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Introduction

Why Gaussian ?

Some good reasons for using Gaussian Random Fields (RF)
@ Fully characterized with two moments
@ Likelihood accessible
@ Conditional expectation is linear

@ Stability under linear combinations, marginalization and
conditioning
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data are rarely Gaussian

Environmental / climatic data are often
@ positive: grade, composition, ...

Need to go beyond the Gaussian world
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Introduction

data are rarely Gaussian

Environmental / climatic data are often
@ positive: grade, composition, ...
@ in an interval: humidity, ...
@ skewed: pollution, temperature, ...
@ long tailed: rain, grade, ...

Need to go beyond the Gaussian world




Introduction

Humidity

Humidity per season (as a %), in Toulouse (France)
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Introduction

4 climatic variables

Tn, Tx, R and W in Toulouse, summer and autumn
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Introduction

Rain in Toulouse (autumn)

Histogram, cpf, and quantity above threshold

Toulouse - Autumn : Rain > 0.51 ; m= 22 std=2 Cumulative probability function 0.51

pr(om) Pr(om)

Quantity of Precip. above thresh. Variogram of normal score
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Introduction

Leaving the Gaussian world, but not to far...

There is a need for
@ Non Gaussian RF, but which model ?
@ With good mathematical properties, i.e. easy to handle
= playing with Gaussian RFs
@ Tranforming : transformed multi- and bi- Gaussian RFs
@ Thresholding : Excursion sets
@ Truncating : Truncated Gaussian and transformed Gaussian RFs
@ Conditioning : Skew-normal RFs




Introduction

General Outline

v~ Some reminders on Gaussian RFs
v Rfs with Gaussian marginals that are not Gaussian RFs
v~ Transformed multi- and bi- Gaussian RFs

v Quite specific tranformation: thresholding
— Random Sets

v Truncated (transformed) Gaussian RFs
v~ Skew-normal RFs

lllustrated with applications !




Introduction

Some reminders

A RF is (multi-) Gaussian if all its finite-dimensional distributions are
multivariate Gaussian.

Characterization

A stationary Gaussian RF is characterized by its expectation and its
covariance function, C(h)

Bochner’s theorem

The covariance function is semi positive definite function; it is the
Fourier Transform of a positive bounded measure.

| \

C(h) = / U F(dy),  with / F(du) < oo
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Introduction

Some reminders

Regularity of a stationary RF

v A RF is mean-squared continuous iif its covariance function is
continuous at h=0

v A RF is mean-squared differentiable everywhere iif its covariance
function has a second derivative at h =0

C(h) = e~ lInll/a C(h) = e IINIZ/&
%o
nn
- B 4 &

fit INRA
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Non Gaussian Fields with Gaussian marginals
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Non Gaussian Fields with Gaussian marginals

Non Gaussian Fields with Gaussian marginals

Same N(0, 1) pdf; same exponential covariance
[Garrigues, Allard and Baret (2007)]

Gaussian RF Poisson Line RF Mixture

13/60



Non Gaussian Fields with Gaussian marginals

Poisson tesselation

A hyper-plance in R is specified by a direction « € S and
a location p € R

H(a,p) = {x € RY |< x,a >= p}.

N\

11INRA 0




Non Gaussian Fields with Gaussian marginals

Poisson tesselation

Definition 1

A network of Poisson hyperplanes is parametrized by a Poisson
process in S} x R. They define Poisson cells.
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Non Gaussian Fields with Gaussian marginals

Poisson tesselation

Definition 1

A network of Poisson hyperplanes is parametrized by a Poisson
process in S} x R. They define Poisson cells.

Definition 2

| \

Consider a Poisson hyperplane process on RY. To each Poisson cell,
associate an independent random variable. This defines a Poisson
hyperplane RF on RY.

\

15/60



Non Gaussian Fields with Gaussian marginals

Covariance of Poisson cell models

Proposition
The covariance function of a Poisson hyperplane RF is

C(h) = o2e @Ml = 52p(h), heR?

Sketch of the proof: The intersection of the Poisson hyperplanes
with any line defines a 1D Poisson point process with intensity, say a.

