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ABSTRACT: Climate change is altering environments where rare plants grow. Assessing species’ vul-
nerability to climate change is important for organizations responsible for managing natural areas and 
conserving rare species. We assessed the climate change vulnerability of 34 rare plant taxa from the 
western United States using two methods: NatureServe’s Climate Change Vulnerability Index (CCVI) 
and one based on Species Distribution Modeling (SDM) using Maxent. Of the eight taxa categorized as 
Extremely Vulnerable by the CCVI, five show significant future loss in each of three SDM measures: 
change in suitable area, suitable area overlap, and habitat suitability in their present location. Both the 
CCVI and SDM are important tools to assess climate change vulnerability; each method has comple-
mentary strengths that can help land managers make decisions. Here we present examples of how land 
managers can use SDM and the CCVI in combination to assess climate change vulnerability, to inform 
rare plant management decisions, and to conserve biological diversity.

Index terms: climate change, climate change vulnerability index, maxent, species distribution modeling, 
vulnerability assessments

INTRODUCTION

Rapidly changing global land surface 
temperature and precipitation patterns are 
altering local environmental conditions 
where plants grow (IPCC 2007; IPCC 
2014). Many plant species are predicted 
to respond to climate change by shifting 
their ranges (Parmesan et al. 1999; Kelly 
and Goulden 2008; Loarie et al. 2008), 
sometimes moving out of areas that had 
been protected to conserve their habitat 
(Heller and Zavaleta 2009). Rapid shifts 
in species’ climatic envelopes will demand 
new approaches to plant conservation, 
as simply protecting currently occupied 
habitats will not suffice for many species. 
Plant species unable to adapt to rapidly 
changing conditions or migrate to new 
areas may be extirpated in parts of their 
ranges or, in extreme cases, go extinct 
(IPCC 2007; IPCC 2014).

A suite of strategies has been proposed 
to address natural resource management 
under a changing climate (Heller and 
Zavaleta 2009; Mawdsley et al. 2009). 
Recent publications provide guidance on 
the daunting task of incorporating climate 
change considerations into policy and 
management plans (AFWA 2009; Glick 
et al. 2011; NFWPCAP 2012; FAO 2013; 
Schmitz et al. 2015, this issue). The use of 
climate change vulnerability assessments 
to guide decision-making and strategy 
development has been recommended (Stein 
et al. 2014). Climate change vulnerability 
assessments encompass a variety of sci-
ence-based methods to determine species 
or habitat vulnerability to climate change. 
Two approaches are vulnerability indices 

and species distribution modeling (Row-
land et al. 2011; Johnson 2013).

Vulnerability indices are evaluative frame-
works that assess the relative vulnerability 
of target species to climate change (Row-
land et al. 2011). A number of climate 
change vulnerability indices have been 
developed (e.g., Bagne et al. 2011). Most 
vulnerability indices evaluate a combina-
tion of a species’ exposure, sensitivity, 
and adaptive capacity to climate change. 
Exposure can be defined as the magnitude 
of projected climate change across the 
species’ range within the geographic area 
assessed. Sensitivity and adaptive capacity 
are related components of how a species 
is predicted to respond to climate change. 
Sensitivity includes life history traits and 
biotic interactions that govern a species’ 
interaction with its abiotic environment, 
including climatic conditions. Adaptive 
capacity can be defined as a species’ ability 
to respond to a changing climate (Rowland 
et al. 2011).

One example of a vulnerability index wide-
ly used in the United States is the Climate 
Change Vulnerability Index (CCVI) (Byers 
and Norris 2011; Dubois et al. 2011; Lee 
et al. 2011; Schlesinger et al. 2011; Walk 
et al. 2011; Liebezeit et al. 2012; Anacker 
et al. 2013). The CCVI incorporates factors 
related to species’ direct and indirect expo-
sure and anticipated sensitivity to climate 
change (Young et al. 2012). Considered 
a rapid screening method to assess the 
relative vulnerability of a group of species 
to climate change, the CCVI evaluates 
16 life history traits likely to influence 
climate sensitivity (e.g., physiological at-
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tributes, dispersal mechanisms, pollinator 
specificity, and geologic substrate fidelity), 
as well as climate exposure information to 
predict species’ vulnerability to climate 
change. The CCVI evaluates traits that are 
indicative of both sensitivity and adaptive 
capacity, but since these factors can be 
difficult to tease apart, they are grouped 
together in one section under the term 
sensitivity. The CCVI provides insight 
into why certain plants are more sensitive 
to climate change than others. Identify-
ing which life history characteristics 
may impair a species’ ability to adapt or 
migrate provides valuable information for 
conserving species (Rowland et al. 2011). 
Using these methods, the most vulnerable 
species can be targeted for more ambitious 
conservation measures.

