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Why Gaussian ?

Some good reasons for using Gaussian Random Fields (RF)
Fully characterized with two moments
Likelihood accessible
Conditional expectation is linear
Stability under linear combinations, marginalization and
conditioning
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But data are rarely Gaussian

Environmental / climatic data are often
positive: grade, composition, ...
in an interval: humidity, ...
skewed: pollution, temperature, ...
long tailed: rain, grade, ...

Need to go beyond the Gaussian world
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Humidity

Humidity per season (as a %), in Toulouse (France)
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4 climatic variables

Tn, Tx, R and W in Toulouse, summer and autumn
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Rain in Toulouse (autumn)

Histogram, cpf, and quantity above threshold

Toulouse − Autumn : Rain > 0.51  ;  m= 2.2 std= 2
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Leaving the Gaussian world, but not to far...

There is a need for
Non Gaussian RF, but which model ?
With good mathematical properties, i.e. easy to handle

⇒ playing with Gaussian RFs
Tranforming : transformed multi- and bi- Gaussian RFs
Thresholding : Excursion sets
Truncating : Truncated Gaussian and transformed Gaussian RFs
Conditioning : Skew-normal RFs
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General Outline

X Some reminders on Gaussian RFs
X Rfs with Gaussian marginals that are not Gaussian RFs
X Transformed multi- and bi- Gaussian RFs
X Quite specific tranformation: thresholding
→ Random Sets

X Truncated (transformed) Gaussian RFs
X Skew-normal RFs

Illustrated with applications !
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Some reminders

Gaussian RF
A RF is (multi-) Gaussian if all its finite-dimensional distributions are
multivariate Gaussian.

Characterization
A stationary Gaussian RF is characterized by its expectation and its
covariance function, C(h)

Bochner’s theorem
The covariance function is semi positive definite function; it is the
Fourier Transform of a positive bounded measure.

C(h) =

∫
e2πı〈u,h〉F (du), with

∫
F (du) <∞
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Some reminders

Regularity of a stationary RF

X A RF is mean-squared continuous iif its covariance function is
continuous at h = 0

X A RF is mean-squared differentiable everywhere iif its covariance
function has a second derivative at h = 0

C(h) = e−||h||/a C(h) = e−||h||
2/a2
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Non Gaussian Fields with Gaussian marginals

Same N (0,1) pdf; same exponential covariance
[Garrigues, Allard and Baret (2007)]

Gaussian RF Poisson Line RF Mixture
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Poisson tesselation

Recall

A hyper-plance in Rd is specified by a direction α ∈ S+
d and

a location p ∈ R

H(α,p) = {x ∈ Rd |< x , α >= p}.

H

0

a

p
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Poisson tesselation

Definition 1
A network of Poisson hyperplanes is parametrized by a Poisson
process in S+

d × R. They define Poisson cells.

Definition 2

Consider a Poisson hyperplane process on Rd . To each Poisson cell,
associate an independent random variable. This defines a Poisson
hyperplane RF on Rd .
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Covariance of Poisson cell models

Proposition

The covariance function of a Poisson hyperplane RF is

C(h) = σ2e−a||h|| = σ2ρ(h), h ∈ Rd

Sketch of the proof: The intersection of the Poisson hyperplanes
with any line defines a 1D Poisson point process with intensity, say a.

Example

Poisson lines in R2 parametrized by a Poisson process in [0, π[×R
and i.i.d. N (µ, σ2) Gaussian random variables define a marginal
Gaussian Poisson cell model.

16 / 60



Introduction
Non Gaussian Fields with Gaussian marginals

Transformed Random Fields
Excursion sets of Gaussian Random Fields

Random Sets
Truncated Gaussian Random Fields

Skew-Normal Random Fields

Illustration
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Illustration (ctd)

Use variogram of order 1 (madogram)

γ1(h) = 0.5E [|Y (x + h)− Y (x)|]

Gaussian RF: Let G ∼ N (0, τ 2). We know E [|G|] =
√

2τ 2/π. Then,

γ1(h) ∝
√
γ(h)

since Y (x + h)− Y (x) ∼ N (0, 2γ(h)).

Poisson RF: Consider A = {w ,w + h ∈ same cell}: P(Ā) = 1− ρ(h) = γ(h).

E [|Y (x + h)− Y (x)| | A] = 0 and E [|Y (x + h)− Y (x)| | Ā] ∝ σ2

Thus γ1(h) ∝ γ(h).
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Mixture RF:

Define
Ym(x) = σ

(
wYG(x) +

√
1− w2ZP(x)

)
+ µ

where ZG(·) and ZP(·) are (0,1) Gaussian and Poisson RF with same
exponential covariance.

