
University of Miskolc

Faculty of Earth Science and Engineering

Mikoviny Sámuel Doctoral School of Earth Sciences

Head of the Doctoral School: Prof. Dr. Péter Szűcs, PhD, Doctor of Science

TORQUE OPTIMIZATION OF

SUCKER-ROD PUMPING UNITS
PhD Thesis

Department Defense Version

by

László Kis

Petroleum and natural gas engineer

Fluid production and transporting research section

Head of the section: Prof. Dr. László Tihanyi, Professor Emeritus

Integrated petroleum and natural gas production systems topic

Head of the topic: Prof. Dr. Gábor Takács, Professor Emeritus

Advisor

Prof. Dr. Gábor Takács, Professor Emeritus

2020

i

Table of Contents

1 ACKNOWLEDGEMENTS .. III

2 ADVISOR’S FOREWORD .. IV

3 INTRODUCTION .. 1

4 OVERVIEW OF SUCKER-ROD PUMPING .. 3

4.1 RELEVANCE OF SUCKER-ROD PUMPING .. 3
4.2 OPERATION OF SUCKER-ROD PUMPS .. 4

4.2.1 GEARBOXES... 5

4.3 PUMPING UNIT GEOMETRIES ... 7

4.3.1 CONVENTIONAL PUMPING UNIT ... 7
4.3.2 AIR BALANCED PUMPING UNIT .. 8
4.3.3 MARK II PUMPING UNIT... 9
4.3.4 REVERSE MARK PUMPING UNIT .. 10

5 DETERMINATION OF THE NET GEARBOX TORQUE FROM DYNAMOMETER
SURVEYS ... 11

5.1 THE DYNAMOMETER SURVEY .. 12

5.1.1 THE PROCEDURE OF THE MEASUREMENT ... 13

5.2 INVESTIGATION OF THE TORQUE LOADING OF THE GEARBOX .. 15

5.2.1 FLOWCHART OF THE TORQUE CALCULATION PROCEDURE ... 16
5.2.2 ROD TORQUE ... 17

5.2.2.1 Torque Factor ... 18

5.2.3 COUNTERBALANCE TORQUE ... 20

5.2.3.1 Crank Balanced Pumping Units .. 20
5.2.3.2 Using Identical Counterweights on the Crank Arms ... 22
5.2.3.3 Using Different Counterweights on the Crank Arms ... 24

5.2.4 INERTIAL TORQUES .. 28

5.2.4.1 Articulating Inertial Torque ... 28
5.2.4.2 Rotary Inertial Torque .. 30

5.2.5 NET GEARBOX TORQUE ... 33

5.3 DETERMINATION OF THE CRANK ANGLE VS TIME .. 34

5.3.1 NECESSITY OF A NUMERICAL METHOD .. 35
5.3.2 SUCCESSIVE APPROXIMATION NUMERICAL METHOD .. 35

5.3.2.1 Subroutine 1 of the Successive Approximation Method.. 39
5.3.2.2 Subroutine 2 of the Successive Approximation Method.. 41
5.3.2.3 Subroutine 3 of the Successive Approximation Method.. 41
5.3.2.4 Subroutine 4 of the Successive Approximation Method.. 43

5.4 CALCULATION OF THE CRANK’S ANGULAR ACCELERATION ... 45

5.4.1 IMPORTANCE OF USING A SIMPLE NUMERICAL METHOD ... 46
5.4.2 USING FOURIER SERIES TO DESCRIBE PERIODIC BEHAVIOR BASED ON MEASURED DATA 46
5.4.3 DETERMINATION OF THE CRANK ANGULAR VELOCITY USING FOURIER SERIES 50

5.4.3.1 Using Fourier Series on the Calculated Crank Angle Array .. 50
5.4.3.2 Using Fourier Series on Numerically Calculated Crank Angular Velocity Arrays 51

5.5 DETERMINATION OF BEAM ANGULAR ACCELERATION .. 53

5.5.1 CALCULATION OF THE BEAM ACCELERATION BASED ON THE SVINOS METHOD 53
5.5.2 CALCULATION OF THE BEAM ACCELERATION BASED ON THE METHOD PROPOSED BY GIBBS 56
5.5.3 A SIMPLE NUMERICAL METHOD .. 57
5.5.4 COMPARISON OF THE CALCULATION METHODS.. 58

ii

6 ACHIEVING OPTIMAL COUNTERBALANCING ... 60

6.1 THEORETICAL BACKGROUND OF TORQUE OPTIMIZATION .. 60

6.1.1 OPTIMIZATION OF THE MAXIMUM NET GEARBOX TORQUE ... 60
6.1.2 OPTIMIZATION OF THE CYCLIC LOAD FACTOR .. 61
6.1.3 INTRODUCTION OF THE MODIFIED CYCLIC LOAD FACTOR .. 62

6.2 CHANGE OF CRANK ACCELERATION DUE TO DIFFERENT COUNTERBALANCING........................... 62
6.3 PARTICLE SWARM OPTIMIZATION TECHNIQUE ... 64

6.3.1 GENERAL PROPERTIES OF THE PSO METHOD .. 64
6.3.2 USING THE PSO ALGORITHM IN THE NET GEARBOX TORQUE OPTIMIZATION OF SUCKER-ROD

PUMPING UNITS .. 66
6.3.3 INVESTIGATING A PARTICLE IN THE PSO ALGORITHM OF THE EXAMPLE PROBLEM 68

6.4 SENSITIVITY ANALYSIS ... 71
6.5 FINDING THE OPTIMUM COUNTERWEIGHT CONFIGURATION ... 72

6.5.1 OPTIMIZATION OF THE PEAK NET GEARBOX TORQUE .. 72

6.5.1.1 Using Identical Counterweights ... 72
6.5.1.2 Using Different Counterweights ... 73

6.5.2 OPTIMIZATION OF THE MODIFIED CYCLIC LOAD FACTOR ... 74

6.6 COMPARISON WITH TWM OPTIMIZATION ... 75
6.7 CONCLUSIONS OF THE OPTIMIZATION PROCEDURES ... 76
6.8 FURTHER RESEARCH POSSIBILITIES... 77

7 NEW SCIENTIFIC RESULTS .. 78

7.1 THESIS 1 .. 78
7.2 THESIS 2 .. 78
7.3 THESIS 3 .. 78
7.4 THESIS 4 .. 78
7.5 THESIS 5 .. 79
7.6 THESIS 6 .. 79

8 SUMMARY ... 80

9 ÖSSZEFOGLALÁS .. 82

10 BIBLIOGRAPHY ... 84

11 RELEVANT PUBLICATIONS BY DATE .. 87

12 LIST OF FIGURES .. 88

13 LIST OF TABLES .. 90

14 APPENDICES .. 91

14.1 APPENDIX A THE DEVELOPED PROGRAM AND PARTS OF ITS INPUT AND OUTPUT FILES 91
14.2 APPENDIX B PARTS OF THE SOURCE CODE OF THE CREATED PROGRAM 96
14.3 APPENDIX C RESULTS OF THE SENSITIVITY ANALYSIS.. 118

iii

1 Acknowledgements

iv

2 Advisor’s Foreword

The great majority of artificial lifted oil wells are placed on sucker-rod pumping

all over the world. Due to the great importance of sucker-rod pumping the reduction

of production costs is a major drive in operating those installations. Because the most

significant element of production costs is related to the prime mover’s energy

requirement the improvement of power efficiency is a prime task of field personnel.

The proper choice of the pumping unit’s counterbalancing, the topic of this

candidate’s PhD Thesis, can substantially improve the power conditions of pumping

and thus can increase the profits of oil production.

The candidate’s choice of the topic of his PhD Thesis is especially appropriate

today because of the great number of rod pumped wells worldwide as well as in

Hungary. The results of the author’s interesting and important research will surely

help to increase pumping efficiency and, at the same time, increase the life of sucker-

rod pumping installations.

The Thesis is properly constructed and clearly proves the candidate’s skills in

scientific research and publication. His treatment of the gearbox’s torque loading

under different kinds of counterbalancing conditions is correct. One of the best parts

of the Thesis deals with unusual counterbalance arrangements that are very seldom

used in the industry. As the author proves, the use of asymmetric counterweight

arrangements, as compared to the traditional symmetric ones, can lead to definite

operational advantages. The author, for the first time in the literature, introduces the

use of Particle Swarm Optimization (PSO) method in the calculation of optimum

counterbalancing conditions. The novel methods and calculation models developed

by the author can be considered as new scientific achievements in the discipline of

sucker-rod pumping of oil wells.

Budapest, October 13, 2020.

Prof. Dr. Gábor Takács

Petroleum Engineering Department

University of Miskolc

1

3 Introduction

The initial objective of the presented thesis was the investigation of the effect of

using asymmetrical counterweight configuration in the counterbalancing of crank

balanced sucker-rod pumping units. During the research it became clear, that this

particular case of counterbalancing was not investigated in detail prior to this work.

Since the number of sucker-rod pumping installations operating worldwide is

approximately 750,000, it is important to ensure their optimal operation from both

engineering and economical points of view. (SPE) The profitability of these oil producing

units is increased by achieving the lowest power requirement possible for the desired

liquid flow rate, which depends on mainly the torque loading of the unit’s gearbox.

Providing a sufficiently long lifetime for the installation by protecting the gearbox – its

most expensive part – from overloading also improves the economic value of the sucker-

rod pumping unit operation.

Before the optimization of the net gearbox torque can be carried out, the

knowledge of all distinct torque components acting on the gearbox throughout the

pumping cycle is necessary to accurately describe the actual torque conditions of the

investigated pumping unit. The improved torque analysis presented in this work is

based on the data provided by an electronic dynamometer, the routinely used

measurement tool for sucker-rod pumping units. This measurement technique is the

most widespread supervision type that has the required accuracy for a complete torque

analysis and can be carried out with little effort. The refined procedure of the

dynamometer survey evaluation is presented for four pumping unit geometries –

Conventional, Air balanced, Mark II and Reverse Mark – but it can be modified to handle

any special geometry type with little effort. An example problem is introduced, and the

results of its evaluation are presented for every major calculation step to help the easier

interpretation of the proposed calculation method.

After studying the API Spec 11E (API, 2008) – the recommendation by the

American Petroleum Institute – it became apparent, that the evaluation method used in

the industry lacks the capability to handle the proper description of those sucker-rod

pumping units that have varying crank angular velocities throughout their pumping

cycle. This condition occurs when either the pumping unit is operated in an unbalanced

condition, or when a high slip, or ultra-high slip prime mover is used to drive the sucker-

rod pumping unit. Therefore, the improvement of the interpretation of dynamometer

surveys was the first crucial step after outlining the research goals.

Beside the literature research, the most widely used software in the petroleum

industry for the evaluation of dynamometer surveys – the Total Well Management by

Echometer – was inspected and its results were analyzed in detail. After identifying

shortcomings in the results of the TWM software and in the relevant literature, the

objectives of the research were expanded with the identification of the systematic

errors. A comprehensive calculation procedure is proposed that determines the

behavior of the sucker-rod pumping unit with higher accuracy than any already existing

2

method; the findings of relevant publications in the topic are incorporated and new

solutions are presented to address previously unresolved calculation steps.

Finding the crank angle values at the measured times with the highest accuracy

possible is essential for the proper torque analysis because all torque components

depend on the crank angle versus time function, which is not included in the

dynamometer survey. The proposed method gives more accurate crank angle values

than the programs currently used in the industry. The determination of the angular

acceleration pattern of the crank arm and the walking beam are necessary for the

calculation of the inertial torques acting on the gearbox. Several methods are presented

and compared, providing the angular acceleration functions in time with the highest

precision possible using the calculated crank angle values. After the evaluation of the

kinematic behavior of the sucker-rod pumping unit, all torque components acting on the

gearbox in time are found. The knowledge of these torque functions is the basis of any

optimization procedure.

The second main objective of the research was to develop a calculation method to

optimize the mechanical net gearbox torque and to determine the corresponding

counterweight configuration for the investigated sucker-rod pumping unit. For this

purpose, a particle swarm optimization (PSO) algorithm was used, due to the size of the

solution space. By properly considering the effect of the asymmetrically placed

counterweights, the number of independent variables increases from three – in the case

of symmetrical counterweight configuration – to twelve; which makes the direct

determination of the optimal arrangement of the counterweights impossible. The

asymmetrically placed counterweights not only change the counterbalance torque by

introducing a secondary phase angle but will alter both the rotary inertial torques as

well. Hence the optimization procedure is more complex, but the resulting solution

provides better torque loading of the gearbox for a given operating condition. Using this

artificial intelligence technique, the resulting mechanical net gearbox torque function is

superior to the output of the investigated TWM software. A novel optimization strategy

was developed to maximize the cost savings of the operation of the sucker-rod pumping

units while preventing the overloading of the gearbox. A computer program has been

developed in C# to carry out the presented calculation steps.

3

4 Overview of Sucker-rod Pumping

Oil wells usually flow naturally in the early stages of their lives. At this point the

pressure at the well bottom is enough to lift the reservoir liquid to the surface

overcoming the pressure losses in the well. However, if the bottomhole pressure of a

given oil well decreases due to the liquid and gas production, at some point an artificial

production method has to be implemented to keep the wellhead pressure at the minimal

level, so that the reservoir liquid is lifted to the surface. The artificial lifting method

investigated in this thesis is sucker-rod pumping.

4.1 Relevance of Sucker-rod Pumping

The number of sucker-rod pumping installations can only be estimated, their exact

number is unknown. According to recent estimates, there are approximately 2 million

oil wells worldwide of which more than 50% are operated with some kind of artificial

lift (Lea, 2007). The share of different artificial production methods is shown in Figure 1

along with their respective production contribution based on the ALRDC (Artificial Lift

Research and Development Council) estimates. (Takács, 2015)

Figure 1 The estimated number and production of different artificial lifting installations

(Takács, 2015), own edit

The current share of sucker-rod pumping is 21% globally, their production

contribution is 7%, therefore it is crucial to maintain optimum operating conditions for

such installations. The basic objective of production engineers is to safely operate wells

using the least amount of operating cost to meet the required liquid regime.

4

Power costs in sucker-rod pumping operations are related to the surface power

required to drive the pumping system. This power, in turn, depends mainly on the

mechanical net torque required at the gearbox of the pumping unit. Thus, proper

calculation of gearbox torque during the pumping cycle is essential to accurately

determine the power requirements and operating costs of sucker-rod pumping. (Takács,

2003)

4.2 Operation of Sucker-Rod Pumps

Sucker-rod pumping was the first artificial lifting method used in the petroleum

industry. In the early years, cable tool drilling was the dominant drilling method, in

which the drilling bit was dropped and retrieved repeatedly by a connected cable. After

the flowing state of the well stopped, a bottomhole plunger pump was placed in the

bottom of the well and was operated by the walking beam. This was the ancestor of the

later widely used sucker-rod pumping systems. The materials used changed from wood

to steel, but the operational principles stayed the same ever since.

The schematic diagram of a typical sucker-rod pumping unit is shown in Figure 2.

The objective of the surface equipment’s design is to transform the rotational motion of

the prime mover into an alternating motion of the polished rod at the wellhead. This

reciprocating motion is used to operate a subsurface positive displacement pump

situated below the static liquid level. The connection between the surface and the

subsurface equipment is the polished rod with precisely manufactured surface that

ensures the proper seal at the stuffing box while moving in it. To protect the polished

rod from bending, it is only allowed to move vertically, this is ensured by the proper

design of the horsehead.

The connection between the polished rod and the downhole pump is provided by

the rod string. The rod string is tapered, having decreasing sizes towards the pump. The

optimal rod shape is a downward pointing cone, this shape is approximated with the

properly designed rod string to withstand the most common rod failure type, the fatigue

break. The pump consists of a stationary cylinder – the pump barrel – with a standing

valve, a travelling valve, and the plunger. The operation of the unit is powered by the

prime mover, which is usually an electric motor. The rotational speed of the motor is

decreased to operate the sucker-rod pumping system at a reasonable pumping speed.

The gear reducer – or gearbox – is the unit responsible for the decrease of the rotational

speed while simultaneously increasing the torque. During upstroke the prime mover

lifts the rod string along with the liquid column above the pump. While lifting the fluid

the travelling valve is closed and the standing valve is open. In downstroke however, the

rod string falls in the liquid with open travelling valve and closed standing valve. The

power requirement changes significantly during the pumping cycle. To achieve an

improved power draw from the motor, counterweights, or other applicable

counterbalancing methods are used. In the case of crank balanced units, the aim of the

counterweights is to brake the rod string in the downstroke, when the rod string is

falling in the liquid, and to help lift in the rod string and the produced liquid in the

5

upstroke. In downstroke energy is stored in the counterweights by lifting them and the

motor is prevented from functioning like a generator. The stored energy is released

whilst upstroke, reducing the power requirement needed to lift the rod string.

Figure 2 The sucker-rod pumping system (Danel, 2015)

4.2.1 Gearboxes

Since the prime mover – usually an electric motor – has extremely high rotational

speed to turn the crank arm of a sucker-rod pumping unit directly, a gear reducer is

used to slow down the speed to a desired value and to increase the output torque

6

simultaneously. The gear reducers are the most expensive parts of the sucker-rod

pumping units with around 50% Capex share. (Takács, 2015) API Spec. 11E (API, 2008)

contains the relevant properties of the standardized gearboxes used in the petroleum

industry. Most gearboxes include double-, or triple-reduction gearings, but chained

reducers are used as well. The most widely used type is the double-reduction unit is

presented in Figure 3, where the three shafts and two corresponding gear-pairs are

shown. The prime mover drives the gearbox through a V-belt sheave, after the speed

reduction the crank arm of the pumping unit is driven by the slow-speed shaft. (Takács,

2003) The most common tooth form is the herringbone due to their superior torque

reversal tolerance, which usually happens in every pumping cycle. The gear reduction of

gearboxes is around 30 to 1. The lubrication has key importance in protecting the

moving parts of the gearbox, without a lubricant of the proper viscosity the lifetime of

the gearbox significantly drops.

Figure 3 A typical double-reduction gearbox used in

sucker-rod pumping (Pidenergy, 2016)

The most important parameter determining the lifetime of a gear reducer is the

relationship between the torque rating of the unit and the torque loading during its

operation. Figure 4 illustrates the effect of overloading, showing that just a 10%

increased torsional load compared to the rating can reduce the lifetime of the gearbox

7

by half, a 20% overloading can result in only one-fifth of the lifetime specified by the

manufacturer.

Figure 4 The projected lifetime change of a gearbox due to overloading

(Clegg, 2007), own edit

A common problem due to overloading is pitting – a type of surface fatigue – when

the stress on the surface of the gear tooth exceeds the limit of the material for periodic

loading. These surface cavities can lead to gear tooth failures for overloaded gear

reducers, according to the ANSI/AGMA 110.04, Nomenclature of Gear Tooth Failure

Modes. (BakerHughes, 2018) Therefore, achieving optimal torque loading improves the

lifetime of the most expensive part of the sucker-rod pumping installation. This can be

achieved by using the appropriate counterbalancing as discussed in later chapters.

4.3 Pumping Unit Geometries

Different pumping unit geometries were developed to increase the efficiency of the

petroleum production. In this chapter the four main geometries – Conventional, Air-

Balanced, Mark II and Reverse Mark – are introduced in detail. Knowing the difference

between the pumping unit geometries is essential to properly evaluate the

dynamometer survey taken on one of these installations. For other geometry types the

presented calculation method can be easily adapted. The dashed line – defining 𝜃𝑝 – in

Figure 5 through Figure 8 is parallel with the link 𝐾. All figures representing the

different geometries have the same scale (1:800) and are based on real API designations

with 168 in nominal stroke length.

4.3.1 Conventional Pumping Unit

The conventional pumping unit – the oldest and most common sucker-rod

pumping unit geometry – is based on the beam pumping unit first built in 1926 with the

invention of crank counterbalance, which works with the same principle as the cable-

tool drilling rig. The unit’s popularity is based on its simple operation, low maintenance

requirements and flexibility to cover a wide range of field applications. (Production

Technology 1, 2018) The schematic layout is shown in Figure 5. The walking beam

works like a double-arm lever that is driven at its rear end and drives the polished rod at

its front. To counterbalance the unit, counterweights are placed on the crank arm to

8

achieve a smoother torque loading of the gearbox. The unit can operate in both

clockwise and counterclockwise direction of rotation.

Figure 5 The schematic layout of the conventional sucker-rod pumping unit

4.3.2 Air Balanced Pumping Unit

The air balanced pumping units were developed in the 1920s. This configuration is

similar to the Mark II in their linkage connections, but the crank arm is significantly

smaller for the air balanced unit achieving the same stroke length, as seen in Figure 6.

Figure 6 The schematic layout of Air balanced sucker rod pumping unit

9

The main difference between this and the other geometries is the counterbalancing

method. The other investigated geometries use counterweights to even out the torque

load on the gearbox, in this case a compressed-air cylinder is used to achieve the same.

These units are way lighter due to the lack of heavy counterweights and are about 35%

shorter than their conventional counterparts. (Takács, 2015) This sucker-rod pumping

unit can be driven in both directions.

4.3.3 Mark II Pumping Unit

The Mark II sucker-rod pumping unit was invented by J. P. Byrd, it was patented in

1958 (Takács, 2015). The main objective of its development was to decrease the torque

requirements, and consequently to decrease the power requirements of the operation

compared to the conventional beam pumping units. Contrary to the conventional

geometry, the walking beam works like a single-arm lever and it can only operate in the

counterclockwise direction, shown in Figure 7.

Figure 7 The schematic layout of Mark II sucker rod pumping unit

For the same pumping task, the Mark II unit will have a lower peak torque and a

more uniform net gearbox torque distribution compared to an equivalent conventional

pumping unit during the pumping cycle. (Production Technology 2, 2018) The rotary

10

counterweights are placed on separate counterbalance arms that are directed opposite

to the crank arm and are phased by 𝜏, which is usually between 19° and 28°.

4.3.4 Reverse Mark Pumping Unit

The Reverse Mark – initially under the name TorqMaster – unit was developed in

the 1980s by R. Gault, who analyzed the properties of already existing geometries, to

combine all the good properties of the already existing geometries and to eliminate their

disadvantages. (Takács, 2015) It was achieved by analyzing the previous geometries by

computer and the results were incorporated in the design of the Reverse Mark unit. The

schematic layout is shown in Figure 8.

At first, the Reverse Mark unit looks similar to the conventional geometry, the two

main differences are the increased horizontal distance of the gearbox from the saddle

bearing, and the phased counterweight placement on the crank arm. The maximum

counterbalance moment is lagging behind the driven crank with a phase angle usually

between 8-15°. By having a phase angle, the rotation of the unit is fixed in the clockwise

direction, as shown in Figure 8. These modifications reduce the torque loading on the

gearbox compared to the conventional unit while having the same operating conditions

otherwise.

Figure 8 The schematic layout of Reverse Mark sucker rod pumping unit

11

5 Determination of the Net Gearbox Torque from

Dynamometer Surveys

The complex interactions between the subsurface equipment, the produced liquid

and the surface equipment during production make it nearly impossible to evaluate the

operating condition of a sucker-rod pumping unit without measurement. The most

widely used measurement technique is carried out by using an electronic dynamometer.

The net mechanical gearbox torque can be determined by interpreting the dynamometer

survey. The detailed solution of an example problem is presented in the thesis to

illustrate the differences between the proposed evaluation method and the widely used

TWM software; the relevant input data is given in Table 1. The variables used are

consistent with the API Spec 11E (API, 2008).

Table 1 Input data for the example problem

Pumping unit designation C-640D-365-168

Manufacturer Lufkin

Geometry type Conventional

Maximum torque loading of the gearbox 640,000 in lb

Maximum polished rod load 36,500 lb

Nominal stroke length 168 in

Structural unbalance -1,500 lb

Crank type 94110CA

Gearbox mass moment of inertia 3,920 lbm ft2

Beam mass moment of inertia 1,047,183 lbm ft2

Rotation Clockwise

Counterweights
4pcs. ORO, placed 10 in

from long end of crank

Crank moment 470,810 in lb

Crank mass moment of inertia (2 cranks) 247,244 lbm ft2

Crank length 110 in

Crank half-width 11.5 in

Pumping speed 5.96 SPM

12

5.1 The Dynamometer Survey

Mechanical dynamometers were the first measurement equipment for sucker-rod

pumping units. The mechanical dynamometers can only register the surface

dynamometer card, which is a continuous plot of the polished rod load versus the

polished rod displacement, whereas the new electronic devices measure both the

polished rod load and polished rod position in time. Figure 9 is the dynamometer card

for the investigated pumping unit.

Figure 9 The dynamometer card of the example problem

The independent polished rod load and polished rod position functions in time are

essential in an in-depth investigation of the pumping unit. Adequately determining the

operating condition of a sucker-rod pumping unit can be carried out using a polished

rod electronic dynamometer, or a polished rod transducer. Figure 10 shows a

horseshoe type electronic dynamometer and a rod transducer. The frequency of the data

acquisition is usually greater than 20 Hz for modern electronic dynamometers; its value

is 30 Hz for the example problem. 302 data points were registered in total for the

investigated pumping cycle.

13

Figure 10 A modern electronic horseshoe dynamometer and a

polished rod transducer (Echometer, 2011)

5.1.1 The Procedure of the Measurement

The dynamometer measurement is the easiest and most routinely used in the

industry to obtain the required information for a complex torque analysis for sucker-rod

pumping units. By installing the dynamometer between the polished rod clamp and the

carrier bar it can record the load acting on the polished rod in time. During its normal

operation, there is no space between the polished rod clamp and the carrier bar, see

Figure 11.

The pumping unit must be stopped at the bottom of the stroke to begin the

installation process by attaching a temporary rod clamp on the polished rod above the

stuffing box. After restarting the pumping unit, a knock-off block is placed on the stuffing

box, in downstroke the motor is shut down, and the brakes are activated when the unit

reaches the bottom of the stroke. Due to this operation, the knock-off block will contact

the previously installed temporary clamp releasing the load from the carrier bar. If the

operation is carried out appropriately, there is enough space for the installation of the

dynamometer, as seen in Figure 11.

14

Figure 11 Placement of the dynamometer (Echometer, 2011), own edit

After restarting the unit and removing the knock-off, the loads in the polished rod

will act on the dynamometer, making the measurement of the polished rod load

possible. To measure the loads, the dynamometers usually use strain gauges. Figure 12

shows the measured rod load variation in time for the example case, the measured

polished rod positions are shown in Figure 13.

Figure 12 Measured rod loads for the example problem

15

For the position measurement usually data from a built-in accelerometer is used.

The polished rod position values are determined by integrating the measured

acceleration twice.

