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Baire measurability of (M,N)-Wright convex
functions

Abstract. Let I ⊆ R be an open interval and M,N : I2 −→ I be means on I. Let

ϕ : I −→ R be a solution of the functional equation

ϕ(M(x, y)) + ϕ(N(x, y)) = ϕ(x) + ϕ(y), x, y ∈ I.

We give sufficient conditions on M,N and the function ϕ such that for every

Baire measurable solution f : I −→ R of the functional inequality

f(M(x, y)) + f(N(x, y)) ≤ f(x) + f(y), x, y ∈ I,

the function f ◦ ϕ−1 : ϕ(I) −→ R is convex.
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1. Introduction. Let I ⊆ R be a nonempty open interval. A two place function
M : I2 −→ I such that

min{x, y} ≤M(x, y) ≤ max{x, y}, x, y ∈ I,

is called a mean on I. If for all x, y ∈ I, x 6= y these inequalities are sharp, we call
M to be a strict mean. In the present paper a function f : I −→ R is called to be
(M,N)-Wright convex if

f(M(x, y)) + f(N(x, y)) ≤ f(x) + f(y), x, y ∈ I,(1)

whenever M,N : I2 −→ I are means on I such that

M(x, y) +N(x, y) = x+ y, x, y ∈ I.(2)
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The problem of (M,N)-Wright convex functions was considerd by Zs. Páles [12],
J. Matkowski and M. Wróbel [9]. In a case of M and N arithmetic means see also
Matkowski [7], Gy. Maksa, K. Nikodem and Zs. Pales [10], Kominek [3].

A. Olbryś has shown in [13] that every Baire measurable, t-Wright convex func-
tion (see Definition 2.5) is a convex function.

In this connection we deal with the problem of giving the assumption on means
M and N , guaranteeing that every Baire measurable, (M,N)-Wright convex func-
tion is convex.

Our method is based on the paper M. Lewicki [4].

2. Notions and lemmas. In this section we will recall basic notions.
By N0 denote the set of all nonnegative integers, i.e. N0 := N ∪ {0}. We need

the following

Lemma 2.1 Suppose that M,N : I2 −→ I are continuous means on I, and at least
one of them is strict. Let the functions Mk, Nk : I2 −→ I, k ∈ N0, be defined by

M0(x, y) := M(x, y), N0(x, y) := N(x, y),
Mk+1(x, y) := M(Mk(x, y), Nk(x, y)), Nk+1(x, y) := N(Mk(x, y), Nk(x, y)).

Then
1◦ for every k ∈ N0, the functions Mk and Nk are continuous means on I;
2◦ the sequences {Mk}k∈N0 and {Nk}k∈N0 converge on I to the same function

K : I2 −→ I, i.e.

lim
k→+∞

Mk(x, y) = K(x, y) = lim
k→+∞

Nk(x, y), x, y ∈ I,(3)

moreover K is a continuous mean on I;
3◦ if M and N are strictly increasing in the first (second) variable, then Mk and

Nk, for k ∈ N0 are strictly increasing in the first (second) variable.

Proof The parts 1◦ and 2◦ has been shown in Matkowski [6] (see Lemma 2, p.
92). The proof of 3◦ is an easy induction. �

As an immediate consequence we obtain

Corollary 2.2 Suppose that M,N : I2 −→ I are continuous means on I, at least
one of them is strict. Furthermore, assume that (2) holds. Let Mk and Nk, k ∈ N0,
be defined as in Lemma 2.1. Then

lim
k→+∞

Mk(x, y) =
x+ y

2
= lim
k→+∞

Nk(x, y), x, y ∈ I.

Definition 2.3 The function f : I −→ R is called convex if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y), x, y ∈ I,

for all t ∈ [0, 1].
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Definition 2.4 The function f : I −→ R is called J-convex (Jensen convex) if

f
(x+ y

2

)
≤ f(x) + f(y)

2
, x, y ∈ I.

