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Abstract

Accurately monitoring tropical forest carbon stocks is an outstanding challenge. Al-
lometric models that consider tree diameter, height and wood density as predictors
are currently used in most tropical forest carbon studies. In particular, a pantropical
biomass model has been widely used for approximately a decade, and its most recent5

version will certainly constitute a reference in the coming years. However, this refer-
ence model shows a systematic bias for the largest trees. Because large trees are key
drivers of forest carbon stocks and dynamics, understanding the origin and the conse-
quences of this bias is of utmost concern. In this study, we compiled a unique tree mass
dataset on 673 trees measured in five tropical countries (101 trees> 100 cm in diam-10

eter) and an original dataset of 130 forest plots (1 ha) from central Africa to quantify
the error of biomass allometric models at the individual and plot levels when explic-
itly accounting or not accounting for crown mass variations. We first showed that the
proportion of crown to total tree aboveground biomass is highly variable among trees,
ranging from 3 to 88 %. This proportion was constant on average for trees < 10 Mg15

(mean of 34 %) but, above this threshold, increased sharply with tree mass and ex-
ceeded 50 % on average for trees ≥ 45 Mg. This increase coincided with a progressive
deviation between the pantropical biomass model estimations and actual tree mass.
Accounting for a crown mass proxy in a newly developed model consistently removed
the bias observed for large trees (> 1 Mg) and reduced the range of plot-level error20

from −23–16 to 0–10 %. The disproportionally higher allocation of large trees to crown
mass may thus explain the bias observed recently in the reference pantropical model.
This bias leads to far-from-negligible, but often overlooked, systematic errors at the plot
level and may be easily corrected by accounting for a crown mass proxy for the largest
trees in a stand, thus suggesting that the accuracy of forest carbon estimates can be25

significantly improved at a minimal cost.
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1 Introduction

Monitoring forest carbon variation in space and time is both a sociopolitical challenge
for climate change mitigation and a scientific challenge, especially in tropical forests,
which play a major role in the world carbon balance (Hansen et al., 2013; Harris
et al., 2012; Saatchi et al., 2011). Significant milestones have been reached in the5

last decade thanks to the development of broad-scale remote sensing approaches
(Baccini et al., 2012; Malhi et al., 2006; Mitchard et al., 2013; Saatchi et al., 2011).
However, local forest biomass estimations are still the bedrock of most (if not all)
of these approaches for the calibration and validation of remote sensing models. As
a consequence, uncertainties and errors in local biomass estimations may propagate10

dramatically to broad-scale forest carbon stock assessment (Avitabile et al., 2011; Pel-
letier et al., 2011; Réjou-Méchain et al., 2014). Aboveground biomass (AGB) is the
major pool of biomass in tropical forests (Eggleston et al., 2006). The AGB of a tree
(or TAGB) is generally predicted by empirically derived allometric equations that use
measurements of the size of an individual tree as predictors of its mass (Clark and15

Kellner, 2012). Among these predictors, diameter at breast height (D) and total tree
height (H) are often used to capture volume variations between trees, whereas wood
density (ρ) is used to convert volume to dry mass (Brown et al., 1989). The most cur-
rently used allometric equations for tropical forests (Chave et al., 2005, 2014) have the
following form: TAGB = α× (D2×H×ρ)β, where diameter, height and wood density are20

combined into a single compound variable related to dry mass through a power law
of parameters α and β. This model form, referred to hereafter as our reference allo-
metric model form, performs well when β = 1 or close to 1 (Chave et al., 2005, 2014),
meaning that trees can roughly be viewed as a standard geometric solid for which the
parameter α determines the shape (or form factor) of the geometric approximation.25

However, the uncertainty associated with this model is still very high, with an average
error of 50 % at the tree level, illustrating the high natural variability of mass between
trees with similar D, H and ρ values. More importantly, this reference allometric model
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shows a systematic underestimation of TAGB of approximately 20 % in average for the
heaviest trees (> 30 Mg) (Fig. 2 in Chave et al., 2014), which may contribute strongly to
uncertainty in biomass estimates at the plot level. It is often argued that, by definition,
the least-squares regression model implies that tree-level errors are globally centered
on 0, thus limiting the plot-level prediction error to approximately 5–10 % for a standard5

1 ha forest plot (Chave et al., 2014; Moundounga Mavouroulou et al., 2014). However,
systematic errors associated with large trees are expected to disproportionally propa-
gate to plot-level predictions because of their prominent contribution to plot AGB (Bastin
et al., 2015; Clark and Clark, 1996; Sist et al., 2014; Slik et al., 2013; Stephenson et al.,
2014). Thus, identifying the origin of systematic errors in such biomass allometric mod-10

els is a prerequisite for improving local biomass estimations and thus limiting the risk
of uncontrolled error propagation to broad-scale extrapolations.

As foresters have known for decades, it is reasonable to approximate stem volume
using a geometric shape. Such an approximation, however, is questionable for assess-
ing the total tree volume, including the crown. Because β is generally close to 1 in15

the reference allometric model, the relative proportion of crown to total tree mass (or
crown mass ratio) directly affects the adjustment of the tree form factor α (e.g., Cannell,
1984). Moreover, the crown mass ratio is known to vary greatly between species, re-
flecting different strategies of carbon allocation. For instance, Cannell (1984) observed
that coniferous species have a lower proportion of crown mass (10–20 %) than tropical20

broadleaved species (over 35 %), whereas temperate softwood species were found to
have a lower and less variable crown mass ratio (20–30 %) than temperate hardwood
species (20–70 %; Freedman et al., 1982; Jenkins et al., 2003). In the tropics, dis-
tinct crown size allometries have been documented among species functional groups
(Poorter et al. 2003, 2006; Van Gelder, Poorter and Sterck, 2006). For instance, at25

comparable stem diameters, pioneer species tend to be taller and to have shorter and
narrower crowns than understory species (Poorter et al., 2006). These differences re-
flect strategies of energy investment (tree height vs. crown development) that are likely
to result in different crown mass ratios among trees with similar D2, H and ρ values.
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Indeed, Goodman et al. (2014) obtained a substantially improved biomass allometric
model when crown diameter was incorporated into the equation to account for individ-
ual variation in crown size.

