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Abstract. With an extension of> 40 km2 the recently dis-
covered Campeche cold-water coral province located at the
northeastern rim of the Campeche Bank in the southern Gulf
of Mexico belongs to the largest coherent cold-water coral
areas discovered so far. The Campeche province consists of
numerous 20–40 m-high elongated coral mounds that are de-
veloped in intermediate water depths of 500 to 600 m. The
mounds are colonized by a vivid cold-water coral ecosys-
tem that covers the upper flanks and summits. The rich coral
community is dominated by the framework-building Sclerac-
tinia Enallopsammia profundaandLophelia pertusa, while
the associated benthic megafauna shows a rather scarce oc-
currence. The recent environmental setting is characterized
by a high surface water production caused by a local up-
welling center and a dynamic bottom-water regime compris-
ing vigorous bottom currents, obvious temporal variability,
and strong density contrasts, which all together provide op-
timal conditions for the growth of cold-water corals. This
setting – potentially supported by the diel vertical migration
of zooplankton in the Campeche area – controls the deliver-
ing of food particles to the corals. The Campeche cold-water
coral province is, thus, an excellent example highlighting the

importance of the oceanographic setting in securing the food
supply for the development of large and vivid cold-water
coral ecosystems.

1 Introduction

The last decade has witnessed a tremendous progress in our
knowledge about “framework-building cold-water corals”
(CWC) as their role as ecosystem engineers creating highly
diverse ecosystems in water depths far beyond the shelf edge
is becoming more and more obvious (Roberts et al., 2009).
The biodiversity associated with these ecosystems may be
comparable to that found in tropical coral reefs (Roberts et
al., 2006), and they occur almost worldwide except for the
highest latitudes (Davies and Guinotte, 2011). The availabil-
ity of advanced deep-sea technologies (e.g., remotely oper-
ated vehicles) greatly supported the discovery and investiga-
tion of large, thriving and (so far) unknown CWC ecosystems
in remote places. Successful studies such as those performed
off Mauritania (Colman et al., 2005), off Angola (Le Guil-
loux et al., 2009), and in various parts of the Mediterranean
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Sea (Freiwald et al., 2009; Orejas et al., 2009; Fink et al.,
2013; Gori et al., 2013) demonstrate the potential use of these
technologies for future discoveries.

With their rigid carbonate skeletons that can persist over
geological timescales CWC shape the sea floor by creating
large three-dimensional structures, e.g.,> 300 m-high coral
carbonate mounds along the Irish margin (e.g., Kenyon et
al., 2003; Mienis et al., 2007) reaching back to Pliocene
times (∼ 2.6 Ma; Kano et al., 2007) and> 100 km2-large reef
structures off Norway (Fosså et al., 2005) formed during the
Holocene (e.g., López Correa et al., 2012). These structures
consist of a mixture of coral skeletons, the skeletal remains of
the coral-associated megafaunal community, and pelagic or
hemipelagic sediments that can serve as paleoenvironmental
archives allowing to reconstruct the long-term development
of the CWC ecosystems (e.g., Dorschel et al., 2005; Frank
et al., 2009; Titschack et al., 2009; Wienberg et al., 2009;
Eisele et al., 2011; Fink et al., 2012; López Correa et al.,
2012; Douarin et al., 2013; Thierens et al., 2013).

The scleractinian coralLophelia pertusais among the
most common and most widespread CWC species world-
wide and is particularly abundant in the eastern North At-
lantic (Davies and Guinotte, 2011). This species withstands
a rather wide range of physicochemical conditions (see sum-
mary in Davies et al., 2008), a fact that explains its almost
global distribution at depths between a few tens of meters to
over 2000 m (Freiwald and Roberts, 2005). Another critical
factor controlling its distribution is sufficient food supply that
is commonly driven by the interplay of surface water produc-
tivity and the local nature of the bottom current regime (e.g.,
currents, stratification, internal waves and tides) delivering
food particles to the CWC (Duineveld et al., 2004, 2007;
White et al., 2005). Paleoenvironmental studies revealed that
food supply often is the decisive factor triggering on- or off-
sets of coral growth in a given setting (e.g., Dorschel et al.,
2005; Wienberg et al., 2010; Eisele et al., 2011; Fink et al.,
2013).

In addition to the CWC hotspot in the eastern North At-
lantic, L. pertusaalso contributes to numerous coral mound
structures in the western North Atlantic along the continen-
tal margin from North Carolina (Ross and Nizinski, 2007),
along the Florida–Hatteras slope (Paull et al., 2010), and The
Bahamas to the Florida Straits (e.g., Neumann et al., 1977;
Mullins et al., 1981; Grasmueck et al., 2006; Correa et al.,
2012a, b). Further west in the Gulf of Mexico,L. pertusa
appears to be more scattered, forming isolated mound-like
structures along the west Florida slope (Newton et al., 1987;
Hübscher et al., 2010) and in the northern Gulf of Mexico
(Moore and Bullis, 1960; Schroeder, 2002; Reed et al., 2006;
Cordes et al., 2008; Becker et al., 2009; Davies et al., 2010).
Summarizing the current knowledge, Mienis et al. (2012)
conclude that within the Gulf of Mexico CWC mound struc-
tures have been rarely found, except on the west Florida slope
and in the Viosca Knoll area (Fig. 1). The latter area has
been considered the most extensiveLopheliahabitat found

Fig. 1. SEAWIFS satellite ocean color data transferred into
chlorophyll a concentrations for the Gulf of Mexico (source:
http://oceancolor.gsfc.nasa.gov). (a) The map refers to an 8-day
composite representing the period 22–29 September 2010. Black
indicates data gaps. The Campeche cold-water coral province (CP)
is influenced by increased productivity probably forced by local up-
welling at the northeastern rim of the Campeche Bank (Molinari
and Morrison, 1988). The white dot in the Yucatan Strait (YS) indi-
cates CTD station GeoB 16303-1. The white line marks the 200 m
isobath within the Gulf of Mexico. VK: Viosca Knoll cold-water
coral setting (e.g., Brooke and Schroeder, 2007); WF: west Florida
cold-water coral mounds (Newton et al., 1987).(b) The inset shows
the same data as a composite for the entire SEAWIFS mission
(4 September 1997 to 30 November 2010). The black arrow indi-
cates the area of the Campeche cold-water coral province that is
located in a region marked by a long-term enhanced productivity.

so far in this region (Brooke and Schroeder, 2007; Davies et
al., 2010) probably as a consequence of enhanced produc-
tivity driven by nutrient-enriched Mississippi River outflow
(Wawrik and Paul, 2004). Apart from the Campeche Bank,
the southern Gulf of Mexico is generally characterized by
meager planktonic biomass along the Mexican slope mirror-
ing the low-productivity Caribbean water that enters the Gulf
of Mexico through the Yucatan Strait (Wei et al., 2012).

