

MÉTODOS CROMATOGRÁFICOS:

- I. Exclusión molecular
- 2. Intercambio iónico
 3. Afinidad SSN

Propiedades de una proteína que son útiles para su purificación por cromatografía

- Peso molecular
- Carga iónica
- Hidrofobicidad
- Unión específica a ligantes

Pasos para purificar a una proteína por cromatografía en columna:

Empacar la columna

Equilibrar la columna

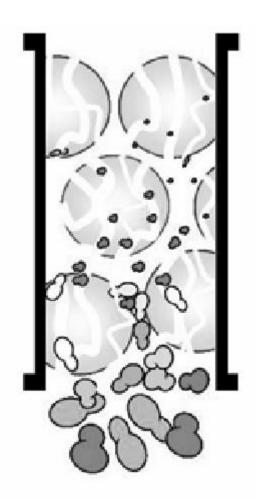
Aplicar la muestra

Lavar la columna (no en todos los casos)

Eluir la muestra

Fraccionar el eluato

Detectar y cuantificar la proteína de interés


EXCLUSIÓN MOLECULAR O FILTRACIÓN EN GEL

FUNDAMENTO TEÓRICO

- La cromatografía de exclusión o filtración en gel es una clase de cromatografía sólido-líquido que permite la separación de moléculas en función de su TAMAÑO.
- En este tipo de cromatografía la fase estacionaria es un gel. El gel está constituido por partículas esféricas que tienen **POROS** de un determinado tamaño.

CROMATOGRAFÍA DE FILTRACIÓN EN GEL

- Las moléculas de tamaño pequeño difunden a través de los poros de las partículas del gel y por ello son retardadas en su paso por la columna.
- Las moléculas grandes no entran en los poros de las partículas del gel, eluyen primero.

Soportes que pueden ser de material variado como:

Inorgánicos

•Sílica Porosa

•Vidrio de Poro controlado

•Hidroxiapatita

Polímeros sintéticos

Poliacrilamida (Biogel P)

Polimetacrilato (Spheron)

Poliestireno

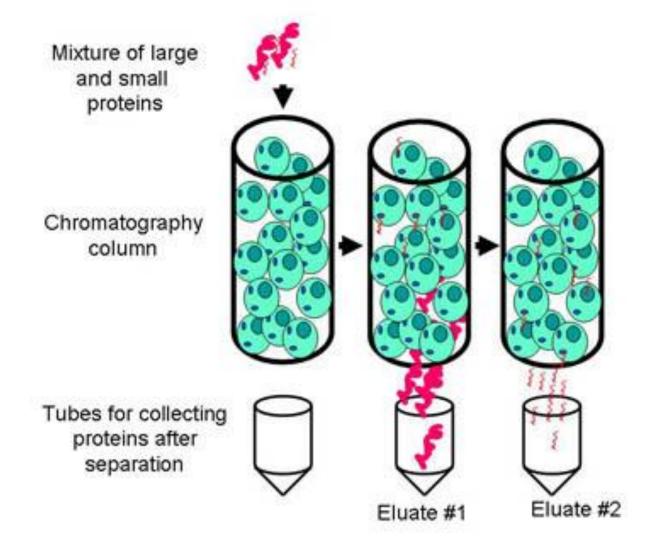
Polisacáridos

Celulosa (Cellulafine, Sephacel)

Dextrano (Sephadex)

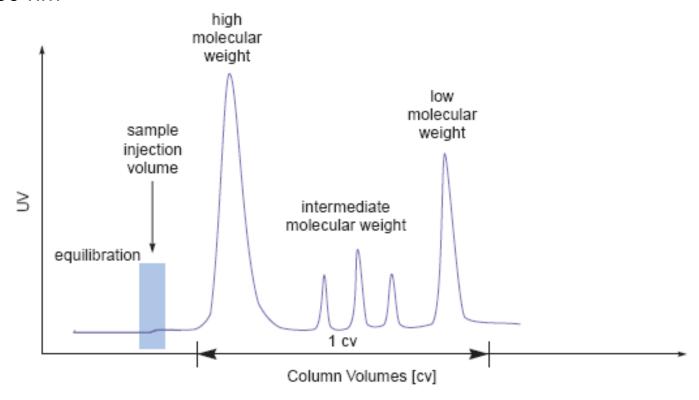
Agarosa (Sepharosa, Superosa, Ultragel A y BioGel)