Poisson lines in R? parametrized by a Poisson process in [0, 7[xR
and i.i.d. NV(u, 0?) Gaussian random variables define a marginal
Gaussian Poisson cell model.
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Non Gaussian Fields with Gaussian marginals

lllustration (ctd)

Use variogram of order 1 (madogram)
y1(h) = 0.5E[|Y(x + h) — Y(x)|]
Gaussian RF: Let G ~ N(0,72). We know E[|G|] = \/272/n. Then,
Y1(h) o< v/~(h)
since Y(x + h) — Y(x) ~ N(0,2vy(h)).
Poisson RF: Consider A = {w, w + h € same cell}: P(A) =1 — p(h) = v(h).
E[IY(x+h)— Y(x)| | A|=0 and E[|Y(x+h)— Y(x)| | A x o2

Thus ~v1(h) < v(h).
111INRA




Non Gaussian Fields with Gaussian marginals

Mixture RF:

Define

Ym(X) = 0 (wYG(x) V11— w2zp(x)) oy

where Zg(+) and Zp(+) are (0, 1) Gaussian and Poisson RF with same
exponential covariance.

If vg(h) = vp(h) = ~v(h), then ~(h) is the variogram of Yp(-) for all w.

INA o, S ) Y
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Non Gaussian Fields with Gaussian marginals

Mixture RF:

Proposition
Garrigues, Allard and Baret (2007) obtain

(1) =2 Wt =z r.al) + 72 (A WP olh) + (1~ w2)

Proof: Condition on A; use independence of Zp in different cells




Non Gaussian Fields with Gaussian marginals

In summary

Relationship between first and second order variograms:
@ Gaussian RF: quadratic
@ Poisson RF: linear
@ Mixture RF: intermediate

1
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Non Gaussian Fields with Gaussian marginals

Application

Modeling remote sensing images (NDVI)
Fit simultaneously first and second order variograms
w is a degree of tesselation of landscape (agriculture)
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Transformed Random Fields Introduction

Random ds

n Random Fields

Outline

Q Transformed Random Fields
@ Introduction

@ Transformed Multigaussian Random Fields
@ Transformed Bi-Gaussian Random Fields

HIRA
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Transformed Random Fields Introduct
dom Fields
om Fields

General framework

Assume Y(x)is a (0,1, p(h)) stationary Gaussian RF on a domain D.
Let ¢() be a one-to-one mapping. Then consider,

Z(x) = ¢(Y(x)), xeD.

@ Transform the data: Y; = ¢~ 1(Z(x)))

@ Use all nice Gaussian properties

@ Back-transform predictions/simulations with ¢

@ Pay attention to non linearities in case of prediction!
Two theoretical frameworks:

@ Transformed Multi-Gaussian Random Field
QIN_;{Lansformed Bi-Gaussian Random Field

24/60



Transformed Random Fields

Tran med Mulugaussmn Random Fields
Transformed Bi-Gaussian Random Fields

Lognormal Random Fields

Definition
Use an exponential function for ¢(y)
Z(x)=e"tYN  xeD

is said to be a lognormal RF.

Using the general result E[e?¥] = e¥/2 for Y ~ N(0,1), leads to:

EZ()] =m=  ere/?
Cov(Z(x),Z(x+h)) =C(hy= m? (eozp(h>_1)
VarZ(x)] = C(0)= P (&7 ~1)




Transformed Random Fields Introduction
Transformed Multigaussian Random Fields
Transformed Bi-Gaussian Random Fields

Lognormal Random Fields

Denoting y(h) = 1 — p(h) the variogram of Y(-) and '(h) the
variogram of Z(+),

r(h) = mPe” (1 — e (M)

What if Y(+) is not 2nd order stationary ? Matheron (1974)

@ ; and 2 no longer exist
@ need to condition on a domain V > D
@ there exists my and Ay such that, for x, y € V.

E[Y(x)] = my
Cov(Y(x),Y(y)) = Av—1(x—y),




Transformed Random Fields

Transformed Bi-Gaussian Random Fields

Lognormal Random Fields

Localy stationary log-normal RF (Matheron, 1974)

Let Y(x) ~ IRF(~(h)), conditioned on V as above. Then Z(x) is a
locally (i.e. on V) stationary lognormal RF with

E[Z(x)] =My= e™e/?
) = Mgt (1-e7®)

[See also Schoenberg’s theorem]

@ Exponential flavour of I'(h)
@ Finite range on V' !!