Figure 13 Measured polished rod positions for the example problem

At the start of the pumping the liquid level in the annulus will be at a higher

position than the dynamic liquid level corresponding to the given pumping rate. No

measurements must be done before the liquid level drops to its dynamic value. The time

required to achieve the equilibrium liquid level depends on the inflow parameters of the

well, the properties of the produced liquid, the configuration of the subsurface

equipment and the type and operation of the surface elements of the sucker-rod

pumping unit. The motion of the crank arm becomes periodic, when the operation of the

pumping unit has been stabilized, so that the position of the dynamic liquid level is

constant at the start of every upstroke.

The measurement with polished rod transducers is much simpler, it can be

clamped under the carrier bar on the polished rod, but the provided accuracy is not

sufficiently high for the complete torque analysis of the sucker-rod pumping unit.

5.2 Investigation of the Torque Loading of the Gearbox

There are two distinct cases in the calculation of gearbox torques based on the

angular acceleration pattern of the crankshaft. The API Spec 11E (API, 2008) provides a

calculation method for constant crankshaft velocities. But when the angular velocity of

the crank changes more than 15% during the pumping cycle, the API method can lead to

errors greater than 10%; this can result in operating decisions that overload the unit. As

16

previously shown in Figure 4, the overloading drastically decreases the lifetime of the

gearbox, therefore it is of paramount importance to determine the mechanical net

gearbox torque adequately.

Having a non-zero crank angular acceleration is usually a consequence of using

either a high-slip, or even an ultra-high-slip electric motor as the prime mover. In these

cases, the crank angular velocity is a function of the torsional loading of the gearbox; at

light loads the crank accelerates and achieves a higher speed, consequently at heavier

loads it decelerates and slows down. This circumstance will produce a new torque

component emerging in the calculation of the net gearbox torque calculations. In this

case there are four different torque components acting on the gearbox of a sucker-rod

pumping unit during its operating cycle. These torques are the rod torque, the

counterbalance torque, the rotary moment of inertia and the articulating moment of

inertia. The calculation of these torques requires the interpretation of a dynamometer

survey. As a result of the analysis of the current operating condition, the net torque is

determined throughout the pumping cycle by summing up the calculated torque

components.

The basis of the torque analysis of sucker-rod pumping units is the knowledge of

the crank angle variation in time throughout the pumping cycle. In this chapter the

crank angles are assumed to be known, and the torque components acting on the slow-

speed shaft are determined accordingly. The in-depth calculation of the crank angle

function versus time is detailed in Chapter 5.3, the determination of the angular

acceleration pattern of the crank arm and the walking beam are introduced in Chapter

5.4 and Chapter 5.5, respectively.

Unlike in previous works, the variation of every angle calculated from the

measured polished rod positions are presented in time, not as a function of the crank

angle. This is also true for the angular velocities and angular accelerations computed by

the newly proposed methods. To determine the aforementioned angles, the knowledge

of the crank angle is required, which is not necessarily changing linearly in time, as

assumed in prior works.

5.2.1 Flowchart of the Torque Calculation Procedure

As previously discussed, four different torque components must be determined to

find the mechanical net gearbox torque. All torque components can be calculated by

interpreting the dynamometer survey. The simplified flowchart representing the

calculation of the torque components from the dynamometer survey is shown in Figure

14. The in-depth determination of these torque functions in time is shown in Chapter

5.2.2 through Chapter 5.2.4.

17

Dynamometer Survey

Position vs. Time Load vs. Time

Crank Angle vs. Time

Successive
Approximation

Method

Crank acceleration vs.
Time

Fourier
Series

Method

Rod Torque vs. Time

Counterbalance Torque vs. Time

Beam Acceleration vs.
Time

Svinos
Method

Articulating Inertial Torque vs. Time

Torque Factor vs. Time

Rotary Intertial Torque vs. Time

Gibbs,
Numerical
Methods

Figure 14 Simplified flowchart of the determination of every torque component

5.2.2 Rod Torque

The rod torque is required to overcome the sum of the weight of the rod string and

the produced liquid, the frictional losses, and the dynamic losses during production. The

formula which determines the rod torque is given in Equation 1. (Takács, 2015)

 𝑇𝑅𝑜𝑑(𝑡) = 𝑇𝐹(𝑡) ∙ (𝐹(𝑡) − 𝑆𝑈) (1)

where:

𝑇𝑅𝑜𝑑(𝑡) Rod torque in time [in lb],

𝑇𝐹(𝑡) Torque factor in time [in],

𝐹(𝑡) Polished rod load in time [lb], and

𝑆𝑈 Structural unbalance [lb].

The structural unbalance is the force requirement to balance the walking beam

horizontally with disconnected pitmans from the cranks. A sucker-rod pumping unit can

be tail heavy – if a downward pointing force must be exerted on the horsehead side to

maintain the balance – or horsehead heavy in the opposite case. (Takács, 2003) The rod

torque calculated for the example problem is shown in Figure 15 with the results from

TWM.

18

Figure 15 Calculated rod torque for the example problem

The value of the structural unbalance is considered positive when it is pointing

downwards, therefore it depends on the rotation of the pumping unit. The structural

unbalance is given for every pumping unit by the manufacturer.

5.2.2.1 Torque Factor

For the calculation of the rod torque the knowledge of the torque factor – the

imaginary lever arm – throughout the pumping cycle is required, which is calculated

from the crank angles using the geometry type and the linkage lengths of the pumping

unit. In Equation 1 the polished rod loads are obtained directly from the dynamometer

survey; the structural unbalance is provided by the manufacturer. The objective is to

determine the torque factor as a function of time for the calculation of the rod torque,

which is not included in the dynamometer measurement. The torque factor at a given

time can be calculated using Equation 2. Both the torque factor and the auxiliary angles

used depend on the crank angle, which was the basis of the previous torque analysis

methods. If the crank angle variation in time is known, the change of these variables in

time can be considered. Figure 16 shows the calculated torque factor values for the

example problem.

𝑇𝐹 =

𝑅 ∙ 𝐴

𝐶

𝑠𝑖𝑛 (𝛼)

𝑠𝑖𝑛 (𝛽)
 (2)

where:

𝑇𝐹 Torque factor [in],

𝑅, 𝐴, 𝐶 Linkage dimensions [in], and

19

𝛼, 𝛽 Auxiliary angles defined in Table 2 [rad].

Figure 16 Torque factors calculated for the example problem

The angles on the right side of Equation 2 depend on the crank angle as seen in

Figure 5 through Figure 8; therefore, the crank angle has to be calculated first in order

to determine the torque factor at a given position of rods. Once the crank angle, 𝜃, is

found, the corresponding 𝛼 and 𝛽 angles are found using the equations in Table 2. (API,

2008) (Takács, 2015)

Table 2 Formulae used in the calculation of the torque factor

Conventional and Reverse Mark Mark II Air Balanced

𝜃2 = 2𝜋 − 𝜃 + 𝜙

𝛽 = 𝑐𝑜𝑠−1 (
𝐶2 + 𝑃2 − 𝑅2 − 𝐾2 + 2 ∙ 𝐾 ∙ 𝑅 ∙ cos (𝜃2)

2 ∙ 𝐶 ∙ 𝑃
)

𝐽 = √𝑅2 + 𝐾2 − 2 ∙ 𝐾 ∙ 𝑅 ∙ cos (𝜃2)

𝜌 = 𝑐𝑜𝑠−1 (
𝐽2 + 𝐾2 − 𝑅2

2 ∙ 𝐽 ∙ 𝐾
) ∙ 𝑏 𝜌 = 𝑠𝑖𝑛−1 (

𝑅

𝐽
∙ 𝑠𝑖𝑛 (𝜃2))

𝜒 = 𝑐𝑜𝑠−1 (
𝐽2 + 𝐶2 − 𝑃2

2 ∙ 𝐽 ∙ 𝐶
) 𝜒 = 𝑠𝑖𝑛−1 (

𝑃

𝐽
∙ 𝑠𝑖𝑛 (𝛽))

𝜓 = 𝜒 − 𝜌 𝜓 = 𝜒 + 𝜌

20

𝛼 = 𝛽 + 𝜓 − (𝜃 − 𝜙) 𝛼 = 𝜃 − 𝜙 − (𝛽 + 𝜓) 𝛼 = 𝛽 + 𝜓 + (𝜃 − 𝜙)

The parameter 𝑏 in Table 2 is defined by Equation 3. The calculated torque factors

are shown in Figure 16 along with the data from the Total Well Management software.

𝑏 = {

−1 𝑖𝑓 0 < 𝜃2 ≤ 𝜋

1 𝑖𝑓 𝜋 < 𝜃2 ≤ 2𝜋
 (3)

5.2.3 Counterbalance Torque

The load difference on the polished rod between the upstroke and the downstroke

necessitates the utilization of counterbalancing, to achieve a possibly smooth torque

loading during the pumping cycle. On crank balanced sucker-rod pumping units it is

achieved by installing counterweights on the crank arms. On the main counterweights

auxiliary weights can be placed. On beam balanced units the counterweights are placed

on the end of the walking beam. On air balanced units the counterbalancing is achieved

by installing a compressed air cylinder to the walking beam between the horsehead and

the saddle bearing. Since the beam balanced units are generally much smaller and

produce only a tiny fraction compared to a crank balanced one, the counterbalancing of

these units is not detailed. The detailed description of counterbalancing of air balanced

pumping units are omitted because it can be found in the literature in detail. (API, 2008)

5.2.3.1 Crank Balanced Pumping Units

The placement of the main counterweights on the crank arm is shown in Figure

17. The travel (𝑇), the maximum distance (𝑀), and the vertical component of the center

of gravity (𝑌𝐶𝑊) depend on the type of the counterweight used.

21

Figure 17 Counterweight placement on the crank arm (Takács, 2015), own edit

The list of applicable counterweights depends on the crank arm installed on the

pumping unit. Table 3 contains the compatible counterweights for the 94110CA crank

arm of the investigated C-640D-365-168 pumping unit. The counterweights’ masses and

mass moments of inertia about their center of gravity is included. Table 3 also includes

the compatible auxiliary counterweights – highlighted with gray color – with their

relevant properties. These parameters are usually given by the manufacturer.

Table 3 The relevant properties of the compatible counterweights

and auxiliary weights to crank 94110C (Lufkin, 1997)

In Table 3 the maximum distance of the specific counterweight’s center of gravity

from the long end of the crank is provided with the maximum travel distance of the

counterweight on the crank arm, the length 𝑇, see Figure 17. On the same crank the

smaller counterweights’ center of gravity can be placed further from the crankshaft, and

they have a longer travel distance as well. Using the same counterweight on smaller

cranks the maximum distance and the travel of the counterweight are shorter.

For cases when the mass moment of inertia is unknown for a specific

counterweight, I have developed Equation 4 based on the data in Table 3 to find an

Index CW. Type Mass [lb] ICG [lb ft2] Y [in] M [in] T [in]

7RO 315 114

7S 141 51

6RO 504 229

6S 190 83

5CRO 662 430

5CS 327 220

5ARO 913 707

5S 366 272

3CRO 1,327 1,384

3BS 572 562

2RO 1,708 2,458

2S 612 756

1RO 2,075 3,478

1S 638 1,222

OARO 2,700 5,268

OAS 836 1,505

ORO 3,397 8,017

OS 1,128 2,290

OORO 3,894 9,960

OOS 1,175 2,490

7

8

9

10

1

2

3

4

5

6

9.9 94.65 81.58

8.6 96.3 84.58

13.4 91.91 77.34

11.8 93.1 78.84

14.2 84.34 80.84

13.3 87.4 83.96

18.5 82.4 78.84

15.4 83.4 79.84

20 77.4 63.77

19 77.4 73.77

22

approximate value from its mass. To find the best parabolic function possible the least

squares method was used; the equation proposed has 98.07% accuracy based on the

input data listed in Table 3. Since only the counterweight masses are listed in

(BakerHughes, 2018), this formula can be used in this case to provide reasonably good

approximation.

 𝐼𝐶𝐺𝑎
= 4.052 ∙ 10−4 ∙ 𝑤2 + 0.9734 ∙ 𝑤 − 68.032 (4)

where:

𝐼𝐶𝐺𝑎
 Approximate counterweight mass moment of inertia about its

center of gravity [lbm ft2], and

𝑤 Mass of the counterweight [lbm].

5.2.3.2 Using Identical Counterweights on the Crank Arms

The counterbalance torque calculation is based on the calculated crank angle

variation in time. The counterbalance torque versus time function is described by

Equation 5, if the same main and auxiliary counterweights are used on the opposing

sides of the crank arms. The maximum counterbalance moment in Equation 5 can be

determined from the moment of the crank arms of the sucker-rod pumping unit and the

knowledge of the configuration of the applied counterweights on the cranks.

 𝑇𝐶𝐵(𝑡) = −𝑇𝐶𝐵𝑚𝑎𝑥
∙ 𝑠𝑖𝑛(𝜃(𝑡) + 𝜏) (5)

where:

𝑇𝐶𝐵(𝑡) Counterbalance torque in time [in lb],

𝑇𝐶𝐵𝑚𝑎𝑥
 Maximum counterbalance moment [in lb],

𝜃(𝑡) Crank angle variation in time [rad], and

𝜏 Phase angle [rad].

When two identical counterweights are used on a crank, the combined center of

gravity for the crank arm and the counterweights – the only purely rotating components

that create the counterbalance torque – is aligned on the symmetry line of the crank

arm. The value of the phase shift – 𝜏 – is zero for Conventional pumping units; it is

specified by the manufacturer for the Mark II and Reverse Mark pumping units. If the

counterweights on both sides of the crank arms are of the same type and are placed at

the same distance from the end of the crank, the maximum counterbalance moment is

calculated using Equation 6. (Bommer & Podio, 2012)

 𝑇𝐶𝐵𝑚𝑎𝑥
= 𝑇𝑐𝑟𝑎𝑛𝑘 + (𝑀 − 𝐷) ∙ (𝑛 ∙ 𝑤 + 𝑛𝑎 ∙ 𝑤𝑎) (6)

where:

𝑇𝑐𝑟𝑎𝑛𝑘 Crank moment [in lb],

𝑀 Maximum lever arm of the counterweights [in],

𝐷 Counterweight distance from the long end of the crank [in],

𝑛 Total number of main counterweights [-],

23

𝑤 Weight of the one main counterweight [lb],

𝑛𝑎 Total number of auxiliary weights [-], and

𝑤𝑎 Weight of one auxiliary weight [lb].

Since in the example problem all counterweights are the same, and their positions

from the long end of the crank are also equal, Equation 6 can be used to find the

maximum counterbalance moment, and Equation 5 produces the counterbalance torque

function throughout the pumping cycle. The maximum counterbalance moment for the

example case is found to be 1,386 k in lbs. The variation of the counterbalance torque for

the example problem is shown in Figure 18. It does not have a perfectly sinusoidal

shape because the crank angle values are not changing linearly with time, the crank does

not turn at constant speed during the pumping cycle.

Figure 18 Calculated counterbalance torque for the example problem

The counterweights can be placed at different distances from the end of the crank

arm, the vertical component of the center of gravity for the aforementioned system is

unchanged, only the magnitude of the counterbalance torque will be different. This

phenomenon is illustrated in Figure 19. 𝑇𝑐𝑏𝑚𝑎𝑥1
 refers to the topmost case illustrated in

the right portion of the figure. Equation 7 is used to determine the maximum

counterbalance moment accurately in the case of having identical counterweights at

different positions on the cranks.

24

Figure 19 Effect of differently positioned identical counterweights on the

counterbalance torque function

𝑇𝐶𝐵𝑚𝑎𝑥

= 𝑇𝑐𝑟𝑎𝑛𝑘 + ∑((𝑀 − 𝐷𝑖) ∙ (𝑤 + 𝑛𝑎 ∙ 𝑤𝑎))

𝑛

𝑖=1

 (7)

where:

𝑇𝑐𝑟𝑎𝑛𝑘 Crank moment [in lb],

𝑛 Total number of main counterweights [-],

𝑀 Maximum lever arm for the counterweights [in],

𝐷𝑖 ith counterweight distance from the long end of the crank [in],

𝑤 Weight of one main counterweight [lb],

𝑛𝑎 Number of auxiliary weights on one main counterweight [-], and

𝑤𝑎 Weight of one auxiliary weight [lb].

5.2.3.3 Using Different Counterweights on the Crank Arms

The asymmetrical counterweight configuration means that on at least one crank

arm different counterweights are used on its opposing sides. In the production practice

the most common case for this type of counterbalancing occurs when only one main

counterweight is used on one crank arm, but they are placed on different sides of the

crank arm. In this case the counterbalance torque is exactly half compared to using four

main counterweights.

(BakerHughes, 2018) specifically cautions the user to place only one

counterweight on the same side of the cranks as shown in Figure 20 if two

counterweights are used. In this case the maximum counterbalance moment is in phase

with the symmetry line of the crank arm, similarly to the symmetrical counterbalancing

25

scenario. By having the counterweights on the same sides of the crank arms, a phase

angle is introduced that shifts the counterbalance torque. It is important to state that

this installation and operations manual was created in 2018 and it only refers to the

possibility of overloading without an in-depth analysis or explanation. Note that for

some pumping units, this phase angle can help to create a better net torque loading, but

this must be determined strictly on case-by-case basis. The torque calculation model

presented here can determine how this way of counterbalancing will act on the

mechanical net gearbox torque function in time.

Figure 20 Caution against placing the counterweights on the same side of the crank arms

(BakerHughes, 2018)

Asymmetrical counterbalancing occurs, when different main and auxiliary

counterweights are used on one crank arm, or when only one counterweight is applied

to the same side of the crank arm. These cases will not only change the amplitude of the

counterbalance torque; an additional phase angle is introduced to the counterbalance

torque versus time function. Equation 8 describes the calculation of counterbalance

torque for the asymmetrically placed counterweights case.

 𝑇𝐶𝐵(𝑡) = −𝑇𝐶𝐵𝑀𝑎𝑥 ∙ 𝑠𝑖𝑛(𝜃(𝑡) + 𝜏 + 𝜏′) (8)

where:

𝑇𝐶𝐵𝑀𝑎𝑥 Maximum counterbalance moment [in lb],

𝜃(𝑡) Crank angle variation in time [rad],

𝜏 Phase angle [rad], and

𝜏′ Secondary phase angle [rad].

26

I have developed Equation 9, that defines the maximum counterbalance moment

for asymmetrically placed counterweight configurations. This equation is the

generalized form of Equation (7). With this new equation the maximum counterbalance

moment can be determined for any counterweight configuration.

𝑇𝐶𝐵𝑚𝑎𝑥
= 𝑇𝑐𝑟𝑎𝑛𝑘 + ∑((𝑀𝑖 − 𝐷𝑖) ∙ (𝑤𝑖 + ∑𝑤𝑎𝑖𝑗

𝑛𝑎𝑖

𝑗=1

))

𝑛

𝑖=1

 (9)

where:

𝑇𝑐𝑟𝑎𝑛𝑘 Crank moment [in lb],

𝑛 Total number of counterweights [-],

𝑀𝑖 Maximum lever arm for the ith counterweight [in],

𝐷𝑖 ith counterweight distance from the long end of the crank [in],

𝑤𝑖 Weight of the ith counterweight [lb],

𝑛𝑎𝑖
 Number of auxiliary weights on the ith counterweight [-], and

𝑤𝑎𝑖𝑗
 Weight of the jth auxiliary weight on the ith counterweight [lb].

Figure 21 illustrates the connection between the changes in the counterweight

configurations and the resulting counterbalance torque functions for three sample cases.

As shown, the combined center of gravity of the crank and counterweight system

produces the evolution of a secondary phase angle.

Figure 21 Effect of different asymmetrical counterweight configurations on the

counterbalance torque function

The secondary phase angle – 𝜏′ – represents the lead or lag of the maximum

counterbalance torque from the symmetry line of the crank arm, as shown in Figure 21.

This value can be positive and negative, depending on the counterweight configuration

27

and the direction of rotation. To calculate this angle, the center of gravity for the system

containing the crank arm and the counterweights must be determined.

Knowing the vertical and horizontal distance of the center of gravity of the

aforementioned system from the crankshaft, the secondary phase angle can be found

using Equation 10, see Figure 21.

𝜏′ = 𝑡𝑎𝑛−1 (

𝑌

𝑋
) (10)

where:

𝑌 Vertical distance of the center of gravity of the system containing

the crank and the counterweights from the crankshaft [in], and

𝑋 Horizontal distance of the center of gravity of the system containing

the crank and the counterweights from the crankshaft [in].

To find the center of gravity of this system, the required data are the mass of the

counterweights and the crank arm, the horizontal and vertical distance of their centers

of gravity from the crankshaft, as defined by Equation 11 and Equation 12, respectively.

The coordinate system used to describe the geometrical parameters used in these

equations is illustrated in Figure 17. The value of 𝑌𝑐𝑤𝑖
 is positive if the counterweight

precedes the crank arm in the direction of rotation, and is negative if it is on the opposite

side of the crank arm. The auxiliary counterweights installed on the main

counterweights are assumed to have the same center of gravity, as the main

counterweight in Equation 11 and Equation 12.

𝑋 =

𝑋𝑐𝑟 ∙ 𝑚𝑐𝑟 + ∑ (𝑋𝑐𝑤𝑖
∙ (𝑚𝑐𝑤𝑖

+ ∑ 𝑚𝑐𝑤𝑎𝑖𝑗

𝑛𝑎𝑖

𝑗=1
))𝑛

𝑖=1

𝑚𝑐𝑟 + ∑ (𝑚𝑐𝑤𝑖
+ ∑ 𝑚𝑐𝑤𝑎𝑖𝑗

𝑛𝑎𝑖

𝑗=1
)𝑛

𝑖=1

 (11)

where:

𝑋𝑐𝑟 Horizontal distance of the center of gravity of the crank from the

crankshaft [in],

𝑚𝑐𝑟 Mass of the crank arm [lbm],

𝑋𝑐𝑤𝑖
 Horizontal distance of the center of gravity of the ith counterweight

from the crankshaft [in],

𝑚𝑐𝑤𝑖
 Mass of the ith counterweight [lbm], and

𝑚𝑐𝑤𝑎𝑖𝑗
 Mass of the jth auxiliary weight on the ith counterweight [lbm].

𝑌 =

∑ ((𝑌𝑐𝑤𝑖
+ 𝐻𝑊𝑐𝑟) ∙ (𝑚𝑐𝑤𝑖

+ ∑ 𝑚𝑐𝑤𝑎𝑖𝑗

𝑛𝑎𝑖

𝑗=1
))𝑛

𝑖=1

𝑚𝑐𝑟 + ∑ (𝑚𝑐𝑤𝑖
+ ∑ 𝑚𝑐𝑤𝑎𝑖𝑗

𝑛𝑎𝑖

𝑗=1
)𝑛

𝑖=1

 (12)

where:

𝑌𝑐𝑤𝑖
 Vertical distance of the center of gravity of the ith counterweight

from its base [in].

28

The mass for every counterweight is given by the manufacturer, but the mass of

the crank arm is not always known. Some manufacturers publish the mass of the

gearbox and the two cranks combined, helping the installation procedure of the

pumping unit, but the individual mass of the crank is usually unspecified. (BakerHughes,

2018) If the mass of the crank must be approximated, I have developed Equation 13 to

provide a reasonable value for the calculation based on the equation used in (Serway,

1986). Equation 13 assumes the crank arm to have a perfectly cuboid shape and its

center of rotation is taken at the middle point of its shorter side closest to the

crankshaft.

𝑚𝑐𝑟𝑎𝑛𝑘𝑎
=

12 ∙
𝐼𝑐𝑟
2

(2 ∙
𝑋𝑐𝑟

12)
2

+ 4 ∙ (
𝐻𝑊𝑐𝑟

12)
2 (13)

where:

𝑚𝑐𝑟𝑎𝑛𝑘𝑎
 Approximate mass of the crank [lb],

𝐼𝑐𝑟 Mass moment of inertia of the cranks [lb ft2],

𝑋𝑐𝑟 Length of the crank arm [in], and

𝐻𝑊𝑐𝑟 Half-width of the crank arm [in].

The approximate mass of one crank for the example problem is 4,366 lb, which is

comparable with a value provided by a different manufacturer for a unit with the same

designation. (Schlumberger, 2019) provides 4,699 lb crank mass for their C-640D-365-

168 sucker-rod pumping unit. This comparison validates the applicability of Equation

(13) for the example problem.

5.2.4 Inertial Torques

The inertial torques are results of the energy release and dissipation of the parts

that are moving at varying speeds. Two different types of inertial torques are

distinguished in the operation of sucker-rod pumping units: articulating moment of

inertia and rotary moment of inertia. (Takács, 2015) These torques have a small

magnitude compared to the rod torque and the counterbalance torque, and therefore

are often omitted from the calculation of the mechanical net gearbox torque. But since

the counterbalance torque tries to reduce the torque loading on the gearbox by

counteracting the rod torque, the inertial torques can play a significant role on the value

of the net gearbox torque, when the two main torques have a similar magnitude. By

neglecting the inertial torques from the torque calculations, the resulting suggested

counterweight configuration can in fact overload the pumping unit.

5.2.4.1 Articulating Inertial Torque

Since some parts of the pumping unit have an alternating movement during the

pumping cycle – beam, horsehead, equalizer, pitmans etc. – the accelerations and

decelerations introduce a new torque type, the articulating inertial torque. This torque

component exists even at constant pumping speeds. (Gibbs, 1975) This torque

29

component is directly proportional to the angular acceleration of the beam as seen in

Equation 14. The value of 𝐼𝑏 only depends on the pumping unit designation, its value is

supplied by the manufacturer of the pumping unit.

𝑇𝑖𝑎(𝑡) =

12

32.2
∙ 𝑇𝐹(𝑡) ∙

𝐼𝑏
𝐴

∙
d2𝑏

d𝑡2
 (14)

where:

𝑇𝑖𝑎(𝑡) Articulating inertial torque in time [in lb],

𝑇𝐹(𝑡) Torque factor in time [in],

𝐼𝑏 Mass moment of inertia of the beam, horsehead, equalizer, and

bearings referred to the saddle bearing [lbm ft2],

𝐴 Linkage dimension [in], and
d2𝑏

d𝑡2 Angular acceleration of the walking beam [rad/sec2].

The beam angular acceleration can be obtained using three different methods as

seen in Figure 14. The first method involves the calculation of the crank angles as the

first step, then using the calculation procedure proposed by (Svinos, 1983) to get the

required beam acceleration versus time function. This method is exact, but cumbersome,

it requires the calculation of angular velocities and accelerations of the cranks and the

pitmans, using complex equations, as shown in Chapter 5.5.1.