Compuestos Polímero orgánico – polisacárido


- •Poli N,N' .- bisacrialmida- dentrano (Sephacryl)
- •Agarosa dextrano (Superdex)
- •Agarosa poliacrilamida (Ultradex A A)

Propiedades de algunos geles de Sephadex (gel dextrano)

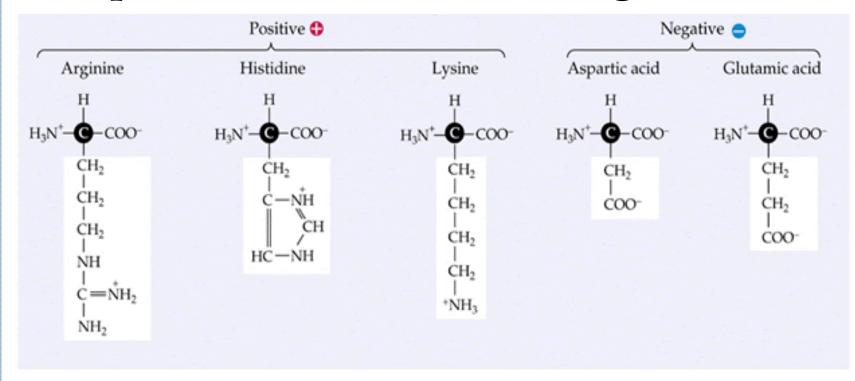
_		'			<u>, </u>
		Peso molecular, límit	es de fraccionamiento	agua retenida	vol. de gel hidratado
o[Tipo	polisacáridos	péptidos/proteínas	(g/g gel seco)	(ml/g gel seco)
	G10	hasta 700	hasta 700	1.0	2
	G15	hasta 1 500	hasta 1 500	1.5	3
	G25	100 - 5 000	1 000 - 5 000	2.5	5
	G50	500 - 10 000	1 500 - 30 000	5.0	10
-	G75	1 000 - 50 000	3 000 - 80 000	7.5	12-15
	G100	1 000 - 100 000	4 000 - 150 000	10.0	15-20
_	G150	1 000 - 150 000	5 000 - 400 000	15.0	20-30
	G200	1 000 - 200 000	5 000 - 800 000	20.0	30-40


DESALADO

Cromatografía Filtración en gel

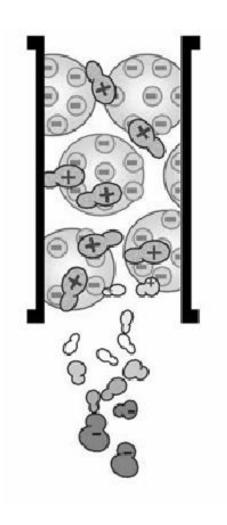
Cromatograma de monitoreo de la eficiencia de la purificación

Abs 280 nm


Aplicaciones de la filtración en gel

- > separación de sustancias de distintos pesos moleculares
- determinación de pesos moleculares de proteínas
- Desalar proteínas

CROMATOGRAFÍA DE INTERCAMBIO IÓNICO


- ➤ Separación que se basa en la carga eléctrica de las proteínas.
- > Se aplica en una matriz de carga opuesta a la de la proteína que se quiere purificar.
- > Se debe tener un pH determinado.
- Las proteínas se eluyen de menor a mayor fuerza de unión.

Las proteínas son moléculas cargadas

- Suma de las cargas de las cadenas laterales de los aminoácidos
- Dependen de: pH y pKa; ambiente que los rodea
- > pH solución> pI= proteína carga(-) por desprotonación.
- ➤ pH solución< pI= proteína carga(+) por protonación
- > pH solución =pI =proteína carga(0) precipitado insoluble

Principio de la cromatografía

- Las proteínas quedarán retenidas sólo si tienen carga opuesta a la matriz.
- Si se tienen proteínas retenidas, su tiempo de retención será mayor a mayor carga.