Destructive data on tropical trees featuring information on both crown mass and
classical biometric measurements (D,H ,ρ) are scarce and theoretical work on crown5

properties largely remains to be validated with field data. In most empirical studies
published to date, crown mass models use trunk diameter as a single predictor (e.g.,
Nogueira et al., 2008; Chambers et al., 2001). Such models often provide good results
(R2 ≥ 0.9), which reflect the strong biophysical constraints exerted by the diameter
of the first pipe (the trunk) on the volume of the branching network (Shinozaki et al.,10

1964). However, theoretical results suggest that several crown metrics would scale with
crown mass. For instance, Mäkelä and Valentine (2006) modified the allometric scaling
theory (Enquist, 2002; West et al., 1999) by incorporating self-pruning processes into
the crown. The authors showed that crown mass is expected to be a power function of
the total length of the branching network, which they approximated by crown depth (i.e.,15

total tree height minus trunk height). The construction of the crown and its structural
properties have also largely been studied in the light of the mechanical stresses faced
by trees (such as gravity and wind; e.g., McMahon and Kronauer, 1976; Eloy, 2011).
Within this theoretical frame, crown mass can also be expressed as a power function
of crown diameter (King and Loucks, 1978).20

In the present study, we used a unique tree mass dataset containing crown mass
information on 673 trees from five tropical countries and a network of forest plots cov-
ering 130 ha in central Africa to (i) quantify the variation in crown mass ratio in tropical
trees; (ii) assess the contribution of crown mass variation to the reference pantropi-
cal model error, either at the tree level or when propagated at the plot level; and (iii)25

propose a new operational strategy to explicitly account for crown mass variation in
biomass allometric equations. We hypothesize that the variation in crown mass ratio
in tropical trees is a major source of error in current biomass allometric models and
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that accounting for this variation would significantly reduce uncertainty associated with
plot-level biomass predictions.

2 Materials and methods

2.1 Biomass data

We compiled tree AGB data from published and unpublished sources providing infor-5

mation on crown mass for 673 tropical trees belonging to 132 genera (144 identified
species), with a wide tree size range (i.e., diameter at breast height, D: 10–212 cm)
and aboveground tree masses of up to 76 Mg. An unpublished dataset for 77 large
trees (with D ≥ 67 cm) was obtained from the fieldwork of P. Ploton, N. Barbier and
S. T. Momo in semi-deciduous forests of Eastern Cameroon (site characteristics and10

field protocol in the Supplement S1.1 and S1.2.1). The remaining datasets were gath-
ered from relevant published studies: 29 trees from Ghana (Henry et al., 2010), 285
trees from Madagascar (Vieilledent et al., 2011), 51 trees from Peru (Goodman et
al., 2014, 2013), 132 trees from Cameroon (Fayolle et al., 2013) and 99 trees from
Gabon (Ngomanda et al., 2014). The whole dataset is available from the Dryad Data15

Repository (Dryad , 2015), with details about the protocol used to integrate data from
published studies presented in the Supplement S1.2.2. For the purpose of some anal-
yses, we extracted from this crown mass database (hereafter referred to as DataCM1)
a subset of 541 trees for which total tree height was available (DataCM2; all but Fayolle
et al., 2013) and another subset of 119 trees for which crown diameter was also avail-20

able (DataCD; all but Vieilledent et al. 2011; Fayolle et al. 2013; Ngomanda et al. 2014
and 38 trees from our unpublished dataset). Finally, we used as a reference the data
from Chave et al. (2014) on the total mass (but not crown mass) of 4004 destructively
sampled trees of many different species from all around the tropical world (DataREF).
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2.2 Forest inventory data

We used a set of 81 large forest plots (> 1 ha), covering a total area of 130 ha, to
propagate TAGB estimation errors to plot-level predictions. The forest inventory data
contained the taxonomic identification of all trees with a diameter at breast height
(D) ≥ 10 cm, as well as total tree height measurements (H) for a subset of trees, from5

which we established plot-level H vs. D relationships to predict the tree height of the
remaining trees. Details about the inventory protocol along with statistical procedures
used to compute plot AGB (or PAGB) from field measurements are provided in the Sup-
plement S1.3. Among these plots, 80 were from a network of 1 ha plots established in
humid evergreen to semi-deciduous forests belonging to 13 sites in Cameroon, Gabon10

and the Democratic Republic of Congo (unpublished data1). In addition, we included
a 50 ha permanent plot from Korup National Park, in the evergreen Atlantic forest of
western Cameroon (Chuyong et al., 2004), which we subdivided into 1 ha subplots.
Overall, the inventory data encompassed a high diversity of stand structural profiles
ranging from open-canopy Marantaceae forests to old-growth monodominant Gilber-15

tiodendron dewevrei stands and including mixed terra firme forests with various levels
of degradation.

2.3 Allometric model fitting

We fitted the pantropical allometric model of Chave et al. (2014) to log-transformed
data using ordinary least-squares regression:20

ln(TAGB) = α+β× ln(D2 ×H ×ρ)+ε (1)

with TAGB (in kg) representing the aboveground tree mass, D (in cm) the tree stem
diameter, H (in m) the total tree height, ρ (in gcm−3) the wood density and ε the error

1Metadata available at: http://vmamapgn-test.mpl.ird.fr:8080/geonetwork/srv/eng/search#
|7dd46c7d-db2f-4bb0-920a-8afe4832f1b3
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term, which is assumed to follow a normal distribution N ∼ (0, RSE2), where RSE is
the residual standard error of the model. This model, denoted m0, was considered as
the reference model.

To assess the sensitivity of m0 to crown mass variations, we built a model (m1)
that restricted the volume approximation to the trunk compartment and included actual5

crown mass as an additional covariate:

ln(TAGB) = α+β× ln(D2 ×H ×ρ)+γ × ln(Cm)+ε (2)

with Cm representing the crown mass (in kg) and Ht the trunk height (i.e., height to
the first living branch, in m). Note that model m1 cannot be operationally implemented
(which would require destructive measurements of crowns) but quantifies the maxi-10

mal improvement that can be made through the inclusion of crown mass proxies in
a biomass allometric model.