Species distribution modeling (SDM) is a 
spatial analytic method that uses environ-
mental data to predict current or future 
areas suitable for species to grow (known 
as “suitable areas”) (Rowland et al. 2011; 
NFWPCAP 2012). Use of SDM (also 
known as ecological or environmental niche 
modeling or climate envelope modeling) 
has grown rapidly in recent years (Guisan 
and Thuiller 2005; Cumming 2009; Elith 
and Leathwick 2009;). Species distribution 
models aim to map the geographic area 
where a species may occur by model-
ing its environmental requirements using 
indicator variables, such as minimum and 
maximum temperatures where the species 
occurs (Elith and Leathwick 2009). For this 
paper we use the term “suitable area” to 
indicate those geographic areas where the 
modeled climatic suitability is above a se-
lected threshold. The suitable area overlap 
is the portion of the suitable area that is the 
same in both present and future predictions. 
Statistical models for climate suitability 
are generated by relating current locations 
of occurrences to contemporary climatic 
variables. Models are validated through 
a process of predicting suitable habitat 
area under current climate and comparing 
predictions with known occurrence data. 
Well-supported models can then be used 
to predict future suitable areas under dif-
ferent climate change scenarios (Elith and 
Leathwick 2009). These models provide 
detailed information about predicted shifts 
in suitable area. For example, a common 

prediction is that the equatorward edge of 
species’ suitable area will contract and the 
poleward edge will expand, causing latitu-
dinal shifts in distribution (Parmesan et al. 
1999; Hickling et al. 2005). Shifts along 
latitudinal and elevational gradients are 
predicted for many taxa. Spatial, climatic, 
and environmental variables may also 
interact in complex ways, leading some 
species to undergo unanticipated changes 
in distribution (Loarie et al. 2008; Chen et 
al. 2011; Crimmins et al. 2011; Dobrowski 
et al. 2011).

In addition to predicting changes in suitable 
area, SDM can also be used to make more 
nuanced inferences about shifts in habitat 
quality. Areas predicted to become more 
or less suitable in the future are termed 
the “leading edge” and “trailing edge” of 
a species’ range, respectively. Management 
strategies for these two edges may be quite 
different. For example, efforts in the lead-
ing edge could focus on forward-looking 
habitat conservation and reserve design 
(Heller and Zavaleta 2009). In contrast, 
the trailing edge may comprise particularly 
important collection localities for ex situ 
conservation (Davis et al. 2012), as it is 
these populations where climate-driven 
extirpation is most likely to occur.

Two conventional ways of quantifying 
predicted effects of climate change on 
species distribution are changes in range 
size and range overlap (Thomas et al. 2004; 
Hijmans and Graham 2006; Schwartz et al. 
2006; Anacker et al. 2013; Maggini et al. 
2014). These are calculated by generating 
maps of suitable and unsuitable habitat. 
While intuitive, such predictions require 
setting a threshold value for differentiat-
ing suitable vs. unsuitable, which can be 
particularly challenging with rare species 
(Hijmans 2012). The choice of threshold, 
while beyond the scope of this manuscript, 
can have dramatic effects on model accu-
racy and prevalence (Freeman and Moisen 
2008). Range overlap is a useful measure 
that indicates those areas where the suitable 
habitat is stable over time. Another measure 
used to compare model predictions is the 
“suitability score,” which is a slight deri-
vation of the anomaly score described by 
Anacker et al. (2013). The suitability score 
is calculated as the ratio of the difference 

between the current and future suitability 
for all occurrences for each species. A de-
crease in the suitability score indicates that 
the species is more vulnerable in the future. 
In comparison to the change in range or 
range overlap, the suitability score reduces 
assumptions and errors because it does not 
require deciding upon a, perhaps, tenuous 
threshold value. In addition, the suitability 
score is based solely on habitat suitability 
at known occurrence locations. This is 
important because it allows land manag-
ers to understand how the suitability will 
change where a species presently occurs. 
The manager does not have to consider 
predicted areas of suitable habitat where 
a species may occur in the future that are 
outside the current range.

The SDM measures described above, 
change in range size, range overlap, and 
suitability score, each serve as useful indi-
cators of vulnerability to climate change. 
However, it can be cumbersome to interpret 
each separately, determine how they relate 
to each other, or to assign precedent in cases 
where they may show differing patterns. 
Rather than quantifying vulnerability using 
multiple measures, Maggini et al. (2014) 
recently introduced a composite index to 
integrate across different SDM-based indi-
cators of vulnerability to climate change. 
We adapt their approach in developing an 
“SDM score” index.

The purpose of this manuscript is to il-
lustrate how to use SDM and the CCVI 
to assess a plant species’ vulnerability to 
climate change. Choosing the right as-
sessment method ultimately depends on 
the goals of the project and the available 
resources. For example, species groups 
with little published information on life 
history characteristics would be difficult 
to assess based on sensitivity to climate 
change. Likewise, modeling the distribu-
tion of species based on few spatial occur-
rences would yield results with high levels 
of uncertainty. In addition, the choice of 
variables used in SDM can greatly influ-
ence the model quality and results (Araújo 
and New 2007). Used together, the two 
approaches can cross-validate results and 
decrease uncertainty, resulting in increased 
confidence and a greater context in which 
to interpret results. Combining detailed in-
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formation on sensitivity to climate change 
from the CCVI with spatial data on pre-
dicted range shifts from SDM provides a 
more holistic assessment. These combined 
analyses of life history characteristics and 
traits, specific threats to species, and cli-
mate change predictions are increasing in 
use because they result in better informed 
management actions and a more robust 
basis for prioritizing those species most in 
need of protection (Heikkinen et al. 2009; 
Murray et al. 2011; Gonzalez-Suarez et al. 
2013; Garcia et al. 2014).

