𝑀 Maximum distance of the counterweight’s center of gravity from 

the long end of the crank [in], 

𝐷 Distance of the counterweight from the long end of the crank [in], 

𝐻𝑊𝑐𝑟 Half-width of the crank [in], and 

𝑌𝑐𝑤 Vertical distance of the center of gravity of the counterweight from 

its base [in]. 

 

Since the counterweight configuration in the example case is symmetrical, 

Equation 17 can be used to find the missing mass moment of inertia from Equation 16. 

The mass moment of inertia for the counterweights in the case of the example problem 
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is 614,466 lbm ft2, the resulting total mass moment of the purely rotating parts, 𝐼𝑠 is 

866,110 lbm ft2. The resulting rotating moment of inertia function in time for the 

example problem is shown in Figure 23.  

 

 

Figure 23 Calculated rotary inertial torque for the example problem 

If identical counterweights are used, but their placement is different on the crank 

arm, I developed Equation 19 to properly provide the mass moment of inertia in this 

case. 

 

 
𝐼𝑐𝑤 = 𝑛 ∙ 𝐼𝑐𝑔 + 𝑛𝑎 ∙ 𝐼𝑐𝑔𝑎

+ ∑(𝑚𝑐𝑤𝑖
∙ (

𝐻𝑖

12
)
2

)

𝑛

𝑖=1

+ ∑(𝑚𝑐𝑤𝑎 𝑖
∙ (

𝐻𝑖

12
)
2

)

𝑛𝑎

𝑖=1

 (19) 

where: 

𝐼𝑐𝑔 Mass moment of inertia of one main counterweight about its center 

of gravity [lbm ft2], 

𝐼𝑐𝑔𝑎
 Mass moment of inertia of one auxiliary counterweight about its 

center of gravity [lbm ft2], 

𝑛 Number of main counterweights [-], 

𝑛𝑎 Number of auxiliary counterweights [-],  

𝑚𝑐𝑤𝑖
 Mass of the ith counterweight [lbm],  

𝑚𝑐𝑤𝑎𝑖
 Mass of the ith auxiliary weight [lbm], and 

𝐻𝑖 Distance between the crankshaft and the center of gravity of the ith 

main counterweight [in]. 
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For asymmetrical counterweight configurations I created Equation 20, that defines 

the counterweights’ mass moment of inertia for any counterbalancing scenario on crank 

balanced sucker-rod pumping units. 

 

 

𝐼𝑐𝑤 = ∑(𝐼𝑐𝑔𝑖
+ ∑𝐼𝑐𝑔𝑎𝑖𝑗

𝑛𝑎𝑖

𝑗=1

+ (𝑚𝑐𝑤𝑖
+ ∑𝑚𝑐𝑤𝑎𝑖𝑗

𝑛𝑎𝑖

𝑗=1

) ∙ (
𝐻𝑖

12
)
2

)

𝑛

𝑖=1

 (20) 

where: 

𝑛 Number of main counterweights [-],  

𝐼𝑐𝑔𝑖
 Mass moment of inertia of the ith main counterweight about its 

center of gravity [lbm ft2], 

𝑛𝑎𝑖
 Number of auxiliary weights on the ith main counterweight [-],  

𝐼𝑐𝑔𝑎𝑖𝑗
 Mass moment of inertia of the jth auxiliary weight on the ith main 

counterweight about its center of gravity [lbm ft2], 

𝑚𝑐𝑤𝑖
 Mass of the ith main counterweight [lbm], and 

𝑚𝑐𝑤𝑎𝑖𝑗
 Mass of the jth auxiliary weight on the ith main counterweight [lbm]. 

5.2.5 Net Gearbox Torque 

The net gearbox torque is the sum of all torque components acting on the slow-

speed shaft of the gearbox. Its variation throughout the pumping cycle is shown in 

Figure 24 for the example problem along with the calculated individual torque 

components.  
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Figure 24 Torque components acting on the gearbox for the example problem 

The inertial torques have smaller amplitude than the other two main torques, but 

their influence can be significant. The determination, whether the torsional loading of 

the gearbox exceeds the maximum allowed torque is essential to maintain a sufficiently 

long lifetime of the gear reducer, as illustrated previously in Figure 4.  

For the example case, the comparison of the net gearbox torque found using the 

newly introduced method in the thesis to the result of the TWM software is shown in 

Figure 25. By neglecting the inertial torques, the TWM finds the pumping unit to be 

overloaded. In contrast, this conclusion is incorrect, based on the results of the complete 

torque analysis. 

 

 

Figure 25 Comparison of net gearbox torque variations 

5.3 Determination of the Crank Angle vs Time 

Modern electronic dynamometers register polished rod displacements and loads in 

function of time at uniform time intervals throughout the measurement. But all four 

torque components acting on the gearbox are functions of the crank angle, not recorded 

in the dynamometer survey. This circumstance necessitates the determination of the 

crank angles in time from the measured polished rod displacements. To handle this 

problem, a successive approximation was introduced by (Takács, Kis, & Koncz, 2015). 

For this calculation, in addition to the measured data, only the rotation and the API 

designation of the sucker-rod pumping unit is required. The corresponding linkage 

lengths are found in the tables provided by the manufacturer of the pumping unit.  



 

35 
 

The determination of the crank angle variation in time is the cornerstone of a 

proper calculation of the mechanical net gearbox torque. The crank angle values 

produced by the proposed calculation method are compared to the Total Well Manager 

results. TWM has slight error in the determination of the crank angles, but it is 

important to find these values with the highest accuracy, because it is the first major 

calculation step in the evaluation of the dynamometer survey. Any error in this step will 

reduce the precision of every calculation based on the calculated crank angles. 

5.3.1 Necessity of a Numerical Method 

From a measured polished rod displacement, the direct calculation of the 

corresponding crank angles is impossible because for every polished rod position there 

is one corresponding crank angle on the up- and downstroke. Since an explicit 

relationship does not exist between the position of rods and the crank angle, a numerical 

calculation method must to be used in order to determine the crank angles 

corresponding to the measured polished rod positions.  

To infer the crank angles, the pumping unit’s kinematic parameters are used. This 

process is complete, when the measured polished rod position is equal to the position 

determined from the kinematic analysis of the pumping unit, see Equation 21. The crank 

angle that produces the appropriate dimensionless position of rods value corresponds to 

the measured time. (Takács, Kis, & Koncz, 2015) 

 

 𝑠𝑖 = 𝑆 ∙ 𝑃𝑅(𝜃𝑐𝑎𝑙𝑐) (21) 

where: 

𝑠𝑖 ith element of the measured polished rod position array [in], 

𝑆 Stroke length [in], and 

𝑃𝑅(𝜃𝑐𝑎𝑙𝑐) Dimensionless position of rods at crank angle 𝜃𝑐𝑎𝑙𝑐  [-]. 

 

This process is carried out for each measured polished rod position, the product of 

this procedure is the series of crank angle values valid at the measured times. (Takács, 

Kis, & Koncz, 2016) For this purpose, a successive approximation numerical method is 

proposed, it is presented in detail in the following subchapter. This calculation method 

can provide the crank angle values at the measured data points with any desired 

precision.  

5.3.2 Successive Approximation Numerical Method 

This method is used to determine the crank angles, 𝜃, that produce the same PR 

(position of rod) values as the measured polished rod displacements, its flowchart is 

shown in Figure 26.  
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measured polished rod positions, 
direction of rotation, geometry type, 

linkage dimensions, crank angle increment

Subroutine 2 

diff > 0

γ1 = Norm(γ1 + Δγ)

θi = (γ1 + γ2) / 2

i < N

i = i + 1

Subroutine 1

START

END

true

false

true

false

γ2 = Norm(γ1 + Δγ)

PRmi = 0

PRmi = 1

θi = θu

θi = θd

true

true

false

false

Subroutine 3(θi)

i = 1

γ2 = Norm(γ1 + Δγ)

Subroutine 4

 

Figure 26 Flowchart of the successive approximation numerical method that finds 

the crank angles corresponding to the measured polished rod positions 
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This numerical method can be applied to any dynamometer survey carried out on 

Conventional, Reverse Mark, Mark II and Air Balanced units. The Conventional and Air 

Balanced units can operate with both clockwise and counter-clockwise direction of 

rotation. In their counter-clockwise rotational case the crank angles – also the 𝛾1 and 𝛾2 

auxiliary crank angles – have to be recalculated with Equation 22. 
 

 𝜃𝐶𝐶𝑊 = 2𝜋 − 𝜃𝐶𝑊 (22) 

where: 

𝜃𝐶𝐶𝑊 , 𝜃𝐶𝑊 Crank angle in counter-clockwise and clockwise direction, 

respectively [rad]. 
 

The fundamental idea of the calculation method is to create a moving pair of 

auxiliary crank angles – 𝛾1and 𝛾2 – and to determine, when the crank angle 

corresponding to the measured position of rods is between those two. These two angles 

are always the same distance apart, namely the used crank angle increment, Δ𝛾. At these 

angles the corresponding position of rods values – 𝑃𝑅(𝛾1) and 𝑃𝑅(𝛾2), respectively – are 

evaluated using the API kinematic model for sucker-rod pumping units API Spec. 11E 

(API, 2008). 

The crank angle of the sucker-rod pumping unit is always non-negative and 

smaller than 2𝜋. If the value of 𝛾1 or 𝛾2, reaches, or exceeds 2𝜋 during the numerical 

calculation, the 𝑁𝑜𝑟𝑚 function adjusts their value, so it will be in the [0, 2𝜋[ interval. The 

output of this procedure, as discussed before, is the crank angle array valid at the 

measured polished rod positions. The calculated crank angle values vs time for the 

example problem are presented in Figure 27, along with the results of the TWM 

software. 
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Figure 27 Crank angles calculated for the example problem 

Figure 28 shows the difference between the calculated crank angles by the 

previously described method and the results of the TWM software, indicated with blue 

circles. The TWM software underestimates the crank angles at every data point, the 

difference between the results is between 0.5 deg and 2.2 deg with an average of 1.2 deg. 

The reason behind the outlier values at the beginning of the upstroke and downstroke is 

the fact that the difference of the measured positions by the dynamometer in these 

regions are comparable to the accuracy of the equipment. This difference in the crank 

angle calculation is magnified mainly in the inertial torque calculations. 
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Figure 28 Crank angle differences between the proposed method and the TWM results 

5.3.2.1 Subroutine 1 of the Successive Approximation Method 

Subroutine 1 produces the 𝜃and 𝜓 angles corresponding to the topmost and 

lowermost positions of the polished rod, determines the stroke length and creates the 

dimensionless position of rods array from the measured polished rod positions. Its 

flowchart is shown in Figure 29 and the formulae for the four investigated sucker-rod 

pumping units are presented in Table 4. The formulae introduced in Table 4 are in 

accordance with the API Spec. 11E (API, 2008). 

Calculate ψt, ψb, θu, θd

END

START

 γ1 = θu

Calculate S

Calculate PRm array

 

Figure 29 The flowchart of Subroutine 1 

 

Table 4 Formulae used in Subroutine 1 



 

40 
 

Conventional and 

Reverse Mark 
Mark II Air Balanced 

𝜙 = 𝑠𝑖𝑛−1 (
𝐼

𝐾
) 𝜙 = 𝑠𝑖𝑛−1 (

𝐼

𝐾
) + 𝜋 𝜙 = 𝜋 − 𝑠𝑖𝑛−1 (

𝐼

𝐾
) 

𝜓𝑏 = 𝑐𝑜𝑠−1 (
𝐶2 + 𝐾2 − (𝑃 + 𝑅)2

2 ∙ 𝐶 ∙ 𝐾
) 𝜓𝑏 = 𝑐𝑜𝑠−1 (

𝐶2 + 𝐾2 − (𝑃 − 𝑅)2

2 ∙ 𝐶 ∙ 𝐾
) 

𝜓𝑡 = 𝑐𝑜𝑠−1 (
𝐶2 + 𝐾2 − (𝑃 − 𝑅)2

2 ∙ 𝐶 ∙ 𝐾
) 𝜓𝑡 = 𝑐𝑜𝑠−1 (

𝐶2 + 𝐾2 − (𝑃 + 𝑅)2

2 ∙ 𝐶 ∙ 𝐾
) 

𝜃𝑢 = 𝜙 − 𝑠𝑖𝑛−1 (𝑊1) 𝜃𝑢 = 𝜙 − 𝑠𝑖𝑛−1(𝑊2) + 𝜋 𝜃𝑢 = 𝜙 + 𝑠𝑖𝑛−1(𝑊1) − 𝜋 

𝜃𝑑 = 𝜙 − 𝑠𝑖𝑛−1 (
𝐶 ∙ 𝑠𝑖𝑛 (𝜓𝑡)

𝑃 − 𝑅
) + 𝜋 𝜃𝑑 = 𝜙 + 𝑠𝑖𝑛−1 (

𝐶 ∙ 𝑠𝑖𝑛 (𝜓𝑡)

𝑃 + 𝑅
) 

𝑊1 =
𝐶 ∙ 𝑠𝑖𝑛 (𝜓𝑏)

𝑃 + 𝑅
               𝑊2 =

𝐶 ∙ 𝑠𝑖𝑛 (𝜓𝑏)

𝑃 − 𝑅
 

 

In the first step of Subroutine 1 the auxiliary angles corresponding to the start of 

the upstroke and downstroke of the unit are determined. Thereafter the stroke length of 

the pumping unit is calculated using Equation 23.  

 

 

 

 

 𝑆 = 𝐴 ∙ (𝜓𝑏 − 𝜓𝑡) (23) 

where: 

𝐴 Linkage dimension [in], and 

𝜓𝑏 , 𝜓𝑡  Auxiliary angle at the bottommost and topmost position of the 

polished rod, respectively [rad]. 

 

For a given sucker-rod pumping unit the stroke length can be changed by attaching 

the pitmans to a different wrist pin bearing, therefore modifying the length of link 𝑅. The 

calculated stroke length for the example problem is 169.82 in. Based on the measured 

polished rod positions, 𝑠(𝑖), the calculation of the appropriate dimensionless positions is 

possible using Equation (24).  

 

 𝑃𝑅𝑚(𝜃)𝑖 =
𝑠𝑖

𝑆
 (24) 

where: 

𝑃𝑅𝑚(𝜃)𝑖 Dimensionless polished rod position for the ith measured point [in],  

𝑠𝑖 ith measured polished rod position [in], and 
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𝑆 Stroke length [in]. 

 

The start of the measured data points of the dynamometer survey should begin 

with the first point in the upstroke region to cover the whole pumping cycle. In this case 

the suggested starting value of 𝛾1 is equal to 𝜃𝑢 calculated by Subroutine 1. Otherwise, 

choosing a higher starting value for the auxiliary angle 𝛾1 can cause the faulty calculation 

of the crank angle in the downstroke corresponding to the position of rods. The next 

step of the calculation is to check whether the given PR value is equal to 0 or 1. In these 

cases the exact crank angles – 𝜃𝑢and 𝜃𝑑respectively – are previously calculated by 

Subroutine 1 and are added to the crank angle array. 

5.3.2.2 Subroutine 2 of the Successive Approximation Method 

The second subroutine determines the relative position of rods for the two 

auxiliary crank angles, by producing an indicative parameter, diff. The position of rods 

corresponding to a given crank angle is calculated using Equation 25. The flowchart of 

the second subroutine is shown in Figure 30.  

 

 
𝑃𝑅(𝜃) =

(𝜓𝑏 − 𝜓)

(𝜓𝑏 − 𝜓𝑡)
 (25) 

where: 

𝑃𝑅(𝜃) Position of rods [-], 

𝜓 Auxiliary angle defined in Figure 5 through Figure 8 [rad], and 

𝜓𝑏 , 𝜓𝑡  Angle 𝜓 at the start of the up- and downstroke, respectively [rad]. 

 

diff = (PR(γ1) - PRmi) � (PR(γ2) - PRmi)

Subroutine 3(γ1)
 Subroutine 3(γ2)

START

END  

Figure 30 The flowchart of Subroutine 2 

5.3.2.3 Subroutine 3 of the Successive Approximation Method 

The calculation of the position of rods at the auxiliary crank angle pair is done by using 

Subroutine 3. The flowchart of this subroutine is shown in Figure 31, the governing 

equations are shown in Table 2 for the investigated pumping unit geometries.  
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Calculate PR, α

Calculate θ2

Calculate β, J

Calculate ρ, χ 

Calculate ψ

START

END
 

Figure 31 The flowchart of Subroutine 3 

This calculation is straightforward if the direction of rotation, the geometry, and 

the length of the linkage dimensions of the investigated pumping unit are known. The 

input of this subroutine is a crank angle, the outputs are the necessary auxiliary angles 

listed in Table 2 and the position of rods calculated by using Equation 25. The auxiliary 

angles used in this subroutine are defined for every pumping unit geometry in Figure 5 

through Figure 8. This calculation process is carried out in Subroutine 2 and in the main 

calculation of the successive approximation method as seen in Figure 30 and Figure 26, 

respectively. 

After finishing the calculations described in Subroutine 2, the calculated positions 

of rods are compared with the ith measured dimensionless position from the 

dynamometer survey. Their difference from the given 𝑃𝑅𝑚 value are multiplied, 

therefore the parameter diff has a negative value if the position of rods from the 

dynamometer survey is between the calculated 𝑃𝑅(𝛾1) and 𝑃𝑅(𝛾2), and has a positive 

value otherwise, see Figure 26. If the value of diff is positive, then both 𝛾1 and 𝛾2 are 

increased by Δ𝛾, and Subroutine 2 is repeated with the updated auxiliary crank angle 

pair. When diff has a negative value the crank angle corresponding to the measured 

relative polished rod position is between the two auxiliary crank angles; its value is 

obtained averaging 𝛾1 and 𝛾2. Because of the sufficiently small crank angle increment 

used in the program (Δ𝛾 = 0.1°), a linear approximation is more than enough to find the 

crank angle that satisfies Equation 24. The maximum error of this procedure is half of 

the used increment, Δ𝛾, which is sufficiently small for the purpose. To determine all 

crank angles corresponding to the measured relative polished rod positions, the 

previously detailed steps are repeated until the number of the measured polished rod 

positions in the dynamometer survey for the investigated pumping cycle is reached. 
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5.3.2.4 Subroutine 4 of the Successive Approximation Method 

When the sampling rate is low compared to the pumping speed of the unit, the 

topmost and lowermost polished rod positions may be missing from the dynamometer 

survey. In such cases, for the proper crank angle calculation an additional validation step 

is required, as illustrated in Figure 32.  