Definition 2.5 Let t ∈ (0, 1) be a fixed number. The function f : I −→ R is
called t-Wright convex if the following condition

f(tx+ (1− t)y) + f((1− t)x+ ty) ≤ f(x) + f(y), x, y ∈ I,

is fulfilled.

Remark 2.6 Fix t ∈ (0, 1). Notice that t-Wright convex functions are (Mt,M1−t)-
Wright convex, where

Mt(x, y) := tx+ (1− t)y, x, y ∈ I.

In the sequel we will need the following corollary of the theorem of M.R. Mehdi [11]
(see M. Kuczma [1], Theorem 2, p. 210),

Theorem 2.7 Let I ⊆ R be an open set and T ⊆ I be a second category set with the
Baire property. Then every J-convex function, bounded above on T is continuous.

In Lemma 3.2 we will use the following

Lemma 2.8 (see M. Lewicki [5], Lemma 3.1) Let I ⊆ R be an open interval. Assume
M : I2 −→ I is a strict continuous mean on I, such that, for every fixed u, v ∈ I,
functions M(u, ·) and M(·, v) are strictly increasing. Let a set B ⊆ I be residual
at I. Then, for all ε > 0 and x0 ∈ I there exist x, y ∈ K(x0, ε) ∩ B such that
x0 = M(x, y).

As the Referee noticed, the assumption that the meanM is strict is superfluous in
the above lemma. Indeed, if a function M : I2 −→ R is reflexive, i. e. M(x, x) = x
for all x ∈ I, and M is strictly increasing with respect to each variable, then M is
a strict mean (see J. Matkowski [8]).

3. Main result.

We call a subset E ⊆ I a residual if the set I \ E is of the first category.

Lemma 3.1 Let I ⊆ R be an open interval if a set E ⊆ I is residual, then the set
Ẽ := {(u, v) ∈ E2 : u+v

2 ∈ E} is residual at I2.

Proof We show that the set I2 \ Ẽ is of the first category. Consider the sequence
of equivalent conditions:

(s, t) ∈ I2 \ Ẽ ⇐⇒ ¬((s, t) ∈ Ẽ)⇐⇒ ¬(s ∈ E ∧ t ∈ E ∧ s+ t

2
∈ E)⇐⇒

⇐⇒ s ∈ I \ E ∨ t ∈ I \ E ∨ s+ t

2
∈ I \ E.
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This implies that

I2 \ Ẽ ⊆ (I \ E)× I ∪ I × (I \ E) ∪ {(u, v) ∈ I2 :
u+ v

2
∈ I \ E}.

Obviously the sets (I \ E) × I and I × (I \ E) are of the first category. To
complete the proof it is enough to show that the set

{(u, v) ∈ I2 :
u+ v

2
∈ I \ E},

is of the first category. As the set I\E is of the first category, there exists a sequence
{An}n∈N of nowhere dense sets such that I \ E =

⋃
n∈N

An.

Hence

{(u, v) ∈ I2 :
u+ v

2
∈ I \ E} = {(u, v) ∈ I2 :

u+ v

2
∈
⋃

n∈N
An} =

=
⋃

n∈N
{(u, v) ∈ I2 :

u+ v

2
∈ An}.

Therefore, it is enough to show that the set {(u, v) ∈ I2 : u+v
2 ∈ An} is nowhere

dense, for every n ∈ N.
Fix n0 ∈ N. Obviously

cl{(u, v) ∈ I2 :
u+ v

2
∈ An0} ⊆ {(u, v) ∈ I2 :

u+ v

2
∈ cl An0}.(4)

We show that int cl{(u, v) ∈ I2 : u+v
2 ∈ An0} = ∅. For an indirect argument

assume that int cl{(u, v) ∈ I2 : u+v
2 ∈ An0} 6= ∅. Then there exist non-degenerated

open intervals (a, b) ⊆ I and (c, d) ⊆ I such that

(a, b)× (c, d) ⊆ cl{(u, v) ∈ I2 :
u+ v

2
∈ An0}.

