
Program Product

GC26-4061-0
File No. 5370-31

MVS/370
Linkage Ed"t lor and Load

~:::a::C~I~: Product 5665-295 er

r'LEASE RETURN 10:
PANSOP\-\\C S'fS1EM \NC

, , '\ \

--=-:-:.:: == - ----=- =-:. === -~-=':'-- -.-

First Edition (April 1983)

This edition applies to Release 1.0 of MVS/370 Data Facility
Product, Program Product 5665-295, and to any subsequent
releases until otherwise indicated in new editions or technical
newsletters.

Changes are periodically made to the information herein; before
using this publication in connection with the operation of IBM
systems, consult the latest IBM System/370 and 4300 Processors
Bibliography, GC20-0001, for the editions that are applicable
and current.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available
in all countries in which IBM operates. Any reference to an IBM
program product in this publication is not intended to state or
imply that only IBM's program product may be used. Any
functionally equivalent program may be used instead.

Publications are not stocked at the address given below;
requests for IBM publications should be made to your IBM
representative or to the IBM branch office serving your
locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, P.O. Box 50020, Programming
Publishing, San Jose, California, U.S.A. 95150. IBM may use or
distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1983

J

PREFACE

This publication supports the MVS/370 Data Facility Product and
provides application programmers with the information necessary
to use the Linkage Editor and Loader to prepare the output of a
language translator for execution. Additional information on the
operation and use of the linkage editor and loader is directed
to the system programmer responsible for installing and
maintaining the operating system.

The "Introduction" defines the functions and gives
recommendations for the use of the linkage editor and loader.
Part 1 describes the linkage editor, and should be read before
Part 2, which describes the loader.

The linkage editor combines and edits modules to produce a
single module that can be brought into storage by program fetch
for execution. It operates as a processing program rather than
as part of the control program. The linkage editor provides
several processing facilities that are performed automatically
or invoked in response to control statements prepared by the
programmer.

Part 1, which consists of seven chapters and four appendixes,
describes the processing facilities and operation of the linkage
editor. The seven chapters describe:

• The function of the linkage editor

• The input to the linkage editor

• The output from the linkage editor

• Module editing functions

• Design and specification of overlay programs

• The job control language necessary to run a linkage editor
job step

• The linkage editor control statements

The last two chapters are summaries of reference information to
be used after the general information in the first five chapters
is mastered. The appendixes to Part 1 contain sample programs,
information on the invocation of the linkage editor, storage
requirements, and size parameter guidelines.

The loader program combines the basic editing and loading
functions of the linkage editor and program fetch in one job
step. It is designed for high-performance loading of modules
that do not require the special processing facilities of the
linkage editor and fetch, such as overlay. The loader does not
produce load modules for program libraries.

Part 2 of this publication describes the loader. The
introduction to this part describes the functional
characteristics of the loader, along with its compatibility with
the linkage editor and restrictions on its use. The chapter on
using the loader describes:

• The job control language statements and invocation
procedures for the loader

• Loader input and output

• User program data

The appendixes to Part 2 contain sample input, a description of
loader return codes, storage considerations, and a description

Preface iii

PUBLICATIONS

of the format of the load module. All of these items are
discussed in relation to the capabilities of the linkage editor;
therefore, you should be familiar with Part 1 of this
publication.

The diagnostic messages issued by both the linkage editor and
the loader program are described in Linkage Editor and Loader
Messages. The description of each message includes an
explanation, a system action, and a problem determination action
to be taken.

TIME SHARING OPTION (TSO)

The following publication contains procedures for invoking the
linkage editor or loader from the terminal and gives a brief
description of the options that can be specified under TSO.

OS/VS2 TSO Terminal User's Guide, GC28-0645

Further information on TSO can be found in:

• OS/VS2 MVS System Programming Library: TSO, GC28-0629

• OS/VS2 TSO Command Language Reference, GC28-0646

ADDITIONAL PUBLICATIONS

For more information on the linkage editor and loader, see the
following manuals:

• MVS/370 Linkage Editor and Loader Messages, GC26-4067

• MVS/370 Linkage Editor Logic, LY26-3921

• MVS/370 Loader Logic, LY26-3922

Within the text, references are made to the following
publications:

• MVS/370 Utilities, GC26-4065

• OS/VS2 Data Areas, SYB8-0606

• OS/VS2 MVS JCL, GC28-0692

• OS/VS2 MVS System~ramming Library: Initialization and
Tuning Guide, GC28-1029

• OS/VS2 MVS System Programming Library: Service Aids,
GC28-0674

• OS/VS2 MVS Supervisor Services and Macro Instructions,
GC28-0683

• OS/VS System Modification Program (SMP) System Programmers
Guide, GC28-0673

iv MVS/370 Linkage Editor and Loader

In addition, you may wish to consult the following manuals for
more information on specific topics.

• MVS/370 Data Management Services, GC26-4058

• MVS/370 System Generation Reference, GC26-4063

• OS/VS Message Library: VS2 Routing and Descriptor Codes,
GC38-1102

• OS/VS Message Library: VS2 System Codes, GC38-1008

• OS/VS Message Library: VS2 System Messages, GC38-1002

Preface y

J

J

J

CONTENTS

Introduction

Part 1. Linkage Editor
Object and Load Modules ..

External Symbol Dictionary
Text
Relocation Dictionary
End Indication

Linkage Editor Processing
Input and Output Sources
Load Module Creation

Assigning Addresses ...
Resolving External References

Functions of the Linkage Editor
Links Modules
Edits Modules ..
Aligns Control Sections or Common Areas on Page

B 0 u n da r i e s
Accepts Additional Input Sources
Reserves Storage
Processes Pseudo Registers
Creates Overlay Programs
Creates Multiple Load Modules. .
Provides Special Processing and Diagnostic Output

Options .
Assigns Load Module Attributes. .
Allocates User-Specified Virtual Storage Areas
Stores System Status Index Information
Traces Processing History
Lengthens Control Sections or Named Common Sections
Assigns an Authorization Code to Output Load Modules
Assigns Addressing Mode
Assigns Residence Mode
AMODE/RMODE Hierarchy
Assigns Read-only Attribute

Relationship to the Operating System
Time Sharing Option (TSO)

Input to the Linkage Editor
Primary Input Data Set

Object Modules
From Cards . .
As a Member of a Partitioned Data Set
Passed from a Previous Job Step
Created in a Separate Job

Control Statements
Object Modules and Control Statements

Control Statements in the Input Stream
Control Statements in a Separate Data Set

Automatic Library Call
SYSLIB DD Statement

System Call Library
Private Call Libraries
Concatenation of Call Libraries

Library Control Statement
Additional Call Libraries
Restricted No-Call Function
Never-Call Function

HCAL Option
Included Data Sets . .

Including Sequential Data Sets
Including Library Members
Including Concatenated Data Sets

output from the Linkage Editor
Output Load Module .

Output Module Library
Member Name

1

2
4
5
6
6
7
7
7
7
8
9
9

10
11

12
12
13
13
13
14

14
14
14
14
15
15
15
15
16
17
18
18
18

19
19
19
20
20
21
22
22
23
23
23
24
25
25
25
26
26
27
27
28
28
29
30
30
31

33
33
33
34

Contents vi i

Alias Hames
Entry Point .

Authorization Code .
Residence and Addressing Modes .

Reserving Storage in the Output Load
Processing Pseudo Registers
Multiple Load Module Processing

Diagnostic Output
Diagnostic Messages

Module Disposition Messages
Error/Warning Messages
Sample Diagnostic Output

Optional Output
Control Statement Listing
Module Map
Cross-Reference Table

Module Editing •••.•.••••.
Editing Conventions

Changing External Symbols
Replacing Control Sections

Automatic Replacement
Example 1
Example 2

REPLACE Statement

...
Module

Deleting a Control Section or Entry Hame
Ordering Control Sections or Named Common Areas
Aligning Control Sections or Named Common Areas on Page

Boundaries

overlay Programs ..•••••.• .••
Design of an Overlay Program

Single Region Overlay Program
Control Section Dependency
Segment Dependency
Length of an Overlay Program
Segment Origin
Communication Between Segments
Overlay Process

Multiple Region Overlay Program
Specification of an Overlay Program

Segment Origin
Region Origin .
Positioning Control Sections

Using Object Decks
Using INCLUDE Statements
Using IHSERT Statements

Special Options
OVLY Option
LET Option
XCAL Option
AMODE and RMODE Options

Special Considerations
Common Areas
Storage Requirements
Overlay Communication

CALL Statement or CALL Macro Instruction
Branch Instruction. .
Segment load (SEGLD) Macro Instruction
Segment Wait (SEGWT) Macro Instruction

Job Control Language Summary
EXEC Statement--Introduction .
EXEC Statement--Job Step Options

Module Attributes
Scatter Format Attribute
Not Editable Attribute
Only-loadable Attribute
Overlay Attribute .
Reusability Attributes
Refreshable Attribute
Test Attribute
Authorization Code ..
Addressing Mode Attribute

viii MVS/370 Linkage Editor and Loader

35
36
37
37
37
38
38
39
39
39
40
41
41
41
42
43

45
45
47
48
49
49
50
51
53
55

56

58
58
59
59
61
61
63
64
67
68
70
71
72
73
74
74
75
76
76
77
77
77
77
77
79
80
80
81
82
83

85
85
85
86
86
87
87
87
87
88
88
89
89

Residence Mode Attribute
Combinations of Addressing Mode and Residence Mode
Default Attributes
Incompatible Attributes

Special Processing Options
Exclusive Call Option
Let Execute Option
No Automatic Library-Call Option

Space Allocation Options
SIZE Option
DCBS Option

Output Options
Control Statement Listing Option
Module Map Option
Cross Reference Table Option .
Alternate Output (SYSTERM) Option

Incompatible Job Step Options
EXEC Statement--Region Parameter
EXEC Statement--Return Code
DD Statements
Linkage Editor DD Statements

SYSLIN DD Statement
SYSLIB DD Statement
SYSUT1 DD Statement
SYSPRINT DD Statement
SYSLMOD DO Statement
SYSTERM DO Statement

Additional 00 Statements
Cataloged Procedures

Linkage Editor Cataloged Procedures
Procedure LKED
Procedure LKEDG

Overriding Cataloged Procedures
Overriding the EXEC Statement
Overriding DD Stat~ments

Adding DD Statements

Linkage Edi tor Control statement SLL 'ary
General Format
Format Conventions
Placement Information
ALIAS Statement
CHANGE Statement
ENTRY statement
EXPMW Statement
IDENTIFY Statement
INCLUDE Statement
INSERT Statement
LIBRARY Statement
MODE Statement
NAME Statement
ORDER Statement
OVERLAY Statement
PAGE Statement
REPLACE Statement
SETCODE Statement
SETSSI Statement

Appendix A. Sample Programs
Sample Program COBFORT

Job Control Language
Linkage Editor Output

Sample Program RPLACJOB
Job Control Language

Linkage Editor Control Statements
Linkage Editor Output

Sample Program REGNOVLY
Job Control Language
Linkage Editor Control Statements
Linkage Editor Output

Sample Program PARTDS
Job Control Language
Linkage Editor Control Statements
Linkage Editor Output

89
90
90
91
91
91
91
91
92
92
97
98
98
98
98
98
99

100
100
101
102
102
103
103
104
104
105
106
107
107
107
109
110
110
111
111

112
112
112
112
114
115
117
118
119
121
122
123
125
127
128
130
132
134
136
137

138
138
138
139
139
141
142
143
143
144
145
146
149
150
151
151

Contents i x

APpendix B. Invoking the Linkage Editor

Appendix C. storage Requirements and Capacities
Capac;ties
Intermed;ate Data Set

Appendix D. Size Parameter Guidelines

Part 2. Loader ••.••
Functional Characteristics .
Compat;bility and Restrictions

Time Sharing Option (TSO)
Processing Object Modules in

using the Loader
Input for the Loader

EXEC Statement
PARM Field Format

• • .. oo..

Virtual Storage

Loader Opt ions
CALLINOCALL: Automatically Searching SYSLIB
EP=name: Specifying the Program Entry Point
LETINOLET: Executing with Severity 2 Errors
MAPINOMAP: Printing a Program Map
NAME=name: Identifying the Loaded Program
PRINTINOPRINT: Printing Messages on SYSLOUT
RESINORES: Automatically Searching the Link

Queue
SIZE=size: Specifying Virtual Storage
TERMINOTERM: Sending Messages to SYSTERM

EXEC Statement Example
DD Statements

SYSLIN DO Statement
SYSLIB DD Statement
SYSLOUT DO Statement
SYSTERM DD Statement

Loaded Program Data
Invoking The Loader
Loader Output

APpendix E. Sample Input for the Loader

APpendix F. Loader Return Codes

APpendix G. storage Considerations

APpendix H. Load Module Format

Glossary

Index

x MVS/370 Linkage Editor and Loader

153

155 J 155
158

159

160
160
163
163
163

164
164
164
164
164
165
165
165
166
166

.. 166
Pack Area

166
167
167
167
168
168
169
169
170
170

J 170
174

176

178

180

182

183

186

FIGURES

l.
2.

3.
4.
5.

6.
7.
8.
9.

10.
1l.
12.
13.
14.
15.
16.
17.
18.
19.

20.
2l.
22.
23.
24.
25.
26.
27.
28.
29.

30.
3l.
32.
33.

34.
35.
36.
37.
38.
39.

40.

4l.
42.
43.
44.

45.
46.
47.
48.
49.
50.
5l.
52.
53.
54.
55.
56.
57.
58.

59.

Preparing a Source Module for Execution
Preparing a Source Module for Execution, and Executing
the Load Module . .
External Names and External References
Use of the External Symbol Dictionary
Input, Intermediate, and Output Sources for the Linkage
Editor . . .
A Load Module Produced by the Linkage Editor
Linkage Editor Processing--Module Linkage
Linkage Editor Processing--Module Editing
Linkage Editor Processing--Additional Input Sources
System Automatic Call Libraries
Processing of One INCLUDE Control statement .
Processing of More than One INCLUDE Control Statement
Diagnostic Messages Issued by the Linkage Editor
Module Map . ..
Cross-Reference Table .
Editing a Module
Changing an External Reference and an Entry Point
Automatic Replacement of Control Sections .
Replacing a Control Section with the REPLACE Control
Statement .. . • .
Deleting a Control Section
Ordering Control Sections
Aligning Control Sections on Page Boundaries
Control Section Dependencies
Single-Region Overlay Tree Structure
Length of an Overlay Module
Segment Origin and Use of Storage
Inclusive and Exclusive Segments
Inclusive and Exclusive References
Location of Segment and Entry Tables in an Overlay
Module . . .
Control Sections Used by Several Paths .. .
Overlay Tree for Multiple-Region Program ..
Symbolic Segment Origin in Single-Region Program .
Symbolic Segment and Region Origin in Multiple-Region
Program
Common Areas before Processing
Common Areas after Processing
Branch Sequences for Overlay Programs
Use of the SEGLD Macro Instruction
Use of the SEGWT Macro Instruction ..
SYSUTI and SYSLMOD Device Types and Their Maximum
Record Sizes ..
Load Module Buffer Area and SYSLMOD and SYSUT1 Record
Sizes •
Incompatible Job Step Options for the Linkage Editor
Linkage Editor Return Codes . . .
Linkage Editor ddnames .
DCB Requirements for Object Module and Control
statement Input
DCB Requirements for SYSPRINT ...
DCB Requirements for Additional Input Data Sets
Statements in the LKED Cataloged Procedure
Statements in the LKEDG Cataloged Procedure
Overlay Structure for INSERT Statement Example
Output Load Module for ORDER Statement Example
Overlay Structure for OVERLAY Statement Example
Output Load Module for PAGE Statement Example
Linkage Editor Output for Sample Program COBFORT
Linkage Editor Output for Job Step that Created SUBONE
Job Control Statements for RPLACJOB .
Linkage Editor Control Statements for RPLACJOB
linkage Editor Output for Sample Program RPLACJOB
Overlay Tree for Multiple-Region Sample Program
REGNOVLY
Job Control Statements for REGHOVLY

2

3
4
6

8
9

11
12
13
25
29
30
42
43
44
45
48
51

53
54
56
57
60
61
62
64
65
66

67
69
70
72

73
78
79
82
83
84

93

94
99

100
102

103
104
106
107
109
123
129
131
133
140
141
142
142
143

144
145

Figures xi

60.
6l.
62.
63.

64.
65.

66.
67.
68.
69.

70.

7l.

72.
73.
74.
75.

76.
77.
78.

Linkage Editor Output for Sample Program REGNOVLY
Input Statements for IEBUPDTE Utility Program
Job Control Statements for PARTDS
Linkage Editor Capacities for Minimal SIZE Values (96K
bytes, 6K bytes)
Loader Processing--SYSLIB Resolution
Loader Processing--Link Pack Area and SYSLIB
Resolution
Loader Processing--Automatic Editing
Input Deck for the Loader--Basic Format
Loader and Loaded Program Data Input Stream
Using the LINK Macro Instruction to Refer to the
Loader
Using the LOAD and CALL Macro Instructions to Refer to
HEWLOADR (Loading Without Identification). .
Using the LOAD and CALL Macro Instructions to Refer to
HEWLOAD (Loading With Identification)
Module Map Format Example
Input Deck for a Load Job. . .
Input Deck for a Compile-Load Job
Input Deck for Compilation and Loading of the Three
Modules
Return Codes •
Virtual Storage Requirements
load Module Format . .

xii MVS/370 linkage Editor and loader

t;~ .\
151"

155
161

162
162
164
170

172

173

174
175
176
176

177
178
180
182

INTRODUCTION

The linkage editor and the loader processing programs prepare
the output of language translators for execution. The linkage
editor prepares a load module that is to be brought into storage
for execution by program fetch. The loader prepares the
executable program in storage and passes control to it directly.

The linkage editor provides several processing facilities, such
as creating overlay programs and aiding program modification.
(The linkage editor is also used to build and edit system
libraries.) The loader provides high performance loading of
programs that do not require the special processing facilities
of the linkage editor.