In this paper, we document for the first time build-ups
at the sea floor formed by framework-building scleractinian
corals on the slope of the Mexican Campeche Bank, south-
ern Gulf of Mexico. These build-ups are mainly formed
by Enallopsammia profunda–Lophelia pertusacommunities.
This finding was unexpected as available data from a few
dredge haul stations only described the occurrence of the
scleractinian CWCMadrepora oculataalong the margin of
the Campeche Bank, north of the Mexican Yucatan Penin-
sula (Cairns, 1979; Schroeder et al., 2005). Only in 2010 was
more detailed information provided, when hydroacoustic
surveys revealed “mound-like” structures between 500 and
600 m water depth along the margin of the bank (Hübscher
et al., 2010). Without any groundtruthing being available at
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that time, it only has been speculated that these structures
might be CWC mounds (Hübscher et al., 2010).

This region was revisited in 2012 and extensive field data
(bathymetry, hydrography, and video observations) revealed
the existence of a large thriving CWC ecosystem, which is
the focus of this paper. This hitherto unknown CWC site
is here termed the “Campeche CWC province”. The scope
of the present study is to describe this extensive (> 40 km2)

CWC province with respect to morphology, the megafaunal
community, and the oceanographic setting and to put it into
a larger framework analyzing the overall forcing factors con-
trolling its development.

2 Regional setting

The Campeche Bank is a large shelf area extending approxi-
mately 200 km northward from the Mexican Yucatan Penin-
sula into the Gulf of Mexico (Fig. 1). The Gulf of Mex-
ico is a largely oligotrophic basin with enhanced produc-
tivity only along the continental shelves (Müller-Karger et
al., 1991), where seasonal coastal upwelling provides ad-
ditional nutrients to the surface waters (Zavala-Hidalgo et
al., 2006). A major source of nutrients is the Mississippi
plume fertilizing the northeastern shelves of the Gulf with
enhanced productivity partly extending over the continen-
tal slope (Wawrik and Paul, 2004). The enhanced produc-
tivity triggered by the Mississippi plume most likely plays
an important role in sustaining CWC populations along the
Louisiana and Florida continental slopes (e.g., Newton et al.,
1987; Schroeder, 2002; Fig. 1).

Apart from the typical coastal upwelling, another up-
welling regime has been described further offshore along the
eastern margin of the Campeche Bank (Merino, 1997). As
the curl of the prevailing wind stress is not likely to induce
upwelling along the eastern Yucatan slope, the upwelling ob-
served there is probably caused by bottom friction or other
topographical effects (Merino, 1997). Nevertheless, the ad-
vection of nutrients into the photic zone (although rarely to
the sea surface; Merino, 1997) induces very high productivity
reaching a peak in September (Zavala-Hidalgo et al., 2006)
when sites near the Campeche CWC province appear promi-
nently in satellite-based productivity maps (Fig. 1).

Along its eastern edge the Campeche Bank borders the
Yucatan Strait that forms the main passage connecting the
Caribbean Sea and the Gulf of Mexico through which the Yu-
catan Current transports∼ 24 Sv from south to north (Shein-
baum et al., 2002). According to Merino (1997) three main
water masses comprise the water column there. Salinity and
temperature increase together from the Antarctic Intermedi-
ate Water (AAIW, 7◦C, salinity 34.9) in the deep towards
the salinity maximum of the Subtropical Intermediate Wa-
ter (STUW, 23◦C, salinity 36.8) at∼ 150 m depth. Further
above, temperature rises and salinity declines until from 50 m
to the surface both parameters remain relatively constant

(26–27.5◦C, salinity< 36.4), representing the Caribbean
Surface Water (CSW). At depths greater than∼ 650 m, the
Yucatan and Cuban countercurrents transport water south-
ward while being confined to the western, Mexican side and
to the eastern, Cuban side of the Yucatan Strait, respectively
(Sheinbaum et al., 2002).

With respect to the strength of the bottom current regime,
the best information is provided by mooring data obtained
slightly further south in the Yucatan Strait (∼ 21.5◦ N; e.g.,
Sheinbaum et al., 2002). Along a W–E transect through the
area, the mean northward current velocities at the western
margin decrease rapidly from almost 100 cm s−1 at the sur-
face to< 10 cm s−1 at 200 m water depth. However, at the
depth of the Campeche CWC province (∼ 550 m) the bot-
tom current velocities in the Yucatan Strait increase again to
> 10 cm s−1 (Sheinbaum et al., 2002).

3 Methods

All data presented here were collected during expedition
MSM 20-4 with the German R/VMaria S. Merianin spring
2012 (Hebbeln et al., 2012). They include hydroacoustic
measurements, water column studies, and seabed ROV video
observation (see Table 1 and Fig. 2 for relevant site in-
formation). Instrument specifications and applied settings
for the hydroacoustic measurements are described in detail
in Hebbeln et al. (2012). For all hydroacoustic measure-
ments introduced below, the essential sound velocity profile
through the water column was obtained from two CTD casts
in (GeoB 16305-1) and close to (GeoB 16303-1) the working
area (Figs. 1 and 2, Table 1).