The black dots in Figure 32 represent the data from the original dynamometer 

survey, the orange circles show the case when the sampling rate of the measurement is 

halved. The neighborhood of the crank angle at the start of the downstroke, 𝜃𝑑  is focused 

for better representation of the problem. As discussed previously, apart from the 

topmost and lowermost positions, there is one crank angle both in the upstroke and 

downstroke that corresponds to the measured position of rods. 

An error emerges in the crank angle calculation, when the last measured position 

of rods in the upstroke is smaller than the first measured position in the downstroke, 

which is true in the illustrated scenario. In this particular case the calculation method 

presented gives the wrong crank angle as the solution. Instead of calculating the crank 

angle that corresponds to the position in the downstroke, the crank angle in the 

upstroke is calculated, which is shown with a green circle in the figure.  

Since the dynamometer survey contains data measured at constant time intervals, 

this incorrect calculation will produce a smaller crank angle change in the upstroke, and 

to compensate this, a greater change in the beginning of the downstroke is introduced. 

These crank angle differences are visualized by the green horizontal lines. Even if the 

crank angular velocity is not constant, the variation of the crank angle is smooth, which 

is represented by the brown horizontal lines corresponding to the properly calculated 

crank angles.  
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Figure 32 Calculation of the incorrect crank angle without validation 

If this faulty calculation is not corrected and crank angles without verification are 

used, the crank angular velocity and crank angular acceleration functions can have 

extreme variations compared to the rest of the pumping cycle. This will consequently be 

transferred to the inertial torque calculations. Subroutine 4 tackles these calculation 

errors, its flowchart is shown in Figure 33. 

First, it checks whether the dimensionless PR 0 and 1 are in the calculated position 

of rods array. If at least one of the two extremes is missing, Subroutine 4 determines, 

whether the measured positions create the possibility of the miscalculation, and corrects 

the crank angle if the relationship between the measured positions fulfills the condition. 

Usually the magnitude of the inertial torques are at least one order of magnitude smaller 

than the rod torque, or the counterbalance torque, but using this incorrectly calculated 

crank and beam angular acceleration functions, their value can fundamentally change 

the net torque variation.  
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Figure 33 Flowchart of Subroutine 4 

5.4 Calculation of the Crank’s Angular Acceleration  

To find the crank angular acceleration from the calculated crank angle values, first 

the angular velocity of the crank must be determined. Since the motion of the crank arm 

is periodic, every property, that describes the pumping unit has the same values at the 

start and end of the stroke. In the present chapter the determination of the crank 

angular velocity using multiple methods is presented. The first method is a basic 

numerical method, that is used for verification purposes. The second and third methods 

use Fourier series in different ways to describe the crank angular velocity function.  
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5.4.1 Importance of Using a Simple Numerical Method 

The application of simple numerical methods is advantageous in the validation of 

more complex procedures. It is vitally important, that the results of any calculation 

should not have any methodical errors. The proposed numerical method produces the 

crank angular velocities by using Equation 26.  

 

 Δ𝜃

Δt𝑛𝑢𝑚𝑖

=
𝑁𝑜𝑟𝑚(𝜃𝑖+1 − 𝜃𝑖)

𝑡𝑖+1 − 𝑡𝑖
 (26) 

where: 
Δ𝜃

Δt𝑛𝑢𝑚𝑖

 ith element of the numerically calculated crank angular velocity 

array [rad/s], 

𝜃𝑖  ith element of the calculated crank angle array [rad], and 

𝑡𝑖 ith element of the time array for the calculated crank angle array 

[sec]. 

 

This method approximates the tangent of the crank angle function in between the 

measured times with the secant created by the two neighboring crank angle points. This 

method creates a crank velocity array that contains one less element than the original 

crank angle array. The times at which the calculated crank angular velocities are valid 

can be determined using Equation 27. This process produces a rough estimate of the 

crank angular velocity variation throughout the pumping cycle.  

 

 
𝑡𝑛𝑢𝑚𝑖

=
𝑡𝑖 + 𝑡𝑖+1

2
 (27) 

where: 

𝑡𝑛𝑢𝑚𝑖
 ith element of the time array for the calculated crank angular 

velocities [sec], and 

𝑡𝑖 ith element of the time array for the calculated crank angle array 

[sec]. 

 

5.4.2 Using Fourier Series to Describe Periodic Behavior Based on Measured Data 

Generally, the best approach to describe complex periodic behavior is to use 

Fourier series. The general formula of the Fourier series is given in Equation 28. The 

function of the Fourier approximation requires the determination of the 𝑎 and 𝑏 

coefficient arrays. In Equation 28, 𝑎0is the constant coefficient, moving the function in 

the vertical direction, while the 𝑎 and 𝑏 arrays contain the information of the variation 

of the function over the investigated period.  
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𝐹(𝑥) =
𝑎0

2
+ ∑ 𝑎𝑘 ∙ cos (

2 ∙ 𝑘 ∙ 𝜋 ∙ 𝑥

𝑃
) + 𝑏𝑘 ∙ sin (

2 ∙ 𝑘 ∙ 𝜋 ∙ 𝑥

𝑃
)

𝑁𝐹

𝑘=1

 (28) 

where: 

𝐹(𝑥) Fourier series function [var.], 

𝑎0 Constant coefficient of the Fourier series [-], 

𝑁𝐹 Number of coefficients in the Fourier series [-], 

𝑘 Index of the coefficients in the Fourier series [-], 

𝑎𝑘, 𝑏𝑘 kth coefficients of the Fourier series [-], and 

𝑃 Period of the Fourier series [sec]. 

 

The advantage of the Fourier series is that it can create the best fitting function 

based on available points with user defined period times. The period time 

corresponding to the investigated stroke can be found from the calculated crank angle 

data. If the bottommost position of the polished rod is in the dynamometer survey in 

both the start and at the end of the stroke, the time required to complete a whole stroke 

is just the time difference of the last and first measured point in the dynamometer 

survey. However, if the bottommost position is not the recorded at the end of the stroke, 

the last data point is the last one that has a smaller crank angle value corresponding to it 

than 𝜃𝑈 . Using the calculated crank angle array, the time required to complete a whole 

pumping cycle is determined by Equation 29. The calculated period time for the example 

problem is 10.06 sec. 

 
𝑇 =

2𝜋 ∙ 𝑡𝑁
(𝑁𝑜𝑟𝑚(𝜃𝑁 − 𝜃1) + 2𝜋)

 (29) 

where: 

𝑇 Period time [sec], 

𝑡𝑁 Time of the last measured point from the first one [sec], and 

𝜃1, 𝜃𝑁 Crank angles at the first and last measured point, respectively [rad]. 

 

For the determination of the coefficients, a custom Fourier time array must be 

created over the previously calculated period. This is achieved by using Equation 30 

 

 
𝑡𝐹𝑖

=
𝑖 ∙ 𝑇

𝑁
 (30) 

where: 

𝑡𝐹𝑖
 ith element of the Fourier time array [sec], 

𝑖 Index that goes from 0 to N-1 [-], and 

𝑁 Number of measured data points [-]. 

 

From the data points the values valid at the elements of the Fourier time array 

must be interpolated. Since the difference between the ith element of the measured time 

array and the Fourier time array is relatively small (the maximum value is smaller than 
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the time difference between the measured positions), a linear interpolation provides 

sufficiently precise values to find the input data for the Fourier series.  

 

false
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i = 1

tFi = -π + 2π · i 

i � N
true

a0 = a0 + θi / N

i � N
true

false

i = i + 1

i = i + 1

j = 1

j � NF

j = j + 1

i = 1

true

END

false

aj = aj + (dFi · cos(j · (tFi · 2π / T - π)) · 2 / N

bj = bj + (dFi · sin(j · (tFi · 2π / T - π)) · 2 / N

 

Figure 34 Flowchart of determining the Fourier coefficients 

Equation 31 is used to find the data array suitable for the Fourier analysis. Once 

these new arrays are created, the determination of the Fourier coefficients is possible 

using the method described by Figure 34. 
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𝑑𝐹𝑖

= 𝑑𝑖 + (𝑑𝑖 − 𝑑𝑖−1) ∙
𝑡𝐹𝑖

− 𝑡𝑖

𝑡𝑖 − 𝑡𝑖−1
 (31) 

where: 

𝑑𝐹𝑖
 ith element of the Fourier input data array [var.], 

𝑑𝑖 ith element of the data array [var.], 

𝑡𝐹𝑖
 ith element of the Fourier time array [sec], and 

𝑡𝑖 ith element of the measured time array [sec]. 

 

Using the calculated coefficients, Equation 32 provides the truncated Fourier series 

value at the measured times contained in the dynamometer survey. 

 

 

𝐹𝑖 = 𝑎0 + ∑ 𝑎𝑘 ∙ cos ((
2𝜋 ∙ 𝑡𝑖

𝑇
− 𝜋) ∙ 𝑘) + 𝑏𝑘 ∙ sin ((

2𝜋 ∙ 𝑡𝑖
𝑇

− 𝜋) ∙ 𝑘)

𝑁𝐹

𝑘=1

 (32) 

where: 

𝐹𝑖  ith solution of the Fourier series at the measured times [var.], 

𝑎0 Constant coefficient of the Fourier series [-], 

𝑎𝑘, 𝑏𝑘 kth coefficients of the Fourier series [-], 

𝑡𝑖 ith element of the measured time array [sec], 

𝑇 Period time [sec], 

𝑘 Index of the coefficients in the Fourier series [-], and 

𝑁𝐹 Number of coefficients in the Fourier series [-]. 

 

Since the Fourier series is a sum of different sine and cosine functions, its 

differentiation is simple. After the values contained in the Fourier series for the original 

data are calculated, its time derivative can be determined using Equation 33, the second 

derivative is defined in Equation 34. 

 

 d𝐹

d𝑡 𝑖
=

2 ∙ k

𝜋
∙ ∑ −𝑎𝑘 ∙ sin((

2𝜋 ∙ 𝑡𝑖
𝑇

− 𝜋) ∙ 𝑘) + 𝑏𝑘 ∙ 𝑐𝑜𝑠 ((
2𝜋 ∙ 𝑡𝑖

𝑇
− 𝜋) ∙ 𝑘)

𝑁𝐹

𝑘=1

 (33) 

where: 
d𝐹

d𝑡𝑖
 First derivative of the result of the Fourier series at the measured 

times [var.]. 

 

 d2𝐹

d𝑡2
𝑖
=

−4 ∙ k2

𝜋2
∙ ∑ 𝑎𝑘 ∙ cos ((

2𝜋 ∙ 𝑡𝑖
𝑇

− 𝜋) ∙ 𝑘) + 𝑏𝑘 ∙ 𝑠𝑖𝑛 ((
2𝜋 ∙ 𝑡𝑖

𝑇
− 𝜋) ∙ 𝑘)

𝑁𝐹

𝑘=1

 (34) 

where: 
d2𝐹

d𝑡2
𝑖
 Second derivative of the result of the Fourier series at the measured 

times [var.]. 
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5.4.3 Determination of the Crank Angular Velocity Using Fourier Series 

5.4.3.1 Using Fourier Series on the Calculated Crank Angle Array 

The most straightforward solution would be the application of Fourier series on 

the calculated crank angle values, then the crank angular velocity and angular 

acceleration can be derived using only differentiation. Since the movement of the crank 

is periodic, the function regressed on the measured points should produce the same 

values at the start and at the end of the interval. This statement is true, however, the 

crank angle function is a sawtooth-like function with a discontinuity at the bottom of the 

stroke. The reason for this behavior lies in the definition of the crank angle, it always 

falls between 0 and 2𝜋.  

Using the truncated Fourier series detailed in Chapter 5.4.2 on the crank angle 

array describes the data poorly, as seen in Figure 35. The black dots represent the 

calculated crank angle values; the blue curve shows the calculated truncated Fourier 

series using the crank angle values as input. Since the operation of any sucker-rod 

pumping unit is cyclical, all investigated variables are described by functions that have 

the same value at the start of the upstroke and at the end of the downstroke. Functions 

with discontinuity – like the crank angle function – cause oscillations of the used 

truncated Fourier series to ensure identical values at the ends of the investigated time 

interval.  

As seen in Figure 35, the Fourier series provides even invalid crank angles, going 

below 0 deg, and above 360 deg. To find the crank angular acceleration, this function 

must be differentiated twice. The resulting acceleration pattern would surely be 

unusable due to the extreme oscillation resulting from the deviation from the crank 

angle data set. Therefore, this approach to find the acceleration pattern of the crank arm 

is rejected. 
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Figure 35 Using Fourier series on the crank angle array 

5.4.3.2 Using Fourier Series on Numerically Calculated Crank Angular Velocity 

Arrays 

Using Fourier series on data points with a discontinuity in the investigated interval 

provides unusable results, therefore, to apply the Fourier series properly, a data series 

has to be created without any discontinuity. By using the numerically calculated crank 

angular velocity array in Chapter 5.4.1 as the basis, the application of the Fourier series 

becomes possible. Along with this basic numerically calculated array an improved 

numerically calculated crank angular velocity array has been created using a five-step 

stencil method. In this case Equation 35 is used to generate the elements of this array of 

higher accuracy. This is a novel procedure that finds the crank angular velocity function 

with improved accuracy compared to the prior works and the results of the TWM 

software. Figure 36 shows the comparison between the results of the TWM software 

and the presented calculation methods. The result of the TWM software has more 

extreme differences than the two introduced methods. The introduced calculation 

procedures produce similar crank angular velocities that correctly correlate with the 

TWM results.  

 Δ𝜃

Δt𝑛𝑢𝑚2𝑖

=
𝑁𝑜𝑟𝑚(−𝜃𝑖+2+8 ∙ 𝜃𝑖+1−8 ∙ 𝜃𝑖−1 + 𝜃𝑖−2)

12 ∙ (𝑡𝑖+1 − 𝑡𝑖)
 (35) 

where: 
Δ𝜃

Δt𝑛𝑢𝑚2𝑖

 Numerically calculated crank angular velocity using the five-step 

stencil method [rad/sec], 
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𝜃𝑖  ith element of the calculated crank angle array [rad], and 

𝑡𝑖 ith element of the measured time array [sec]. 
 

 

Figure 36 The calculated crank angular velocity function 

The five-step stencil numerical method provides a smoother crank velocity array; 

however, it does not provide results for the first and last two measured times. At these 

times the crank angular velocity is approximated by the average of the first and last 4 

calculated values, respectively. The increased precision of using the five-step stencil 

method becomes visible in Figure 37. 
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Figure 37 The calculated crank angular acceleration function 

5.5 Determination of Beam Angular Acceleration 

Knowledge of the angular acceleration pattern of the walking beam is necessary 

for the calculation of the articulating inertial torque, as shown in Chapter 5.2.4.1. Three 

different methods are presented in detail, and their results are compared to find the best 

procedure providing the required acceleration of the beam throughout the pumping 

cycle. The first method is based on the work of Svinos (Svinos, 1983) using vector 

analysis to describe the kinematic behavior of the pumping unit, the second procedure 

follows the proposal of Gibbs (Gibbs, 2012) to use Fourier series on the measured 

polished rod positions to derive the beam angular acceleration, and the third numerical 

method verifies the results of the two complex methods. (Takács, Kis, & Koncz, 2016) 

5.5.1 Calculation of the Beam Acceleration Based on the Svinos Method 

The method proposed by Svinos uses complex vectors to describe the exact 

kinematic behavior of the pumping unit and details a method to find the angular 

acceleration of the walking beam based on the movement of the crank arm. (Svinos, 

1983) In the referred paper, the model is using an auxiliary angle, 𝜃2 instead of the crank 

angle, see Figure 5 through Figure 8 for its visual representation. Since 𝜃2 and 𝜃 have 

different orientations, their differentiated functions will have the same magnitude, but 

different signs, see Equation 36 and Equation 37. To find 𝜃2 corresponding to the crank 

angle, 𝜃, use Table 2.  

 d𝜃2

d𝑡
= −

d𝜃

d𝑡
 (36) 
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 d2𝜃2

d𝑡2
= −

d2𝜃

d𝑡2
 (37) 

 

The vector equation of the position of the equalizer bearing from the crankshaft is 

defined in Equation 38. Both sides of the equation represent a vector pointing from the 

crankshaft to the equalizer bearing. 

 

 𝐾⃗⃗ + 𝐶 = 𝑅⃗ + 𝑃⃗  (38) 

where: 

𝐾⃗⃗ , 𝐶 , 𝑅⃗ , 𝑃⃗  Linkage vectors, oriented from the crankshaft along with their 

respective linkage [in]. 

 

Equation 39 is found by converting Equation 38 into exponential form with 

relative angles referred to linkage K. 

 

 𝐾 + 𝐶 ∙ 𝑒𝑖∙𝜃𝑏 = 𝑅 ∙ 𝑒𝑖∙𝜃2 + 𝑃 ∙ 𝑒𝑖∙𝜃𝑝  (39) 

where: 

𝐾, 𝐶, 𝑅, 𝑃 Linkage lengths [in], and 

𝜃𝑏 , 𝜃2, 𝜃𝑝 Auxiliary angles [rad]. 

 

The angles in Equation 39 are shown in Figure 5 through Figure 8 for the 

investigated pumping unit geometries and the governing equations calculating them are 

defined in Table 5. After rearranging Equation 39 to find 𝜃𝑏 , both sides of the equation 

are differentiated with respect to time to produce the time derivative of the beam angle, 

𝜃𝑏 . Solving the system of equations received after differentiation (using the Cramer-

rule) gives the angular velocity of links R, P and C. The angular velocity of the walking 

beam is defined by Equation 40. 

Table 5 Auxiliary angles for the Svinos method 

Conventional and Reverse Mark Mark II Air Balanced 

𝜃𝑝 = 𝑐𝑜𝑠−1 (
𝑃2 + 𝐽2 − 𝐶2

2 ∙ 𝑃 ∙ 𝐽
) + 𝜌 𝜃𝑝 = 𝑐𝑜𝑠−1 (

𝑃2 + 𝐽2 − 𝐶2

2 ∙ 𝑃 ∙ 𝐽
) − 𝜌 

𝜃𝑏 = 𝜋 − 𝜓 

 d𝜃b

d𝑡
= −

𝑅

𝐶
∙
𝑠𝑖𝑛(𝜃𝑝 − 𝜃2)

𝑠𝑖𝑛(𝜃𝑝 − 𝜃𝑏)
∙
d𝜃

d𝑡
 (40) 

where: 
d𝜃b

d𝑡
 Beam angular velocity [rad/sec], 

𝑅, 𝐶 Linkage lengths [in], 

𝜃𝑏 , 𝜃2, 𝜃𝑝 Auxiliary angles [rad], and 
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d𝜃

d𝑡
 Crank angular velocity [rad/sec]. 