The second calculation procedure is based on the work of (Gibbs, 1975) and is

detailed in Chapter 5.5.2, that determines the beam acceleration by differentiating the

measured polished rod displacements twice and then dividing them with the length of

link A. Fourier series method is applied to the measured polished rod position points to

make the differentiation simple and also to maintain a sufficient accuracy. The error of

the method depends on the number of coefficients used in the truncated Fourier series,

this behavior is investigated in detail in Chapter 5.5.2. Based on this evaluation, the

proposed number of coefficients used in the Fourier series is 10, which provides nearly

identical results to the exact calculation method proposed by (Svinos, 1983), see Figure

22.

Finally, a basic numerical method is used to validate the results of the previous two

methods. This method is presented in detail in Chapter 5.5.3 in detail; its results contain

a relatively high fluctuation, but it is helpful to validate the previous two methods, due to

the exceptional fit shown in Figure 22. These calculation models were investigated in

detail by (Takács & Kis, 2014). With increased pumping speed the magnitude of the

articulating inertial torque increases, although the correlation is not linear. To find the

articulating inertial torque function, the application of the second method proposed by

(Gibbs, 1975) is recommended due to its high accuracy combined with little calculation

effort.

30

Figure 22 Calculated articulating inertial torques for the example problem

5.2.4.2 Rotary Inertial Torque

Unlike the articulating inertial torque, the rotary inertial torque only exists if the

crank is turning at varying speeds during the pumping cycle, which is likely when a high

slip or ultra-high slip prime mover drives the pumping unit. (Gibbs, 1975) This torque

component is directly proportional to the crank angular acceleration, as shown in

Equation 15.

𝑇𝑖𝑟(𝑡) =

12

32.2
∙ 𝐼𝑠 ∙

d2𝜃

d𝑡2
 (15)

where:

𝑇𝑖𝑟(𝑡) Rotary inertial torque in time [in lb],

𝐼𝑠 Mass moment of inertia of the counterweights, cranks and slow-

speed gearing referred to the crankshaft [lbm ft2], and
d2𝜃

d𝑡2 Angular acceleration of the crank arm [rad/sec2].

The calculation of the crank angular acceleration in time is carried out in Chapter

5.4. Similarly to the determination of the beam angular acceleration, a simple numerical

model is used for validation purposes. 𝐼𝑠 is the sum of the mass moments of the listed

purely rotating components of the sucker-rod pumping unit, see Equation 16.

31

 𝐼𝑠 = Icr + 𝐼𝑔 + 𝐼𝑐𝑤 (16)

where:

𝐼𝑠 Total mass moment of inertia of the rotating components [lbm ft2],

𝐼𝑐𝑟 Mass moment of inertia of the crank arms [lbm ft2],

𝐼𝑔 Mass moment of inertia of the slow speed gearings [lbm ft2], and

𝐼𝑐𝑤 Mass moment of inertia of the counterweights [lbm ft2].

The value of the cranks’ and the slow speed gearings’ mass moment of inertia is

provided by the manufacturer. Therefore, only the calculation of the counterweights’

mass moment of inertia is required to find the value of 𝐼𝑠. Having a symmetrical

counterweight configuration, Equation 17 should be used to find the mass moment of

inertia of the counterweights.

𝐼𝑐𝑤 = 𝑛 ∙ 𝐼𝑐𝑔 + 𝑛𝑎 ∙ 𝐼𝑐𝑔𝑎

+ (𝑛 ∙ 𝑚𝑐𝑤 + 𝑛𝑎 ∙ 𝑚𝑐𝑤𝑎
) ∙ (

𝐻

12
)
2

 (17)

where:

𝐼𝑐𝑔 Mass moment of inertia of one main counterweight about its center

of gravity [lbm ft2],

𝐼𝑐𝑔𝑎
 Mass moment of inertia of one auxiliary counterweight about its

center of gravity [lbm ft2],

𝑛 Number of main counterweights [-],

𝑛𝑎 Number of auxiliary counterweights [-],

𝑚𝑐𝑤 Mass of one main counterweight [lbm],

𝑚𝑐𝑤𝑎
 Mass of one auxiliary counterweight [lbm], and

𝐻 Distance between the crankshaft and the center of gravity of the

main counterweight [in].

Equation 18 is used to find the distance between the crankshaft and the center of

gravity of a main counterweight:

 𝐻 = √(𝑀 − 𝐷)2 + (𝐻𝑊𝑐𝑟 + 𝑌𝑐𝑤)2 (18)

where:

𝑀 Maximum distance of the counterweight’s center of gravity from

the long end of the crank [in],

𝐷 Distance of the counterweight from the long end of the crank [in],

𝐻𝑊𝑐𝑟 Half-width of the crank [in], and

𝑌𝑐𝑤 Vertical distance of the center of gravity of the counterweight from

its base [in].

Since the counterweight configuration in the example case is symmetrical,

Equation 17 can be used to find the missing mass moment of inertia from Equation 16.

The mass moment of inertia for the counterweights in the case of the example problem

32

is 614,466 lbm ft2, the resulting total mass moment of the purely rotating parts, 𝐼𝑠 is

866,110 lbm ft2. The resulting rotating moment of inertia function in time for the

example problem is shown in Figure 23.

Figure 23 Calculated rotary inertial torque for the example problem

If identical counterweights are used, but their placement is different on the crank

arm, I developed Equation 19 to properly provide the mass moment of inertia in this

case.

𝐼𝑐𝑤 = 𝑛 ∙ 𝐼𝑐𝑔 + 𝑛𝑎 ∙ 𝐼𝑐𝑔𝑎

+ ∑(𝑚𝑐𝑤𝑖
∙ (

𝐻𝑖

12
)
2

)

𝑛

𝑖=1

+ ∑(𝑚𝑐𝑤𝑎 𝑖
∙ (

𝐻𝑖

12
)
2

)

𝑛𝑎

𝑖=1

 (19)

where:

𝐼𝑐𝑔 Mass moment of inertia of one main counterweight about its center

of gravity [lbm ft2],

𝐼𝑐𝑔𝑎
 Mass moment of inertia of one auxiliary counterweight about its

center of gravity [lbm ft2],

𝑛 Number of main counterweights [-],

𝑛𝑎 Number of auxiliary counterweights [-],

𝑚𝑐𝑤𝑖
 Mass of the ith counterweight [lbm],

𝑚𝑐𝑤𝑎𝑖
 Mass of the ith auxiliary weight [lbm], and

𝐻𝑖 Distance between the crankshaft and the center of gravity of the ith

main counterweight [in].

33

For asymmetrical counterweight configurations I created Equation 20, that defines

the counterweights’ mass moment of inertia for any counterbalancing scenario on crank

balanced sucker-rod pumping units.

𝐼𝑐𝑤 = ∑(𝐼𝑐𝑔𝑖
+ ∑𝐼𝑐𝑔𝑎𝑖𝑗

𝑛𝑎𝑖

𝑗=1

+ (𝑚𝑐𝑤𝑖
+ ∑𝑚𝑐𝑤𝑎𝑖𝑗

𝑛𝑎𝑖

𝑗=1

) ∙ (
𝐻𝑖

12
)
2

)

𝑛

𝑖=1

 (20)

where:

𝑛 Number of main counterweights [-],

𝐼𝑐𝑔𝑖
 Mass moment of inertia of the ith main counterweight about its

center of gravity [lbm ft2],

𝑛𝑎𝑖
 Number of auxiliary weights on the ith main counterweight [-],

𝐼𝑐𝑔𝑎𝑖𝑗
 Mass moment of inertia of the jth auxiliary weight on the ith main

counterweight about its center of gravity [lbm ft2],

𝑚𝑐𝑤𝑖
 Mass of the ith main counterweight [lbm], and

𝑚𝑐𝑤𝑎𝑖𝑗
 Mass of the jth auxiliary weight on the ith main counterweight [lbm].

5.2.5 Net Gearbox Torque

The net gearbox torque is the sum of all torque components acting on the slow-

speed shaft of the gearbox. Its variation throughout the pumping cycle is shown in

Figure 24 for the example problem along with the calculated individual torque

components.

34

Figure 24 Torque components acting on the gearbox for the example problem

The inertial torques have smaller amplitude than the other two main torques, but

their influence can be significant. The determination, whether the torsional loading of

the gearbox exceeds the maximum allowed torque is essential to maintain a sufficiently

long lifetime of the gear reducer, as illustrated previously in Figure 4.

For the example case, the comparison of the net gearbox torque found using the

newly introduced method in the thesis to the result of the TWM software is shown in

Figure 25. By neglecting the inertial torques, the TWM finds the pumping unit to be

overloaded. In contrast, this conclusion is incorrect, based on the results of the complete

torque analysis.

Figure 25 Comparison of net gearbox torque variations

5.3 Determination of the Crank Angle vs Time

Modern electronic dynamometers register polished rod displacements and loads in

function of time at uniform time intervals throughout the measurement. But all four

torque components acting on the gearbox are functions of the crank angle, not recorded

in the dynamometer survey. This circumstance necessitates the determination of the

crank angles in time from the measured polished rod displacements. To handle this

problem, a successive approximation was introduced by (Takács, Kis, & Koncz, 2015).

For this calculation, in addition to the measured data, only the rotation and the API

designation of the sucker-rod pumping unit is required. The corresponding linkage

lengths are found in the tables provided by the manufacturer of the pumping unit.

35

The determination of the crank angle variation in time is the cornerstone of a

proper calculation of the mechanical net gearbox torque. The crank angle values

produced by the proposed calculation method are compared to the Total Well Manager

results. TWM has slight error in the determination of the crank angles, but it is

important to find these values with the highest accuracy, because it is the first major

calculation step in the evaluation of the dynamometer survey. Any error in this step will

reduce the precision of every calculation based on the calculated crank angles.

5.3.1 Necessity of a Numerical Method

From a measured polished rod displacement, the direct calculation of the

corresponding crank angles is impossible because for every polished rod position there

is one corresponding crank angle on the up- and downstroke. Since an explicit

relationship does not exist between the position of rods and the crank angle, a numerical

calculation method must to be used in order to determine the crank angles

corresponding to the measured polished rod positions.

To infer the crank angles, the pumping unit’s kinematic parameters are used. This

process is complete, when the measured polished rod position is equal to the position

determined from the kinematic analysis of the pumping unit, see Equation 21. The crank

angle that produces the appropriate dimensionless position of rods value corresponds to

the measured time. (Takács, Kis, & Koncz, 2015)

 𝑠𝑖 = 𝑆 ∙ 𝑃𝑅(𝜃𝑐𝑎𝑙𝑐) (21)

where:

𝑠𝑖 ith element of the measured polished rod position array [in],

𝑆 Stroke length [in], and

𝑃𝑅(𝜃𝑐𝑎𝑙𝑐) Dimensionless position of rods at crank angle 𝜃𝑐𝑎𝑙𝑐 [-].

This process is carried out for each measured polished rod position, the product of

this procedure is the series of crank angle values valid at the measured times. (Takács,

Kis, & Koncz, 2016) For this purpose, a successive approximation numerical method is

proposed, it is presented in detail in the following subchapter. This calculation method

can provide the crank angle values at the measured data points with any desired

precision.

5.3.2 Successive Approximation Numerical Method

This method is used to determine the crank angles, 𝜃, that produce the same PR

(position of rod) values as the measured polished rod displacements, its flowchart is

shown in Figure 26.

36

measured polished rod positions,
direction of rotation, geometry type,

linkage dimensions, crank angle increment

Subroutine 2

diff > 0

γ1 = Norm(γ1 + Δγ)

θi = (γ1 + γ2) / 2

i < N

i = i + 1

Subroutine 1

START

END

true

false

true

false

γ2 = Norm(γ1 + Δγ)

PRmi = 0

PRmi = 1

θi = θu

θi = θd

true

true

false

false

Subroutine 3(θi)

i = 1

γ2 = Norm(γ1 + Δγ)

Subroutine 4

Figure 26 Flowchart of the successive approximation numerical method that finds

the crank angles corresponding to the measured polished rod positions

37

This numerical method can be applied to any dynamometer survey carried out on

Conventional, Reverse Mark, Mark II and Air Balanced units. The Conventional and Air

Balanced units can operate with both clockwise and counter-clockwise direction of

rotation. In their counter-clockwise rotational case the crank angles – also the 𝛾1 and 𝛾2

auxiliary crank angles – have to be recalculated with Equation 22.

 𝜃𝐶𝐶𝑊 = 2𝜋 − 𝜃𝐶𝑊 (22)

where:

𝜃𝐶𝐶𝑊 , 𝜃𝐶𝑊 Crank angle in counter-clockwise and clockwise direction,

respectively [rad].

The fundamental idea of the calculation method is to create a moving pair of

auxiliary crank angles – 𝛾1and 𝛾2 – and to determine, when the crank angle

corresponding to the measured position of rods is between those two. These two angles

are always the same distance apart, namely the used crank angle increment, Δ𝛾. At these

angles the corresponding position of rods values – 𝑃𝑅(𝛾1) and 𝑃𝑅(𝛾2), respectively – are

evaluated using the API kinematic model for sucker-rod pumping units API Spec. 11E

(API, 2008).

The crank angle of the sucker-rod pumping unit is always non-negative and

smaller than 2𝜋. If the value of 𝛾1 or 𝛾2, reaches, or exceeds 2𝜋 during the numerical

calculation, the 𝑁𝑜𝑟𝑚 function adjusts their value, so it will be in the [0, 2𝜋[interval. The

output of this procedure, as discussed before, is the crank angle array valid at the

measured polished rod positions. The calculated crank angle values vs time for the

example problem are presented in Figure 27, along with the results of the TWM

software.

38

Figure 27 Crank angles calculated for the example problem

Figure 28 shows the difference between the calculated crank angles by the

previously described method and the results of the TWM software, indicated with blue

circles. The TWM software underestimates the crank angles at every data point, the

difference between the results is between 0.5 deg and 2.2 deg with an average of 1.2 deg.

The reason behind the outlier values at the beginning of the upstroke and downstroke is

the fact that the difference of the measured positions by the dynamometer in these

regions are comparable to the accuracy of the equipment. This difference in the crank

angle calculation is magnified mainly in the inertial torque calculations.

39

Figure 28 Crank angle differences between the proposed method and the TWM results

5.3.2.1 Subroutine 1 of the Successive Approximation Method

Subroutine 1 produces the 𝜃and 𝜓 angles corresponding to the topmost and

lowermost positions of the polished rod, determines the stroke length and creates the

dimensionless position of rods array from the measured polished rod positions. Its

flowchart is shown in Figure 29 and the formulae for the four investigated sucker-rod

pumping units are presented in Table 4. The formulae introduced in Table 4 are in

accordance with the API Spec. 11E (API, 2008).

Calculate ψt, ψb, θu, θd

END

START

 γ1 = θu

Calculate S

Calculate PRm array

Figure 29 The flowchart of Subroutine 1

Table 4 Formulae used in Subroutine 1

40

Conventional and

Reverse Mark
Mark II Air Balanced

𝜙 = 𝑠𝑖𝑛−1 (
𝐼

𝐾
) 𝜙 = 𝑠𝑖𝑛−1 (

𝐼

𝐾
) + 𝜋 𝜙 = 𝜋 − 𝑠𝑖𝑛−1 (

𝐼

𝐾
)

𝜓𝑏 = 𝑐𝑜𝑠−1 (
𝐶2 + 𝐾2 − (𝑃 + 𝑅)2

2 ∙ 𝐶 ∙ 𝐾
) 𝜓𝑏 = 𝑐𝑜𝑠−1 (

𝐶2 + 𝐾2 − (𝑃 − 𝑅)2

2 ∙ 𝐶 ∙ 𝐾
)

𝜓𝑡 = 𝑐𝑜𝑠−1 (
𝐶2 + 𝐾2 − (𝑃 − 𝑅)2

2 ∙ 𝐶 ∙ 𝐾
) 𝜓𝑡 = 𝑐𝑜𝑠−1 (

𝐶2 + 𝐾2 − (𝑃 + 𝑅)2

2 ∙ 𝐶 ∙ 𝐾
)

𝜃𝑢 = 𝜙 − 𝑠𝑖𝑛−1 (𝑊1) 𝜃𝑢 = 𝜙 − 𝑠𝑖𝑛−1(𝑊2) + 𝜋 𝜃𝑢 = 𝜙 + 𝑠𝑖𝑛−1(𝑊1) − 𝜋

𝜃𝑑 = 𝜙 − 𝑠𝑖𝑛−1 (
𝐶 ∙ 𝑠𝑖𝑛 (𝜓𝑡)

𝑃 − 𝑅
) + 𝜋 𝜃𝑑 = 𝜙 + 𝑠𝑖𝑛−1 (

𝐶 ∙ 𝑠𝑖𝑛 (𝜓𝑡)

𝑃 + 𝑅
)

𝑊1 =
𝐶 ∙ 𝑠𝑖𝑛 (𝜓𝑏)

𝑃 + 𝑅
 𝑊2 =

𝐶 ∙ 𝑠𝑖𝑛 (𝜓𝑏)

𝑃 − 𝑅

In the first step of Subroutine 1 the auxiliary angles corresponding to the start of

the upstroke and downstroke of the unit are determined. Thereafter the stroke length of

the pumping unit is calculated using Equation 23.

 𝑆 = 𝐴 ∙ (𝜓𝑏 − 𝜓𝑡) (23)

where:

𝐴 Linkage dimension [in], and

𝜓𝑏 , 𝜓𝑡 Auxiliary angle at the bottommost and topmost position of the

polished rod, respectively [rad].

For a given sucker-rod pumping unit the stroke length can be changed by attaching

the pitmans to a different wrist pin bearing, therefore modifying the length of link 𝑅. The

calculated stroke length for the example problem is 169.82 in. Based on the measured

polished rod positions, 𝑠(𝑖), the calculation of the appropriate dimensionless positions is

possible using Equation (24).

 𝑃𝑅𝑚(𝜃)𝑖 =
𝑠𝑖

𝑆
 (24)

where:

𝑃𝑅𝑚(𝜃)𝑖 Dimensionless polished rod position for the ith measured point [in],

𝑠𝑖 ith measured polished rod position [in], and

41

𝑆 Stroke length [in].

The start of the measured data points of the dynamometer survey should begin

with the first point in the upstroke region to cover the whole pumping cycle. In this case

the suggested starting value of 𝛾1 is equal to 𝜃𝑢 calculated by Subroutine 1. Otherwise,

choosing a higher starting value for the auxiliary angle 𝛾1 can cause the faulty calculation

of the crank angle in the downstroke corresponding to the position of rods. The next

step of the calculation is to check whether the given PR value is equal to 0 or 1. In these

cases the exact crank angles – 𝜃𝑢and 𝜃𝑑respectively – are previously calculated by

Subroutine 1 and are added to the crank angle array.

5.3.2.2 Subroutine 2 of the Successive Approximation Method

The second subroutine determines the relative position of rods for the two

auxiliary crank angles, by producing an indicative parameter, diff. The position of rods

corresponding to a given crank angle is calculated using Equation 25. The flowchart of

the second subroutine is shown in Figure 30.

𝑃𝑅(𝜃) =

(𝜓𝑏 − 𝜓)

(𝜓𝑏 − 𝜓𝑡)
 (25)

where:

𝑃𝑅(𝜃) Position of rods [-],

𝜓 Auxiliary angle defined in Figure 5 through Figure 8 [rad], and

𝜓𝑏 , 𝜓𝑡 Angle 𝜓 at the start of the up- and downstroke, respectively [rad].

diff = (PR(γ1) - PRmi) � (PR(γ2) - PRmi)

Subroutine 3(γ1)
 Subroutine 3(γ2)

START

END

Figure 30 The flowchart of Subroutine 2

5.3.2.3 Subroutine 3 of the Successive Approximation Method

The calculation of the position of rods at the auxiliary crank angle pair is done by using

Subroutine 3. The flowchart of this subroutine is shown in Figure 31, the governing

equations are shown in Table 2 for the investigated pumping unit geometries.

42

Calculate PR, α

Calculate θ2

Calculate β, J

Calculate ρ, χ

Calculate ψ

START

END

Figure 31 The flowchart of Subroutine 3

This calculation is straightforward if the direction of rotation, the geometry, and

the length of the linkage dimensions of the investigated pumping unit are known. The

input of this subroutine is a crank angle, the outputs are the necessary auxiliary angles

listed in Table 2 and the position of rods calculated by using Equation 25. The auxiliary

angles used in this subroutine are defined for every pumping unit geometry in Figure 5

through Figure 8. This calculation process is carried out in Subroutine 2 and in the main

calculation of the successive approximation method as seen in Figure 30 and Figure 26,

respectively.

After finishing the calculations described in Subroutine 2, the calculated positions

of rods are compared with the ith measured dimensionless position from the

dynamometer survey. Their difference from the given 𝑃𝑅𝑚 value are multiplied,

therefore the parameter diff has a negative value if the position of rods from the

dynamometer survey is between the calculated 𝑃𝑅(𝛾1) and 𝑃𝑅(𝛾2), and has a positive

value otherwise, see Figure 26. If the value of diff is positive, then both 𝛾1 and 𝛾2 are

increased by Δ𝛾, and Subroutine 2 is repeated with the updated auxiliary crank angle

pair. When diff has a negative value the crank angle corresponding to the measured

relative polished rod position is between the two auxiliary crank angles; its value is

obtained averaging 𝛾1 and 𝛾2. Because of the sufficiently small crank angle increment

used in the program (Δ𝛾 = 0.1°), a linear approximation is more than enough to find the

crank angle that satisfies Equation 24. The maximum error of this procedure is half of

the used increment, Δ𝛾, which is sufficiently small for the purpose. To determine all

crank angles corresponding to the measured relative polished rod positions, the

previously detailed steps are repeated until the number of the measured polished rod

positions in the dynamometer survey for the investigated pumping cycle is reached.

43

5.3.2.4 Subroutine 4 of the Successive Approximation Method

When the sampling rate is low compared to the pumping speed of the unit, the

topmost and lowermost polished rod positions may be missing from the dynamometer

survey. In such cases, for the proper crank angle calculation an additional validation step

is required, as illustrated in Figure 32.

The black dots in Figure 32 represent the data from the original dynamometer

survey, the orange circles show the case when the sampling rate of the measurement is

halved. The neighborhood of the crank angle at the start of the downstroke, 𝜃𝑑 is focused

for better representation of the problem. As discussed previously, apart from the

topmost and lowermost positions, there is one crank angle both in the upstroke and

downstroke that corresponds to the measured position of rods.

An error emerges in the crank angle calculation, when the last measured position

of rods in the upstroke is smaller than the first measured position in the downstroke,

which is true in the illustrated scenario. In this particular case the calculation method

presented gives the wrong crank angle as the solution. Instead of calculating the crank

angle that corresponds to the position in the downstroke, the crank angle in the

upstroke is calculated, which is shown with a green circle in the figure.

Since the dynamometer survey contains data measured at constant time intervals,

this incorrect calculation will produce a smaller crank angle change in the upstroke, and

to compensate this, a greater change in the beginning of the downstroke is introduced.

These crank angle differences are visualized by the green horizontal lines. Even if the

crank angular velocity is not constant, the variation of the crank angle is smooth, which

is represented by the brown horizontal lines corresponding to the properly calculated

crank angles.

44

Figure 32 Calculation of the incorrect crank angle without validation

If this faulty calculation is not corrected and crank angles without verification are

used, the crank angular velocity and crank angular acceleration functions can have

extreme variations compared to the rest of the pumping cycle. This will consequently be

transferred to the inertial torque calculations. Subroutine 4 tackles these calculation

errors, its flowchart is shown in Figure 33.

First, it checks whether the dimensionless PR 0 and 1 are in the calculated position

of rods array. If at least one of the two extremes is missing, Subroutine 4 determines,

whether the measured positions create the possibility of the miscalculation, and corrects

the crank angle if the relationship between the measured positions fulfills the condition.

Usually the magnitude of the inertial torques are at least one order of magnitude smaller

than the rod torque, or the counterbalance torque, but using this incorrectly calculated

crank and beam angular acceleration functions, their value can fundamentally change

the net torque variation.

45

START

true

0 ϵ PRm

1 ϵ PRm

false

END

true

i = 1

θi < θi+1

i = i + 1

false

true

θi > θi-1

Subroutine 2

diff > 0

γ1 = γ1 + Δγ

θi = (γ1 + γ2) / 2

true

false

true

false

false
i = 1

θi > θi+1

i = i + 1

false

true

θi < θi-1

Subroutine 2

diff > 0

γ1 = γ1 + Δγ

θi = (γ1 + γ2) / 2

true

false

true

false

θi < θD

i = i + 1

false

true

Figure 33 Flowchart of Subroutine 4

5.4 Calculation of the Crank’s Angular Acceleration

To find the crank angular acceleration from the calculated crank angle values, first

the angular velocity of the crank must be determined. Since the motion of the crank arm

is periodic, every property, that describes the pumping unit has the same values at the

start and end of the stroke. In the present chapter the determination of the crank

angular velocity using multiple methods is presented. The first method is a basic

numerical method, that is used for verification purposes. The second and third methods

use Fourier series in different ways to describe the crank angular velocity function.

46

5.4.1 Importance of Using a Simple Numerical Method

The application of simple numerical methods is advantageous in the validation of

more complex procedures. It is vitally important, that the results of any calculation

should not have any methodical errors. The proposed numerical method produces the

crank angular velocities by using Equation 26.

 Δ𝜃

Δt𝑛𝑢𝑚𝑖

=
𝑁𝑜𝑟𝑚(𝜃𝑖+1 − 𝜃𝑖)

𝑡𝑖+1 − 𝑡𝑖
 (26)

where:
Δ𝜃

Δt𝑛𝑢𝑚𝑖

 ith element of the numerically calculated crank angular velocity

array [rad/s],

𝜃𝑖 ith element of the calculated crank angle array [rad], and

𝑡𝑖 ith element of the time array for the calculated crank angle array

[sec].

This method approximates the tangent of the crank angle function in between the

measured times with the secant created by the two neighboring crank angle points. This

method creates a crank velocity array that contains one less element than the original

crank angle array. The times at which the calculated crank angular velocities are valid

can be determined using Equation 27. This process produces a rough estimate of the

crank angular velocity variation throughout the pumping cycle.

𝑡𝑛𝑢𝑚𝑖

=
𝑡𝑖 + 𝑡𝑖+1

2
 (27)

where:

𝑡𝑛𝑢𝑚𝑖
 ith element of the time array for the calculated crank angular

velocities [sec], and

𝑡𝑖 ith element of the time array for the calculated crank angle array

[sec].

5.4.2 Using Fourier Series to Describe Periodic Behavior Based on Measured Data

Generally, the best approach to describe complex periodic behavior is to use

Fourier series. The general formula of the Fourier series is given in Equation 28. The

function of the Fourier approximation requires the determination of the 𝑎 and 𝑏

coefficient arrays. In Equation 28, 𝑎0is the constant coefficient, moving the function in

the vertical direction, while the 𝑎 and 𝑏 arrays contain the information of the variation

of the function over the investigated period.