2.4 Development of crown mass proxies

We further developed crown mass proxies to be incorporated in place of the real crown
mass (Cm) in the allometric model m1. From preliminary tests of various model forms15

(see Appendix A), we selected a crown mass sub-model based on a volume approxi-
mation similar to that made for the trunk component (sm1):

ln(Cm) ∼ α+β× ln(D2 ×Hc×ρ)+ε (3)

where D is the trunk diameter at breast height (in cm) and Hc the crown depth (that
is H −Ht, in m), available in our dataset DataCM2 (n = 541).20

In this sub-model, tree crowns of short stature but large width are assigned a small
Hc, thus a small mass, whereas the volume they occupy is more horizontal than ver-
tical. We thus tested in sub-model sm2 (Eq. 4) whether using the mean crown size
(Eq. 5), which accounts for both Hc and Cd (the crown diameter in m available in our
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dataset DataCD (n = 119)) reduces the error associated with sm1:

ln(Cm) = α+β× ln(D2 ×Cs×ρ)+ε (4)

Cs =
(Hc+Cd)

2
(5)

Finally, Sillett et al. (2010) showed that for large, old trees, a temporal increment of
D and H poorly reflects the high rate of mass accumulation within crowns. We thus5

hypothesized that the relationship between Cm and D2×Hc×ρ (or D2×Cs×ρ) depends
on tree size and fitted a quadratic (second-order) polynomial model to account for this
phenomenon (Niklas, 1995), if any:

ln(Cm) = α+β× ln(D2 ×Hc×ρ)+γ × ln(D2 ×Hc×ρ)2 +ε (6)

ln(Cm) = α+β× ln(D2 ×Cs×ρ)+γ × ln(D2 ×Cs×ρ)2 +ε (7)10

where Eqs. (6) and (7) are referred to as sub-models 3 and 4, respectively.

2.5 Model error evaluation

2.5.1 Tree-level

From biomass allometric equations, we estimated crown mass (denoted Cmest) or total
tree aboveground mass (denoted TAGBest) including (Baskerville, 1972) bias correction15

during back-transformation from the logarithmic scale to the original mass unit (i.e.,
kg). In addition to classical criteria of model fit assessment (adjusted R2, Residual
Standard Error, Akaike Information Criterion ), we quantified model uncertainty based
on the distribution of individual relative residuals (in %), which is defined as follows:

si =
(Yest,i − Yobs,i

Yobs,i

)
×100 (8)20
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where Yobs,i and Yest,i are the crown or tree biomass values in the calibration dataset
(i.e., measured in the field) and those allometrically estimated for tree i , respectively.
We reported the median of |si | values, hereafter referred to as “S”, as an indicator of
model precision. For a tree biomass allometric model to be unbiased, we expect si
to be locally centered on zero for any given small range of the tree mass gradient.5

We thus investigated the distribution of si values with respect to tree mass using local
regression (loess method; Cleveland et al., 1992).

2.5.2 Plot level

Allometric models are mostly used to make plot-level AGB predictions from non-
destructive forest inventory data. Such plot-level predictions are obtained by simply10

summing individual predictions over all trees in a plot (PAGBpred =
∑
iTAGBpred). Pre-

diction errors at the tree level are thus expected to yield an error at the plot level, which
may depend on the actual tree mass distribution in the sample plot when the model
is locally biased. To account for this effect, we developed a simulation procedure, im-
plemented in two steps, that propagated TAGBpred errors to PAGBpred. The first step15

consists in attributing to each tree i in a given plot a value of TAGBsim corresponding to
the actual AGB of a similar felled tree selected in DataREF based on its nearest neigh-
bor in the space of the centered-reduced variables D, H and ρ (here taken as species
average from Dryad Global Wood Density Database, Chave et al., 2009; Zanne et al.,
2009). In a second step, the simulation propagates individual errors of a given allomet-20

ric model using the local distribution of si values as predicted by the loess regression:
for each TAGBsim, we drew a ssim value from a local normal distribution fitted with the
loess parameters (i.e., local mean and standard deviation) predicted for that particu-
lar TAGBsim. Thus, we generated for each 1 ha plot a realistic PAGBsim (i.e., based on
observed felled trees) with repeated realizations of a plot-level prediction error (in %)25
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computed for n trees as follows:

Splot =

∑n
i=1(ssim(i )×TAGBsim(i ))∑n

i=1TAGBsim(i )
. (9)

For each of the simulated plots, we provided the mean and standard deviation of 1000
realizations of the plot-level prediction error.

All analyses were performed with R statistical software 2.15.2 (R Core Team, 2012),5

using packages lmodel2 (Legendre, 2011), segmented (Muggeo, 2003), FNN (Beygelz-
imer et al., 2013) and msir (Scrucca, 2011).

3 Results

3.1 Contribution of crown to tree mass

Our crown mass database (DataCM1; 673 trees, including 128 trees > 10 Mg) revealed10

a huge variation in the contribution of crown to total tree mass, ranging from 2.5 to
87.5 % of total aboveground biomass, with a mean of 35.6 % (±16.2 %). Despite this
variation, a linear regression (model II) revealed a significant increase in the crown
mass ratio with tree mass of approximately 3.7 % per 10 Mg (Fig. 1a). A similar trend
was observed at every site, except for the Ghana dataset (Henry et al., 2010), for which15

the largest sampled tree (72 Mg) had a rather low crown mass ratio (46 %). Overall,
this trend appeared to have been driven by the largest trees in the database (Fig. 1b).
Indeed, the crown mass ratio appeared to be nearly constant for trees ≤ 10 Mg with
an average of 34.0 % (±16.9 %), and then to increase progressively with tree mass,
exceeding 50 % on average for trees ≥ 45 Mg.20