 

By differentiating Equation 40 with respect to time, the angular acceleration of the 

walking beam is defined by Equation 41. 

 

 
d2𝜃b

d𝑡2
=

d𝜃𝑏

d𝑡
∙ (

d2𝜃
d𝑡2

d𝜃
d𝑡

−
(
d𝜃𝑝

d𝑡
−

d𝜃𝑏

d𝑡
)

tan(𝜃𝑝 − 𝜃𝑏)
−

(
d𝜃𝑝

d𝑡
+

d𝜃
d𝑡

)

tan (𝜃2 − 𝜃𝑝)
) (41) 

where: 
d2𝜃b

d𝑡2
 Beam angular acceleration [rad/sec2], 

d𝜃b

d𝑡
 Beam angular velocity [rad/sec], 

d2𝜃

d𝑡2  Crank angular acceleration [rad/sec2], 

d𝜃

d𝑡
 Crank angular velocity [rad/sec], 

𝜃𝑏 , 𝜃2, 𝜃𝑝 Auxiliary angles [rad], and 
d𝜃𝑝

d𝑡
 Pitman angular velocity [rad/sec]. 

 

The required crank angular velocity and angular acceleration arrays are already 

calculated in Chapter 5.4. Equation 41 needs the time derivative of the pitman auxiliary 

angle as an input for the calculation. It is calculated using the same method that 

produced the beam angular velocity defined in Equation 40. The pitman’s angular 

velocity is found using Equation42. 

 

 d𝜃p

d𝑡
= −

𝑅

𝑃
∙
𝑠𝑖𝑛(𝜃𝑏 − 𝜃2)

𝑠𝑖𝑛(𝜃𝑝 − 𝜃𝑏)
∙
d𝜃

d𝑡
 (42) 

where: 

𝑅, 𝑃 Linkage lengths [in], 
d𝜃

d𝑡
 Crank angular velocity [rad/sec], and 

𝜃𝑏 , 𝜃2, 𝜃𝑝 Auxiliary angles [rad]. 

 

 

Equation 41 can be used in cases, when the crank angular velocity is not constant 

during the pumping cycle, as both the crank angular velocity and angular acceleration 

are taken into account. After following the calculation method of these variables 

throughout the pumping cycle introduced in Chapter 5.4, the beam angular acceleration 

variation can be determined.  
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5.5.2 Calculation of the Beam Acceleration Based on the Method Proposed by Gibbs 

Gibbs introduced a different way to find the beam acceleration by using the fact, 

that the polished rod vertical displacement is equal to the length of the arc covered by 

the outer edge of link A, see Equation 43. (Gibbs, 2012) 

 

 𝑠(𝑡) = 𝐴 ∙ (𝜃𝑏(𝑡) − 𝜃𝑏𝑈
) (43) 

where: 

𝑠(𝑡) Measured polished rod position [in], 

𝐴 Linkage length [in], 

𝜃𝑏 Auxiliary beam angle [rad], and 

𝜃𝑏𝑈
 Auxiliary beam angle at the start of the upstroke [rad]. 

 

By expressing the angle 𝜃𝑏 from Equation 43 and differentiating the resulting 

equation twice with respect to time, the beam angular acceleration is described by the 

resulting Equation 44. 

 
d2𝜃𝑏

d𝑡2
=

d2𝑠(𝑡)
d𝑡2

𝐴
 

(44) 

where: 
d2𝑠(𝑡)

d𝑡2  Polished rod acceleration [in/sec2], and 

𝐴 Linkage length [in]. 

 

For this calculation only the polished rod positions registered in time –obtained 

from a dynamometer survey – are required in addition to the length of linkage A. Due to 

the complex nature of the operation of the sucker-rod pumping unit, the exact polished 

rod position function, 𝑠(𝑡), is not known. The easiest way to produce the required beam 

angular accelerations is to fit a function on the measured polished rod position points 

and differentiating it twice.  

The best method to describe the polished rod position function is the application of 

Fourier series on the measured data, introduced in Chapter 5.4.2. Finding the proper 

coefficients to describe the variation of the polished rod position throughout the 

pumping cycle provides the required function by Equation 44. Since the measured 

polished rod position data describe a relatively smooth variation, as shown in Figure 

13, the recommended number of coefficients required to produce a Fourier function, 

that properly fits the measured data is 10. (Gibbs, 2012)  

To visualize the effect of the number of coefficients used in the truncated Fourier 

series, Figure 38 is introduced. If 5 coefficients are used, the accuracy of the regression 

will not be at an acceptable level, as indicated with the purple curve. However, if the 

number of coefficients greatly exceeds 10, the resulting function will follow the 

systematic noise in the variation of the measured points, which is not desired. This is 

presented with the red curve that uses 30 coefficients for the calculation. The absolute 
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error of the regression is decreased, but unwanted high frequency and low amplitude 

oscillations are produced due to the unnecessarily high number of coefficients. 

 

 

Figure 38 Comparison of different number of coefficients used in the Gibbs method 

5.5.3 A Simple Numerical Method 

For validating purposes, a simple numerical method should be used to make sure, 

that the more sophisticated methods produce correct results, as detailed in Chapter 

5.4.1. A similar method is used in the Total Well Management, it is based on using 

Equation 44. (Echometer, 2007) The acceleration of the walking beam is found from the 

calculated polished rod acceleration. To find the polished rod acceleration pattern, first, 

the polished rod velocity has to be determined with Equation 45, which is done by 

numerical differentiation of the measured polished rod positions. 

 

 

 

 

 Δ𝑠(𝑡)

Δ𝑡 𝑖
=

𝑠𝑖+1 − 𝑠𝑖

𝑡𝑖+1 − 𝑡𝑖
 (45) 

where: 
Δ𝑠(𝑡)

Δ𝑡 𝑖
 ith element of the numerically calculated polished rod velocity array 

[in/sec], 

𝑠𝑖 ith element of the measured polished rod position array [in], and 

𝑡𝑖 ith element of the measured time array [sec]. 
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These velocities are valid between the measured times, see Equation 27. Further 

differentiating the polished rod velocity array, the acceleration of the polished rod is 

determined, using Equation 46. 

 

 
Δ2𝑠(𝑡)

Δ𝑡2
𝑖
=

Δ𝑠(𝑡)
Δ𝑡 𝑖+1

−
Δ𝑠(𝑡)
Δ𝑡 𝑖

𝑡𝑖+1 − 𝑡𝑖
 

(46) 

where: 
Δ2𝑠(𝑡)

Δ𝑡2
𝑖
 ith element of the numerically calculated polished rod acceleration 

array [in/sec], 
Δ𝑠(𝑡)

Δ𝑡 𝑖
 ith element of the numerically calculated polished rod velocity array 

[in/sec], and 

𝑡𝑖 ith element of the measured time array [sec]. 

 

Using Equation 44 the beam angular acceleration can be calculated from the 

polished rod acceleration values. The described method is the most basic numerical 

method, therefore it has larger error compared to the previously detailed methods in 

Chapter 5.5.1 and Chapter 5.5.2, but its most important advantage is the elimination of 

systematic errors. Due to the nature of the numerical differentiation, the resulting 

polished rod acceleration values are valid at the measured times registered in the 

dynamometer survey, except two missing values, one at the start and one at the end of 

the array. This is not a critical problem, since usually the measured points in one stroke 

are in the hundreds range, and the results are used for justifying the results of other, 

more complex – and therefore more accurate – methods, if their results show good 

correlation. 

5.5.4 Comparison of the Calculation Methods 

Figure 39 contains the beam acceleration data calculated using the three 

previously detailed methods along with the results of the TWM software. The strong 

correlation between the results of the simple numerical method and the two more 

sophisticated methods is clearly supported based on their visual representation, the 

correlation parameter is 0.9615 between the numerical data set and the results of the 

calculation based on the method proposed by Svinos. The correlation between the two 

more accurate methods is 0.9868, this means that the results of the methods are nearly 

identical. Based on this analysis, the result of the Svinos and Gibbs methods are 

accepted.  

The number of Fourier coefficients used in the Gibbs method is sufficient based on 

the comparison with the exact calculation method developed by Svinos. Since the 

application of the Fourier series is much less cumbersome in the method proposed by 

Gibbs than the calculations required by the Svinos method, the usage of the former 

method is recommended to find the angular acceleration pattern of the walking beam. 
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The raw beam angular accelerations of the TWM software are acceptable, since they 

nearly coincide with the numerically calculated values, however, the filtered 

acceleration function is not properly calculated, as shown in Figure 39. 

 

 

Figure 39 Comparison of models calculating the beam angular acceleration 
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6 Achieving Optimal Counterbalancing 

Different theories on the optimal net gearbox torque are detailed in this chapter 

based on extensive literature research. After the discussion on the different optimization 

principles, the objective of this chapter is to provide the counterweight configuration 

corresponding to the best net gearbox torque variation throughout the pumping cycle 

for the investigated crank balanced sucker-rod pumping unit. By changing the 

counterweight configuration valid at the dynamometer measurement to the optimum 

arrangement the operation of the sucker-rod pumping unit can be improved 

significantly.  

For this purpose, an artificial intelligence program was developed in C# 

programming language, due to the complexity of the emerging optimization problem. 

Screenshots of the program, the input and output files are included in Appendix A. 

Appendix B contains the most relevant parts of the source code. 

The brute force method of checking every counterweight configuration is futile, 

since the total number of cases for the example problem is between 2 ∙ 1017 and 6 ∙ 1017 

in the asymmetrical counterbalancing case. These boundaries were calculated based on 

the number of applicable counterweights on either side the crank arms, the travel of 

each counterweight on the crank arm, and the number of auxiliary weights on each main 

counterweight. There were 10 different applicable counterweight types, as shown in 

Table 3, resulting in 11 different cases in total by including the scenario without a main 

counterweight on the selected side of the crank arm. The travel of the main 

counterweights varies between 63.77 in and 84.58 in, the increment of the 

counterweight position was set to 0.1 in, resulting in 638 and 846 different positions, 

respectively. On each main counterweight maximum 2 auxiliary weights were allowed in 

the optimization procedure, resulting in 3 different cases for each counterweight. 

6.1 Theoretical Background of Torque Optimization 

The optimization of the net mechanical gearbox torque seems to be a well 

discussed problem due to the fact that the torque loading of the pumping unit 

determines the energy requirement, and therefore the cost of the oil production. 

However, some new achievements are shown in this chapter regarding the selection of 

the appropriate optimization procedure. 

6.1.1 Optimization of the Maximum Net Gearbox Torque 

The first optimization criterion was discussed as early as 1943 by (Kemler, 1943). 

The result of not having optimal counterbalancing results in energy being wasted and in 

some cases can lead to equipment damage due to overloading. The optimum 

counterbalancing means that the rod torque is offset in the greatest extent possible, 

resulting in the minimum net gearbox torque and therefore minimizing the peak 

torsional loading on the prime mover. (Richards, 1957) The corresponding 

counterweight configuration is found by selecting the counterbalance torque that 
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equalizes the peaks of the net gearbox torque in the upstroke and downstroke. (Takács, 

2015) As discussed in (Rowlan, McCoy, & Podio, 2005) in a balanced operation the peaks 

of the net gearbox torque function in the upstroke and downstroke are approximately 

equal.  

During the optimization, the changes in the rotary inertial torque should be 

considered in addition to the changes of the counterbalance torque to improve accuracy. 

Previous works did not include the in-depth investigation of asymmetrical 

counterweight configurations in the torque optimization procedure. If identical 

counterweights are used to counterbalance the pumping unit, only the magnitude of the 

counterbalance torque is affected by their respective placements on the crank arms, as 

shown in Figure 19. By using an asymmetrical counterweight configuration, the 

secondary phase angle, 𝜏′ has to be considered, as shown in Figure 21. By having this 

new degree of freedom in the optimization, the net gearbox torque can have the same 

maximum value at three different times in one pumping cycle. This results in a smaller 

peak net gearbox torque compared to using identical counterweights.  

6.1.2 Optimization of the Cyclic Load Factor 

The calculation method presented by (Takács, 1990) focuses on introducing a 

more advanced calculation method to produce the optimal counterbalance torque than 

the one specified in the API Spec 11E (API, 2008). The objective of this optimization 

procedure is to achieve the smallest cyclic load factor (CLF) using an iterative method; 

CLF is defined by Equation 47. The merit behind this optimum is that the lowest power 

requirement by the prime mover is obtained at the minimal CLF value. Using the least 

amount of energy to produce a given liquid regime increases the profitability of the oil 

production.  

 

 

𝐶𝐿𝐹 =

√∫ (𝑇𝑛𝑒𝑡(𝜃))
2
d𝜃

2𝜋

𝜃=0
2𝜋

∫ 𝑇𝑛𝑒𝑡(𝜃)d𝜃
2𝜋

𝜃=0
2𝜋

 
(47) 

where: 

𝐶𝐿𝐹 Cyclic load factor [-], and 

𝑇𝑛𝑒𝑡(𝜃) Net gearbox torque versus crank angle function [in lb]. 

 

The cost-efficiency of the sucker-rod pumping can be greatly increased using the 

proper counterbalancing of the unit. In (Takács, 1990) the optimized result improved 

the CLF of the investigated unit from 1.594 to 1.400, and the overloading of the gearbox 

from 157.5% to 123.3%. By optimizing for a different objective – reducing the peak net 

gearbox torque – the overloading of the unit could have been reduced below 123.3%. 

This condition slightly increases the cost of pumping but improves the lifetime of the 

gearbox substantively, as shown in Figure 4. 
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6.1.3 Introduction of the Modified Cyclic Load Factor 

A modified CLF parameter was developed, that generalizes Equation 47 by 

considering the varying crank angular acceleration in time. Using Equation 48, the 

torque optimization of sucker-rod pumping units with varying crank angular speeds is 

improved. 

 

 

𝐶𝐿𝐹𝑚𝑜𝑑 =

√∫ (𝑇𝑛𝑒𝑡(𝑡))
2
d𝑡

𝑇

𝑡=0
𝑇

∫ 𝑇𝑛𝑒𝑡(𝑡)d𝑡
𝑇

𝑡=0
𝑇

 
(48) 

where: 

𝐶𝐿𝐹𝑚𝑜𝑑  Modified cyclic load factor [-], 

𝑇𝑛𝑒𝑡(𝑡) Net gearbox torque variation in time [in lb], and 

𝑇 Period time of the investigated pumping unit [sec]. 

 

In the past Equation (47) was used mainly because the crank angle was the basis of 

the torque analysis, every parameter was calculated at equally distributed crank angle 

values. In these cases, the constant increase of the crank angle function was assumed. 

The basis of Equation (48) is time, therefore this new equation is capable to consider the 

precisely calculated crank angle variation throughout the pumping cycle.  

6.2 Change of Crank Acceleration due to Different Counterbalancing 

By modifying the counterweight configuration, the acceleration pattern of the 

walking beam and the crank arm will change, however, this effect cannot be determined 

from only one dynamometer measurement. The operation of sucker-rod pumping 

systems is too complex for the exact determination of these variations. Based on two 

dynamometer measurements carried out on a M-640D-305-192 unit – its properties are 

shown in Table 6 – before and after the counterweight modification, the acceleration 

patterns are compared.  

Table 6 Input data for the pumping unit in the investigation  

of the change in crank angular acceleration 

Pumping unit designation M-640D-305-192 

Manufacturer Lufkin 

Geometry type Mark II 

Maximum torque loading of the gearbox 640,000 in lb 

Maximum polished rod load 30,500 lb 

Nominal stroke length 192 in 

Structural unbalance -7,160 lb 
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Crank type 192130MRO 

Gearbox mass moment of inertia 3,920 lbm ft2 

Beam mass moment of inertia 4,621,470 lbm ft2 

Rotation Counterclockwise 

Counterweights 
4pcs. OARO, placed 0 in 

from long end of crank 

Crank moment 905,690 in lb 

Crank mass moment of inertia (2 cranks) 788,968 lbm ft2 

Crank length 130 in 

Crank half-width 16 in 

Pumping speed 6.32 SPM 

 

In the original case 4pcs. OARO counterweights were placed 0 in from the long end 

of the crank arm. After the counterbalance optimization of the TWM software the main 

counterweights were moved 3.25 in towards the crankshaft and 4pcs. OAS auxiliary 

counterweights were installed to increase the counterbalance torque. The net torque 

curves and the crank angular acceleration curves before and after the modification of 

the counterweight configuration are shown in Figure 40.  

 

 

Figure 40 Effect of different counterweight configuration on the crank acceleration 
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When measuring correlation between two data series, Equation 49 is used to get a 

quantitative result. If the value is 1, there is a stochastic positive relationship between 

the two data series. At -1 correlation value, there is a negative and strong connection. As 

the correlation value approaches 0, it indicates a weak or no correlation between the 

two investigated data series. (Microsoft, 2019) 

 

 
𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =

∑ ((𝑥𝑖 − 𝑥̅) ∙ (𝑦𝑖 − 𝑦̅))𝑁
𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2𝑁
𝑖=1 ∙ ∑ (𝑦𝑖 − 𝑦̅)2𝑁

𝑖=1

 
(49) 

where: 

𝑁 number of data points [-], 

𝑥𝑖 , 𝑦𝑖 ith element of the data series [var.], and 

𝑥̅, 𝑦̅ average of the respective data series [var.]. 

 

The correlation between the changes in the net gearbox torque and the differences 

in the crank and beam acceleration patterns are -0.16 and 0.085, respectively. These 

values represent a poor correlation. As the peak torque decreases in the balanced case, 

the resulting crank angular acceleration function also has lower peak values, but since 

the correlation is not strong enough, the new crank angular acceleration function cannot 

be approximated using the initial crank angle variation and the two net torque 

variations throughout the pumping cycle. Creating a calculation procedure capable of 

executing the aforementioned task would increase the accuracy of the net gearbox 

torque optimization procedures. Since such a method is not available, the crank angular 

acceleration values determined from the dynamometer survey are used to find the 

inertial torques under different counterbalancing conditions.  