47

𝐹(𝑥) =
𝑎0

2
+ ∑ 𝑎𝑘 ∙ cos (

2 ∙ 𝑘 ∙ 𝜋 ∙ 𝑥

𝑃
) + 𝑏𝑘 ∙ sin (

2 ∙ 𝑘 ∙ 𝜋 ∙ 𝑥

𝑃
)

𝑁𝐹

𝑘=1

 (28)

where:

𝐹(𝑥) Fourier series function [var.],

𝑎0 Constant coefficient of the Fourier series [-],

𝑁𝐹 Number of coefficients in the Fourier series [-],

𝑘 Index of the coefficients in the Fourier series [-],

𝑎𝑘, 𝑏𝑘 kth coefficients of the Fourier series [-], and

𝑃 Period of the Fourier series [sec].

The advantage of the Fourier series is that it can create the best fitting function

based on available points with user defined period times. The period time

corresponding to the investigated stroke can be found from the calculated crank angle

data. If the bottommost position of the polished rod is in the dynamometer survey in

both the start and at the end of the stroke, the time required to complete a whole stroke

is just the time difference of the last and first measured point in the dynamometer

survey. However, if the bottommost position is not the recorded at the end of the stroke,

the last data point is the last one that has a smaller crank angle value corresponding to it

than 𝜃𝑈 . Using the calculated crank angle array, the time required to complete a whole

pumping cycle is determined by Equation 29. The calculated period time for the example

problem is 10.06 sec.

𝑇 =

2𝜋 ∙ 𝑡𝑁
(𝑁𝑜𝑟𝑚(𝜃𝑁 − 𝜃1) + 2𝜋)

 (29)

where:

𝑇 Period time [sec],

𝑡𝑁 Time of the last measured point from the first one [sec], and

𝜃1, 𝜃𝑁 Crank angles at the first and last measured point, respectively [rad].

For the determination of the coefficients, a custom Fourier time array must be

created over the previously calculated period. This is achieved by using Equation 30

𝑡𝐹𝑖

=
𝑖 ∙ 𝑇

𝑁
 (30)

where:

𝑡𝐹𝑖
 ith element of the Fourier time array [sec],

𝑖 Index that goes from 0 to N-1 [-], and

𝑁 Number of measured data points [-].

From the data points the values valid at the elements of the Fourier time array

must be interpolated. Since the difference between the ith element of the measured time

array and the Fourier time array is relatively small (the maximum value is smaller than

48

the time difference between the measured positions), a linear interpolation provides

sufficiently precise values to find the input data for the Fourier series.

false

START

i = 1

tFi = -π + 2π · i

i � N
true

a0 = a0 + θi / N

i � N
true

false

i = i + 1

i = i + 1

j = 1

j � NF

j = j + 1

i = 1

true

END

false

aj = aj + (dFi · cos(j · (tFi · 2π / T - π)) · 2 / N

bj = bj + (dFi · sin(j · (tFi · 2π / T - π)) · 2 / N

Figure 34 Flowchart of determining the Fourier coefficients

Equation 31 is used to find the data array suitable for the Fourier analysis. Once

these new arrays are created, the determination of the Fourier coefficients is possible

using the method described by Figure 34.

49

𝑑𝐹𝑖

= 𝑑𝑖 + (𝑑𝑖 − 𝑑𝑖−1) ∙
𝑡𝐹𝑖

− 𝑡𝑖

𝑡𝑖 − 𝑡𝑖−1
 (31)

where:

𝑑𝐹𝑖
 ith element of the Fourier input data array [var.],

𝑑𝑖 ith element of the data array [var.],

𝑡𝐹𝑖
 ith element of the Fourier time array [sec], and

𝑡𝑖 ith element of the measured time array [sec].

Using the calculated coefficients, Equation 32 provides the truncated Fourier series

value at the measured times contained in the dynamometer survey.

𝐹𝑖 = 𝑎0 + ∑ 𝑎𝑘 ∙ cos ((
2𝜋 ∙ 𝑡𝑖

𝑇
− 𝜋) ∙ 𝑘) + 𝑏𝑘 ∙ sin ((

2𝜋 ∙ 𝑡𝑖
𝑇

− 𝜋) ∙ 𝑘)

𝑁𝐹

𝑘=1

 (32)

where:

𝐹𝑖 ith solution of the Fourier series at the measured times [var.],

𝑎0 Constant coefficient of the Fourier series [-],

𝑎𝑘, 𝑏𝑘 kth coefficients of the Fourier series [-],

𝑡𝑖 ith element of the measured time array [sec],

𝑇 Period time [sec],

𝑘 Index of the coefficients in the Fourier series [-], and

𝑁𝐹 Number of coefficients in the Fourier series [-].

Since the Fourier series is a sum of different sine and cosine functions, its

differentiation is simple. After the values contained in the Fourier series for the original

data are calculated, its time derivative can be determined using Equation 33, the second

derivative is defined in Equation 34.

 d𝐹

d𝑡 𝑖
=

2 ∙ k

𝜋
∙ ∑ −𝑎𝑘 ∙ sin((

2𝜋 ∙ 𝑡𝑖
𝑇

− 𝜋) ∙ 𝑘) + 𝑏𝑘 ∙ 𝑐𝑜𝑠 ((
2𝜋 ∙ 𝑡𝑖

𝑇
− 𝜋) ∙ 𝑘)

𝑁𝐹

𝑘=1

 (33)

where:
d𝐹

d𝑡𝑖
 First derivative of the result of the Fourier series at the measured

times [var.].

 d2𝐹

d𝑡2
𝑖
=

−4 ∙ k2

𝜋2
∙ ∑ 𝑎𝑘 ∙ cos ((

2𝜋 ∙ 𝑡𝑖
𝑇

− 𝜋) ∙ 𝑘) + 𝑏𝑘 ∙ 𝑠𝑖𝑛 ((
2𝜋 ∙ 𝑡𝑖

𝑇
− 𝜋) ∙ 𝑘)

𝑁𝐹

𝑘=1

 (34)

where:
d2𝐹

d𝑡2
𝑖
 Second derivative of the result of the Fourier series at the measured

times [var.].

50

5.4.3 Determination of the Crank Angular Velocity Using Fourier Series

5.4.3.1 Using Fourier Series on the Calculated Crank Angle Array

The most straightforward solution would be the application of Fourier series on

the calculated crank angle values, then the crank angular velocity and angular

acceleration can be derived using only differentiation. Since the movement of the crank

is periodic, the function regressed on the measured points should produce the same

values at the start and at the end of the interval. This statement is true, however, the

crank angle function is a sawtooth-like function with a discontinuity at the bottom of the

stroke. The reason for this behavior lies in the definition of the crank angle, it always

falls between 0 and 2𝜋.

Using the truncated Fourier series detailed in Chapter 5.4.2 on the crank angle

array describes the data poorly, as seen in Figure 35. The black dots represent the

calculated crank angle values; the blue curve shows the calculated truncated Fourier

series using the crank angle values as input. Since the operation of any sucker-rod

pumping unit is cyclical, all investigated variables are described by functions that have

the same value at the start of the upstroke and at the end of the downstroke. Functions

with discontinuity – like the crank angle function – cause oscillations of the used

truncated Fourier series to ensure identical values at the ends of the investigated time

interval.

As seen in Figure 35, the Fourier series provides even invalid crank angles, going

below 0 deg, and above 360 deg. To find the crank angular acceleration, this function

must be differentiated twice. The resulting acceleration pattern would surely be

unusable due to the extreme oscillation resulting from the deviation from the crank

angle data set. Therefore, this approach to find the acceleration pattern of the crank arm

is rejected.

51

Figure 35 Using Fourier series on the crank angle array

5.4.3.2 Using Fourier Series on Numerically Calculated Crank Angular Velocity

Arrays

Using Fourier series on data points with a discontinuity in the investigated interval

provides unusable results, therefore, to apply the Fourier series properly, a data series

has to be created without any discontinuity. By using the numerically calculated crank

angular velocity array in Chapter 5.4.1 as the basis, the application of the Fourier series

becomes possible. Along with this basic numerically calculated array an improved

numerically calculated crank angular velocity array has been created using a five-step

stencil method. In this case Equation 35 is used to generate the elements of this array of

higher accuracy. This is a novel procedure that finds the crank angular velocity function

with improved accuracy compared to the prior works and the results of the TWM

software. Figure 36 shows the comparison between the results of the TWM software

and the presented calculation methods. The result of the TWM software has more

extreme differences than the two introduced methods. The introduced calculation

procedures produce similar crank angular velocities that correctly correlate with the

TWM results.

 Δ𝜃

Δt𝑛𝑢𝑚2𝑖

=
𝑁𝑜𝑟𝑚(−𝜃𝑖+2+8 ∙ 𝜃𝑖+1−8 ∙ 𝜃𝑖−1 + 𝜃𝑖−2)

12 ∙ (𝑡𝑖+1 − 𝑡𝑖)
 (35)

where:
Δ𝜃

Δt𝑛𝑢𝑚2𝑖

 Numerically calculated crank angular velocity using the five-step

stencil method [rad/sec],

52

𝜃𝑖 ith element of the calculated crank angle array [rad], and

𝑡𝑖 ith element of the measured time array [sec].

Figure 36 The calculated crank angular velocity function

The five-step stencil numerical method provides a smoother crank velocity array;

however, it does not provide results for the first and last two measured times. At these

times the crank angular velocity is approximated by the average of the first and last 4

calculated values, respectively. The increased precision of using the five-step stencil

method becomes visible in Figure 37.

53

Figure 37 The calculated crank angular acceleration function

5.5 Determination of Beam Angular Acceleration

Knowledge of the angular acceleration pattern of the walking beam is necessary

for the calculation of the articulating inertial torque, as shown in Chapter 5.2.4.1. Three

different methods are presented in detail, and their results are compared to find the best

procedure providing the required acceleration of the beam throughout the pumping

cycle. The first method is based on the work of Svinos (Svinos, 1983) using vector

analysis to describe the kinematic behavior of the pumping unit, the second procedure

follows the proposal of Gibbs (Gibbs, 2012) to use Fourier series on the measured

polished rod positions to derive the beam angular acceleration, and the third numerical

method verifies the results of the two complex methods. (Takács, Kis, & Koncz, 2016)

5.5.1 Calculation of the Beam Acceleration Based on the Svinos Method

The method proposed by Svinos uses complex vectors to describe the exact

kinematic behavior of the pumping unit and details a method to find the angular

acceleration of the walking beam based on the movement of the crank arm. (Svinos,

1983) In the referred paper, the model is using an auxiliary angle, 𝜃2 instead of the crank

angle, see Figure 5 through Figure 8 for its visual representation. Since 𝜃2 and 𝜃 have

different orientations, their differentiated functions will have the same magnitude, but

different signs, see Equation 36 and Equation 37. To find 𝜃2 corresponding to the crank

angle, 𝜃, use Table 2.

 d𝜃2

d𝑡
= −

d𝜃

d𝑡
 (36)

54

 d2𝜃2

d𝑡2
= −

d2𝜃

d𝑡2
 (37)

The vector equation of the position of the equalizer bearing from the crankshaft is

defined in Equation 38. Both sides of the equation represent a vector pointing from the

crankshaft to the equalizer bearing.

 𝐾⃗⃗ + 𝐶 = 𝑅⃗ + 𝑃⃗ (38)

where:

𝐾⃗⃗ , 𝐶 , 𝑅⃗ , 𝑃⃗ Linkage vectors, oriented from the crankshaft along with their

respective linkage [in].

Equation 39 is found by converting Equation 38 into exponential form with

relative angles referred to linkage K.

 𝐾 + 𝐶 ∙ 𝑒𝑖∙𝜃𝑏 = 𝑅 ∙ 𝑒𝑖∙𝜃2 + 𝑃 ∙ 𝑒𝑖∙𝜃𝑝 (39)

where:

𝐾, 𝐶, 𝑅, 𝑃 Linkage lengths [in], and

𝜃𝑏 , 𝜃2, 𝜃𝑝 Auxiliary angles [rad].

The angles in Equation 39 are shown in Figure 5 through Figure 8 for the

investigated pumping unit geometries and the governing equations calculating them are

defined in Table 5. After rearranging Equation 39 to find 𝜃𝑏 , both sides of the equation

are differentiated with respect to time to produce the time derivative of the beam angle,

𝜃𝑏 . Solving the system of equations received after differentiation (using the Cramer-

rule) gives the angular velocity of links R, P and C. The angular velocity of the walking

beam is defined by Equation 40.

Table 5 Auxiliary angles for the Svinos method

Conventional and Reverse Mark Mark II Air Balanced

𝜃𝑝 = 𝑐𝑜𝑠−1 (
𝑃2 + 𝐽2 − 𝐶2

2 ∙ 𝑃 ∙ 𝐽
) + 𝜌 𝜃𝑝 = 𝑐𝑜𝑠−1 (

𝑃2 + 𝐽2 − 𝐶2

2 ∙ 𝑃 ∙ 𝐽
) − 𝜌

𝜃𝑏 = 𝜋 − 𝜓

 d𝜃b

d𝑡
= −

𝑅

𝐶
∙
𝑠𝑖𝑛(𝜃𝑝 − 𝜃2)

𝑠𝑖𝑛(𝜃𝑝 − 𝜃𝑏)
∙
d𝜃

d𝑡
 (40)

where:
d𝜃b

d𝑡
 Beam angular velocity [rad/sec],

𝑅, 𝐶 Linkage lengths [in],

𝜃𝑏 , 𝜃2, 𝜃𝑝 Auxiliary angles [rad], and

55

d𝜃

d𝑡
 Crank angular velocity [rad/sec].

By differentiating Equation 40 with respect to time, the angular acceleration of the

walking beam is defined by Equation 41.

d2𝜃b

d𝑡2
=

d𝜃𝑏

d𝑡
∙ (

d2𝜃
d𝑡2

d𝜃
d𝑡

−
(
d𝜃𝑝

d𝑡
−

d𝜃𝑏

d𝑡
)

tan(𝜃𝑝 − 𝜃𝑏)
−

(
d𝜃𝑝

d𝑡
+

d𝜃
d𝑡

)

tan (𝜃2 − 𝜃𝑝)
) (41)

where:
d2𝜃b

d𝑡2
 Beam angular acceleration [rad/sec2],

d𝜃b

d𝑡
 Beam angular velocity [rad/sec],

d2𝜃

d𝑡2 Crank angular acceleration [rad/sec2],

d𝜃

d𝑡
 Crank angular velocity [rad/sec],

𝜃𝑏 , 𝜃2, 𝜃𝑝 Auxiliary angles [rad], and
d𝜃𝑝

d𝑡
 Pitman angular velocity [rad/sec].

The required crank angular velocity and angular acceleration arrays are already

calculated in Chapter 5.4. Equation 41 needs the time derivative of the pitman auxiliary

angle as an input for the calculation. It is calculated using the same method that

produced the beam angular velocity defined in Equation 40. The pitman’s angular

velocity is found using Equation42.

 d𝜃p

d𝑡
= −

𝑅

𝑃
∙
𝑠𝑖𝑛(𝜃𝑏 − 𝜃2)

𝑠𝑖𝑛(𝜃𝑝 − 𝜃𝑏)
∙
d𝜃

d𝑡
 (42)

where:

𝑅, 𝑃 Linkage lengths [in],
d𝜃

d𝑡
 Crank angular velocity [rad/sec], and

𝜃𝑏 , 𝜃2, 𝜃𝑝 Auxiliary angles [rad].

Equation 41 can be used in cases, when the crank angular velocity is not constant

during the pumping cycle, as both the crank angular velocity and angular acceleration

are taken into account. After following the calculation method of these variables

throughout the pumping cycle introduced in Chapter 5.4, the beam angular acceleration

variation can be determined.

56

5.5.2 Calculation of the Beam Acceleration Based on the Method Proposed by Gibbs

Gibbs introduced a different way to find the beam acceleration by using the fact,

that the polished rod vertical displacement is equal to the length of the arc covered by

the outer edge of link A, see Equation 43. (Gibbs, 2012)

 𝑠(𝑡) = 𝐴 ∙ (𝜃𝑏(𝑡) − 𝜃𝑏𝑈
) (43)

where:

𝑠(𝑡) Measured polished rod position [in],

𝐴 Linkage length [in],

𝜃𝑏 Auxiliary beam angle [rad], and

𝜃𝑏𝑈
 Auxiliary beam angle at the start of the upstroke [rad].

By expressing the angle 𝜃𝑏 from Equation 43 and differentiating the resulting

equation twice with respect to time, the beam angular acceleration is described by the

resulting Equation 44.

d2𝜃𝑏

d𝑡2
=

d2𝑠(𝑡)
d𝑡2

𝐴

(44)

where:
d2𝑠(𝑡)

d𝑡2 Polished rod acceleration [in/sec2], and

𝐴 Linkage length [in].

For this calculation only the polished rod positions registered in time –obtained

from a dynamometer survey – are required in addition to the length of linkage A. Due to

the complex nature of the operation of the sucker-rod pumping unit, the exact polished

rod position function, 𝑠(𝑡), is not known. The easiest way to produce the required beam

angular accelerations is to fit a function on the measured polished rod position points

and differentiating it twice.

The best method to describe the polished rod position function is the application of

Fourier series on the measured data, introduced in Chapter 5.4.2. Finding the proper

coefficients to describe the variation of the polished rod position throughout the

pumping cycle provides the required function by Equation 44. Since the measured

polished rod position data describe a relatively smooth variation, as shown in Figure

13, the recommended number of coefficients required to produce a Fourier function,

that properly fits the measured data is 10. (Gibbs, 2012)

To visualize the effect of the number of coefficients used in the truncated Fourier

series, Figure 38 is introduced. If 5 coefficients are used, the accuracy of the regression

will not be at an acceptable level, as indicated with the purple curve. However, if the

number of coefficients greatly exceeds 10, the resulting function will follow the

systematic noise in the variation of the measured points, which is not desired. This is

presented with the red curve that uses 30 coefficients for the calculation. The absolute

57

error of the regression is decreased, but unwanted high frequency and low amplitude

oscillations are produced due to the unnecessarily high number of coefficients.

Figure 38 Comparison of different number of coefficients used in the Gibbs method

5.5.3 A Simple Numerical Method

For validating purposes, a simple numerical method should be used to make sure,

that the more sophisticated methods produce correct results, as detailed in Chapter

5.4.1. A similar method is used in the Total Well Management, it is based on using

Equation 44. (Echometer, 2007) The acceleration of the walking beam is found from the

calculated polished rod acceleration. To find the polished rod acceleration pattern, first,

the polished rod velocity has to be determined with Equation 45, which is done by

numerical differentiation of the measured polished rod positions.

 Δ𝑠(𝑡)

Δ𝑡 𝑖
=

𝑠𝑖+1 − 𝑠𝑖

𝑡𝑖+1 − 𝑡𝑖
 (45)

where:
Δ𝑠(𝑡)

Δ𝑡 𝑖
 ith element of the numerically calculated polished rod velocity array

[in/sec],

𝑠𝑖 ith element of the measured polished rod position array [in], and

𝑡𝑖 ith element of the measured time array [sec].

58

These velocities are valid between the measured times, see Equation 27. Further

differentiating the polished rod velocity array, the acceleration of the polished rod is

determined, using Equation 46.

Δ2𝑠(𝑡)

Δ𝑡2
𝑖
=

Δ𝑠(𝑡)
Δ𝑡 𝑖+1

−
Δ𝑠(𝑡)
Δ𝑡 𝑖

𝑡𝑖+1 − 𝑡𝑖

(46)

where:
Δ2𝑠(𝑡)

Δ𝑡2
𝑖
 ith element of the numerically calculated polished rod acceleration

array [in/sec],
Δ𝑠(𝑡)

Δ𝑡 𝑖
 ith element of the numerically calculated polished rod velocity array

[in/sec], and

𝑡𝑖 ith element of the measured time array [sec].

Using Equation 44 the beam angular acceleration can be calculated from the

polished rod acceleration values. The described method is the most basic numerical

method, therefore it has larger error compared to the previously detailed methods in

Chapter 5.5.1 and Chapter 5.5.2, but its most important advantage is the elimination of

systematic errors. Due to the nature of the numerical differentiation, the resulting

polished rod acceleration values are valid at the measured times registered in the

dynamometer survey, except two missing values, one at the start and one at the end of

the array. This is not a critical problem, since usually the measured points in one stroke

are in the hundreds range, and the results are used for justifying the results of other,

more complex – and therefore more accurate – methods, if their results show good

correlation.

5.5.4 Comparison of the Calculation Methods

Figure 39 contains the beam acceleration data calculated using the three

previously detailed methods along with the results of the TWM software. The strong

correlation between the results of the simple numerical method and the two more

sophisticated methods is clearly supported based on their visual representation, the

correlation parameter is 0.9615 between the numerical data set and the results of the

calculation based on the method proposed by Svinos. The correlation between the two

more accurate methods is 0.9868, this means that the results of the methods are nearly

identical. Based on this analysis, the result of the Svinos and Gibbs methods are

accepted.

The number of Fourier coefficients used in the Gibbs method is sufficient based on

the comparison with the exact calculation method developed by Svinos. Since the

application of the Fourier series is much less cumbersome in the method proposed by

Gibbs than the calculations required by the Svinos method, the usage of the former

method is recommended to find the angular acceleration pattern of the walking beam.

59

The raw beam angular accelerations of the TWM software are acceptable, since they

nearly coincide with the numerically calculated values, however, the filtered

acceleration function is not properly calculated, as shown in Figure 39.

Figure 39 Comparison of models calculating the beam angular acceleration

60

6 Achieving Optimal Counterbalancing

Different theories on the optimal net gearbox torque are detailed in this chapter

based on extensive literature research. After the discussion on the different optimization

principles, the objective of this chapter is to provide the counterweight configuration

corresponding to the best net gearbox torque variation throughout the pumping cycle

for the investigated crank balanced sucker-rod pumping unit. By changing the

counterweight configuration valid at the dynamometer measurement to the optimum

arrangement the operation of the sucker-rod pumping unit can be improved

significantly.

For this purpose, an artificial intelligence program was developed in C#

programming language, due to the complexity of the emerging optimization problem.

Screenshots of the program, the input and output files are included in Appendix A.

Appendix B contains the most relevant parts of the source code.

The brute force method of checking every counterweight configuration is futile,

since the total number of cases for the example problem is between 2 ∙ 1017 and 6 ∙ 1017

in the asymmetrical counterbalancing case. These boundaries were calculated based on

the number of applicable counterweights on either side the crank arms, the travel of

each counterweight on the crank arm, and the number of auxiliary weights on each main

counterweight. There were 10 different applicable counterweight types, as shown in

Table 3, resulting in 11 different cases in total by including the scenario without a main

counterweight on the selected side of the crank arm. The travel of the main

counterweights varies between 63.77 in and 84.58 in, the increment of the

counterweight position was set to 0.1 in, resulting in 638 and 846 different positions,

respectively. On each main counterweight maximum 2 auxiliary weights were allowed in

the optimization procedure, resulting in 3 different cases for each counterweight.

6.1 Theoretical Background of Torque Optimization

The optimization of the net mechanical gearbox torque seems to be a well

discussed problem due to the fact that the torque loading of the pumping unit

determines the energy requirement, and therefore the cost of the oil production.

However, some new achievements are shown in this chapter regarding the selection of

the appropriate optimization procedure.

6.1.1 Optimization of the Maximum Net Gearbox Torque

The first optimization criterion was discussed as early as 1943 by (Kemler, 1943).

The result of not having optimal counterbalancing results in energy being wasted and in

some cases can lead to equipment damage due to overloading. The optimum

counterbalancing means that the rod torque is offset in the greatest extent possible,

resulting in the minimum net gearbox torque and therefore minimizing the peak

torsional loading on the prime mover. (Richards, 1957) The corresponding

counterweight configuration is found by selecting the counterbalance torque that

61

equalizes the peaks of the net gearbox torque in the upstroke and downstroke. (Takács,

2015) As discussed in (Rowlan, McCoy, & Podio, 2005) in a balanced operation the peaks

of the net gearbox torque function in the upstroke and downstroke are approximately

equal.

During the optimization, the changes in the rotary inertial torque should be

considered in addition to the changes of the counterbalance torque to improve accuracy.

Previous works did not include the in-depth investigation of asymmetrical

counterweight configurations in the torque optimization procedure. If identical

counterweights are used to counterbalance the pumping unit, only the magnitude of the

counterbalance torque is affected by their respective placements on the crank arms, as

shown in Figure 19. By using an asymmetrical counterweight configuration, the

secondary phase angle, 𝜏′ has to be considered, as shown in Figure 21. By having this

new degree of freedom in the optimization, the net gearbox torque can have the same

maximum value at three different times in one pumping cycle. This results in a smaller

peak net gearbox torque compared to using identical counterweights.

6.1.2 Optimization of the Cyclic Load Factor

The calculation method presented by (Takács, 1990) focuses on introducing a

more advanced calculation method to produce the optimal counterbalance torque than

the one specified in the API Spec 11E (API, 2008). The objective of this optimization

procedure is to achieve the smallest cyclic load factor (CLF) using an iterative method;

CLF is defined by Equation 47. The merit behind this optimum is that the lowest power

requirement by the prime mover is obtained at the minimal CLF value. Using the least

amount of energy to produce a given liquid regime increases the profitability of the oil

production.

𝐶𝐿𝐹 =

√∫ (𝑇𝑛𝑒𝑡(𝜃))
2
d𝜃

2𝜋

𝜃=0
2𝜋

∫ 𝑇𝑛𝑒𝑡(𝜃)d𝜃
2𝜋

𝜃=0
2𝜋

(47)

where:

𝐶𝐿𝐹 Cyclic load factor [-], and

𝑇𝑛𝑒𝑡(𝜃) Net gearbox torque versus crank angle function [in lb].

The cost-efficiency of the sucker-rod pumping can be greatly increased using the

proper counterbalancing of the unit. In (Takács, 1990) the optimized result improved

the CLF of the investigated unit from 1.594 to 1.400, and the overloading of the gearbox

from 157.5% to 123.3%. By optimizing for a different objective – reducing the peak net

gearbox torque – the overloading of the unit could have been reduced below 123.3%.

This condition slightly increases the cost of pumping but improves the lifetime of the

gearbox substantively, as shown in Figure 4.

62

6.1.3 Introduction of the Modified Cyclic Load Factor

A modified CLF parameter was developed, that generalizes Equation 47 by

considering the varying crank angular acceleration in time. Using Equation 48, the

torque optimization of sucker-rod pumping units with varying crank angular speeds is

improved.

𝐶𝐿𝐹𝑚𝑜𝑑 =

√∫ (𝑇𝑛𝑒𝑡(𝑡))
2
d𝑡

𝑇

𝑡=0
𝑇

∫ 𝑇𝑛𝑒𝑡(𝑡)d𝑡
𝑇

𝑡=0
𝑇

(48)

where:

𝐶𝐿𝐹𝑚𝑜𝑑 Modified cyclic load factor [-],

𝑇𝑛𝑒𝑡(𝑡) Net gearbox torque variation in time [in lb], and

𝑇 Period time of the investigated pumping unit [sec].