3.1 Hydroacoustic measurements

3.1.1 Multibeam echosounder (MBES)

Seabed mapping was performed using a KONGSBERG
EM1002 multibeam echosounder system (MBES) operating
at a frequency of 95 kHz. The EM1002 emitted 111 beams
per ping, covered a depth range of 2 to 1000 m and achieved
a high depth resolution of 2–8 cm, depending on the pulse
length (0.2–2 ms). Achievable swath width on a flat bottom
was up to 5 times the water depth dependent on the char-
acter of the seafloor. Spatial integrity of the mapping data
were achieved by combining the ship’s SEAPATH 200 in-
ertial navigation system (INS) including differential global
positioning system (DGPS) information with motion data
(roll, pitch, heave) provided by the motion reference unit
(MRU) 5. The open-source software package MB-System
v.5.3.1 (Caress and Chayes, 1996) and the Generic Mapping
Tool (GMT) v.4.3.1 (Wessel and Smith, 1998) were used for
bathymetric data processing, editing and evaluation. ESRI
ArcGIS v.10 was used to create maps (grid cell size: 10 m)
and a sustainable spatial data management.
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Fig. 2. Overview on the Campeche cold-water coral province (for location see Fig. 1).(a) Detailed bathymetric map showing the eastern
margin of the Campeche Bank comprising the Campeche cold-water coral province revealing numerous individual elongated coral mounds
located mainly between 500 and 600 m water depth. Indicated are CTD sites (black dots) and ROV dive tracks (colored lines; GeoB station
numbers are indicated) conducted during R/VMaria S. Meriancruise MSM 20-4 (for detailed site information see Table 1).(b) PARA-
SOUND profile crossing the slope and highlighting the main morphological units.(c) High-resolution view on some of the elongated coral
mounds (for position see dotted rectangle ina), with the dominant northwesterly directions marked by dashed lines and with the sub-dominant
northeasterly directions marked by the dotted lines.

3.1.2 Acoustic Doppler current profiler (ADCP)

Current velocity and direction, and backscatter data through
the water column were measured with an RDI Ocean Sur-
veyor acoustic Doppler current profiler (ADCP) operating at
a frequency of 75 kHz. Data were acquired using the RDI
software VMDAS (Vessel-Mount Data Acquisition) using
128 depth bins of 5 m bin size. Backscatter data were cor-
rected for beam spreading and water absorption (Deines,
1999). For the backscatter data set presented in this study, a
constant water absorption coefficient of 0.0272 dB m−1 was
used (Schulkin and Marsh, 1962). Due to the simultaneous
deployment of several hydroacoustic devices, backscatter
and current velocity data were affected by acoustic interfer-
ence, which was removed using appropriate filters. Backscat-
ter data close to the seafloor were biased by side-lobe in-
terferences and not used for interpretation. ADCP data are

presented as a stationary 12 h record collected at site GeoB
16316 (Fig. 2, Table 1).

3.2 ROV video observation and sampling

Three video surveys (GeoB 16307-1, GeoB 16312-1,
GeoB 16317-1; Table 1, Fig. 2) were conducted with the
ROV Cherokee(Sub-Atlantic, Aberdeen, Scotland; oper-
ated by MARUM, Bremen, Germany) crossing several CWC
mounds along the Campeche margin. The ship-based IXSEA
global acoustic positioning system (GAPS) coupled with
the ship’s DGPS provided an absolute positioning accuracy
within 1–2 % of the slant range. The ROV was equipped
with a hydraulic manipulator system for sampling purposes,
four video cameras including a color video zoom camera
for detailed seafloor observation and a digital still camera.
The cameras were equipped with two lasers for object size
measurements on the seabed; laser scaling was adjusted to

Biogeosciences, 11, 1799–1815, 2014 www.biogeosciences.net/11/1799/2014/



D. Hebbeln et al.: Environmental forcing of the Campeche cold-water coral province 1803

Table 1.Metadata of CTD casts and ROVCherokeevideo surveys conducted at the Campeche cold-water coral province during R/VMaria
S. Meriancruise MSM 20-4. Abbreviations: WD: water depth.

Station Gear Date UTC Latitude Longitude WD Remark
[GeoB-No.] [2012] [hh:mm] [N] [W] [m]

16303-1 CTD 21 March 14:59 22◦ 00.98′ 86◦ 02.95′ 1246 Sound velocity profile

16305-1 CTD 22 March 05:21 23◦ 49.87′ 87◦ 12.27′ 506 Sound velocity profile

16316-1 to 16316-13 Yoyo CTD
Start: 24 March 00:20 23◦ 51.51′ 87◦ 12.12′ 576 Hourly casts over∼ 12 h;

ADCP data were recorded
simultaneously over∼ 13 hEnd: 24 March 12:01 23◦ 51.52′ 87◦ 12.13′ 558

16307-1 ROV
Start: 22 March 13:51 23◦ 40.83′ 87◦ 10.03′ 547

Video observationEnd: 22 March 16:20 23◦ 50.49′ 87◦ 10.71′ 577

16312-1 ROV
Start: 23 March 14:31 23◦ 50.35′ 87◦ 11.76′ 523

Video observationEnd: 23 March 18:31 23◦ 52.52′ 87◦ 12.49′ 531

16317-1 ROV
Start: 24 March 13:37 23◦ 51.12′ 87◦ 12.53′ 555

Video observationEnd: 24 March 15:02 23◦ 51.77′ 87◦ 12.16′ 556

11.5 cm in a horizontal direction. All video and still-image
data were digitally stored. Navigational data (ship, ROV),
video recordings, and still images are all time-referenced.
With the manipulator of the ROV several coral samples were
collected to assess the phenotypes of the different CWC
species.

3.3 Water column analyses

To determine the physical parameters of the water masses in
the area of the Campeche CWC province and to trace their
variability, CTD measurements were performed as a Yoyo
CTD comprising 13 individual casts taken within 12 h at sta-
tion GeoB 16316 (Fig. 2, Table 1). The CTD measurements
of the water column down to a maximum water depth of
1246 m were conducted using a SEABIRD “SBE 9 plus” un-
derwater unit and a SEABIRD “SBE 11 plus V2” deck unit.
The vertical profile over the water column provided stan-
dard data for conductivity, temperature, pressure, and dis-
solved oxygen. Conductivity and temperature data were used
to compute salinity (with the latter being presented here unit-
less). The data presented here all refer to the downcast of the
individual CTD deployments.

4 Results

4.1 Morphology and dimensions of the Campeche
cold-water coral province

The hydroacoustic mapping encompasses an area of 180 km2

along the northeastern slope of the Campeche Bank and dis-
plays three distinct topographical features (Fig. 2). The west-
ern part of the map shows an extensive more or less plain
area at∼ 440 m water depth. A NNW–SSE orientated and
∼ 40 m-high escarpment separates this rather shallow and

plain area from a gently dipping slope to the east, which cov-
ers the water depths between 480 and 600 m. Further downs-
lope below∼ 600 m water depth, the slope is followed by a
more gently dipping area which comprises smooth sediment
of a major drift sediment body (Hübscher et al., 2010). The
first 3–5 km of the dipping slope east of the edge are covered
by linear and steep-sided elongated mounds between 500 and
600 m water depth. This belt of parallel elongated mounds is
situated between the escarpment and the continuous drift de-
posit, with a few stratified sediment bodies also occurring be-
tween the mounds. Both the mounds and the sediment drift
overlay a regional truncation surface (Fig. 2b; Hübscher et
al., 2010).