If γG(h) = γP(h) = γ(h), then γ(h) is the variogram of Ym(·) for all w .
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Mixture RF:

Proposition

Garrigues, Allard and Baret (2007) obtain

γ1(h) =
σ

π

[
w(1− γ2,P(h))

√
γ2,G(h)) + γ2,P(h)

√
w2γ2,G(h) + (1− w2)

]

Proof: Condition on A; use independence of ZP in different cells
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In summary
Relationship between first and second order variograms:

Gaussian RF: quadratic
Poisson RF: linear
Mixture RF: intermediate
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Application
Modeling remote sensing images (NDVI)
Fit simultaneously first and second order variograms
w is a degree of tesselation of landscape (agriculture)
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General framework

Assume Y (x) is a (0,1, ρ(h)) stationary Gaussian RF on a domain D.
Let φ(·) be a one-to-one mapping. Then consider,

Z (x) = φ(Y (x)), x ∈ D.

Transform the data: Yi = φ−1(Z (xi ))

Use all nice Gaussian properties
Back-transform predictions/simulations with φ
Pay attention to non linearities in case of prediction!

Two theoretical frameworks:
1 Transformed Multi-Gaussian Random Field
2 Transformed Bi-Gaussian Random Field
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Lognormal Random Fields

Definition

Use an exponential function for φ(y)

Z (x) = eµ+σY (x), x ∈ D

is said to be a lognormal RF.

Using the general result E [eaY ] = ea2/2 for Y ∼ N (0,1), leads to:

E [Z (x)] = m = eµeσ
2/2

Cov(Z (x),Z (x + h)) = C(h) = m2
(

eσ
2ρ(h) − 1

)
Var[Z (x)] = C(0) = m2

(
eσ

2
− 1
)
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Lognormal Random Fields

Denoting γ(h) = 1− ρ(h) the variogram of Y (·) and Γ(h) the
variogram of Z (·),

Γ(h) = m2eσ
2
(1− e−σ

2γ(h))

What if Y (·) is not 2nd order stationary ? Matheron (1974)

µ and σ2 no longer exist
need to condition on a domain V ⊃ D
there exists mV and AV such that, for x , y ∈ V .

E [Y (x)] = mV

Cov(Y (x),Y (y)) = AV − γ(x − y),
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Lognormal Random Fields

Localy stationary log-normal RF (Matheron, 1974)

Let Y (x) ∼ IRF(γ(h)), conditioned on V as above. Then Z (x) is a
locally (i.e. on V ) stationary lognormal RF with

E [Z (x)] = MV = emv eAV/2

Γ(h) = M2
V eAV

(
1− e−γ(h)

)
[See also Schoenberg’s theorem]

Exponential flavour of Γ(h)

Finite range on V !!
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Using lognormal Random Fields

Data Zi = Z (xi ) > 0, i ∈ I = {1, . . . ,n}
Goal : predicting Z0 at an unsampled location

1 Compute log-data Yi = ln Zi , i ∈ I
2 Estimate the varigram γ(·) of Y (·)
3 Predict Y ∗ = E [Y0 | (Yi )i∈I ] =

∑
i∈I wiYi (Gaussianity !)

4 Back transform Z ∗ = eY∗+
∑

i∈I
∑

j∈I wi wjγij/2

Note: used as driving intensity for non homogeneous point processes
[Møller, Syversveen, Waagepetersen, 1998]
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Box-Cox transformation

For positive values Z (x)

Box-Cox transformation

φ−1
λ (z) =

zλ − 1
λ

if λ 6= 0; φ−1
0 (z) = ln z,

Similar derivations; need to use

E [(µ+ σY )p] = σp{−ı
√

2 sgn(µ)}pU
(
−1

2
p,

1
2
,−1

2
(µ/σ)2

)
where U is a Kummer’s confluent hypergeometric function
Beware of bias correction !
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Introduction

X n-multivariate gaussianity for any n is a strong assumption, which
can not be checked in practice — not speaking of testing

X Bi-variate gaussianity is a weaker condition, that can be checked
to a certain extent

Is there a less demanding theory ?