In the past Equation (47) was used mainly because the crank angle was the basis of

the torque analysis, every parameter was calculated at equally distributed crank angle

values. In these cases, the constant increase of the crank angle function was assumed.

The basis of Equation (48) is time, therefore this new equation is capable to consider the

precisely calculated crank angle variation throughout the pumping cycle.

6.2 Change of Crank Acceleration due to Different Counterbalancing

By modifying the counterweight configuration, the acceleration pattern of the

walking beam and the crank arm will change, however, this effect cannot be determined

from only one dynamometer measurement. The operation of sucker-rod pumping

systems is too complex for the exact determination of these variations. Based on two

dynamometer measurements carried out on a M-640D-305-192 unit – its properties are

shown in Table 6 – before and after the counterweight modification, the acceleration

patterns are compared.

Table 6 Input data for the pumping unit in the investigation

of the change in crank angular acceleration

Pumping unit designation M-640D-305-192

Manufacturer Lufkin

Geometry type Mark II

Maximum torque loading of the gearbox 640,000 in lb

Maximum polished rod load 30,500 lb

Nominal stroke length 192 in

Structural unbalance -7,160 lb

63

Crank type 192130MRO

Gearbox mass moment of inertia 3,920 lbm ft2

Beam mass moment of inertia 4,621,470 lbm ft2

Rotation Counterclockwise

Counterweights
4pcs. OARO, placed 0 in

from long end of crank

Crank moment 905,690 in lb

Crank mass moment of inertia (2 cranks) 788,968 lbm ft2

Crank length 130 in

Crank half-width 16 in

Pumping speed 6.32 SPM

In the original case 4pcs. OARO counterweights were placed 0 in from the long end

of the crank arm. After the counterbalance optimization of the TWM software the main

counterweights were moved 3.25 in towards the crankshaft and 4pcs. OAS auxiliary

counterweights were installed to increase the counterbalance torque. The net torque

curves and the crank angular acceleration curves before and after the modification of

the counterweight configuration are shown in Figure 40.

Figure 40 Effect of different counterweight configuration on the crank acceleration

64

When measuring correlation between two data series, Equation 49 is used to get a

quantitative result. If the value is 1, there is a stochastic positive relationship between

the two data series. At -1 correlation value, there is a negative and strong connection. As

the correlation value approaches 0, it indicates a weak or no correlation between the

two investigated data series. (Microsoft, 2019)

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =

∑ ((𝑥𝑖 − 𝑥̅) ∙ (𝑦𝑖 − 𝑦̅))𝑁
𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2𝑁
𝑖=1 ∙ ∑ (𝑦𝑖 − 𝑦̅)2𝑁

𝑖=1

(49)

where:

𝑁 number of data points [-],

𝑥𝑖 , 𝑦𝑖 ith element of the data series [var.], and

𝑥̅, 𝑦̅ average of the respective data series [var.].

The correlation between the changes in the net gearbox torque and the differences

in the crank and beam acceleration patterns are -0.16 and 0.085, respectively. These

values represent a poor correlation. As the peak torque decreases in the balanced case,

the resulting crank angular acceleration function also has lower peak values, but since

the correlation is not strong enough, the new crank angular acceleration function cannot

be approximated using the initial crank angle variation and the two net torque

variations throughout the pumping cycle. Creating a calculation procedure capable of

executing the aforementioned task would increase the accuracy of the net gearbox

torque optimization procedures. Since such a method is not available, the crank angular

acceleration values determined from the dynamometer survey are used to find the

inertial torques under different counterbalancing conditions.

6.3 Particle Swarm Optimization Technique

The particle swarm optimization (PSO) algorithms are metaheuristic artificial

intelligence techniques, that use an iterative process to find the optimum to a given

problem. There are numerous different methods in this group, their different properties

enable the engineers and mathematicians to solve a wide variety of optimization

problems by selecting the proper type. (Engelbrecht, 2007)

6.3.1 General Properties of the PSO Method

The use of a PSO technique is preferred, when the direct calculation of the

optimum condition is not possible, and when the other multi-dimensional algorithms fail

to find the global optimum because of the high number of the local optima in the

solution space. Another advantage of this method is its flexibility. The general

optimization method can be customized with little effort to the solve the task at hand

effectively by either modifying the calculation procedure, or changing the constants used

in the method to create an improved optimization process. This algorithm provides a

solution even if the specified fitness function is not continuously differentiable. Due to

65

the nature of the method, the global optimum is not guaranteed to be the result of the

calculation, but the results are better than any direct calculation method available.

(Eberhart & Kennedy, 2001)

The method uses a given number of candidates, improving their position in the

solution space in each calculation step. The determination of the new positions is carried

out by minimizing the fitness – an error function value – of the candidates. The

visualization of this step-by-step improvement shows remarkable resemblance to the

movement of flock of birds, or school of fish. (Fernández-Martínez, 2012) Figure 41

shows the simplified flowchart of the applied PSO algorithm.

As the first step of the optimization procedure the solution space is populated with

particles, then the fitness value of every candidate solution is determined. The

initialization of the particles is usually carried out by randomly generating their

positions, independently from each other. Each particle is defined by a vector; its

coordinates define the position of the particle in the respective dimensions. The

dimension of the required vector is determined by the number of independent variables

in the optimization procedure.

false

true

START

Initialize the particles

Calculate the fitness value for every particle

Find the best particle of the swarm

Determine the velocity of the other particles

Update the positions of the particles

Termination
 criterion satisfied?

END

Figure 41 General flowchart of the particle swarm optimization method

The formula that defines the velocity vector for every particle is customizable to

produce a robust optimization procedure for the selected task. The objective of the

66

following iteration steps is to improve the global best fitness value. A termination

criterion is specified to end the calculation process. This constraint is usually the

number of iteration steps, but this condition can be tailored to handle the specific

optimization task at hand.

The customizability is one of the main advantages of the PSO algorithm. The

intervals from which the parameters can take value is not always constant. Another

great benefit of the presented calculation method is the relatively easy modification of

the optimization goal. Changing the procedure to produce the fitness value for every

point using a different error function is straightforward.

6.3.2 Using the PSO Algorithm in the Net Gearbox Torque Optimization of Sucker-

Rod Pumping Units

The previously introduced general PSO algorithm is customized to handle the

necessary optimizations introduced in Chapter 6.1. The initialization of the particles is

done by randomly generating their position in the investigated hyperdimensional space.

Every component of their positions are generated independently using a uniform

distribution within the boundaries of the respective dimension. Every component of the

position vector must be non-negative, the upper limit is constant for the main

counterweight type and for the number of auxiliary weights used. The upper boundary

of the counterweight distance from the long end of the crank depends on the crank and

the main counterweight used. When the main counterweight type is changed, the upper

boundary of its position must be determined using data similar to Table 3.

The number of particles used in the optimization procedure mainly depends on the

smoothness of the search space. For smooth surfaces smaller swarm sizes are sufficient,

usually 30 particles provide the optimum solution in these cases. (Engelbrecht, 2007)

However, in the optimization of the net gearbox torque the fitness function is

discontinuous with numerous local optima. Based on the results of multiple test runs the

swarm size was set to 500. A smaller number of particles provided inferior results even

with increased number of iteration steps. Using more particles provided nearly identical

results with increased simulation times.

The calculation of the fitness value for every particle is carried out using the

criteria introduced in Chapter 6.1. The fitness functions are the maximum net gearbox

torque in the pumping cycle, and the modified cyclic load factor, introduced in Chapter

6.1.1 and Chapter 6.1.3, respectively. If the pumping speed varies during the pumping

cycle, the changes in the counterweights type and positions alters the value of 𝐼𝑠.

Therefore, during the calculation of the new counterbalance torque the rotary inertial

torque must be determined with the new mass moment of inertia. This circumstance

makes the process more complex than the previous optimization methods, which

neglected the inertial torques.

The global best solution is then selected, that will attract the other points to

produce an improved counterweight configuration. The next step in the procedure is the

determination of the velocity of every particle using Equation 50. The relevant

67

parameters to find the velocity vector are the current position, the position

corresponding to the lowest fitness value the selected candidate ever had, and the global

best position in the current iteration step.

 𝑉𝑖+1,𝑗 = 𝑊 ∙ 𝑉𝑖,𝑗 + 𝐶1 ∙ 𝑅𝑛𝑑1 ∙ (𝐵𝑃𝑖,𝑗 − 𝑃𝑖,𝑗) + 𝐶2 ∙ 𝑅𝑛𝑑2 ∙ (𝐺𝐵𝑃𝑖 − 𝑃𝑖,𝑗) (50)

where:

𝑉𝑖,𝑗 jth velocity component of a particle in the ith iteration step [-],

𝑊 Damping factor [-],

𝐶1, 𝐶2 Acceleration coefficients [-],

𝑅𝑛𝑑1, 𝑅𝑛𝑑2 Random numbers from [0,1] [-],

𝐵𝑃𝑖,𝑗 jth component of the best position of a particle in the ith iteration

step [-],

𝑃𝑖,𝑗 jth component of the position of a particle in the ith iteration step [-],

and

𝐺𝐵𝑃𝑗 jth component of the global best position [-].

The damping factor decreases the maximum vector length at every iteration,

ensuring the convergence of the optimization. For the investigated torque optimization

problems, a damping factor of 0.99 provided a good convergence; if a smaller number is

used, the particles initially distant from the global best position cannot travel through

the solution space, therefore the optimization procedure can end prematurely.

The acceleration coefficients control the behavior of the particles, 𝐶1 considers the

particles attraction to its own best position, 𝐶2 determines the effect of the global best

position on the particle. Their ideal absolute and relative values depend on the

optimization task, usually a similar pair of values provide a robust and efficient

calculation procedure. (Engelbrecht, 2007) Both of these parameters were set to 2 after

series of testing, with these values the maximum velocity component was ideal. With

greater acceleration values the particles would have greater velocities and therefore

could miss optimum solutions on their trajectories. If smaller numbers were used, the

required number of iteration steps had to be increased to achieve similar accuracy.

The random numbers – 𝑅𝑛𝑑1 and 𝑅𝑛𝑑2 – included in Equation 50 create a more

robust and versatile optimization procedure by adding uncertainty to the stochastic

nature of the equation. These variables are chosen randomly and independently from

the [0, 1] interval.

Maximum and minimum values can be specified for every component of the

calculated velocity vector, and the resulting position coordinates. While solving the

example problem, the upper limit for the velocity vector was set to 10. Using a hard limit

ensures that the distant particles from the current best position will not immediately

move to its local vicinity and therefore possibly missing better solutions in the process.

The termination criterion was specified by the allowed number of iteration steps.

During extensive testing of the introduced PSO program, 30 iteration steps proved to be

68

sufficient to find the optimal counterweight configuration considering the constraints of

the optimization process.

The optimization of the net gearbox torque is a complex task if all the relevant

torque components are considered. Even in the symmetrical counterweight

configuration case there are three independent variables: the weight of the

counterweights, the number of the used auxiliary counterweights and the counterweight

placement from the long end of the crank. In the asymmetrically placed counterweight

case however, the number of independent parameters rises to twelve: the type of the

main counterweight, the number of the used auxiliary counterweights and the distance

of the main counterweight from the end of the crank for both sides for both cranks

independently. A twelve-dimensional vector contains these data; therefore, the

optimization of the mechanical net gearbox torque has to be carried out in a twelve-

dimensional solution space. Every combination of the coefficients in the vector will alter

the resulting net torque variation during the production cycle.

Depending on the type of the main counterweight, the maximum travel distance on

the crank arm is defined in Table 3. This is the upper boundary of the counterweight

displacement used in the optimization, it must be reconsidered at each calculation step.

Additional constraints – like only allowing counterweights from the same type with

different positions on the crank arm – are implemented with little effort.

6.3.3 Investigating a Particle in the PSO Algorithm of the Example Problem

The calculation procedure defined in Figure 41 and detailed in Chapter 6.3.2 is

illustrated with the investigation of a selected particle in asymmetrical counterbalancing

case using the peak net gearbox torque as the optimization criterion. The selected

particle is randomly generated in the twelve-dimensional solution space considering the

proper upper and lower boundaries for each component of its position.

The first four elements of the vector determine the types of the main

counterweights used. Therefore, the fitness function is not continuously differentiable, it

has discontinuities at every main counterweight type change in these four dimensions.

To find the type of the main counterweight from the corresponding vector component,

its value is rounded to the nearest integer. The following four vector coordinates define

the counterweights’ distance from the long end of the crank (D in Figure 17). The last

four coordinates give the number of auxiliary weights used on the main counterweights,

limited to 2 pcs. The fitness function has discontinuities in these four dimensions as well.

The procedure of the PSO optimization to find the optimal net gearbox torque is

illustrated in Table 7. After randomly generating the first candidate – shown in the first

column – its fitness value is determined using the torque determination process detailed

in Chapter 5. In total, 500 particles are generated randomly, the best one in the first

iteration step is introduced in the second column. The candidate with the global best

position will attract every other particle based on their corresponding distance. The

velocity vector calculated using Equation 50 is included in the third column of Table 7.

69

Even though the first four vector components represent the counterweight types,

numerical values must be used as vector coordinates in the calculation procedure. The

numerical values in these cases were rounded to the nearest integer and the

counterweight types were selected. In this case 0 meant that no counterweight was used

on the specific side of the crank arm. The index of the counterweights in Table 3 was

used to convert the numerical values into the counterweight types.

The position of the investigated particle in the second iteration step is determined

using the calculated velocity vector and its initial position. The fourth column of Table 7

contains the new position, resulting in a smaller fitness value compared to its initial

state. The improvement of the fitness value is not necessarily true for every particle at

every calculation step, but due to the robust nature of the algorithm, both the global best

fitness value and the average fitness value tends to decrease with every successful

iteration step.

During this investigation no additional constraints were used for the position

coordinates of the investigated particle. The implementation of such a limiting factor e.g.

specifying the usage of identical counterweights is added easily to the optimization

procedure.

Table 7 Detailed solution of the Example Problem with the PSO Algorithm

70

At the end of every iteration step the best position is determined and is compared

to the global best position in the previous calculation step. The global best position is

replaced, when a new position is found with smaller fitness value. Figure 42 shows the

evolution of the peak net gearbox torque with the iteration steps. In total 30 iterations

were carried out, the solution was achieved after the 23th calculation step.

Velocity of

the

Investigated

Particle

Numerical

value
Used value

Numerical

value
Used value

Numerical

value

Numerical

value
Used value

1st CW. Type 4.78 5 (3CRO) 7.82 8 (OARO) 1.91 6.69 7 (1RO)

2nd CW. Type 5.21 5 (3CRO) 8.13 8 (OARO) 0.21 5.42 5 (3CRO)

3rd CW. Type 8.34 8 (OARO) 7.62 8 (OARO) -0.14 8.2 8 (OARO)

4th CW. Type 3.89 4 (5ARO) 6.94 7 (1RO) 6.94 10.83 10 (OORO)

1st CW. Distance 50.3 50.3 in 14.26 14.3 in -10 40.3 40.3 in

2nd CW. Distance 61.11 61.1 in 11.58 11.6 in -10 51.11 51.1 in

3rd CW. Distance 4.06 4.1 in 10.16 10.2 in 9.91 13.97 14 in

4th CW. Distance 72.68 72.7 in 4.92 4.9 in -10 62.68 62.7 in

1st CW. No. Aux Weights 0.32 - 1.45 1 pcs. OAS 0.51 0.83 1 pcs. 1S

2nd CW. No. Aux Weights 1.73 2 pcs. 3BS 1.03 1 pcs. OAS -0.68 1.05 1 pcs. 3BS

3rd CW. No. Aux Weights 1.12 1 pcs. OAS 0.67 1 pcs. OAS 0.32 1.44 1 pcs. OAS

4th CW. No. Aux Weights 1.37 1 pcs. 5CS 1.98 2 pcs. 1S 0.02 1.39 1 pcs. OOS

Peak Net Torque [k in lbs]

(Fitness Value)
1022.03 1022 504.95 505 988.03 988

Initial Position of

the Investigated

Particle

Best Particle in the

First Iteration Step

Position of the

Investigated

Particle After the

First Iteration Step

71

Figure 42 The improvement in the peak net gearbox torque value with the iteration steps

6.4 Sensitivity Analysis

A traditional sensitivity analysis cannot be carried out because the applicable

counterweights have discrete masses and moments of inertia. For illustration purposes

only the simplest analysis can be presented, since in the introduced asymmetrical

counterbalancing case the number of the relevant dimensions is 12. Therefore, the

representation of the parameter sensitivity is shown for the symmetrical counterweight

configuration only, with fixed number of auxiliary weights. In this special case there are

only two independent parameters: the type of the main counterweights and their

displacement from the long end of the crank. Figure 43 shows the results for the

sensitivity analysis, where 2 auxiliary weights are used, the position of the main

counterweights is investigated between 0 and 59 in from the long end of the crank. In

this figure the peak net gearbox torque is shown as a function of the applied

counterweights and their respective position. It is clearly visible, that in this

oversimplified case there are multiple local optima; the determination of the global

optimum is difficult. The data used to create Figure 43 and a 3D representation is

included in Appendix C. The number of local optima increases rapidly as more

independent parameters allowed to influence the maximum net gearbox torque. The

introduced figure supports the previous assumptions on the necessity of a numerical

calculation method in the torque optimization procedure.

72

Figure 43 Results of the sensitivity analysis in the simplest symmetrical case

6.5 Finding the Optimum Counterweight Configuration

The original counterweight configuration is 4pcs. ORO main counterweights placed

at 10 in from the long end of the crank arm, shown in Table 1. The resulting peak net

gearbox torque is 597.3 k in lbs, shown in Figure 44. The value of the calculated 𝐶𝐿𝐹𝑚𝑜𝑑

is 1.415. The calculation procedure detailed in Chapter 6.3 is used to produce the

optimal counterweight configurations along with the optimal net gearbox torque

functions with the specified constraints in the optimization procedure.

6.5.1 Optimization of the Peak Net Gearbox Torque

6.5.1.1 Using Identical Counterweights

In this case the counterweights and the auxiliary weights must be identical. When

only allowing symmetrical counterbalancing, the placement of the main counterweights

cannot differ. A different position of one counterweight only changes the amplitude of

the counterbalance torque and the rotary inertial torque, therefore the investigation of a

symmetrical solution is sufficient, because there is no benefit placing the same

counterweights at different positions on the crank arm.

The optimal symmetrical counterweight configuration is found to be 4pcs. OORO

main counterweights with 4 pcs. OOS auxiliary counterweights, placed at 25.9 in from

the long end of the crank arm. The maximum net gearbox torque is 491.8 k in lbs, the

𝐶𝐿𝐹𝑚𝑜𝑑 is 1.397. The net torque variation for the original case and the optimized case

are shown in Figure 44.

73

Figure 44 Optimum net gearbox torque using symmetrical counterweight configuration

6.5.1.2 Using Different Counterweights

The optimal asymmetrical counterweight configuration is included in Table 8. No

restrictions were used in this scenario to limit the calculation process, all twelve

parameters shown in Table 7 can change independently.

Table 8 Asymmetrical optimum counterweight configuration

Position
Main

CW

Auxiliary

CW

Distance

from long

end of crank

1st crank top OORO 2 pcs. OOS 31.8 in

1st crank bottom OORO 1 pc. OOS 17.1 in

2nd crank top OORO 2 pcs. OOS 1.49 in

2nd crank bottom 5ARO 2 pcs. 5S 82 in

74

The resulting secondary phase angle is 7.43 deg, the maximum net gearbox torque

is 418.2 k in lbs, the 𝐶𝐿𝐹𝑚𝑜𝑑 is 1.429. The net torque variation is shown with blue in

Figure 45. The phase shift of the counterbalance torque causes the net gearbox torque

to have 3 maximum points instead of 2 in the symmetrical case. This lowers the peak net

torque by 73.6 k in lbs, which is nearly 11.5% of the rating of the gear reducer. It is

important to consider the drop of the minimum net gearbox torque since the negative

torques can also overload the gear reducer if the rating is exceeded.

Figure 45 Optimum net gearbox torque using asymmetrical counterweight configuration

6.5.2 Optimization of the Modified Cyclic Load Factor

In this case the fitness value is determined based on the 𝐶𝐿𝐹𝑚𝑜𝑑 value calculated

from the twelve-dimensional arrays used in the PSO calculation procedure. The

counterweight configuration resulting in the minimum 𝐶𝐿𝐹𝑚𝑜𝑑 is included in Table 9.

The resulting secondary phase angle is -0.03 deg, the maximum net gearbox torque is

484.1 k in lb, the 𝐶𝐿𝐹𝑚𝑜𝑑 is 1.386. The net gearbox torque variation is shown in Figure

46.

75

Table 9 Counterweight configuration providing minimum CLFmod

Position
Main

CW

Auxiliary

CW

Distance

from long

end of crank

1st crank top OORO 2 pcs. OOS 14.1 in

1st crank bottom ORO 1 pc. OS 8.1 in

2nd crank top 5CRO 2pcs. 5CS 19.2 in

2nd crank bottom 1RO 2 pcs. 1S 16 in

Figure 46 Torque optimization producing minimal modified cyclic load factor

6.6 Comparison with TWM Optimization

Figure 47 shows the proposed symmetrical and asymmetrical optimized net

torque variation along with the results of the TWM software. By incorrectly neglecting

the inertial torques from the torque analysis, and only investigating symmetrical

76

counterweight configurations, TWM gives an optimum peak net torque of 597.3 k in lbs

with a 1.42 𝐶𝐿𝐹𝑚𝑜𝑑 value. By improving the evaluation of the dynamometer survey and

the calculation of the mechanical net gearbox torque the resulting solution describes the

real operating conditions more accurately. Using these data, the optimization procedure

gives more reliable optimum counterweight configurations.

Figure 47 Comparison of the torque optimization with TWM results

6.7 Conclusions of the Optimization Procedures

Optimizing the net gearbox torque of a sucker-rod pumping unit is essential to

prevent overloading and to save operating costs. Table 10 contains the results of the

torque optimization carried out on the example problem. The optimum result provided

by the TWM software neglects the inertial effects, therefore it mischaracterizes the net

gearbox torque.

The optimization procedure developed creates the optimum net gearbox torque

with different constraints on the corresponding counterweight configuration. The

introduced symmetrical counterweight configuration provides a slightly higher peak net

torque, but smaller modified cyclic load factor compared to the asymmetrical case. The

counterweight configuration corresponding to the minimal modified cyclic factor in the

investigated cases does not provide significantly better results, than the symmetrical

counterweight configuration.

77

Table 10 Summary of the optimization results

Optimization

Objective

Peak Net

Gearbox Torque

[k in lbs]

𝐶𝐿𝐹𝑚𝑜𝑑

[-]

𝜏′

[deg]

Original Case - 597.31 1.415 0

TWM Optimum Result* - 597.33 1.420 0

Results of the Optimization

Identical Counterweights and

Positions
Peak Torque 491.80 1.397 0

No Constraint in the Optimization
Peak Torque 418.20 1.429 7.43

𝐶𝐿𝐹𝑚𝑜𝑑 484.09 1.386 -0.03

Same Counterweight

Configuration on Both Cranks
Peak Torque 419.20 1.555 10.69

If the overloading of the pumping unit can be prevented by solving the

optimization problem using the same main and auxiliary counterweights, the

symmetrical optimum counterweight configuration is recommended. However, if the

symmetrically placed counterweights cannot reduce the peak net torque acting on the

gearbox below its torque rating, using non-identical counterweights can prevent

overloading. The proper asymmetrical counterweight configuration will always result in

a lower peak net gearbox torque value, compared to the symmetrical cases.

6.8 Further research possibilities

There are possible future research paths based on the introduced calculation

procedures. The exact determination of the change in the crank and beam angular

acceleration as a function of the net gearbox torque would be a great addition, but it

seems unlikely, that a general solution exists for said problem.

The incorporation of the proposed asymmetrical counterbalancing calculations in

works like (Konz, 2018) would be beneficial. Using the introduced methods to update

the software evaluating the dynamometer surveys could result in more favorable

operating conditions for sucker-rod pumping units. The calculation procedure presented

can be modified to improve the results of a multi-balance technology introduced in

(Feng, Ding, & Jiang, 2015).

The method introduced can be modified and applied to sucker-rod pumping units

with variable speed drives, further improving their efficiency. For this, however, further

study of the complex interactions between the controlled crank angular acceleration

pattern by the used microcontroller and the resulting net gearbox torque function is

needed.

78

7 New Scientific Results

7.1 Thesis 1

A successive approximation procedure was introduced in Chapter 5.3.2 that

produces the crank angle values corresponding to the measured polished rod positions

with a higher accuracy than previously existing methods. Since the crank angle variation

in time is not measured by a dynamometer survey, it must be calculated from the

measured polished rod positions and the kinematic parameters of the sucker-rod

pumping unit. The exact calculation procedure developed here has a high importance

because any errors in the crank angle vs time function affect almost every other

parameter in the evaluation of the torque conditions of sucker rod pumping units. By

minimizing the error in the first calculation step, the accuracy of torque calculations as

well as counterbalance optimizations are improved.

7.2 Thesis 2

A complex calculation method was developed in Chapter 5.4 and 5.5, that produces

the crank angular velocity, the crank angular acceleration and the beam angular

acceleration variation throughout the pumping cycle. The proposed method has

superior precision compared to the most widely used software in the industry. The

numerical calculation models presented have proved to be strong validating tools to

help verify the results of the more complex, but cumbersome calculation methods.

7.3 Thesis 3

The effects of asymmetrical counterweight configurations on the counterbalance

torque vs time function were investigated; that is an often ignored condition in the

professional literature. Asymmetrical counterweight placement affects the net gearbox

torque vs time function. In this work a secondary phase angle – 𝜏′ – was introduced to

adequately describe the deviation of the counterbalance torque from the symmetrical

cases. The new equations developed in Chapter 5.2.4 permit the accurate calculation of

inertial torques and were incorporated in the gearbox torque optimization procedures

introduced.

7.4 Thesis 4

A novel technique to solve the optimization of gearbox torque conditions was

developed using the particle swarm optimization (PSO) method. The calculation

procedure can be used for both symmetrical and asymmetrical counterweight

configurations. It can perform optimizations for different scenarios: minimizing the peak

net torque or the cyclic load factor (CLF) values. As proved in this work, use of

asymmetrical counterweight placements can significantly reduce the peak net gearbox

torque; an often overlooked practice in the oil field.