The mounds have average heights between 20 and 40 m
but can even reach heights of up to 50 m. They vary in length
from a few tens of meters to> 1000 m, and trend in two di-
rections. The dominant direction is NW–SE and the second
one NE–SW (Fig. 2c). In many cases both directions merge,
thereby forming V-shaped elongated mounds pointing with
the tip to the WNW. ROV-based video observations reveal
that the morphology of these mounds is mostly rather steep
with estimated angles of up to 30◦ (e.g., Fig. 3e). These elon-
gated mounds are often aligned by a moat towards the next
mound (Fig. 2). In addition, on some of the mound flanks ex-
humed carbonate crusts with irregular upper and lower sur-
faces have been observed (Fig. 3h). As the video observations
clearly indicate that these mounds are covered by a vivid
CWC ecosystem (Figs. 3a, b and 4a, b), the entire structure
is termed here the Campeche CWC province. The minimum
extension of the Campeche CWC province is 40 km2; how-
ever, most likely this CWC province is even larger, as it still
has a significant width at the northern and southern bound-
aries of the mapped area (Fig. 2). Thus, the ultimate north-
ern and southern boundaries of the Campeche CWC province
still need to be verified.
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Fig. 3. ROV images showing the variety of facies types observed for the Campeche cold-water coral province (images copyright MARUM,
Bremen, ROVCherokeeteam).(a) Coral mound summit: dense colonies ofLophelia pertusa– note Hexactinellid sponges(Aphrocallistes
sp.) and squat lobster;(b) current-exposed coral mound flank: ensemble of the fragileEnallopsammia profundaand thebrachycephala
morphotype ofL. pertusa; (c) mound flank packed with dead coral framework;(d) arcuateE. profundathicket on a low-relief mound;
(e)sudden facies change from flat soft sediment plain to steeply inclined coral mound flank;(f) lower coral mound flank: dispersed fragments
of E. profunda; (g) intermound area: strongly bioturbated soft sediment – note stalked sponge (Hyalonemasp.) colonized by actiniarians;
and(h) occasionally observed outcropping carbonate crusts.

Biogeosciences, 11, 1799–1815, 2014 www.biogeosciences.net/11/1799/2014/
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4.2 The Campeche cold-water coral ecosystem

Observations during three ROV dives that cross several
mounds of the Campeche CWC province reveal the com-
position of the structure-forming CWC and their associated
megafaunal community. The dive tracks of the video surveys
had an NNW–SSE orientation in water depths ranging 510–
580 m (Fig. 2). All mounds studied are colonized by colo-
nial scleractinians representingEnallopsammia profunda–
Lophelia pertusacommunities (Figs. 3 and 4), whereas the
flat seabed between the mounds consists of pelagic unconsol-
idated mud enriched by globigerinid foraminifers and theco-
somatous gastropods, locally admixed with patches of coral
rubble and mollusk shell hash (see detailed description of
collected sediment samples in Hebbeln et al. (2012)). These
intermound areas are strongly bioturbated as indicated by
widespread lebensspuren and burrows (Fig. 3g).

Coral colonization, coral density and coral species dis-
tribution show a clear zonation related to current exposure
and position on the mound flank. In general, living corals
occur at the highest parts of the mounds, followed downs-
lope by a zone of coral rubble and by plain soft sediments in
the lower parts of the mounds and in the areas between the
mounds (Fig. 3). However, on some steeply inclined mounds
(up to 30◦), coral colonization starts already at the base of
their current-exposed side (SSE), thereby generating a sharp
change of sedimentary facies from pelagic muds to a living
CWC ecosystem. On less steep mounds live coral colonies
start to appear halfway upslope the current-exposed flank,
or the mound flanks are entirely covered by a dead and col-
lapsed coral framework or coral rubble with only few live
coral colonies in between. For both types of mounds, corals
fade off halfway along the leeward flanks of the mounds.
Overall, the density of coral framework and the proportion
of live coral colonies become progressively higher towards
the summit, where they can form very dense coral thickets up
to 60 cm thick. The mound flanks are dominated byE. pro-
funda, whereasL. pertusabecomes increasingly abundant, if
not dominant on the summits.

The dendroidE. profundacolonies display an open-spaced
growth habit with individual colony branches pointing in all
directions (Fig. 4a and b). This growth habit results in a loose
mesh of coral framework, thus facilitating framework dis-
integration of individual branches into stick-like fragments.
Colony heights vary from 20 to 60 cm; thus only the upper
10–15 cm of a colony yields live coral polyps and translu-
cent tissue.Lophelia pertusaalso constructs an open-spaced
coral framework. However, secondary fusion between ad-
jacent coral branches is a very common feature, thus in-
creasing the structural integrity of the entire framework con-
siderably in comparison toE. profunda. The branches of
L. pertusaare strongly calcified and slender with individ-
ual corallite lengths of 2.5–3.5 cm and calicular diameters
of 0.5–0.8 cm. This phenotype has been described as forma
gracilis by Duncan (1873) and is in contrast to the stout

branches with extremely wide calicular diameters of the
brachycephalaform (Fig. 4a) described by Moseley (1881)
and Cairns (1979). The latter phenotype occurs in low num-
bers in the Campeche CWC province, but the co-occurrence
of the two L. pertusagrowth forms is a well-known phe-
nomenon in the northern Gulf of Mexico (Newton et al.,
1987; Brooke et al., 2009). TheLopheliaframework can at-
tain heights of 50 cm, and the zone of live polyps and translu-
cent tissue coverage stretch over a range of 20–30 cm.

The live coral zone is utilized by the associated community
in various ways and differs largely in terms of species com-
position and richness from the associated community found
in the tissue-barren, exposed coral framework beneath. Com-
mon organisms observed (although not exclusively) in the
live zone are the predatory decapodsBathynectes longispina,
Eumunida picta, Chaceon fenneri, Munidopsissp. andRo-
chinia crassaand the grazing echinoidsCidaris sp. and
Gracilechinussp. (Fig. 4e). The latter echinoid has been rec-
ognized as a corallivore in CWC habitats of the eastern North
Atlantic (Stevenson and Rocha, 2013). Other organisms with
corallivore affinities in the live coral zone are star fishes of
the genusHippasteria(Mah et al., 2010) and the muricid gas-
tropod Coralliophila richardi (Taviani et al., 2009), which
were commonly collected from the live coral zone. Stalk-
less crinoids have been occasionally observed to take ad-
vantage of the elevated and current-exposed position of live
coral branches for filtering particles from the water. Indica-
tion of probably necrotic epibiosis of live scleractinians by
zoanthids and actiniarians in some scleractinian colonies is
a common feature and seems to cause local mortality. Poly-
chaetes of the genusEunice, from which several species are
known as symbionts ofL. pertusaand other colonial CWC
(e.g., Buhl-Mortensen and Mortensen, 2004; Mueller et al.,
2013), are surprisingly rare in the Campeche CWC province.