Decomposition with Hermite polynomials
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Hermite polynomials

Denote g(y) and G(y) the N (0,1) pdf and cpf.
Consider the space Hilbert space L2(G) of functions φ(·) such
that

∫
φ2(y)g(y)dy <∞

Consider the Hermite polynomials Hn

Hn(y)g(y) =
dn

dyng(y)
= yHn−1(y)− (n − 1)Hn−2(y),

with H0(y) = 1 and H1(y) = −y .
In addition, for k ≥ 1, E [Hk (Y )] = 0, Var[Hk (Y )] = k !
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Hermite polynomials

The normalized Hermite polynomials χn(y) = Hn(y)/
√

n! form an
othonormal basis of L2(G) w.r.t. gaussian density, i.e.∫ ∞

−∞
χn(y)χm(y)g(y)dy = δnm ⇔ E [χn(Y )χm(Y )] = δnm

Let φ ∈ L2(G). Then,

Z = φ(Y ) =
∞∑

k=0

ϕkχk (Y ) with ϕk = E [φ(Y )χk (Y )]

Thus E [φ(Y )] = ϕ0; Var[φ(Y )] =
∑∞

k=1 ϕ
2
k
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Hermite polynomials (ctd)

For a Bi-Gaussian pair U,V

gρ(u, v) =
∞∑

k=0

ρkχk (u)χk (v)g(u)g(v)

For a Bi-Gaussian vector (Y (x),Y (x + h)) with correlation ρ(h).

Cov[φ(Y (x)), φ(Y (x + h))] =
∞∑

k=1

ϕ2
kρ

k (h)
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Example 1

φ(Y ) = eµ+σY . Then,

ϕk = (−1)k eµ+σ2/2 σk
√

k !
, k ≥ 0

i.e.

E [Z (x)] = ϕ0 = eµ+σ2/2 = m and CovZ (h) = m2(eσ
2ρ(h) − 1)

identically to multi-gaussian RF.
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Example 2

Zy (x) = φ(Y (x)) = 1Y (x)≥y . Then,

ϕk = −g(y)
χk−1(y)√

k
, k ≥ 1

and ϕ0 = 1−G(y). Hence

CovZy (h) = g(y)2
∞∑

k=1

χ2
k−1

k
ρ(h)k .
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Checking for bi-gaussianity

X Transform data Z (xi ) into Gaussian scores Y (xi )

X Crossplots Y (x),Y (x + h) should be elliptical
X γY ,1(h) should be proportional to

√
γY ,2(h)

X Denote γY ,2(h) a variogram fitted on Y (·). Then,

γZ ,2(h) =
∑

k

ϕ2
k{1− γY ,2(h)}2

should fit on Z (·)
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Disjunctive Kriging of Z (x0)

X Estimate ϕk from empirical cpf
X For each k , do (simple) Kriging of χk (Y (x0))∗

X φ(Y (x0))∗ =
∑

k ϕkχk (Y (x0))∗

X σ2
DK =

∑
k ϕkσ

2
k with σ2

k = Var[χk (Y (x0))∗ − χk (Y (x0))]

37 / 60



Introduction
Non Gaussian Fields with Gaussian marginals

Transformed Random Fields
Excursion sets of Gaussian Random Fields

Random Sets
Truncated Gaussian Random Fields

Skew-Normal Random Fields

Outline

1 Introduction
2 Non Gaussian Fields with Gaussian marginals
3 Transformed Random Fields

Introduction
Transformed Multigaussian Random Fields
Transformed Bi-Gaussian Random Fields

4 Excursion sets of Gaussian Random Fields
5 Random Sets

Introduction
Some models
Variograms associated to random sets

6 Truncated Gaussian Random Fields
7 Skew-Normal Random Fields

38 / 60



Introduction
Non Gaussian Fields with Gaussian marginals

Transformed Random Fields
Excursion sets of Gaussian Random Fields

Random Sets
Truncated Gaussian Random Fields

Skew-Normal Random Fields

Definitions

Indicator function

Consider a (0,1) Gaussian stationary RF Y (x) on Rd with covariance
functionρ(h). Set a threshold y ∈ R. Chose φ(Y ) = 1Y≥y , i.e.

Zy (x) = 1 if Y (x) ≥ y ; X (x) = 0 otherwise.

Excursion sets

Xy = {x ∈ Rd : Y (x) ≥ y}

is the y -level excursion set of Y .

The Xy s are Random Sets verifying

u ≤ v =⇒ Xu ⊃ Xv .
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Proposition (Lantué́joul, 2002)

The variogram γZy of Zy (x) is

γZy (h) =
1

2π

∫ 1

ρ(h)

1√
1− r2

e−y2/(1+r)dr .