Transformed Random Fields Introduction
Transformed Multigaussian Random Fields
Transformed Bi-Gaussian Random Fields

Using lognormal Random Fields

DataZ =Z(x;)) >0,iel={1,...,n}
Goal : predicting Z; at an unsampled location
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Using lognormal Random Fields

DataZ =Z(x;)) >0,iel={1,...,n}
Goal : predicting Z; at an unsampled location

@ Compute log-data Y;=InZ,ic |
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Transformed Random Fields Introduction
Transformed Mul ian Random Fields
Transformed Bi-Gaussian Random Fields

Using lognormal Random Fields

DataZ =Z(x;)) >0,iel={1,...,n}
Goal : predicting Z; at an unsampled location

@ Compute log-data Y;=InZ,ic |

@ Estimate the varigram ~(-) of Y(+)

© Predict Y* = E[Yo | (Yi)ie/] = X_jc; Wi Yi (Gaussianity !)
@ Back transform Z* = ¥ *Xier X jer Wiwyi/2

Note: used as driving intensity for non homogeneous point processes
[Mgller, Syversveen, Waagepetersen, 1998]

28/60



Transformed Random Fields Introduction
Transformed Multigaussian Random Fields

Transformed Bi-Gaussian Random Fields

Box-Cox transformation

For positive values Z(x)

Box-Cox transformation

zr—1

0 (2)="=— i A£0 ¢'(9)=Inz,

@ Similar derivations; need to use
1 1 1
L+ V)] = o (- Esan(u)?U (3. 5.~ /o))

where U is a Kummer’s confluent hypergeometric function
@ Beware of bias correction !

29/60



Transformed Random Fields Introducti
Trans! an Random Fields

Transformed Bi-Gaussian Random Fields

Introduction

v n-multivariate gaussianity for any nis a strong assumption, which
can not be checked in practice — not speaking of testing

v Bi-variate gaussianity is a weaker condition, that can be checked
to a certain extent

Is there a less demanding theory ?

30/60



Transformed Random Fields Introducti
Trans! an Random Fields

Transformed Bi-Gaussian Random Fields

Introduction

v n-multivariate gaussianity for any nis a strong assumption, which
can not be checked in practice — not speaking of testing

v' Bi-variate gaussianity is a weaker condition, that can be checked
to a certain extent

Is there a less demanding theory ?

Decomposition with Hermite polynomials

30/60



Transformed Random Fields

an Random Fields

Transformed Bi-Gaussian Random Fields

Hermite polynomials

@ Denote g(y) and G(y) the N(0, 1) pdf and cpf.
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Hermite polynomials

@ Denote g(y) and G(y) the N(0, 1) pdf and cpf.

@ Consider the space Hilbert space L2(G) of functions ¢(-) such
that [ ¢*(y)g(y)dy < oo




Transformed Random Fields
a an Random Fields
Transformed Bi-Gaussian Random Fields

Hermite polynomials

@ Denote g(y) and G(y) the N(0, 1) pdf and cpf.

@ Consider the space Hilbert space L2(G) of functions ¢(-) such
that [ ¢*(y)g(y)dy < oo
@ Consider the Hermite polynomials H,

dn
~ dyng(y)
with Ho(y) =1 and Hi(y) = —y.

Hn(y)9(y) =yHp-1(y) — (n—1)Hn2(y),




Transformed Random Fields
a an Random Fields
Transformed Bi-Gaussian Random Fields

Hermite polynomials

@ Denote g(y) and G(y) the N(0, 1) pdf and cpf.

@ Consider the space Hilbert space L2(G) of functions ¢(-) such
that [ ¢*(y)g(y)dy < oo
@ Consider the Hermite polynomials H,

dn
~dy"g(y)

with Ho(y) =1 and Hi(y) = —y.
@ In addition, for k > 1, E[Hk(Y)] = 0, Var[Hk(Y)] = k!