Characteristic organisms of the tissue-barren, ex-
posed coral framework are flytrap anemones (probably
Actinoscyphiasp.; Fig. 4b), isidid corals (Keratoisis sp.),
and solitary scleractinians (Desmophyllum dianthus, Ja-
vania cailetti, Stenocyathus vermiformis, Trochopsammia
infundibulum). The glass spongeAphrocallistessp. was
found attached to the coral framework. Apparently the
glass sponges are living together with masses of yellow
actiniarians (Fig. 4f), thus resembling the recently de-
scribed symbiotic relationship between the glass sponge
Hyalonema sieboldi with the actiniarian Spongiactis
japonica (Sanamyan et al., 2012). Common fishes encoun-
tered frequently in the coral framework wereHelicolenus
dactylopterusandNettenchelys exoria. Gorgonians and an-
tipatharians that are elsewhere common in CWC ecosystems
are extremely rare here.

The coral rubble is strongly admixed with unconsoli-
dated pelagic mud, thereby providing small hard-substrate
islands within soft sediment. Common megafaunal organ-
isms are large astrorhizid foraminifers, cerianthids, pennat-
ulaceans, stalked glass sponges (Hyalonemasp.), and the
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Fig. 4.ROV images showing examples for the megafaunal community present in the Campeche cold-water coral province (images copyright
MARUM, Bremen, ROVCherokeeteam).(a) Dense colonization ofLophelia pertusaat the coral mound top;(b) flytrap anemone (probably
Actinoscyphiasp.) colonizing tissue-barren, exposed coral framework;(c) displaced but still alive colony ofEnallopsammia profunda; (d)
brachyuran crabRochinia crassa; (e) grazing of living corals by the echinoidGracilechinussp.; (f) glass spongeAphrocallistessp. living
together with masses of yellow actiniarians;(g) the giant cirolanid isopodBathynomus giganteus; and(h) the anglerfishChaunax suttkusi
commonly spotted near the coral mounds resting on the seabed.

common decapods (same as in the live zone) and shrimps.
Amongst the mobile organisms, the giant isopod crustacean
Bathynomus giganteuswas detected (Fig. 4g). Like in other
coral rubble habitats elsewhere in the Gulf of Mexico and

in the northern North Atlantic, the anglerfishChaunax sut-
tkusi(Fig. 4h), was commonly spotted near the coral mounds
resting on the seabed (Caruso et al., 2007). Other common
fishes observed in the coral rubble and pelagic mud areas
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Fig. 5. Water mass structure in the Yucatan Strait (GeoB 16303-1)
and in the Campeche cold-water coral province (GeoB 16316-1 to -
16, Yoyo CTD station; see Table 1). Shown is a temperature–salinity
plot; temperature is displayed as potential temperature (Tpot), grey
lines indicate levels of isodensity (σ2) in kg m−3 (plotted using
Ocean Data View v.4.5.1;http://odv.awi.de; Schlitzer, 2012). Ab-
breviations: CSW: Caribbean Surface Water; STUW: Subtropical
Intermediate Water; AAIW: Antarctic Intermediate Water.

areChlorophthalmus agassizi, Laemonemasp.,Nezumiasp.,
Phycidae and Rajidae.

4.3 Water column structure/dynamics

The CTD measurements allow the identification of the most
important regional water masses, based on temperature (po-
tential temperature) and mainly on salinity data (Fig. 5). The
uppermost∼ 80 m of the water column are characterized by
water with salinities of< 36.4, which is indicative of the
presence of the CSW. The salinity maximum (∼ 36.8) be-
tween 100 and 160 m water depth is characteristic for the
STUW. At 540 m water depth salinity drops below 35.0,
marking the presence of AAIW. In the depth range where
living CWC have been observed (520 to 580 m) temperatures
range 7.5–9.5◦C and salinities 34.9–35.1. Dissolved oxygen
contents vary between 2.74 and 2.8 mL L−1.

The Yoyo CTD station (GeoB 16316) consisting of 13 in-
dividual, hourly taken casts reveal small but significant vari-
ations also in the deepest part of the water column just above
the Campeche CWC province (Fig. 6): for example, at 519 m
water depth the temperature varies by almost 1◦C up to three
times over the 12 h measuring period (Fig. 6c). These tem-
perature changes are also reflected in the depth position of
individual isotherms (8 to 9.5◦C, Fig. 6b). They fluctuate

vertically by up to 20 m, thereby reflecting the same temporal
forcing as the temperatures at 519 m depth. Along with these
temperature changes a distinct density gradient induced by
temperature and salinity changes, almost reaching 0.7◦C and
0.07, respectively, over a 10 m depth interval (Fig. 6d) prop-
agates across the site. With∼ 0.06 kg m−3 per 10 m depth
interval this density gradient is strongest for the lower part
of the water column at 525 m depth and significantly higher
than the density gradients between 380 m and the sea floor
that otherwise reach maximum values of∼ 0.04 kg m−3 per
10 m depth interval (Fig. 6a).

The ADCP data collected over a 13 h time interval (simul-
taneously to the Yoyo CTD data; see Table 1) allow distin-
guishing between three major layers that show some inter-
nal (although less pronounced) horizontal structuring (Figs. 7
and 8). Within the upper 130 m of the water column, the
highest current velocities (74–83 cm s−1) occur together with
a high backscatter (94–98 dB). Current directions vary be-
tween 322◦ and 335◦. The second layer between 130 and
460 m is characterized by continuously decreasing current
velocities from 63 to 42 cm s−1, again by rather stable cur-
rent directions similar to the uppermost layer (325◦ to 336◦),
and by low backscatter values (84–94 dB). The bottom layer
(> 460 m) is marked by a significant change in current direc-
tion (343◦ to 360◦) and by the lowest but still strong currents
flowing at a rate of 24 to 42 cm s−1.