By inclusion (4)

(a, b)× (c, d) ⊆ {(u, v) ∈ I2 :
u+ v

2
∈ cl An0}.

Hence

(a, b) + (c, d)
2

⊆ cl An0 .

Therefore int clAn0 6= ∅, contrary to the definition of An0 . This completes the
proof. �

In the sequel we will need the following lemma. The proof is analogous to the
proof of Theorem 2.3 the paper M. Lewicki [4].
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Lemma 3.2 Let I ⊆ R be an open interval and M,N : I2 −→ I be means on I,
strictly increasing in each variable. Furthermore, suppose that M is continuous.
Let f : I −→ R be (M,N)-Wright convex function. If g : I −→ R is a continuous
function such that the set R := {x ∈ I : f(x) = g(x)} is residual, then f(x) = g(x)
for all x ∈ I.

Proof Fix x0 ∈ I and ξ > 0. We proof that

g(x0) ≤ f(x0).(5)

By the continuity of g there exists δ > 0 such that

|g(x0)− g(x)| ≤ ξ, x ∈ (x0 − δ, x0 + δ).(6)

Define functions Mx0 , Nx0 : I −→ I as

Mx0(x) := M(x0, x), x ∈ I,

and

Nx0(x) := N(x0, x), x ∈ I.

respectively.
Due to assumptions, the functions Mx0 and Nx0 are strictly increasing and con-

tinuous. It implies that functions (Mx0)−1 : Mx0((x0−δ, x0+δ)) −→ (x0−δ, x0+δ)
and (Nx0)−1 : Nx0((x0 − δ, x0 + δ)) −→ (x0 − δ, x0 + δ) are strictly increasing and
continuous. Define a set B := Mx0((x0 − δ, x0 + δ)) ∩ Nx0((x0 − δ, x0 + δ)) ∩
(x0 − δ, x0 + δ). Obviously B is an open neighbourhood of the point x0. The set
B ∩R is residual in B, so the set (Mx0)−1(B ∩R) ∩ (Nx0)−1(B ∩R) is residual in
A := (Mx0)−1(B) ∩ (Nx0)−1(B). As A is an open neighbourhood of the point x0,
the set (Mx0)−1(B ∩R) ∩ (Nx0)−1(B ∩R) ∩R is nonempty.

Taking x ∈ (Mx0)−1(B∩R)∩(Nx0)−1(B∩R)∩R we get x ∈ R andMx0(x), Nx0(x) ∈
B ∩R ⊆ (x0 − δ, x0 + δ).

Now, by (1) and by the definition of the set R

g(M(x0, x)) + g(N(x0, x)) = f(M(x0, x)) + f(N(x0, x)) ≤
≤ f(x0) + f(x).

Taking into account (6) we get

g(x0)− ξ + g(x0)− ξ ≤ g(M(x0, x)) + g(N(x0, x)) ≤
f(x0) + g(x) ≤ f(x0) + g(x0) + ξ.

Finally we have

g(x0) ≤ f(x0) + 3ξ.

Letting ξ −→ 0+ we get (5).
Now we show that the inequality

f(x0) ≤ g(x0),(7)
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holds.
By Lemma 2.8 for arbitrary n ∈ N there exist xn, yn ∈ R∩ (x0− 1

n , x0 + 1
n ) such

that M(xn, yn) = x0. Now, due to (5), (1) and definition of the set R, we get

f(x0) + g(N(xn, yn)) ≤ f(M(xn, yn)) + f(N(xn, yn)) ≤
f(xn) + f(yn) = g(xn) + g(yn).

Hence, by continuity of functions g and N we have

f(x0) + g(x0) = f(x0) + lim
n→+∞

g(N(xn, yn)) ≤
lim

n→+∞
g(xn) + lim

n→+∞
g(yn) = 2g(x0).