79

7.5 Thesis 5

A new calculation procedure was created to improve the crank angle values in the

proximity of the start of the upstroke and downstroke. This validation is required if the

dynamometer card does not contain the topmost or lowermost point in the

dynamometer survey. By using the proposed method, the incorrect calculation of the

crank angle in the wrong pumping phase is prevented, therefore, reducing the error in

the determination of the crank angular velocity and crank angular acceleration values.

7.6 Thesis 6

A modified cyclic load factor – 𝐶𝐿𝐹𝑚𝑜𝑑 – was developed to describe the relative

power consumption of the prime mover with a higher accuracy. This new parameter

considers the varying crank angular velocity, therefore it gives improved results when a

sucker-rod pumping unit is driven by a high slip, or ultra-high slip electric motor.

80

8 Summary

In the first part of the thesis the operation of the sucker-rod pumping installation

was detailed, followed by the introduction of the measurement by the most dominant

testing equipment, the electronic dynamometer.

The evaluation of the dynamometer survey was improved, compared to the

previous publications and software used in the petroleum industry. The first important

scientific result is the creation of a high-accuracy calculation method to find the crank

angles corresponding to the measured polished rod position values. With these more

accurate crank angles, the interpretation of the dynamometer survey and the torque

analysis will have smaller errors.

The calculation of the angular acceleration of the crank arm and the walking beam

was improved, ensuring the accurate description of the inertial torques during the

pumping cycle. Every calculation presented is able to consider the varying crank velocity

of pumping units driven by high slip or ultra-high slip prime movers. Several previously

published methods, basic numerical methods, and novel calculation procedures were

introduced and compared, to provide the variation of the necessary variables in time

with the highest accuracy possible. The application of Fourier series was essential to

improve the calculation of the relevant angles and their acceleration pattern during the

pumping cycle.

The complete calculation of the actual net gearbox torque variation was detailed

while solving an example problem to help the better understanding of the proposed

methods. The proper inclusion of the inertial torques can change the net gearbox torque

function significantly, as shown in the comparison with the results of the TWM software.

Most importantly, the in-depth investigation of the effect of asymmetrically placed

counterweights on the crank arms was carried out. In previous works application of

asymmetrically placed counterweights was not advised, because its effect on the net

gearbox torque was unknown. The secondary phase angle was defined to describe the

lead- or lag of the center of gravity of the system containing the counterweights and the

crank from the crank centerline.

Based on the proposed dynamometer survey interpretation, the determination of

the optimum net gearbox torque was carried out using two different optimization

criteria. A modified cyclic load factor was introduced to improve the efficiency

calculation of the sucker-rod pumping units with varying crank angular velocities. In

previous works the cases with non-constant crank angular velocities were not taken

properly into account. If the pumping unit is overloaded in the best cyclic load factor

case, then a different optimization criteria was used to protect the gearbox: the

maximum mechanical net gearbox torque.

A particle swarm optimization technique was developed to find the counterweight

configuration that produces the optimum torque loading of the gearbox. Using this

method, better torque loading was achieved than the results of previously published

methods and software used in the industry by considering the asymmetrical

81

counterweight configurations. Using the secondary phase angle as an additional degree

of freedom in the optimization procedure, the results were superior compared to the

symmetrical counterbalancing cases.

The knowledge of numerous parameters is required by the complete torque

analysis, as seen in the proposed thesis. Some of these variables are usually unknown for

the production engineers, or would require extensive and expensive measurements to

determine their proper values. Several practical equations are introduced to give a

reasonable approximation of these parameters enabling the operators of the sucker-rod

pumping unit to carry out an in-depth torque analysis and therefore improve the

economic value of the installation.

82

9 Összefoglalás

Az értekezés első részében a himbás-rudazatos mélyszivattyúk működési

mechanizmusa részletesen bemutatásra került, majd a legelterjedtebb mérési módszer –

az elektronikus dinamométer – ismertetése következett.

Ezt követően a dinamométeres mérések a korábbi publikációkhoz és az

olajiparban használt szoftverekhez képest továbbfejlesztett kiértékelési módszerének

bemutatása következett. Az első fontos tudományos eredmény egy nagy pontosságú

számítási módszer létrehozása a mért simarúd pozícióknak megfelelő forgattyúszögek

meghatározásához. Ezekkel a pontosabb forgattyúszög értékekkel a dinamométeres

mérés kiértékelése és a közlőmű nyomatékelemzése kisebb hibákkal terhelt eredményt

hoz.

A forgattyúkar és a himbagerenda szöggyorsulásának meghatározási módszerét

fejlesztettem, így biztosítva a tehetetlenségi nyomatékok pontos leírását az egész

szivattyúzási ciklus alatt. Minden bemutatott számítási lépés figyelembe veszi a nagy

szlipű vagy ultra nagy szlipű elektromotorok által hajtott szivattyúegységek változó

forgattyúszög-sebességét. Számos korábban publikált számítási módszert,

egyszerűsített numerikus megközelítéseket és új számítási eljárásokat vezettem be és

hasonlítottam össze, hogy a szükséges változók időbeni változásának leírását a lehető

legnagyobb pontossággal biztosítsam. A Fourier sorok alkalmazása elengedhetetlen volt

a szögek és gyorsulási mintázatuk kiszámításához a szivattyúzási ciklus során.

A közlőmű eredőnyomaték-változásának teljes kiszámításának módszerét

részletesen kidolgoztam, miközben egy példa problémát megoldva segítettem a javasolt

módszerek könnyebb megértését. A tehetetlenségi nyomatékok megfelelő beépítése a

számítási módszerbe jelentősen megváltoztathatja a közlőmű eredő

nyomatékterhelését, amit a TWM szoftver eredményeivel való összehasonlítás is

alátámaszt.

Az értekezés legfontosabb számítási része az aszimmetrikusan elhelyezett

ellensúlyok hatásának mélyreható vizsgálata volt. Korábbi publikációkban és

munkaanyagokban az aszimmetrikusan elhelyezett ellensúlyok alkalmazása nem volt

ajánlott, mert annak hatása a közlőmű eredőnyomatékára nem volt ismert. Definiáltam a

másodlagos fázisszöget, ami pontosan leírja az ellensúlyokat és a hajtókart tartalmazó

rendszer súlypontjának szögeltérését a forgattyúkar középvonalától.

A javasolt dinamométeres mérés értelmezése alapján az optimális eredő

közlőműnyomaték meghatározása egy új optimalizálási eljárás segítségével történt, ahol

két különböző optimalizálási kritérium került alkalmazásra. Módosított ciklikus

terhelési tényezőt vezettem be a himbás-rudazatos szivattyúegységek hatékonysági

számításának javítására változó forgattyúszög-sebességek esetére. Korábbi munkákban

a nem állandó hajtókar szögsebességű eseteket nem vették megfelelően figyelembe. Ha a

szivattyúegység a legjobb ciklikus terhelési tényező esetén túl van terhelve, akkor egy

másik optimalizálási kritériumot használtam a közlőmű védelmére: azon eredő

83

közlőműnyomaték-függvény meghatározása, amelyhez a minimális csúcsnyomaték

tartozik.

Egyéni részecske raj optimalizálási technikát fejlesztettem ki, hogy megtaláljam azt

az ellensúly konfigurációt, amely biztosítja a közlőmű optimális nyomatékterhelését.

Ezzel a módszerrel az aszimmetrikus ellensúly-elhelyezések figyelembevételével jobb

nyomatékterhelést értem el, mint a korábban publikált módszerek és az iparban

használt szoftverek eredményei. A másodlagos fázisszöget további szabadságfokként

használva az optimalizálási eljárásban a minimális csúcsnyomatékok meghatározásának

eredményei jobbak lettek, mint a szimmetrikusan elhelyezett ellensúlyokat tartalmazó

esetek.

A közlőmű teljes nyomatékelemzése számos paraméter ismeretét igényli, amint azt

jelen értekezés is alátámaszt. Ezen adatok némelyikét a termelési mérnökök általában

nem ismerik, vagy pontos értékeik megállapításához költséges mérések szükségesek.

Több egyenletet vezettem be, hogy az ismeretlen paraméterek megfelelően

megbecsülhetők lehessenek, lehetővé téve a himbás-rudazatos mélyszivattyús egység

kezelői számára, hogy teljes nyomatékelemzést végezhessenek el, ezáltal javítva a

berendezés gazdasági értékét.

84

10 Bibliography

API. (2008). Specification for Pumping Units. 18th Edition. Washington DC.: American

Petroleum Institute.

BakerHughes. (2018, 08). Retrieved 04 21, 2020, from

https://www.bhge.com/sites/default/files/2018-

08/200171760_MANUAL_INSTALLATION_CONV_RM_EN.pdf

Bommer, P. M., & Podio, A. L. (2012). The beam lift handbook (1st ed.). Austin, Texas:

University of Texas at Austin.

Clegg, J. (2007). Petroleum Engineering Handbook (Vol. IV). Society of Petroleum

Engineers.

Danel. (2015, 04). Welloperation. Retrieved 4 21, 2020, from

http://welloperation.blogspot.com/2015/04/komponen-srp-sucker-rod-pump-

pompa.html

Eberhart, R. C., & Kennedy, J. (2001). Swarm Intelligence. Morgan Kaufmann.

Echometer. (2007). Well Analyzer and TWM Software Operating Manual Rev. C. Wichita

Falls, Texas: Echometer Company.

Echometer. (2011). Retrieved 04 21, 2020, from

http://www.echometer.com/Products/Transducers

Engelbrecht, A. (2007). Computational Intelligence. John Wiley & Sons, Ltd.

Feng, Z., Ding, H., & Jiang, M. (2015). New secondary balancing method saves energy for

crank-balanced rod-pumping application. SPE Production & Operations, 30(02),

141-145. doi:https://doi.org/10.2118/173889-PA

Fernández-Martínez, J. (2012, June). A Brief Historical Review of Particle Swarm

Optimization (PSO). Journal of Bioinformatics and Intelligent Control, 3-16.

Gibbs, S. G. (1975, September). Computing Gearbox Torque and Motor Loading for Beam

Pumping Units with Consideration of Inertia Effects. Journal of Petroleum

Technology, 1153-1159.

Gibbs, S. G. (2012). Rod Pumping. Modern Methods of Design, Diagnosis and Surveillance.

USA: BookMasters Inc.

Kemler, E. M. (1943). Counterbalancing Of Oil-Well Pumping Machines. API Drilling and

Production Practice, 87-107.

Konz, Á. (2018). Sucker Rod Pumping Analysis Based on Measured Electrical Parameters,

PhD Thesis.

Lea, F. (2007). Artificial Lift Selection, Chapter 10. In Petroleum Engineering Handbook

(Vol. IV.). Dallas, Texas: Society of Petroleum Engineers.

Lufkin. (1997). Conventional Counterbalance Torque (CBT) Data.

85

Microsoft. (2019). Microsoft Office Support. Retrieved 4 21, 2020, from

https://support.microsoft.com/en-us/office/correl-function-995dcef7-0c0a-4bed-

a3fb-239d7b68ca92

Pidenergy. (2016, 06). Retrieved 04 21, 2020, from https://pidenergy.com/wp-

content/uploads/2016/06/IMG_7402-1024x768.jpg

Production Technology 1. (2018, 06 06). Retrieved 04 21, 2020, from

https://production-technology.org/types-of-rod-pumping-units/

Production Technology 2. (2018, 09 03). Retrieved 04 21, 2020, from

https://production-technology.org/the-difference-between-conventional-mark-ii-

pumping-units/

Richards, C. D. (1957). Counterbalancing Beam-Type Pumping Units. 4th West Texas Oil

Lifting Short Course, (pp. 173-176). Lubbock, Texas.

Rowlan, O., McCoy, J., & Podio, A. (2005, July). Best Method to Balance Torque Loadings

on a Pumping Unit Gearbox. Journal of Canadian Petroleum Technology, 44(07), 27-

33. doi:https://doi.org/10.2118/05-07-TN3

Schlumberger. (2019). Sucker Rod Pump Surface Units Catalog. Schlumberger.

Serway, R. A. (1986). Physics for Scientists and Engineers (2nd ed.). Saunders College

Publishing.

SPE. (n.d.). PetroWiki. Retrieved from PetroWiki: https://petrowiki.org/Artificial_lift,

Accessed: 2020. 06. 20

Svinos, J. G. (1983). Exact kinematic analysis of pumping units. 58th Annual Technical

Conference and Exhibition of the SPE. SPE 012201-MS. San Francisco, California:

Society of Petroleum Engineers.

Takács, G. (1990). Új módszer mélyszivattyús himbaegységek nyomatékviszonyainak és

optimális kiegyensúlyozásának meghatározására. Kőolaj és Földgáz, 23(1), 8-13.

Takács, G. (2003). Sucker-Rod Pumping Manual. Tulsa, Oklahoma: PennWell Books.

Takács, G. (2015). Sucker-Rod Pumping Handbook. Elsevier.

Takács, G., & Kis, L. (2014). Finding the best way to calculate articulating torque from

dynamometer survey. Kőolaj és Földgáz, 17-20.

Takács, G., Kis, L., & Koncz, Á. (2015). The use of Dynamometer Data for Calculating the

Torsional Load on Sucker-Rod Pumping Gearboxes. (pp. 176-183). Lubbock, Texas:

Proceedings of the 62nd Southwestern Petroleum Short Course.

Takács, G., Kis, L., & Koncz, Á. (2016). The calculation of gearbox torque components on

sucker-rod pumping units using dynamometer card data. Journal of Petroleum

Exploration and Production Technology, 101-110. doi:https://doi.org/10.1007

/s13202-015-0172-z

86

87

11 Relevant Publications by Date

Kis, L. (2013): Calculation of the gearbox torque including inertia effects.

Doktoranduszok Fóruma, Conference Proceeding. Miskolc. 46-50

Kis, L. (2014): Comparison of beam acceleration calculation models. XXVIII. MicroCad

International Multidisciplinary Scientific Conference, Conference Proceeding.

Miskolc

Takács, G., & Kis, L. (2014): Finding the best way to calculate articulating torque on

sucker-rod pumping gear reducers. Kőolaj és földgáz, 2014/3. 17-20.

Kis, L. (2014): A dinamométeres mérések kiértékelésének nehézségei (in Hungarian).

Doktoranduszok Fóruma, Conference Proceeding. Miskolc

Takács, G., & Kis, L., & Koncz, Á. (2015): The use of Dynamometer Data for Calculating

the Torsional Load on Sucker-Rod Pumping Gearboxes, Southwestern Petroleum

Short Course, Texas, 22-23 April, 2015. 176-183.

Kis, L. (2015): Mechanical Net Torque Optimization of Sucker-Rod Pumping Units, XXIX.

MicroCad International Multidisciplinary Scientific Conference, Conference

Proceeding. Miskolc

Kis, L. (2015): The effect of the articulating inertial torque on the permissible loads of

sucker-rod pumping units, Műszaki Földtudományi Közlemények, 85(1), 118-122.

Takács, G., & Kis, L., & Koncz, Á. (2016): The calculation of gearbox torque components

on sucker-rod pumping units using dynamometer card data. Journal of Petroleum

Exploration and Production Technology, 101-110. doi: https://doi.org/10.1007/

s13202-015-0172-z

Koncz, Á., & Kis, L., & Szabó, T. (2018): New method for stripper well supervision. 18th

International Multidisciplinary Scientific Geoconference SGEM 2018, Conference

Proceedings. Sofia, Bulgaria. STEF92 Technology Ltd. 649-656. doi: https://doi.org/

10.5593/sgem2018/1.4/S06.085

88

12 List of Figures

Figure 1 The estimated number and production of different artificial lifting installations

(Takács, 2015), own edit .. 3

Figure 2 The sucker-rod pumping system (Danel, 2015) .. 5

Figure 3 A typical double-reduction gearbox used in ... 6

Figure 4 The projected lifetime change of a gearbox due to overloading 7

Figure 5 The schematic layout of the conventional sucker-rod pumping unit 8

Figure 6 The schematic layout of Air balanced sucker rod pumping unit 8

Figure 7 The schematic layout of Mark II sucker rod pumping unit ... 9

Figure 8 The schematic layout of Reverse Mark sucker rod pumping unit 10

Figure 9 The dynamometer card of the example problem .. 12

Figure 10 A modern electronic horseshoe dynamometer and a ... 13

Figure 11 Placement of the dynamometer (Echometer, 2011), own edit 14

Figure 12 Measured rod loads for the example problem .. 14

Figure 13 Measured polished rod positions for the example problem 15

Figure 14 Simplified flowchart of the determination of every torque component 17

Figure 15 Calculated rod torque for the example problem... 18

Figure 16 Torque factors calculated for the example problem ... 19

Figure 17 Counterweight placement on the crank arm (Takács, 2015), own edit 21

Figure 18 Calculated counterbalance torque for the example problem 23

Figure 19 Effect of differently positioned identical counterweights on the 24

Figure 20 Caution against placing the counterweights on the same side of the crank

arms (BakerHughes, 2018) .. 25

Figure 21 Effect of different asymmetrical counterweight configurations on the

counterbalance torque function ... 26

Figure 22 Calculated articulating inertial torques for the example problem 30

Figure 23 Calculated rotary inertial torque for the example problem 32

Figure 24 Torque components acting on the gearbox for the example problem 34

Figure 25 Comparison of net gearbox torque variations ... 34

Figure 26 Flowchart of the successive approximation numerical method that finds the

crank angles corresponding to the measured polished rod positions 36

Figure 27 Crank angles calculated for the example problem ... 38

Figure 28 Crank angle differences between the proposed method and the

TWM results ... 39

89

Figure 29 The flowchart of Subroutine 1 ... 39

Figure 30 The flowchart of Subroutine 2 ... 41

Figure 31 The flowchart of Subroutine 3 ... 42

Figure 32 Calculation of the incorrect crank angle without validation 44

Figure 33 Flowchart of Subroutine 4 ... 45

Figure 34 Flowchart of determining the Fourier coefficients .. 48

Figure 35 Using Fourier series on the crank angle array .. 51

Figure 36 The calculated crank angular velocity function .. 52

Figure 37 The calculated crank angular acceleration function ... 53

Figure 38 Comparison of different number of coefficients used in the Gibbs method 57

Figure 39 Comparison of models calculating the beam angular acceleration 59

Figure 40 Effect of different counterweight configuration on the crank acceleration 63

Figure 41 General flowchart of the particle swarm optimization method 65

Figure 42 The improvement in the peak net gearbox torque value with

the iteration steps .. 71

Figure 43 Results of the sensitivity analysis in the simplest symmetrical case.................. 72

Figure 44 Optimum net gearbox torque using symmetrical counterweight

configuration .. 73

Figure 45 Optimum net gearbox torque using asymmetrical counterweight

configuration .. 74

Figure 46 Torque optimization producing minimal modified cyclic load factor 75

Figure 47 Comparison of the torque optimization with TWM results 76

90

13 List of Tables

Table 1 Input data for the example problem .. 11

Table 2 Formulae used in the calculation of the torque factor .. 19

Table 3 The relevant properties of the compatible counterweights 21

Table 4 Formulae used in Subroutine 1 .. 39

Table 5 Auxiliary angles for the Svinos method .. 54

Table 6 Input data for the pumping unit in the investigation .. 62

Table 7 Detailed solution of the Example Problem with the PSO Algorithm 69

Table 8 Asymmetrical optimum counterweight configuration ... 73

Table 9 Counterweight configuration providing minimum CLFmod ... 75

Table 10 Summary of the optimization results ... 77

91

14 Appendices

14.1 Appendix A The Developed Program and Parts of its Input and

Output Files

92

Input Excel File

93

94

Output Excel File

95

96

14.2 Appendix B Parts of the Source Code of the Created Program

public void IndependentFromCrankAngle()

 {

 if (Geometry == "Conventional" || Geometry == "TorqMaster")

 {

 Phi = Math.Round(Math.Asin(I / K) * 180 / Math.PI, 4);

 PsiBottom = Math.Round(Math.Acos((C * C + K * K - (P + R) * (P + R)) / (2 * C * K)) * 180 / Math.PI,

4);

 PsiTop = Math.Round(Math.Acos((C * C + K * K - (P - R) * (P - R)) / (2 * C * K)) * 180 / Math.PI, 4);

 ThetaUpstroke = Math.Round(Norm(Phi - Math.Asin(C / (P + R) * Math.Sin(PsiBottom / 180 *

Math.PI)) * 180 / Math.PI), 4);

 ThetaDownstroke = Math.Round(Norm(Phi - Math.Asin(C / (P - R) * Math.Sin(PsiTop / 180 *

Math.PI)) * 180 / Math.PI + 180), 4);

 if (Rotation == "CCW" && Geometry == "Conventional")

 {

 ThetaUpstroke = 360 - ThetaUpstroke;

 ThetaDownstroke = 360 - ThetaDownstroke;

 }

 }

 if (Geometry == "Mark II")

 {

 Phi = Math.Round(Math.Asin(I / K) * 180 / Math.PI + 180, 4);

 PsiTop = Math.Round(Math.Acos((C * C + K * K - (P + R) * (P + R)) / (2 * C * K)) * 180 / Math.PI, 4);

 PsiBottom = Math.Round(Math.Acos((C * C + K * K - (P - R) * (P - R)) / (2 * C * K)) * 180 / Math.PI,

4);

 ThetaUpstroke = Math.Round(Norm(Phi - Math.Asin(C / (P - R) * Math.Sin(PsiBottom / 180 *

Math.PI)) * 180 / Math.PI + 180), 4);

 ThetaDownstroke = Math.Round(Phi - Math.Asin(C / (P + R) * Math.Sin(PsiTop / 180 * Math.PI)) *

180 / Math.PI, 4);

 }

 if (Geometry == "Air Balanced")

 {

 Phi = Math.Round(-Math.Asin(I / K) * 180 / Math.PI + 180, 4);

 PsiTop = Math.Round(Math.Acos((C * C + K * K - (P + R) * (P + R)) / (2 * C * K)) * 180 / Math.PI, 4);

 PsiBottom = Math.Round(Math.Acos((C * C + K * K - (P - R) * (P - R)) / (2 * C * K)) * 180 / Math.PI,

4);

 ThetaUpstroke = Math.Round(Norm(Phi + Math.Asin(C / (P - R) * Math.Sin(PsiBottom / 180 *

Math.PI)) * 180 / Math.PI - 180), 4);

 ThetaDownstroke = Math.Round(Norm(Phi + Math.Asin(C / (P + R) * Math.Sin(PsiTop / 180 *

Math.PI)) * 180 / Math.PI), 4);

 if (Rotation == "CCW")

 {

 ThetaUpstroke = 360 - ThetaUpstroke;

 ThetaDownstroke = 360 - ThetaDownstroke;

 }

 }

97

 Upstroke = Norm(ThetaDownstroke - ThetaUpstroke);

 Downstroke = 360 - Upstroke;

 StrokeLength = Math.Round(A * Math.Abs((PsiTop - PsiBottom)) / 180 * Math.PI, 4);

 }

public void CrankAngleCalculation()

 {

 double k = ThetaUpstroke; //Independent Crank Angle moving trough the whole interval

 double diff = 1; //Auxiliary variable to determine the correct Crank Angle

 double Pos1, Pos2 = 0;

 Epsilon = 0.0001;

 StrokeLength = Convert.ToDouble(textBoxStrokeLengthOverWrite.Text);

 for (int j = 0; j < twm.PolishedRodPosition.Count; j++)

 {

 if (twm.PolishedRodPosition[j] == StrokeLength)

 {

 calc.CrankAngle.Add(Math.Round(ThetaDownstroke, 3));

 k = ThetaDownstroke;

 DependentFromCrankAngle(k, true);

 calc.Theta2.Add(Theta2);

 calc.Theta3.Add(Theta3);

 calc.Theta4.Add(Theta4);

 calc.TorqueFactor.Add(0);

 }

 if (twm.PolishedRodPosition[j] == 0)

 {

 calc.CrankAngle.Add(Math.Round(ThetaUpstroke, 3));

 k = ThetaUpstroke;

 DependentFromCrankAngle(k, true);

 calc.Theta2.Add(Theta2);

 calc.Theta3.Add(Theta3);

 calc.Theta4.Add(Theta4);

 calc.TorqueFactor.Add(0);

 }

 if (twm.PolishedRodPosition[j] != 0 && twm.PolishedRodPosition[j] != StrokeLength)

 {

 while (diff > 0)

 {

 k = Norm(k + Epsilon);

 DependentFromCrankAngle(k, true);

 Pos1 = (PsiBottom - Psi) / (PsiBottom - PsiTop);

 DependentFromCrankAngle(k + Epsilon, true);

 Pos2 = (PsiBottom - Psi) / (PsiBottom - PsiTop);

 diff = (Pos1 - twm.PolishedRodPosition[j] / StrokeLength) * (Pos2 -

twm.PolishedRodPosition[j] / StrokeLength);

98

 }

 calc.CrankAngle.Add(Norm(Math.Round(k + Epsilon / 2, 3)));

 calc.TorqueFactor.Add(Math.Round(TF, 3));

 calc.Theta2.Add(Theta2);

 calc.Theta3.Add(Theta3);

 calc.Theta4.Add(Theta4);

 diff = 1;

 }

 calc.Beta.Add(Beta);

 calc.J.Add(J);

 calc.Rho.Add(Rho);

 calc.Ksi.Add(Ksi);

 calc.Psi.Add(Psi);

 calc.Alpha.Add(Alpha);

 }

 }

public void DependentFromCrankAngle(double Angle, bool samestart)

 {

 int b = 0;

 if (Geometry == "Conventional" || Geometry == "TorqMaster")

 {

 // Rotationation assign

 if (Rotation == "CCW")

 {

 Theta = 360 - Angle;

 }

 else

 {

 Theta = Angle;

 }

 Theta2 = Norm(360 - Theta + Phi);

 if (Theta2 < 180 & Theta2 >= 0)

 { b = -1; }

 else { b = 1; }

 Beta = Math.Acos((C * C + P * P - R * R - K * K + 2 * K * R * Math.Cos(Theta2 / 180 * Math.PI)) / (2 *

C * P)) * 180 / Math.PI;

 J = Math.Sqrt(K * K + R * R - 2 * R * K * Math.Cos(Theta2 / 180 * Math.PI));

 Rho = Math.Acos((J * J + K * K - R * R) / (2 * J * K)) * 180 / Math.PI * b;

 if ((J * J + K * K - R * R) / (2 * J * K) > 1)

 { Rho = 0; }

 if ((J * J + K * K - R * R) / (2 * J * K) < -1)

 { Rho = 0; }

99

 Ksi = Math.Acos((C * C + J * J - P * P) / (2 * C * J)) * 180 / Math.PI;

 Psi = Ksi - Rho;

 Theta3 = Math.Acos((P * P + J * J - C * C) / (2 * P * J)) * 180 / Math.PI + Rho;

 Theta4 = 180 - Psi;

 Alpha = Beta + Psi - (Theta - Phi);

 TF = R * A / C * Math.Sin(Alpha / 180 * Math.PI) / Math.Sin(Beta / 180 * Math.PI);

 }

 if (Geometry == "Mark II")

 {

 Theta = Angle;

 Theta2 = Phi - Theta;

 Beta = Math.Acos((C * C + P * P - R * R - K * K + 2 * K * R * Math.Cos(Theta2 / 180 * Math.PI)) / (2 *

C * P)) * 180 / Math.PI;

 J = Math.Sqrt(K * K + R * R - 2 * R * K * Math.Cos(Theta2 / 180 * Math.PI));

 Rho = Math.Asin((R / J * Math.Sin(Theta2 / 180 * Math.PI))) * 180 / Math.PI;

 Ksi = Math.Asin((P / J * Math.Sin(Beta / 180 * Math.PI))) * 180 / Math.PI;

 Psi = Ksi + Rho;

 Theta3 = Math.Acos((P * P + J * J - C * C) / (2 * P * J)) * 180 / Math.PI - Rho;

 Theta4 = 180 - Psi;

 Alpha = -(Beta + Psi - (Theta - Phi));

 TF = R * A / C * Math.Sin(Alpha / 180 * Math.PI) / Math.Sin(Beta / 180 * Math.PI);

 }

 if (Geometry == "Air Balanced")

 {

 // Rotationation assign

 if (Rotation == "CCW")

 {

 Theta = 360 - Angle;

 }

 else

 {

 Theta = Angle;

 }

 Theta2 = Theta - Phi;

 Beta = Math.Acos((C * C + P * P - R * R - K * K + 2 * K * R * Math.Cos(Theta2 / 180 * Math.PI)) / (2 *

C * P)) * 180 / Math.PI;

 if (Theta2 > 360)

 {

 Theta2 = Theta2 - 360;

 }

 J = Math.Sqrt(K * K + R * R - 2 * R * K * Math.Cos(Theta2 / 180 * Math.PI));

 Rho = Math.Asin((R / J * Math.Sin(Theta2 / 180 * Math.PI))) * 180 / Math.PI;

 Ksi = Math.Asin((P / J * Math.Sin(Beta / 180 * Math.PI))) * 180 / Math.PI;

100

 Psi = Ksi + Rho;

 Theta3 = Math.Acos((P * P + J * J - C * C) / (2 * P * J)) * 180 / Math.PI - Rho;

 Theta4 = 180 - Psi;

 Alpha = Beta + Psi + (Theta - Phi);

 TF = R * A / C * Math.Sin(Alpha / 180 * Math.PI) / Math.Sin(Beta / 180 * Math.PI);

 }

 }

private void SvinosCalculation()

 {

 for (int i = 0; i < twm.Time.Count - 1; i++)

 {

 calc.BeamVelocityNumerical.Add((twm.PolishedRodPosition[i + 1] - twm.PolishedRodPosition[i])

/ twm.Time[1]);

 }

 calc.BeamAccelerationNumerical.Add(0);

 for (int i = 1; i < twm.Time.Count - 1; i++)

 {

 calc.BeamAccelerationNumerical.Add((calc.BeamVelocityNumerical[i] -

calc.BeamVelocityNumerical[i - 1]) / twm.Time[1] / A);

 }

 calc.BeamAccelerationNumerical[0] = calc.BeamAccelerationNumerical[1];

calc.BeamAccelerationNumerical.Add(calc.BeamAccelerationNumerical[calc.BeamAccelerationNumerical.