MATERIALS AND METHODS

Species Selection

We chose 34 plant taxa endemic to the west-
ern United States based on NatureServe 
Global Rank rarity categories (G1/Criti-
cally Imperiled, G2/Imperiled, or G3/Vul-
nerable) comprising species expected to be 
most vulnerable (Faber-Langendoen et al. 
2012). The US Fish and Wildlife Service 
lists 11 of the 34 taxa as Threatened or 
Endangered under the Endangered Spe-
cies Act (Table 1). Taxa presented here 
are from two independent projects assess-
ing vulnerability to climate change. One 
project utilized SDM (a subset of results 
are presented here) and the other utilized 
the CCVI (Treher et al. 2012; NatureServe, 
unpubl. data). Both assessed hundreds 
of taxa designated to be of management 
concern by the US Department of Interior’s 
Bureau of Land Management. We deliber-
ately chose taxa encompassing diverse life 
history characteristics in order to highlight 
how the different vulnerability assessments 
are influenced by these factors.

Assessing Vulnerability with the 
Climate Change Vulnerability Index 
(CCVI)

We assessed all species with the CCVI 
version 2.1 (Young et al. 2011). We re-
viewed and scored each factor according 
to guidance and criteria set by the CCVI 
(Young et al. 2011; Young et al. 2012). 
The CCVI evaluates exposure (direct and 
indirect) and species’ sensitivity to climate 
change. The CCVI assigns an overall vul-
nerability category ranging from Extremely 

Vulnerable to Not Vulnerable/Increase 
Likely. A score of Insufficient Evidence 
is assigned if minimum data requirements 
are not met. Since the CCVI requires a 
range map for every species assessed, 
we digitized published range maps from 
various sources (e.g., FNA 1993+; GCA 
2011, see Treher et al. 2012 for details). If 
we could not find a published range map, 
we produced one by drawing a minimum 
convex polygon around occurrence data 
from various sources (e.g., NatureServe 
2011; SEINet 2011) to delineate the range 
(Treher et al. 2012).

We used ArcGIS 10.0 and 10.1 (ESRI 2011) 
to calculate each species’ direct exposure 
to future climate projections provided by 
ClimateWizard (2011a, b) for the A1B 
emissions scenario, an ensemble average 
of 15 Global Circulation Models from 
the 4th Assessment Report of the Inter-
governmental Panel on Climate Change 
(IPCC 2007), which is downscaled to a 
resolution of roughly 12 km2 for a mid-
century (2040–2069) time horizon (Young 
et al. 2011). The CCVI assesses indirect 
exposure by evaluating species’ distribu-
tions relative to predicted sea level rise 
and to natural and anthropogenic barriers 
that may limit a species’ ability to shift 
its range in response to climate change. 
For plant species, the CCVI evaluates up 
to 14 factors (Table 2) related to sensitiv-
ity and adaptive capacity including life 
history characteristics such as dispersal 
ability, disturbance regimes, and geo-
logical affinities. Historical thermal niche 
and historical hydrological niche were 
assessed with ArcGIS 10.0 or 10.1 (ESRI 
2011) using data from ClimateWizard, as 
above, to calculate the variation in annual 
temperature and precipitation across each 
species’ range. A minimum of 10 sensitiv-
ity factors must be scored in order for the 
CCVI to generate an overall assessment 
category (Table 2).

For this study, we excluded five optional 
factors from our CCVI assessments to 
better compare CCVI and SDM results 
(Table 2). We excluded the CCVI fac-
tors relating to documented or modeled 
responses to climate change because we 
wanted to compare two methods that did 
not overlap. We also excluded the factor 

assessing predicted indirect impacts such 
as habitat loss due to the construction of 
alternative energy facilities and sea walls. 
This factor is considered in other measures 
of extinction risk such as Global Ranks.