Use of the linkage editor is recommended in the following cases:

• If the program requires linkage editor services in addition
to the MAP, lET, NeAL, and SIZE options

• If the program uses linkage editor control statements, such
as INCLUDE, NAME, OVERLAY

• If a load module is to be produced for a program library

Use of the loader is recommended if the program only requires
the use of the following linkage editor options: MAP, lET, NCAl,
and SIZE. Because of its fewer options and because it can
process a job in one job step, the loader reduces editing and
loading time by about one-half.

linkage editor processing is performed in a link-edit step. The
linkage editor can be used for compile-link edit-go,
compile-link edit, link-edit, and link-edit-go jobs. Loader
processing is performed in a load step, which is equivalent to
the link-edit-go steps. The loader can be used for compile-load
and load jobs.

The MVS/370 Data Facility Product linkage editor runs in 24-bit
addressing mode.

Details of how each language interfaces with the linkage editor
can be found in the publication(s) describing that language.

Introduction 1

PART 1.

SOUITl'

\1 mlulL'

LINKAGE EDITOR

Linkage editor processing is a necessary step that follows the
source program assembly or compilation of any problem program.
The linkage editor is both a processing program and a service
program used in association with the language translators.

Every problem program is designed to fulfill a particular
purpose. To achieve that purpose, the program can generally be
divided into logical units that perform specific functions. A
logical unit of coding that performs a function, or several
related functions, is a module. Separate functions should be
programmed into separate modules, a process called modular
programming. Each module can be written in the symbolic
language that best suits the function to be performed. (The
symbolic languages are Assembler, ALGOL, BASIC, COBOL, FORTRAN,
PASCAL, PL/I, and RPG.)

Each module is separately assembled or compiled by one of the
language translators. The input to a language translator is a
source module; the output from a language translator is an
object module. Before an object module can be executed, it must
be processed by the linkage editor. The output of the linkage
editor is a load module (Figure 1).

I ""d
\1<lduk

-B
Figure 1. Preparing a Source Module for Execution

An object module is in relocatable format with unexecutable
machine code. A load module (see "Appendix H. Load Module
Format" on page 182) is also relocatable, but with executable
machine code. A load module is in a format that can be loaded
into virtual storage and relocated by program fetch (Figure 2 on
page 3).

2 MVS/370 Linkage Editor and Loader

Prog,rarn
I'e'teh

F 'ceu tion

l

Figure 2. Preparing a Source Module for Execution, and Executing the Load Module

Any module is composed of one or more control sections. A
control section is a unit of coding (instructions and data) that
is, in itself, an entity. All elements of a control section are
loaded and executed in a constant relationship to one another.
A control section is, therefore, the smallest separately
relocatable unit of a program.

Each module in the input to the linkage editor may contain
symbolic references to control sections in other modules; such
references are called external references. These references are
made by means of address constants (adcons). The symbol
referred to by an external reference must be either the name of
a control section or the name of an entry point in a control
section. Control section names and entry names are called
external names. By matching an external reference with an
external name, the linkage editor resolves references between
modules. External references and external names are called
external svmbols (Figure 3 on page 4). An external symbol is
one that is defined in one module and can be referred to in
another.

Part 1. Linkage Editor 3

E:dcrnal
Sym bois

Input
Module A

fL/'------......,,/
CSECT A I

ENTRY All

CALL 131

Control Section

AI
131

From A I to B I
From H I to A II

[entry Naille

All

lnpu t
Module B

CSECT B I

CALLAII

Output Load
Module AB

fL/----.,..-/
CSECT AI

ENTRY All

CALL B I

CSKT 13 I

CALLAll

Figure 3. External Names and External References

OBJECT AND LOAD MODULES

Object modules and load modules have the same basic logical
structure. Each consists of:

• Control dictionaries, containing the information necessary
to resolve symbolic cross-references between control
sections of different modules, and to relocate address
constants. Control dictionary entries are generated when
external symbols, address constants, or control sections are
processed by a language translator. Each language
translator usually produces two kinds of control
dictionaries: an external symbol dictionary (ESD) and a
relocation dictionary (RLD).

• Text, containing the instructions and data of the program.

• An end-of-module indication: an END statement in an object
module, an end-of-module indicator in a load module.

Each control dictionary, text, and end indication is described
in greater detail below.

Both object modules and load modules can contain data used by
the linkage editor to create CSECT identification (IDR) records.
If the language translator creating an object module supports
CSECT identification, the input object module can contain
translator data for identification records on the END statement.
Input load modules differ from object modules in the type of
data they supply. Input load modules can also provide HMASPZAP
data, linkage editor data, and user data to the identification
records that are built during linkage editor processing. During

4 MVS/370 Linkage Editor and Loader

J

the link-edit step, the optional IDENTIFY control statement is
used to supply the optional user data for the CSECT
identification records. See "IDENTIFY Statement" on page 119
for more information.

External symbol Dictionary

The external symbol dictionary (ESD) contains one entry for each
external symbol defined or referred to within a module. The
dictionary contains an entry for each external reference, pseudo
register (external dummy section), entry name, named or unnamed
control section, and blank or named common area. An entry name,
pseudo register, or named control section can be referred to by
any control section or separately processed module; an unnamed
control section cannot.

Each entry identifies a symbol, or a symbol
its location, if known, within the module.
external symbol dictionary is classified as
following:

reference, and gives
Each entry in the
one of the

• External reference--a symbol that is defined as an external
name in another separately processed module, but is referred
to in the module being processed. The external symbol
dictionary entry specifies the symbol; the location is
unknown.

• ~Ieak external reference--a special type of external
reference that is not to be resolved by automatic library
call unless an ordinary external reference to the same
symbol is found. The external symbol dictionary entry
specifies the symbol; the location is unknown.

• Entry name--a name that defines an entry point within a
control section. The external symbol dictionary entry
specifies the symbol and its location, and identifies the
control section to which it belongs.

• Control section name--the symbolic name of a control
section. The external symbol dictionary entry specifies the
symbol, the length of the control section, and its location.
In this case, the location represents the origin of the
control section, which is the first byte of the control
section. This external symbol dictionary entry may also
specify the addressing mode and residence mode of the
control section and whether or not the control section is
read-only.

• Blank or named common area--a control section used to
reserve a virtual storage area that can be referred to by
other modules. The reserved storage area can be used, for
example, as a communications region within a program or to
hold data supplied at execution time. The external symbol
dictionary entry specifies the name, if there is one, and
the length of the area. If there is no name, the name field
contains blanks.

• Private code--an unnamed control section. This external
symbol dictionary entry specifies the length of the control
section and the origin. The name field contains blanks.
The external symbol dictionary entry may also specify the
addressing mode and residence mode of the control section
and whether or not the control section is read-only.

• Pseudo register--a special facility (corresponding to the
external dummy section feature of Assembler H Version 2)
that can be used to write reenterable programs. A pseudo
register is a dynamically obtained word in virtual storage
that can be used as a pointer to dynamically acquired
storage; that is, the space for such areas is not reserved
in the load module but is acquired during execution. The
external symbol dictionary contains the name, length,
alignment, and displacement of the pseudo register.

Part 1. Linkage Editor 5

./

Input
Module A

LSD

('SECT A I

ENTRY A II

CALL B I

/

""/

/
/

/

1/

V,

./

\ ,
\

\

Symb()1

Al

All

III

When processing input modules, the linkage editor resolves
references between modules by matching the referenced symbols to
defined symbols. To do this, the linkage editor searches for
the external symbol definition in the external symbol dictionary
of each input module. As shown in Figure 4, the linkage editor
matches the external reference to BI by locating the definition
for Bl in the external symbol dictionary of Module B. In the
same way, it matches the external reference to All by locating
the definition for All in the external symbol dictionary of
Module A.

I:SI) I'm ,\

Type Lm'atl()n

C()ntr()1 Known SYlllbol
Sec,ti()n

Naille
III

Fntry Name Kn()\\'n .,
I"terllal lInkn()\\n ~, ,\ II
Rc'krel1L'e

LSD I'm B

Type L()cation

C()ntr()1 K n()\\'n

Section
Name

E,terllal l! nkn()\\'n

Reference

1\
\
\ ,

\

/
/

/

,
I

Input
Module B

ESD

CSECT BI

CALL All

./

""

i;o'

Figure 4. Use of the External Symbol Dictionary

Text

The text contains the instructions and data of the module.

Note: Object module text records may not necessarily be in
ascending address sequence (it is possible that the language
translator may have created them out of order). When processing
large object modules with out-of-order text, the performance of
the linkage editor may be improved by presorting the object
module text in ascending address sequence (columns 6 through 8
of the text record).

Relocation Dictionary

The relocation dictionary (RLD) contains one entry for each
relocatable address constant that must be modified before a
module is executed. An entry identifies an address constant by
indicating both its location within a control section and the
external symbol whose value must be used to compute the value of
the address constant. (The external symbol is defined in an
external symbol dictionary entry in another control section or
module.)

The linkage editor uses the relocation dictionary whenever it
processes a module to adjust the address constants for
references to other control sections and modules. This
dictionary is also used to adjust these address constants again
after program fetch reads an output load module from a library
and loads it into virtual storage for execution.

6 MVS/370 Linkage Editor and Loader

End Indication

The end of a load module is marked by an end-of-module indicator
(EOM). The EOM cannot, unlike the assembler END instruction,
specify an entry point. Therefore, whenever a load module is
reprocessed by the linkage editor, a main entry point should be
specified on an ENTRY statement. If one is not specified, the
linkage editor will assign the first byte of the first control
section encountered as the entry point.

LINKAGE EDITOR PROCESSING

This section discusses the input and output sources of the
linkage editor, and the way in which the linkage editor produces
a load module.

INPUT AND OUTPUT SOURCES

LOAD MODULE CREATION

The linkage editor accepts two major types of input:

• Primary input, which can contain only object modules and
linkage editor control statements (called control statements
in the following text).

• Additional user-specified input, which can contain either
object modules and control statements, or load modules.
This input is either specified by the user as input, or
incorporated automatically by the linkage editor from a call
library.

During processing, the linkage editor generates intermediate
data. Intermediate data is placed on a direct access storage
device when virtual storage allocated for input data is
exhausted.

Output of the linkage editor is of two types:

• A load module, which is always placed in a library (a
partitioned data set) as a named member

• Diagnostic output, which is produced as a sequential data
set

Figure 5 on page 8 shows the input, intermediate, and output
sources for the linkage editor program.

In processing object and load modules, the linkage editor
assigns consecutive relative virtual storage addresses to all
control sections and resolves all references between control
sections. Object modules produced by several different language
translators can be used to form one load module.

An output load module is composed of all input object modules
and input load modules processed by the linkage editor. The
control dictionaries of an output module are, therefore, a
composite of all the control dictionaries in the linkage editor
input. The control dictionaries of a load module are called the
composite external symbol dictionary (CESD) and the relocation
dictionary (RLD). The load module also contains all of the text
from each input module, and one end-of-module indicator (see
Figure 6 on page 9). See also "Appendix H. Load Module Format"
on page 182 for the format of a load module.

Part 1. Linkage Editor 7

Assigning Addresses

Primary
Input

U ,er~

Specified
Input

Inter
mediate
Ihta

Load
\l()dule

Figure 5. Input, Intermediate, and Output Sources for the
Linkage Editor

Each module to be processed by the linkage editor has an origin
that was assigned during assembly, compilation, or a previous
execution of the linkage editor. When several modules, each
with an independently assigned origin, are to be processed by
the linkage editor, the sequence of the addresses is
unpredictable; two input modules may even have the same origin.

Each input module can be made up of one or more control
sections. To produce an executable output load module, the
linkage editor assigns relative virtual storage addresses to
each control section by assigning an origin to the first control
section encountered and then assigning addresses, relative to
that origin, to all other control sections to be included in the
output load module. The value assigned as the origin of the
control section is used to relocate each address-dependent item
in the control section.

Although the addresses in a load module are consecutive, they
are all relative to base zero. When a load module is to be
executed, program fetch prepares the module for execution by
loading it at a specific virtual storage location. The
addresses in the module are then increased by this base address.
Each address constant must also be readjusted, another function
of program fetch.

8 MVS/370 Linkage Editor and Loader

Module A

./ ./

V
TXT

./
RLD

V
END l/

ModuleB

./ ./
ESD

./
TXT

./
RLD

./'"
END

Figure 6. A load Module Produced by the linkage Editor

Resolving External References

The linkage editor also resolves external references in input
modules. Cross-references between control sections in different
modules are symbolic. They must be resolved relative to the
addresses assigned to the load module. The linkage editor
calculates the new address of each relocatable expression in a
control section and determines the assigned origin of the item
to which it refers.

FUNCTIONS OF THE LINKAGE EDITOR

linkage editor input may consist of a combination of object
modules, load modules, and control statements. The primary
function of the linkage editor is to combine these modules, in
accordance with the requirements stated on control statements,
into a single output load module. Although this linking or
combining of modules is its primary function, the linkage editor
also:

• Edits modules by replacing, deleting, rearranging, and
ordering control sections as directed by control statements

• Aligns control sections and named common areas on 4K-byte
page boundaries as directed by control statements

• Accepts additional input modules from data sets other than
the primary input data set, either automatically or upon
request

• Reserves storage for the common control sections generated
by Assembler and FORTRAN language translators, and static
external areas generated by Pl/!

Part 1. linkage Editor 9

Links Modules

• Computes total length and assigns displacements for all
pseudo registers (external dummy sections)

• Creates overlay programs in a structure defined by control
statements

• Creates multiple output load modules as directed by control
statements

• Provides special processing and diagnostic output options

• Assigns module attributes that describe the structure,
content, and logical format of the output load module

• Allocates storage areas for linkage editor processing as
specified by the programmer

• Stores system status index information in the directory of
the output module library (systems personnel only)

• Traces the processing history of a program

• Allows the user to lengthen a control section or named
common section without changing source code, reassembling,
or recompliling

• Allows the user to assign an authorization code to a load
module that Ca) makes it a restricted resource and (b)
enables it to pass control to other restricted resources

• Assigns an addressing mode for the main entry point, all
true aliases, and each alternate entry point into the output
load module

• Assigns a residence mode for the output load module

• Indicates which control sections are read-only (relevant
only in creating a nucleus load module for MVS/XA)

Each of the linkage editor functions is described in the
following paragraphs.

Processing by the linkage editor makes it possible for the
programmer to divide a program into several modules, which can
be separately assembled or compiled, and each containing one or
more control sections. The linkage editor combines these
modules into one output load module (see Figure 7 on page 11)
with contiguous, virtual storage addresses. During processing
by the linkage editor, references between modules within the
input are resolved. The output module is placed in a library
(partitioned data set).

10 MVS/370 Linkage Editor and Loader

J

Load
Module

Object

M "till Ie

Figure 7. linkage Editor Processing--Module linkage

Edits Modules

Program modification is made easier by the editing functions of
the linkage editor. When the functions of a program are
changed, the programmer modifies, then compiles and link-edits
again, only the affected control sections instead of the entire
source module.

Control sections can be replaced, renamed, deleted, moved, or
ordered as directed by control statements. Control sections can
also be automatically replaced by the linkage editor. External
symbols can be changed or deleted as directed by control
statements.

Figure 8 on page 12 illustrates the module editing function of
the linkage editor.

Part 1. Linkage Editor 11

Control
Statcments

Object

Module

A

Load
Module

B

C

/

Figure 8. Linkage Editor Processing-Module Editing

Aligns Control Sections or Common Areas on Page Boundaries

Luad

Modulc

A
C

Control sections or named common areas in the output load module
can be aligned on 4K-byte page boundaries. Alignment on page
boundaries enables the programmer to use real storage more
efficiently and thus appreciably reduce the paging rate for the
job.

Accepts Additional Input Sources

standard subroutines can be included in the output module, thus
reducing the work in coding programs. The programmer can
specify that a subroutine be included at a particular time
during the processing of the program by using a control
statement. When the linkage editor processes a program that
contains this statement, the module containing the subroutine is
retrieved from the indicated input source and made a part of the
output module (Figure 9 on page 13).

Symbols that are still undefined after all input modules have
been processed cause the automatic library-call mechanism to
search for modules that will resolve these references. When a
module name is found that matches the unresolved symbol, the
module is processed by the linkage editor and also becomes part
of the output module (Figure 9).

Hote: The linkage editor distinguishes a special type of
external reference-the weak external reference. An unresolved
weak external reference does not cause the linkage editor to use
the automatic library-call mechanism. Instead, the reference is
left unresolved, and the load module is marked as executable.

12 MVS/370 Linkage Editor and Loader

Reserves storage

Primary Input:

Control
Statements

Additional Input:

Object
Module E

Load
Module

A
B
C
D
I'
I
G

Figure 9. Linkage Editor Processing--Additional Input Sources

The linkage editor processes common control sections generated
by the FORTRAN and Assember language translators. The static
external storage areas generated by the PL/I compiler are
processed in the same way. The common areas are collected by
the linkage editor, and a reserved virtual storage area is
provided within the output module.

Processes Pseudo Registers

Pseudo registers, like the external dummy sections of Assembler
H Version 2, aid in generating reenterable code. The linkage
editor processes pseudo registers by accumulating the total
length of storage required for all pseudo registers and
recording the displacement of each. During execution, the
program dynamically acquires the necessary storage.

creates overlay Programs

To minimize virtual storage requirements, the programmer can
organize a program into an overlay structure by dividing it into
segments according to the functional relationships of the
control sections. Two or more segments that need not be in
virtual storage at the same time can be assigned the same

Part 1. Linkage Editor 13

relative virtual storage addresses, and can be loaded at
different times.

The
The programmer uses control statements to specify the
relationship of segm0nts within the overlay structure.
seg~ents of the load module are placed in a library so
control program can load them separately when the load
executed.

that the
module is

creates Multiple Load Modules

The linkage editor can also process its input to form more than
one load module within a single job step. Each load module is
placed in the library under a unique member name, as specified
by a control statement.

Provides special Processing and Diagnostic output Options

The programmer can specify special processing options that
negate automatic library call or the effect of minor errors. In
addition, the linkage editor can produce a module map or
cross-reference table that shows the arrangement of control
sections in the output module and indicates how they communicate
with one another. A list of the control statements processed
can also be produced.

Throughout processing, errors and possible error conditions are
logged. Serious errors cause the linkage editor to mark the
output module not executable. Additional diagnostic data is
automatically logged by the linkage editor. The data indicates
the disposition of the load module in the output module library.