Proof

γZy (h) =

∫ y

−∞

∫ ∞
y

gρ(u, v)dudv with gρ(u, v) =
1

2π
√

1− ρ2
e−u2+v2−2ρuv/(1−ρ2).

Direct computation yields
∂gρ
∂ρ

=
∂2gρ
∂u∂v

,

from which
∂γZy

∂ρ
(h) =

∫ y

−∞

∫ ∞
y

∂2gρ
∂u∂v

dudv = −gρ(y , y).

Hence

γZy (h) =

∫ 1

ρ
gr (y , y , )dr =

1
2π

∫ 1

ρ(h)

1√
1− r2

e−y2/(1+r)dr .
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Regularity of excursion sets

Denote γ(h) = 1− ρ(h).
Perform the change of variable r = cos(2t). Then,

γy (h) =
1
π

∫ arcsin
√
γ(h)/2

0
exp

(
−y2

2
(1 + tan2 t)

)
dt

For γ(h) ≈ 0

γy (h) ≈ 1
π
√

2

√
γ(h)e−y2/2, h ≈ 0

If γ(h) ∝ |h|2 near h = 0, Xy has finite specific perimeter
If γ(h) ∝ |h|α, α < 2 near h = 0, Xy , has infinite specific
perimeter
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Illustration
C(h) = e−||h||/a C(h) = e−||h||

2/a2
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Covariance function of excursion set

We have seen

γZy (h) =

∫ 1

ρ
gr (y , y , )dr =

1
2π

∫ 1

ρ(h)

1√
1− r2

e−y2/(1+r)dr .

Open problem
X According to the above equation, the mapping γ → γZy is

one-to-one
X But, not all variograms can correspond to an excursion set

(later...)
X What is the general form of variograms, or covariance functions

of excursion sets ?
X Lantuéjoul (2002) shows that 1− e−||h||/a is the variogram of an

excursion set
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Some applications

X Geometry of petroleum reservoirs
[Heresim Group, 1992-1993] (in Fontainebleau) for setting up the method
[Allard, 1994] for conditional simulations with connectivity constraints
[Emery, 2007] for extension to pluri-Gaussian framework

X Latent variable of non-homogeneous point processes
[Myllymäki and Penttinen 2009]
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Introduction

We already have seen
• Excursion sets
• Poisson hyperplanes tesselation

It is time to present some theory on Random Sets

Let X be a random set in Rd , and Z (x) = 1X (x) be its indicator
function:

1X (x) = 1⇔ x ∈ X ; 1X (x) = 0⇔ x /∈ X , x ∈ Rd

X can be a set of points, segments, lines, objects (balls), + finite
or infinite unions and intersections of those
Cannot be characterised by the family of finite distributions of the
type P(x1 ∈ X , . . . , xn ∈ X , y1 /∈ X , . . . , ym /∈ X )
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Theory of random closed sets (Matheron, 1975)

A Random Closed Set X on Rd is fully characterized by its avoiding
functional

Q(K ) = P{X ∩ K = ∅}, K compact set ⊂ Rd

Its complement is the hitting functional

T (K ) = P{X ∩ K 6= ∅} = 1−Q(K ).

Works even if X is a countable set of points.
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First and second moments
Consider X to be regular, (i.e. no infinitely thin components or any
isolated points)

Considering K = {x} yields the local proportion:

p(x) = 1−Q({x}) = P(x ∈ X )

X stationnary⇐⇒ p(x) = p = 1− q for all x
Considering K = {x , x + h} yields the non centered covariance.

q(x , x + h) = Q({x , x + h}) = P(x 6= X , x + h 6= X ).

X stationnary⇔ q(x , x + h) = q(h)
Associated variogram:

γ(h) = 0.5E [(Z (x)− Z (x + h))2] = 0.5P{Z (x) 6= Z (x + h)}
= 0.5{P(x ∈ X , x + h /∈ X ) + P(x /∈ X , x + h ∈ X )}
= P(x /∈ X )− P(x /∈ X , x + h /∈ X )

= q − q(h)
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X Excursion sets: X = {x : Y (x) ≥ y}. Exponential variogram OK
X Poisson hyperplanes tesselation: each cell is in X , independently

with probability p: Exponential variogram
X Boolean model:

X =
⋃
ξ∈PP

Ai (ξ),

where
PP is a Poisson point process
Ai (ξ) is a random objet ∼ A translated at ξ

q = e−θE [|A|]; γ(h) = 1− 2q + q2(eθE [|A∩Ah|] − 1)
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Example of a Boolean model
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More realistic examples of a Boolean model