Assessing Vulnerability with Species 
Distribution Modeling

We obtained Element Occurrence data for 
each taxon from NatureServe (2011). Since 
Element Occurrences represent areas where 
a species is (or was) present, we converted 
spatial polygon data to point data needed 
for SDM by using the centroid of each 
occurrence. We fit distribution models 
using Maxent 3.3.3k (Phillips et al. 2006) 
through the dismo package (Hijmans et 
al. 2013) in R 2.15 (R Core Team 2012) 
and using default “auto features” allow-
ing linear, quadratic, product, threshold, 
and hinge features. Each model run for 
each climate scenario (including base-
line) by species combination consisted of 
10 replicates. A threshold value for each 
model was calculated as the value that 
maximizes the kappa (MaxKappa), a sta-
tistical measure of the agreement between 
predictions and observations (Cohen 1960; 
Jiménez-Valverde 2011). We averaged the 
threshold values and model projections 
across the replicates for current and future 
distributions. We used the threshold value 
to convert the logistic output predictions 
of climate suitability from continuous to 
binary (suitable/unsuitable) values. The 
geographic extent for all models and pro-
jections was the convex hull of species’ oc-
currences plus a 50-km buffer. The 50-km 
buffer is based on maximum expected plant 
migration rates. For example, historical 
plant migration rates have been estimated 
to be 10–30 km per century (McLachlan 
et al 2005; Yansa 2006) and Notaro et al. 
(2012) used a 100-km buffer to examine 
predicted range shifts by the end of the 
21st century. We used a predictor data set 
acquired from WorldClim (Hijmans et al. 
2005) for both contemporary conditions 
(mean 1950–mean 2000) and future projec-
tions at 30 arc-second (~1 km2) resolution. 
A ranked subset of 10 of the 19 Bioclim 
variables was selected that are considered 
broadly important ecological variables 
for western species (Austin 2007). From 
this list we chose five variables that were 
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Table 1. Plant family, NatureServe Global Rank, and US Endangered Species Act (ESA) status for 34 taxa in this study. NatureServe Global Rounded 
Ranks: Critically Imperiled (1), Imperiled (2), Vulnerable (3), or Apparently Secure (4). ‘G’ and ‘T’ indicate the Global Rank at the species and infraspe-
cific taxon levels, respectively. ESA status: Listed Threatened (LT) or Listed Endangered (LE).
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not highly correlated with other included 
variables (r < 0.6; Table 3) (Braunisch et 
al. 2013). For example, mean temperature 
during wettest quarter could be important 
for plants in a Mediterranean climate; 
this predictor variable was chosen over 
mean annual temperature, with which it 
was highly correlated. For each model 
replicate, we chose new random samples 
for both training data (a randomly selected 
75% of the dataset) and testing data (the 
remaining 25%). Models were evalu-
ated using the Area Under the Curve of 
Receiver-Operating Characteristic (AUC) 
and a corrected AUC (cAUC) (Hijmans 
2012), a variant on AUC that helps to ac-

count for spatial bias in model evaluation. 
With the cAUC, a null model (nAUC) is 

created using random background testing 
points that are equidistant from training 

Table 2. Climate Change Vulnerability Index (CCVI) factors related to direct exposure, indirect exposure, sensitivity and adaptive capacity, and documented 
responses to climate change. See Young et al. (2011) for further descriptions of the factors. Text in parentheses indicates the minimum number of factors 
required per section to calculate an overall vulnerability score.

Table 3. Environmental variables used in the species distribution modeling.
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presences. When the nAUC is > 0.5, the 
AUC is corrected by reducing the AUC by 
nAUC minus 0.5.

For the future SDM, we evaluated 13 future 
climate model scenarios (CMS) according 
to the IPCC 4th Assessment (IPCC 2007) 
for the 2050s (mean 2040–mean 2069) 
and derived from seven global circula-
tion models (GCMs), CCCMA CGCM2, 
CCCMA CGCM3.1, CSIRO MK2, HC-
CPR HADCM3, INM CM3.0, MIROC3.2, 
and NIES 99. The combinations of GCM 
and emissions scenarios (ES), high (A2A), 
intermediate (A1B) and low (B2A), are 
outlined in Appendix 1. Each of the 10 
distribution model replicates was used 
to project future climatic suitability for 
each CMS. Results presented here (Table 
4; Appendix 2) are averages of all model 
results for each species. Although an 
updated IPCC climate assessment was 
recently published (IPCC 2014), we used 
the IPCC’s Fourth Assessment (2007) in 
order to maintain common datasets for 
both the CCVI and SDM.

Modeled Response to Climate 
Change

Suitable areas, present (t1) or future (t2), are 
those areas predicted to be suitable based 
on the methods described above. To quan-
tify each taxon’s predicted distributional 
response to climate change, we calculated 
the difference between the size of suitable 
area at t1 and t2 (change in suitable area), 
spatial overlap of suitable area at t1 and t2 
(suitable area overlap), and a third measure 
called a suitability score.

Change in suitable area measures the 
amount of contraction or expansion of the 
modeled distribution between t1 and t2. 
As the species modeled here have vastly 
different current suitable areas (50–21,000 
km2), the change in suitable area is calcu-
lated as a percentage to show relative gain 
or loss of suitable habitat area. Values for 
the change in suitable area range from 
−100% to >5,000%; −100% indicates a 
complete loss of suitable area and positive 
values indicate increases in suitable area. 
Change in suitable area was calculated 
as follows:

Change in suitable area = [(Areat2 − Areat1) 
/ Areat1] × 100

Suitable area overlap is the percentage of 
the suitable area that overlaps between t1 
and t2. A low percentage of suitable area 
overlap indicates that the suitable area is 
predicted to contract or shift in the future. 
Values range from 0 to 1, where 0 indicates 
no overlap in suitable area and 1 indicates 
that the entire area suitable at t1 will remain 
suitable at t2. Suitable area overlap was 
calculated as follows:

Suitable area overlap = [(overlapping 
Areat1 and Areat2) / Areat1] × 100

The suitability score represents the change 
in climatic suitability between the present 
and the future at known occurrence loca-
tions. The suitability score for all occur-
rences was calculated as the anomaly value 
of the predicted suitability at t1 subtracted 
from the predicted suitability at t2 propor-
tional to the suitability at t1. The mean of 
these values across all occurrences for each 
species and each model is the change in 
suitability for each species-model com-
bination. The suitability score used here 
represents the proportion of change from 
the suitability at t1, whereas the anomaly 
score from Anacker et al. (2013) represents 
only the change in suitability. Values are 
continuous and range from −1 to 1, with 
negative values indicating that the average 
suitability at the species’ present location is 
predicted to decrease in the future. The suit-
ability score was calculated as follows:

Suitability score = (Suitabilityt2 - Suitabili-
tyt1) / Suitabilityt1

Consistent with the vulnerability index 
presented by Maggini et al. (2014), the 
SDM score measures vulnerability based 
on multiple indicator variables and scales 
from 0 (species not vulnerable) to 1 (species 
highly vulnerable). The first two measures 
are the same as the calculations from Mag-
gini et al. (2014) functions 1 and 2. The 
first measure (Va) calculates the relative 
amount of change between t1 and t2.

Va = Areat1 / (Areat2 + Areat1)

The second measure (Vo) calculates the 

relative overlap of suitable area between t1 
and t2. The more disconnected the suitable 
area is between t1 and t2, the more difficult 
it is to colonize the future area.

Vo = 1 - Areat1/(Areat2 + Areat1)

The last indicator presented here (Vs) 
measures the relative difference for the suit-
ability between t1 and t2 and is created by 
scaling the suitability score from 0 to 1:

Vs = 1 - [(suitability score + 1) / 2]

The three indicators are averaged to provide 
the SDM score:

SDM score = [(Va + Vo) / 2 + Vs] / 2

Correspondence Between CCVI and 
SDM

To determine if there were significant rela-
tionships between CCVI scores and SDM 
measures, we used Spearman’s rank cor-
relation coefficient to compare a numerical 
CCVI score to the SDM score, suitable 
area percentage, and suitability score. The 
CCVI score is normally presented as a 
categorical scale ranging from Extremely 
Vulnerable to Increase Likely. Underly-
ing this categorical score is a numerical 
sum of subscores for each of the extrinsic 
and intrinsic species sensitivity factors 
weighted by exposure. Since both the 
CCVI and SDM incorporate information 
about exposure to projected climate change, 
we modified the CCVI numerical score to 
remove the weight assigned by exposure. 
We used the resulting “unweighted CCVI 
score” to compare the CCVI to the SDM 
using Spearman’s Rho.

Correspondence Between SDM, 
CCVI, Global Ranks, and ESA Listing 
Status

To evaluate whether traditional measures 
of extinction risk or legal status can predict 
vulnerability to climate change, we tested if 
the Global Rank (G1, G2, or G3) or Endan-
gered Species Act (ESA) status (listed as 
Threatened or Endangered/not listed) was 
related to change in suitable area, suitable 
area overlap, suitability score, and SDM 
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score for each species using Kruskal-Wallis 
Tests. Similarly, we evaluated if the Global 
Rank or ESA listing status was related to 
the categorical CCVI score using Fisher’s 
Exact Test.

RESULTS

CCVI Results

The CCVI indicated that the majority of 
the 34 vascular plants assessed are vulner-
able to climate change across their entire 
ranges within the conterminous United 
States (23% categorized as Extremely 
Vulnerable, 21% as Highly Vulnerable, and 
32% as Moderately Vulnerable) (Figure 1, 
Table 4). Eight plants were assessed as not 
vulnerable to climate change (Presumed 
Stable) by the CCVI. No taxa were scored 
as Increase Likely or Insufficient Evidence 
by the CCVI.

SDM Results

Results from the SDM also indicated that 
the majority of species evaluated were 
likely more vulnerable to climate change, 
evidenced by 24 of 34 species with an SDM 
score >0.5. For the SDM score, 15 taxa 
were between 0.75–1.00, 9 were between 
0.50–0.75, 7 were between 0.25–0.50, and 
3 were between 0.00–0.25 (Table 4). Of the 
16 species with a decrease in suitable area, 
15 had an overlap of <50% and all had a 
lower Suitability Score (Figure 1, Table 
4). Of the 18 species with an increase in 
suitable area, 9 had an overlap of >50% 
and 7 had a higher Suitability Score (Figure 
1, Table 4).

All SDM model iterations ran to conver-
gence. The cAUC values for 15 species 
were greater than 0.9, between 0.8 and 0.9 
for 9 species, and between 0.7 and 0.8 for 
7 species (Appendix 2). Three species had 
cAUC values less than 0.7.