Factores que afectan la retención

- > Fuerza iónica
- > pH (funciona muy bien para ácidos y bases débiles)
- Modificadores orgánicos

Intercambio Aniónico (moléculas a separar cargadas negativamente)

Resinas Catiónicas

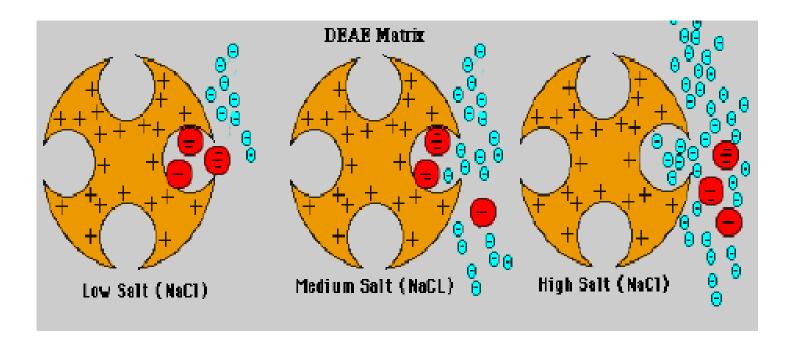

Dietil **amino** etilcelulosa o **DEAE** (débil)

Amina Cuaternarias- CH_2 - $N^+(CH_3)$ Q (fuertes)

<u>Intercambio Catiónico (moléculas a separar cargadas positivamente)</u>

Resinas Aniónicas Carboximetil -O-CH₂COO⁽⁻⁾ (CM) débil

Sulfometil $-CH_2-SO_3^{(-)}$ **S** (fuerte)



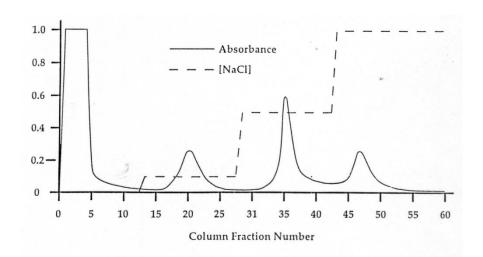
	·	Commerc	lally Available foil	Exchangers		
Supplier	Name	Type	Matrix	Loading Capacity	Flow Rate	pН
-				mg/ml	cm/min*	Stability
Pharmacia	DEAE Sepharose Fast	Weak	X-linked Agarose	3-110	12.5	1-14
	Flow	anion				
* **	DEAE Sepharose CL-6B	,,	**	2-170	1.7	2-14
**	DEAE Sephacel	**	Beaded Cellulose	10-160	0.17	2-12
,,,	DEAE Sephadex A-50	,,	X-linked Dextran	2-110		2-9
BioSepra	DEAE Trisacryl M	,,	Synth. Polymer	80-90	3	1-11
Bio-Rad	DEAE Bio-Gel A	**	X-linked Agarose	45	>0.3	2-9.5
Pharmacia	CM Sepharose Fast Flow	Weak	,,	15-50	12.5	2-14
		cation				
,,	CM Sepharose CL-6B	**	**	10-120	2	2-14
BioSepra	CM Trisacryl M	"	Synth. Polymer	90-100	3	1-11
Bio-Rad	Bio-Rex 70	100 PM	30		0.4-15	5-14
99	CM Bio-Gel A	32	X-linked Agarose	45	>0.3	4.5-10
Pharmacia	CM Sephadex C-50	100 No. 4	X-linked Dextran	7-140		6-10
22	O Sepharose Past Flow	Strong	X-linked Agarose	3-120	6.7-11.7	2-12
		anion				
38	QAE Sephadex A-50	9.9	X-linked Dextran	1.2-80	•	2-10
\$9	SP Sepharose Fast Flow	Strong	X-linked Agarose	60	12.5	3-14
		cation				
ъ	SP Sephadex C-50	**	X-linked Dextran	8-110		2-10
BioSepra	SP Trisacryl M	- 5% .	Synth. Polymer	1(10)	6	1-11

^{*} cm/min = ml/min ocm² column cross-sectional area

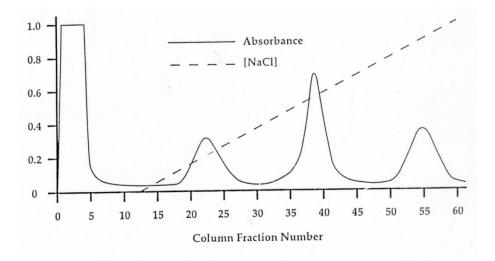
Factores para eluir

➤ Aumentar concentración de NaCl u otra sal en el buffer eluyente.