Hn(y)9(y) =yHp-1(y) — (n—1)Hn2(y),




Transformed Random Fields
a ssian Random Fields
Transformed sian Random Fields

Hermite polynomials

@ The normalized Hermite polynomials x,(y) = Hn(y)/+/n! form an
othonormal basis of L2(G) w.r.t. gaussian density, i.e.

/ X ()IY)GY = o < ElxalY)xm(Y)] = dom

— o0




Transformed Random Fields
a an Random Fields
Transformed Bi-Gaussian Random Fields

Hermite polynomials

@ The normalized Hermite polynomials x,(y) = Hn(y)/+/n! form an
othonormal basis of L2(G) w.r.t. gaussian density, i.e.

/ X ()IY)GY = o < ElxalY)xm(Y)] = dom

— o0

@ Let ¢ € L2(G). Then,

Z=¢(Y) =) wix(Y) with o= E[e(Y)xu(Y)]
k=0




Transformed Random Fields
a an Random Fields
Transformed Bi-Gaussian Random Fields

Hermite polynomials

@ The normalized Hermite polynomials x,(y) = Hn(y)/+/n! form an
othonormal basis of L2(G) w.r.t. gaussian density, i.e.

/ X ()IY)GY = o < ElxalY)xm(Y)] = dom

— 00

@ Let ¢ € L2(G). Then,
Z=¢(Y) = eixk(Y) with o= E[$(Y)xk(Y)]
k=0

@ Thus E[¢(Y)] = po; Var[p(Y)] = 350, ¢2




Transformed Random Fields Introduction

Trans! an Random Fields

Transformed Bi-Gaussian Random Fields

Hermite polynomials (ctd)

@ For a Bi-Gaussian pair U, V

go(u,v) = > Pxu(U)x(V)g(u)g(v)
k=0

33/60



Transformed Random Fields
a an Random Fields
Transformed Bi-Gaussian Random Fields

Hermite polynomials (ctd)

@ For a Bi-Gaussian pair U, V
go(u,v) = > Pxu(U)x(V)g(u)g(v)
k=0
@ For a Bi-Gaussian vector (Y(x), Y(x + h)) with correlation p(h).

Covlg(Y(x)), 6(Y(x + M)l = > _ ko (h)

k=1




Transformed Random Fields Introduct
Tr Random Fields
Transformed Bi-Gaussian Random Fields

Example 1

o(Y) = e, Then,

k>0

) -

k
-1 )ke#+d2/2 g

ok = ( i

E[Z(x)] = go = €T°/2 = m and Covz(h) = m?(e” ") — 1)

identically to multi-gaussian RF.

34/60



Transformed Random Fields
Random Fields
Random Fields

Example 2

and ¢o =1 — G(y). Hence

o 2
Covz, (h) = g(y)? 3 Loy,

35/60



Transformed Random Fields
a ssian Random Fields
Transformed sian Random Fields

Checking for bi-gaussianity

v' Transform data Z(x;) into Gaussian scores Y(x;)
v" Crossplots Y(x), Y(x + h) should be elliptical

v" vy ,1(h) should be proportional to /vy 2(h)

v" Denote vy 2(h) a variogram fitted on Y(-). Then,

vz2(h) = k{1 —yva(h)}?
k

should fit on Z(-)




Transformed Random Fields |
Tr n Random Fields
Transformed sian Random Fields

Disjunctive Kriging of Z(xo)

v Estimate ¢, from empirical cpf

v For each k, do (simple) Kriging of xx(Y(x0))*

v (Y (x0)) = Xk erxk(Y(x0))

v 0Bk = Xy wwog with of = Varlx,(Y(x0))* — xk(Y(x))]
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Outline

e Excursion sets of Gaussian Random Fields
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Excursion sets of Gaussian Random Fields

Definitions

Indicator function

Consider a (0, 1) Gaussian stationary RF Y(x) on RY with covariance
functionp(h). Set a threshold y € R. Chose ¢(Y) =1y~ i.e.

Zy(x)=1if Y(x) >y, X(x)=0 otherwise.

v

X, = {xeR?: Y(x) >y}

is the y-level excursion set of Y.

The X, s are Random Sets verifying

T INRA u<v= X,>X,.