Correspondence Between CCVI and 
SDM

The Spearman’s rank correlation coef-
ficient showed a significant positive re-
lationship between the unweighted CCVI 

score and the SDM score (rs = 0.308, P 
= 0.038). There were significant negative 
relationships between the unweighted 
CCVI score and suitable area percentage 
(rs = -0.307, P = 0.039) and the unweighted 
CCVI score and suitability score (rs = 
-0.318, P = 0.033). Even though these 
relationships are statistically significant, 
the Spearman’s correlation coefficient (rs) 
indicates weak correlations for each pair 
of factors. Means for the comparisons are 
presented in Appendix 3.

Relationship Between Global Rank 
or Listing Status and Vulnerability to 
Climate Change

Neither Global Rank nor ESA status were 
significantly related to suitable area, suit-
able area overlap, suitability score, SDM 
score, or unweighted numerical CCVI score 
(P < 0.05; data available upon request). 
Means for the comparisons are presented 
in Appendix 3.

DISCUSSION

CCVI and SDM as Complementary 
Methods

Here we synthesize the results of the CCVI 
and SDM in the context of conserving the 
taxa assessed in this study. By focusing on 
a few taxa of interest, we provide examples 
of how both the CCVI and SDM can be 
used to inform species conservation.

The CCVI provides a score that reflects a 
species’ predicted vulnerability to midcen-
tury climate change in the species’ present 
range within an assessment area. While 
the CCVI score is straightforward and 
descriptive, the value of the CCVI stems 
from the complex set of factors assessed to 
arrive at that score. These factors not only 
provide managers with useful information, 
but can also be important when interpret-
ing the SDM results. For example, Arcto-
mecon humilis (Figure 2A) was assessed 
as Extremely Vulnerable with the CCVI 
while the SDM score (0.325) indicates 
it is relatively less vulnerable (Figure 1). 
Arctomecon humilis is endemic to gyp-
siferous shale, one factor contributing to 
its vulnerable CCVI score. If the required 

soil type is not present in the predicted 
future suitable area, the species may not 
colonize or survive in the new area. Soil 
is not the only factor that could limit the 
future distribution of a species. The seeds 
of A. humilis are ant dispersed (Allphin et 
al. 1998) and, therefore, its rate of migra-
tion is likely slower than a species with 
wind or bird-dispersed seeds. The suitable 
area overlap is high (82%), so short term 
management should focus on monitoring 
existing populations for signs of climate 
stress. If monitoring data show that popu-
lations are declining, assisted migration 
into gypsiferous shale sites in the future 
suitable area could be considered due to 
the species’ limited dispersal ability. Life 
history traits, such as soil endemism and 
seed dispersal, provide important context 
to the range shifts predicted by modeling 
measures (Fordham et al. 2012). This 
example shows that the SDM approach 
alone could underestimate climate vul-
nerability since it does not consider life 
history traits. Therefore, examining both 
the CCVI and SDM in combination helps 
inform management plans.

Predicting vulnerability to climate change 
with both SDM and the CCVI can validate 
one another, decreasing uncertainty. An 
example of this is found with Pediocactus 
peeblesianus subsp. fickeiseniorum (Figure 
2B), an endemic to Kaibab limestone in 
northwestern Arizona and the Colorado 
Plateau that was recently listed as Endan-
gered under the ESA (USFWS 2013b). This 
taxon had a CCVI score of Extremely Vul-
nerable and a highly vulnerable SDM score 
of 0.896 (with a 94% predicted decrease in 
suitable area, no overlap, and a suitability 
score of -0.627) (Figure 1). Exacerbating 
this loss of suitability are natural barriers 
to dispersal like canyons and mountains. 
Although little is known about its disper-
sal mechanism, seed production is low 
and populations are disjunct, suggesting 
dispersal rates into new areas will be 
infrequent (NatureServe, unpubl. data). 
While reproduction has not been studied 
in detail for this taxon, other Pediocactus 
species require cross-pollination for seed 
production and are primarily pollinated by 
halictid bees (USFWS 2013b). Reliance on 
a specific pollinator or group of pollina-
tors increases a species’ vulnerability to 
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climate change because of possible future 
phenological mismatches between plant 
species and pollinators due to climate-
induced changes in timing of flowering 
and/or pollinator emergence (Gilman et al. 
2012). Given the small percentage of its 
present suitable area predicted to remain 

suitable by midcentury, the tiny fraction of 
overlap between the predicted future and 
present suitable areas, potential stochastic 
loss of small, disjunct populations, and 
the multiple limiting life history traits, P. 
peeblesianus subsp. fickeiseniorum is fac-
ing a cascade of threats and will likely not 

be sufficiently protected in the long term 
by the Critical Habitat that was recently 
designated (USFWS 2013a). This taxon 
will require protection in its present and 
predicted future locations. We recommend 
monitoring current populations, surveying 
for new populations, ex situ conservation 