Cambio de pH


lones comúnmente usados

Counter-ion Activity Series


For anion Ag⁺ > (binds more tightly than) Cs⁺ > K⁺ > NH₄⁺ > Na⁺ > exchange: $H^+ > Li^+$

For cation $I^- > NO_3^- > PO_4^{3-} > CN^- > HSO_3^- > CI^- > HCO_3^- > HCOO^$ exchange: $> CH_3COO^- > OH^- > F^-$

Gradiente de NaCl

En pasos

Lineal

Usos:

- > Se utiliza principalmente para separar una proteína de otros contaminantes siempre que las diferencias entre las cargas sean suficientemente grandes.
- Separa aminoácidos, péptidos, nucleótidos y generalmente compuestos iónicos.
- En laboratorios clínicos se utiliza para separación de hemoglobina, isoenzimas y esteroides.

Cromatografía de afinidad

Se basa en la afinidad biológica especifica de cada proteína hacia un ligando en particular.

Esta puede ser:

Proteína – Ligando

Enzima – Sustrato

Receptor – Hormona

Anticuerpo - Antígeno

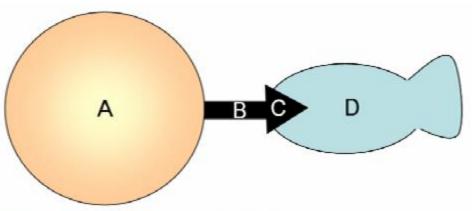
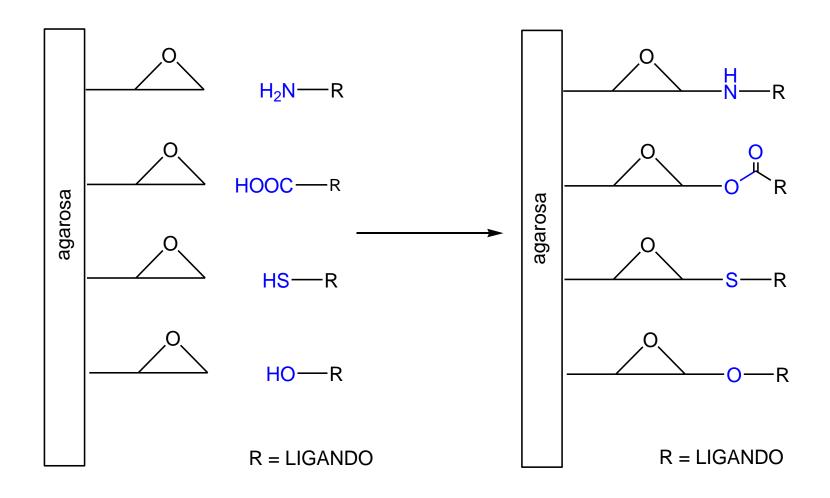



Figure 6. An affinity matrix binding to its target protein

A. The bead. B. The Spacer arm. C. The ligand. D. The target protein.

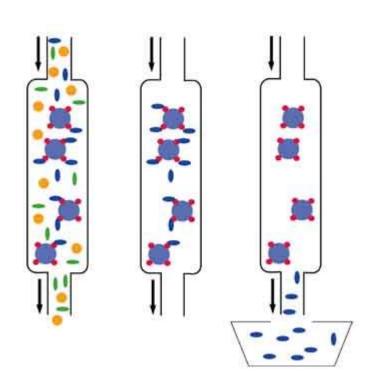
Soportes o matrices

- Químicamente inerte.
- Tener alta porosidad.
- Gran número de grupos funcionales capaces de formar enlaces covalentes con los ligandos.
- El más usado: Agarosa, también se usan polímeros de acrilamida y sílices CPG.

Ligandos

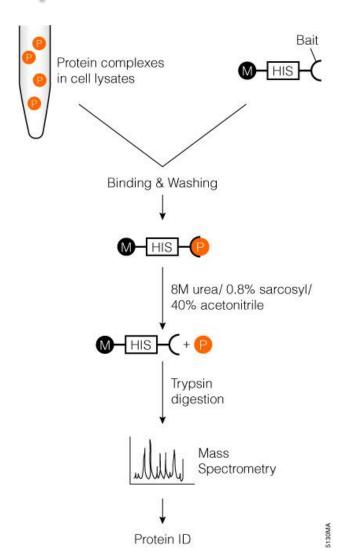
- > Unión covalente estable con el gel de agarosa
- > Alta capacidad para atrapar a la proteína en cuestión.
- ➤ Pueden ser enzimas, anticuerpos, grupos químicos específicos.
- ➤ Si el ligando es una enzima evitar condiciones que la activen catalíticamente.

