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Ocean general circulation



Ocean Circulation
Three key divisions in space and time

1. Ekman circulation / Surface
— Short timescales (daily to seasonal)

— Surface 50-200, dependent on strength of
stratification

2. Wind-driven circulation / Thermocline
— Intermediate timescales (decadal)
— Surface to ~1000m

3. Thermohaline circulation / Abyss

— Long timescales (1000 year)
* Deep ocean, “1000-4500m




Thermohaline / Overturning
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Heat Transport in Ocean
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Atmospheric forcing is symmetric, but ocean
response is asymmetric
i.e. why is there a Gulf Stream?
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1. Friction from the winds ->
surface Ekman Layer



Wind stress
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Wind speed (m/s)

Vectors = Wind stress vectors (N/
m?)



North Atlantic:
Wind Stress and Currents
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Friction in the horizontal
components of the equations of
motion



Ekman Number

 Compare Friction and CF forces

A




How does the ocean respond to
this frictional forcing?



Nansen observed iceberg movements
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Figure 9.2 The balance of forces acting on an iceberg in a wind on a rotating Earth.



Ekman solution

e Steady, homogenous, horizontal flow with
friction

* Constant vertical eddy viscosity A,
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Important note

* The Ekman solution is only part of the TOTAL
flow.

e At large scale, PGF = CF (geostrophy)
e At small scale, Friction = CF (Ekman)

U=1u,+u,

v=v,+V,



How fast does the spiral decay?

* Arbitrary choice, since never exactly zero

* Choose to be where current velocity is 180
degrees from the surface

 Knowing the equations, solve for depth

27 A,
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Both wind and latitude are important

Table 9.3 Typical Ekman Depths

Latitude
Uio [m/s] 15° 45°
5 75 m 45 m
10 150 m 90 m
20 300 m 180 m




EKMAN SPIRAL
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Ekman velocity in terms of wind stress
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Parameterization of Windstress

* Relates the surface stress to the square of the
wind speed at 10m (u,,..4, Viying)

* Force / unit area (N/m?)

2 2
(Tx > Ty) = IO a Cd \/uwind + Vwind (uwind ’ vwind)

T =p,CU

2
wind



Drag Coefficient for wind stress

* Typical valuesCd~1-1.5x103

e Can try to improve this by accounting for
additional drag at high windspeed

— Due to increasing waves, change to the surface
structure of the ocean



Various C, estimates
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Lack of low wind speed data, so they
throw out below 3 m/s...
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Details of the Ekman spiral are NOT
critical to large-scale ocean circulation.

But, its effect integrated over the
surface layer / Ekman depth is.



The integrated effect is a Mass Transport (Me)
90° to the right (left in SH) of wind stress
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Net convergence or divergence
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Balanced flow: Geostrophy
PGF = CF
“Flow around the hil

Inward flow due to PGF

(blue force arrows) balance

CF (red arrows) to create

cyclonic flow (black arrows) \E i
Northern Hemisphere Cyclone
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Comparison to Observations



Data indicate aloft wind and surface
flow are parallel

Ll ' T I T I L] l L] I Ll l T
120° 140° 160° 180° -160° -140° -120° -100°
Mean Sea Level Pressure in April 1978 (mb)



Comparison to Observations

Ekman’s predictions are surprisingly good
when compared to recent data with current

meters and drifters
This suggests our initial assumptions

(regarding steady flow, horizontal
homogeneity) are realistic



Coastal Upwelling
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Figure 9.8 Sketch of Ekman transport along a coast leading to upwelling of cold water along
the coast. Left: Cross section. The water transported offshore must be replaced by water
upwelling from below the mixed layer. Right: Plan view. North winds along a west coast in
the northern hemisphere cause Ekman transports away from the shore.



Equatorial Upwelling
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Convergence / Divergence implies
Vertical Motion in Gyres as well



Ekman pumping/suction also results from
divergence or convergence
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Ekman Pumping / Suction




Latitude
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Copyright & 2008, Elsevier Inc. All rights reserved.



Ekman Suction in Rotating Tank

http://www-paoc.mit.edu/labweb/lab12/gfd12.htm




Temperature, Salinity
Depth Structure, Atlantic
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Ekman pumping / suction has strong influence on
upper ocean (0 to ~1000m) circulation

Water depth (km)
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Gyre upwelling and downwelling key
to distribution of productivity

Satellite Ocean Surface Chlorophyll, average 1998-2006, NASA




Essential nutrients are at depth
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Wind driven circulation, summary
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What happens below the surface layer
where winds drive mass convergence/
divergence, which in turn drives
downwelling/upwelling....



Remember that away from surface and
boundaries, ocean is very geostrophic

(R, << 1)
1 op 1 op
Jv = Ju = —
p, 0X P,y
0
—P8 = =

0z



How does the wind-driven interior respond
to w_<0 in the subtropical gyres?

 Beneath the Ekman layer, flow is geostrophic

* Continuity
— Because concerned with w,, can no longer assume
horizontally non-divergent

— Now: T
V, u,+—=0
07
* Also note that over the large spatial scales,
cannot assume that f is constant



Sverdrup Balance

ow
/3Vg=f0,,—Z



Sverdrup Balance

Geostrophic
But, allow vertical motion to be non-zero

Also, keep the latitudinal variation in the
Coriolis parameter (i.e. p = df/dy # 0)

To derive:

— Plug in geostrophy to continuity



Depth-integrated flow,
function of wind stress curl

1 (o7, or,
p,\ ox  dy

pv = fi,

Last approximation holds with f~f_



Rotating Tank:
The Wind Driven Gyre

http://www-paoc.mit.edu/labweb/lab13/gfdxiii.htm




Wind drives the ocean, but why is
there a Gulf Stream?
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Observed Gyres

WINDS AND SURFACE OCEAN CIRCULATION
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