Petroleum reservoir: channels and lenses
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X Excursion sets: X = {x : Y (x) ≥ y}. Exponential variogram OK
X Poisson hyperplanes tesselation: each cell is in X , independently

with probability p: Exponential variogram
X Boolean model:

X =
⋃
ξ∈PP

Ai (ξ),

where
PP is a Poisson point process
Ai (ξ) is a random objet ∼ A translated at ξ

q = e−θE [|A|]; γ(h) = 1− 2q + q2(eθE [|A∩Ah|] − 1)

X Other object models: random token model, dead leaves, boolean
random functions...
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Indicator variogram: behaviour at the origin

Recall
γ(h) = 0.5E [{1x (x)− 1X (x + h)}2]

which is equivalent to

P(x ∈ X , x + h /∈ X ) = γ(h) = P(x /∈ X , x + h ∈ X )

As h→ 0, γ(h) conveys information about the boundary of X

Specific surface (Matheron, 1975)

Let σ(d) denote the specific (d − 1)-volume of X . Assume X is
isotropic

σ(d) =
dωd

ωd−1
γ′(0)

with ωd is the d-volume of the unit ball inRd .
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Indicator variogram: behaviour at the origin

Specific surface (Matheron, 1975)

Let σ(d) denote the specific (d − 1)-volume of ∂X . Assume X is
isotropic

σ(d) =
dωd

ωd−1
γ′(0)

with ωd is the d-volume of the unit ball inRd .

If γ(h) has linear behavior at 0, σ(d) is finite
If γ(h) is parabolic at the origin, σ(d) = 0 !! Degenerate case
If γ′(0) = σ(d) is infinite: fractal RS
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Indicator variogram: triangular inequality

Since
{1x (x)− 1X (x + h)}2 = |1x (x)− 1X (x + h)|

and using

|1x (x)− 1X (x + h + h′)| ≤ |1x (x)− 1X (x + h)|+ |1x (x + h)− 1X (x + h + h′)|

the variogram must satisfy

γ(h + h′) ≤ γ(h) + γ(h′)

Consider γ(h) ≈ hα, when h ≈ 0. Then, chosing h = h′ yields

(2h)α ≤ 2hα ⇔ α ≤ 1.

Excludes all regular variograms such as Gaussian or Matern with κ > 1/2.
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Indicator variogram: open problem

Not all variograms can be the variogram of a random set. Must
be bounded
verify triangular inequality
not be too regular

Is there a general characterization ?
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Indicator variogram: open problem

Is there a general characterization ?

Conjecture, Matheron (1975)

Let (xi )i=1,n be a finite sequence of points, and (εi )i=1,n a sequence of
values in {−1,0,1} such that

∑
i=1,n εi = 1. An indicator variogram is

a bounded, conditionally definite negative function fulfill the condition∑
i=1,n

∑
j=1,n

εiεjγ(xi − xj ) ≤ 0.

It is a necessary condition (containing the triangular inequality); is it
sufficient ?
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The Closed Skew-Normal (CSN) distribution

General idea

new density = constant× density× cpf

La densité CSNn,m(µ,Σ,D, ν,∆)

f (y) =
1

Φm(0; ν,∆ + Dt ΣD)
φn(y ;µ,Σ)Φm(Dt (y − µ); ν,∆)

If D = 0: Nn(µ,Σ)

If m = 1: skew-normal distribution (Azzalini, 1985; Azzalini,
1986)

Dominguez-Molina, 2002, Azzalini et al. 1996
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Example
m = n = 1; µ = 0, σ2 = 1, d = 1, ν = 0.3, ∆ = 0.3
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Gaussian and CSN bivariate density

Bivariate skew-normal
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Contours of the bivariate skew-normal pdf for

, the correlation matrix with correlation 0.5,

with (left panel) and (right

panel).
Seminar – p.6/57
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Some properties of CSN distributions

Linearity

A× CSNn,m(µ,Σ,D, ν,∆) ∼ CSNr ,m(Aµ,ΣA,DA, ν,∆A)

where

ΣA = AΣAT , DA = DΣAT Σ−1
A , ∆A = ∆ + DΣDT − DAΣADT

A

Sum (particular case)

N(µ,Σ) + CSNn,m(ψ,Ω,D, ν,∆) ∼ CSNn,m(ψ + µ,Ω + Σ,D, ν,∆)
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Some properties of CSN distributions

Conditioning

Consider Y = (Y1,Y2) ∼ CSNn,m(µ,Σ,D, ν,∆).
Then, Y2|Y1 = y1 is

CSN(µ2 + Σ21Σ−1
11 (y1 − µ1),Σ22 − Σ21Σ−1

11 Σ12,D2, ν − D1y1,∆)

Moment generating function

M(t) =
Φm(Dt Σt ; ν,∆ + DΣDT )

Φm(0; ν,∆ + DΣDT )
exp{µT t +

1
2

(tT Σt)}
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Some properties of CSN distributions

First moment

Moments of the CSN

• Under either one of these representations, we need a special way to calculate the

moments.