Count - 1]);

 FourierPreparation();

 FourierPrepTheta2(calc.Theta2, twm.Time, calc.Theta2f, calc.TimeFourier);

 FourierPrep(calc.Theta3, twm.Time, calc.Theta3f, calc.TimeFourier);

 FourierPrep(calc.Theta4, twm.Time, calc.Theta4f, calc.TimeFourier);

 FourierPrep(twm.PolishedRodLoad, twm.Time, calc.PolishedRodLoadF, calc.TimeFourier);

 FourierPrep(twm.PolishedRodPosition, twm.Time, calc.PolishedRodPositionF10term,

calc.TimeFourier);

 FourierPrep(calc.CrankAngle, twm.Time, calc.Theta2fDirectDummy, calc.TimeFourier);

 Fourier(calc.DTheta5PointFourier, 10, calc.CrankAngularVelocity5Point,

calc.CrankAngularAcceleration5Point, calc.CrankAngularAccelerationChange5Point);

 Fourier(calc.DThetaFourier, 10, calc.Theta2p, calc.Theta2pp,

calc.CrankAngularAccelerationChange);

 Fourier(calc.Theta2fDirectDummy, 10, calc.Theta2fDirect, calc.Theta2pfDirect,

calc.Theta2ppfDirect);

 Fourier(calc.PolishedRodLoadF, 200, calc.PolishedRodLoadFourier, calc.Dummy, calc.Dummy);

101

 Fourier(calc.PolishedRodPositionF10term, 10, calc.PolishedRodPositionFourier10term,

calc.PolishedRodPositionpFourier10term, calc.PolishedRodPositionppFourier10term);

 Fourier(calc.PolishedRodPositionF10term, 5, calc.PolishedRodPositionFourier5term,

calc.PolishedRodPositionpFourier5term, calc.PolishedRodPositionppFourier5term);

 Fourier(calc.PolishedRodPositionF10term, 30, calc.PolishedRodPositionFourier20term,

calc.PolishedRodPositionpFourier20term, calc.PolishedRodPositionppFourier20term);

 for (int i = 0; i < twm.Time.Count; i++)

 {

 calc.BeamAccelerationFourier10term.Add(calc.PolishedRodPositionppFourier10term[i] / A);

 calc.BeamAccelerationFourier5term.Add(calc.PolishedRodPositionppFourier5term[i] / A);

 calc.BeamAccelerationFourier20term.Add(calc.PolishedRodPositionppFourier20term[i] / A);

 }

 for (int i = 0; i < calc.Theta2p.Count; i++)

 {

 if (Rotation == "CW")

 {

 calc.Theta3p.Add(Math.Round(-R / P * calc.Theta2p[i] * Math.Sin((calc.Theta4f[i] -

calc.Theta2f[i]) / 180 * Math.PI) / Math.Sin((calc.Theta3f[i] - calc.Theta4f[i]) / 180 * Math.PI), 10));

 calc.Theta4p.Add(Math.Round(-R / C * calc.Theta2p[i] * Math.Sin((calc.Theta3f[i] -

calc.Theta2f[i]) / 180 * Math.PI) / Math.Sin((calc.Theta3f[i] - calc.Theta4f[i]) / 180 * Math.PI), 10));

 calc.Theta3pp.Add(Math.Round(calc.Theta3p[i] * (calc.Theta2pp[i] / calc.Theta2p[i] -

(calc.Theta3p[i] - calc.Theta4p[i]) / (Math.Tan((calc.Theta3f[i] - calc.Theta4f[i]) / 180 * Math.PI)) +

(calc.Theta4p[i] + calc.Theta2p[i]) / (Math.Tan((calc.Theta4f[i] - calc.Theta2f[i]) / 180 * Math.PI))), 3));

 calc.Theta4pp.Add(Math.Round(calc.Theta4p[i] * (calc.Theta2pp[i] / calc.Theta2p[i] -

(calc.Theta3p[i] - calc.Theta4p[i]) / (Math.Tan((calc.Theta3f[i] - calc.Theta4f[i]) / 180 * Math.PI)) -

(calc.Theta3p[i] + calc.Theta2p[i]) / (Math.Tan((calc.Theta2f[i] - calc.Theta3f[i]) / 180 * Math.PI))), 3));

 calc.Theta3p5p.Add(Math.Round(-R / P * calc.CrankAngularVelocity5Point[i] *

Math.Sin((calc.Theta4f[i] - calc.Theta2f[i]) / 180 * Math.PI) / Math.Sin((calc.Theta3f[i] - calc.Theta4f[i]) /

180 * Math.PI), 10));

 calc.Theta4p5p.Add(Math.Round(-R / C * calc.CrankAngularVelocity5Point[i] *

Math.Sin((calc.Theta3f[i] - calc.Theta2f[i]) / 180 * Math.PI) / Math.Sin((calc.Theta3f[i] - calc.Theta4f[i]) /

180 * Math.PI), 10));

 calc.Theta3pp5p.Add(Math.Round(calc.Theta3p[i] * (calc.CrankAngularAcceleration5Point[i] /

calc.CrankAngularVelocity5Point[i] - (calc.Theta3p[i] - calc.Theta4p[i]) / (Math.Tan((calc.Theta3f[i] -

calc.Theta4f[i]) / 180 * Math.PI)) + (calc.Theta4p[i] + calc.CrankAngularVelocity5Point[i]) /

(Math.Tan((calc.Theta4f[i] - calc.Theta2f[i]) / 180 * Math.PI))), 3));

 calc.Theta4pp5p.Add(Math.Round(calc.Theta4p[i] * (calc.CrankAngularAcceleration5Point[i] /

calc.CrankAngularVelocity5Point[i] - (calc.Theta3p[i] - calc.Theta4p[i]) / (Math.Tan((calc.Theta3f[i] -

calc.Theta4f[i]) / 180 * Math.PI)) - (calc.Theta3p[i] + calc.CrankAngularVelocity5Point[i]) /

(Math.Tan((calc.Theta2f[i] - calc.Theta3f[i]) / 180 * Math.PI))), 3));

102

 }

 else

 {

 calc.Theta3p.Add(Math.Round((-R / P * calc.Theta2p[i] * Math.Sin((calc.Theta4f[i] -

calc.Theta2f[i]) / 180 * Math.PI) / Math.Sin((calc.Theta3f[i] - calc.Theta4f[i]) / 180 * Math.PI)), 10));

 calc.Theta4p.Add(Math.Round((-R / C * calc.Theta2p[i] * Math.Sin((calc.Theta3f[i] -

calc.Theta2f[i]) / 180 * Math.PI) / Math.Sin((calc.Theta3f[i] - calc.Theta4f[i]) / 180 * Math.PI)), 10));

 calc.Theta3pp.Add(Math.Round((calc.Theta3p[i] * (calc.Theta2pp[i] / calc.Theta2p[i] -

(calc.Theta3p[i] - calc.Theta4p[i]) / (Math.Tan((calc.Theta3f[i] - calc.Theta4f[i]) / 180 * Math.PI)) +

(calc.Theta4p[i] + calc.Theta2p[i]) / (Math.Tan((calc.Theta4f[i] - calc.Theta2f[i]) / 180 * Math.PI)))), 3));

 calc.Theta4pp.Add(Math.Round((calc.Theta4p[i] * (calc.Theta2pp[i] / calc.Theta2p[i] -

(calc.Theta3p[i] - calc.Theta4p[i]) / (Math.Tan((calc.Theta3f[i] - calc.Theta4f[i]) / 180 * Math.PI)) -

(calc.Theta3p[i] + calc.Theta2p[i]) / (Math.Tan((calc.Theta2f[i] - calc.Theta3f[i]) / 180 * Math.PI)))), 3));

 calc.Theta3p5p.Add(Math.Round((-R / P * calc.CrankAngularVelocity5Point[i] *

Math.Sin((calc.Theta4f[i] - calc.Theta2f[i]) / 180 * Math.PI) / Math.Sin((calc.Theta3f[i] - calc.Theta4f[i]) /

180 * Math.PI)), 10));

 calc.Theta4p5p.Add(Math.Round((-R / C * calc.CrankAngularVelocity5Point[i] *

Math.Sin((calc.Theta3f[i] - calc.Theta2f[i]) / 180 * Math.PI) / Math.Sin((calc.Theta3f[i] - calc.Theta4f[i]) /

180 * Math.PI)), 10));

 calc.Theta3pp5p.Add(Math.Round((calc.Theta3p[i] * (calc.CrankAngularAcceleration5Point[i] /

calc.CrankAngularVelocity5Point[i] - (calc.Theta3p[i] - calc.Theta4p[i]) / (Math.Tan((calc.Theta3f[i] -

calc.Theta4f[i]) / 180 * Math.PI)) + (calc.Theta4p[i] + calc.CrankAngularVelocity5Point[i]) /

(Math.Tan((calc.Theta4f[i] - calc.Theta2f[i]) / 180 * Math.PI)))), 3));

 calc.Theta4pp5p.Add(Math.Round(-(calc.Theta4p[i] * (calc.CrankAngularAcceleration5Point[i]

/ calc.CrankAngularVelocity5Point[i] - (calc.Theta3p[i] - calc.Theta4p[i]) / (Math.Tan((calc.Theta3f[i] -

calc.Theta4f[i]) / 180 * Math.PI)) - (calc.Theta3p[i] + calc.CrankAngularVelocity5Point[i]) /

(Math.Tan((calc.Theta2f[i] - calc.Theta3f[i]) / 180 * Math.PI)))), 3));

 }

 }

 }

public void Fourier(List<double> data, int order, List<double> dataf, List<double> datafd, List<double>

datafdd)

 {

 double a0 = 0;

 double four = 0;

 double fourd = 0;

 double fourdd = 0;

 double k = 0;

 double l = 0;

103

 List<double> af = new List<double>();

 List<double> bf = new List<double>();

 List<double> fouriertime = new List<double>();

 for (int i = 0; i < data.Count; i++)

 {

 fouriertime.Add(-Math.PI + 2 * Math.PI * i / (data.Count));

 }

 a0 = Sum(data) / data.Count;

 for (int i = 0; i < order; i++)

 {

 for (int j = 0; j < data.Count; j++)

 {

 k += data[j] * Math.Sin((i + 1) * fouriertime[j]);

 l += data[j] * Math.Cos((i + 1) * fouriertime[j]);

 }

 af.Add(Math.Round(k / data.Count * 2, 5));

 bf.Add(Math.Round(l / data.Count * 2, 5));

 k = 0;

 l = 0;

 }

 for (int i = 0; i < fouriertime.Count; i++)

 {

 for (int j = 0; j < order; j++)

 {

 four = four + af[j] * Math.Sin((twm.Time[i] * 2 * Math.PI / calc.PeriodTime - Math.PI) * (j + 1)) +

bf[j] * Math.Cos((twm.Time[i] * 2 * Math.PI / calc.PeriodTime - Math.PI) * (j + 1));

 fourd = fourd + af[j] * (j + 1) * Math.Cos((twm.Time[i] * 2 * Math.PI / calc.PeriodTime - Math.PI)

* (j + 1)) - bf[j] * (j + 1) * Math.Sin((twm.Time[i] * 2 * Math.PI / calc.PeriodTime - Math.PI) * (j + 1));

 fourdd = fourdd - af[j] * (j + 1) * (j + 1) * Math.Sin((twm.Time[i] * 2 * Math.PI / calc.PeriodTime -

Math.PI) * (j + 1)) - bf[j] * (j + 1) * (j + 1) * Math.Cos((twm.Time[i] * 2 * Math.PI / calc.PeriodTime -

Math.PI) * (j + 1));

 }

 dataf.Add(four + a0);

 datafd.Add(fourd * 2 / Math.PI);

 datafdd.Add(fourdd * 4 / Math.PI / Math.PI);

 four = 0;

 fourd = 0;

 fourdd = 0;

 }

 }

104

public void FourierPrep(List<double> data, List<double> time, List<double> dataf, List<double> timef,

bool mod)

 {

 if (mod)

 {

 dataf.Add(1);

 int k = 0;

 for (int i = 1; i < time.Count; i++)

 {

 if (i + k >= time.Count)

 {

 k--;

 }

 if (timef[i] > time[i + k])

 {

 k++;

 }

 if (i + k >= time.Count)

 {

 k--;

 }

 if (Math.Abs(data[i - 2 + k] - data[i + k - 1]) > 300)

 {

 if (data[i - 2 + k] < data[i + k - 1])

 {

 double change = time[i + k - 3];

 while (dataf[i + k - 3] + (dataf[i + k - 3] - dataf[i - 4 + k]) * (change - timef[i + k - 3]) / (timef[i

+ k - 3] - timef[i - 4 + k]) > 0)

 {

 change += 0.0001;

 }

 change = Math.Round(change, 5);

 dataf[dataf.Count - 1] = Math.Round(dataf[i + k - 3] * (change - timef[i + k - 2]) / (change -

timef[i + k - 3]), 4);

 }

 else

 {

 MessageBox.Show("Theta2 in the upper side of the seesaw curve :(");

 }

 }

105

 dataf.Add(Math.Round(data[i - 1 + k] + (data[i + k] - data[i - 1 + k]) * (timef[i] - time[i - 1 + k]) /

(time[i + k] - time[i - 1 + k]), 4));

 }

 dataf[0] = Math.Round(data[0] + (data[0] - data[1]) / (time[1] - time[0]) * time[0], 4);

 }

 }

public void FourierPrepTheta2(List<double> data, List<double> time, List<double> dataf, List<double>

timef)

 {

 dataf.Add(1);

 int k = 0;

 for (int i = 1; i < time.Count; i++)

 {

 if (data[i] < data[i - 1])

 {

 dataf.Add(Math.Round(data[i - 1] + (data[i] - data[i - 1]) * (timef[i] - time[i - 1]) / (time[i] -

time[i - 1]), 4));

 }

 else

 {

 dataf.Add(Norm(Math.Round(data[i] + (360 + data[i - 1] - data[i]) * (time[i] - timef[i]) / (time[i]

- time[i - 1]), 4)));

 }

 }

 dataf[0] = Math.Round(data[0] + (data[0] - data[1]) / (time[1] - time[0]) * time[0], 4);

 }

private void TorqueCalculation()

 {

 for (int j = 0; j < twm.PolishedRodPosition.Count; j++)

 {

 calc.RodTorque.Add(Math.Round(calc.TorqueFactor[j] * (twm.PolishedRodLoad[j] -

StructuralUnbalance / 1000), 3));

 calc.ArticulatingInertialTorqueSvinos5p.Add(Math.Round(12 / 32.2 * calc.TorqueFactor[j] / A *

MassMomentBeam * calc.Theta4pp5p[j] / 1000, 3));

 calc.ArticulatingInertialTorqueGibbs10term.Add(Math.Round(12 / 32.2 * calc.TorqueFactor[j] / A

* MassMomentBeam * calc.BeamAccelerationFourier10term[j] / A / 1000, 3));

 calc.ArticulatingInertialTorqueGibbs5term.Add(Math.Round(12 / 32.2 * calc.TorqueFactor[j] / A *

MassMomentBeam * calc.BeamAccelerationFourier5term[j] / A / 1000, 3));

 calc.ArticulatingInertialTorqueGibbs20term.Add(Math.Round(12 / 32.2 * calc.TorqueFactor[j] / A

* MassMomentBeam * calc.BeamAccelerationFourier20term[j] / A / 1000, 3));

 calc.ArticulatingInertialTorqueNumerical.Add(Math.Round(12 / 32.2 * calc.TorqueFactor[j] / A *

MassMomentBeam * calc.Theta4pp5p[j] / 1000, 3));

106

 }

 CounterbalanceTorquecalculation(ActualCounterweightConfiguration);

 for (int j = 0; j < twm.PolishedRodPosition.Count; j++)

 {

 calc.ActualNetGearboxTorque.Add(calc.RodTorque[j] + calc.ActualCounterbalanceTorque[j] +

calc.ActualRotaryInertialTorque[j] + calc.ArticulatingInertialTorqueSvinos5p[j]);

 }

 SW = new Stopwatch();

 SW.Start();

 AsymmetricCBcalculation();

 AsymmetricCBcalculationDouble();

 SymmetricCBcalculation();

 CLFOptimization();

 double ElapsedTime = Convert.ToDouble(SW.ElapsedMilliseconds) / 1000;

 SW.Stop();

 }

private void AsymmetricCBcalculation()

 {

 GlobalBest.BestFitnessValue = double.PositiveInfinity;

 Swarm = new Particle[SwarmSize];

 for (int i = 0; i < SwarmSize; i++)

 {

 Swarm[i].Position = PSO_RandPosition(LowerLimits, UpperLimits, DimensionSize);

 Swarm[i].Speed = PSO_Rand(LowerLimits, UpperLimits2, DimensionSize);

 Swarm[i].FitnessValue = FitnessCalculation(Swarm[i].Position, false, false);

 Swarm[i].BestFitnessValue = Swarm[i].FitnessValue;

 Swarm[i].BestPosition = (double[])Swarm[i].Position.Clone();

 Swarm[i].Tau = TauCalculation(Swarm[i].Position);

 Swarm[i].CLF = CLFCalculation(Swarm[i].Position);

 if (Swarm[i].BestFitnessValue <= GlobalBest.BestFitnessValue)

 {

 GlobalBest.BestPosition = (double[])Swarm[i].Position.Clone();

 GlobalBest.BestPositionText = new string[14] { "", "", "", "", "", "", "", "", "", "", "", "", "", "" };

107

 GlobalBest.BestPositionText[0] =

api.CounterweightName[Convert.ToInt16(Math.Round(Swarm[i].Position[0], 0))];

 GlobalBest.BestPositionText[1] =

api.CounterweightName[Convert.ToInt16(Math.Round(Swarm[i].Position[1], 0))];

 GlobalBest.BestPositionText[2] =

api.CounterweightName[Convert.ToInt16(Math.Round(Swarm[i].Position[2], 0))];

 GlobalBest.BestPositionText[3] =

api.CounterweightName[Convert.ToInt16(Math.Round(Swarm[i].Position[3], 0))];

 GlobalBest.BestPositionText[4] = Math.Round(Swarm[i].Position[4],1).ToString() + " in";

 GlobalBest.BestPositionText[5] = Math.Round(Swarm[i].Position[5],1).ToString() + " in";

 GlobalBest.BestPositionText[6] = Math.Round(Swarm[i].Position[6],1).ToString() + " in";

 GlobalBest.BestPositionText[7] = Math.Round(Swarm[i].Position[7],1).ToString() + " in";

 GlobalBest.BestPositionText[8] = Convert.ToInt16(Math.Round(Swarm[i].Position[8],

0)).ToString() + " x" + api.AuxCounterweightName[Convert.ToInt16(Math.Round(Swarm[i].Position[0],

0))];

 GlobalBest.BestPositionText[9] = Convert.ToInt16(Math.Round(Swarm[i].Position[9],

0)).ToString() + " x" + api.AuxCounterweightName[Convert.ToInt16(Math.Round(Swarm[i].Position[1],

0))];

 GlobalBest.BestPositionText[10] = Convert.ToInt16(Math.Round(Swarm[i].Position[10],

0)).ToString() + " x" + api.AuxCounterweightName[Convert.ToInt16(Math.Round(Swarm[i].Position[2],

0))];

 GlobalBest.BestPositionText[11] = Convert.ToInt16(Math.Round(Swarm[i].Position[11],

0)).ToString() + " x" + api.AuxCounterweightName[Convert.ToInt16(Math.Round(Swarm[i].Position[3],

0))];

 GlobalBest.BestPositionText[12] = Swarm[i].Tau.ToString() + " deg";

 GlobalBest.BestPositionText[13] = Swarm[i].CLF.ToString();

 GlobalBest.BestFitnessValue = Swarm[i].BestFitnessValue;

 label7.Text = GlobalBest.BestFitnessValue.ToString();

 Application.DoEvents();

 }

 }

 for (int iter = 0; iter < MaxIteration; iter++)

 {

 labelSwarmSize.Text = $"{iter}. iteration";

 for (int i = 0; i < SwarmSize; i++)

 {

 labelMaxIteration.Text = $"{i}. swarm";

 Application.DoEvents();

 for (int j = 0; j < DimensionSize; j++)

 {

 Swarm[i].Speed[j] = W * Swarm[i].Speed[j] + C1 * Math.Round(Randd.NextDouble(), 5) *

(Swarm[i].BestPosition[j] - Swarm[i].Position[j]) + C2 * Math.Round(Randd.NextDouble(), 5) *

(GlobalBest.BestPosition[j] - Swarm[i].Position[j]);

 Swarm[i].Speed[j] = UpdateSwarmSpeed(Swarm[i].Speed[j]);

108

 if (j > 3 && j < 8)

 {

 UpperLimits[j] = CrankLength -

api.CounterweightdM[Convert.ToInt16(Math.Round(Swarm[i].Position[j - 4], 0))];

 LowerLimits[j] = api.Counterweightdm[Convert.ToInt16(Math.Round(Swarm[i].Position[j -

4], 0))];

 }

 Swarm[i].Position[j] = UpdateSwarmPosition(Swarm[i].Position[j], Swarm[i].Speed[j],

UpperLimits[j], LowerLimits[j]);

 }

 Swarm[i].FitnessValue = FitnessCalculation(Swarm[i].Position, false, false);

 if (Swarm[i].FitnessValue < Swarm[i].BestFitnessValue)

 {

 Swarm[i].BestPosition = (double[])Swarm[i].Position.Clone();

 Swarm[i].BestFitnessValue = Swarm[i].FitnessValue;

 if (Swarm[i].BestFitnessValue < GlobalBest.BestFitnessValue)

 {

 calc.RotaryInertialTorque.Clear();

 calc.CounterBalanceTorque.Clear();

 calc.NetGearboxTorque.Clear();

 GlobalBest.BestPosition = (double[])Swarm[i].Position.Clone();

 GlobalBest.BestFitnessValue = Swarm[i].BestFitnessValue;

 Positionlist.Add(Swarm[i].Position.Clone());

 Fitnesslist.Add(Swarm[i].BestFitnessValue);

 label7.Text = GlobalBest.BestFitnessValue.ToString();

 for (int j = 0; j < calc.RotaryInertialTorqueDummy.Count; j++)

 {

 calc.RotaryInertialTorque.Add(calc.RotaryInertialTorqueDummy[j]);

 calc.CounterBalanceTorque.Add(calc.CounterBalanceTorqueDummy[j]);

 calc.NetGearboxTorque.Add(calc.NetGearboxTorqueDummy[j]);

 }

 Draw();

 }

 }

 }

 W *= Wdamp;

 }

 }

public double[] PSO_RandPosition(double[] a, double[] b, int n)

109

 {

 double[] x = new double[n];

 for (int i = 0; i < n; i++)

 {

 x[i] = PSO_Rand(a[i], b[i]);

 if (i > 3 && i < 8)

 {

 x[i] = PSO_Rand(api.Counterweightdm[Convert.ToInt16(Math.Round(x[i - 4], 0))], CrankLength

- api.CounterweightdM[Convert.ToInt16(Math.Round(x[i - 4], 0))]);

 }

 }

 return x;

 }

public double[] PSO_Rand(double[] a, double[] b, int n)

 {

 double[] x = new double[n];

 for (int i = 0; i < n; i++)

 {

 x[i] = PSO_Rand(a[i], b[i]);

 }

 return x;

 }

public double FitnessCalculation(double[] a, bool noinertia, bool CLF)