6.3 Particle Swarm Optimization Technique 

The particle swarm optimization (PSO) algorithms are metaheuristic artificial 

intelligence techniques, that use an iterative process to find the optimum to a given 

problem. There are numerous different methods in this group, their different properties 

enable the engineers and mathematicians to solve a wide variety of optimization 

problems by selecting the proper type. (Engelbrecht, 2007) 

6.3.1 General Properties of the PSO Method 

The use of a PSO technique is preferred, when the direct calculation of the 

optimum condition is not possible, and when the other multi-dimensional algorithms fail 

to find the global optimum because of the high number of the local optima in the 

solution space. Another advantage of this method is its flexibility. The general 

optimization method can be customized with little effort to the solve the task at hand 

effectively by either modifying the calculation procedure, or changing the constants used 

in the method to create an improved optimization process. This algorithm provides a 

solution even if the specified fitness function is not continuously differentiable. Due to 
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the nature of the method, the global optimum is not guaranteed to be the result of the 

calculation, but the results are better than any direct calculation method available. 

(Eberhart & Kennedy, 2001) 

The method uses a given number of candidates, improving their position in the 

solution space in each calculation step. The determination of the new positions is carried 

out by minimizing the fitness – an error function value – of the candidates. The 

visualization of this step-by-step improvement shows remarkable resemblance to the 

movement of flock of birds, or school of fish. (Fernández-Martínez, 2012) Figure 41 

shows the simplified flowchart of the applied PSO algorithm.  

As the first step of the optimization procedure the solution space is populated with 

particles, then the fitness value of every candidate solution is determined. The 

initialization of the particles is usually carried out by randomly generating their 

positions, independently from each other. Each particle is defined by a vector; its 

coordinates define the position of the particle in the respective dimensions. The 

dimension of the required vector is determined by the number of independent variables 

in the optimization procedure. 

 

false

true

START

Initialize the particles

Calculate the fitness value for every particle

Find the best particle of the swarm

Determine the velocity of the other particles 

Update the positions of the particles

Termination
 criterion satisfied?

END
 

Figure 41 General flowchart of the particle swarm optimization method 

The formula that defines the velocity vector for every particle is customizable to 

produce a robust optimization procedure for the selected task. The objective of the 
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following iteration steps is to improve the global best fitness value. A termination 

criterion is specified to end the calculation process. This constraint is usually the 

number of iteration steps, but this condition can be tailored to handle the specific 

optimization task at hand. 

The customizability is one of the main advantages of the PSO algorithm. The 

intervals from which the parameters can take value is not always constant. Another 

great benefit of the presented calculation method is the relatively easy modification of 

the optimization goal. Changing the procedure to produce the fitness value for every 

point using a different error function is straightforward. 

6.3.2 Using the PSO Algorithm in the Net Gearbox Torque Optimization of Sucker-

Rod Pumping Units 

The previously introduced general PSO algorithm is customized to handle the 

necessary optimizations introduced in Chapter 6.1. The initialization of the particles is 

done by randomly generating their position in the investigated hyperdimensional space. 

Every component of their positions are generated independently using a uniform 

distribution within the boundaries of the respective dimension. Every component of the 

position vector must be non-negative, the upper limit is constant for the main 

counterweight type and for the number of auxiliary weights used. The upper boundary 

of the counterweight distance from the long end of the crank depends on the crank and 

the main counterweight used. When the main counterweight type is changed, the upper 

boundary of its position must be determined using data similar to Table 3. 

The number of particles used in the optimization procedure mainly depends on the 

smoothness of the search space. For smooth surfaces smaller swarm sizes are sufficient, 

usually 30 particles provide the optimum solution in these cases. (Engelbrecht, 2007) 

However, in the optimization of the net gearbox torque the fitness function is 

discontinuous with numerous local optima. Based on the results of multiple test runs the 

swarm size was set to 500. A smaller number of particles provided inferior results even 

with increased number of iteration steps. Using more particles provided nearly identical 

results with increased simulation times. 

The calculation of the fitness value for every particle is carried out using the 

criteria introduced in Chapter 6.1. The fitness functions are the maximum net gearbox 

torque in the pumping cycle, and the modified cyclic load factor, introduced in Chapter 

6.1.1 and Chapter 6.1.3, respectively. If the pumping speed varies during the pumping 

cycle, the changes in the counterweights type and positions alters the value of 𝐼𝑠. 

Therefore, during the calculation of the new counterbalance torque the rotary inertial 

torque must be determined with the new mass moment of inertia. This circumstance 

makes the process more complex than the previous optimization methods, which 

neglected the inertial torques.  

The global best solution is then selected, that will attract the other points to 

produce an improved counterweight configuration. The next step in the procedure is the 

determination of the velocity of every particle using Equation 50. The relevant 
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parameters to find the velocity vector are the current position, the position 

corresponding to the lowest fitness value the selected candidate ever had, and the global 

best position in the current iteration step. 

 

 𝑉𝑖+1,𝑗 = 𝑊 ∙ 𝑉𝑖,𝑗 + 𝐶1 ∙ 𝑅𝑛𝑑1 ∙ (𝐵𝑃𝑖,𝑗 − 𝑃𝑖,𝑗) + 𝐶2 ∙ 𝑅𝑛𝑑2 ∙ (𝐺𝐵𝑃𝑖 − 𝑃𝑖,𝑗) (50) 

where: 

𝑉𝑖,𝑗 jth velocity component of a particle in the ith iteration step [-], 

𝑊 Damping factor [-], 

𝐶1, 𝐶2 Acceleration coefficients [-], 

𝑅𝑛𝑑1, 𝑅𝑛𝑑2 Random numbers from [0,1] [-], 

𝐵𝑃𝑖,𝑗 jth component of the best position of a particle in the ith iteration 

step [-], 

𝑃𝑖,𝑗 jth component of the position of a particle in the ith iteration step [-], 

and 

𝐺𝐵𝑃𝑗  jth component of the global best position [-]. 

 

The damping factor decreases the maximum vector length at every iteration, 

ensuring the convergence of the optimization. For the investigated torque optimization 

problems, a damping factor of 0.99 provided a good convergence; if a smaller number is 

used, the particles initially distant from the global best position cannot travel through 

the solution space, therefore the optimization procedure can end prematurely.  

The acceleration coefficients control the behavior of the particles, 𝐶1 considers the 

particles attraction to its own best position, 𝐶2 determines the effect of the global best 

position on the particle. Their ideal absolute and relative values depend on the 

optimization task, usually a similar pair of values provide a robust and efficient 

calculation procedure. (Engelbrecht, 2007) Both of these parameters were set to 2 after 

series of testing, with these values the maximum velocity component was ideal. With 

greater acceleration values the particles would have greater velocities and therefore 

could miss optimum solutions on their trajectories. If smaller numbers were used, the 

required number of iteration steps had to be increased to achieve similar accuracy. 

The random numbers – 𝑅𝑛𝑑1 and 𝑅𝑛𝑑2 – included in Equation 50 create a more 

robust and versatile optimization procedure by adding uncertainty to the stochastic 

nature of the equation. These variables are chosen randomly and independently from 

the [0, 1] interval. 

Maximum and minimum values can be specified for every component of the 

calculated velocity vector, and the resulting position coordinates. While solving the 

example problem, the upper limit for the velocity vector was set to 10. Using a hard limit 

ensures that the distant particles from the current best position will not immediately 

move to its local vicinity and therefore possibly missing better solutions in the process.  

The termination criterion was specified by the allowed number of iteration steps. 

During extensive testing of the introduced PSO program, 30 iteration steps proved to be 
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sufficient to find the optimal counterweight configuration considering the constraints of 

the optimization process. 

The optimization of the net gearbox torque is a complex task if all the relevant 

torque components are considered. Even in the symmetrical counterweight 

configuration case there are three independent variables: the weight of the 

counterweights, the number of the used auxiliary counterweights and the counterweight 

placement from the long end of the crank. In the asymmetrically placed counterweight 

case however, the number of independent parameters rises to twelve: the type of the 

main counterweight, the number of the used auxiliary counterweights and the distance 

of the main counterweight from the end of the crank for both sides for both cranks 

independently. A twelve-dimensional vector contains these data; therefore, the 

optimization of the mechanical net gearbox torque has to be carried out in a twelve-

dimensional solution space. Every combination of the coefficients in the vector will alter 

the resulting net torque variation during the production cycle. 

Depending on the type of the main counterweight, the maximum travel distance on 

the crank arm is defined in Table 3. This is the upper boundary of the counterweight 

displacement used in the optimization, it must be reconsidered at each calculation step. 

Additional constraints – like only allowing counterweights from the same type with 

different positions on the crank arm – are implemented with little effort. 

6.3.3 Investigating a Particle in the PSO Algorithm of the Example Problem 

The calculation procedure defined in Figure 41 and detailed in Chapter 6.3.2 is 

illustrated with the investigation of a selected particle in asymmetrical counterbalancing 

case using the peak net gearbox torque as the optimization criterion. The selected 

particle is randomly generated in the twelve-dimensional solution space considering the 

proper upper and lower boundaries for each component of its position.  

The first four elements of the vector determine the types of the main 

counterweights used. Therefore, the fitness function is not continuously differentiable, it 

has discontinuities at every main counterweight type change in these four dimensions. 

To find the type of the main counterweight from the corresponding vector component, 

its value is rounded to the nearest integer. The following four vector coordinates define 

the counterweights’ distance from the long end of the crank (D in Figure 17). The last 

four coordinates give the number of auxiliary weights used on the main counterweights, 

limited to 2 pcs. The fitness function has discontinuities in these four dimensions as well. 

The procedure of the PSO optimization to find the optimal net gearbox torque is 

illustrated in Table 7. After randomly generating the first candidate – shown in the first 

column – its fitness value is determined using the torque determination process detailed 

in Chapter 5. In total, 500 particles are generated randomly, the best one in the first 

iteration step is introduced in the second column. The candidate with the global best 

position will attract every other particle based on their corresponding distance. The 

velocity vector calculated using Equation 50 is included in the third column of Table 7. 
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Even though the first four vector components represent the counterweight types, 

numerical values must be used as vector coordinates in the calculation procedure. The 

numerical values in these cases were rounded to the nearest integer and the 

counterweight types were selected. In this case 0 meant that no counterweight was used 

on the specific side of the crank arm. The index of the counterweights in Table 3 was 

used to convert the numerical values into the counterweight types. 

The position of the investigated particle in the second iteration step is determined 

using the calculated velocity vector and its initial position. The fourth column of Table 7 

contains the new position, resulting in a smaller fitness value compared to its initial 

state. The improvement of the fitness value is not necessarily true for every particle at 

every calculation step, but due to the robust nature of the algorithm, both the global best 

fitness value and the average fitness value tends to decrease with every successful 

iteration step. 

During this investigation no additional constraints were used for the position 

coordinates of the investigated particle. The implementation of such a limiting factor e.g. 

specifying the usage of identical counterweights is added easily to the optimization 

procedure.  

Table 7 Detailed solution of the Example Problem with the PSO Algorithm 
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At the end of every iteration step the best position is determined and is compared 

to the global best position in the previous calculation step. The global best position is 

replaced, when a new position is found with smaller fitness value. Figure 42 shows the 

evolution of the peak net gearbox torque with the iteration steps. In total 30 iterations 

were carried out, the solution was achieved after the 23th calculation step. 

 

Velocity of 

the 

Investigated 

Particle

Numerical 

value
Used value

Numerical 

value
Used value

Numerical 

value

Numerical 

value
Used value

1st CW. Type 4.78 5 (3CRO) 7.82 8 (OARO) 1.91 6.69 7 (1RO)

2nd CW. Type 5.21 5 (3CRO) 8.13 8 (OARO) 0.21 5.42 5 (3CRO)

3rd CW. Type 8.34 8 (OARO) 7.62 8 (OARO) -0.14 8.2 8 (OARO)

4th CW. Type 3.89 4 (5ARO) 6.94 7 (1RO) 6.94 10.83 10 (OORO)

1st CW. Distance 50.3 50.3 in 14.26 14.3 in -10 40.3 40.3 in

2nd CW. Distance 61.11 61.1 in 11.58 11.6 in -10 51.11 51.1 in

3rd CW. Distance 4.06 4.1 in 10.16 10.2 in 9.91 13.97 14 in

4th CW. Distance 72.68 72.7 in 4.92 4.9 in -10 62.68 62.7 in

1st CW. No. Aux Weights 0.32 - 1.45 1 pcs. OAS 0.51 0.83 1 pcs. 1S

2nd CW. No. Aux Weights 1.73 2 pcs. 3BS 1.03 1 pcs. OAS -0.68 1.05 1 pcs. 3BS

3rd CW. No. Aux Weights 1.12 1 pcs. OAS 0.67 1 pcs. OAS 0.32 1.44 1 pcs. OAS

4th CW. No. Aux Weights 1.37 1 pcs. 5CS 1.98 2 pcs. 1S 0.02 1.39 1 pcs. OOS

Peak Net Torque [k in lbs] 

(Fitness Value)
1022.03 1022 504.95 505 988.03 988

Initial Position of 

the Investigated 

Particle

Best Particle in the 

First Iteration Step

Position of the 

Investigated 

Particle After the 

First Iteration Step
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Figure 42 The improvement in the peak net gearbox torque value with the iteration steps 

6.4 Sensitivity Analysis 

A traditional sensitivity analysis cannot be carried out because the applicable 

counterweights have discrete masses and moments of inertia. For illustration purposes 

only the simplest analysis can be presented, since in the introduced asymmetrical 

counterbalancing case the number of the relevant dimensions is 12. Therefore, the 

representation of the parameter sensitivity is shown for the symmetrical counterweight 

configuration only, with fixed number of auxiliary weights. In this special case there are 

only two independent parameters: the type of the main counterweights and their 

displacement from the long end of the crank. Figure 43 shows the results for the 

sensitivity analysis, where 2 auxiliary weights are used, the position of the main 

counterweights is investigated between 0 and 59 in from the long end of the crank. In 

this figure the peak net gearbox torque is shown as a function of the applied 

counterweights and their respective position. It is clearly visible, that in this 

oversimplified case there are multiple local optima; the determination of the global 

optimum is difficult. The data used to create Figure 43 and a 3D representation is 

included in Appendix C. The number of local optima increases rapidly as more 

independent parameters allowed to influence the maximum net gearbox torque. The 

introduced figure supports the previous assumptions on the necessity of a numerical 

calculation method in the torque optimization procedure.  
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Figure 43 Results of the sensitivity analysis in the simplest symmetrical case 

6.5 Finding the Optimum Counterweight Configuration 

The original counterweight configuration is 4pcs. ORO main counterweights placed 

at 10 in from the long end of the crank arm, shown in Table 1. The resulting peak net 

gearbox torque is 597.3 k in lbs, shown in Figure 44. The value of the calculated 𝐶𝐿𝐹𝑚𝑜𝑑  

is 1.415. The calculation procedure detailed in Chapter 6.3 is used to produce the 

optimal counterweight configurations along with the optimal net gearbox torque 

functions with the specified constraints in the optimization procedure. 

6.5.1 Optimization of the Peak Net Gearbox Torque 

6.5.1.1 Using Identical Counterweights 

In this case the counterweights and the auxiliary weights must be identical. When 

only allowing symmetrical counterbalancing, the placement of the main counterweights 

cannot differ. A different position of one counterweight only changes the amplitude of 

the counterbalance torque and the rotary inertial torque, therefore the investigation of a 

symmetrical solution is sufficient, because there is no benefit placing the same 

counterweights at different positions on the crank arm. 

The optimal symmetrical counterweight configuration is found to be 4pcs. OORO 

main counterweights with 4 pcs. OOS auxiliary counterweights, placed at 25.9 in from 

the long end of the crank arm. The maximum net gearbox torque is 491.8 k in lbs, the 

𝐶𝐿𝐹𝑚𝑜𝑑  is 1.397. The net torque variation for the original case and the optimized case 

are shown in Figure 44.  
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Figure 44 Optimum net gearbox torque using symmetrical counterweight configuration 

6.5.1.2 Using Different Counterweights 

The optimal asymmetrical counterweight configuration is included in Table 8. No 

restrictions were used in this scenario to limit the calculation process, all twelve 

parameters shown in Table 7 can change independently.  

Table 8 Asymmetrical optimum counterweight configuration 

Position 
Main 

CW 

Auxiliary 

CW 

Distance 

from long 

end of crank 

1st crank top OORO 2 pcs. OOS 31.8 in 

1st crank bottom OORO 1 pc. OOS 17.1 in 

2nd crank top OORO 2 pcs. OOS 1.49 in 

2nd crank bottom 5ARO 2 pcs. 5S 82 in 
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The resulting secondary phase angle is 7.43 deg, the maximum net gearbox torque 

is 418.2 k in lbs, the 𝐶𝐿𝐹𝑚𝑜𝑑  is 1.429. The net torque variation is shown with blue in 

Figure 45. The phase shift of the counterbalance torque causes the net gearbox torque 

to have 3 maximum points instead of 2 in the symmetrical case. This lowers the peak net 

torque by 73.6 k in lbs, which is nearly 11.5% of the rating of the gear reducer. It is 

important to consider the drop of the minimum net gearbox torque since the negative 

torques can also overload the gear reducer if the rating is exceeded. 

 

 

Figure 45 Optimum net gearbox torque using asymmetrical counterweight configuration 

6.5.2 Optimization of the Modified Cyclic Load Factor 

In this case the fitness value is determined based on the 𝐶𝐿𝐹𝑚𝑜𝑑  value calculated 

from the twelve-dimensional arrays used in the PSO calculation procedure. The 

counterweight configuration resulting in the minimum 𝐶𝐿𝐹𝑚𝑜𝑑  is included in Table 9. 