• In order to compute the first and second moment for the CSN distribution we may

consider the derivatives of the m.g.f.. The first derivative of the m.g.f. evaluated in

t = 0 is

EY =
∂

∂t
MY (t)

t=0

= µ + ΣD′ψ,

where

ψ =
Φ∗

q (0; ν, ∆ + DΣD′)

Φq (0; ν; ∆ + DΣD′)
,

and, for any positive definite matrix Ω

Φ∗
q (s; ν, Ω) = [∇sΦq (s; ν, Ω)]′ ,

where ∇s = ∂
∂s1

, ..., ∂
∂sq

′
is the gradient operator.

Modeling Environmental Data Using Skew-Elliptical Distributions– p. 15/32
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Some properties of CSN distributions

Second moment

Moments of the CSN

• To get the second moment we need

E yy′ =
∂2

∂t∂t′
My (t)

t=0

= Σ + µµ′ + µψ′DΣ + ΣDψµ′ + ΣD′ΛDΣ

Λ =
Φ∗∗

q (0; ν, ∆ + DΣD′)

Φq (0; ν; ∆ + DΣD′)
,

and

Φ∗∗
q (t; ν, Ω) = ∇t∇′

tΦq (t; ν, Ω) .

Modeling Environmental Data Using Skew-Elliptical Distributions– p. 16/32
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Simulating a CSN R.V.

(
Y
X

)
∼ Nn+m

((
0
ν

)
,

(
Σ −Dt Σ
−ΣD ∆ + Dt ΣD

))
,

Then

µ+ (Y |X ≤ 0) = CSNn,m(µ,Σ,D, ν,∆)

Simulation algorithm
1 simulate a vector X ∼ Nm(ν,∆ + Dt ΣD), conditional on X ≤ 0
2 simulate a vector Y conditionally on X , according to the bivariate

model above
3 return µ+ Y
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Temporal application: a weather generator

One of the priority of INRA is to explore the impact of climate
change on agriculture and forest
GCM provide output variables at scale 50 km
Series are not numerous

Need for very long/numerous series of weather variables at local
scale

Building a stochastic weather generator WACS-gen
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General principle of WACS-gen

Ph. D. thesis of Cédric Flecher (D. Allard and P. Naveau co-advisors)
X We consider five variables X (t) = (R,Tn,Tx ,RR,W )t (t)
X R is log–transformed
X Series are centered and standardized using medians a mean

absolute deviation
X The following parameters are estimated independently for each

season:
X K weather types are determined using MCLUST
X Weather types form a Markov Chain
X In each class residuals ∼ CSN (4 or 5)
X Temporal correlation is accounted for
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CSN vectors

Reminder

CSNn,m(µ,Σ,D, ν,∆):

fn,m(y) =
1

Φm(0; ν,∆ + Dt ΣD)
φn(y ;µ,Σ)Φm(Dt (y − µ); ν,∆)

In WACS-gen,

To simplify the model, we set k = m = n; D = Σ−
1
2 S; ∆ = Ik − S2;

S = diag(δ1, . . . , δK )t .

CSN∗k (µ,Σ,S) : fk,k (y) = 2−k φk (y ;µ,Σ) Φk (SΣ−
1
2 (y−µ); 0, Ik−S2).

Hence
X̃ = Σ−1/2(X − µ) ∼ CSN∗5 (0, I5,S).
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Estimation of the parameters
Estimation is done by weighted moments (Flecher, Allard and
Naveau, 2009 Stat. Prob. Letters)

E [Φn(Y ,0, In)] = 2nΦ2n

(
0;

[
−mu

0

]
,

[
Σ + In λΣ1/2

λΣ1/2 In

])
Bivariate example: µ1 = µ2 = σ1 = σ2 = 1; λ = 0.89 et ρ = 0.8.

Figure 1: Histograms of estimated values for ρ̂ (left) and λ̂ (right) from the same simulations
described in Figure ??

1
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