Assigns Load Module Attributes

When the linkage editor generates a load module, it places an
entry for the module in the directory of the library. This
entry contains attributes that describe the structure, content,
and logical format of the load module. The control program uses
these attributes to determine how a module is to be loaded, what
it contains, if it is executable, whether it is executable more
than once without reloading, and if it can be executed by
concurrent tasks. Some module attributes can be specified by
the progra~meri others are specified by the linkage editor as a
result of information gathered during processing. See also
"Assigns Addressing Mode" on page 15, "Assigns Residence Mode"
on page 16, and "Assigns Read-only Attribute" on page 18.

Allocates User-Specified Virtual Storage Areas

The programmer can specify the total amount of virtual storage
to be made available to the linkage editor, the amount to be
used for the load module buffer, and the buffer for the output
load module.

stores system status Index Information

The following information is intended for systems personnel
responsible for maintaining IBM-supplied load modules. It is
not generally applicable to non-IBM load modules.

Four bytes in the library directory entry for IBM-supplied
modules are used to store system status index information.
information, which is used for maintenance of the modules,
placed in the directory with a control statement.

14 MVS/370 Linkage Editor and Loader

load
This

is

Traces processing History

Tracing the processing history of a program is simplified by the
CSECT identification (lOR) records created and maintained by the
linkage editor. A CSECT identification record can contain data
that describes:

• The language translator, its level, and the translation date
for each control section

• The most recent processing by the linkage editor

• Any modification made to the executable code of any control
section

Optionally, user-supplied data associated with the executable
code of a control section can also be recorded.

Lengthens Control sections or Named Cammon sections

The user can lengthen control sections or named common sections
of a program to add patch space without changing the source
code, reassembling, or recompiling.

Added space, consisting of binary zeros, is put at the end of a
specified control section by using the EXPAND control statement
(see "Linkage Editor Control Statement Summary" on page 112).
Space cannot be added to a private code or blank common section.

Assigns an Authorization Code to output Load Hodules

The authorized program facility (APF) limits the use of
sensitive system and (optionally) user services and resources to
authorized system and user programs. Authorization is defined
as access to those services and resources. The services and
resources to which access is limited are described in System
Programming Library: Initialization and Tuning Guide.

Programs are authorized at the job-step level. For a job step
to gain authorization initially, the first module loaded at the
start of the job step must be an authorized module, and it must
have been loaded from an authorized library. Otherwise, the job
step is not authorized initially and cannot subsequently gain
authorization.

For a job step to maintain its authorization, all subsequent
modules invoked during the job step (via LINK, LOAD, ATTACH,
and/or XCTL macro instructions) must be loaded from an
authorized library. Otherwise, the job step loses its
authorization and cannot regain authorization.

A library becomes an "authorized" library by the inclusion of
its name in a list called IEAAPFOO. This list is described in
more detail in System Programming Library: Initialization and
Tuning Guide.

A load module becomes "authorized" by the assignment of an
authorization code to the load module during linkage-editing.
This assignment is made via the PARM field parameter AC or via
the control statement SETCODE, which are described in the
sections that follow. See "SETCODE statement" on page 136.

Assigns Addressing Hode

The addressing mode (AMODE) is the attribute of an entry point
into a load module that specifies the addressing mode in effect
when the load module is entered at that entry point at execution
time.

The valid addressing modes are:

Part 1. Linkage Editor 15

24

31

ANY

Indicating that 24-bit addressing will be in effect

Indicating that 31-bit addressing will be in effect

Indicating that either 24-bit or 31-bit addressing may
be in effect

The linkage editor determines the addressing mode for an entry
point (either the main entry point, its true alias, or an
alternate entry point) according to the following rules:

• The linkage editor assigns a default AMODE of 24. This is
done only in the absence of a valid, explicit specification
of the addressing mode for the entry point.

• The linkage editor assigns the AMODE values contained in the
object module's ESD. These AMODE values were specified by
the user at assembly time and represent the AMODE values
assigned to the entry points within the CSECTs and private
code for the module.

• The linkage editor assigns all the entry points into the
load module (the main entry point, its true aliases, and the
alternate entry points) the AMODE value specified as a
parameter in the PARM field of the EXEC statement. This
ANODE value overrides the AMODE value, if any, found in the
ESD data.

• The linkage editor assigns the AMODE value specified as an
operand on the MODE control statement to all of the entry
points into the load module (the main entry point, its true
aliases, and the alternate entry points). This AMODE value
overrides any value specified as a parameter in the EXEC
statement or any values found in the ESD data.

The linkage editor provides the AMODE value for each entry point J
into the load module in its directory entry. In the case of a
true alias of the main entry point or an alternate entry point,
the directory entry contains the AMODE value for both the
alias/alternate entry point and the main entry point.

The AMODE value provided to the linkage editor in the ESD data
of an object module is retained in the ESD data of the load
module, for use in subsequent link-editing, except in the case
of a load module built for overlay. In building a load module
for overlay, the AMODE value in the ESD data of the load module
is lost and can only be reintroduced by inclusion of the object
moduleCs) carrying that value. Use of the overriding AMODE
specifications (the parameter in the PARM field of the EXEC
statement or the operand in the MODE control statement)
establishes the AMODE value carried in the directory entry, but
does not affect the ESD data.

All entry points in load modules built for overlay are assigned
an AMODE of 24, regardless of the ESD data, the PARM field
parameter, or the MODE statement operand.

Ass;gns Res;dence Mode

The residencQ mode (RMODE) is the attribute of a load module
that specifies the residence mode of a load module when it is
loaded into virtual storage for execution.

The valid residence modes are:

24

ANY

Indicating that the module must reside within 24-bit
addressable virtual storage (that is, below the
16-megabyte virtual storage line)

Indicating that the module may reside anywhere in
virtual storage (that is, either above or below the
16-megabyte virtual storage line)

16 MVS/370 Linkage Editor and Loader

The linkage editor determines the residence mode for a load
module according to the following rules:

• The linkage editor assigns a default RMODE of 24. This
occurs only in the absence of a valid explicit specification
of the residence mode for the load module.

• The linkage editor assigns the RMODE specified in the object
module. This RMODE value is specified by the user to the
assembler for the control section or private code. The
RMODE value passes to the linkage editor in the ESD data.
The linkage editor assigns the RMODE value taken from the
control section or private code that contributes to the
output load module, ignoring identically named control
sections and private code that are replaced or deleted.

• As the control sections and private code that contribute to
the output load module are processed, the RMODE value for
the load module, based on the ESD data, is accumulated on a
"most restrictive" basis. This means:

If any section in the load module has an RMODE of 24,
the RMODE for the load module is 24.

If all sections in the load module have an RMODE of ANY,
the RMODE for the load module is ANY.

• The linkage editor assigns to the load module the RMODE
value specified as a parameter in the PARM field of the EXEC
statement. This RMODE value overrides the RMODE value, if
any, found in the ESD data.

• The linkage editor assigns to the load module the RMODE
value specified as an operand on the MODE control statement.
This RMODE value overrides the RMODE value, if any,
specified as a parameter in the PARM field of the EXEC
statement as well as the RMODE value, if any, found in the
ESD data.

Load modules built for overlay are assigned an RMODE of 24,
regardless of the ESD data, the PARM field parameter, or the
MODE statement operand.

The linkage editor provides the RMODE value for the load module
in each directory entry applicable to that load module.

Except in the case of a load module built for overlay, the RMODE
value provided to the linkage editor in the ESD data of an
object module is retained in the ESD data of the load module,
for use in subsequent link-editing. In building a load module
for overlay, the RMODE value in the ESD data of the load module
is lost and can only be reintroduced by inclusion of the object
module(s) carrying that value. Use of the overriding RMODE
specifications (the parameter in the PARM field of the EXEC
statement or the operand in the MODE control statement)
establishes the RMODE value carried in the directory entry, but
does not affect the ESD data.

ANODE/RNODE Hierarchy

The follo~~ing hierarchy is used to determine the addressing and
residence modes of the linkage editor output:

1. Value on the linkage editor MODE statement

2. Value of the parm field on the EXECUTE statement

3. Value in the ESD data produced by the AMODE= or RMODE=
assembler statement

4. Default value of 24

Part 1. Linkage Editor 17

Note: An overlay module always results in an AMODE of 24 and an
RMODE of 24. A load module produced from multiple object
modules results in an RMODE of 24, if anyone of the object
modules has an RMODE of 24.

Assigns Read-only Attribute

A read-only control section (RSECT) is defined by the user in
the source language which assembles the control section. The
assembler indicates in the external symbol dictionary entry for
the control section that it is read-only. The linkage editor
reflects that indication in the scatter table for the output
load module.

The indication of the read-only attribute is relevant only to
the nucleus initialization program in MVS/XA. In all other
cases it is ignored.

RELATIONSHIP TO THE OPERATING SYSTEM

The linkage editor has the same relationship to the operating
system as any other processing program. It can be executed
either as a job step, a subprogram, or a subtask. Control is
passed to the linkage editor in one of three ways:

• As a job step, when the linkage editor is specified on an
EXEC job control statement in the input stream

• As a subprogram, with the execution of a CALL macro
instruction (after the execution of a LOAD macro
instruction), a LINK macro instruction, or an XCTL macro
instruction

• As a subtask, in multitasking systems, with the execution of
the ATTACH macro instruction

Execution of the linkage editor and the data sets used by the
linkage editor are described to the system with job control
language statements. These statements describe all jobs to be
performed by the system.

Note: Job control statements should not be confused with
linkage editor control statements. Job control statements are
processed before the linkage editor is executed; linkage editor
control statements are processed during linkage editor
execution.

Time Sharing Option (TSO)

When the linkage editor is used under TSO, it is invoked by the
linkage editor prompter program that acts as an interface
between the user, the operating system, and the linkage editor.
Under TSO, execution of the linkage editor and definition of
data sets used by the linkage editor are described to the system
through use of the LINK command that causes the prompter to be
executed. Operands of the LINK command can also be used to
specify the linkage editor options a job requires. Complete
procedures for u~e of the LINK command are given in TSO Command
Language Reference.

18 MVS/370 Linkage Editor and Loader

INPUT TO THE LINKAGE EDITOR

The linkage editor accepts input from two major sources: the
primary input data set and additional data sets. The E.!:imary
input data set is made available through job control statements.
Additional data sets are made available either through the
automatic library call mechanism, or through user-specified
control statements. They must, however, also be defined with
job control statements.

Primary and additional input data sets may contain the following
types of data:

• One or more object modules

• One or more load modules

• Control statements

• Combinations of the above (restrictions on certain
combinations are noted where they apply)

Object modules and control statements may be contained in either
sequential or partitioned data sets. Load modules must be
contained in partitioned data sets.

This chapter describes the "linking" functions of the linkage
editor only; the "editing" functions are described in "Module
Editing" on page 45.

PRIMARY INPUT DATA SET

OBJECT MODULES

The primary input data set is required for every linkage editor
job step. It must be defined by a DD statement with the ddname
SYSLIN. The primary input can be:

• A sequential data set

• A member of a partitioned data set

• A concatenation of sequential data sets and/or members of
partitioned data sets

The primary input data set must contain object modules and/or
control statements. The modules and control statements are
processed sequentially and their order determines the basic
order of linkage editor processing during a given execution.
However, the order of the control sections after processing does
not necessarily reflect the order in which they appeared in the
input.

In the examples that follow, only the statements necessary to
define the input to the linkage editor are shown; complete
examples are shown in "Appendix A. Sample Programs" on page 138.

The primary input to the linkage editor may consist solely of
one or more object modules. The rest of this section discusses
object module input from cards, as a member of a partitioned
data set, passed from a previous job step, or created in a
separate job.

Input to the Linkage Editor 19

From Cards

Object module input to the linkage editor may be on cards. The
card deck itself is treated as a sequential data set; the cards
are placed in the input stream, after a DD * statement, as
follows:

/ /SYSLIN DD
Object Deck A
Object Deck B
/*

The card input is followed by a /* statement.

An example of the JCL when card decks are used in addition to
other input is as follows:

/ /SYSLIN
//
Object Deck
Object Deck
/*

DD
DO

A
B

DSNAME=IHPUT, ...

*

By omitting the ddname on the second DD statement, the card
input is concatenated to the data set described on the SYSLIN DD
statement.

As a Member of a Partitioned Data set

An object module in a partitioned data set can be used as
primary input to the linkage editor by specifying its data set
name and member name on the SYSLIH DD statement. In the
following example, the m~mber named TAXCOMP in the object module
library LIBROUT is to be the primary input; LIBROUT is a
cataloged data set:

/ /SYSLIN
//

DD OSHAME=LIBROUTCTAXCOMP),
DISP=(OLD,KEEP)

The library member is processed as if it were a sequential data
set.

Members of partitioned data sets can be concatenated with other
input data sets, as follows:

//SYSLIN
//
//

DD
DD

OSNAME=OBJLIB,DISP=(OLD,KEEP), ...
DSHAME=LIBROUTCTAXCOMP),
DISP=COLD,KEEP)

Library member TAXCOMP is concatenated to data set OBJLIB;
because they are the primary input, both must contain object
modules.

20 MVS/370 Linkage Editor and Loader

J

Passed from a Previous Job step

An object module to be used as input can be passed from a
previous job step to a linkage editor job step in the same job,
as in a compile-link-edit job. That is, the output from the
compiler is direct input to the linkage editor. In the
following example, an object module that was created in a
previous job step (STEPA) is passed to the linkage editor job
step (STEPB):

STEPA

IISYSGO

STEPB

IISYSLIN

DD DSNAME=&&OBJECT,DISP=(HEW,PASS), ...

DD DSNAME=&&OBJECT,DISP=(OLD,DELETE)

The data set name &&OBJECT, used in both job steps, identifies
the object module as the output of the language processor on the
SYSGO DD statement, and as the primary input to the linkage
editor on the SYSLIN DD statement.

Note: The double ampersand (&&) in the data set name defines a
temporary data set. These data sets exist for the duration of
the job and are automatically deleted at the end of the job. If
the data set is to be preserved for longer than the duration of
a single job, the double ampersand is not used (DSNAME=OBJECT).

The method used in the preceding example can also be used to
retrieve object modules created in previous steps. If the same
data set name is used for the output of each language processor,
one SYSLIN DD statement can be used to retrieve all the object
modules, as follows:

STEPA:

//SYSGO DD DSNAME=&&OBJMOD,DISP=(NEW,PASS), ...

STEPB:

IISYSPUNCH DD DSNAME=&&OBJMOD,DISP=(MOD,PASS)

STEPC:

I/SYSLIN DD DSNAME=&&OBJMOD,DISP=(OLD,DELETE)

The two object modules from STEPA and STEPB are placed in the
same sequential data set, &&OBJMOD. The SYSLIN DD statement in
STEPC causes both object modules to be used as the primary input
to the linkage editor.

Another method can be used to accomplish this purpose:
concatenation of data sets. This method could be used if the
object modules were created in previous job steps with different
member names, as follows:

Input to the Linkage Editor 21

STEPA:

//SYSGO
//

STEPB:

//SYSPUHCH
//

STEPC:

//SYSLIN
//
//
//

DD

DD

DD

DD

DSHAME=&&OBJLIB(MODA),DISP=(NEW,
PASS), ...

DSHAME=&&OBJLIB(MODB),DISP=(MOD,
PASS), ...

DSHAME=&&OBJLIB(MODA),DISP=(OLD,
DELETE)
DSHAME=&&OBJLIB(MODB),DISP=(OLD,
DELETE),VOL=REF=*.STEPB.SYSPUHCH

The object modules created in STEPA and STEPB were placed in a
partitioned data set with different member names. The two
members are concatenated in STEPC as primary input. Each member
is considered to be a sequential data set.

Created in a separate Job

CONTROL STATEMENTS

If the only input to the linkage editor is an object module from
a previous job, the SYSLIN DD statement contains all the
information necessary to locate the object module, as follows:

//SYSLIH
//

DD DSHAME=OBJECT,DISP=(OLD,DELETE),
UHIT=3350,VOLUME=SER=LIB613

An object module created in a separate job may also be on cards,
in which case it is handled as described earlier.

The primary input data set may also consist solely of control
statements. When the primary input is control statements, input
modules are specified on IHCLUDE control statements (see
"Included Data Sets" on page 29). The control statements may be
either placed in the input stream or stored in a permanent data
set.

In the following example, the primary input consists of control
statements in the input stream:

//SYSLIN DD *
Linkage Editor Control Statements
/*

22 MVS/370 Linkage Editor and Loader

In the next example, the primary input consists of control
statements stored in the member INCLUDES in the partitioned data
set CTLSTMTS:

//SYSLIN
//

DD DSNAME=CTLSTMTS(INCLUDES),DISP=(OLD,
KEEP), ...

In either case, the control statements can be any of those
described in "Linkage Editor Control Statement Summary" on page
112, as long as the rules given there are followed.

OBJECT MODULES AND CONTROL STATEMENTS

The primary input to the linkage editor may contain both object
modules and control statements. The object modules and control
statements may be in either the same data set or in different
data sets. If the modules and statements are in the same data
set, this data set is described on the SYSLIN DD statement as
any data set is described.

If the modules and statements are in different data sets, the
data sets are concatenated. The control statements may be
defined either in the input stream or as a separate data set.

Control Statements in the Input stream

Control statements can be placed in the input stream and
concatenated to an object module data set, as follows:

//SYSLIN
//
Linkage
/*

DD DSNAME=&&OBJECT, ...
DD *

Editor Control Statements

Another method of handling control statements in the input
stream is to use the DDNAME parameter, as follows:

//SYSLIN
//

DD
DD

DSNAME=&&OBJECT, ...
DDNAME=SYSIN

//SYSIH DD *
Linkage Editor Control Statements
/*

Note: The linkage editor cataloged procedures use DDNAME=SYSIH
for the SYSLIN DD statement to allow the programmer to specify
the primary input data set required.

Control statements in a separate Data set

A separate data set that contains control statements may be
concatenated to a data set that contains an object module. The
control statements for a frequently used procedure (for example,
a complex overlay structure or a series of INCLUDE statements)

Input to the Linkage Editor 23

can be stored permanently. In the following example, the
members of data set CTLSTMTS contain linkage editor control
statements. One of the members is concatenated to data set
&&OBJECT.

//SYSLIN
//
//

DD
DD

DSNAME=&&OBJECT,DISP=(OLD,DELETE), ...
DSNAME=CTLSTMTS(OVLY),DISP=(OLD,
KEEP), ...