Excursion sets of Gaussian Random Fields

Proposition (Lantuéjoul, 2002)

The variogram vz, of Z,(x) is

1
vz,(h) = L/ Vg,

27 Johy V1 =12
Proof
y i : 1 — P22 uv/(1— 2
vz,(h) :/ / p(u, v)dudv with g,(u,v) = ———=e puv/(1=p%),
v —coJy 2my/1 = p2
Direct computation yields
99y _ 9°9p
dp  Oudv’
from which 5
vz, g,
s 0= [ [ o uas =g,y
Hence

1 /040y,
_r

_ [ _t
INRA 7z,(h) _/p 9rly,y,)ar = o= /[;(h) V1

40/60



Excursion sets of Gaussian Random Fields

Regularity of excursion sets

Denote v(h) =1 — p(h).
Perform the change of variable r = cos(2t). Then,

1 arcsin y/~(h)/2 y2
vy (h) = —/ exp (—2(1 + tan? t)) at
0

For v(h) ~ 0

1 2
h) ~ ——+/v(h)e” /2, h=~0
i)~ — oA )
@ If v(h) o |h|?> near h =0, X, has finite specific perimeter
@ If y(h) < |h|*, o < 2 near h= 0, X,, has infinite specific

i INBgrimeter




Excursion sets of Gaussian Random Fields

lllustration

C(h) = e~ Inll/a C(h) = e~ lIn?/&




Excursion sets of Gaussian Random Fields

Covariance function of excursion set

We have seen

1 1 1 1 2
h :/ Ly, )dr = —/ ———— e/ /gy,
"z, (h) /) gr(y,y,)dr = — o 17

Open problem

v According to the above equation, the mapping v — ~z, is
one-to-one

HHINGA
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Covariance function of excursion set

We have seen
1

1 1 1 2
h :/ .y, )dr = —/ — eV /UNgr,
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Open problem

v According to the above equation, the mapping v — ~z, is
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(later...)
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Excursion sets of Gaussian Random Fields

Covariance function of excursion set

We have seen

1
L / _ 1 g,

1
h:/ ,y,)dr= — —
"z, (h) ~pgr(yy) o Jn Vi

Open problem

v According to the above equation, the mapping v — ~z, is
one-to-one

v" But, not all variograms can correspond to an excursion set
(later...)

v" What is the general form of variograms, or covariance functions
of excursion sets ?

HHINGA
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Excursion sets of Gaussian Random Fields

Covariance function of excursion set

We have seen

1 1 1 1 2
h :/ Ly, )dr = —/ ———— e/ /gy,
"z, (h) /) gr(y,y,)dr = — o 17

Open problem

v According to the above equation, the mapping v — ~z, is
one-to-one

v" But, not all variograms can correspond to an excursion set
(later...)

v" What is the general form of variograms, or covariance functions
of excursion sets ?

v Lantugjoul (2002) shows that 1 — e~!I"ll/2 is the variogram of an
I lINexcursion set

43/60



Excursion sets of Gaussian Random Fields

Some applications

v Geometry of petroleum reservoirs
[Heresim Group, 1992-1993] (in Fontainebleau) for setting up the method
[Allard, 1994] for conditional simulations with connectivity constraints
[Emery, 2007] for extension to pluri-Gaussian framework

v Latent variable of non-homogeneous point processes
[Myllymé&ki and Penttinen 2009]

44/60



Introduction
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Outline

© Random Sets
@ Introduction
@ Some models
@ Variograms associated to random sets
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Random Sets ated to random sets

Introduction

We already have seen
e Excursion sets
¢ Poisson hyperplanes tesselation
It is time to present some theory on Random Sets
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Introduction
Sormr
Random Sets Vari ted to random sets

Introduction

We already have seen
e Excursion sets
¢ Poisson hyperplanes tesselation
It is time to present some theory on Random Sets

@ Let X be arandom set in RY, and Z(x) = 1x(x) be its indicator
function:

Ix(x)=1exeX; 1x(x) =0 x¢ X, xcR?

@ X can be a set of points, segments, lines, objects (balls), + finite
or infinite unions and intersections of those

@ Cannot be characterised by the family of finite distributions of the
~ type PxieX,...,xneX,y1 ¢ X,....¥m & X)

46/60



Introduction

Random Sets ed to random sets

Theory of random closed sets (Matheron, 1975)

A Random Closed Set X on RY is fully characterized by its avoiding
functional

Q(K)=P{XNK =10}, K compactsetc R
Its complement is the hitting functional
T(K)=P{XNK#0} =1-Q(K).