3.2 Crown mass sub-models

All crown mass sub-models provided good fits to our data (R2 ≥ 0.9, see Table 1).
However, when information on crown diameter was available (DataCD), models that in-
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cluded mean crown size in the compound variable (i.e., Cs, a combination of crown
depth and diameter, in sm2 and sm4) gave lower AICs and errors (RSE and S) than
models that included the simpler crown depth metric (i.e., Hc in sm1 and sm3). The
quadratic model form provided a better fit than the linear model form (e.g., sm3 vs. sm1
fitted on DataCM2), which can be explained by the non-linear increase in crown mass5

with either of the two proxy variables (D2 ×Hc×ρ or D2 ×Cs×ρ). The slope of the
relationship between crown mass and, for example, D2 ×Hc×ρ presented a breaking
point at approximately 7.5 Mg (Davies’ test P < 0.001) that was not captured by sub-
model sm1 (Fig. 2a, full line), leading to a substantial bias in back-transformed crown
mass estimations (approximately 50 % of observed crown mass for Cmobs ≥ 10 Mg,10

Fig. 2b). The quadratic sub-model sm3 provided fairly unbiased crown mass estima-
tions (Fig. 2c). Because the first-order term was never significant in the quadratic sub-
models, we retained only the second-order term as a crown mass proxy in the biomass
allometric models (i.e., (D2 ×Hc×ρ)2 for model m2 and (D2 ×Cs×ρ)2 for model m3).

3.3 Accounting for crown mass in biomass allometric models15

The reference model (m0) proposed by Chave et al. (2014) presented, when fitted
to DATAREF, a bias that was a function of tree mass, with a systematic AGB over-
estimation for trees <approximately 10 Mg and an under-estimation for larger trees,
reaching approximately 25 % for trees greater than 30 Mg (Fig. 3a). This bias pattern
reflected a breaking point in the relationship between D2×H ×ρ and TAGBobs (Davies’20

test P < 0.001) located at approximately 10 Mg (Fig. 3b). Accounting for actual crown
mass (Cm) in the biomass allometric model (i.e., model m1) corrected for a similar
bias pattern observed when m0 was fitted to DATACM2 (Fig. 4a). This result shows that
variation in crown mass among trees is a major source of bias in the reference biomass
allometric model, m0.25

Using our simulation procedure, we propagated individual prediction errors of m0
and m1 to the 130 1 ha field plots from central Africa (Fig. 4b). This process revealed
that the reference pantropical model (m0) led to an average plot-level relative prediction
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error (Splot) ranging from −23 to +16 % (mean= +6.8 %) on PAGBpred, which dropped
to +1 to +4 % (mean= +2.6 %) when the model accounted for crown mass (m1).

Because in practice crown mass cannot be routinely measured in the field, we tested
the potential of crown mass proxies to improve biomass allometric models. Model m2,
which used a compound variable integrating crown depth i.e., (D2×Hc×ρ)2 as a proxy5

of crown mass outperformed m0 (Table 2). Although the gain in precision (RSE and
S) over m0 was rather low, the model provided the striking advantage of being free of
significant local bias on large trees (> 1 Mg; Fig. 5a). At the plot level, this model pro-
vided a much higher precision (0 to 10 % on PAGBpred) and a lower bias (average error
of 5 %) than the reference pantropical model m0 (Fig. 5b). Using a compound variable10

integrating crown size i.e., (D2 ×Cs×ρ)2 as a crown mass proxy (model m3), thus re-
quiring both crown depth and diameter measurements, significantly improved model
precision (m3 vs. m2, Table 2) while preserving the relatively unbiased distribution of
relative residuals (results not shown).

4 Discussion15

Using a dataset of 673 individuals including most of the largest trees that have been
destructively sampled to date, we discovered tremendous variation in the crown mass
ratio among tropical trees, ranging from 3 to 88 %, with an average of 36 %. This varia-
tion was not independent of tree size, as indicated by a marked increase in the crown
mass ratio with tree mass for trees ≥ 10 Mg. This threshold echoed a breaking point in20

the relationship between total tree mass and the compound predictor variable used in
the reference allometric model of Chave et al. (2014). When the compound variable is
limited to trunk mass prediction, and a crown mass predictor is added to the model, the
bias towards large trees is significantly reduced. As a consequence, error propagation
to plot-level AGB estimations is largely reduced. In the following section, we discuss25

the significance and implication of these results from both an ecological and a practi-
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cal point of view with respect to resource allocation to the tree compartments and to
carbon storage in forest aboveground biomass.

4.1 Crown mass ratio and the reference biomass model error

We observed an overall systematic increase in the crown mass ratio with tree mass.
This ontogenetic trend has already been reported for some tropical canopy species5

(O’Brien et al., 1995) and likely reflects changes in the pattern of resource allocation
underlying crown edification in most forest canopy trees (Barthélémy and Caraglio,
2007; Hasenauer and Monserud, 1996; Holdaway, 1986; Moorby and Wareing, 1963;
Perry, 1985). The overall increase in the carbon accumulation rate with tree size is
a well-established trend (Stephenson et al., 2014), but the relative contribution of the10

trunk and the crown to that pattern has rarely been investigated, particularly on large
trees for which branch growth monitoring involves a tremendous amount of work. Sil-
lett et al. (2010) collected a unique dataset in this regard, with detailed growth mea-
surements on very old (up to 1850 years) and large (up to 648 cm D) individuals of
Eucalyptus regnans and Sequoia sempervirens species. For these two species, the15

contribution of crown to AGB growth increased linearly with tree size and thus the
crown mass ratio. We observed the same tendency in our data for trees ≥ 10 Mg (typi-
cally with D > 100 cm). This result thus suggests that biomass allometric relationships
may differ among small and large trees, thus explaining the systematic underestimation
of AGB for large trees observed by Chave et al. (2014). The latter authors suggested20

that this model underestimation was due to a potential “majestic tree” sampling bias, in
which scientists would have more systematically sampled trees with well-formed boles
and healthy crowns. We agree that such an effect cannot be completely ruled out, and
it is probably all the more significant that trees ≥ 10 Mg represent only 3 % of the ref-
erence dataset of Chave et al. (2014). Collecting more field data on the largest tree25

size classes should therefore constitute a priority if we are to improve multi-specific,
broad-scale allometric models, and the recent development of non-destructive AGB
estimation methods based on terrestrial LiDAR data should help in this regard (e.g.,
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Calders et al., 2014). However, regardless of whether the non-linear increase in crown
mass ratio with tree mass held to a sampling artifact, we have shown that it was the
source of systematic error in the reference model that used a unique geometric approx-
imation with an average form factor for all trees. This finding agrees with the results of
Goodman et al. (2014) in Peru, who found significant improvements in biomass esti-5

mates of large trees when biomass models included tree crown radius, thus partially
accounting for crown ratio variations. Identifying predictable patterns of crown mass ra-
tio variation, as performed for crown size allometries specific to some functional groups
(Poorter et al., 2003, 2006; Van Gelder et al., 2006), therefore appears to be a potential
way to improve allometric models performance.10