That completes the proof of (7), and the proof of the Lemma. �

Theorem 3.3 Let I ⊆ R be an open interval and M,N : I2 −→ I be means on I,
strictly increasing in each variable. Furthermore, suppose that M is continuous. If
f : I −→ R is an (M,N)-Wright convex and Baire measurable function, then f is
convex.

Proof By Nikodym’s Theorem there exists a residual set E ⊆ I, such that f |E is
continuous. Let set Ẽ be defined as in Lemma 3.1. We will show that

(u, v) ∈ Ẽ =⇒ f
(u+ v

2

)
≤ f(u) + f(v)

2
.(8)

Fix (s, t) ∈ Ẽ and ε > 0. By the continuity of the function f |E , there exist
U(t, δ) = (t− δ, t+ δ) and U( s+t2 , δ) = ( s+t2 − δ, s+t2 + δ) such that

|f(t)− f(x)| < 2
3
ε, x ∈ E ∩ U(t, δ),(9)

and
∣∣∣f
(s+ t

2

)
− f(x)

∣∣∣ < 2
3
ε, x ∈ E ∩ U

(s+ t

2
, δ
)
.(10)

Let Mk and Nk, for k ∈ N0 be defined as in Lemma 2.1. Due to Corollary 2.2 we
have

lim
n→+∞

Mn(s, t) =
s+ t

2
= lim
n→+∞

Nn(s, t)

Hence, there exists n0 ∈ N such thatMn0(s, t) ∈ U( s+t2 , δ) andNn0(s, t) ∈ U( s+t2 , δ).
By the continuity of the functions Mn0 and Nn0 (see Lemma 2.1, p. 1◦) there exists
0 < η < δ such that

Mn0(s, U(t, η)) ∈ U
(s+ t

2
, δ
)
, Nn0(s, U(t, η)) ∈ U

(s+ t

2
, δ
)
.(11)
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Now, by Lemma 2.1 (p. 3◦), the functons Mn0(s, ·) =: Mn0 and Nn0(s, ·) =: Nn0

are strictly increasing and continuous. Consider the inverse functions (Mn0)−1 :
Mn0(s, U(t, η)) −→ U(t, η) and (Nn0)−1 : Nn0(s, U(t, η)) −→ U(t, η), respectively.
Obviously both functions are strictly increasing and continuous.

Since E is residual in the set Mn0(s, U(t, η)), the set M−1
n0

(E) is residual in
U(t, η). Analogously, N−1

n0
(E) is residual in U(t, η). Consequently, a set B :=

M−1
n0

(E) ∩M−1
n0

(E) ∩ E is residual in U(t, η). Thus B is nonempty.
Take t0 ∈ B. By (11) we have: t0 ∈ E ∩ U( s+t2 , δ) and Mn0(s, t0), Nn0(s, t0) ∈

E ∩ U(t, η) ⊆ E ∩ U(t, δ).
Now, according to (1), (9) and (10), we get

f
(s+ t

2

)
− 2

3
ε+ f

(s+ t

2

)
− 2

3
ε ≤ f(Mn0(s, t0)) + f(Nn0(s, t0)) ≤

f(s) + f(t0) ≤ f(s) + f(t) +
2
3
ε.

Hence,

f
(s+ t

2

)
≤ f(s) + f(t)

2
+ ε,

Now, letting ε −→ 0+ we get assertation (8).
In virtue of Theorem 2 (see M. Kuczma [1], p. 459) jointly with Example III

(M. Kuczma [1], p. 438) and comments (M. Kuczma [1], p. 439, line 24-26), there
exists J-convex function g : I −→ R such that the set R := {x ∈ I : g(x) = f(x)}
is residual in I.