The control statements in the member named OVLY of the
partitioned data set CTLSTMTS are used to structure the object
module.

AUTOMATIC LIBRARY CALL

The automatic library-call mechanism is used to resolve external
references that were not resolved during primary input
processing. Unresolved external references found in modules
from additional data sources are also processed by this
mechanism.

Note: The following discussion of automatic library call does
not apply to unresolved weak external references; they are left
unresolved.

The automatic library-call mechanism involves a search of the
directory of the automatic call library for an entry that
matches the unresolved external reference. When a match is
found, the entire member is processed as input to the linkage
editor.

Automatic library call can resolve an external reference when
the following conditions exist: The external reference must be
(1) a member name or an alias of a module in the call library,
and (2) it must be defined as an external name in the external
symbol dictionary of the module with that name. If the
unresolved external reference is a member name or an alias in
the library, but is not an external name in that member, the
member is processed but the external reference remains
unresolved unless subsequently defined.

The automatic library-call mechanism searches the call library
defined on the SYSLIB DD statement. The call library can
contain either (1) object modules and control statements or (2)
load modules; it must not contain both.

Modules from libraries other than the SYSLIB call library can be
searched by the automatic library-call mechanism as directed by
the LIBRARY control statement. The library specified in the
control statement is searched for member names that match
specific external references that are unresolved at the end of
input processing. If any unresolved references are found in the
modules located by automatic library call, they are resolved by
another search of the library. Any external references not
specified on a LIBRARY control statement are resolved from the
library defined on the SYSLIB DD statement.

In addition, two means exist to negate the automatic
library-call mechanism. The LIBRARY statement can be used to
negate the automatic library call for selected external
references unresolved after input processing;-the NCAL option on
the EXEC statement can be used to negate the automatic library
call for all external references unresolved after input
processin~ Use of the LIBRARY control statement and the NeAL
option are discussed after the SYSLIB DD statement following.

24 MVS/370 Linkage Editor and Loader

SYSLIB DD STATEMENT

system Call Library

If the automatic library-call mechanism is to be used, the call
library must be a partitioned data set described by a DD
statement with a ddname of SYSLIB. Details concerning DCB
requirements and record formats for SYSLIB libraries are given
in "SYSLIB DD statement" on page 103. The call library may be
either a system call library or a private call library; call
libraries may be concatenated.

For an example of some of the system programs that have their
own automatic call library, see Figure 10. This library must be
defined when an object module produced by that assembler or
compiler is to be link-edited.

Program Library Name

ALGOL SYS1.ALGLIB

COBOL SYSI.COBLIB

FORTRAN SYS1.FORTLIB

PL/I SYSlrPL1LIB

Sort/Merge SYS1.S0RTLIB

Figure 10. System Automatic Call libraries

The call library may contain input/output, data conversion,
and/or other special routines (such as Sort/Merge SYSl.SORTLIB)
that are needed to complete the module. The assembler or
compiler creates an external reference for these special
routines and the linkage editor resolves the references from the
appropriate call library.

In the following example, a FORTRAN object module created in
STEPA is to be link-edited in STEPB, and the FORTRAN automatic
call library is used to resolve external references:

STEPA:

//SYSOBJ
//

STEPB:

//SYSLIN
//SYSlIB

DD

DD
DD

DSNAME=&&OBJMOD,DISP=(NEW,
PASS), ...

DSNAME=&&OBJMOD,DISP=(OLD,DElETE)
DSNAME=SYSl.FORTlIB,DISP=SHR

The disposition of SHR on the SYSlIB DD statement means that
other tasks that may be executing concurrently with STEPB may
also use SYS1.FORTlIB.

Private Call Libraries

The SYSLIB DD statement can also describe a private,
user-written library. In this case, the automatic library-call
mechanism searches the private library for unresolved external

Input to the linkage Editor 25

references. In the following example, unresolved external
references are to be resolved from a private library named
PVTPROG:

//SYSLIB
//

concatenation of Call Libraries

00 DSNAME=PVTPROG,DISP=SHR,UNIT=3350,
VOLUME=SER=PVT002

System call libraries and private call libraries may be
concatenated either to themselves, and/or to each other. When
libraries are concatenated, they must all be either object
module libraries or load module libraries; they may not be
mixed.

If object modules from different system processors are to be
link-edited to form one load module, the call library for each
must be defined. This is accomplished by concatenating the
additional call libraries to the library defined on the SYSLIB
DO statement. In the following example, a FORTRAN object module
and a COBOL object module are to be link-edited; the two system
call libraries are concatenated as follows:

//SYSLIB
//

DD
DO

DSNAME=SYS1.FORTLIB,DISP=SHR
DSNAME=SYS1.COBLIB,DISP=SHR

System libraries are cataloged; no unit or volume information is 1~
needed. ~

A system call library and a private call library can also be
concatenated in this way. For example, by adding the following
statement to the two in the preceding example, the private call
library PVTPROG, which is not cataloged, is concatenated to the
two system call libraries:

//
//

DD DSNAME=PVTPROG,DISP=SHR,UNIT=3350,
VOLUME=SER=PVT002

Any external references not resolved from the two system
libraries are resolved from the private library.

LIBRARY CONTROL STATEMENT

The LIBRARY control statement can be used to direct the
automatic library-call mechanism to a library other than that
specified in the SYSLIB DO statement. Only external references
listed on the LIBRARY statement are resolved in this way. All
other unresolved external references are resolved from the
library in the SYSLIB DO statement.

The LIBRARY statement can also be used to specify external
references that are not to be resolved by the automatic
library-call mechanism. The LIBRARY statement specifies the
duration of the nonresolution: either during the current linkage
editor job step, called restricted no-call; or during this or ,~
any subsequent linkage editor job step, called never-call. ~

26 MVS/370 Linkage Editor and Loader

Examples of each use of the LIBRARY statement follow; a
description of the format is given in "LIBRARY Statement" on
page 123.

Additional Call Libraries

If the additional libraries are to be used to resolve specific
references, the LIBRARY statement contains the ddname of a DD
statement that describes the library. The LIBRARY statement
also contains, in parentheses, the external references to be
resolved from the library; that is, the names of the members to
be used from the library. If the unresolved external reference
is not a member name in the specified library, the reference
remains unresolved unless subsequently defined.

For example, two modules (DATE and TIME) from a system call
library have been rewritten. The new modules are to be tested
with the calling modules before they replace the old modules.
Because the automatic library call mechanism would otherwise
search the system call library (which is needed for other
modules), a LIBRARY statement is used, as follows:

//SYSLIB
//TESTLIB
//SYSLIH
//

LIBRARY
/*

DD
DD
DD
DD

DSHAME=SYSl.COBLIB,DISP=SHR
DSNAME=TEST,DISP=(OLD,KEEP), ...
DSHAME=ACCTROUT, ...

* TESTLIB(DATE,TIME)

Two external references, DATE and TIME, are resolved from the
library described on the TESTLIB DD statement. All other
unresolved external references are resolved from the library
described on the SYSLIB DD statement.

Restricted No-Call Function

The programmer can use the LIBRARY statement to specify those
external references in the output module for which there is to
be no library search during the current linkage editor job step.
This is done by specifying the external reference(s) in
parentheses without specifying a ddname. The reference remains
unresolved, but the linkage editor marks the module executable.

For example, a program contains references to two large modules
that are called from the automatic call library. One of the
modules has been tested and corrected; the other is to be tested
in this job step. Rather than execute the tested module again,
the restricted no-call function is used to prevent automatic
library call from processing the module as follows:

Input to the Linkage Editor 27

Never-Call Function

NCAl OPTION

//
//SYSlIB
//

//SYSlIH
//

lIBRARY

EXEC
DO

.
DO
DO

PGM=HEWl,PARM=lET
DSNAME=PVTPROG,DISP=SHR,UHIT=3350,
VOlUME=SER=PVT002

DSNAME=&&PAYROl, ...

* (OVERTIME)

As a result, the external reference to OVERTIME is not resolved
by automatic library call.

The never-call function specifies those external references that
are not to be resolved by automatic library call during this or
any subsequent linkage editor job step. This is done by
specifying an asterisk followed by the external reference(s) in
parentheses. The reference remains unresolved but the linkage
editor marks the module executable.

For example, a certain part of a program is never executed, but
it contains an external reference to a large module (CITYTAX)
which is no longer used by this program. However, the module is
in a call library needed to resolve other references. Rather
than take up storage for a module that is never used, the
never-call function is specified, as follows:

//
//SYSlIB
//

//SYSlIN
//

lIBRARY

EXEC
DO

PGM=HEWl,PARM=lET
DSNAME=PVTPROG,DISP=SHR,UHIT=3350,
VOlUME=SER=PVT002

DO DSHAME=TAXROUT,OISP=OlO, ...
DO *
*(CITYTAX)

As a result, when program TAXROUT is link-edited, the external
reference to CITYTAX is not resolved by automatic library call.

When the HCAl option is specified, no automatic library call
occurs to resolve external references that are unresolved after
input processing. The HCAl option is similar to the restricted
no-call function on the lIBRARY statement, except that the HCAl
option negates automatic library call for all unresolved
external references and restricted no-call negates automatic
library call for selected unresolved external references. With
HCAl, all external references that are unresolved after input
processing is finished, remain unresolved. The module is,
however, marked executable.

The HCAl option is a special processing parameter that is
specified on the EXEC statement as described in "No Automatic
library-Call Option" on page 91.

28 MVS/370 linkage Editor and loader

INCLUDED DATA SETS

The INCLUDE control statement requests the linkage editor to usa
additional data sets as input. These can be sequential data
sets containing object modules and/or control statements, or
members of partitioned data sets containing object modules
and/or control statements, or load modules.

The INCLUDE statement specifies the ddname of a DD statement
that describes the data set to be used as additional input. If
the DO statement describes a partitioned data set, the INCLUDE
statement also contains the name of each member to be used. Sea
"INCLUDE Statement" on page 121 for a detailed description of
the format of the INCLUDE statement.

When an INCLUDE control statement is encountered, the linkage
editor processes the module or modules indicated. Figure 11
shows the processing of an INCLUDE statement. In the
illustration, the primary input data set is a sequential data
set named OBJMOD which contains an INCLUDE statement. After
processing the included data set, the linkage editor processes
the next primary input item. The arrows indicate the flow of
processing.

If an included data set also contains an INCLUDE statement, this
specified module is also processed. However, any data following
the INCLUDE statement is not processed.

If the OBJMOD data set shown in Figure 11 is itself included,
the data following the INCLUDE statement for OBJLIB is not
processed. Figure 12 on page 30 shows the flow of processing
for this example.

Prilllary Input
Da ta Set 0 IlJ M OD

Library OIlJ LI B
Member MODA

Figure 11. Processing of One INCLUDE Control statement

Input to the Linkage Editor 29

Primary Input
Data Set SYSLIN

Sequential
Data Sct OBJMOD

Include OBJIB (MODA)

Library OBJLIB
Member MODA

Figure 12. Processing of More than One INCLUDE Control statement

Including Sequential Data Sets

Sequential data sets containing object modules and/or control
statements can be specified by an INCLUDE control statement. In
the following example, an INCLUDE statement specifies the
ddnames of two sequential data sets to be used as additional
input:

//ACCOUNTS
//lNVENTRY
//SYSLIN
//

INCLUDE
/*

DO DSNAME=ACCTROUT,DISP=(OLD,KEEP), .. .
DD DSNAME=INVENTRY,DISP=(OLD,KEEP), .. .
DD DSNAME=QTREND, ...
DD *

ACCOUNTS,INVENTRY

Each ddname could also have been specified on a separate INCLUDE
statement; with either method, a DO statement must be specified
for each ddname.

Another method of doing the preceding example is given in
"Including Concatenated Data Sets" on page 31.

Including Library Members

One or more members of a partitioned data set can be specified
on an INCLUDE control statement. The member name must be
specified on the INCLUDE statement; no member name should appear
on the DD statement itself.

30 MVS/370 Linkage Editor and Loader

J

In the following example, one member name IS specified on the
INCLUDE statement:

//PAYROLL
//SYSLIN
//

INCLUDE

DD DSNAME=PAYROUTS,DISP=(OLD,KEEP), .. .
DD DSNAME=&&CHECKS,DISP=(OLD,DELETE), .. .
DD *
PAYROLL(FICA)

If more than one member of a partitioned data set is to be
included, the INCLUDE statement specifies all the members to be
used from each library. The member names appear in parentheses,
following the data set name of the library. The member names
are not repeated on the DD statement.

In the following example, an INCLUDE statement specifies two
members from each of two libraries to be used as additional
input:

//PAYROLL
//ATTEND
//SYSLIN

INCLUDE

DD DSNAME=PAYROUTS,DISP=(OLD,KEEP), .. .
DO DSNAME=ATTROUTS,DISP=(OLD,KEEP), .. .
DD *
PAYROLL(FICA,TAX),ATTEND(ABSENCE,OVERTIME)

Each library could have been specified on a separate INCLUDE
statement; with either method, a DD statement must be specified
for each ddname.

Another method of doing this example is given in "Including
Concatenated Data Sets."

Including Concatenated Data sets

Several data sets can be designated as input with one INCLUDE
statement that specifies one ddname; additional data sets are
then concatenated to the data set described on the specified DD
statement. When data sets are concatenated, all records must
have the same characteristics (that is, format, record length,
block size, etc.).

SEQUENTIAL DATA SETS: In the following example, two sequential
data sets are concatenated and then specified as input with one
INCLUDE statement:

//CONCAT
//
//SYSLIN
//

INCLUDE
/*

DD DSNAME=ACCTROUT,DISP=(OLD,KEEP), .. .
DO DSNAME=INVENTRY,DISP=(OLO,KEEP), .. .
DO DSNAME=SALES,DISP=OLD, ...
DD *

CONCAT

When the INCLUDE statement is recognized, the contents of the
sequential data sets ACCTROUT and INVENTRY are processed.

LIBRARY HENBERS: Members from more than one library can be
designated as input with one ddname on an INCLUDE statement. In
this case, all the members are listed on the INCLUDE statement;

Input to the Linkage Editor 31

the partitioned data sets are concatenated using the ddname from ~
the INCLUDE statement: ~

//CONCAT
//
//SYSLIN
//

INCLUDE
/*

DD DSNAME=PAYROUTS,OISP=(OLD,KEEP), •..
DO DSNAME=ATTROUTS,DISP=(OLD,KEEP), ...
DD DSNAME=REPORT,DISP=OLD, ..•
DO *
CONCATCFICA,TAX,ABSENCE,OVERTIME)

When the INCLUDE statement is recognized, the two libraries,
PAYROUTS and ATTROUTS, are searched for the four members; the
members are then processed as input.

32 MVS/370 Linkage Editor and Loader

J

OUTPUT FROM THE LINKAGE EDITOR

OUTPUT LOAD MODULE

The linkage editor produces two types of output: a load module
and diagnostic information. The principal output of the linkage
editor is the output load module. The linkage editor always
places this load module in a partitioned data set. In addition,
the linkage editor issues diagnostic information. Error and/or
warning messages, module disposition data, and optional
diagnostic output are stored in the diagnostic output data set.

The linkage editor produces one or more load modules (see
"Appendix H. Load Module Format" on page 182) from the input
processed. When more than one load module is produced, the
process is called multiple load module processing.

Whether or not the linkage editor produces one or more load
modules, the following apply:

• The load module is stored in a partitioned data set called
the output module library.

• The load module must have an entry point; if the programmer
has not assigned one, the linkage editor does.

• The output load module is assigned an authorization code.

• During processing, the linkage editor reserves and collects
common areas, as specified in the source language program.

• During processing, the linkage editor accumulates total
length and individual displacements for each pseudo register
(external dummy section).

• During processing, the linkage editor collects and records
identification data in the CSECT identification (IDR)
records.

• During the processing of a load module, the linkage editor
deletes any private code (unnamed control section) having a
length of zero and any identification data associated with
it.

• The main entry point, each true alias, and each alternate
entry point are assigned an addressing mode (AMODE).

• The output load module is assigned a residence mode (RMODE).

OUTPUT MODULE LIBRARY

The linkage editor stores every load module it produces in the
output module library. This library is a partitioned data set
that must be described by a DO statement with the name SYSLMOD.
The data set name of the library is also specified on this DO
statement. The data set can be either temporary (defined with a
double ampersand), or permanent (defined with a single or no
ampersand). If the data set name is either SYS1.LINKLIB or
SYSl.SVCLIB, it would be advisable to re-IPL the system after
linkage editor processing is complete. This ensures that the
corresponding data extent block (DEB) is updated to reflect
additional extents if secondary allocation of direct-access
space was required.

Whether the data set is permanent or temporary, each module must
be assigned a unique name, called the member name, to
distinguish one load module from another. The output module can
be assigned aliases if the programmer wants the module either

Output from the Linkage Editor 33

Member Name

identified by more than one name or entered for execution at ~
several different points. Each member name and alias in a load .~
module library must be unique. The library member name and
aliases for each load module appear as separate entries in the
library directory, along with the module attributes. (Some
module attributes can be assigned on the EXEC statement for each
linkage editor job step; see "Module Attributes" on page 86.)

The member name of the output load module may be specified on
the SYSLMOD DD statement, in a NAME statement, or both. If the
member name is not specified, the default is TEMPNAME. If this
default name has been previously assigned to a load module,
using it again will cause a failure.

ASSIGNED ON SVSLMOD DD STATEMENT: If the member name is assigned
on the SYSLMOD DD statement, the name is written in parentheses
following the data set name of the library. For example:

//SYSLMOD
//
//

DD DSNAME=MATHLIB(SQDEV),DISP=(NEW,KEEP),
UNIT=3350,SPACE=(TRK,(lOO,lO,1»,
VOLUME=SER=LIB002

The member name SQDEV is assigned to the load module, which is
placed in the new library named MATHLIB.

ASSIGNED ON NAME CONTROL STATEMENT: If the member name is not
specified on the SYSLMOD DD statement, it may be assigned in a
NAME control statement. For example:

//SYSLMOD
//SYSLIN
//

NAME

DD
DD
DD
SQDEV

DSNAME=MATHLIB,DISP=(NEW,KEEP), ...
DSNAME=&&OBJECT,DISP=(OLD,DELETE), ...