4.2 Model error propagation depends on targeted plot structure

The reference pantropical model provided by Chave et al. (2014) presents a bias pat-
tern that is a function of tree size (i.e., average over-estimation of small tree AGB and
average underestimation of large tree AGB). Propagation of individual errors to the plot
level therefore depends on tree size distribution in the sample plot, with over- or under-15

estimations depending on the relative importance of small or large trees in the stand
(e.g., young secondary forests vs. old-growth forests; see Appendix B for more infor-
mation on the interaction between model error, plot structure and plot size). This effect
is not consistent with the general assumption that individual errors should compensate
at the plot level. Although the dependence of error propagation on tree size distribu-20

tion has already been raised (Magnabosco Marra et al., 2015; Mascaro et al., 2011),
it is generally omitted from error propagation procedures (e.g., Picard et al., 2014;
Moundounga Mavouroulou et al., 2014; Chen et al., 2015). At a larger scale, such as
the landscape or regional scale, plot-level errors may average out if the study area
is a mosaic of forests with varying tree size distributions. However, if plot estimations25

are used to calibrate remote sensing products, individual plot errors may propagate as
a systematic bias in the final extrapolation (Réjou-Méchain et al., 2014).
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4.3 Accounting for crown mass variation in allometric models

We propose a modeling strategy that decomposes total tree mass into trunk and crown
masses. A direct benefit of addressing these two components separately is that it
should reduce the error in trunk mass estimation because the trunk form factor is less
variable across species than the whole-tree form factor (Cannell, 1984). We modeled5

tree crown using a geometric solid whose basal diameter and height were the trunk
diameter and crown depth, respectively. Crown volume was thus considered as the
volume occupied by branches if they were squeezed onto the main stem (“as if a ring
were passed up the stem”; Cannell, 1984). Using a simple linear model to relate crown
mass to the geometric approximation (sm1, sm2) led to an under-estimation bias that10

gradually increased with crown mass (Fig. 2b). A similar pattern was observed on all
crown mass models based on trunk diameter (Appendix A) and reflected a significant
change in the relationship between the two variables with crown size. Consistently,
a second-order polynomial model better captured such a non-linear increase in crown
mass with trunk diameter-based proxies and thus provided unbiased crown mass es-15

timates (Fig. 2c). Our results agree with those of Sillett et al. (2010), who showed that
ground-based measurements such as trunk diameter do not properly render the high
rate of mass accumulation in large trees, notably in tree crowns, and may also ex-
plain why the dynamics of forest biomass are inferred differently from top-down (e.g.,
airborne LiDAR) or bottom-up views (e.g., field measurement; Réjou-Méchain et al.,20

2015).
From a practical point of view, our tree biomass model m2, which requires only extra

information on trunk height (if total height is already measured) provides a better fit
than the reference pantropical model and removes estimation bias on large trees. In
scientific forest inventories, total tree height is often measured on a sub-sample of25

trees, including most of the largest trees in each plot, to calibrate local allometries
between H and D. We believe that measuring trunk height on those trees does not
represent a cumbersome amount of additional effort because trunk height is much
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more easily measured than total tree height. We thus recommend using model m2 – at
least for the largest trees, i.e., those with D ≥ 100 cm – and encourage future studies
to assess its performance from independent datasets.

Appendix A: Crown mass sub-models

A1 Method5

Several tree metrics are expected to scale with crown mass, particularly crown height
(Mäkelä and Valentine, 2006), crown diameter (King and Loucks, 1978) or trunk diame-
ter (e.g., Nogueira et al., 2008; Chambers et al., 2001). In this study, we tested whether
any of these variables (i.e., trunk diameter, crown height and crown diameter) prevailed
over the others in explaining crown mass variations. Power functions were fitted in log-10

transformed form using ordinary least-squares regression techniques (models sm1−X ):

ln(Cm) = α+β× ln(X )+ε (A1)

where Cm is the crown mass (in kg); X is the structural variable of interest, namely D
for trunk diameter at breast height (in cm), Hc for crown depth (in m), or Cd for crown
diameter (in m); α and β are the model coefficients and isε the error term assumed to15

follow a normal distribution.
We also assessed the predictive power of the three structural variables on crown

mass while controlling for variations in wood density (ρ, in gcm−3), leading to models
sm2−X :

ln(Cm) = α+β× ln(X )+γ × ln(ρ)+ε (A2)20

where γ is the model coefficient of ρ.
Similarly to the cylindrical approximation of a tree trunk, we further established

a compound variable for tree crown based on D and Hc, leading to model sm3:

ln(Cm) = α+β× ln(D2 ×Hc×ρ)+ε (A3)
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where crown height is a proxy for the length of the branching network. Results obtained
using sm3 are presented in the manuscript as well as in this appendix for comparison
with those obtained using sm1−x and sm2−x.

A2 Results and discussion

Among the three structural variables tested as proxies for crown mass, trunk diameter5

provided the best results. Model 1-D presented a high R2 (0.88), but its precision was
low, with an S (i.e., the median of unsigned si values) of 43 % (Table A1). Moreover,
model error increased appreciably with crown mass (Fig. A1, caption a). For instance,
model estimations for an observed crown mass of approximately 20 Mg ranged be-
tween 5 and 55 Mg. Nevertheless, sm1-D outperformed sm1-Hc (DataCM2, AIC of 118210

vs. 1603, respectively) and was slightly better than sm1-Cd (DataCD, AIC of 257 vs. 263,
respectively), suggesting that the width of the first branching network pipe is a stronger
constraint on branches’ mass than the external dimensions of the network (i.e., Hc,
Cd).