The resulting secondary phase angle is -0.03 deg, the maximum net gearbox torque is 

484.1 k in lb, the 𝐶𝐿𝐹𝑚𝑜𝑑  is 1.386. The net gearbox torque variation is shown in Figure 

46. 
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Table 9 Counterweight configuration providing minimum CLFmod 

Position 
Main 

CW 

Auxiliary 

CW 

Distance 

from long 

end of crank 

1st crank top OORO 2 pcs. OOS 14.1 in 

1st crank bottom ORO 1 pc. OS 8.1 in 

2nd crank top 5CRO 2pcs. 5CS 19.2 in 

2nd crank bottom 1RO 2 pcs. 1S 16 in 
 

 

 

Figure 46 Torque optimization producing minimal modified cyclic load factor 

6.6 Comparison with TWM Optimization 

Figure 47 shows the proposed symmetrical and asymmetrical optimized net 

torque variation along with the results of the TWM software. By incorrectly neglecting 

the inertial torques from the torque analysis, and only investigating symmetrical 
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counterweight configurations, TWM gives an optimum peak net torque of 597.3 k in lbs 

with a 1.42 𝐶𝐿𝐹𝑚𝑜𝑑  value. By improving the evaluation of the dynamometer survey and 

the calculation of the mechanical net gearbox torque the resulting solution describes the 

real operating conditions more accurately. Using these data, the optimization procedure 

gives more reliable optimum counterweight configurations. 

 

 

Figure 47 Comparison of the torque optimization with TWM results 

6.7 Conclusions of the Optimization Procedures 

Optimizing the net gearbox torque of a sucker-rod pumping unit is essential to 

prevent overloading and to save operating costs. Table 10 contains the results of the 

torque optimization carried out on the example problem. The optimum result provided 

by the TWM software neglects the inertial effects, therefore it mischaracterizes the net 

gearbox torque.  

The optimization procedure developed creates the optimum net gearbox torque 

with different constraints on the corresponding counterweight configuration. The 

introduced symmetrical counterweight configuration provides a slightly higher peak net 

torque, but smaller modified cyclic load factor compared to the asymmetrical case. The 

counterweight configuration corresponding to the minimal modified cyclic factor in the 

investigated cases does not provide significantly better results, than the symmetrical 

counterweight configuration. 
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Table 10 Summary of the optimization results 

 
Optimization 

Objective 

Peak Net 

Gearbox Torque 

[k in lbs] 

𝐶𝐿𝐹𝑚𝑜𝑑  

[-] 

𝜏′ 

[deg] 

Original Case - 597.31 1.415 0 

TWM Optimum Result* - 597.33 1.420 0 

Results of the Optimization 

Identical Counterweights and 

Positions 
Peak Torque 491.80 1.397 0 

No Constraint in the Optimization 
Peak Torque 418.20 1.429 7.43 

𝐶𝐿𝐹𝑚𝑜𝑑  484.09 1.386 -0.03 

Same Counterweight 

Configuration on Both Cranks 
Peak Torque 419.20 1.555 10.69 

 

If the overloading of the pumping unit can be prevented by solving the 

optimization problem using the same main and auxiliary counterweights, the 

symmetrical optimum counterweight configuration is recommended. However, if the 

symmetrically placed counterweights cannot reduce the peak net torque acting on the 

gearbox below its torque rating, using non-identical counterweights can prevent 

overloading. The proper asymmetrical counterweight configuration will always result in 

a lower peak net gearbox torque value, compared to the symmetrical cases. 

6.8 Further research possibilities 

There are possible future research paths based on the introduced calculation 

procedures. The exact determination of the change in the crank and beam angular 

acceleration as a function of the net gearbox torque would be a great addition, but it 

seems unlikely, that a general solution exists for said problem.  

The incorporation of the proposed asymmetrical counterbalancing calculations in 

works like (Konz, 2018) would be beneficial. Using the introduced methods to update 

the software evaluating the dynamometer surveys could result in more favorable 

operating conditions for sucker-rod pumping units. The calculation procedure presented 

can be modified to improve the results of a multi-balance technology introduced in 

(Feng, Ding, & Jiang, 2015). 

The method introduced can be modified and applied to sucker-rod pumping units 

with variable speed drives, further improving their efficiency. For this, however, further 

study of the complex interactions between the controlled crank angular acceleration 

pattern by the used microcontroller and the resulting net gearbox torque function is 

needed. 
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7 New Scientific Results 

7.1 Thesis 1 

A successive approximation procedure was introduced in Chapter 5.3.2 that 

produces the crank angle values corresponding to the measured polished rod positions 

with a higher accuracy than previously existing methods. Since the crank angle variation 

in time is not measured by a dynamometer survey, it must be calculated from the 

measured polished rod positions and the kinematic parameters of the sucker-rod 

pumping unit. The exact calculation procedure developed here has a high importance 

because any errors in the crank angle vs time function affect almost every other 

parameter in the evaluation of the torque conditions of sucker rod pumping units. By 

minimizing the error in the first calculation step, the accuracy of torque calculations as 

well as counterbalance optimizations are improved. 

7.2 Thesis 2 

A complex calculation method was developed in Chapter 5.4 and 5.5, that produces 

the crank angular velocity, the crank angular acceleration and the beam angular 

acceleration variation throughout the pumping cycle. The proposed method has 

superior precision compared to the most widely used software in the industry. The 

numerical calculation models presented have proved to be strong validating tools to 

help verify the results of the more complex, but cumbersome calculation methods.  

7.3 Thesis 3 

The effects of asymmetrical counterweight configurations on the counterbalance 

torque vs time function were investigated; that is an often ignored condition in the 

professional literature. Asymmetrical counterweight placement affects the net gearbox 

torque vs time function. In this work a secondary phase angle – 𝜏′ – was introduced to 

adequately describe the deviation of the counterbalance torque from the symmetrical 

cases. The new equations developed in Chapter 5.2.4 permit the accurate calculation of 

inertial torques and were incorporated in the gearbox torque optimization procedures 

introduced. 

7.4 Thesis 4 

A novel technique to solve the optimization of gearbox torque conditions was 

developed using the particle swarm optimization (PSO) method. The calculation 

procedure can be used for both symmetrical and asymmetrical counterweight 

configurations. It can perform optimizations for different scenarios: minimizing the peak 

net torque or the cyclic load factor (CLF) values. As proved in this work, use of 

asymmetrical counterweight placements can significantly reduce the peak net gearbox 

torque; an often overlooked practice in the oil field. 
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7.5 Thesis 5 

A new calculation procedure was created to improve the crank angle values in the 

proximity of the start of the upstroke and downstroke. This validation is required if the 

dynamometer card does not contain the topmost or lowermost point in the 

dynamometer survey. By using the proposed method, the incorrect calculation of the 

crank angle in the wrong pumping phase is prevented, therefore, reducing the error in 

the determination of the crank angular velocity and crank angular acceleration values.  

7.6 Thesis 6 

A modified cyclic load factor – 𝐶𝐿𝐹𝑚𝑜𝑑  – was developed to describe the relative 

power consumption of the prime mover with a higher accuracy. This new parameter 

considers the varying crank angular velocity, therefore it gives improved results when a 

sucker-rod pumping unit is driven by a high slip, or ultra-high slip electric motor. 
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8 Summary 

In the first part of the thesis the operation of the sucker-rod pumping installation 

was detailed, followed by the introduction of the measurement by the most dominant 

testing equipment, the electronic dynamometer.  

The evaluation of the dynamometer survey was improved, compared to the 

previous publications and software used in the petroleum industry. The first important 

scientific result is the creation of a high-accuracy calculation method to find the crank 

angles corresponding to the measured polished rod position values. With these more 

accurate crank angles, the interpretation of the dynamometer survey and the torque 

analysis will have smaller errors.  

The calculation of the angular acceleration of the crank arm and the walking beam 

was improved, ensuring the accurate description of the inertial torques during the 

pumping cycle. Every calculation presented is able to consider the varying crank velocity 

of pumping units driven by high slip or ultra-high slip prime movers. Several previously 

published methods, basic numerical methods, and novel calculation procedures were 

introduced and compared, to provide the variation of the necessary variables in time 

with the highest accuracy possible. The application of Fourier series was essential to 

improve the calculation of the relevant angles and their acceleration pattern during the 

pumping cycle.  

The complete calculation of the actual net gearbox torque variation was detailed 

while solving an example problem to help the better understanding of the proposed 

methods. The proper inclusion of the inertial torques can change the net gearbox torque 

function significantly, as shown in the comparison with the results of the TWM software. 

Most importantly, the in-depth investigation of the effect of asymmetrically placed 

counterweights on the crank arms was carried out. In previous works application of 

asymmetrically placed counterweights was not advised, because its effect on the net 

gearbox torque was unknown. The secondary phase angle was defined to describe the 

lead- or lag of the center of gravity of the system containing the counterweights and the 

crank from the crank centerline.  

Based on the proposed dynamometer survey interpretation, the determination of 

the optimum net gearbox torque was carried out using two different optimization 

criteria. A modified cyclic load factor was introduced to improve the efficiency 

calculation of the sucker-rod pumping units with varying crank angular velocities. In 

previous works the cases with non-constant crank angular velocities were not taken 

properly into account. If the pumping unit is overloaded in the best cyclic load factor 

case, then a different optimization criteria was used to protect the gearbox: the 

maximum mechanical net gearbox torque. 

A particle swarm optimization technique was developed to find the counterweight 

configuration that produces the optimum torque loading of the gearbox. Using this 

method, better torque loading was achieved than the results of previously published 

methods and software used in the industry by considering the asymmetrical 
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counterweight configurations. Using the secondary phase angle as an additional degree 

of freedom in the optimization procedure, the results were superior compared to the 

symmetrical counterbalancing cases.  

The knowledge of numerous parameters is required by the complete torque 

analysis, as seen in the proposed thesis. Some of these variables are usually unknown for 

the production engineers, or would require extensive and expensive measurements to 

determine their proper values. Several practical equations are introduced to give a 

reasonable approximation of these parameters enabling the operators of the sucker-rod 

pumping unit to carry out an in-depth torque analysis and therefore improve the 

economic value of the installation. 
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9 Összefoglalás 

Az értekezés első részében a himbás-rudazatos mélyszivattyúk működési 

mechanizmusa részletesen bemutatásra került, majd a legelterjedtebb mérési módszer – 

az elektronikus dinamométer – ismertetése következett. 

Ezt követően a dinamométeres mérések a korábbi publikációkhoz és az 

olajiparban használt szoftverekhez képest továbbfejlesztett kiértékelési módszerének 

bemutatása következett. Az első fontos tudományos eredmény egy nagy pontosságú 

számítási módszer létrehozása a mért simarúd pozícióknak megfelelő forgattyúszögek 

meghatározásához. Ezekkel a pontosabb forgattyúszög értékekkel a dinamométeres 

mérés kiértékelése és a közlőmű nyomatékelemzése kisebb hibákkal terhelt eredményt 

hoz. 

A forgattyúkar és a himbagerenda szöggyorsulásának meghatározási módszerét 

fejlesztettem, így biztosítva a tehetetlenségi nyomatékok pontos leírását az egész 

szivattyúzási ciklus alatt. Minden bemutatott számítási lépés figyelembe veszi a nagy 

szlipű vagy ultra nagy szlipű elektromotorok által hajtott szivattyúegységek változó 

forgattyúszög-sebességét. Számos korábban publikált számítási módszert, 

egyszerűsített numerikus megközelítéseket és új számítási eljárásokat vezettem be és 

hasonlítottam össze, hogy a szükséges változók időbeni változásának leírását a lehető 

legnagyobb pontossággal biztosítsam. A Fourier sorok alkalmazása elengedhetetlen volt 

a szögek és gyorsulási mintázatuk kiszámításához a szivattyúzási ciklus során. 

A közlőmű eredőnyomaték-változásának teljes kiszámításának módszerét 

részletesen kidolgoztam, miközben egy példa problémát megoldva segítettem a javasolt 

módszerek könnyebb megértését. A tehetetlenségi nyomatékok megfelelő beépítése a 

számítási módszerbe jelentősen megváltoztathatja a közlőmű eredő 

nyomatékterhelését, amit a TWM szoftver eredményeivel való összehasonlítás is 

alátámaszt. 

Az értekezés legfontosabb számítási része az aszimmetrikusan elhelyezett 

ellensúlyok hatásának mélyreható vizsgálata volt. Korábbi publikációkban és 

munkaanyagokban az aszimmetrikusan elhelyezett ellensúlyok alkalmazása nem volt 

ajánlott, mert annak hatása a közlőmű eredőnyomatékára nem volt ismert. Definiáltam a 

másodlagos fázisszöget, ami pontosan leírja az ellensúlyokat és a hajtókart tartalmazó 

rendszer súlypontjának szögeltérését a forgattyúkar középvonalától. 

A javasolt dinamométeres mérés értelmezése alapján az optimális eredő 

közlőműnyomaték meghatározása egy új optimalizálási eljárás segítségével történt, ahol 

két különböző optimalizálási kritérium került alkalmazásra. Módosított ciklikus 

terhelési tényezőt vezettem be a himbás-rudazatos szivattyúegységek hatékonysági 

számításának javítására változó forgattyúszög-sebességek esetére. Korábbi munkákban 

a nem állandó hajtókar szögsebességű eseteket nem vették megfelelően figyelembe. Ha a 

szivattyúegység a legjobb ciklikus terhelési tényező esetén túl van terhelve, akkor egy 

másik optimalizálási kritériumot használtam a közlőmű védelmére: azon eredő 



 

83 
 

közlőműnyomaték-függvény meghatározása, amelyhez a minimális csúcsnyomaték 

tartozik. 

Egyéni részecske raj optimalizálási technikát fejlesztettem ki, hogy megtaláljam azt 

az ellensúly konfigurációt, amely biztosítja a közlőmű optimális nyomatékterhelését. 

Ezzel a módszerrel az aszimmetrikus ellensúly-elhelyezések figyelembevételével jobb 

nyomatékterhelést értem el, mint a korábban publikált módszerek és az iparban 

használt szoftverek eredményei. A másodlagos fázisszöget további szabadságfokként 

használva az optimalizálási eljárásban a minimális csúcsnyomatékok meghatározásának 

eredményei jobbak lettek, mint a szimmetrikusan elhelyezett ellensúlyokat tartalmazó 

esetek. 

A közlőmű teljes nyomatékelemzése számos paraméter ismeretét igényli, amint azt 

jelen értekezés is alátámaszt. Ezen adatok némelyikét a termelési mérnökök általában 

nem ismerik, vagy pontos értékeik megállapításához költséges mérések szükségesek. 

Több egyenletet vezettem be, hogy az ismeretlen paraméterek megfelelően 

megbecsülhetők lehessenek, lehetővé téve a himbás-rudazatos mélyszivattyús egység 

kezelői számára, hogy teljes nyomatékelemzést végezhessenek el, ezáltal javítva a 

berendezés gazdasági értékét. 
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14 Appendices 

14.1 Appendix A The Developed Program and Parts of its Input and 

Output Files 
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14.2 Appendix B Parts of the Source Code of the Created Program 

public void IndependentFromCrankAngle() 

        { 

            if (Geometry == "Conventional" || Geometry == "TorqMaster") 

            { 

                Phi = Math.Round(Math.Asin(I / K) * 180 / Math.PI, 4); 

                PsiBottom = Math.Round(Math.Acos((C * C + K * K - (P + R) * (P + R)) / (2 * C * K)) * 180 / Math.PI, 

4); 

                PsiTop = Math.Round(Math.Acos((C * C + K * K - (P - R) * (P - R)) / (2 * C * K)) * 180 / Math.PI, 4); 

                ThetaUpstroke = Math.Round(Norm(Phi - Math.Asin(C / (P + R) * Math.Sin(PsiBottom / 180 * 

Math.PI)) * 180 / Math.PI), 4); 

                ThetaDownstroke = Math.Round(Norm(Phi - Math.Asin(C / (P - R) * Math.Sin(PsiTop / 180 * 

Math.PI)) * 180 / Math.PI + 180), 4); 

 

                if (Rotation == "CCW" && Geometry == "Conventional") 

                { 

                    ThetaUpstroke = 360 - ThetaUpstroke; 

                    ThetaDownstroke = 360 - ThetaDownstroke; 

                } 

            } 

 

            if (Geometry == "Mark II") 

            { 

                Phi = Math.Round(Math.Asin(I / K) * 180 / Math.PI + 180, 4); 

                PsiTop = Math.Round(Math.Acos((C * C + K * K - (P + R) * (P + R)) / (2 * C * K)) * 180 / Math.PI, 4); 

                PsiBottom = Math.Round(Math.Acos((C * C + K * K - (P - R) * (P - R)) / (2 * C * K)) * 180 / Math.PI, 

4); 

                ThetaUpstroke = Math.Round(Norm(Phi - Math.Asin(C / (P - R) * Math.Sin(PsiBottom / 180 * 

Math.PI)) * 180 / Math.PI + 180), 4); 

                ThetaDownstroke = Math.Round(Phi - Math.Asin(C / (P + R) * Math.Sin(PsiTop / 180 * Math.PI)) * 

180 / Math.PI, 4); 

            } 

 

            if (Geometry == "Air Balanced") 

            { 

                Phi = Math.Round(-Math.Asin(I / K) * 180 / Math.PI + 180, 4); 

                PsiTop = Math.Round(Math.Acos((C * C + K * K - (P + R) * (P + R)) / (2 * C * K)) * 180 / Math.PI, 4); 

                PsiBottom = Math.Round(Math.Acos((C * C + K * K - (P - R) * (P - R)) / (2 * C * K)) * 180 / Math.PI, 

4); 

                ThetaUpstroke = Math.Round(Norm(Phi + Math.Asin(C / (P - R) * Math.Sin(PsiBottom / 180 * 

Math.PI)) * 180 / Math.PI - 180), 4); 

                ThetaDownstroke = Math.Round(Norm(Phi + Math.Asin(C / (P + R) * Math.Sin(PsiTop / 180 * 

Math.PI)) * 180 / Math.PI), 4); 

 

                if (Rotation == "CCW") 

                { 

                    ThetaUpstroke = 360 - ThetaUpstroke; 

                    ThetaDownstroke = 360 - ThetaDownstroke; 

                } 

            } 
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            Upstroke = Norm(ThetaDownstroke - ThetaUpstroke); 

            Downstroke = 360 - Upstroke; 

 

            StrokeLength = Math.Round(A * Math.Abs((PsiTop - PsiBottom)) / 180 * Math.PI, 4); 

        } 

 

public void CrankAngleCalculation() 

        { 

            double k = ThetaUpstroke;   //Independent Crank Angle moving trough the whole interval 

            double diff = 1;   //Auxiliary variable to determine the correct Crank Angle 

            double Pos1, Pos2 = 0; 

            Epsilon = 0.0001; 

 