*

The member name SQDEV is assigned to the load module, which is
placed in the library named MATHLIB.

ASSIGNED ON BOTH: If both the SYSLMOD DD statement and the NAME
control statement specify a member name, the names should be
identical. If the names are different, the name on the NAME
control statement is used as the member name.

Note: If a "link-edit and go" sequence of job steps is
performed and the program name in the EXEC statement of the "go"
step contains a backward reference to the SYSLMOD DD statement
in the "link-edit" step, the user must ensure that the member
name specified in the SYSLMOD DD statement is valid and is not
overridden by a NAME control statement.

34 MVS/370 Linkage Editor and Loader

Alias Names

An example of an error:

//LKED

//SYSLMOD
//
//SYSLIN
//

NAME
1*
//GO

EXEC

DD

DD
DD
READ

EXEC

PGM=HEWL

DSNAME=&&LOADST(GO),DISP=(NEW,
PASS), ...
DSNAME=&&OBJECT,DISP=(OLD,DELETE), ...

*
PGM=*.LKED.SYSLMOD

Remember, this example is incorrect!

The EXEC statement of the GO step specifies that the module to
be executed is described in the LKED step in the SYSLMOD
statement. The system tries to locate a member named GO;
however, the output module was assigned the name READ.

REPLACING AN IDENTICALLY NAMED LIBRARY MEMBER: The output module
can replace an identically named member in the library in either
of two ways. The SYSLMOD DO statement names an existing data
set, as follows:

//SYSLMOD
1/

DD DSNAME=MATHLIB(SQDEV),DISP=(OLD,
KEEP), ...

Or, the NAME control statement specifies the replace function,
as follows:

NAME SQDEV(R)

In either case, the member named SQDEV is replaced with a new
module of the same name.

An output module can be assigned a maximum of 16 aliases,
specified with the ALIAS control statement. The aliases exist
in addition to the member name of the output module. When a
module is referred to by an alias, execution begins at the
external name specified by the alias. If the name specified by
the ALIAS statement is not an external symbol within the module,
the main entry point is used.

For example, an output module is to be assigned two additional
entry points, CODEl and CODE2. In addition, because of a
misunderstanding, calling modules have been written and tested
using both ROUTONE and ROUTl to refer to the output module.
Rather than correct the calling modules, an alternate library
member name (alias) is also assigned.

Output from the Linkage Editor 35

ENTRY POINT

//SYSLMOO
//
//SYSLIN
//

ALIAS
NAME

/*

DO DSNAME=PVTLIB,DISP=OLO,UNIT=3350,
VOLUME=SER=LIB001

DD DSNAME=&&OBJECT,DISP=(OLD,DELETE)
DD *
CODE1,CODE2,ROUTONE
ROUT1

The nDmes CODEl, CODE2, and ROUTONE appear in the library
directory along with ROUT1, the member name. Because CODE1 and
CODE2 are defined as external symbols within the output module,
when these names are used, execution begins at these points.
Control may be passed to the main entry point by using either
the member name ROUT1 or the alias ROUTONE.

Every load module must have a main entry point. The programmer
may specify the entry point in one of two ways:

• On a linkage editor ENTRY control statement.

• On an Assembler language END statement, which is the last
statement in the source program. The assembler produces an
object module and an END statement for the module. The
assembler-produced END statement contains an entry point
only if the source language END statement contained one.

From its input, the linkage editor selects the entry point for
the load module as follows:

1. From the first ENTRY control statement in the input.

2. If there is no ENTRY control statement in the input, from
the first assembler-produced END statement that specifies an
entry point.

3. If no ENTRY control statement or no assembler-produced END
statement specifies an entry point, the first byte of the
first control section of the load module is used as the
entry point.

In general, the entry point should be explicitly specified,
because it is not always possible to predict which control
section will be first in the output module.

When a load module is reprocessed by the linkage editor, it has
no END statement. Therefore, if the first byte of the first
control section of the load module is not a suitable entry
point, the entry point must be specified in one of two ways:

• Through an ENTRY control statement.

• Through the assembler-produced END statement of another
input module, which is being processed for the first time.
This object module must be the first such module to be
processed by the linkage editor.

An entry point other than the main entry point may be specified
with an ALIAS control statement. The symbol specified on the
ALIAS statement must be defined as an external symbol in the
load module. Any reference to that symbol causes execution of
the module to begin at that point instead of at the main entry
point.

In the following example, assume that CDCHECK, CODE!, and CODE2
are defined as external symbols in the output module:

36 MVS/370 Linkage Editor and Loader

Authorization Code

//SYSLIN DO
// DD

ENTRY CDCHECK

DSNAME=&&OBJECT,DISP=(OLD,DELETE)

*
ALIAS CODEl,CODE2,ROUTONE
NAME ROUTl

/*

As a result of the preceding control statements, CDCHECK is the
main entry point; CODEl and CODE2 are additional entry points.
Any reference to ROUTONE or ROUTl causes execution to begin at
CDCHECK; any reference to CODEl and CODE2 causes execution to
begin at these points.

Each load module link-edited is assigned an authorization code
that determines whether or not the module is allowed to use
restricted system services and resources. A nonzero code allows
the module to use restricted services and resources; a zero code
disallows that usage. The authorization code becomes part of
the directory entry for the module in the library containing the
module.

Residence and Addressing Modes

Each entry in the library directory for the output load module
(one for the main entry point and one for each true alias or
alternate entry point) contains an indication of the residence
mode for the load module and an indication of the addressing
mode for that entry point. The entries for true aliases and
alternate entry points also contain an indication of the
addressing mode for the main entry point.

RESERVING STORAGE IN THE OUTPUT LOAD MODULE

In FORTRAN, Assembler language, and PL/I, the programmer can
create control sections that reserve virtual storage areas that
contain no data or instructions. These control sections are
called "common" or "static external" areas, and are produced in
the object modules by the language translators. These common
areas are used, for example, as communication regions for
different parts of a program or to reserve virtual storage areas
for data supplied at execution time. These common areas are
either named or unnamed (blank).

COLLECTION OF COMMON AREAS: During processing, the linkage
editor collects common areas. That is, if two or more blank
common areas are found in the input, the largest blank common
area is used in the output module; all references to a blank
common area refer to the one retained. If two or more named
common areas have the same name, the largest of the identically
named common areas is used in the output module; all references
to the named common areas refer to the one area retained.

IDENTICALLY NAMED COMMON AREAS AND CONTROL SECTIONS: If a
control section (as is generated from a BLOCK DATA subprogram in
FORTRAN, for example) and a named common area have the same
name, the length of the control section must be greater than or
equal to the length of the named common area. If the control
section is smaller in length than the named common area, a
diagnostic message is issued. The control section is regarded
as the largest of the common areas processed with that name.
All subsequent control sections and/or common areas with the
same name are ignored.

Output from the Linkage Editor 37

PROCESSING PSEUDO REGISTERS

In PL/I, programmers can use pseudo registers to define storage
that will not be reserved in the load module but can be
allocated dynamically during execution. The external dummy
sections generated by Assembler H Version 2 correspond to the
pseudo registers of PL/I.

The linkage editor accumulates the total length of all pseudo
registers in the input and records the displacement of each. If
two or more pseudo registers have the same name, the one with
the longest length and the most restrictive alignment will be
retained. All other pseudo registers with the same name will be
ignored; all references to the identically named pseudo
registers will refer to the one retained.

MULTIPLE LOAD MODULE PROCESSING

The linkage editor can produce more than one load module in a
single job step. A NAME control statement in the input stream
is used as a delimiter for input to a load module. If
additional input modules follow the NAME statement in the input
stream, they are used in the formation of the next load module.

Each load module that is formed has a unique name and is placed
in the same library as a separate member. When processing
multiple load modules in a single job step, the options and
attributes specified in the EXEC statement for that job step
apply to all load modules created. If the linkage editor
terminates abnormally during processing of any of the output
modules, neither that module nor any of the modules yet to be
processed in the job step is processed or placed in the library.
Load modules processed before abnormal termination have already
been placed in the library.

In the following example, two load modules are produced in one J
linkage editor job step: .

//LKED

//SYSLMOD
//

//MODTWO
//SYSLIN
//

/*

ENTRY
NAME
INCLUDE
ENTRY
NAME

EXEC

.
DD

DO
DD
DO

PGM=HEWL,PARM='MAP,LIST'

DSNAME=PAYRDLL(OVERTIME),DISP=OLD,
UNIT=3350,VDLUME=SER=LIB002

DSNAME=&&OBJECT,DISP=(OLD,DELETE)
DSNAME=&&OBJECT(A),DISP=(OLD,DELETE)

* INIT
OVERTIME
MODTWO(B)
HSKEEP
VACATION

The first load module is produced from the object module in the
data set defined on the SYSLIN DO statement. The main entry
point is INIT and the member name is OVERTIME.

The second load module is produced from the object module
specified by the INCLUDE statement. The main entry point is
HSKEEP and the member name is VACATION.

If an INCLUDE statement specifies a member name that is
different from the member name on the DO statement, the member

38 MVS/370 Linkage Editor and Loader

DIAGNOSTIC OUTPUT

DIAGNOSTIC MESSAGES

specified on the DD statement must exist even though it is not
to be included.

Both load modules are placed in the library PAYROLL, defined on
the SYSLMOD statement.

The parameters on the EXEC card specify that a module map and a
control statement listing are produced for each load module.
The map and listing are discussed in detail in the next section.

Diagnostic information is stored in the diagnostic output data
set, which must be defined by a DD statement with the name
SYSPRINT. This output is a collection of messages generated by
the linkage editor, as well as any optional output requested by
the programmer.

The linkage editor generates two types of messages: module
disposition messages and error/warning messages. Descriptions
of the error/warning messages will be found in Linkage Editor
and Loader Messages.

Module Disposition Messages

Module disposition messages of several types are printed for
each load module produced. The first message indicates the
options and attributes specified for each module. Invalid
options or attributes are replaced by INVALID in the output.
Messages are also generated to inform the programmer that
incompatible attributes have been specified.

Disposition messages also describe the handling of the load
module. These messages are preceded by several asterisks, and
are:

• member name NOW ADDED TO DATE SET.

• member name NOW REPLACED IN DATA SET.

• member name DOES NOT EXIST BUT HAS BEEN ADDED TO THE DATA
SET.

The replacement function was specified, but the member did
not exist in the data set; the module is added to the data
set using the member name given.

• alias name IS AN ALIAS FOR THIS MEMBER.

• MODULE HAS BEEN MARKED NOT EXECUTABLE.

In addition, module disposition messages are used when the
reenterable (RENT), reusable (REUS), and/or refreshable (REFR)
linkage editor options have been specified for the module. When
one or more of these module attributes have been indicated, a
message informs the user what attribute(s) have been assigned to
the module. This message indicates whether the load module has
been marked reenterable or not reenterable, reusable or not
reusable, refreshable or not refreshable, depending on the
option or options used. (See "Reusability Attributes" on page
87 and "Refreshable Attribute" on page 88 for more information
on these options.)

The message consists of several asterisks and MODULE HAS BEEN
MARKED, followed by the attribute(s) assigned as a result of the
linkage editor options specified. The programmer, of course, is
responsible for verifying that the module actually is
reenterable, reusable, and/or refreshable. The following
messages are examples of some possible combinations:

Output from the Linkage Editor 39

• MODULE HAS BEEN MARKED REFRESHABLE.

• MODULE HAS BEEN MARKED NOT REFRESHABLE.

• MODULE HAS BEEN MARKED REUSABLE AND NOT REFRESHABLE.

• MODULE HAS BEEN MARKED REUSABLE AND REFRESHABLE.

When an error causes the linkage editor to mark a module not
executable, only the MODULE HAS BEEN MARKED NOT EXECUTABLE
message appears; no attribute messages are generated.

Error/warning Messages

Certain conditions that are present when a module is being
processed can cause an error or warning message to be printed.
These messages contain a message code and message text. If an
error is encountered during processing, the message code for
that error is printed with the applicable symbol or record in
error. After processing is completed, the diagnostic message
associated with that code is printed. The error warning
messages have the following format:

IEWOmms message text

where:

IEWO

mm

s

indicates a linkage editor message

is the message number

is the severity code, and may be one of the following
values:

1

2

3

4

Indicates a condition that may cause an
error during execution of the output module.
A module map or cross-reference table is
produced if specified by the programmer. The
output module is marked executable.

Indicates an error that could make execution
of the output module impossible. Processing
continues. When possible, a module map or a
cross-reference table is produced if
specified by the programmer. The output
module is marked not executable, unless the
LET option is specified on the EXEC
statement.

Indicates an error that will make execution
of the output module impossible. Processing
continues. When possible, a module map or a
cross-reference table is produced if
specified by the programmer. The output
module is marked not executable.

Indicates an error condition from which no
recovery is possible. Processing terminates.
The only output is diagnostic messages.

Note: A special severity code of zero is generated for each
control statement printed as a result of the LIST option.
Severity zero does not indicate an error warning condition.

The highest severity code encountered during processing is
multiplied by 4 to create a return code that is placed in
register 15 at the end of processing. This return code can be
tested to determine whether or not processing is to continue
(see "EXEC Statement--Return Code" on page 100).

40 MVS/370 Linkage Editor and Loader

J

J

message text contains combinations of the following:

• The message classification (either error or warning)

• Cause of error

• Identification of the symbol, segment number (wh~n in
overlay), or input item to which the message applies

• Instructions to the programmer

• Action taken by the linkage editor

Optionally, error/warning messages can be sent to a separate
output data set, which is defined by specifying TERM in the PARM
field of the EXEC statement and including a SYSTERM DD
statement. This separate SYSTERM data set consists of only
numbered error/warning messages. It supplements the SYSPRIHT
output data set, which can also include module disposition
messages and optional diagnostic output. When SYSTERM is used,
the numbered error/warning messages appear in both data sets.

linkage Editor and loader Messages contains a complete list of
error/warning messages.

Sample Diagnostic Output

OPTIONAL OUTPUT

Figure 13 on page 42 shows the format of the diagnostic output
for the linkage editor. No optional output was requested other
than the list of control statements.

The letters indicate the disposition and error/warning messages
as follows:

A

B

C

D

Is a module disposition message that lists the options
and attributes specified. Additional information is
printed indicating the variable and default options
used.

Is a list of control statements used (IEWOOOO) and the
message codes (IEW0201 and IEW0461) for error/warning
conditions discovered during processing. For
error/warning message codes, the symbol in error, if
necessary, is also listed (CCCCCCCC and BASEDUMP).

Is a module disposition message (****) that indicates
that the output module (BBBBBBBB) has been added to
the output module data set.

Is the diagnostic message directory that contains the
text of the error codes listed in item B.

In addition to error/warning and disposition messages, the
linkage editor can produce diagnostic output as requested by the
programmer. This optional output includes a control statement
listing, a module map, and a cross-reference table.

Control statement Listing

If the lIST option is specified on the EXEC statement, a listing
of all linkage editor control statements is produced. For each
control statement, the listing contains a special message code,
IEWOOOO, followed by the control statement. Item B in Figure 13
on page 42 contains an example of a control statement listing.

Output from the linkage Editor 41

A
B

c

D

F64-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED LET,NCAL,XREF,OVLY,LIST
DEFAULT OPTIONS(S) USED - SIZE=(65536,6144)

IEWOOOO NAME BBBBBBBB
IEW0201
IEW0461 CCCCCCCC
IEW0461 BASECUMP

•••• BBBBBBBB NOW ADDED TO DATA SET
DIAGNOSTIC MESSAGE DIRECTORY

IEW0201 WARNING - OVERLAY STRUCTURE CONTAINS ONLY ONE SEGMENT -- OVERLY OPTION
CANCELED.

IEW0461 WARNING - SYMBOL PRINTED IS AN UNRESOLVED EXTERNAL REFERENCE, NCAL WAS
SPECIFIED.

Figure 13. Diagnostic Messages Issued by the Linkage Editor

Module Map

If the MAP option is specified on the EXEC statement. a module
map of the output load module is produced. The module map shows
all control sections in the output module and all entry names in
each control section. Named common areas are listed as control
sections.

For each control section. the module map indicates its origin
(relative to zero) and length in bytes (in hexadecimal
notation). For each entry name in each control section, the
module map indicates the location at which the name is defined.
These locations are also relative to zero.

If the module is not in an overlay structure, the control
sections are arranged in ascending order according to their
origins. An entry name is listed with the control section in
which it is defined.

If the module is an overlay structure, the control sections are
arranged by segment. The segments are listed as they appear in
the overlay structure, top to bottom, left to right, and region
by region. Within each segment, the control sections and their
corresponding entry names are listed in ascending order
according to their assigned origins. The number of the segment
in which they appear is also listed.

42 MVS/370 Linkage Editor and Loader

CONTROL SErT I ON

NI'.ME ORIGIN LENCTH

COBSUB on 33A

$PRIVATE 340 Ef

MAINMOD 4)0 166

ILBOOSPO· S9B SE2

ILBOSTPO· B80 35

ENTRY ADDRESS .30
TOTAL LENGTH BBB

In any module map, the following are identified by a dollar
sign:

• Blank common area

• Private code (unnamed control section)

• For overlay programs, the segment table and each entry table

When the load module processed by the linkage editor does not
have an origin of zero, the linkage editor generates a one-byte
private code (unnamed control section) as the first text record.
This private code is deleted in any subsequent reprocessing of
the load module by the linkage editor.

Each control section that is obtained from a call library during
automatic library call is identified by an asterisk after the
control section name.

At the end of the module map is the entry address, that is, the
relative address of the main entry point. The entry address is
followed by the total length of the module in bytes; in the case
of an overlay module, the length is that of the longest path.
Pseudo registers, if used, also appear at the end of the module
map; the name, length, and displacement of each pseudo register
are given.

Figure 14 contains a module map with five control sections.
There are two named control sections (COBSUB snd MAINMOD), one
unnamed control section (designated by $PRIVATE), and two
control sections obtained from a call library (ILBODSPO and
ILBOSTPO). In addition, two entry names are defined: SUB1 in
the unnamed control section and ILBOSTP1 in control section
ILBOSTPO.