At the beginning of the stationary ADCP record (ca.
00:00 UTC, 24 March 2012) enhanced backscatter signals
move upward through the water column towards the sea
surface. By the end (ca. 11:30 UTC), similar signals move
downward towards the seabed (Fig. 7). Similar observations
were made during additional ADCP surveys in the working
area during cruise MSM 20-4 (Hebbeln et al., unpublished
data). In total, four upward (always at around 0:00 UTC,
corresponding to 18:15 local “solar” time at 86◦ W, i.e.,
sunset) and two downward movements (always at around
11:30 UTC, corresponding 05:45 local solar time at 86◦ W,
i.e., sunrise) were observed.

5 Discussion

Large CWC-formed seafloor structures have been reported
from many regions in the world’s oceans (see compilation in
Freiwald and Roberts (2005)). In addition to the> 300 m-
high CWC mounds off Ireland (Kenyon et al., 2003; Mienis
et al., 2007; Dorschel et al., 2010), the extensive reefs off
Norway (e.g., Fosså et al., 2005) are the most impressive
features. Extending over tens of kilometers (e.g., the Sula
Reef,∼ 14× 0.5 km, Freiwald et al., 2002; the Røst Reef,
∼ 40× 3 km, Fosså et al., 2005) and reaching up to∼ 40 m
in height, these reefs generally comprise clusters of indi-
vidual frameworks rather than a single coalescent structure
(Freiwald et al., 2002). The Campeche CWC province shows
a similar appearance as it comprises a cluster of individual
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Fig. 6.Hydrological variability derived from the Yoyo CTD station GeoB 16316 (see also Table 1 and Fig. 1).(a) Variability of the tempera-
ture distribution in the entire water column over a time interval of 12 h (comprising 13 individual CTD casts). The red inset shows the density
gradient over 10 m depth intervals for the water column below 380 m taken from CTD cast GeoB 16316-1 (00:20 UTC).(b) Depth variation
of the 8◦C to 9.5◦C isotherms in the lower part of the water column> 500 m water depth over the same time period shows partly vertical
movements of> 20 m. Variations in water depth (black denotes the sea floor) are caused by slight movements of the vessel (∼ 600 m N–S,
∼ 50 m E–W) at the Yoyo CTD station (including the crossing of a CWC mound).(c) Water temperature at 519 m depth measured over the
same time period indicates a variability of up to 1◦C. (d) Gradients in temperature, salinity, and density over 10 m depth intervals. Data were
obtained during the individual CTD cast GeoB 16316-1 (00:20 UTC) and reveal particularly strong gradients around 520 m water depth (see
alsoa).

elongated coral mounds rather than a single clearly confined
reef structure. The term “province” is used for the present
study to describe the CWC mounds along the Campeche
Bank following the nomenclature developed for the Irish
margin where numerous individual CWC mounds occur clus-
tered in provinces (e.g., White and Dorschel, 2010). With its
mapped area of 10×4 km, and most likely further northwest-
and southeastward extensions, the Campeche CWC province
is comparable with the large Norwegian reefs and, thus, be-
longs to the largest mapped CWC provinces in the world.
In addition, the Campeche CWC province represents the
most important and extensive flourishing azooxanthellate
coral area in the entire Gulf of Mexico discovered so far.
The geographically closest CWC province is situated along
the Miami Terrace in the Straits of Florida, where 27 km2

of elongated coral mounds are mapped in detail by an au-
tonomous underwater vehicle (Correa et al., 2012a) in an area
where earlier studies have reported occurrences of “muddy
mounds” and “sand ridges” (Neumann and Ball, 1970).

Whereas the large Irish coral mounds have been accu-
mulated over> 2 million years (Kano et al., 2007), the
Norwegian reefs have been formed only during the last

∼ 10 000 years of the Holocene (e.g., López Correa et al.,
2012), when during the last deglaciation the Fennoscandian
Ice Sheet retreated beyond the present-day coastline. Large
seafloor structures formed by CWC cannot easily be trans-
ferred into age, as, for example, the Irish mounds at some
point in time changed from a distinct accumulation stage
into an almost stagnation stage marked by CWC growth
and sediment deposition alternating with extensive periods
dominated by erosion (Dorschel et al., 2005; Kano et al.,
2007; Eisele et al., 2008). Thus, the average height of the
Campeche coral mounds of 20 to 40 m does not allow for es-
timating the onset of coral growth in the region. Nevertheless,
their size and the collection of a> 10 m-long sediment core
containing abundant coral fragments embedded in a matrix
of hemipelagic sediments (Hebbeln et al., 2012) reveal that
also the Campeche CWC ecosystem has a relevant, although
yet not constrained, history.

This sedimentary record adds to the PARASOUND ev-
idence for a “CWC origin” of these mounds. The coral
mounds show little to no internal layering and are often trans-
parent (Fig. 2b), which is a common feature for coral car-
bonate mounds (e.g., Van Rooij et al., 2003; Savini et al.,
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Fig. 7. ADCP-derived backscatter data obtained during a 13 h stationary measurement from 00:00 to 13:00 UTC on 24 March 2012. ADCP
data were recorded simultaneously to the Yoyo CTD station GeoB 16316 (see Table 1). This backscatter record shows the upward (0:00–
0:30 UTC, local sunset) and downward (11:30–12:00 UTC, local sunrise) migration of the zooplankton. Probably biased data close to the
seafloor have been omitted.

Fig. 8. Water column data for the Yoyo CTD site GeoB 16316.
Mean values for(a) current speed,(b) current direction, and
(c) backscatter averaged from the 13 h stationary ADCP measure-
ment. CTD data from cast GeoB 16316-1 for(d) salinity, (e) tem-
perature, and(f) dissolved oxygen. The dashed lines refer to the
lowerx axes. The grey shadings delineate the different layers of the
water column as derived from the ADCP data.

2014). The PARASOUND profile crossing the Campeche
CWC province from west to east displays a strong reflection
underneath the drift sediment bodies and the CWC mounds
developed along the Campeche Bank slope (Hübscher et al.,
2010). It is assumed that this continuous strong reflector
forms the base of the coral mounds (Hübscher et al., 2010)
that might have provided the hardground allowing for the
initial coral settlement similar to the erosional unconformity
forming the base of the Irish CWC mounds (Van Rooij et al.,
2003; Kano et al., 2007).