Figure 1. Results of the Species Distribution Modeling (SDM) measures (y-axes) displayed by the Climate Change Vulnerability Index (CCVI) scores (columns). 
Shading indicates vulnerability calculated by SDM. Darker shading indicates increased vulnerability. Change in suitable area values greater than the positive 
y-axis limit (100%) is provided in the bar.
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Table 4. Results of Species Distribution Modeling (SDM) and Climate Change Vulnerability Index (CCVI) assessments of 34 taxa. CCVI scores (calculated 
with exposure data): Extremely Vulnerable (EV), Highly Vulnerable (HV), Moderately Vulnerable (MV), and Presumed Stable (PS).
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Figure 2. Mean models of 13 climate scenarios for predicted habitat gain (purple), overlap between predicted current and future habitat (green), and pre-
dicted habitat loss (red) by midcentury for: (A) Arctomecon humilis, (B) Pediocactus peeblesianus subsp. fickeiseniorum, (C) Sclerocactus glaucus, and (D) 
Streptanthus brachiatus subsp. brachiatus. Photo credits: (A) Barry C. Johnston and the US Forest Service, (B, C) Shannon Still and Nick Jensen, (D) © Rick 
York and California Native Plant Society.

via seed banking, and possibly assisted 
migration in the future.

The CCVI and SDM results can also 
identify taxa that are not threatened by 
climate change. Although Sclerocactus 

glaucus (Figure 2C) is listed as Threat-
ened under the US Endangered Species 
List (USFWS 2010), both the CCVI and 
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SDM predict that S. glaucus will not be 
vulnerable to climate change by midcen-
tury (Figure 1). Endemic to four counties 
in western Colorado, this small (3–12 
cm), globe-shaped cactus is predicted to 
experience a substantial increase in the 
size of its suitable area under projected 
climate conditions by midcentury. With 
a predicted suitable area overlap of more 
than 67%, a suitability score of almost 
0.4 (Figure 1), and no known limitations 
to dispersal, S. glaucus is predicted to 
migrate into favorable microhabitats in 
response to climate change. Therefore, we 
recommend regularly surveying this spe-
cies’ present and predicted future suitable 
area to accurately document migration and 
to protect populations as described in the 
Recovery Outline (USFWS 2010).

In some cases the CCVI and SDM pro-
duce different predictions. Streptanthus 
brachiatus subsp. brachiatus is assessed as 
Presumed Stable using the CCVI score but 
is predicted to experience a large decrease 
in both suitable area size and suitability in 
the future (Figure 2D) leading to a high 
SDM score (0.797) (Figure 1). Although 
the CCVI assessment indicates that S. 
brachiatus subsp. brachiatus occurs on 
serpentine barrens (Safford 2005) and that 
urban development may act as a barrier 
to dispersal, this taxon occurs in northern 
California and is not predicted to experi-
ence extreme changes in temperature or 
moisture according to the climate projec-
tions available in the ClimateWizard tool 
(2011a, b). A species with increased sen-
sitivity can still be assessed as Presumed 
Stable by the CCVI because sensitivity 
leads to increased vulnerability assessment 
only if a species is predicted to be exposed 
to changing climatic conditions. The differ-
ence in the conclusions between the CCVI 
and SDM likely hinge on the different 
levels of spatial resolution between the 
climatic data sources used. The resolution 
of ClimateWizard data used by the CCVI 
is coarser (~12 km) than the resolution of 
the SDM climate predictor data presented 
here (~1 km) such that about 244 SDM 
cells would fit into one ClimateWizard 
cell. Finer scale resolution has the ability to 
capture more local differences when areas 
are topographically heterogeneous, as is the 
case in the Coastal Range of California. 

When not weighted by exposure, the CCVI 
score changes from Presumed Stable to 
Highly Vulnerable, a jump of two vulner-
ability categories. In all of our examples, 
using combined vulnerability assessments 
helps temper the results and shows how the 
assessments can be influenced by the choice 
and resolution of climate predictors.

Management Implications of 
Vulnerability Assessment Results

Using climate change vulnerability assess-
ments in conjunction with other measures 
of extinction risk like Global Ranks and 
Red List Assessments greatly improve 
species conservation efforts. Rare species 
can have narrow ecological niches, rare 
habitat types, small populations, restricted 
geographic ranges (Rabinowitz 1981), 
and threats other than climate change. 
Likewise, traditional measures of extinc-
tion risk do not consider vulnerability to 
climate change. Species considered Secure 
or Apparently Secure from extinction risk 
(NatureServe G4 and G5 ranks) may be 
vulnerable to climate change (see Treher 
et al. 2012 for examples). Results from 
this study demonstrate that considering 
climate change impacts may influence 
conservation prioritization and subsequent 
management approaches. For example, 
Streptanthus brachiatus subsp. brachiatus, 
which has the highest category of extinction 
risk (G1), was assessed as not vulnerable 
to climate change according to the CCVI 
score, but was considered highly vulner-
able using SDM.

While existing conservation plans for some 
rare taxa may be thorough, these plans 
typically consider current or past threats 
in a taxon’s current or historic range, but 
omit future threats. Considering threats 
from climate change in a taxon’s current 
and future range may require different 
management strategies and the inclusion 
of new landowners and stakeholders to 
protect a taxon from extinction. In addi-
tion, targeted and increased frequency of 
monitoring might be necessary to detect 
the changes in distribution. For example, 
it may be necessary to monitor for popu-
lation and environmental changes at the 
leading and trailing edges of the range as 

suggested for Pediocactus sileri (Havens 
et al. 2015, this issue). Land managers 
should consider using climate change 
vulnerability assessments in addition to 
current conservation status to prioritize 
species for management.