            StrokeLength = Convert.ToDouble(textBoxStrokeLengthOverWrite.Text); 

 

            for (int j = 0; j < twm.PolishedRodPosition.Count; j++) 

            { 

                if (twm.PolishedRodPosition[j] == StrokeLength) 

                { 

                    calc.CrankAngle.Add(Math.Round(ThetaDownstroke, 3)); 

                    k = ThetaDownstroke; 

                    DependentFromCrankAngle(k, true); 

                    calc.Theta2.Add(Theta2); 

                    calc.Theta3.Add(Theta3); 

                    calc.Theta4.Add(Theta4); 

                    calc.TorqueFactor.Add(0); 

                } 

                if (twm.PolishedRodPosition[j] == 0) 

                { 

                    calc.CrankAngle.Add(Math.Round(ThetaUpstroke, 3)); 

                    k = ThetaUpstroke; 

                    DependentFromCrankAngle(k, true); 

                    calc.Theta2.Add(Theta2); 

                    calc.Theta3.Add(Theta3); 

                    calc.Theta4.Add(Theta4); 

                    calc.TorqueFactor.Add(0); 

                } 

                if (twm.PolishedRodPosition[j] != 0 && twm.PolishedRodPosition[j] != StrokeLength) 

                { 

                    while (diff > 0) 

                    { 

                        k = Norm(k + Epsilon); 

 

                        DependentFromCrankAngle(k, true); 

                        Pos1 = (PsiBottom - Psi) / (PsiBottom - PsiTop); 

                        DependentFromCrankAngle(k + Epsilon, true); 

                        Pos2 = (PsiBottom - Psi) / (PsiBottom - PsiTop); 

                        diff = (Pos1 - twm.PolishedRodPosition[j] / StrokeLength) * (Pos2 - 

twm.PolishedRodPosition[j] / StrokeLength); 



 

98 
 

                    } 

 

                    calc.CrankAngle.Add(Norm(Math.Round(k + Epsilon / 2, 3))); 

                    calc.TorqueFactor.Add(Math.Round(TF, 3)); 

                    calc.Theta2.Add(Theta2); 

                    calc.Theta3.Add(Theta3); 

                    calc.Theta4.Add(Theta4); 

 

 

 

                    diff = 1; 

                } 

 

                calc.Beta.Add(Beta); 

                calc.J.Add(J); 

                calc.Rho.Add(Rho); 

                calc.Ksi.Add(Ksi); 

                calc.Psi.Add(Psi); 

                calc.Alpha.Add(Alpha); 

            } 

        } 

 

public void DependentFromCrankAngle(double Angle, bool samestart) 

        { 

            int b = 0; 

            if (Geometry == "Conventional" || Geometry == "TorqMaster") 

            { 

                // Rotationation assign 

                if (Rotation == "CCW") 

                { 

                    Theta = 360 - Angle; 

                } 

                else 

                { 

                    Theta = Angle; 

                } 

 

                Theta2 = Norm(360 - Theta + Phi); 

 

                if (Theta2 < 180 & Theta2 >= 0) 

                { b = -1; } 

                else { b = 1; } 

                Beta = Math.Acos((C * C + P * P - R * R - K * K + 2 * K * R * Math.Cos(Theta2 / 180 * Math.PI)) / (2 * 

C * P)) * 180 / Math.PI; 

                J = Math.Sqrt(K * K + R * R - 2 * R * K * Math.Cos(Theta2 / 180 * Math.PI)); 

                Rho = Math.Acos((J * J + K * K - R * R) / (2 * J * K)) * 180 / Math.PI * b; 

                if ((J * J + K * K - R * R) / (2 * J * K) > 1) 

                { Rho = 0; } 

                if ((J * J + K * K - R * R) / (2 * J * K) < -1) 

                { Rho = 0; } 
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                Ksi = Math.Acos((C * C + J * J - P * P) / (2 * C * J)) * 180 / Math.PI; 

                Psi = Ksi - Rho; 

                Theta3 = Math.Acos((P * P + J * J - C * C) / (2 * P * J)) * 180 / Math.PI + Rho; 

                Theta4 = 180 - Psi; 

                Alpha = Beta + Psi - (Theta - Phi); 

                TF = R * A / C * Math.Sin(Alpha / 180 * Math.PI) / Math.Sin(Beta / 180 * Math.PI); 

            } 

 

            if (Geometry == "Mark II") 

            { 

                Theta = Angle; 

 

                Theta2 = Phi - Theta; 

 

                Beta = Math.Acos((C * C + P * P - R * R - K * K + 2 * K * R * Math.Cos(Theta2 / 180 * Math.PI)) / (2 * 

C * P)) * 180 / Math.PI; 

                J = Math.Sqrt(K * K + R * R - 2 * R * K * Math.Cos(Theta2 / 180 * Math.PI)); 

                Rho = Math.Asin((R / J * Math.Sin(Theta2 / 180 * Math.PI))) * 180 / Math.PI; 

                Ksi = Math.Asin((P / J * Math.Sin(Beta / 180 * Math.PI))) * 180 / Math.PI; 

                Psi = Ksi + Rho; 

                Theta3 = Math.Acos((P * P + J * J - C * C) / (2 * P * J)) * 180 / Math.PI - Rho; 

                Theta4 = 180 - Psi; 

                Alpha = -(Beta + Psi - (Theta - Phi)); 

                TF = R * A / C * Math.Sin(Alpha / 180 * Math.PI) / Math.Sin(Beta / 180 * Math.PI); 

            } 

 

            if (Geometry == "Air Balanced") 

            { 

                // Rotationation assign  

                if (Rotation == "CCW") 

                { 

                    Theta = 360 - Angle; 

                } 

                else 

                { 

                    Theta = Angle; 

                } 

 

                Theta2 = Theta - Phi; 

 

                Beta = Math.Acos((C * C + P * P - R * R - K * K + 2 * K * R * Math.Cos(Theta2 / 180 * Math.PI)) / (2 * 

C * P)) * 180 / Math.PI; 

 

                if (Theta2 > 360) 

                { 

                    Theta2 = Theta2 - 360; 

                } 

                J = Math.Sqrt(K * K + R * R - 2 * R * K * Math.Cos(Theta2 / 180 * Math.PI)); 

                Rho = Math.Asin((R / J * Math.Sin(Theta2 / 180 * Math.PI))) * 180 / Math.PI; 

                Ksi = Math.Asin((P / J * Math.Sin(Beta / 180 * Math.PI))) * 180 / Math.PI; 
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                Psi = Ksi + Rho; 

                Theta3 = Math.Acos((P * P + J * J - C * C) / (2 * P * J)) * 180 / Math.PI - Rho; 

                Theta4 = 180 - Psi; 

                Alpha = Beta + Psi + (Theta - Phi); 

                TF = R * A / C * Math.Sin(Alpha / 180 * Math.PI) / Math.Sin(Beta / 180 * Math.PI); 

            } 

        } 

 

private void SvinosCalculation() 

        { 

            for (int i = 0; i < twm.Time.Count - 1; i++) 

            { 

                calc.BeamVelocityNumerical.Add((twm.PolishedRodPosition[i + 1] - twm.PolishedRodPosition[i]) 

/ twm.Time[1]); 

            } 

 

            calc.BeamAccelerationNumerical.Add(0); 

            for (int i = 1; i < twm.Time.Count - 1; i++) 

            { 

                calc.BeamAccelerationNumerical.Add((calc.BeamVelocityNumerical[i] - 

calc.BeamVelocityNumerical[i - 1]) / twm.Time[1] / A); 

            } 

            calc.BeamAccelerationNumerical[0] = calc.BeamAccelerationNumerical[1]; 

            

calc.BeamAccelerationNumerical.Add(calc.BeamAccelerationNumerical[calc.BeamAccelerationNumerical.

Count - 1]); 

 

            FourierPreparation(); 

 

            FourierPrepTheta2(calc.Theta2, twm.Time, calc.Theta2f, calc.TimeFourier); 

            FourierPrep(calc.Theta3, twm.Time, calc.Theta3f, calc.TimeFourier); 

            FourierPrep(calc.Theta4, twm.Time, calc.Theta4f, calc.TimeFourier); 

 

            FourierPrep(twm.PolishedRodLoad, twm.Time, calc.PolishedRodLoadF, calc.TimeFourier); 

 

            FourierPrep(twm.PolishedRodPosition, twm.Time, calc.PolishedRodPositionF10term, 

calc.TimeFourier); 

 

            FourierPrep(calc.CrankAngle, twm.Time, calc.Theta2fDirectDummy, calc.TimeFourier); 

 

 

            Fourier(calc.DTheta5PointFourier, 10, calc.CrankAngularVelocity5Point, 

calc.CrankAngularAcceleration5Point, calc.CrankAngularAccelerationChange5Point); 

            Fourier(calc.DThetaFourier, 10, calc.Theta2p, calc.Theta2pp, 

calc.CrankAngularAccelerationChange); 

 

            Fourier(calc.Theta2fDirectDummy, 10, calc.Theta2fDirect, calc.Theta2pfDirect, 

calc.Theta2ppfDirect); 

 

            Fourier(calc.PolishedRodLoadF, 200, calc.PolishedRodLoadFourier, calc.Dummy, calc.Dummy); 
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            Fourier(calc.PolishedRodPositionF10term, 10, calc.PolishedRodPositionFourier10term, 

calc.PolishedRodPositionpFourier10term, calc.PolishedRodPositionppFourier10term); 

            Fourier(calc.PolishedRodPositionF10term, 5, calc.PolishedRodPositionFourier5term, 

calc.PolishedRodPositionpFourier5term, calc.PolishedRodPositionppFourier5term); 

            Fourier(calc.PolishedRodPositionF10term, 30, calc.PolishedRodPositionFourier20term, 

calc.PolishedRodPositionpFourier20term, calc.PolishedRodPositionppFourier20term); 

 

            for (int i = 0; i < twm.Time.Count; i++) 

            { 

                calc.BeamAccelerationFourier10term.Add(calc.PolishedRodPositionppFourier10term[i] / A); 

                calc.BeamAccelerationFourier5term.Add(calc.PolishedRodPositionppFourier5term[i] / A); 

                calc.BeamAccelerationFourier20term.Add(calc.PolishedRodPositionppFourier20term[i] / A); 

            } 

 

 

 

            for (int i = 0; i < calc.Theta2p.Count; i++) 

            { 

                if (Rotation == "CW") 

                { 

                    calc.Theta3p.Add(Math.Round(-R / P * calc.Theta2p[i] * Math.Sin((calc.Theta4f[i] - 

calc.Theta2f[i]) / 180 * Math.PI) / Math.Sin((calc.Theta3f[i] - calc.Theta4f[i]) / 180 * Math.PI), 10)); 

                    calc.Theta4p.Add(Math.Round(-R / C * calc.Theta2p[i] * Math.Sin((calc.Theta3f[i] - 

calc.Theta2f[i]) / 180 * Math.PI) / Math.Sin((calc.Theta3f[i] - calc.Theta4f[i]) / 180 * Math.PI), 10)); 

 

                    calc.Theta3pp.Add(Math.Round(calc.Theta3p[i] * (calc.Theta2pp[i] / calc.Theta2p[i] - 

(calc.Theta3p[i] - calc.Theta4p[i]) / (Math.Tan((calc.Theta3f[i] - calc.Theta4f[i]) / 180 * Math.PI)) + 

(calc.Theta4p[i] + calc.Theta2p[i]) / (Math.Tan((calc.Theta4f[i] - calc.Theta2f[i]) / 180 * Math.PI))), 3)); 

 

                    calc.Theta4pp.Add(Math.Round(calc.Theta4p[i] * (calc.Theta2pp[i] / calc.Theta2p[i] - 

(calc.Theta3p[i] - calc.Theta4p[i]) / (Math.Tan((calc.Theta3f[i] - calc.Theta4f[i]) / 180 * Math.PI)) - 

(calc.Theta3p[i] + calc.Theta2p[i]) / (Math.Tan((calc.Theta2f[i] - calc.Theta3f[i]) / 180 * Math.PI))), 3)); 

 

                    calc.Theta3p5p.Add(Math.Round(-R / P * calc.CrankAngularVelocity5Point[i] * 

Math.Sin((calc.Theta4f[i] - calc.Theta2f[i]) / 180 * Math.PI) / Math.Sin((calc.Theta3f[i] - calc.Theta4f[i]) / 

180 * Math.PI), 10)); 

                    calc.Theta4p5p.Add(Math.Round(-R / C * calc.CrankAngularVelocity5Point[i] * 

Math.Sin((calc.Theta3f[i] - calc.Theta2f[i]) / 180 * Math.PI) / Math.Sin((calc.Theta3f[i] - calc.Theta4f[i]) / 

180 * Math.PI), 10)); 

 

                    calc.Theta3pp5p.Add(Math.Round(calc.Theta3p[i] * (calc.CrankAngularAcceleration5Point[i] / 

calc.CrankAngularVelocity5Point[i] - (calc.Theta3p[i] - calc.Theta4p[i]) / (Math.Tan((calc.Theta3f[i] - 

calc.Theta4f[i]) / 180 * Math.PI)) + (calc.Theta4p[i] + calc.CrankAngularVelocity5Point[i]) / 

(Math.Tan((calc.Theta4f[i] - calc.Theta2f[i]) / 180 * Math.PI))), 3)); 

 

                    calc.Theta4pp5p.Add(Math.Round(calc.Theta4p[i] * (calc.CrankAngularAcceleration5Point[i] / 

calc.CrankAngularVelocity5Point[i] - (calc.Theta3p[i] - calc.Theta4p[i]) / (Math.Tan((calc.Theta3f[i] - 

calc.Theta4f[i]) / 180 * Math.PI)) - (calc.Theta3p[i] + calc.CrankAngularVelocity5Point[i]) / 

(Math.Tan((calc.Theta2f[i] - calc.Theta3f[i]) / 180 * Math.PI))), 3)); 
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                } 

 

                else 

                { 

                    calc.Theta3p.Add(Math.Round((-R / P * calc.Theta2p[i] * Math.Sin((calc.Theta4f[i] - 

calc.Theta2f[i]) / 180 * Math.PI) / Math.Sin((calc.Theta3f[i] - calc.Theta4f[i]) / 180 * Math.PI)), 10)); 

                    calc.Theta4p.Add(Math.Round((-R / C * calc.Theta2p[i] * Math.Sin((calc.Theta3f[i] - 

calc.Theta2f[i]) / 180 * Math.PI) / Math.Sin((calc.Theta3f[i] - calc.Theta4f[i]) / 180 * Math.PI)), 10)); 

 

                    calc.Theta3pp.Add(Math.Round((calc.Theta3p[i] * (calc.Theta2pp[i] / calc.Theta2p[i] - 

(calc.Theta3p[i] - calc.Theta4p[i]) / (Math.Tan((calc.Theta3f[i] - calc.Theta4f[i]) / 180 * Math.PI)) + 

(calc.Theta4p[i] + calc.Theta2p[i]) / (Math.Tan((calc.Theta4f[i] - calc.Theta2f[i]) / 180 * Math.PI)))), 3)); 

 

                    calc.Theta4pp.Add(Math.Round((calc.Theta4p[i] * (calc.Theta2pp[i] / calc.Theta2p[i] - 

(calc.Theta3p[i] - calc.Theta4p[i]) / (Math.Tan((calc.Theta3f[i] - calc.Theta4f[i]) / 180 * Math.PI)) - 

(calc.Theta3p[i] + calc.Theta2p[i]) / (Math.Tan((calc.Theta2f[i] - calc.Theta3f[i]) / 180 * Math.PI)))), 3)); 

 

                    calc.Theta3p5p.Add(Math.Round((-R / P * calc.CrankAngularVelocity5Point[i] * 

Math.Sin((calc.Theta4f[i] - calc.Theta2f[i]) / 180 * Math.PI) / Math.Sin((calc.Theta3f[i] - calc.Theta4f[i]) / 

180 * Math.PI)), 10)); 

                    calc.Theta4p5p.Add(Math.Round((-R / C * calc.CrankAngularVelocity5Point[i] * 

Math.Sin((calc.Theta3f[i] - calc.Theta2f[i]) / 180 * Math.PI) / Math.Sin((calc.Theta3f[i] - calc.Theta4f[i]) / 

180 * Math.PI)), 10)); 

 

                    calc.Theta3pp5p.Add(Math.Round((calc.Theta3p[i] * (calc.CrankAngularAcceleration5Point[i] / 

calc.CrankAngularVelocity5Point[i] - (calc.Theta3p[i] - calc.Theta4p[i]) / (Math.Tan((calc.Theta3f[i] - 

calc.Theta4f[i]) / 180 * Math.PI)) + (calc.Theta4p[i] + calc.CrankAngularVelocity5Point[i]) / 

(Math.Tan((calc.Theta4f[i] - calc.Theta2f[i]) / 180 * Math.PI)))), 3)); 

 

                    calc.Theta4pp5p.Add(Math.Round(-(calc.Theta4p[i] * (calc.CrankAngularAcceleration5Point[i] 

/ calc.CrankAngularVelocity5Point[i] - (calc.Theta3p[i] - calc.Theta4p[i]) / (Math.Tan((calc.Theta3f[i] - 

calc.Theta4f[i]) / 180 * Math.PI)) - (calc.Theta3p[i] + calc.CrankAngularVelocity5Point[i]) / 

(Math.Tan((calc.Theta2f[i] - calc.Theta3f[i]) / 180 * Math.PI)))), 3)); 

 

                } 

            } 

 

 

        } 

 

public void Fourier(List<double> data, int order, List<double> dataf, List<double> datafd, List<double> 

datafdd) 

        { 

            double a0 = 0; 

            double four = 0; 

            double fourd = 0; 

            double fourdd = 0; 

            double k = 0; 

            double l = 0; 
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            List<double> af = new List<double>(); 

            List<double> bf = new List<double>(); 

            List<double> fouriertime = new List<double>(); 

 

            for (int i = 0; i < data.Count; i++) 

            { 

                fouriertime.Add(-Math.PI + 2 * Math.PI * i / (data.Count)); 

            } 

 

            a0 = Sum(data) / data.Count; 

 

            for (int i = 0; i < order; i++) 

            { 

                for (int j = 0; j < data.Count; j++) 

                { 

                    k += data[j] * Math.Sin((i + 1) * fouriertime[j]); 

                    l += data[j] * Math.Cos((i + 1) * fouriertime[j]); 