Works even if X is a countable set of points.

47/60



Random Sets \ ciated to random sets

First and second moments

Consider X to be regular, (i.e. no infinitely thin components or any
isolated points)
@ Considering K = {x} yields the local proportion:

p(x) =1 - Q({x}) = P(x € X)
X stationnary <= p(x) = p=1—qforall x
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So

So
Random Sets Var ociated to random sets

First and second moments

Consider X to be regular, (i.e. no infinitely thin components or any
isolated points)
@ Considering K = {x} yields the local proportion:

p(x) =1-Q({x}) = P(x € X)

X stationnary <= p(x) = p=1—qforall x
@ Considering K = {x, x + h} yields the non centered covariance.

qOx,x + h) = QU{x,x + h}) = P(x # X, x + h# X).
X stationnary < q(x, x + h) = g(h)




Introduction
So

So
Random Sets Var ociated to random sets

First and second moments

Consider X to be regular, (i.e. no infinitely thin components or any
isolated points)
@ Considering K = {x} yields the local proportion:

p(x) =1-Q({x}) = P(x € X)

X stationnary <= p(x) = p=1—qforall x
@ Considering K = {x, x + h} yields the non centered covariance.

g(x,x+ h) = Q{x,x+ h}) = P(x # X, x + h# X).
X stationnary < q(x, x + h) = g(h)
@ Associated variogram:
v(h) = 0.5E[(Z(x)— Z(x + h))?] = 0.5P{Z(x) # Z(x + h)}
= 05{P(xeX,x+h¢ X)+P(x¢ X, x+heX)}
BINA = P(x¢X)—P(x¢ X,x+h¢ X)
= q—q(h)




Introduction
Some models

Random Sets Variograms iated to random sets

v Excursion sets: X = {x: Y(x) > y}. Exponential variogram OK
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v~ Poisson hyperplanes tesselation: each cell is in X, independently
with probability p: Exponential variogram
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Introduction

Random Sets /ariogre d to random sets

v Excursion sets: X = {x: Y(x) > y}. Exponential variogram OK

v~ Poisson hyperplanes tesselation: each cell is in X, independently
with probability p: Exponential variogram

v Boolean model:

X={J A,

¢ePP

where

@ PP is a Poisson point process
e A;(¢) is arandom objet ~ A translated at £

q= efeE[\A\]; v(h)y=1-2q+ q2(eeE[lAﬁAn\] -1)

11INRA
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Introduction
Some models
Random Sets Variograms associated to random sets

Example of a Boolean model

11INRA
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Some models

Random Sets

More realistic examples of a Boolean model

Petroleum reservoir: channels and lenses

==
=
] T

i INRA
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Introduction

Random Sets /ariogre d to random sets

v Excursion sets: X = {x: Y(x) > y}. Exponential variogram OK

v Poisson hyperplanes tesselation: each cell is in X, independently
with probability p: Exponential variogram

v~ Boolean model:
X = A9,
¢ePP
where

@ PP is a Poisson point process
o A;(¢) is arandom objet ~ A translated at £

q= efeE[\A\]; v(h)y=1-2q+ q2(eOE[IAﬁAhH —1)

v Other object models: random token model, dead leaves, boolean
random functions...

52/60
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Indicator variogram: behaviour at the origin

Recall
7(h) = 0.5E[{1x(x) — 1x(x + h)}?]
which is equivalent to
P(x € X,x+h¢ X)=~(h) = P(x ¢ X,x+heX)
As h — 0, v(h) conveys information about the boundary of X

Specific surface (Matheron, 1975)

Let ¢(9) denote the specific (d — 1)-volume of X. Assume X is
isotropic

0@ = % 1 (g)
Wa—1

with wy is the d-volume of the unit ball inR?.
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Random Sets Variograms associated to random sets

Indicator variogram: behaviour at the origin

Specific surface (Matheron, 1975)

Let ¢(?) denote the specific (d — 1)-volume of X. Assume X is
isotropic

U(d) _ d(AJd

(0
cUd_1'y()

with wy is the d-volume of the unit ball inR?.