ENTRY

NAME: LOCATION NAME LOCATION NAME LOCATION NAME LOCATION

SUB 1 340

•••• GO OOES NOT EXIST BUT HAS BEEN ADDED TO DATA SET

Figure 14. Module Map

Cross-Reference Table

If the XREF option is specified on the EXEC statement, a
cross-reference table is produced. The cross-reference table
consists of a module map and a list of cross-references for each
control section. Each address constant that refers to a symbol
defined in another control section is listed with its assigned
location, the symbol referred to, and the name of the control
section in which the symbol is defined. When control sections
are compiled together, and simple address constants are used to
refer from one control section to another (instead of using
external symbols and entry names), the control section name is
listed as the symbol referred to.

Output from the Linkage Editor 43

CONTROL SECTION

NAME ORIGIN LENGTH

COBSUB 00 33A
'PRIVATE 340 Ef'

MAINMOD 430 166
ILBODSPO* 598 5E2
I LBOSTPO * B80 35

LOCATION REFERS TO SYMBOL

250
258
478

ENTRY ADDRESS

ILBOSTPO
ILBOSTPI
COBSUB

430
TOTAL LENGTH BB8

For overlay programs, this information is provided for each
segment; in addition, the number of the segment in which the
symbol is defined, is provided.

If a symbol is unresolved after processing by the linkage
editor, it is identified by $UNRESOLVED in the list. However,
if an unresolved symbol is marked by the never-call function (as
specified on a LIBRARY control statement), it is identified by
$NEVER-CALl. If an unresolved symbol is a weak external
reference, it is identified by $UHRESOLVEDCW).

Figure 15 contains a cross-reference table for the
whose module map is shown in Figure 14 on page 43.
information from the module map is present, plus a
cross-references for each control section.

CROSS-REFERENCE TABLE

ENTRY

NAME LOCATION

SUBI 340

I LBOSTP 1 B96

IN CONTROL SECTION

ILBOSTPO
ILBOSTPO
COBSUB

NAME LOCATION NAME LOCATION NAME LOCATION

LOCATION REFERS TO SYMBOL IN CONTROL SECTION

254
450

ILBODSPO
SUB1

ILBODSPO

same program
All the

list of

Figure 15. Cross-Reference Table

44 MVS/370 linkage Editor and loader

J

~

MODULE EDITING

Input Modules

The linkage editor performs editing functions either
automatically or as directed by control statements. These
editing functions provide for program modification on a control
section basis. That is, they make it possible to modify a
control section within an object or load module, without
recompiling the entire source program.

The editing functions can modify either an entire control
section or external symbols within a control section. Control
sections can be deleted, replaced, or arranged in sequence;
external symbols can be deleted or changed. (External symbols
are control section names, entry names, external references,
named common areas, or pseudo registers.)

Whatever function is used, it is requested in reference to an
input module. The resulting output load module reflects the
request. That is, no actual change, deletion, or replacement is
made to an input module. The requested alterations are used to
control linkage editor processing (Figure 16).

JCL and Control Statements Output Load Module

MODAl

L
CSECTA :}"" IISYSLMOD

IIMODATWO
IISYSLIN
II

MODAIA2

L ./
DO DSNAME=NEWLIB(MODA1A2), ... CSECTI
DO DSNAME=MODA2, .. .

/ DO DSNAME=MODA1, .. .
MODA2 DO * CSECTA

./ /
CSECTI

/
CSEen

(
ENTRY
REPLACE
INCLUDE

CSECT3
CSECT2(CSECTA)
MODATWO

/
CSECn

l/

/
C'SECTJ

Figure 16. Editing a Module

Editing conventions

In requesting editing functions, certain conventions should be
followed to ensure that the specified modification is processed
correctly. These conventions concern the following items:

• Entry points for the new module

• Placement of control statements

·Module Editing 45

• Identical old and new symbols

ENTRY POINTS: Each time the linkage editor reprocesses a load
module, the entry point for the output module should be
specified in one of two ways:

• Through an ENTRY control statement.

• Through the assembler-produced END statement of an input
object module, if one is present. If the entry point
specified in the assembler-produced END statement is not
defined in the object module, the entry name must be defined
as an external reference.

The entry point assigned must be defined as an external name
within the resulting load module.

PLACEMENT OF CONTROL STATEMENTS: The control statement (such as
CHANGE or REPLACE) used to specify an editing function must
precede either the module to be modified, or the INCLUDE
statement that specifies the module. If an INCLUDE statement
specifies several modules, the CHANGE or REPLACE statement
applies only to the first module included.

IDENTICAL OLD AND NEW SYMBOLS: The same symbol should not appear
as both an old external symbol and a new external symbol in one
linkage editor run. If a control section is to be replaced by
another control section with the same name, the linkage editor
handles this automatically (see "Automatic Replacement" on page
49).

46 MVS/37D Linkage Editor and Loader

CHANGING EXTERNAL SYMBOLS

ThQ linkagQ Qditor can bQ directQd to changQ an external symbol
to a new symbol while processing an input module. External
references and address constants within the module automatically
refer to the new symbol. External references from other modules
to a changed external symbol must be changed with separate
control statements.

Both the old and the new symbols are specified on either a
CHANGE control statement or a REPLACE control statement. The
use of the old symbol within the module determines whether the
new symbol becomes a control section name, an entry name, or an
external reference. The old symbol appears first, followed by
the new symbol in parentheses.

The CHANGE control statement changes a control section name, an
entry name, or an external reference. The REPLACE statement
changes or deletes an entry name; if the symbols on a REPLACE
statement are control section names, the entire control section
is replaced or deleted (see "Replacing Control Sections" on page
48).

The CHANGE statement must immediately precede either the input
module that contains the external symbol to be changed, or the
INCLUDE statement that specifies the input module. The scope of
the CHANGE statement is across the immediately following module
(object module or load module). The END record in the
immediately following object module or the end-of-module
indication in the load module terminates the action of the
CHANGE statement.

In the following example, assume that SUBONE is defined as an
external reference in the input load module. A CHANGE statemQnt
is used to change the external reference to NEWMOD (Figure 17 on
page 48).

//SYSLMOD
//
//SYSLIN

/*

ENTRY
CHANGE
INCLUDE
NAME

DO DSNAME=PVTLIB,DISP=OLD,UNIT=3350,
VOLUME=SER=PVT002

DD *
BEGIN
SUBONE(HEWMOD)
SYSLMODCMAINROUT)
MAINROUT(R)

Module Editing 47

Input Module

MAINROUT

./ /
BEGIN ENTRY

CALLSUBONE

CALLSUBONE

I-----------+"/

CALL SUBONE

JCL and Control Statements

//SYSLMOD
//SYSLIN

ENTRY
CHANGE
INCLUDE
NAME

/*

DO DSNAME=PVTLIB, ...
DO *
MAINEP
SUBONE(NEWMOD),BEGIN(MAINEP)
SYSLMOD(MAINROUT)
MAINROUT(R)

Output Load Module

\fAINROUT

./ ./'
MAINEP LNTRY

CALL NLWMOD

CALL NIWMOIl

t--------Y/

CALL NI·WMOD

_____ "v
Figure 17. Changing an External Reference and an Entry Point

In the load module MAINROUT, every reference to SUBONE is
changed to NEWMOD. Note also that the INCLUDE statement
specifies a ddname of SYSLMOD. This allows a library to be used
both as input and as the output module library.

More than one change can be specified on the same control
statement. If, in the same example, the entry point is also to
be changed, the two changes can be specified at once (see
Figure 17),

//SYSLMOD
//
//SYSLIN

/*

ENTRY
CHANGE
INCLUDE
NAME

DO

DO

DSNAME=PVTLIB,DISP=OLD,UNIT=3350,
VOLUME=SER=PVT002

* MA It~ EP
SUBOHECHEWMOD),BEGIH(MAINEP)
SYSLMODCMAIHROUT)
MAIHROUTCR)

The main entry point is now MAINEP instead of BEGIN. The ENTRY
control statement specifies the new entry point, because this is
the source of the name that is entered in the library directory
entry for the load module's entry point.

REPLACING CONTROL SECTIONS

An entire control section can be replaced with a new control
section. Control sections can be replaced either automatically
or with a REPLACE control statement. Automatic replacement acts
upon all input modules; the REPLACE statement acts only upon the
module that follows it.

Notes:

1. Any CSECT identification (lOR) records associated with a
particular control section are also replaced.

48 MVS/370 Linkage Editor and Loader

2. (For Assembler language programmers only.) When some but
not all control sections of a separately assembled module
are to be replaced, A-type address constants that refer to a
deleted symbol will be incorrectly resolved unless the entry
name is at the same displacement from the origin in both the
old and the new control section. If all control sections of
a separately assembled module are replaced, no restrictions
apply.

AUTOMATIC REPLACEMENT

Example 1

Control sections are automatically replaced if both the old and
the new control section have the same name. The first of the
identically named control sections processed by the linkage
editor is made a part of the output module. All subsequent
identically named control sections are ignored; external
references to identically named control sections are resolved
with respect to the first one processed. Therefore, to cause
automatic replacement, the new control section must have the
same name as the control section to be replaced, and must be
processed before the old control section.

caution: Automatic replacement applies to duplicate control
section names only; if duplicate entry points exist in control
sections with different names, a REPLACE control statement must
be used to specify the entry point name. If a control section
being automatically replaced contains unresolved external
references and the control section replacing it does not, the
parameter HCAL must be specified or the unresolved external
references must be explicitly deleted using the REPLACE
statement or marked for restricted no-call or never-call using
the LIBRARY statement; otherwise, the unresolved external
reference is retained.

NOTE ON OVERLAY PROGRAMS: When identically named control
sections appear in modules being placed in an overlay structure,
the second and any subsequent control sections with that name
are ignored. This occurs whether the modules are in segments in
the same path or in exclusive segments. Resolution of external
references may therefore cause invalid exclusive references.
Invalid exclusive references cause the linkage editor to mark
the output module not executable unless the exclusive call
(XCAL) option is specified on the EXEC statement (see "Job
Control Language Summary" on page 85).

An object module deck contains two control sections, READ and
WRITE; member INOUT of library PVTLIB also contains a control
section WRITE.

//SYSLMOD
//
//SYSLIN

DD

DD

DSNAME=PVTLIB,DISP=OLD,UNIT=3350,
VOLUME=SER=PVT002

*
Object Deck for READ
Object Deck for WRITE

/*

ENTRY
INCLUDE
NAME

READIN
SYSLMOD(INOUT)
INOUT(R)

The output load module contains the new READ control section,
the new WRITE control section (replacing the old WRITE control
section in member INOUT), and all remaining control sections
from INOUT.

Module Editing 49

Example 2

A large load module named PAYROLL, originally written in COBOL, . ~
contains many control sections. Two control sections, FICA and ~
STATETAX, were recompiled and passed to the linkage editor job
step in the &&OBJECT data set. Then, by including the load
module PAYROLL (a member of the partitioned data set LIBOOI) as
well as the output of the language translator, the modified
control sections automatically replace the identically named
control sections (Figure 18 on page 51).

//SYSLMOD
//
//SYSLIB
//OLDLOAD
//
//SYSLIH
//

INCLUDE
ENTRY

DD DSNAME=LIB002(PAYROLL),DISP=OLD,
UNIT=3350,VOLUME=SER=LIB002

DD DSHAME=SYSl.COBLIB,DISP=SHR
DD DSHAME=LIBOOl,DISP=(OLD,DELETE),

UHIT=3350,VOLUME=SER=LIBOOI
DD DSHAME=&&OBJECT,DISP=(OLD,DELETE)
DD *
OLDLOAD(PAYROLL)
IHITI

J

50 MVS/370 Linkage Editor and loader

~
Input Modules

&&OBJECT

L /"
FICA
(new)

/"
STATETAX
(new)

L1BOOI
(Payroll)

./ /'"
MAINROUT

/'
OVERTIME

/"
FICA
(old)

/"
STATETAX
(old)

/'
FEDTAX

/
ILLACC

/'
VAKTION

/'

"..,V
-..../

JCL and Control Statements

IISYSLPlOD
IIOLDLOAD
IISYSLIN
II

INCLUDE
ENTRY

1*

DD DSNAHE=LIB002(PAYROLL)
DD DSNA~lE=LIBClOl, .. .
DD DSNAME=&&OBJECT, .. .
DD *
OLDLOAD(PAYROLL)
INITl

, ...

Output Load Module

./

L1B002
(Payroll)

FICA
(new)

STATETAX
(new)

\lAINROUT

OVIRTIMF

lTDTAX

I Ll.ACC

VAKTION

/'"

V

V

/

/'

/'

/

/'

~
-.,.....,.V

Figure 18. Automatic Replacement of Control Sections

REPLACE STATEMENT

The output module contains the modified FICA and STATETAX
control sections and the rest of the control sections from the
old PAYROLL module. The main entry point is INIT1, and the
output module is placed in a library named LIB002. The COBOL
automatic call library is used to resolve any external
references that may be unresolved after the SYSLIN data sets are
processed.

The REPLACE statement is used to replace control sections when
the old and the new control sections have different names. The
name of the old control section appears first, followed by the
name of the new control section in parentheses. The REPLACE
statement must precede either the input module that contains the
control section to be replaced, or the INCLUDE statement that
specifies the input module. The scope of the REPLACE statement

Module Editing 5]

is across the immediately following module (object module or
load module). The END record in the immediately following \
object module or the end-of-module indication in the load module ~
terminates the action of the REPLACE statement.

An external reference to the old control section from within the
same input module is resolved to the new control section. An
external reference to the old control section from any other
module becomes an unresolved external reference unless one of
the following occurs:

• The external reference to the old control section is changed
to the new control section with a separate CHANGE control
statement.

• The same entry name appears in the new control section or in
some other control section in the linkage editor input.

In the following example, the REPLACE statement is used to
replace one control section with another of a different name.
Assume that the old control section SEARCH is in library member
TBLESRCH, and that the new control section BINSRCH is in the
data set &&OBJECT, which was passed from a previous step
(Figure 19 on page 53).

//SYSLMOD
//
//SYSLIN
//

/*

ENTRY
REPLACE
INCLUDE
NAME

DD

DO
DD

DSNAME=SRCHRTN,DISP=OLD,UNIT=3350,
VOLUME=SER=SRCHLIB
DSNAME=&&OBJECT,DISP=(OLD,DELETE)

READIN
SEARCH(BINSRCH)
SYSLMODCTBLESRCH)
TBLESRCH(R)

52 MVS/370 Linkage Editor and Loader

Input >"Iodules

&&OBJECT

fC-/-------('"/
BINSRCH

______ Jr/

TBLESRCH

./ /'
RI\IJI:--" I.NTR't

(,\11. SI \\{(II

t----------r/'
SEARCH

JCL ami Control Statements

}

IISYSL:}OD

---+ IISYSLPJ

II
EI~TRY

REPL;\Cr::

1*

IIJCLC;JE

iJA:iE

DD DSNA!:E=SRCHRTIJ ..••
DD DS:m:!E=&&OBJECT .••.

Dj) *
READTN

SEJ\?,CH (BINSL!IRCH)

SYSUIOD (TBLr:SRCH)

TBLESRCH (R)

Output Load Module

TBLESRCH

fC-/-----r/
RIADIl\ I \,TRY

C\l1 IlINS\{CII

I------rv
Il1:--" SRCII

Figure 19. Replacing a Control Section with the REPLACE Control Statement

The output module contains BINSRCH instead of SEARCH; any
references to SEARCH within the module refer to BINSRCH. Any
external references to SEARCH from other modules will not be
resolved to BINSRCH.

DELETING A CONTROL SECTION OR ENTRY NAME

The REPLACE statement can be used to delete a control section or
an entry name. The REPLACE statement must immediately precede
either the module that contains the control section or entry
name to be deleted 0r the INCLUDE statement that specifies the
module. Only one symbol appears on the REPLACE statement; the
appropriate deletion is made depending on how the symbol is
defined in the module.

If the symbol is a control section name, the entire control
section is deleted. The control section name is deleted from
the external symbol dictionary only if no address constants
refer to the name from within the same input module. If an
address constant does refer to it, the control section name is
changed to an external record.

The preceding is also true of an entry name to be deleted. Any
references to it from within the input module cause the entry
name to be changed to an external reference.

These editor-supplied external references, unless resolved with
other input modules, cause the automatic library call mechanism
to attempt to resolve them. Also, the deletion of a control
section or an entry name may cause external references from

Module Editing 53

Input Module

CODEROUT

./ /'
[NCODI':

V
CODER

/'
DECOD!:

other input modules to be unresolved. Either condition can
cause the output load module to be marked not executable.

If a deleted control section contains an unresolved external
reference, the reference remains.

If a REPLACE statement, used to delete a CSECT, is the last
control statement and there are external references to be
resolved from SYSLIB, the delete request operates on the first
module from SYSLIB and deletes it. The external reference
remains unresolved.

Note: When a control section is deleted, any CSECT
identification data associated with that control section is also
deleted.

In the following example, control section CODER is to be deleted
(Figure 20),

IISYSLMOO
II
IISYSLIN

DO OSNAME=PVTLIB,OISP=OLD,UNIT=3350,

ENTRY
REPLACE
INCLUDE
NAME

VOLUME=SER=PVT002
DO *
ST ART!
CODER
SYSLMOD(CODEROUT)
CODEROUH R)

JCL and Control Statements

//SYSLMOD
//SYSLIN

ENTRY
REPLACE
INCLUDE

-. NAME
/*

DD DSNAME=PVTLIB, ...
DO *
STARTl
CODER
SYSLMOO(COOEROUT)
COOEROUT(R)

Output Load Module

CODEROUT

./' /'"
ENCODE

DECODE

Figure 20. Deleting a Control Section

The control section CODER is deleted. If no address constants
refer to CODER from other control sections in the module, the
control section name is also deleted. If address constants
refer to CODER, the name is retained as an external reference.

54 MVS/370 Linkage Editor and Loader

J

ORDERING CONTROL SECTIONS OR NAMED COMMON AREAS

The sequence of control sections or named common areas in an
output load module can be specified by using the ORDER control
statement.

Individual control sections or named common areas are arranged
in the output load module according to the sequence in which
they appear on the ORDER control statement. Multiple ORDER
control statements can be used in a job step. The sequence of
the ORDER statements determines the sequence of the control
sections or named common areas in the load module.

Any control sections or named common areas that are not
specified on ORDER statements appear last in the output load
module. If a control section or named common area is changed by
a CHANGE or REPLACE control statement, the new name must be used
on the ORDER statement.