Limitations of Vulnerability 
Assessments

Recognizing the limitations of each of these 
two vulnerability assessment methods is an 
important step in developing management 
plans to conserve rare plant taxa. The big-
gest challenge in assessing plant species is 
the lack of available occurrence and life 
history data. Modeling rare species can 
be difficult because SDM results are less 
reliable for species with few populations 
(Elith et al. 2006; Hernandez et al. 2006; 
Wisz et al. 2008). Three species in our 
study (Astragalus micromerius, Panicum 
mojavense, and Phacelia anelsonii) had 
cAUC values (an indication of model 
fit) less than 0.7. The low cAUC values 
indicate that the models are less robust 
and not much better than random (0.5). 
All three species were modeled using be-
tween 8 and 11 occurrences, so the SDM 
results for these species are less certain. 
Land managers should be aware that a 
low score for model evaluation indicates 
a less reliable model, and in these cases, 
the CCVI may provide more information. 
While there is no set number for minimum 
number of occurrences used in modeling, 
it is good practice to use caution when 
modeling with fewer than 25 occurrences, 
as model variation is greater (Hernandez et 
al. 2006). With fewer than 10 occurrences, 
SDM should be considered as supporting 
evidence rather than as the primary vulner-
ability assessment.

Conducting and interpreting species distri-
bution models requires a clear understand-
ing of the assumptions and limitations in 
the methods. Selecting different input data 
for modeling, including environmental 
variables, global circulation models, emis-
sion scenarios, and threshold methods can 
result in drastically different predictions 
for some taxa, especially those with few 
occurrences. For example, some models 
may predict a 100% increase in suitable 
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area while another model may predict a 
50% loss in suitable area for the same 
taxon. Using the appropriate variables and 
running different combinations of climate 
models, predictor variables, and model al-
gorithms can help decrease the uncertainty 
of an assessment.

The biggest challenge when using the 
CCVI or other trait-based assessments of 
climate change vulnerability is the lack 
of available information to evaluate life 
history characteristics (Garcia et al. 2014). 
Species-specific research on pollinators and 
dispersal mechanism are not commonly 
available and are frequently inferred based 
on closely related species and floral and 
fruit morphology. In this study, only 16 of 
34 taxa had information on genetic vari-
ability and only one taxon had information 
on phenological responses to changes in 
the environment. Additionally, in an as-
sessment of western US plants, only 73 out 
of 391 taxa had sufficient information on 
genetic variability, and a mere 13 of 391 
taxa had sufficient information on phenol-
ogy to assign scores to the related factors 
(Treher et al. 2012). The availability of 
life history and spatial information varies 
considerably among taxonomic groups. 
For example, range maps and life history 
information are readily available for most 
birds and mammals in the world. However, 
only a small fraction of plants worldwide 
have been thoroughly assessed and even 
fewer have digitized range maps avail-
able. Life history information is not only 
necessary for robust CCVI assessments, 
but is also essential to the interpreta-
tion of modeling results and subsequent 
conservation measures. Knowing specific 
tolerance levels across abiotic and biotic 
traits can help tailor modeling parameters 
to each species.

CONCLUSIONS

The results of the CCVI and SDM can 
enhance the climate adaptation planning 
process and efforts to develop management 
strategies to prevent the loss of biodiversity 
as a result of climate change (Cross et al. 
2012). For example, land managers can 
target vulnerable species and geographic 
areas for seed banking and for more in-

tensive monitoring. Managers could also 
attempt to minimize non-climate related 
threats to vulnerable populations, such as 
invasive species, in an attempt to make the 
populations more robust and resilient to 
climate change. If necessary, land manag-
ers could consider assisted migration using 
SDM to guide placement of new popula-
tions in more suitable areas. While the 
two methods for vulnerability assessment 
can support and complement each other, 
in some cases one method reveals vulner-
ability or sensitivity where the other does 
not. The SDM can detect finer level changes 
in climatic requirements that the CCVI is 
unable to detect. Likewise, the CCVI can 
reveal life history traits that could limit 
the species’ adaptive capacity to migrate 
and persist in the SDM’s predicted suitable 
area. While neither the CCVI nor SDM 
can assess the vulnerability of all species 
in all situations, using the two approaches 
in combination provides complementary 
results by evaluating different measures of 
climate vulnerability. The combined results 
can be used to improve decision-making 
for managing species of concern.
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Appendix 1. Global circulation model and emission scenario combinations used in SDM analyses.
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Appendix 2. SDM model fitting results. All numeric values are the average of 13 total models for each species (13 GCM-SRES).
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Appendix 3. Mean ± standard deviation for the individual and combined Species Distribution Modeling values as classified by Global Rank, Climate 
Change Vulnerability Index scores unweighted by climate exposure (CCVI unwtd), weighted by climate exposure (CCVI wtd), and by Endangered Species 
Act Status (listed as Threatened, Endangered, or unlisted).
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