                } 

 

                af.Add(Math.Round(k / data.Count * 2, 5)); 

                bf.Add(Math.Round(l / data.Count * 2, 5)); 

                k = 0; 

                l = 0; 

            } 

 

            for (int i = 0; i < fouriertime.Count; i++) 

            { 

                for (int j = 0; j < order; j++) 

                { 

                    four = four + af[j] * Math.Sin((twm.Time[i] * 2 * Math.PI / calc.PeriodTime - Math.PI) * (j + 1)) + 

bf[j] * Math.Cos((twm.Time[i] * 2 * Math.PI / calc.PeriodTime - Math.PI) * (j + 1)); 

                    fourd = fourd + af[j] * (j + 1) * Math.Cos((twm.Time[i] * 2 * Math.PI / calc.PeriodTime - Math.PI) 

* (j + 1)) - bf[j] * (j + 1) * Math.Sin((twm.Time[i] * 2 * Math.PI / calc.PeriodTime - Math.PI) * (j + 1)); 

                    fourdd = fourdd - af[j] * (j + 1) * (j + 1) * Math.Sin((twm.Time[i] * 2 * Math.PI / calc.PeriodTime - 

Math.PI) * (j + 1)) - bf[j] * (j + 1) * (j + 1) * Math.Cos((twm.Time[i] * 2 * Math.PI / calc.PeriodTime - 

Math.PI) * (j + 1)); 

 

                } 

 

                dataf.Add(four + a0); 

                datafd.Add(fourd * 2 / Math.PI); 

                datafdd.Add(fourdd * 4 / Math.PI / Math.PI); 

 

                four = 0; 

                fourd = 0; 

                fourdd = 0; 

            } 

        } 
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public void FourierPrep(List<double> data, List<double> time, List<double> dataf, List<double> timef, 

bool mod) 

        { 

            if (mod) 

            { 

                dataf.Add(1); 

 

                int k = 0; 

 

                for (int i = 1; i < time.Count; i++) 

                { 

                    if (i + k >= time.Count) 

                    { 

                        k--; 

                    } 

 

                    if (timef[i] > time[i + k]) 

                    { 

                        k++; 

                    } 

 

                    if (i + k >= time.Count) 

                    { 

                        k--; 

                    } 

 

                    if (Math.Abs(data[i - 2 + k] - data[i + k - 1]) > 300) 

                    { 

                        if (data[i - 2 + k] < data[i + k - 1]) 

                        { 

                            double change = time[i + k - 3]; 

 

                            while (dataf[i + k - 3] + (dataf[i + k - 3] - dataf[i - 4 + k]) * (change - timef[i + k - 3]) / (timef[i 

+ k - 3] - timef[i - 4 + k]) > 0) 

                            { 

                                change += 0.0001; 

                            } 

 

                            change = Math.Round(change, 5); 

                            dataf[dataf.Count - 1] = Math.Round(dataf[i + k - 3] * (change - timef[i + k - 2]) / (change - 

timef[i + k - 3]), 4); 

                            } 

 

                            else 

                            { 

                                MessageBox.Show("Theta2 in the upper side of the seesaw curve :("); 

                            } 

                         

                    } 
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                    dataf.Add(Math.Round(data[i - 1 + k] + (data[i + k] - data[i - 1 + k]) * (timef[i] - time[i - 1 + k]) / 

(time[i + k] - time[i - 1 + k]), 4)); 

 

                } 

                dataf[0] = Math.Round(data[0] + (data[0] - data[1]) / (time[1] - time[0]) * time[0], 4); 

            } 

 

        } 

 

public void FourierPrepTheta2(List<double> data, List<double> time, List<double> dataf, List<double> 

timef)  

        { 

            dataf.Add(1); 

 

            int k = 0; 

 

            for (int i = 1; i < time.Count; i++) 

            { 

                if (data[i] < data[i - 1]) 

                { 

                    dataf.Add(Math.Round(data[i - 1] + (data[i] - data[i - 1]) * (timef[i] - time[i - 1]) / (time[i] - 

time[i - 1]), 4)); 

                } 

                else 

                { 

                    dataf.Add(Norm(Math.Round(data[i] + (360 + data[i - 1] - data[i]) * (time[i] - timef[i]) / (time[i] 

- time[i - 1]), 4))); 

                } 

 

            } 

            dataf[0] = Math.Round(data[0] + (data[0] - data[1]) / (time[1] - time[0]) * time[0], 4); 

        } 

 

private void TorqueCalculation() 

        { 

 

            for (int j = 0; j < twm.PolishedRodPosition.Count; j++) 

            { 

                calc.RodTorque.Add(Math.Round(calc.TorqueFactor[j] * (twm.PolishedRodLoad[j] - 

StructuralUnbalance / 1000), 3)); 

                calc.ArticulatingInertialTorqueSvinos5p.Add(Math.Round(12 / 32.2 * calc.TorqueFactor[j] / A * 

MassMomentBeam * calc.Theta4pp5p[j] / 1000, 3)); 

                calc.ArticulatingInertialTorqueGibbs10term.Add(Math.Round(12 / 32.2 * calc.TorqueFactor[j] / A 

* MassMomentBeam * calc.BeamAccelerationFourier10term[j] / A / 1000, 3)); 

                calc.ArticulatingInertialTorqueGibbs5term.Add(Math.Round(12 / 32.2 * calc.TorqueFactor[j] / A * 

MassMomentBeam * calc.BeamAccelerationFourier5term[j] / A / 1000, 3)); 

                calc.ArticulatingInertialTorqueGibbs20term.Add(Math.Round(12 / 32.2 * calc.TorqueFactor[j] / A 

* MassMomentBeam * calc.BeamAccelerationFourier20term[j] / A / 1000, 3)); 

                calc.ArticulatingInertialTorqueNumerical.Add(Math.Round(12 / 32.2 * calc.TorqueFactor[j] / A * 

MassMomentBeam * calc.Theta4pp5p[j] / 1000, 3));  
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            } 

 

            CounterbalanceTorquecalculation(ActualCounterweightConfiguration); 

 

            for (int j = 0; j < twm.PolishedRodPosition.Count; j++) 

            { 

                calc.ActualNetGearboxTorque.Add(calc.RodTorque[j] + calc.ActualCounterbalanceTorque[j] + 

calc.ActualRotaryInertialTorque[j] + calc.ArticulatingInertialTorqueSvinos5p[j]); 

            } 

 

            SW = new Stopwatch(); 

            SW.Start(); 

 

            AsymmetricCBcalculation(); 

 

            AsymmetricCBcalculationDouble(); 

 

            SymmetricCBcalculation(); 

 

            CLFOptimization(); 

 

            double ElapsedTime = Convert.ToDouble(SW.ElapsedMilliseconds) / 1000; 

            SW.Stop(); 

 

 

 

        } 

 

 

private void AsymmetricCBcalculation() 

        { 

            GlobalBest.BestFitnessValue = double.PositiveInfinity; 

 

            Swarm = new Particle[SwarmSize]; 

 

            for (int i = 0; i < SwarmSize; i++) 

            { 

                Swarm[i].Position = PSO_RandPosition(LowerLimits, UpperLimits, DimensionSize); 

                Swarm[i].Speed = PSO_Rand(LowerLimits, UpperLimits2, DimensionSize); 

                Swarm[i].FitnessValue = FitnessCalculation(Swarm[i].Position, false, false); 

                Swarm[i].BestFitnessValue = Swarm[i].FitnessValue; 

                Swarm[i].BestPosition = (double[])Swarm[i].Position.Clone(); 

                Swarm[i].Tau = TauCalculation(Swarm[i].Position); 

                Swarm[i].CLF = CLFCalculation(Swarm[i].Position); 

 

 

                if (Swarm[i].BestFitnessValue <= GlobalBest.BestFitnessValue) 

                { 

                    GlobalBest.BestPosition = (double[])Swarm[i].Position.Clone(); 

                    GlobalBest.BestPositionText = new string[14] { "", "", "", "", "", "", "", "", "", "", "", "", "", "" }; 
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                    GlobalBest.BestPositionText[0] = 

api.CounterweightName[Convert.ToInt16(Math.Round(Swarm[i].Position[0], 0))]; 

                    GlobalBest.BestPositionText[1] = 

api.CounterweightName[Convert.ToInt16(Math.Round(Swarm[i].Position[1], 0))]; 

                    GlobalBest.BestPositionText[2] = 

api.CounterweightName[Convert.ToInt16(Math.Round(Swarm[i].Position[2], 0))]; 

                    GlobalBest.BestPositionText[3] = 

api.CounterweightName[Convert.ToInt16(Math.Round(Swarm[i].Position[3], 0))]; 

 

                    GlobalBest.BestPositionText[4] = Math.Round(Swarm[i].Position[4],1).ToString() + " in"; 

                    GlobalBest.BestPositionText[5] = Math.Round(Swarm[i].Position[5],1).ToString() + " in"; 

                    GlobalBest.BestPositionText[6] = Math.Round(Swarm[i].Position[6],1).ToString() + " in"; 

                    GlobalBest.BestPositionText[7] = Math.Round(Swarm[i].Position[7],1).ToString() + " in"; 

 

                    GlobalBest.BestPositionText[8] = Convert.ToInt16(Math.Round(Swarm[i].Position[8], 

0)).ToString() + " x" + api.AuxCounterweightName[Convert.ToInt16(Math.Round(Swarm[i].Position[0], 

0))]; 

                    GlobalBest.BestPositionText[9] = Convert.ToInt16(Math.Round(Swarm[i].Position[9], 

0)).ToString() + " x" + api.AuxCounterweightName[Convert.ToInt16(Math.Round(Swarm[i].Position[1], 

0))]; 

                    GlobalBest.BestPositionText[10] = Convert.ToInt16(Math.Round(Swarm[i].Position[10], 

0)).ToString() + " x" + api.AuxCounterweightName[Convert.ToInt16(Math.Round(Swarm[i].Position[2], 

0))]; 

                    GlobalBest.BestPositionText[11] = Convert.ToInt16(Math.Round(Swarm[i].Position[11], 

0)).ToString() + " x" + api.AuxCounterweightName[Convert.ToInt16(Math.Round(Swarm[i].Position[3], 

0))]; 

                    GlobalBest.BestPositionText[12] = Swarm[i].Tau.ToString() + " deg"; 

                    GlobalBest.BestPositionText[13] = Swarm[i].CLF.ToString(); 

 

                    GlobalBest.BestFitnessValue = Swarm[i].BestFitnessValue; 

                    label7.Text = GlobalBest.BestFitnessValue.ToString(); 

                    Application.DoEvents(); 

                } 

            } 

 

            for (int iter = 0; iter < MaxIteration; iter++) 

            { 

                labelSwarmSize.Text = $"{iter}. iteration"; 

 

                for (int i = 0; i < SwarmSize; i++) 

                { 

                    labelMaxIteration.Text = $"{i}. swarm"; 

                    Application.DoEvents(); 

                    for (int j = 0; j < DimensionSize; j++) 

                    { 

                        Swarm[i].Speed[j] = W * Swarm[i].Speed[j] + C1 * Math.Round(Randd.NextDouble(), 5) * 

(Swarm[i].BestPosition[j] - Swarm[i].Position[j]) + C2 * Math.Round(Randd.NextDouble(), 5) * 

(GlobalBest.BestPosition[j] - Swarm[i].Position[j]); 

                        Swarm[i].Speed[j] = UpdateSwarmSpeed(Swarm[i].Speed[j]); 
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                        if (j > 3 && j < 8) 

                        { 

                            UpperLimits[j] = CrankLength - 

api.CounterweightdM[Convert.ToInt16(Math.Round(Swarm[i].Position[j - 4], 0))]; 

                            LowerLimits[j] = api.Counterweightdm[Convert.ToInt16(Math.Round(Swarm[i].Position[j - 

4], 0))]; 

                        } 

                        Swarm[i].Position[j] = UpdateSwarmPosition(Swarm[i].Position[j], Swarm[i].Speed[j], 

UpperLimits[j], LowerLimits[j]); 

                    } 

 

                    Swarm[i].FitnessValue = FitnessCalculation(Swarm[i].Position, false, false); 

 

                    if (Swarm[i].FitnessValue < Swarm[i].BestFitnessValue) 

                    { 

                        Swarm[i].BestPosition = (double[])Swarm[i].Position.Clone(); 

                        Swarm[i].BestFitnessValue = Swarm[i].FitnessValue; 

 

                        if (Swarm[i].BestFitnessValue < GlobalBest.BestFitnessValue) 

                        { 

                            calc.RotaryInertialTorque.Clear(); 

                            calc.CounterBalanceTorque.Clear(); 

                            calc.NetGearboxTorque.Clear(); 

 

                            GlobalBest.BestPosition = (double[])Swarm[i].Position.Clone(); 

                            GlobalBest.BestFitnessValue = Swarm[i].BestFitnessValue; 

 

                            Positionlist.Add(Swarm[i].Position.Clone()); 

                            Fitnesslist.Add(Swarm[i].BestFitnessValue); 

                            label7.Text = GlobalBest.BestFitnessValue.ToString(); 

 

                            for (int j = 0; j < calc.RotaryInertialTorqueDummy.Count; j++) 

                            { 

                                calc.RotaryInertialTorque.Add(calc.RotaryInertialTorqueDummy[j]); 

                                calc.CounterBalanceTorque.Add(calc.CounterBalanceTorqueDummy[j]); 

                                calc.NetGearboxTorque.Add(calc.NetGearboxTorqueDummy[j]); 

                            } 

 

                            Draw(); 

 

                        } 

                    } 

 

                } 

                W *= Wdamp; 

 

            } 

        } 

 

public double[] PSO_RandPosition(double[] a, double[] b, int n) 
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        { 

            double[] x = new double[n]; 

            for (int i = 0; i < n; i++) 

            { 

                x[i] = PSO_Rand(a[i], b[i]); 

                if (i > 3 && i < 8) 

                { 

                    x[i] = PSO_Rand(api.Counterweightdm[Convert.ToInt16(Math.Round(x[i - 4], 0))], CrankLength 

- api.CounterweightdM[Convert.ToInt16(Math.Round(x[i - 4], 0))]); 

                } 

            } 

            return x; 

        } 

 

public double[] PSO_Rand(double[] a, double[] b, int n) 

        { 

            double[] x = new double[n]; 

            for (int i = 0; i < n; i++) 

            { 

                x[i] = PSO_Rand(a[i], b[i]); 

            } 

            return x; 

        } 

 

public double FitnessCalculation(double[] a, bool noinertia, bool CLF) 

        { 

            int Cw1topID = Convert.ToInt16(Math.Round(a[0], 0)); 

            int Cw1botID = Convert.ToInt16(Math.Round(a[1], 0)); 

            int Cw2topID = Convert.ToInt16(Math.Round(a[2], 0)); 

            int Cw2botID = Convert.ToInt16(Math.Round(a[3], 0)); 

            double M1 = CrankLength - api.CounterweightdM[Cw1topID]; 

            double M2 = CrankLength - api.CounterweightdM[Cw1botID]; 

            double M3 = CrankLength - api.CounterweightdM[Cw2topID]; 

            double M4 = CrankLength - api.CounterweightdM[Cw2botID]; 

            double D1 = Math.Round(a[4], 1); 

            double D2 = Math.Round(a[5], 1); 

            double D3 = Math.Round(a[6], 1); 

            double D4 = Math.Round(a[7], 1); 

 

            if (D1 > M1) 

            { 

                D1 = M1; 

            } 

 

            if (D2 > M2) 

            { 

                D2 = M2; 

            } 

 

            if (D3 > M3) 



 

110 
 

            { 

                D3 = M3; 

            } 

 

            if (D4 > M4) 

            { 

                D4 = M4; 

            } 

 

            double Y1 = api.CounterweightY[Cw1topID]; 

            double Y2 = api.CounterweightY[Cw1botID]; 

            double Y3 = api.CounterweightY[Cw2topID]; 

            double Y4 = api.CounterweightY[Cw2botID]; 

            double H1 = Math.Sqrt((Y1 + CrankHalfwidth) * (Y1 + CrankHalfwidth) + (M1 - D1) * (M1 - D1)); 

            double H2 = Math.Sqrt((Y2 + CrankHalfwidth) * (Y2 + CrankHalfwidth) + (M2 - D2) * (M2 - D2)); 

            double H3 = Math.Sqrt((Y3 + CrankHalfwidth) * (Y3 + CrankHalfwidth) + (M3 - D3) * (M3 - D3)); 

            double H4 = Math.Sqrt((Y4 + CrankHalfwidth) * (Y4 + CrankHalfwidth) + (M4 - D4) * (M4 - D4)); 

 

            int AuxCw1topID = Convert.ToInt16(Math.Round(a[8], 0)); 

            int AuxCw1botID = Convert.ToInt16(Math.Round(a[9], 0)); 

            int AuxCw2topID = Convert.ToInt16(Math.Round(a[10], 0)); 

            int AuxCw2botID = Convert.ToInt16(Math.Round(a[11], 0)); 

 

            double Icg1 = api.CounterweightMoment[Cw1topID] + AuxCw1topID * 

api.AuxCounterweightMoment[Cw1topID]; 

            double Icg2 = api.CounterweightMoment[Cw1botID] + AuxCw1botID * 

api.AuxCounterweightMoment[Cw1botID]; 

            double Icg3 = api.CounterweightMoment[Cw2topID] + AuxCw2topID * 

api.AuxCounterweightMoment[Cw2topID]; 

            double Icg4 = api.CounterweightMoment[Cw2botID] + AuxCw2botID * 

api.AuxCounterweightMoment[Cw2botID]; 

 

            double mcw1 = api.CounterweightMass[Cw1topID] + AuxCw1topID * 

api.AuxCounterweightMass[Cw1topID]; 

            double mcw2 = api.CounterweightMass[Cw1botID] + AuxCw1botID * 

api.AuxCounterweightMass[Cw1botID]; 

            double mcw3 = api.CounterweightMass[Cw2topID] + AuxCw2topID * 

api.AuxCounterweightMass[Cw2topID]; 

            double mcw4 = api.CounterweightMass[Cw2botID] + AuxCw2botID * 

api.AuxCounterweightMass[Cw2botID]; 