The model based on crown depth (sm1-Hc) was subjected to a large error (S of c.15

80 %; Table A1) and clearly saturated for a crown mass ≥ 10 Mg (Fig. A1, caption b).
Because crown depth does not account for branch angle, it does not properly render
the length of the branching network. The saturation threshold observed on large crowns
supports the observations of Sillett et al. (2010): tree height, from which crown depth
directly derives, levels off in large/adult trees, but mass accumulation – notably within20

the crowns – continues far beyond this point. It follows that crown depth alone does not
allow for the detection of the highest mass levels in large/old tree crowns.

The model based on crown diameter presented a weaker fit than sm1-D, with a higher
AIC (DataCD, 263 vs. 257) and an individual relative error approximately 10 % higher
(S of approximately 50 and 40 %, respectively; Table A1). However, crown diameter25

appeared more informative regarding the mass of the largest crowns than trunk diam-
eter (Fig. A2, captions a and b). In fact, the individual relative error of sm1-Cd on crowns
≥ 10 Mg was only 26 %, vs. 47 % for sm1-D.
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Accounting for variations in wood density improved the model based on trunk diam-
eter. As shown in Fig. A1, using a color code for wood density highlighted a predictable
error pattern in model estimations: trunk diameter tends to over- or under-estimate the
crown mass of trees with high or low wood density, respectively. This pattern is cor-
rected for in sm2-D, which presents a lower AIC than sm1-D (i.e., 1079) and an individ-5

ual relative error approximately 15 % lower (i.e., 37 %; Table A1). Interestingly, whereas
sm2-D appeared to be more accurate than sm1-D in its estimations of large crown mass
(Fig. A1, caption c), it also presented an under-estimation bias that gradually increased
with crown mass. Including ρ in the model based on Cd improved the model fit (AIC
of 251 vs. 262 for sm2-Cd and sm1-Cd, respectively) and decreased the individual rela-10

tive error by approximately 15 %. Similarly to sm1-Cd, sm2-Cd was outperformed by its
counterpart based on D (AIC of 185). Moreover, the gain in precision in sm2-Cd was
localized on small crowns, whereas estimations on large crowns were fairly equivalent
(Fig. A2, caption c and d). Model 2-D was more precise on crowns ≥ 10 Mg, with an
individual relative error of 23 vs. 32 % for sm2-Cd.15

The strongest crown mass predictor, D, was used as the basis of a geometric solid
approximating crown volume (D2 ×Hc) and, in turn, mass (D2 ×Hc×ρ in model sm3).
With one less parameter than sm2-D, sm3 presented a lower AIC than the former model
(i.e., 1012), but the two models provided a fairly similar fit to the observations (RSE
of 0.65 vs. 0.61 and S of 37 vs. 36 % for sm2-D and sm3, respectively). This result20

indicates that when D and ρ are known, information on crown depth is of minor im-
portance for predicting crown mass. However, this conclusion applies to our dataset
only because Hc might be more informative regarding crown mass variations when
considering sites/species with more highly contrasting D–H or D–Hc relationships.

Similarly to sm2-D, sm3 presented an under-estimation bias that increased gradually25

with crown mass (illustrated in Fig. A1 caption d).
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Appendix B: Plot-level error propagation

We used the error propagation procedure described in the Methods section of the
manuscript to estimate the mean plot-level AGB prediction error that could be ex-
pected from m0 calibrated on DATAREF (i.e., the pantropical model proposed in Chave
et al., 2014). Model error was propagated on 130 1 ha sample plots of tropical forest5

in central Africa, a network of 80 1 ha plots (field inventory protocol in the Supple-
ment S1.3) to which we added 50 1 ha plots from Korup 50 ha permanent plot (Chuy-
ong et al., 2004). We further sub-sampled Korup 50 ha permanent plot in sub-plots of
varying sizes (from 25 to 0.1 ha) to evaluate the effect of plot size on plot-level AGB
prediction error.10

From the simulated PAGBsim for the 130 1 ha plots, we estimated that the refer-
ence pantropical model, m0, propagated to PAGBpred a mean prediction error (over
1000 realizations of Splot) that ranged between −15 and +7.7 % (Fig. B1a), mostly
caused by trees with mass ≥ 20 Mg (Fig. B1b). This trend was particularly evident in
the undisturbed evergreen stands of Korup (triangles in Fig. B1a–b), where patches of15

Lecomtedoxa klaineana (Pierre ex Engl) individuals largely drove the PAGB predictions
(R2 = 0.87, model II OLS method). This species generates high-statured individuals
of high wood density, which frequently exceed 20 Mg and result in underestimates of
plot-level biomass. Interestingly, some high-biomass plots could still be over-estimated
when PAGBpred was concentrated in trees weighting less than 20 Mg.20

As a consequence of m0 bias concentration in large trees, plot-level prediction er-
rors for the 50 ha in Korup tended to stabilize near 0 for subplots ≥ 5 ha only. Below this
threshold (i.e., for subplots ≤ 1 ha), the median error is positive but negative outliers are
more frequent (Fig. B2). Indeed, on the one hand, small plots are less likely to encom-
pass large trees and have a positive prediction error of up to approximately +7.5 %. On25

the other hand, a single large tree can strongly affect PAGBpred, occasionally leading
to a large underestimation of small plots AGB that can exceed −15 % for a 0.25 ha and
−20 % for a 0.1 ha subplot.
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The Supplement related to this article is available online at
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Table 1. Crown mass sub-models. Model variables are Cm (crown mass, kg), D (diameter
at breast height, cm), Hc (crown depth, m), Cs (average of Hc and crown diameter, m) and
ρ (wood density, gcm−3). The general form of the models is ln(Y ) = a+b× ln(X )+c× ln(X )2.
Model coefficient estimates are provided along with the associated standard error denoted SEi ,
with i as the coefficient.