CWC often form coral mounds that can have a variety
of shapes, from circular to elongate (Roberts et al., 2009).
Elongated mounds often have been related to the presence
of an unidirectional bottom current regime, however, with
elongated coral mounds sometimes occurring perpendicular
(Correa et al., 2012a) and sometimes parallel (Messing et
al., 1990) to the main current direction. The elongated coral
mounds within the Campeche CWC province appear to be
generally aligned parallel to the main current direction pos-
sibly following an upstream growth pattern as outlined by
Messing et al. (1990). They mostly stretch towards 330◦ with

some heading towards 300◦ (with a second-order direction
NE–SW; see above). These directions are close to the two
main current directions of 330◦ (above∼ 470 m) and 360◦

(below∼ 470 m) derived from the ADCP data (Fig. 8) which,
however, only represent a snapshot in time. Temporal varia-
tions (e.g., lunar, seasonal) below 470 m might result in the
different directions of the coral mounds observed. Then, the
30◦ offset between both current directions and both mound
directions observed could speculatively be related to an in-
herent 30◦ relationship between coral mound extension and
prevailing current direction.

5.1 The Campeche cold-water corals and associated
community

The Campeche CWC province is constructed byEnallop-
sammia profundaand to a lesser degree byLophelia pertusa.
Neither of the scleractinians have been reported in previous
publications from the Campeche slope (e.g., Cairns, 1979;
Cairns et al., 1993) but are known from several locations in
the Caribbean Sea and northern Gulf of Mexico (see compi-
lations of published and unpublished information by Brooke
and Schroeder, 2007; Lutz and Ginsburg, 2007; Messing et
al., 2008). WhileL. pertusahas a nearly cosmopolitan distri-
bution,E. profundais endemic to the western Atlantic from
the Antilles in the south to off Massachusetts in the north
at water depths of 146–1748 m (Cairns, 1979). Structure-
forming Enallopsammia–Lopheliaframeworks are known
from the base of the Florida–Hatteras slope in 500–800 m
water depth and from Miami to South Carolina (Reed, 2002).
Correa et al. (2012a) describe an approximately 20 km2 field
of Enallopsammia–Lopheliacoral mounds at the base of
the Miami Terrace, Straits of Florida, at 630–870 m depth,
with a denser coral framework on current-facing flanks and
summits. The same coral association is present in the CWC
mound province at the toe of the Great Bahama Bank (Cor-
rea et al., 2012b). Interestingly, on the ROV tracks stud-
ied only a low abundance of associated megafauna in the
Campeche CWC province was documented. This is in con-
trast to other scleractinian coral framework habitats in the
northern Gulf of Mexico (Lessard-Pilon et al., 2010) or in
the eastern North Atlantic (e.g., Henry and Roberts, 2007;
Roberts et al., 2006). For instance, with the exception of
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Aphrocallistessp. and a fewKeratoisissp., no other large
suspension-feeding megabenthos were observed during the
three ROV dives. It should be kept in mind that the visually
inspected portion of the Campeche coral province is far too
small for a solid conclusion at present and further inspections
may change this first impression considerably.

Regarding the structure-forming CWC from the
Campeche Bank on a wider perspective, this newly
found CWC province is located at a key position, namely
at the beginning of the Loop Current that passes over the
well-known CWC occurrences of Louisiana and west Florida
before it becomes the Florida Current flowing through the
Straits of Florida. North of the Straits of Florida the Florida
Current forms 90 % of the Gulf Stream, passing north along
the margins of South Carolina and Georgia, from where
also large CWC provinces have been reported (Ross, 2007;
Ross and Quattrini, 2007; Messing et al., 2008). South of
the Campeche CWC province,Lophelia is known from off
Brazil, Venezuela and Colombia and was recently mapped
off Roatan, Honduras (Reyes et al., 2005; Lutz and Ginsburg,
2007; Arantes et al., 2009; Mangini et al., 2010; Etnoyer et
al., 2011), thus following the path of the northward-flowing
AAIW that bypasses the Campeche Bank (Merino, 1997).
Such an oceanic intermediate water gateway (sensu Henry,
2011) may exert strong control on coral larval dispersal
routes as has been documented forDesmophyllum dianthus
populations in the South Pacific (Miller et al., 2011).

5.2 Environmental control on the Campeche cold-water
coral ecosystem

The known ranges of temperature (4–13.9◦C; Roberts et al.,
2006; Freiwald et al., 2009), salinity (31.7–38.8; Freiwald
et al., 2004; Davies et al., 2008), dissolved oxygen (2.7–
7.2 mL L−1; Dodds et al., 2007; Davies et al., 2008; Davies
et al., 2010) and other physicochemical parameters defining
the ecological niche ofL. pertusain the eastern North At-
lantic (see summary in Davies et al., 2008) are found in many
parts of the world’s oceans (Davies and Guinotte, 2011). Wa-
ter mass properties obtained for the Campeche margin, such
as temperature (9.5–7.5◦C) and salinity (35.1–34.9), fit well
into these defined thresholds (Fig. 7). The observed content
of dissolved oxygen of∼ 2.7 mL L−1 matches observations
from the Viosca Knoll area in the northern Gulf of Mexico,
whereLophelia colonies currently thrive at the lowest re-
ported oxygen levels of 2.7–2.8 mL L−1 (Davies et al., 2010).
It is assumed that these extreme oxygen conditions cause de-
creased growth rates or even inhibit reproductive processes
(Brooke and Young, 2003).

However, despite a suited physicochemical setting, the
presence of suitable hardgrounds for the corals to settle on,
and even more importantly the availability of sufficient food,
is crucial for the establishment and long-lasting development
of a vivid CWC ecosystem. In general CWC feed on fresh
phytodetritus (Duineveld et al., 2004; Kiriakoulakis et al.,

2005; Duineveld et al., 2007), on zooplankton (Carlier et
al., 2009; Dodds et al., 2009) or on a combination of both
(Becker et al., 2009; van Oevelen et al., 2009). Recent labo-
ratory studies also revealed the importance of dissolved or-
ganic matter which might be actively absorbed by CWC es-
pecially during periods when particulate food is scarce (Gori
et al., in press). However, independent of the food source,
the sessile CWC rely on sufficient food supply, which is
based on primary production in the surface waters and the
delivery of food particles to the CWC living at intermediate
depths. For the latter, various mechanisms were identified to
enhance and transport food particles to the CWC, including
strong bottom currents, downwelling and cascading, internal
tides and waves, and nepheloid layers which act as a path-
way for lateral transport (White et al., 2005; Dorschel et al.,
2007; Duineveld et al., 2007; Mienis et al., 2007; Davies et
al., 2009; Orejas et al., 2009). On the local to regional scale,
topography also influences hydrodynamic processes, as, e.g.,
internal waves, down- or upwelling. Thus, for any given lo-
cation it is the interplay of all these factors allowing for or
prohibiting the presence of CWC.