@ If y(h) has linear behavior at 0, ¢(9 is finite
e If y(h) is parabolic at the origin, #(9) = 0 Il Degenerate case
@ Ifv/(0) = ¢(9 is infinite: fractal RS
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Indicator variogram: triangular inequality

Since
{16(3) = Ix(x + )} = [1(x) = 1x(x + h)|
and using
[1(x) = 1x(x + h+ H)| < [1(x) = Ix(x + B)| + [Tu(x + h) = 1x(x + h+ H)|
the variogram must satisfy
v(h+h') < ~(h) +~(h)
Consider y(h) = h*, when h= 0. Then, chosing h = h’ yields
(2h)* < 2h* & a < 1.

Excludes all regular variograms such as Gaussian or Matern with < > 1/2.

56/60
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Indicator variogram: open problem

Not all variograms can be the variogram of a random set. Must
@ be bounded
@ verify triangular inequality
@ not be too regular

Is there a general characterization ?
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Indicator variogram: open problem

Is there a general characterization ?

Conjecture, Matheron (1975)

Let (xi)i=1,» be a finite sequence of points, and (g;);=1,» @ sequence of
values in { 1,0,1} suchthat}’;,_; ;e =1. An indicator variogram is
a bounded, condltlonally definite negative function fulfill the condition

Y > e —x) <0.

i=1,nj=1,n

It is a necessary condition (containing the triangular inequality); is it
sufficient ?

58/60



Truncated Gaussian Random Fields

Outline

e Truncated Gaussian Random Fields
T
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Skew-Normal Random Fields

The Closed Skew-Normal (CSN) distribution

General idea

new density = constant x density x cpf

La densité CSN, m(u, X, D, v, A)

1

Gn(Yi g, T)Om(D'(y — )i v, A)

)= o0, 27 D5D)

@ If D =0: Ny(u,X)

@ If m = 1: skew-normal distribution (Azzalini, 1985; Azzalini,
1986)

Do olina, 2002, Azzalini et al. 1996




Skew-Normal Random Fields

m=n=1;4=0,0°=1,d=1,r=0.3,A=0.3
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Skew-Normal Random Fields

Gaussian and CSN bivariate density




Skew-Normal Random Fields

Some properties of CSN distributions

A x CSN[Lm('LL, Z, D, v, A) " CSNr7m(A/J, zA, DA7 v, AA)

where

Ya=ATAT, Dy=DYA'Y,', Asx=A+D3D" — Ds¥AD}




Skew-Normal Random Fields

Some properties of CSN distributions

A x CSN[Lm('LL, Z, D, v, A) " CSNnm(A/J, ZA, DA7 v, AA)

where

Ya=ATAT, Dy=DYA'Y,', Asx=A+D3D" — Ds¥AD}

Sum (particular case)

N(it. %) + CSNpm(t, 2, D, v, A) ~ CSNpm(®h + 11,2 + T, D, v, A)

4




Skew-Normal Random Fields

Some properties of CSN distributions

Conditioning

Consider Y = (Y3, Y2) ~ CSNy m(p, X, D, v, AA).
Then, Y2‘Y1 = W1 is

CSN(IUQ i 22121_11 (y1 — A ), Y00 — Yo 21_11 212, Dg7 vV — D1 Vi, A)




Skew-Normal Random Fields

Some properties of CSN distributions

Conditioning

Consider Y = (Y3, Y2) ~ CSNy m(p, X, D, v, AA).
Then, Y2‘Y1 = W1 is

CSN(IUQ i 22121_11 (y1 — A ), Y00 — Yo 21_11 212, Dg, vV — D1 Vi, A)

Moment generating function

M(t) = ®m(D'Tt;v, A+ DEDT)
~ ®p(0;v,A+ DEDT)

exp{u't+ %(tTZt)}




Skew-Normal Random Fields

Some properties of CSN distributions

(Fistmoment

EY = =My (t)] = p+ 3D,

where
B o7 (0;v, A+ DXD’)