 {

 int Cw1topID = Convert.ToInt16(Math.Round(a[0], 0));

 int Cw1botID = Convert.ToInt16(Math.Round(a[1], 0));

 int Cw2topID = Convert.ToInt16(Math.Round(a[2], 0));

 int Cw2botID = Convert.ToInt16(Math.Round(a[3], 0));

 double M1 = CrankLength - api.CounterweightdM[Cw1topID];

 double M2 = CrankLength - api.CounterweightdM[Cw1botID];

 double M3 = CrankLength - api.CounterweightdM[Cw2topID];

 double M4 = CrankLength - api.CounterweightdM[Cw2botID];

 double D1 = Math.Round(a[4], 1);

 double D2 = Math.Round(a[5], 1);

 double D3 = Math.Round(a[6], 1);

 double D4 = Math.Round(a[7], 1);

 if (D1 > M1)

 {

 D1 = M1;

 }

 if (D2 > M2)

 {

 D2 = M2;

 }

 if (D3 > M3)

110

 {

 D3 = M3;

 }

 if (D4 > M4)

 {

 D4 = M4;

 }

 double Y1 = api.CounterweightY[Cw1topID];

 double Y2 = api.CounterweightY[Cw1botID];

 double Y3 = api.CounterweightY[Cw2topID];

 double Y4 = api.CounterweightY[Cw2botID];

 double H1 = Math.Sqrt((Y1 + CrankHalfwidth) * (Y1 + CrankHalfwidth) + (M1 - D1) * (M1 - D1));

 double H2 = Math.Sqrt((Y2 + CrankHalfwidth) * (Y2 + CrankHalfwidth) + (M2 - D2) * (M2 - D2));

 double H3 = Math.Sqrt((Y3 + CrankHalfwidth) * (Y3 + CrankHalfwidth) + (M3 - D3) * (M3 - D3));

 double H4 = Math.Sqrt((Y4 + CrankHalfwidth) * (Y4 + CrankHalfwidth) + (M4 - D4) * (M4 - D4));

 int AuxCw1topID = Convert.ToInt16(Math.Round(a[8], 0));

 int AuxCw1botID = Convert.ToInt16(Math.Round(a[9], 0));

 int AuxCw2topID = Convert.ToInt16(Math.Round(a[10], 0));

 int AuxCw2botID = Convert.ToInt16(Math.Round(a[11], 0));

 double Icg1 = api.CounterweightMoment[Cw1topID] + AuxCw1topID *

api.AuxCounterweightMoment[Cw1topID];

 double Icg2 = api.CounterweightMoment[Cw1botID] + AuxCw1botID *

api.AuxCounterweightMoment[Cw1botID];

 double Icg3 = api.CounterweightMoment[Cw2topID] + AuxCw2topID *

api.AuxCounterweightMoment[Cw2topID];

 double Icg4 = api.CounterweightMoment[Cw2botID] + AuxCw2botID *

api.AuxCounterweightMoment[Cw2botID];

 double mcw1 = api.CounterweightMass[Cw1topID] + AuxCw1topID *

api.AuxCounterweightMass[Cw1topID];

 double mcw2 = api.CounterweightMass[Cw1botID] + AuxCw1botID *

api.AuxCounterweightMass[Cw1botID];

 double mcw3 = api.CounterweightMass[Cw2topID] + AuxCw2topID *

api.AuxCounterweightMass[Cw2topID];

 double mcw4 = api.CounterweightMass[Cw2botID] + AuxCw2botID *

api.AuxCounterweightMass[Cw2botID];

 double Icw1 = Icg1 + mcw1 * (H1 / 12) * (H1 / 12);

 double Icw2 = Icg2 + mcw2 * (H2 / 12) * (H2 / 12);

 double Icw3 = Icg3 + mcw3 * (H3 / 12) * (H3 / 12);

 double Icw4 = Icg4 + mcw4 * (H4 / 12) * (H4 / 12);

 double Icw = Icw1 + Icw2 + Icw3 + Icw4;

 double Is = Icw + MassMomentCranks + MassMomentGearbox;

111

 double Tcbmax = CrankTorque + mcw1 * (M1 - D1) + mcw2 * (M2 - D2) + mcw3 * (M3 - D3) + mcw4

* (M4 - D4);

 double Sumx = (CrankMass * 2 * CrankLength / 2 + mcw1 * (M1 - D1) + mcw2 * (M2 - D2) + mcw3 *

(M3 - D3) + mcw4 * (M4 - D4)) / (CrankMass * 2 + mcw1 + mcw2 + mcw3 + mcw4);

 double Sumy = (mcw1 * (Y1 + CrankHalfwidth) - mcw2 * (Y2 + CrankHalfwidth) + mcw3 * (Y3 +

CrankHalfwidth) - mcw4 * (Y4 + CrankHalfwidth)) / (CrankMass * 2 + mcw1 + mcw2 + mcw3 + mcw4);

 double Taumod = Math.Round(Math.Atan(Sumy / Sumx) * 180 / Math.PI, 2);

 calc.RotaryInertialTorqueDummy.Clear();

 calc.CounterBalanceTorqueDummy.Clear();

 calc.NetGearboxTorqueDummy.Clear();

 for (int j = 0; j < twm.PolishedRodPosition.Count; j++)

 {

 calc.CounterBalanceTorqueDummy.Add(Math.Round(-Math.Sin((Taumod + PhaseAngle +

calc.CrankAngle[j]) / 180 * Math.PI) * Tcbmax / 1000, 3));

 }

 if (!noinertia)

 {

 for (int j = 0; j < twm.PolishedRodPosition.Count; j++)

 {

 calc.RotaryInertialTorqueDummy.Add(Math.Round(12 / 32.2 * Is *

calc.CrankAngularAcceleration5Point[j] / 1000, 3));

 }

 }

 else

 {

 calc.ArticulatingInertialTorqueSymmetricalNoInertia.Clear();

 for (int j = 0; j < twm.PolishedRodPosition.Count; j++)

 {

 calc.RotaryInertialTorqueDummy.Add(0);

 calc.ArticulatingInertialTorqueSymmetricalNoInertia.Add(0);

 }

 }

 if (!noinertia)

 {

 for (int j = 0; j < twm.PolishedRodPosition.Count; j++)

 {

 calc.NetGearboxTorqueDummy.Add(Math.Round(calc.RodTorque[j] +

calc.ArticulatingInertialTorqueSvinos5p[j] + calc.RotaryInertialTorqueDummy[j] +

calc.CounterBalanceTorqueDummy[j], 3));

 }

 }

 else

 {

112

 for (int j = 0; j < twm.PolishedRodPosition.Count; j++)

 {

 calc.NetGearboxTorqueDummy.Add(Math.Round(calc.RodTorque[j] +

calc.ArticulatingInertialTorqueSymmetricalNoInertia[j] + calc.RotaryInertialTorqueDummy[j] +

calc.CounterBalanceTorqueDummy[j], 3));

 }

 }

 double max = 0;

 if (!CLF)

 {

 for (int i = 0; i < twm.PolishedRodPosition.Count; i++)

 {

 if (Math.Abs(calc.NetGearboxTorqueDummy[i]) > max)

 {

 max = Math.Abs(calc.NetGearboxTorqueDummy[i]);

 }

 }

 }

 else

 {

 double Squaresum = 0;

 double Sum = 0;

 for (int i = 0; i < twm.PolishedRodPosition.Count - 1; i++)

 {

 Squaresum += (Math.Pow(calc.NetGearboxTorqueDummy[i], 2) +

Math.Pow(calc.NetGearboxTorqueDummy[i + 1], 2)) / 2 * twm.Time[1];

 Sum += (calc.NetGearboxTorqueDummy[i] + calc.NetGearboxTorqueDummy[i]) / 2 *

twm.Time[1];

 }

 max = Math.Round(Math.Sqrt(Squaresum / twm.Time[twm.Time.Count - 1]) / (Sum /

twm.Time[twm.Time.Count - 1]), 4);

 }

 return max;

 }

public double TauCalculation(double[] a)

 {

 int Cw1topID = Convert.ToInt16(Math.Round(a[0], 0));

 int Cw1botID = Convert.ToInt16(Math.Round(a[1], 0));

 int Cw2topID = Convert.ToInt16(Math.Round(a[2], 0));

 int Cw2botID = Convert.ToInt16(Math.Round(a[3], 0));

 double M1 = CrankLength - api.CounterweightdM[Cw1topID];

 double M2 = CrankLength - api.CounterweightdM[Cw1botID];

113

 double M3 = CrankLength - api.CounterweightdM[Cw2topID];

 double M4 = CrankLength - api.CounterweightdM[Cw2botID];

 double D1 = Math.Round(Math.Round(a[4] * 2.54, 0) / 2.54, 1);

 double D2 = Math.Round(Math.Round(a[5] * 2.54, 0) / 2.54, 1);

 double D3 = Math.Round(Math.Round(a[6] * 2.54, 0) / 2.54, 1);

 double D4 = Math.Round(Math.Round(a[7] * 2.54, 0) / 2.54, 1);

 if (D1 > M1)

 {

 D1 = M1;

 }

 if (D2 > M2)

 {

 D2 = M2;

 }

 if (D3 > M3)

 {

 D3 = M3;

 }

 if (D4 > M4)

 {

 D4 = M4;

 }

 double Y1 = api.CounterweightY[Cw1topID];

 double Y2 = api.CounterweightY[Cw1botID];

 double Y3 = api.CounterweightY[Cw2topID];

 double Y4 = api.CounterweightY[Cw2botID];

 double H1 = Math.Sqrt((Y1 + CrankHalfwidth) * (Y1 + CrankHalfwidth) + (M1 - D1) * (M1 - D1));

 double H2 = Math.Sqrt((Y2 + CrankHalfwidth) * (Y2 + CrankHalfwidth) + (M2 - D2) * (M2 - D2));

 double H3 = Math.Sqrt((Y3 + CrankHalfwidth) * (Y3 + CrankHalfwidth) + (M3 - D3) * (M3 - D3));

 double H4 = Math.Sqrt((Y4 + CrankHalfwidth) * (Y4 + CrankHalfwidth) + (M4 - D4) * (M4 - D4));

 int AuxCw1topID = Convert.ToInt16(Math.Round(a[8], 0));

 int AuxCw1botID = Convert.ToInt16(Math.Round(a[9], 0));

 int AuxCw2topID = Convert.ToInt16(Math.Round(a[10], 0));

 int AuxCw2botID = Convert.ToInt16(Math.Round(a[11], 0));

 double Icg1 = api.CounterweightMoment[Cw1topID] + AuxCw1topID *

api.AuxCounterweightMoment[Cw1topID];

 double Icg2 = api.CounterweightMoment[Cw1botID] + AuxCw1botID *

api.AuxCounterweightMoment[Cw1botID];

 double Icg3 = api.CounterweightMoment[Cw2topID] + AuxCw2topID *

api.AuxCounterweightMoment[Cw2topID];

 double Icg4 = api.CounterweightMoment[Cw2botID] + AuxCw2botID *

api.AuxCounterweightMoment[Cw2botID];

114

 double mcw1 = api.CounterweightMass[Cw1topID] + AuxCw1topID *

api.AuxCounterweightMass[Cw1topID];

 double mcw2 = api.CounterweightMass[Cw1botID] + AuxCw1botID *

api.AuxCounterweightMass[Cw1botID];

 double mcw3 = api.CounterweightMass[Cw2topID] + AuxCw2topID *

api.AuxCounterweightMass[Cw2topID];

 double mcw4 = api.CounterweightMass[Cw2botID] + AuxCw2botID *

api.AuxCounterweightMass[Cw2botID];

 double Icw1 = Icg1 + mcw1 * (H1 / 12) * (H1 / 12);

 double Icw2 = Icg2 + mcw2 * (H2 / 12) * (H2 / 12);

 double Icw3 = Icg3 + mcw3 * (H3 / 12) * (H3 / 12);

 double Icw4 = Icg4 + mcw4 * (H4 / 12) * (H4 / 12);

 double Icw = Icw1 + Icw2 + Icw3 + Icw4;

 double Is = Icw + MassMomentCranks + MassMomentGearbox;

 double Tcbmax = CrankTorque + mcw1 * (M1 - D1) + mcw2 * (M2 - D2) + mcw3 * (M3 - D3) + mcw4

* (M4 - D4);

 double Sumx = (CrankMass * 2 * CrankLength / 2 + mcw1 * (M1 - D1) + mcw2 * (M2 - D2) + mcw3 *

(M3 - D3) + mcw4 * (M4 - D4)) / (CrankMass * 2 + mcw1 + mcw2 + mcw3 + mcw4);

 double Sumy = (mcw1 * (Y1 + CrankHalfwidth) - mcw2 * (Y2 + CrankHalfwidth) + mcw3 * (Y3 +

CrankHalfwidth) - mcw4 * (Y4 + CrankHalfwidth)) / (CrankMass * 2 + mcw1 + mcw2 + mcw3 + mcw4);

 double Taumod = Math.Round(Math.Atan(Sumy / Sumx) * 180 / Math.PI, 2);

 return Taumod;

 }

public double CLFCalculation(double[] a)

 {

 int Cw1topID = Convert.ToInt16(Math.Round(a[0], 0));

 int Cw1botID = Convert.ToInt16(Math.Round(a[1], 0));

 int Cw2topID = Convert.ToInt16(Math.Round(a[2], 0));

 int Cw2botID = Convert.ToInt16(Math.Round(a[3], 0));

 double M1 = CrankLength - api.CounterweightdM[Cw1topID];

 double M2 = CrankLength - api.CounterweightdM[Cw1botID];

 double M3 = CrankLength - api.CounterweightdM[Cw2topID];

 double M4 = CrankLength - api.CounterweightdM[Cw2botID];

 double D1 = Math.Round(Math.Round(a[4] * 2.54, 0) / 2.54, 1);

 double D2 = Math.Round(Math.Round(a[5] * 2.54, 0) / 2.54, 1);

 double D3 = Math.Round(Math.Round(a[6] * 2.54, 0) / 2.54, 1);

 double D4 = Math.Round(Math.Round(a[7] * 2.54, 0) / 2.54, 1);

 if (D1 > M1)

 {

 D1 = M1;

 }

115

 if (D2 > M2)

 {

 D2 = M2;

 }

 if (D3 > M3)

 {

 D3 = M3;

 }

 if (D4 > M4)

 {

 D4 = M4;

 }

 double Y1 = api.CounterweightY[Cw1topID];

 double Y2 = api.CounterweightY[Cw1botID];

 double Y3 = api.CounterweightY[Cw2topID];

 double Y4 = api.CounterweightY[Cw2botID];

 double H1 = Math.Sqrt((Y1 + CrankHalfwidth) * (Y1 + CrankHalfwidth) + (M1 - D1) * (M1 - D1));

 double H2 = Math.Sqrt((Y2 + CrankHalfwidth) * (Y2 + CrankHalfwidth) + (M2 - D2) * (M2 - D2));

 double H3 = Math.Sqrt((Y3 + CrankHalfwidth) * (Y3 + CrankHalfwidth) + (M3 - D3) * (M3 - D3));

 double H4 = Math.Sqrt((Y4 + CrankHalfwidth) * (Y4 + CrankHalfwidth) + (M4 - D4) * (M4 - D4));

 int AuxCw1topID = Convert.ToInt16(Math.Round(a[8], 0));

 int AuxCw1botID = Convert.ToInt16(Math.Round(a[9], 0));

 int AuxCw2topID = Convert.ToInt16(Math.Round(a[10], 0));

 int AuxCw2botID = Convert.ToInt16(Math.Round(a[11], 0));

 double Icg1 = api.CounterweightMoment[Cw1topID] + AuxCw1topID *

api.AuxCounterweightMoment[Cw1topID];

 double Icg2 = api.CounterweightMoment[Cw1botID] + AuxCw1botID *

api.AuxCounterweightMoment[Cw1botID];

 double Icg3 = api.CounterweightMoment[Cw2topID] + AuxCw2topID *

api.AuxCounterweightMoment[Cw2topID];

 double Icg4 = api.CounterweightMoment[Cw2botID] + AuxCw2botID *

api.AuxCounterweightMoment[Cw2botID];

 double mcw1 = api.CounterweightMass[Cw1topID] + AuxCw1topID *

api.AuxCounterweightMass[Cw1topID];

 double mcw2 = api.CounterweightMass[Cw1botID] + AuxCw1botID *

api.AuxCounterweightMass[Cw1botID];

 double mcw3 = api.CounterweightMass[Cw2topID] + AuxCw2topID *

api.AuxCounterweightMass[Cw2topID];

 double mcw4 = api.CounterweightMass[Cw2botID] + AuxCw2botID *

api.AuxCounterweightMass[Cw2botID];

 double Icw1 = Icg1 + mcw1 * (H1 / 12) * (H1 / 12);

 double Icw2 = Icg2 + mcw2 * (H2 / 12) * (H2 / 12);

116

 double Icw3 = Icg3 + mcw3 * (H3 / 12) * (H3 / 12);

 double Icw4 = Icg4 + mcw4 * (H4 / 12) * (H4 / 12);

 double Icw = Icw1 + Icw2 + Icw3 + Icw4;

 double Is = Icw + MassMomentCranks + MassMomentGearbox;

 double Tcbmax = CrankTorque + mcw1 * (M1 - D1) + mcw2 * (M2 - D2) + mcw3 * (M3 - D3) + mcw4

* (M4 - D4);

 double Sumx = (CrankMass * 2 * CrankLength / 2 + mcw1 * (M1 - D1) + mcw2 * (M2 - D2) + mcw3 *

(M3 - D3) + mcw4 * (M4 - D4)) / (CrankMass * 2 + mcw1 + mcw2 + mcw3 + mcw4);

 double Sumy = (mcw1 * (Y1 + CrankHalfwidth) - mcw2 * (Y2 + CrankHalfwidth) + mcw3 * (Y3 +

CrankHalfwidth) - mcw4 * (Y4 + CrankHalfwidth)) / (CrankMass * 2 + mcw1 + mcw2 + mcw3 + mcw4);

 double Taumod = Math.Round(Math.Atan(Sumy / Sumx) * 180 / Math.PI, 2);

 calc.RotaryInertialTorqueDummy.Clear();

 calc.CounterBalanceTorqueDummy.Clear();

 calc.NetGearboxTorqueDummy.Clear();

 for (int j = 0; j < twm.PolishedRodPosition.Count; j++)

 {

 calc.CounterBalanceTorqueDummy.Add(Math.Round(-Math.Sin((Taumod + PhaseAngle +

calc.CrankAngle[j]) / 180 * Math.PI) * Tcbmax / 1000, 3));

 }

 for (int j = 0; j < twm.PolishedRodPosition.Count; j++)

 {

 calc.RotaryInertialTorqueDummy.Add(Math.Round(12 / 32.2 * Is *

calc.CrankAngularAcceleration5Point[j] / 1000, 3));

 }

 for (int j = 0; j < twm.PolishedRodPosition.Count; j++)

 {

 calc.NetGearboxTorqueDummy.Add(Math.Round(calc.RodTorque[j] +

calc.ArticulatingInertialTorqueSvinos5p[j] + calc.RotaryInertialTorqueDummy[j] +

calc.CounterBalanceTorqueDummy[j], 3));

 }

 double max = 0;

 double Squaresum = 0;

 double Sum = 0;

 for (int i = 0; i < twm.PolishedRodPosition.Count - 1; i++)

117

 {

 Squaresum += (Math.Pow(calc.NetGearboxTorqueDummy[i], 2) +

Math.Pow(calc.NetGearboxTorqueDummy[i + 1], 2)) / 2 * twm.Time[1];

 Sum += (calc.NetGearboxTorqueDummy[i] + calc.NetGearboxTorqueDummy[i]) / 2 *

twm.Time[1];

 }

 max = Math.Round(Math.Sqrt(Squaresum / twm.Time[twm.Time.Count - 1]) / (Sum /

twm.Time[twm.Time.Count - 1]), 4);

 return max;

 }

 double UpdateSwarmPosition(double Pos, double Speed, double upperlimit, double lowerlimit)

 {

 double OutPos = Pos + Speed;

 OutPos = Math.Max(Math.Min(OutPos, upperlimit), lowerlimit);

 return OutPos;

 }

 double UpdateSwarmSpeed(double Speed)

 {

 double OutPos = Math.Max(Math.Min(Speed, ub_SpeedXi), lb_SpeedXi);

 return OutPos;

 }

public struct Particle

 {

 public double[] Position;

 public double[] Speed;

 public double FitnessValue;

 public double[] BestPosition;

 public string[] BestPositionText;

 public double BestFitnessValue;

 public double Tau;

 public double CLF;

 }

118

14.3 Appendix C Results of the Sensitivity Analysis

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

32
33

34
35

36
37

38
39

40
41

42
43

44
45

46
47

48
49

50
51

52
53

54
55

56
57

58
59

N
O

 C
W

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

14
17

7R
O

13
40

13
38

13
36

13
34

13
32

13
30

13
28

13
25

13
23

13
21

13
19

13
17

13
15

13
13

13
10

13
08

13
06

13
04

13
02

12
99

12
97

12
95

12
93

12
91

12
88

12
86

12
84

12
82

12
79

12
77

12
75

12
73

12
70

12
68

12
66

12
64

12
61

12
59

12
57

12
55

12
53

12
50

12
48

12
46

12
44

12
42

12
39

12
37

12
35

12
33

12
31

12
28

12
26

12
24

12
22

12
20

12
18

12
15

12
13

12
11

6R
O

13
10

13
06

13
03

13
00

12
97

12
94

12
91

12
88

12
85

12
81

12
78

12
75

12
72

12
69

12
66

12
62

12
59

12
56

12
53

12
50

12
46

12
43

12
40

12
37

12
33

12
30

12
27

12
24

12
20

12
17

12
14

12
10

12
07

12
04

12
00

11
97

11
94

11
90

11
87

11
84

11
80

11
77

11
73

11
70

11
67

11
63

11
60

11
56

11
53

11
49

11
46

11
43

11
40

11
36

11
33

11
30

11
27

11
23

11
20

11
17

5C
R

O
12

65
12

60
12

56
12

51
12

47
12

42
12

37
12

33
12

28
12

24
12

19
12

14
12

09
12

05
12

00
11

95
11

91
11

86
11

81
11

76
11

72
11

67
11

62
11

57
11

52
11

47
11

43
11

38
11

33
11

28
11

23
11

18
11

13
11

08
11

03
10

98
10

93
10

88
10

83
10

78
10

73
10

68
10

63
10

58
10

53
10

48
10

43
10

38
10

33
10

28
10

23
10

17
10

12
10

07
10

02
99

7
99

2
98

7
98

2
97

8

5A
R

O
12

34
12

28
12

23
12

17
12

11
12

05
12

00
11

94
11

88
11

82
11

77
11

71
11

65
11

59
11

53
11

47
11

41
11

35
11

29
11

23
11

18
11

12
11

06
11

00
10

94
10

87
10

81
10

75
10

69
10

63
10

57
10

51
10

45
10

39
10

33
10

26
10

20
10

14
10

08
10

01
99

5
98

9
98

3
97

6
97

0
96

4
95

7
95

1
94

5
93

8
93

2
92

5
91

9
91

3
90

6
90

0
89

3
88

7
88

1
87

5

3C
R

O
11

82
11

74
11

65
11

57
11

48
11

40
11

31
11

22
11

14
11

05
10

97
10

88
10

79
10

70
10

62
10

53
10

44
10

35
10

27
10

18
10

09
10

00
99

1
98

2
97

3
96

4
95

5
94

6
93

7
92

8
91

9
91

0
90

1
89

2
88

3
87

3
86

4
85

5
84

6
83

6
82

7
81

8
80

8
79

9
79

0
78

0
77

1
76

1
75

2
74

3
73

3
72

3
71

4
70

4
69

5
68

5
67

5
66

6
65

6
64

6

2R
O

11
68

11
58

11
48

11
38

11
28

11
18

11
08

10
98

10
88

10
78

10
68

10
57

10
47

10
37

10
27

10
16

10
06

99
6

98
5

97
5

96
4

95
4

94
3

93
3

92
2

91
2

90
1

89
1

88
0

86
9

85
9

84
8

83
7

82
6

81
6

80
5

79
4

78
3

77
2

76
1

75
0

73
9

72
8

71
7

70
6

69
5

68
4

67
3

66
2

65
1

63
9

62
8

61
7

60
6

59
4

58
3

57
2

56
0

54
9

53
7

1R
O

11
42

11
31

11
19

11
08

10
96

10
85

10
73

10
62

10
50

10
39

10
27

10
16

10
04

99
2

98
1

96
9

95
7

94
5

93
3

92
1

91
0

89
8

88
6

87
4

86
2

85
0

83
8

82
5

81
3

80
1

78
9

77
7

76
5

75
2

74
0

72
8

71
5

70
3

69
0

67
8

66
5

65
3

64
0

62
8

61
5

60
3

59
0

57
7

56
4

55
2

53
9

52
6

51
3

50
0

48
8

48
9

50
2

51
6

52
9

54
2

O
A

R
O

10
70

10
56

10
41

10
26

10
11

99
6

98
1

96
6

95
1

93
6

92
1

90
6

89
1

87
6

86
0

84
5

83
0

81
4

79
9

78
3

76
8

75
2

73
7

72
1

70
6

69
0

67
4

65
8

64
3

62
7

61
1

59
5

57
9

56
3

54
7

53
1

51
5

49
9

49
7

51
3

53
0

54
6

56
3

58
1

59
8

61
5

63
2

64
9

66
6

68
4

70
1

71
8

73
5

75
2

76
9

78
7

80
4

82
1

83
8

85
5

O
R

O
10

63
10

44
10

25
10

06
98

7
96

8
94

9
93

0
91

0
89

1
87

2
85

3
83

3
81

4
79

4
77

5
75

5
73

6
71

6
69

6
67

6
65

7
63

7
61

7
59

7
57

7
55

7
53

7
51

7
49

6
51

4
53

6
55

8
57

9
60

1
62

3
64

4
66

6
68

8
71

0
73

2
75

4
77

7
79

9
82

1
84

3
86

6
88

8
91

0
93

2
95

4
97

6
99

9
10

21
10

43
10

65
10

87
11

10
11

32
11

54

O
O

R
O

10
23

10
03

98
2

96
1

94
0

91
9

89
8

87
7

85
6

83
4

81
3

79
2

77
0

74
9

72
7

70
6

68
4

66
2

64
1

61
9

59
7

57
5

55
3

53
1

50
9

50
2

52
6

55
0

57
4

59
8

62
2

64
6

67
0

69
4

71
8

74
3

76
7

79
2

81
7

84
1

86
6

89
0

91
5

93
9

96
4

98
8

10
13

10
37

10
62

10
86

11
11

11
35

11
60

11
84

12
09

12
33

12
58

12
82

13
07

13
31

D
is

ta
nc

e
fr

om
 lo

ng
 e

n
d

of
 t

he
 c

ra
nk

 [
in

]

119