For the Campeche CWC province, the provision of food
to the CWC appears to be almost optimal, and therefore the
observed paucity of the coral-associated megafauna remains
to be explained. Primary productivity in the surface waters
is high (up to∼ 1 mg Chl a m−3; Fig. 1) due to the local
upwelling center that is located just above the Campeche
CWC province (Merino, 1997). Current meter data from
the Yucatan Strait (Sheinbaum et al., 2002) as well as the
ADCP data collected during cruise MSM 20-4 reveal rea-
sonably strong bottom currents with average velocities of
∼ 30 cm s−1 between 500 and 600 m water depth (Fig. 8).
These numbers are in line with in situ current measure-
ments at other CWC sites indicating maximum velocities
of > 50 cm s−1 (Dorschel et al., 2007; Mienis et al., 2007),
whereas average current velocities can be as low as 8 cm s−1

(Mienis et al., 2007).
Furthermore, the strong density gradient undulating

around 520 m (Fig. 6d) might act as a decelerator for sink-
ing (food) particles, thereby prolonging their residence time
within the reach of the CWC and, thus, enhancing the proba-
bility of these particles to be caught by the corals. With salin-
ities varying around 35, this density gradient possibly marks
the upper limit of the core of the AAIW. A similar mech-
anism has been suggested to support the CWC off Ireland,
there benefitting from the density gradient developed at the
upper limit of the Mediterranean Outflow Water (White and
Dorschel, 2010). For the northeastern North Atlantic, Dullo
et al. (2008) described a narrow potential density envelope
of sigma-theta (σ2) = 27.35–27.65 kg m−3 preferred by the
CWC. Along the Campeche Bank the density of the water
masses surrounding the CWC is slightly lower, at 27.18–
27.29 kg m−3, and, thus, close to data reported from the
Viosca Knoll area (27.1–27.2 kg m−3) (Davies et al., 2010).
In contrast, living CWC settings in the Mediterranean Sea are
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associated with much higher densities of> 29 kg m−3. Thus,
if applicable, the concept of a narrow density envelope defin-
ing the overall habitat range of the CWC as suggested by
Dullo et al. (2008) needs to be regionalized (see also Flögel
et al., in press). However, the obvious steep gradient in den-
sity (Fig. 6d) seems to be a sensitive indicator for living CWC
reef communities.

As indicated by the undulating isotherms (Fig. 6), the
temporal variability of the local hydrographic setting, which
might reflect the presence of internal waves, literally might
pump the food particles through the CWC ecosystem, es-
pecially those particles temporarily accumulating along the
strong density gradient, as suggested by Mienis et al. (2012).
Over the observed 13 h, the depth range covered by the fluc-
tuating maximum near-bottom density gradient aligns with
the upper range of observed living CWC in∼ 515–530 m
water depth. Assuming a larger variability associated with
monthly (i.e., lunar) to seasonal forcing, one may speculate
that the entire depth range of living CWC off the Campeche
Bank might intermittently be affected by such a pumping
process. Due to the limited length of the 13 h of observa-
tion no tidal signal providing additional energy to the bottom
current regime could have been clearly detected. However,
along the mooring transect across the Yucatan Strait men-
tioned before (Sheinbaum et al., 2002), a comparably high
amplitude of the major axis of the dominant diurnalO1 tide
was observed exactly in the depth range of the Campeche
CWC province (Carrillo González et al., 2007).

The ADCP data also point to another possible food source
for the corals. The strong upward-rising backscatter signal at
dusk and the down-going signal at dawn (Fig. 7) are indica-
tive of the diel vertical migration of zooplankton (Heywood,
1996). According to the backscatter data shown in Fig. 7 the
migrating zooplankton spend the day at depths of> 300 m,
with any deeper-reaching migration being obscured by bot-
tom interferences of the backscatter signal. In case the zoo-
plankton actively descend to the depths of the CWC, it might
serve as an additional process enhancing the delivery of food
to the CWC. The depth range of the Campeche CWC is of-
ten reached by migrating zooplankton. For instance, off the
California coast, a depth of∼ 560 m has been shown to be a
preferred depth of the zooplankton at which to spend the day-
time (Plüddemann and Pinkel, 1989). The potential of daily
migrating zooplankton as an additional food source for the
CWC has also been put forward by Mienis et al. (2012) based
on ADCP observations in the Viosca Knoll area in the north-
ern Gulf of Mexico.

6 Conclusions

The Campeche CWC province is one of the largest coher-
ent CWC areas discovered so far, and the most relevant in
the western Atlantic Ocean. A healthy and highly diverse
CWC ecosystem is developed on top of a complex system

of 20–40 m-high, partly interconnected elongated mounds,
which probably can serve as a paleoenvironmental archive
enabling the reconstruction of the long-term development of
the Campeche CWC province over the Late Quaternary cli-
matic cycles.

The location of the Campeche CWC province appears to
be almost perfect for the establishment of such a large CWC
ecosystem. It is (a) located underneath a local upwelling cen-
ter providing high primary production, (b) influenced by a
very dynamic bottom current regime delivering food parti-
cles to the corals, and (c) characterized by a physicochemical
setting that fits the recognized ecological needs ofL. pertusa.
The observed diel vertical migration of zooplankton possibly
reaching the intermediate depth of the CWC ecosystem may
even serve as a supplemental food source as already indi-
cated by Mienis et al. (2012). These observations fits several
paleoenvironmental studies, highlighting the controlling role
of the food supply on the long-term development of such
ecosystems (Dorschel et al., 2005; Wienberg et al., 2010;
Eisele et al., 2011; Fink et al., 2013).

In many places in the world’s oceans the physicochemi-
cal setting comply with the niche requirements ofL. pertusa
and other CWC (Davies and Guinotte, 2011); however, only
in some of these places have CWC ecosystems developed.
Thus, the Campeche CWC province appears to be an excel-
lent example showing that food supply – controlled by a va-
riety of mechanisms – plays a major role in the development
of CWC ecosystems.
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