V= ®q (0;v; A + DED)’

and, for any positive definite matrix €2

, (5;v,9) = [VsPq (53, ),

= s /
where Vg = (d‘fl S een d? ) is the gradient operator.
s sq




Skew-Normal Random Fields

Some properties of CSN distributions

Second moment

82
E(yy) = @My (t)
t—0

Y+ pp + pap' DX 4+ XD’ + XD'ADY

_ &3 (0;v,A+ DED’)
- &, (0;v;A + DEDY)

I

D (tv,Q) = Vi Vi, (50,9Q).
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Skew-Normal Random Fields

Simulating a CSN R.V.
(x)~mn((2)( 5o aiDi0))

g+ (Y|X < 0) = CSNp (i, Z, D, v, A)

Simulation algorithm

@ simulate a vector X ~ Ny (v, A + D'E.D), conditional on X < 0

© simulate a vector Y conditionally on X, according to the bivariate
model above

Q returnpu+ Y




Skew-Normal Random Fields

Temporal application: a weather generator

@ One of the priority of INRA is to explore the impact of climate
change on agriculture and forest

@ GCM provide output variables at scale 50 km
@ Series are not numerous

Need for very long/numerous series of weather variables at local
scale

Building a stochastic weather generator WACS-gen
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General principle of

Ph. D. thesis of Cédric Flecher (D. Allard and P. Naveau co-advisors)
v We consider five variables X(t) = (R, Ty, Tx, RR, W)(t)
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General principle of

Ph. D. thesis of Cédric Flecher (D. Allard and P. Naveau co-advisors)

v
v
v

We consider five variables X(t) = (R, T,, Tx, RR, W)!(t)
R is log—transformed

Series are centered and standardized using medians a mean
absolute deviation

The following parameters are estimated independently for each
season:

K weather types are determined using MCLUST
Weather types form a Markov Chain
In each class residuals ~ CSN (4 or 5)




Skew-Normal Random Fields

General principle of

Ph. D. thesis of Cédric Flecher (D. Allard and P. Naveau co-advisors)
v We consider five variables X(t) = (R, Ty, Tx, RR, W)(t)
v R is log—transformed

v Series are centered and standardized using medians a mean
absolute deviation

The following parameters are estimated independently for each
season:

K weather types are determined using MCLUST
Weather types form a Markov Chain
In each class residuals ~ CSN (4 or 5)

Temporal correlation is accounted for
NRA

\
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Skew-Normal Random Fields

CSN vectors

Reminder
CSNp m(u, T, D, v, A):

1

~ ®,(0;v, A + D'TD) n(Y; 11, Z)Pm(DHy — p); v, D)

fn,m(}/)

i INRA




Skew-Normal Random Fields

CSN vectors

CSNpm(p, X, D, v, A):

_ 1 : tr, .
fn,m(y) - cbm(o, V, A + thD) ¢n(}/v /“Lv z)d>m(D (y :u‘)' V? A)
In WACS-gen,

To simplify the model, we setk =m=n;D=¥":S; A = I, — S?;
SE dlag(51 9000 ,5K)t.

CSN; (1, T, )+ fiok(y) = 27X du(y: 1, ) O4(STH(y—p); 0, b~ ?).

fiif INA
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Skew-Normal Random Fields

CSN vectors

CSNpm(p, X, D, v, A):

_ 1 : tr, .
fn,m(y) - cbm(o, V, A + thD) ¢n(}/v /“Lv z)d>m(D (y :u‘)' V? A)
In WACS-gen,

To simplify the model, we setk =m=n;D=¥":S; A = I, — S?;
SE dlag(51 9000 ,5K)t.

CSN; (1, T, )+ fiok(y) = 27X du(y: 1, ) O4(STH(y—p); 0, b~ ?).

e

X =x7"2(X - p)~ CSN(0, I5, S).

71/60



Skew-Normal Random Fields

Estimation of the parameters

Estimation is done by weighted moments (Flecher, Allard and
Naveau, 2009 Stat. Prob. Letters)

—mu Y+, AxXt'/?
E[¢H(Y7ov /n)] = 2n¢'2n (Ov |: 0 :| ’ |: AZ1/£] In

Bivariate example: 1 = pupo =01 =02 =1; A =0.89 et p = 0.8.
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