Ventajas


- Capacidad de explotar sus propiedades bioquímicas (únicas).
- > Se evitan varios pasos de purificación que con otras técnicas clásicas.
- Normalmente se obtienen altos rendimientos y alta actividad especifica.
- > Se pueden separar proteínas, enzimas, anticuerpos, membranas, receptores, vitaminas, antígenos incluso células enteras.

Esquema de purificación

- 1. El ligando se une covalentemente a una matriz.
- 2. La mezcla de proteínas se hace pasar por la matriz.
- 3. Se une sólo la que reconoce al ligando (unión no covalente)
- 4. Las demás proteínas y el resto se eluye.
- 5. Se desprende la proteína por adición de sal, pH, temperatura o exceso de ligando libre


Procedimiento de purificación

 Para eluir a la proteína se puede usar a su ligando natural

Procedimiento de purificación

- Para proteínas recombinantes que contienen una secuencia marcadora (extensión de His)
- Se usa una columna con un soporte unido a metal
- Se desplaza la proteína por la adición de imidazol, solventes, EDTA.....

Conclusiones

- > Técnica muy específica
- > Altos rendimientos y eficiencia
- > Purificación eficiente con menos pasos posibles
- Ampliamente usada en bioquímica para medicina y farmacia

TAREA: entrega 26 de febrero

Se presenta la siguiente mezcla de proteínas

Proteína	Peso Molecular (Da)	Punto Isoeléctrico
Tripsina	34.000	8.0
Pepsina	35.500	2.75-3.0
Gelatinas	100.000	4.8-4.85
Insulina	40.900	5.30-5.35

Con la información que cuenta:

1. Prediga (dibujando) los perfiles de elución bajo las siguientes operaciones cromatográficas:

Intercambio Aniónico a pH 6.0 Intercambio Catiónico a pH 6.0 Filtración por geles

2. Plantea 2 procesos óptimos para purificar insulina de la mezcla antes señalada

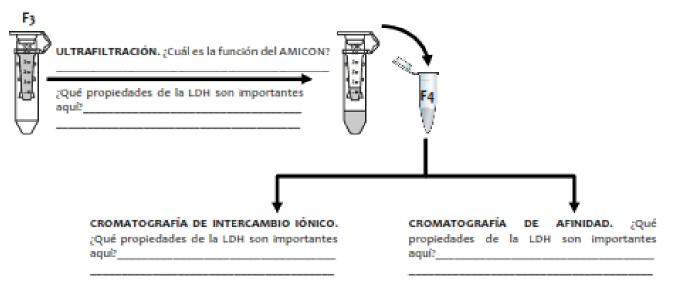
(Indique tipo de columna y el pH de trabajo en el caso de ser necesario).

Indique en cada paso que contaminante(s) se estaría eliminando. Considere:

- i) el siguiente ranking de eficiencias
 Afinidad> Intercambio Iónico, HIC >Filtración por gel
- ii) Adicionalmente considerando que cuenta con las siguientes matrices

Q-sefarosa

SP-sefarosa

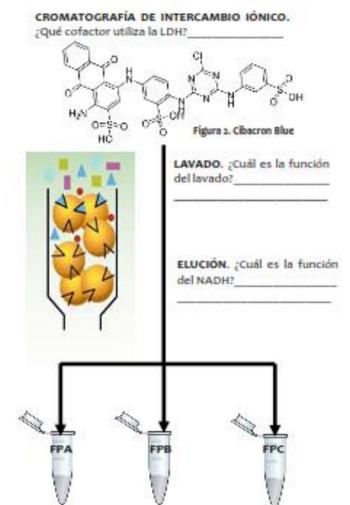

Fenil-sefarosa

Sephadex G-100

Proteína M (Específica para Insulina)

Purificación de la LDH de músculo esquelético de Gallus gallus

Parte II: Desalado y cromatografías



Buffer	Función	
C: 20 mM Tris/HCl pH=0.5		
D: 20 mM Tris/HCl pH=0.5 y 1 M de NaCl		

Buffer	Función
A: 20 mM Tris/HCl pH=8.0	
B: 20 mM Tris/HCl pH=0.5 y 1 mM de NADH	

Consideraciones para las cromatografías

CROMATOGRAFÍA DE INTERCAMBIO IÓNICO. ¿Cuál es el pt de la LDH? LAVADO. ¿Cuál es la función del lavado? Resina ELUCIÓN. ¿Cuál es la función del NaCl?