model Dataset Model input Model parameters Model performance
Y X X 2 a b c SEa SEb SEc R2 RSE S AIC dF

sm1 DataCM2 Cm D2 ×Hc×ρ – −2.6345a 0.9368a 0.1145 0.0125 0.91 0.615 36.0 1012.6 539
sm3 (n = 541) D2 ×Hc×ρ (D2 ×Hc×ρ)2 0.9017d 0.1143e 0.0452a 0.5049 0.1153 0.0063 0.92 0.588 35.2 965.2 538

– (D2 ×Hc×ρ)2 1.3990a 0.0514a 0.0605 0.0007 0.92 0.588 35.5 964.2 539

sm1 DataCD Cm D2 ×Hc×ρ − −2.9115a 0.9843a 0.3139 0.0289 0.91 0.516 31.8 184.1 117
sm2 (n = 119) D2 ×Cs×ρ – −3.0716a 0.9958a 0.2514 0.0231 0.94 0.414 21.8 131.9 117
sm3 D2 ×Hc×ρ (D2 ×Hc×ρ)2 −0.2682e 0.4272e 0.0283d 1.4077 0.2908 0.0147 0.91 0.510 29.7 182.3 116

– (D2 ×Hc×ρ)2 1.7830a 0.0498a 0.1774 0.0015 0.91 0.512 32.2 182.5 117
sm4 D2 ×Cs×ρ (D2 ×Cs×ρ)2 −0.5265e 0.4617d 0.0270c 1.1443 0.2356 0.0119 0.94 0.407 128.7 25.9 116

– (D2 ×Cs×ρ)2 1.6994a 0.0502a 0.1421 0.0012 0.94 0.412 130.5 25.8 117

Coefficients’ probability value (pv) is coded as follows: a pv≤ 10−4, b pv≤ 10−3, c pv≤ 10−2, d pv≤ 0.05 and e pv≥ 0.05. Models’ performance parameters are R2 (adjusted R square), RSE (residual
standard error), S (median of unsigned relative individual errors, in %), AIC (Akaike Information Criterion), dF (degree of freedom).

19739

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/19711/2015/bgd-12-19711-2015-print.pdf
http://www.biogeosciences-discuss.net/12/19711/2015/bgd-12-19711-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
12, 19711–19750, 2015

Closing a gap in
tropical forest

biomass estimation

P. Ploton et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 2. Models used to estimate tree AGB. Model parameters are D (diameter at breast height,
cm), H (total height, m), Ht (trunk height, m), Hc (crown depth, m), Cm (crown mass, kg), Cs
(average of Hc and crown diameter, m) and ρ (wood density, gcm−3). The general form of the
models is ln(Y ) = a+b× ln(X1)+c× ln(X2). Model coefficient estimates are provided along with
the associated standard error denoted SEi , with i as the coefficient.

model Dataset Model input Model parameters Model performance
Y X1 X2 a b c SEa SEb SEc R2 RSE S AIC dF

m0 DataREF AGB D2 ×H ×ρ −2.7628a 0.9759a 0.0211 0.0026 0.97 0.358 22.1 3130.7 4002
(n = 4004)

m0 DataCM2 AGB D2 ×H ×ρ −2.5860a 0.9603a 0.0659 0.0066 0.98 0.314 18.9 284.8 539
m1 (n = 541) D2 ×Ht×ρ Cm −0.5619a 0.5049a 0.4816a 0.0469 0.0098 0.0096 0.99 0.199 9.8 −205.7 538
m2 D2 ×Ht×ρ (D2 ×Hc×ρ)2 0.3757a 0.4451a 0.0281a 0.0974 0.0186 0.0010 0.98 0.298 17.8 231.5 538

m0 DataCD AGB D2 ×H ×ρ −3.1105a 1.0119a 0.1866 0.0160 0.97 0.268 15.0 28.1 117
m1 (n = 119) D2 ×Ht×ρ Cm −0.5851a 0.4784a 0.5172a 0.1117 0.0203 0.0185 0.99 0.142 7.0 −121.2 116
m2 D2 ×Ht×ρ (D2 ×Hc×ρ)2 −0.2853e 0.5804a 0.0216a 0.2499 0.0397 0.0019 0.97 0.272 14.5 32.5 116
m3 D2 ×Ht×ρ (D2 ×Cs×ρ)2 0.5800c 0.4263a 0.0283a 0.2662 0.0444 0.0021 0.98 0.246 12.3 9.3 116

Coefficients’ probability value (pv) is coded as follows: a pv≤ 10−4, b pv≤ 10−3, c pv≤ 10−2, d pv≤ 0.05 and e pv≥ 0.05. Models’ performance parameters are R2 (adjusted R square), RSE (residual
standard error), S (median of unsigned relative individual errors, in %), AIC (Akaike Information Criterion), dF (degree of freedom).
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Table A1. Preliminary crown mass sub-models. Model parameters are D (diameter at breast
height, cm), Hc (crown depth, m), Cm (crown mass, kg), Cd (crown diameter, in m), Cs (average
of Hc and Cd, m) and ρ (wood density, gcm−3). The general form of the models is ln(Y ) =
a+b× ln(X1)+c× ln(X2). Model coefficients’ estimates are provided along with the associated
standard error denoted SEi , with i as the coefficient.

model Dataset Model input Model parameters Model performance
Y X1 X2 a b c SEa SEb SEc R2 RSE S AIC dF

1-D DataCM2 Cm D −3.6163a 2,5786a 0.1514 0.0409 0.88 0.719 42.8 1181.6 539
1-Hc (n = 541) Hc −0.1711e 2.6387a 0.1574 0.0673 0.74 1.060 82.2 1602.8 539
2-D D ρ −3.0876a 2.6048a 1.1202a 0.1462 0.0372 0.1048 0.90 0.653 36.7 1079.4 538
2-Hc Hc ρ −0.3952c 2.6574a −0.3274d 0.1959 0.0679 0.1712 0.74 1.058 80.6 1601.1 538
3 D2 ×Hc×ρ −2.6345a 0.9368a 0.1145 0.0125 0.91 0.615 36.0 1012.6 539