In the following example, ORDER statements are used to specify
the sequence of five of the six control sections in an output
load module. A REPLACE statement is used to replace the old
control section, SESECTA, with the new control section, CSECTA,
from the data set &&OBJECT, which was passed from a previous
step. Assume that the control sections to be ordered are found
in library member MAINROOT (Figure 21 on page 56).

//SYSLMOD
//
//SYSLIN
//

ORDER
REPLACE
ORDER
INCLUDE
NAME

DD

DD
DD

DSNAME=PVTLIB,DISP=OLD,
UNIT=3350,VOLUME=SER=PVT002
DSNAME=&&OBJECT,DISP=(OLD,DELETE)

* MAINEP,SEGMT1,SEG2
SESECTA(CSECTA)
CSECTA,CSECTB
SYSlMOD(MAINROOT)
MAINROOT

Module Editing 55

Input Modules JCL and Control Statements Output Load Module

&&OBJECT

./ /'
CSECTA

"'----"'/
MAINROOT

/" ./
CSECTB

/
SESECTA

/
MAINEP

/
LASTEP

V
SEGMTl

V
SEG2

l/

II EXEC PGM=HEHL

IISYSLMOD DD
IISYSLIN DD
II DD

1*

ORDER
REPLACE
ORDER
INCLUDE
NAME

DSNAME=PVTLIB, ••.
DSNAME=&&OBJECT, ...

*
MAINEP(P) ,SEGMT1,SEG2
SESECTA(CSECTA)
CSECTA,CSECTA,CSECTB(P)
SYSLMOD(MAINROOT)
MAINROOT

OK

MAIN ROOT

./ ./'
MAINEP

/
SEGMTl

.,/
SEG2

.,/
CSECTA

V
CSECTB

/
LASTEP

/

/'

Figure 21. Ordering Control Sections

In the load module MAIHROOT, the control sections MAINEP,
SEGMT1, SEG2, CSECTA, and CSECTB are rearranged in the output
load module according to the sequence specified in the ORDER
statements. A REPLACE statement is used to replace control
section SESECTA with control section CSECTA from data set
&&OBJECT, which was passed from a previous step. The ORDER
statement refers to the new control section CSECTA. Control
section LASTEP appears after the other control sections in the
output load module, because it was not included in the ORDER
statement operands.

ALIGNING CONTROL SECTIONS OR NAMED COMMON AREAS ON PAGE BOUNDARIES

A control section or named common area can be placed on a page
boundary (to effect a lower paging rate and thus make more
efficient use of real storage) by using either the ORDER
statement or the PAGE statement.

The control section or common area to be aligned is named on
either the PAGE statement or the ORDER statement with the P
operand. Either the PAGE statement or the ORDER statement (with
the P operand) causes the linkage editor to locate the starting
address of the control section or common area on a page boundary
within the load module.

In the following example, the control sections RAREUSE and
MAIHRT are aligned on page boundaries by PAGE and ORDER control
statements. Control sections MAINRT, CSECTA, and SESECTI are
sequenced by the ORDER control statement. Assume that each

56 MVS/370 Linkage Editor and Loader

Input Module

MAIN ROOT

/' /'"
CSECTA

./
RAREUSE

/"
SESECTI

./
BOTTOM

V
MAINRT

l/

control section, except for SESECTI and RAREUSE, is 4K bytes in
length (Figure 22).

//LKED

//SYSLMOD
//
//SYSLIN

EXEC

.
DD

DD
PAGE
ORDER
INCLUDE
NAME

PGM=HEWL,PARM=' ... '

DSNAME=OWNLIB,DISP=OLD,UNIT=3350,
VOLUME=SER=OWN002

* RAREUSE
MAINRTCP),CSECTA,SESECTI
SYSLMOD CMAINROOT)
MAINROOT

JCL and Controls Statements Output Load Module

MAINROOT

OK /' ./

//LKED EXEC PGM=HEWL
MAINRT

4K V
CSECTA

//SYSLMOD DD DSNAME=OWNLIB, ..•
//SYSLIN DD *

PAGE RAREUSE 8K /'
ORDER MAINRT(P} ,CSECTA,SESECTl
INCLUDE SYSLMOD(MAINROOT}

SESECTI

/'
NMlE f.1AINROOT

/* 12K /
RAREUSF

/
BOTTOM

V

Figure 22. Aligning Control Sections on Page Boundaries

The linkage editor places the control sections MAINRT and
RAREUSE on page boundaries. Control sections MAINRT, CSECTA,
and SESECTl are sequenced as specified in the ORDER statement.
RAREUSE, while placed on a page boundary, appears after the
control sections specified in the ORDER statement because it was
not included. The control section BOTTOM comes after RAREUSE
because it appeared after RAREUSE in the input module.

Module Editing 57

OVERLAY PROGRAMS

Ordinarily, when a load module produced by the linkage editor is
executed, all the control sections of the module remain in
virtual storage throughout execution. The length of the load
module is. therefore, the sum of the lengths of all the control
sections. When storage space is not at a premium, this is the
most efficient way to execute a program. However. if a program
approaches the limits of the virtual storage available, the
programmer should consider using the overlay facilities of the
linkage editor.

In most cases, all that is needed to convert an ordinary program
to an overlay program is the addition of control statements to
structure the module. The programmer chooses the overlayable
portions of the program, and the system arranges to load the
required portions when needed during execution of the program.

When the linkage editor overlay facility is requested, the load
module is structured so that, at execution time, certain control
sections are loaded only when referenced. When a reference is
made from an executing control section to another, the system
determines whether or not the code required is already in
virtual storage. If it is not, the code is loaded dynamically
and may overlay an unneeded part of the module already in
storage.

The rest of this chapter is divided into three sections that
describe the design, specification, and special considerations
for overlay programs.

DESIGN OF AN OVERLAY PROGRAM

The way in which an overlay module is structured depends on the
relationships among the control sections within the module. Two
control sections that do not have to be in storage at the same
time can overlay each other. Such control sections are
independent; that is, they do not referenr.e each other either
directly or indirectly. Independent control sections can be
assigned the same load addresses and are loaded only when
referenced. For example, control sections that handle error
conditions or unusual data may be used infrequently, and need
not be occupying storage unless in use.

Control sections are grouped into segments. A segment is the
smallest functional unit (one or more control sections) that can
be loaded as one logical entity during execution. The control
sections required all the time are grouped into a special
segment called the root segment. This segment remains in
storage throughout execution of an overlay program.

When a particular segment is to be executed, any segments
between it and the root segment must also be in storage. This
is a path. A reference from one segment to another segment
lower in a path is a downward reference (see "Control Section
Dependency" on page 59). That is, the segment contains a
reference to another segment farther from the root segment.
Conversely, a reference from one segment to another segment
higher in a path (closer to the root segment) is an upward
reference.

Therefore, a downward reference may cause overlay, because the
necessary segment may not yet be in virtual storage. An upward
reference will not cause overlay, because all segments between a
segment and the root segment must be present in storage.

Sometimes several paths need the same control sections. This
problem may be solved by placing the control sections in another
region. In an overlay structure, a region is a contiguous area

58 MVS/370 Linkage Editor and Loader

of virtual storage within which segments can be loaded
independently of paths in other regions. An overlay program can
be designed in single or multiple regions.

SINGLE REGION OVERLAY PROGRAM

To design an overlay structure, the programmer should select
those control sections that will receive control at the
beginning of execution, plus those that should always remain in
storage; these control sections form the root segment. The rest
of the structure is developed by determining the dependencies of
the remaining control sections and how they can use the same
virtual storage locations at different times during execution.

Besides control section dependency, other topics discussed in
this section are segment dependency, the length of the overlay
program, segment origin, communication between segments, and
overlay processing.

Control Section Dependency

Control section dependency is determined by the requirements of
a control section for a given routine in another control
section. A control section is dependent upon any control
section from which it receives control, or which processes its
data. For example, if control section C receives control from
control section B, then C is dependent upon B. That is, both
control sections must be in storage before execution can
continue beyond a given point in the program.

Assume that a program contains seven control sections, CSA
through CSG, and exceeds the amount of storage available for its
execution. Before the program is rewritten, it is examined to
see whether or not it could be placed into an overlay structure.
Figure 23 on page 60 shows the groups of dependent control
sections in the program (the arrows indicate dependencies).

Overlay Programs 59

eSA

eSB

esc

eso

CSE

Dependcnt
Group I

eSA

eSB

esc

CSI'

Depcndent
Group 2

CSA

1
eSB

esc

Dependent
Group 3

Figure 23. Control Section Dependencies

Each dependent group is also a path. That is. if control
section CSG is to be executed. CSB and CSA must also be in
storage. Because CSA and CSB are in each path. they must be in
the root segment. Control section CSC is in two groups. and
therefore is a common segment in two different paths.

A better way to show the relationship between segments is with a
tree structure. A tree is the graphic representation that shows
how segments can use virtual storage at different times. It
does not imply the order of execution. although the root segment
is the first t9 receive control. Figure 24 on page 61 shows the
tree structure for the dependent groups shown in Figure 23. The
structure is contained in one region, and has five segments.

60 MVS/370 Linkage Editor and Loader

~
T "

CSA

t >- Root Segment 1

CS13

I ...

Segment 5 (,SG

1
esc >- Scgmcnt 2

('SF >-Segmcnt4

1
Figure 24. Single-Region Overlay Tree Structure

segment Dependency

When a segment is in virtual storage, all segments in its path
are also in virtual storage. Each time a segment is loaded, all
segments in its path are loaded if they are not already in
virtual storage. In Figure 24, when segment 3 is in virtual
storage, segments I and 2 are also in virtual storage. However,
if segment 2 is in storage, this does not imply that segment 3
or 4 is in virtual storage, because neither segment is in the
path of segment 2.

The position of the segments in an overlay tree structure does
not imply the sequence in which the segments are executed. A
segment can be loaded and overlaid as many times as required by
the logic of the program. However, a segment will not be
overlaid by itself. If a segment is modified during execution,
that modification remains only until the segment is overlaid.

Length of an overlay Program

For purposes of illustration, assume that the control sections
in the sample program have the following lengths:

Overlay Programs 61

CSD
4,000
bytes

t
CSE
3,000
byte~

1

Segment 3
7,000 bytes

Control section Length £in bytes)

eSA 3000

eSB 2000

esc 6000

eSD 4000

eSE 3000

eSF 6000

eSG 8000

If the program were not in overlay. it would require 32000 bytes
of virtual storage. In overlay. however. the program requires
the amount of storage needed for the longest path. In this
structure. the longest path is formed by segments 1. 2. and 3.
since. when they are all in storage. they require 18000 bytes.
as shown in Figure 25.

esc
6,000
bytes

Segment 2
6,000 bytes

T
CSA
3,000
bytes

t
CS8
2,000
bytes

CSF
6,000
bytes

1

Root Segment 1
5,000 bytes

Segment 4
6,000 bytes

eSG
8,000
bytes

1
Segment 5
8,000 bytes

Figure 25. length of an Overlay Module

Note: The length of the longest path is not the minimum
requirement for an overlay program; when a program is in

62 MVS/370 linkage Editor and loader

segment origin

overlay, certain tables are used, and their storage requirements
must also be considered. The storage required by these tables
is given in the section "Special Considerations" on page 77.

The linkage editor assigns the relocatable origin of the root
segment (the origin of the program) at o. The relative origin
of each segment is determined by 0 plus the length of all
segments in the path. For example, the origin of segments 3 and
4 is equal to 0 plus 6000 (the length of segment 2) plus 5000
(the length of the root segment), or 11000. The origins of all
the segments are as follows:

segment origin

1 0

2 5000

3 11000

4 11 00 0

5 5000

The segment origin is also called the load point, because it is
the relative location at which the Segmerlt is loaded.

Figure 26 on page 64 shows the segment origin for each segment
and the way storage is used by the sample program. In the
illustration, the vertical bars indicate segment origin; any two
segments with the same origin may use the same storage area.
Figure 26 also shows that the longest path is that of segments
1, 2, and 3.

Overlay Programs 63

o

Root Segment 1
5,000 bytes

2 3

I

4 5 6

Segment 5
8,000 bytes

Segment 4
6,000 bytes

7 8 9 10 11 12 13

Relative Storage Location (in 1,000 byte increments)

Segment 2
6,000 bytes

Se).'ment 3
7,000 bytes

14 15 16 17 18 19 20

Figure 26. Segment Origin and Use of Storage

communication Between segm2nts

Segments that can be in virtual storage simultaneously are
considered to be inclusive. Segments in the same region but not
in the same path are considered to be exclusive; they cannot be
in virtual storage simultaneously. Figure 27 on page 65 shows
the inclusive and exclusive segments in the sample program.

64 MVS/310 Linkage Editor and Loader

I
Segment 2

I
I

Segment 3

1
I

Segment 4

1

T
Root

Segment \

I
I

Segment 5

1 Inclusive Segments

\,2, and 3
\, 2, and 4
\ and 5

Exclusive Segments

2 and 5
3 and 4
3 and 5
4 and 5

Figure 27. Inclusive and Exclusive Segments

Segments upon which two or more exclusive segments are dependent
are called common seoments. A segment common to two other
segments is part of the path of each segment. Figure 27,
segment 2 is common to segments 3 and 4, but not to segment 5.

An inclusive reference is a reference between inclusive
segments; that is, a reference from a segment in storage to an
external symbol in a segment that will not cause overlay of the
calling segment. An exclusive reference is a reference between
exclusive segments; that is, a reference from a segment in
storage to an external symbol in a segment that will cause
overlay of the calling segment.

Figure 28 on page 66 shows the difference between an inclusive
reference and an exclusive reference; the arrows indicate
references between segments.

INCLUSIVE REFERENCES: Wherever possible, inclusive references
should be used instead of exclusive references. Inclusive
references between segments are always valid and do not require
special options. When inclusive references are used, there is
also less chance for error in structuring the overlay program
correctly.

EXCLUSIVE REFERENCES: An exclusive reference is made when the
external reference in the requesting segment is to a symbol
defined in a segment not in the path of the requesting segment.
Exclusive references are either valid or invalid.

An exclusive reference is valid only if there is also an
inclusive reference to the requested control section in a
segment common to both the segment to be loaded and the segment
to be overlaid. The same symbol must be used in both the common
segment and the exclusive reference. In Figure 28 on page 66, a
reference from segment B to segment A is valid, because there is
an inclusive reference from the common segment to segment A.

Overlay Programs 65

[nclusive

Reference

Segment A

(An entry table in the common segment contains the address of
segment Ai the overlay does not destroy this table.)

Exclusive

Reference

C()mmon Segment

Segment B

Figure 28. Inclusive and Exclusive References

In the same illustration, a reference from segment A to segment
B is invalid, because there is no reference from the common
segment to segment B. A reference from segment A to segment B
can be made valid by including, in the common segment, an
external reference to the symbol used in the exclusive reference
to segment B.

Another way to eliminate exclusive references is to arrange the
program so that the references that will cause overlay are made
in a higher segment. For example, the programmer could
eliminate the exclusive reference shown in Figure 28 by writing
a new module to be placed in the common segment; the new
module's only function would be to reference segment B. The
code in segment A could then be changed to refer to the new
module instead of to segment B. Control then would pass from
segment A to the common segment, where the overlay of segment A
by segment B would be initiated.

If either valid or invalid exclusive references appear in the
program, the linkage editor considers them errors unless one of
the special options is used. These options are described later
in this section (see "Special Considerations" on page 77).

Notes:

1. During the execution of a program written in a higher level
language such as FORTRAN, COBOL, or PL/I, an exclusive call
results in abnormal termination of the program if the
requested segment attempts to return control directly to the
invoking segment that has been overlaid.

2. If a program written in COBOL includes a segment that
contains a reference to a COBOL class test or TRANSFORM

66 MVS/370 Linkage Editor and Loader

J

Overlay Process

I
(,SD

+ Segment 3

CSI::

1

I
esc

t

table, the segment containing the table must be either (1)
in the root segment or (2) a segment that is higher in the
same path than the segment containing the reference to the
table.

The overlay process is initiated during execution of a program
only if a control section in virtual storage references a
control section not in storage. The control program determines
the segment that the referenced control section is in and, if
necessary, loads the segment. When a segment is loaded, it
overlays any segment in storage with the same relative origin.
Any segments in storage that are lower in the path of the
overlaid segment may also be overlaid. An exclusive reference
can also cause segments higher in the path to be overlaid. If a
control section in storage references a control section in
another segment already in storage, no overlay occurs.

The portion of the control program that determines when overlay
is to occur is the overlay supervisor, which uses special tables
to determine when overlay is necessary. These tables are
generated by the linkage editor, and are part of the output load
module. The special tables are the segment table and the entry
table(s). Figure 29 shows the location of the segment and entry
tables in the sample program.

T
SEGTAB

t
CSA

t Root Segment I

CSB

t
ENTAB

I

I
Segment 2 CSG Segment 5

ENTAB 1 I

Figure 29. Location of Segment and Entry Tables in an Overlay Module

Overlay Programs 67

Because the tables are present in every overlay module, their
size must be considered when planning the use of virtual
storage. The storage requirements for the tables are given in
"Special Considerations" on page 77. A more detailed discussion
of the segment and entry tables follows.

SEGMENT TABLE: Each overlay program contains one segment table
(SEGTAB); this table is the first control section in the root
segment. The segment table contains information about the
relationship of the segments and regions in the program. During
execution, the table also indicates which segments are either in
storage or being loaded, and other control information.

ENTRY TABLE: Each segment that is not the last segment in a path
may contain one entry table (ENTAB); this table, when present,
is the last control section in a segment.

When overlay will be required, an entry in the table is created
for a symbol to which control is to be passed, provided (1) the
symbol is used as an external reference in the requesting
segment, and (2) the symbol is defined in another segment either
lower in the path of the requesting segment, or in another
region. An ENTAB entry is not created for any symbol already
present in an entry table closer to the root segment (higher in
the path), or for a symbol defined higher in the path. (A
reference to a symbol higher in the path does not have to go
through the control program because no overlay is required.)

If an external reference and the symbol to which it refers are
in segments not in the same path but in the same region, an
exclusive reference was made. If the exclusive reference is
valid, an ENTAB entry for the symbol is present in the common
segment. Because the common segment is higher in the path of
the requesting segment, no ENTAB entry is created in the
requesting segment. When the reference is executed, control
passes through the ENTAB entry in the common segment. That is,
a branch to the location in the ENTAB entry causes the overlay
supervisor to be called to load the needed segment or segments.