Now, notice that R ∩ E is a residual set in I. Fix x0 ∈ R ∩ E. As the function
f |E is continuous at the point x0, there exists γ > 0 such that g|R∩E = f |R∩E is
bounded on U(x0, γ)∩R∩E. In view of Theorem 2.7 g is continuous function and,
by J-convexity, g is convex. Consequently, by Lemma 3.2 the function f is convex.�

J. Matkowski and M. Wróbel in [9] generalized a result of Zs. Pales [12] to the
following

Theorem 3.4 Let M,N : I2 −→ I be continuous, strict means on I, and suppose
that ϕ : I −→ R is a non-constant and continuous solution of equation

ϕ(M(x, y)) + ϕ(N(x, y)) = ϕ(x) + ϕ(y), x, y ∈ I.(12)

Then ϕ is one-to-one, and for every lower semicontinuous function f : I −→ R
satisfying inequality (1), the function f ◦ ϕ−1 is convex on ϕ(I).

Our next aim is to generalize the above result to the case of strictly increasing
in each variable mean on I. Our result simultaneously improves the main theorem
of M. Lewicki [5].

Definition 3.5 Let I ⊆ R be an open interval and M : I2 −→ I be a mean on I.
Assume that ϕ : I −→ R is a strictly monotone function. By Mϕ : ϕ(I)2 −→ ϕ(I)
we denote a mean on ϕ(I) defined by

Mϕ(x, y) := ϕ(M(ϕ−1(x), ϕ−1(y))), x, y ∈ I.
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Corollary 3.6 Let I ⊆ R be an open interval and M,N : I2 −→ I be means on
I. Furthermore, suppose that M,N are continuous and strictly increasing in each
variable. Assume that there exists a nonconstatnt, continuous solution ϕ : I −→ R
of equation (12). If f : I −→ R is a Baire measurable function satisfying inequality
(1), then the function f ◦ ϕ−1 : ϕ(I) −→ R is convex on ϕ(I).

Our proof is based on the papers of J. Matkowski and M. Wróbel [9], J. Matkowski
[6] and M. Lewicki [4].

Proof First we show that the function ϕ is strictly monotone. With the notation
of Lemma 2.1, there exists a continuous mean K : I2 −→ I on I such that (3) holds.
By (12) and obvious induction we get

ϕ(Mk(x, y)) + ϕ(Nk(x, y)) = ϕ(x) + ϕ(y), x, y ∈ I, k ∈ N0.

Letting k −→ +∞ and making use of the continuity of ϕ, and (3) we hence get

2ϕ(K(x, y)) = ϕ(x) + ϕ(y), x, y ∈ I.

The rest of the proof that ϕ is one-to-one reads as in J. Matkowski and M. Wróbel
[9] (see p. 10, lines 19-27).

Now, consider functions Mϕ and Nϕ. Directly from (12) we get

Mϕ(x, y) +Nϕ(x, y) = x+ y, x, y ∈ ϕ(I),

Hence, by above and assumptions on M , the mean Mϕ is strict, continuous and
strictly increasing in each variable mean on ϕ(I). Now we show that the function
f ◦ ϕ−1 is (Mϕ, Nϕ)-Wright convex.

Fix x, y ∈ ϕ(I) and put s := ϕ−1(x) and t := ϕ−1(y)

(f ◦ ϕ−1)(Mϕ(x, y)) + (f ◦ ϕ−1)(Nϕ(x, y)) =
(f ◦ ϕ−1)(ϕ(M(ϕ−1(x), ϕ−1(y)))) + (f ◦ ϕ−1)(N(ϕ−1(x), ϕ−1(y)))) =
f(M(s, t)) + f(N(s, t)) ≤ f(s) + f(t) ≤ (f ◦ ϕ−1)(x) + (f ◦ ϕ−1)(y).

Applying Theorem 3.3 we get the thesis. �
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[13] A. Olbryś, On the measurability and the Baire’a property of t-Wright convex functions,

Aequationes Math., 68 (2004), 28-37.

Micha l Lewicki

Institute of Mathematics, Silesian University

ul. Bankowa 14 PL-40, 007 Katowice, Poland

E-mail: m lewicki@wp.pl

(Received: 13.09.2007)