1-D DataCD Cm D −3.4603a 2.5684a 0.4692 0.1075 0.83 0.702 39.8 257.4 117
1-Hc (n = 119) Hc 1.3923c 2.2907a 0.5392 0.1938 0.54 1.149 77.4 374.7 117
1-Cd Cd −0.1181e 2.8298a 0.3403 0.1218 0.82 0.718 52.7 262.8 117
2-D D ρ −2.7296a 2.6293a 1.5243a 0.3528 0.0793 0.1523 0.91 0.516 30.5 185.3 116
2-Hc Hc ρ 1.1181e 2.3356a −0.2326e 0.6869 0.2063 0.3596 0.54 1.152 82.9 376.3 116
2-Cd Cd ρ 0.4677e 2.7954a 0.7538a 0.3585 0.1158 0.2009 0.84 0.681 44.5 251.2 116

Coefficients’ probability value (pv) is coded as follows: a pv≤ 10−4, b pv≤ 10−3, c pv≤ 10−2, d pv≤ 0.05 and e pv≥ 0.05. Models’ performance parameters are R2 (adjusted R square), RSE
(residual standard error),S (median of unsigned relative individual errors, in %), AIC (Akaike Information Criterion), dF (degree of freedom).
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Figure 1. (a) Distribution of crown mass ratio (in %) along the range of tree mass (TAGBobs,
in Mg) for 673 trees. Dashed lines represent the fit of robust regressions (model II linear re-
gression fitted using ordinary least square) performed on the full crown mass dataset (thick
line; one-tailed permutation test on slope: p value< 0.001) and on each separate source (thin
lines), with symbols indicating the source: empty circles from Vieilledent et al. (2011; regression
line not represented since the largest tree is 3.7 Mg only); solid circles from Fayolle et al. (2013);
squares from Goodman et al. (2013, 2014); diamonds from Henry et al. (2010); head-up trian-
gles from Ngomanda et al. (2014); and head-down triangles from the un-published data set
from Cameroon. (b) Boxplot representing the variation in crown mass ratio (in %) across tree
mass bins of equal width (2.5 Mg). The last bin contains all trees ≥ 20 Mg. The number of indi-
viduals per bin and the results of non-parametric pairwise comparisons are represented below
and above the median lines, respectively.
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Figure 2. (a) Observed crown mass vs. the compound variable D2 ×Hc×ρ (in log scale),
displaying a slightly concave relationship. The crown mass sub-model 1 does not capture this
effect (model fit represented with a full line in caption a), resulting in biased model predictions
(caption b), whereas sub-model 3 does not present this error pattern (model fit represented
as a dashed line in caption (a), observed crown mass against model predictions in caption c).
Models were fitted on DataCM2.
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Figure 3. (a) Relative individual residuals (si in %) of the reference pantropical model of Chave
et al. (2014) against the tree AGB gradient. The thick dashed line represents the fit of a local
regression (loess function, span= 0.5) bounded by standard errors. (b) Observed tree AGB
(TAGBobs) vs. the compound variable D2×H×ρ with D and H being the tree stem diameter and
height, respectively, and ρ the wood density. A segmented regression revealed a significant
break point (thin vertical dashed line) at approximately 10 Mg of TAGBobs (Davies test p value<
2.2×10−16).
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Figure 4. (a) Relative residuals (si , in %) of the reference pantropical model m0 (grey back-
ground) and our model m1 including crown mass (white background). Thick dashed lines rep-
resent fits of local regressions (loess function, span= 1) bounded by standard errors. (b) Prop-
agation of individual estimation errors of m0 (solid grey circles) and m1 (empty circles) to the
plot level.
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Figure 5. (a) Relative individual residuals (si , in %) obtained with the reference pantropical
model m0 (grey background) and with our model including a crown mass proxy, m2 (white
background). Thick dashed lines represent fits of local regressions (loess function, span= 1)
bounded by standard errors. (b) Propagation of individual residual errors of m0 (solid grey
circles) and m2 (empty circles) to the plot level.
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Figure A1. Observed against estimated crown mass (in Mg) for models 1-D (caption A), 1-Hc 14 

(caption B), 2-D (caption C), 3 (caption D). Models were calibrated on DataCM2. Tree wood 15 

density was standardized to range between 0 and 1 and represented as a grayscale (with black 16 

the lowest values and white the highest values).  17 

  18 

Figure A1. Observed against estimated crown mass (in Mg) for models 1-D (caption a), 1-
Hc (caption b), 2-D (caption c), 3 (caption d). Models were calibrated on DataCM2. Tree wood
density was standardized to range between 0 and 1 and represented as a grayscale (with black
the lowest values and white the highest values).
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Figure A2. Observed versus estimated crown mass (in Mg) for models 1-D (caption A), 1-Cd 15 

(caption B), 2-D (caption C), 2-Cd (caption D). Models were calibrated on DataCD. Tree wood 16 

density was standardized to range between 0 and 1 and is represented as a grayscale (with 17 

black the lowest values and white the highest values).  18 

  19 

Figure A2. Observed vs. estimated crown mass (in Mg) for models 1-D (caption a), 1-Cd (cap-
tion b), 2-D (caption c), 2-Cd (caption d). Models were calibrated on DataCD. Tree wood density
was standardized to range between 0 and 1 and is represented as a grayscale (with black the
lowest values and white the highest values).
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Figure B1. Plot-level propagation of individual-level model error. (A) Mean relative error 2 

(Splot, in %) and standard deviation of 1000 random error sampling against simulated plot 3 

AGB and (B) against the fraction (%) of simulated plot AGB accounted for by trees > 20 4 

Mg. Plots from Korup permanent plot are represented by triangles. 5 

  6 

Figure B1. Plot-level propagation of individual-level model error. (a) Mean relative error (Splot,
in %) and standard deviation of 1000 random error sampling against simulated plot AGB and
(b) against the fraction (%) of simulated plot AGB accounted for by trees > 20 Mg. Plots from
Korup permanent plot are represented by triangles.
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Figure B2. Plot-level relative error (Splot, in %) as a function of plot size (in ha) in Korup 13 

permanent plot. Individual plot values are represented by grey dots.   14 

 15 

Figure B2. Plot-level relative error (Splot, in %) as a function of plot size (in ha) in Korup perma-
nent plot. Individual plot values are represented by grey dots.
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