 

            double Icw1 = Icg1 + mcw1 * (H1 / 12) * (H1 / 12); 

            double Icw2 = Icg2 + mcw2 * (H2 / 12) * (H2 / 12); 

            double Icw3 = Icg3 + mcw3 * (H3 / 12) * (H3 / 12); 

            double Icw4 = Icg4 + mcw4 * (H4 / 12) * (H4 / 12); 

 

            double Icw = Icw1 + Icw2 + Icw3 + Icw4; 

 

            double Is = Icw + MassMomentCranks + MassMomentGearbox; 
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            double Tcbmax = CrankTorque + mcw1 * (M1 - D1) + mcw2 * (M2 - D2) + mcw3 * (M3 - D3) + mcw4 

* (M4 - D4); 

 

            double Sumx = (CrankMass * 2 * CrankLength / 2 + mcw1 * (M1 - D1) + mcw2 * (M2 - D2) + mcw3 * 

(M3 - D3) + mcw4 * (M4 - D4)) / (CrankMass * 2 + mcw1 + mcw2 + mcw3 + mcw4); 

            double Sumy = (mcw1 * (Y1 + CrankHalfwidth) - mcw2 * (Y2 + CrankHalfwidth) + mcw3 * (Y3 + 

CrankHalfwidth) - mcw4 * (Y4 + CrankHalfwidth)) / (CrankMass * 2 + mcw1 + mcw2 + mcw3 + mcw4); 

            double Taumod = Math.Round(Math.Atan(Sumy / Sumx) * 180 / Math.PI, 2); 

 

 

 

            calc.RotaryInertialTorqueDummy.Clear(); 

            calc.CounterBalanceTorqueDummy.Clear(); 

            calc.NetGearboxTorqueDummy.Clear(); 

 

            for (int j = 0; j < twm.PolishedRodPosition.Count; j++) 

            { 

                calc.CounterBalanceTorqueDummy.Add(Math.Round(-Math.Sin((Taumod + PhaseAngle + 

calc.CrankAngle[j]) / 180 * Math.PI) * Tcbmax / 1000, 3)); 

            } 

 

            if (!noinertia) 

            { 

                for (int j = 0; j < twm.PolishedRodPosition.Count; j++) 

                { 

                    calc.RotaryInertialTorqueDummy.Add(Math.Round(12 / 32.2 * Is * 

calc.CrankAngularAcceleration5Point[j] / 1000, 3)); 

                } 

            } 

            else 

            { 

                calc.ArticulatingInertialTorqueSymmetricalNoInertia.Clear(); 

                for (int j = 0; j < twm.PolishedRodPosition.Count; j++) 

                { 

                    calc.RotaryInertialTorqueDummy.Add(0); 

                    calc.ArticulatingInertialTorqueSymmetricalNoInertia.Add(0); 

                } 

            } 

 

            if (!noinertia) 

            { 

                for (int j = 0; j < twm.PolishedRodPosition.Count; j++) 

                { 

                    calc.NetGearboxTorqueDummy.Add(Math.Round(calc.RodTorque[j] + 

calc.ArticulatingInertialTorqueSvinos5p[j] + calc.RotaryInertialTorqueDummy[j] + 

calc.CounterBalanceTorqueDummy[j], 3)); 

                } 

            } 

            else 

            { 
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                for (int j = 0; j < twm.PolishedRodPosition.Count; j++) 

                { 

                    calc.NetGearboxTorqueDummy.Add(Math.Round(calc.RodTorque[j] + 

calc.ArticulatingInertialTorqueSymmetricalNoInertia[j] + calc.RotaryInertialTorqueDummy[j] + 

calc.CounterBalanceTorqueDummy[j], 3)); 

                } 

            } 

 

 

            double max = 0; 

 

            if (!CLF) 

            { 

                for (int i = 0; i < twm.PolishedRodPosition.Count; i++) 

                { 

                    if (Math.Abs(calc.NetGearboxTorqueDummy[i]) > max) 

                    { 

                        max = Math.Abs(calc.NetGearboxTorqueDummy[i]); 

                    } 

                } 

            } 

 

            else 

            { 

                double Squaresum = 0; 

                double Sum = 0; 

                for (int i = 0; i < twm.PolishedRodPosition.Count - 1; i++) 

                { 

                    Squaresum += (Math.Pow(calc.NetGearboxTorqueDummy[i], 2) + 

Math.Pow(calc.NetGearboxTorqueDummy[i + 1], 2)) / 2 * twm.Time[1]; 

                    Sum += (calc.NetGearboxTorqueDummy[i] + calc.NetGearboxTorqueDummy[i]) / 2 * 

twm.Time[1]; 

                } 

 

                max = Math.Round(Math.Sqrt(Squaresum / twm.Time[twm.Time.Count - 1]) / (Sum / 

twm.Time[twm.Time.Count - 1]), 4); 

            } 

 

 

            return max; 

        } 

 

public double TauCalculation(double[] a) 

        { 

            int Cw1topID = Convert.ToInt16(Math.Round(a[0], 0)); 

            int Cw1botID = Convert.ToInt16(Math.Round(a[1], 0)); 

            int Cw2topID = Convert.ToInt16(Math.Round(a[2], 0)); 

            int Cw2botID = Convert.ToInt16(Math.Round(a[3], 0)); 

            double M1 = CrankLength - api.CounterweightdM[Cw1topID]; 

            double M2 = CrankLength - api.CounterweightdM[Cw1botID]; 
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            double M3 = CrankLength - api.CounterweightdM[Cw2topID]; 

            double M4 = CrankLength - api.CounterweightdM[Cw2botID]; 

            double D1 = Math.Round(Math.Round(a[4] * 2.54, 0) / 2.54, 1); 

            double D2 = Math.Round(Math.Round(a[5] * 2.54, 0) / 2.54, 1); 

            double D3 = Math.Round(Math.Round(a[6] * 2.54, 0) / 2.54, 1); 

            double D4 = Math.Round(Math.Round(a[7] * 2.54, 0) / 2.54, 1); 

 

            if (D1 > M1) 

            { 

                D1 = M1; 

            } 

 

            if (D2 > M2) 

            { 

                D2 = M2; 

            } 

 

            if (D3 > M3) 

            { 

                D3 = M3; 

            } 

 

            if (D4 > M4) 

            { 

                D4 = M4; 

            } 

 

            double Y1 = api.CounterweightY[Cw1topID]; 

            double Y2 = api.CounterweightY[Cw1botID]; 

            double Y3 = api.CounterweightY[Cw2topID]; 

            double Y4 = api.CounterweightY[Cw2botID]; 

            double H1 = Math.Sqrt((Y1 + CrankHalfwidth) * (Y1 + CrankHalfwidth) + (M1 - D1) * (M1 - D1)); 

            double H2 = Math.Sqrt((Y2 + CrankHalfwidth) * (Y2 + CrankHalfwidth) + (M2 - D2) * (M2 - D2)); 

            double H3 = Math.Sqrt((Y3 + CrankHalfwidth) * (Y3 + CrankHalfwidth) + (M3 - D3) * (M3 - D3)); 

            double H4 = Math.Sqrt((Y4 + CrankHalfwidth) * (Y4 + CrankHalfwidth) + (M4 - D4) * (M4 - D4)); 

 

            int AuxCw1topID = Convert.ToInt16(Math.Round(a[8], 0)); 

            int AuxCw1botID = Convert.ToInt16(Math.Round(a[9], 0)); 

            int AuxCw2topID = Convert.ToInt16(Math.Round(a[10], 0)); 

            int AuxCw2botID = Convert.ToInt16(Math.Round(a[11], 0)); 

 

            double Icg1 = api.CounterweightMoment[Cw1topID] + AuxCw1topID * 

api.AuxCounterweightMoment[Cw1topID]; 

            double Icg2 = api.CounterweightMoment[Cw1botID] + AuxCw1botID * 

api.AuxCounterweightMoment[Cw1botID]; 

            double Icg3 = api.CounterweightMoment[Cw2topID] + AuxCw2topID * 

api.AuxCounterweightMoment[Cw2topID]; 

            double Icg4 = api.CounterweightMoment[Cw2botID] + AuxCw2botID * 

api.AuxCounterweightMoment[Cw2botID]; 

 



 

114 
 

            double mcw1 = api.CounterweightMass[Cw1topID] + AuxCw1topID * 

api.AuxCounterweightMass[Cw1topID]; 

            double mcw2 = api.CounterweightMass[Cw1botID] + AuxCw1botID * 

api.AuxCounterweightMass[Cw1botID]; 

            double mcw3 = api.CounterweightMass[Cw2topID] + AuxCw2topID * 

api.AuxCounterweightMass[Cw2topID]; 

            double mcw4 = api.CounterweightMass[Cw2botID] + AuxCw2botID * 

api.AuxCounterweightMass[Cw2botID]; 

 

            double Icw1 = Icg1 + mcw1 * (H1 / 12) * (H1 / 12); 

            double Icw2 = Icg2 + mcw2 * (H2 / 12) * (H2 / 12); 

            double Icw3 = Icg3 + mcw3 * (H3 / 12) * (H3 / 12); 

            double Icw4 = Icg4 + mcw4 * (H4 / 12) * (H4 / 12); 

 

            double Icw = Icw1 + Icw2 + Icw3 + Icw4; 

 

            double Is = Icw + MassMomentCranks + MassMomentGearbox; 

 

            double Tcbmax = CrankTorque + mcw1 * (M1 - D1) + mcw2 * (M2 - D2) + mcw3 * (M3 - D3) + mcw4 

* (M4 - D4); 

 

            double Sumx = (CrankMass * 2 * CrankLength / 2 + mcw1 * (M1 - D1) + mcw2 * (M2 - D2) + mcw3 * 

(M3 - D3) + mcw4 * (M4 - D4)) / (CrankMass * 2 + mcw1 + mcw2 + mcw3 + mcw4); 

            double Sumy = (mcw1 * (Y1 + CrankHalfwidth) - mcw2 * (Y2 + CrankHalfwidth) + mcw3 * (Y3 + 

CrankHalfwidth) - mcw4 * (Y4 + CrankHalfwidth)) / (CrankMass * 2 + mcw1 + mcw2 + mcw3 + mcw4); 

            double Taumod = Math.Round(Math.Atan(Sumy / Sumx) * 180 / Math.PI, 2); 

 

            return Taumod; 

 

        } 

 

public double CLFCalculation(double[] a) 

        { 

            int Cw1topID = Convert.ToInt16(Math.Round(a[0], 0)); 

            int Cw1botID = Convert.ToInt16(Math.Round(a[1], 0)); 

            int Cw2topID = Convert.ToInt16(Math.Round(a[2], 0)); 

            int Cw2botID = Convert.ToInt16(Math.Round(a[3], 0)); 

            double M1 = CrankLength - api.CounterweightdM[Cw1topID]; 

            double M2 = CrankLength - api.CounterweightdM[Cw1botID]; 

            double M3 = CrankLength - api.CounterweightdM[Cw2topID]; 

            double M4 = CrankLength - api.CounterweightdM[Cw2botID]; 

            double D1 = Math.Round(Math.Round(a[4] * 2.54, 0) / 2.54, 1); 

            double D2 = Math.Round(Math.Round(a[5] * 2.54, 0) / 2.54, 1); 

            double D3 = Math.Round(Math.Round(a[6] * 2.54, 0) / 2.54, 1); 

            double D4 = Math.Round(Math.Round(a[7] * 2.54, 0) / 2.54, 1); 

 

            if (D1 > M1) 

            { 

                D1 = M1; 

            } 
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            if (D2 > M2) 

            { 

                D2 = M2; 

            } 

 

            if (D3 > M3) 

            { 

                D3 = M3; 

            } 

 

            if (D4 > M4) 

            { 

                D4 = M4; 

            } 

 

            double Y1 = api.CounterweightY[Cw1topID]; 

            double Y2 = api.CounterweightY[Cw1botID]; 

            double Y3 = api.CounterweightY[Cw2topID]; 

            double Y4 = api.CounterweightY[Cw2botID]; 

            double H1 = Math.Sqrt((Y1 + CrankHalfwidth) * (Y1 + CrankHalfwidth) + (M1 - D1) * (M1 - D1)); 

            double H2 = Math.Sqrt((Y2 + CrankHalfwidth) * (Y2 + CrankHalfwidth) + (M2 - D2) * (M2 - D2)); 

            double H3 = Math.Sqrt((Y3 + CrankHalfwidth) * (Y3 + CrankHalfwidth) + (M3 - D3) * (M3 - D3)); 

            double H4 = Math.Sqrt((Y4 + CrankHalfwidth) * (Y4 + CrankHalfwidth) + (M4 - D4) * (M4 - D4)); 

 

            int AuxCw1topID = Convert.ToInt16(Math.Round(a[8], 0)); 

            int AuxCw1botID = Convert.ToInt16(Math.Round(a[9], 0)); 

            int AuxCw2topID = Convert.ToInt16(Math.Round(a[10], 0)); 

            int AuxCw2botID = Convert.ToInt16(Math.Round(a[11], 0)); 

 

            double Icg1 = api.CounterweightMoment[Cw1topID] + AuxCw1topID * 

api.AuxCounterweightMoment[Cw1topID]; 

            double Icg2 = api.CounterweightMoment[Cw1botID] + AuxCw1botID * 

api.AuxCounterweightMoment[Cw1botID]; 

            double Icg3 = api.CounterweightMoment[Cw2topID] + AuxCw2topID * 

api.AuxCounterweightMoment[Cw2topID]; 

            double Icg4 = api.CounterweightMoment[Cw2botID] + AuxCw2botID * 

api.AuxCounterweightMoment[Cw2botID]; 

 

            double mcw1 = api.CounterweightMass[Cw1topID] + AuxCw1topID * 

api.AuxCounterweightMass[Cw1topID]; 

            double mcw2 = api.CounterweightMass[Cw1botID] + AuxCw1botID * 

api.AuxCounterweightMass[Cw1botID]; 

            double mcw3 = api.CounterweightMass[Cw2topID] + AuxCw2topID * 

api.AuxCounterweightMass[Cw2topID]; 

            double mcw4 = api.CounterweightMass[Cw2botID] + AuxCw2botID * 

api.AuxCounterweightMass[Cw2botID]; 

 

            double Icw1 = Icg1 + mcw1 * (H1 / 12) * (H1 / 12); 

            double Icw2 = Icg2 + mcw2 * (H2 / 12) * (H2 / 12); 
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            double Icw3 = Icg3 + mcw3 * (H3 / 12) * (H3 / 12); 

            double Icw4 = Icg4 + mcw4 * (H4 / 12) * (H4 / 12); 

 

            double Icw = Icw1 + Icw2 + Icw3 + Icw4; 

 

            double Is = Icw + MassMomentCranks + MassMomentGearbox; 

 

            double Tcbmax = CrankTorque + mcw1 * (M1 - D1) + mcw2 * (M2 - D2) + mcw3 * (M3 - D3) + mcw4 

* (M4 - D4); 

 

            double Sumx = (CrankMass * 2 * CrankLength / 2 + mcw1 * (M1 - D1) + mcw2 * (M2 - D2) + mcw3 * 

(M3 - D3) + mcw4 * (M4 - D4)) / (CrankMass * 2 + mcw1 + mcw2 + mcw3 + mcw4); 

            double Sumy = (mcw1 * (Y1 + CrankHalfwidth) - mcw2 * (Y2 + CrankHalfwidth) + mcw3 * (Y3 + 

CrankHalfwidth) - mcw4 * (Y4 + CrankHalfwidth)) / (CrankMass * 2 + mcw1 + mcw2 + mcw3 + mcw4); 

            double Taumod = Math.Round(Math.Atan(Sumy / Sumx) * 180 / Math.PI, 2); 

 

 

 

            calc.RotaryInertialTorqueDummy.Clear(); 

            calc.CounterBalanceTorqueDummy.Clear(); 

            calc.NetGearboxTorqueDummy.Clear(); 

 

            for (int j = 0; j < twm.PolishedRodPosition.Count; j++) 

            { 

                calc.CounterBalanceTorqueDummy.Add(Math.Round(-Math.Sin((Taumod + PhaseAngle + 

calc.CrankAngle[j]) / 180 * Math.PI) * Tcbmax / 1000, 3)); 

            } 

 

            for (int j = 0; j < twm.PolishedRodPosition.Count; j++) 

            { 

                calc.RotaryInertialTorqueDummy.Add(Math.Round(12 / 32.2 * Is * 

calc.CrankAngularAcceleration5Point[j] / 1000, 3)); 

            } 

 

 

 

            for (int j = 0; j < twm.PolishedRodPosition.Count; j++) 

            { 

                calc.NetGearboxTorqueDummy.Add(Math.Round(calc.RodTorque[j] + 

calc.ArticulatingInertialTorqueSvinos5p[j] + calc.RotaryInertialTorqueDummy[j] + 

calc.CounterBalanceTorqueDummy[j], 3)); 

            } 

 

 

 

            double max = 0; 

 

            double Squaresum = 0; 

            double Sum = 0; 

            for (int i = 0; i < twm.PolishedRodPosition.Count - 1; i++) 
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            { 

                Squaresum += (Math.Pow(calc.NetGearboxTorqueDummy[i], 2) + 

Math.Pow(calc.NetGearboxTorqueDummy[i + 1], 2)) / 2 * twm.Time[1]; 

                Sum += (calc.NetGearboxTorqueDummy[i] + calc.NetGearboxTorqueDummy[i]) / 2 * 

twm.Time[1]; 

            } 

 

            max = Math.Round(Math.Sqrt(Squaresum / twm.Time[twm.Time.Count - 1]) / (Sum / 

twm.Time[twm.Time.Count - 1]), 4); 

 

 

 

            return max; 

        } 

 

 

        double UpdateSwarmPosition(double Pos, double Speed, double upperlimit, double lowerlimit) 

        { 

            double OutPos = Pos + Speed; 

            OutPos = Math.Max(Math.Min(OutPos, upperlimit), lowerlimit); 

            return OutPos; 

        } 

 

        double UpdateSwarmSpeed(double Speed) 

        { 

            double OutPos = Math.Max(Math.Min(Speed, ub_SpeedXi), lb_SpeedXi); 

            return OutPos; 

        } 

 

public struct Particle 

        { 

            public double[] Position; 

            public double[] Speed; 

            public double FitnessValue; 

            public double[] BestPosition; 

            public string[] BestPositionText; 

            public double BestFitnessValue; 

            public double Tau; 

            public double CLF; 

        }  
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14.3 Appendix C Results of the Sensitivity Analysis 
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