If the exclusive reference is invalid, no ENTAB entry is present
in the common segment. If the LET option is specified, an
invalid exclusive reference causes unpredictable results when
the program is executed. Because no ENTAB entry exists, control
is passed directly to the relative address specified in the
reference, even though the requested segment may not be in
virtual storage.

MULTIPLE REGION OVERLAY PROGRAM

If a control section is used by several segments, it is usually
desirable to place that control section in the root segment.
However, the root segment can get so large that the benefits of
overlay are lost. If some of the control sections in the root
segment could overlay each other (except for the requirement
that all segments in a path must be in storage at the same
time), the job may be a candidate for multiple region structure.
Multiple region structures can also be used to increase segment
loading efficiency: Processing can continue in one region while
the next path to be executed is being loaded into another
region.

With multiple regions, a segment has access to segments that are
not in its path. Within each region, the rules for single
region overlay programs apply, but the regions are independent
of each other. A maximum of four regions can be used.

Figure 30 on page 69 shows the relationship between the control
sections in the sample program and two new control sections, CSH
and CSI. The two new control sections are each used by two
other control sections in different paths. Placing CSH and CSI
in the root segment makes the segment larger than necessary,
because CSH and CSI can overlay each other. The two control
sections should not be duplicated in two paths, because the

68 MVS/370 Linkage Editor and Loader

J

J

J

I
CSO

t
CSE

1

linkage editor automatically deletes the second pair and an
invalid exclusive reference may then result.

T
CSA

+ CSB

I

I
esc

I
CSG

I
CSH

1

............................ ···>«««1:::

CSI

1
CSF

(1/<·· ······························<>11

1 i 1 ••• 1

.. ,«<

Figure 30. Control Sections Used by Several Paths

If, however, the two control sections are placed in another
region, they can be in virtual storage when needed, regardless
of the path being executed in the first region. Figure 31 on
page 70 shows all the control sections in a two-region
structure. Either path in region 2 can be in virtual storage
regardless of the path being executed in region 1; segments in
region 2 can cause segments in region 1 to be loaded without
being overlaid themselves.

Overlay Programs 69

REGION 1

(' S(, ~ Segment 2

('10 t ~Segment 3

eSE

T~
('SA + ~ Root Segment I

(,SB

I

eSG Segmcnt 5

1
------l--------r
REGION 2 I -----------r}------------

(,SH

1
Segmen t 6 ('1 Segmcnt 7

Figure 31. Overlay Tree for Multiple-Region Program

The relative origin of a second region is determined by the
length of the longest path in the first region (18000 bytes).
Region 2, therefore, begins at 0 plus 18000 bytes. The relative
origin of a third region would be determined by the length of
the longest path in the first region plus the longest path in
the second region.

The virtual storage required for the program is determined by
adding the lengths of the longest path in each region. In
Figure 31, if CSH is 4000 bytes and CSI is 3000 bytes, the
storage required is 22000 bytes, plus the storage required by
the special overlay tables.

Care should be exercised when choosing multiple regions. There
may be some system degradation caused by the overlay supervisor
being unable to optimize segment loading when multiple regions
are used.

SPECIFICATION OF AN OVERLAY PROGRAM

Once the programmer has designed an overlay structure, the
module must be placed in that structure by indicating to the
linkage editor the relative positions of the segments and
regions, and the control sections in each segment. Positioning
is accomplished as follows:

70 MVS/370 linkage Editor and loader

SEGMENT ORIGIN

• Segments are positioned by OVERLAY statements. Because
segments are not named, the programmer identifies a segment
by giving its origin (or load point) a symbolic name and
then uses that name in an OVERLAY statement to specify a
symbolic origin. Each OVERLAY statement begins a new
segment.

• Regions are also positioned by OVERLAY statements. The
programmer specifies the origin of the first segment of the
region, followed by the word REGION in parentheses.

• Control sections are positioned in the segment specified by
the OVERLAY statement with which they are associated in the
input sequence. However, the sequence of the control
sections within a segment is not necessarily the order in
which the control sections are specified.

The input sequence of control statements and control sections
should reflect the sequence of the segments in the overlay
structure from top to bottom, left to right, and region by
region. This sequence is illustrated in later examples.

In addition, several special options are used with overlay
programs. These options are specified on the EXEC statement for
the linkage editor job step, and are described at the end of
this section.

Note: If a load module in overlay structure is to be
reprocessed by the linkage editor, the OVERLAY statements and
special options (such as OVLY) must be respecified. If the
statements and options are not provided, the output load module
will not be in overlay structure.

The symbolic origin of every segment, other than the root
segment, must be specified with an OVERLAY statement. The first
time a symbolic origin is specified, a load point is created at
the end of the previous segment. That load point is logically
assigned a relative address at the doubleword boundary that
follows the last byte in the preceding segment. Subsequent use
of the same symbolic origin indicates that the next segment is
to have its origin at the same load point.

In the sample single-region program, the symbolic origin names
ONE and TWO are assigned to the two necessary load points, as
shown in Figure 31 on page 70. Segments 2 and 5 are at load
point ONE; segments 3 and 4 are at load point TWO.

The following sequence of OVERLAY statements will result in the
structure in Figure 32 on page 72 (the control sections in each
segment are indicated by name):

Control section CSA
Control section CSB
OVERLAY ONE
Control section CSC
OVERLAY TWO
Control section CSD
Control section CSE
OVERLAY TWO
Control section CSF
OVERLAY ONE
Control section CSG

Note: The sequence of OVERLAY statements reflects the order of
segments in the structure from top to bottom and left to right.

Overlay Programs 71

REGION ORIGIN

Root Segment 1

ONE

Segment 2

Segment 5

TWO 1
Segment 3 Segment 4

1 1

Figure 32. Symbolic Segment Origin in Single-Region Program

The symbolic origin of every region, other than the first, must
be specified with an OVERLAY statement. Once a new region is
specified, a segment origin from a previous region should not be
specified.

In the sample multiple-region program, the symbolic origin THREE
is assigned to region 2, as shown in Figure 33 on page 73.
Segments 6 and 7 are at load point THREE.

72 MVS/370 Linkage Editor and Loader

REGION I

T
Root Segment I

ONE

Segment 2

I
I

Segment 4

Segment 5

1 I
TWO

1 Segment 3

___ 1 __ _
REGION 2

- - "7H;;E - - - -r - -
Segment 7

1 Segment 6

1

Figure 33. Symbolic Segment and Region Origin in Multiple-Region Program

If the following is added to the sequence for the single-region
program, the multiple-region structure will be produced:

.
OVERLAY THREECREGION)
Control section CSH
OVERLAY THREE.
Control section CSI

POSITIONING CONTROL SECTIONS

After each OVERLAY statement, the control sections for that
segment must be specified. The control sections for a segment
can be specified in one of three ways:

• By placing the object decks for each segment after the
appropriate OVERLAY statement

• By using INCLUDE control statements for the modules
containing the control sections for the segment

• By using INSERT control statements to reposition a control
section from its position in the input stream to a
particular segment

Any control sections that precede the first OVERLAY statement
are placed in the root segment; they can be repositioned with an
INSERT statement. Control sections from the automatic call

Overlay Programs 73

us;ng object Decks

library are also placed in the root segment. The INSERT
statement can be used to place these control sections in another J.
specific segment. Common areas in an overlay program are
described in "Special Considerations" on page 77.

An example of each of the three methods of positioning control
sections follows. Each example results in the structure for the
single-region sample program. An example is also given of
repositioning control sections from the automatic call library.

The primary input data set for this example contains an ENTRY
statement and seven object decks, separated by OVERLAY
statements:

//LKED EXEC PGM=HEWL,PARM='OVLY'

//SYSLIN DO *
ENTRY BEGIN.

Object deck for CSA
Object deck for CSB

OVERLAY ONE.
Object deck for CSC

OVERLAY TWO.
Object deck for CSD
Object deck for CSE

OVERLAY TWO.
Object deck for CSF

OVERLAY ONE.
Object deck for CSG
/*

The EXEC statement illustrates that the OVLY parameter must be
specified for every overlay program to be processed by the
linkage editor.

us;ng INCLUDE statements

The primary input data set for this example contains a series of
control statements. The INCLUDE statements in the primary input
data set direct the linkage editor to library members that
contain the control sections of the program.

//LKED EXEC PGM=HEWL,PARM='OVLY'

//MODLIB DD DSNAME=OBJLIB,DISP=COLD,KEEP), ...
//SYSLIN DO *

ENTRY BEGIN
INCLUDE MODLIBCCSA,CSB)
OVERLAY ONE
INCLUDE MODLIBCCSC)
OVERLAY TWO
INCLUDE MODLIBCCSD,CSE)
OVERLAY TWO
INCLUDE MODLIBCCSF)
OVERLAY ONE
INCLUDE MODLIB(CSG)

/*

74 MVS/370 Linkage Editor and Loader

This example differs from the previous one in that the control
sections of the program are not part of the primary input data
set, but are represented in the primary input by the INCLUDE
statements. When an INCLUDE statement is processed, the
appropriate control section is retrieved from the library and
processed.

Using INSERT Statements

When INSERT statements are used, the INSERT and OVERLAY
statements may either follow or precede all the input modules.
However, the order of the control sections in a segment is not
necessarily the same as the order of the INSERT statements for
each segment. An example of each is given, as well as an
example of repositioning automatically called control sections.

FOLLOWING ALL INPUT: The control statements can follow all the
input modules, as shown in the following example:

//LKED EXEC PGM=HEWL,PARM='OVLY'

/ /SYSlIN DD
// DD

DSNAME=OBJECT,DISP=(OLD,KEEP), ...

* ENTRY BEGIN
INSERT CSA,CSB
OVERLAY ONE
INSERT CSC
OVERLAY TWO
INSERT CSD,CSE
OVERLAY TWO
INSERT CSF
OVERLAY ONE
INSERT CSG

The primary input data set contains the object modules for the
control sections, and the input stream is concatenated to it.

PRECEDING ALL INPUT: The control statements can also precede all
input modules, as shown in the following example:

EXEC PGM=HEWL,PARM='OVLY' //LKED
//MODULES DO DSNAME=OBJSEQ,DISP=(OLD,KEEP), ...

//SYSLIN DO *

/*

ENTRY BEGIN
INSERT CSA,CSB
OVERLAY ONE
INSERT CSC
OVERLAY TWO
INSERT CSD,CSE
OVERLAY TWO
INSERT CSF
OVERLAY ONE
INSERT CSG
INCLUDE MODULES

Overlay Programs 75

SPECIAL OPTIONS

OVLY Option

The primary input data set contains all the control
for the overlay structure and an INCLUDE statement.
set specified by the INCLUDE statement contains all
modules for the structure, and is a sequential data

statements
The data

the object
set.

REPOSITIONING AUTOHATICALLY CALLED CONTROL SECTIONS: The INSERT
statement can also be used to move automatically called control
sections from the root segment to the desired segment. This is
helpful when control sections from the automatic call library
are used in only one segment. By moving such control sections,
the root segment will contain only those control sections used
by more than one segment.

When a program is written in a higher level language, special
control sections are called from the automatic call library.
Assume that the sample program is written in COBOL and that two
control sections (ILBOVTRO and ILBOSCHO) are called
automaticallY from SYSl.COBLIB. Ordinarily, these control
sections are placed in the root segment. However, INSERT
statements are used in the following example to place these
control sections in segments other than the root segment.

//LKED
//MODLIB
//SYSLIB

EXEC
DD
DD

PGM=HEWL,PARM='OVLY'
DSNAME=OBJLIB,DISP=(OLD,KEEP), ...
DSNAME=SYSl.COBLIB,DISP=SHR

//SYSLIN DO *
ENTRY BEGIN
INCLUDE MODLIB(CSA,CSB)
OVERLAY ONE
INCLUDE MOOLIB(CSC)
OVERLAY TWO
INCLUDE MOOLIBCCSD,CSE)
INSERT ILBOVTRO
OVERLAY TWO
INCLUDE MODLIBCCSF)
INSERT ILBOSCHO
OVERLAY ONE
INCLUDE MODLIB(CSG)

As a result, segments 3 and 4 will also contain ILBOVTRO and
ILBOSCHO, respectively.

This example also combines two of the ways of specifying the
control sections for a segment.

The linkage editor provides three special job step options
(OVLY, LET, and XCAL) for the overlay programmer. These options
are specified on the EXEC statement for the linkage editor job
step. They must be specified each time a load module in overlay
structure is reprocessed by the linkage editor.

The OVLY option must be specified for every overlay program. If
the option is omitted, all the OVERLAY and INSERT statements are
considered invalid. Unless the LET option is specified, the
output module is marked not executable. The output module is
not in an overlay structure.

76 MVS/370 Linkage Editor and Loader

LET option

XCAL option

With the LET option, the output module is marked executable even
though certain error conditions were found during linkage editor
processing. When LET is specified, any exclusive reference
(valid or invalid) is accepted. At execution time, a valid
exclusive reference is executed correctly; an invalid exclusive
reference usually causes unpredictable results.

Also with the LET option, unresolved external references do not
prevent the module from being marked executable. This could be
helpful when part of a large program is ready for testing; the
segments to be tested may contain references to segments not yet
coded. If LET is specified, the program can be executed to test
those parts that are finished (as long as the references to the
absent segments are not executed). If the LET option is not
specified, these unresolved references will cause the module to
be marked not executable.

With the XCAL option, a valid exclusive call is not considered
an error, and the load module is marked executable. However,
unless the LET option is specified, other errors could cause the
module to be marked not executable. In this case, the XCAL
option is not required.

AMODE ;nd RMODE options

If the OVLY option is specified, the AMODE and RMODE options are
ignored and a diagnostic message is issued to that effect.
Overlay programs are assigned a residence mode of 24 and an
addressing mode of 24.

SPECIAL CONSIDERATIONS

COMMON AREAS

This section discusses several special considerations that
affect overlay programs. These considerations include the
handling of common areas, special storage requirements, and
overlay communication.

When common areas (blank or named) are encountered in an overlay
program, the common areas are collected as described previously
(that is, the largest blank or identically named common area is
used). The final location of the common area in the output
module depends on whether INSERT statements were used to
structure the program.

If INSERT statements are used to structure the overlay program,
a named common area should either be part of the input stream in
the segment to which it belongs, or should be placed there with
an INSERT statement.

Because INSERT statements cannot be used for blank common areas,
a blank common area should always be part of the input stream in
the segment to which it belongs.

If INSERT statements are not used, and the control sections for
each segment are placed or included between OVERLAY statements,
the linkage editor "promotes" the commo~ area automatically.
That is, the common area is placed in the common segment of the
paths that contain references to it so that the common area is
in storage when needed. The position of the promoted area in
relation to other control sections within the common segment is
unpredictable.

If a common area is encountered in a module from the automatic
call library, automatic promotion places the common area in the

Overlay Programs 77

I
Named Common A

+ eso

t
CSE

1

I

root segment. In the case of a named common area, this may be
overridden by use of the INSERT statement.

Assume that the sample program is written in FORTRAN and that
common areas are present as shown in Figure 34. Further assume
that the overlay program is structured with INCLUDE statements
between the OVERLAY statements so that automatic promotion
occurs.

T
('SA t Root Segmenr I

CSI3

I

Blank Common Blank Common

t t Segment 2 Segment 5
CSG

esc

I
I

+ Named Common B
-.L

Named Common A

t
CSF

+
Segment 3

Segment 4

Named Common B

-1

Figure 34. Common Areas before Processing

Segments 2 and 5 contain blank common areas, segments 3 and 4
contain named common area A, and segments 4 and 5 contain named
common area B. During linkage editor processing, the blank
common areas are collected and the largest area is promoted to
the root segment (the first common segment in the two paths);
the common areas named A are collected and the largest area is
promoted to segment 2; the common areas named B are collected
and promoted to the root segment. Figure 35 on page 79 shows
the location of the common areas after processing by the linkage
editor.

78 MVS/370 Linkage Editor and Loader

I
csc

t Segment 2

T
CSA

+
CSB

t
Blank Common

+ Named Common B
I

Root Segment I

I
CSG Segment 5

Named Common A 1
CSD

t Segment 3
C S F Segment 4

1 CSE

1
Figure 35. Common Areas after Processing

STORAGE REQUIREMENTS

The virtual storage requirements for an overlay program include
the items placed in the module by the linkage editor and the
overlay supervisor necessary for execution.

ITEMS IN THE LOAD MODULE: The items that the linkage editor
places in an overlay load module are the segment table, entry
tables, and other control information. Their size must be
included in the minimum requirements for an overlay program,
along with the storage required by the longest path and any
control sections from the automatic call library.

Every overlay program has one segment table in the root segment.
The storage requirements are:

SEGTAB = 4n + 24

where:

n = the number of segments in the program

Some segments will have an entry table. The requirements of the
entry tables in the segments in the longest path must be added
to the storage requirements for the program. The requirements
for an entry table are:

Overlay Programs 79

EHTAB = 12(x + 1)

where:

x = the number of entries in the table

Finally, a HOTE list is required to execute an overlay program.
The storage requirements are:

HOTELST = 4n + 8

where:

n = the number of segments in the program

OVERLAY SUPERVISOR: To the minimum requirements of the load
module itself must be added the requirements of the overlay
supervisor. This system routine is not placed in an overlay
module, but, during execution of the module, the supervisor may
be called to initiate an overlay. If called, the storage
allocated for the program must also be large enough for the
supervisor.

This asynchronous
the system. This
through the SEGLD
Communication").
supervisor module

OVERLAY COMMUNICATION

overlay supervisor module is furnished with
asynchronous module also permits overlay
macro instruction (see "Overlay
The storage requirement for the overlay
is 180 bytes.

Several ways of communicating between segments of an overlay
program are discussed in this section. A higher level or
Assembler language program may use a CALL statement or a CALL
macro instruction, respectively, to cause control to be passed
to a symbol defined in another segment. The CALL may cause the
segment to be loaded if it is not already present in storage.
An Assembler language program may also use three additional ways
to communicate between segments:

• By a branch instruction, which causes a segment to be loaded
and control to be passed to a symbol defined in that
segment.

• By a segment load (SEGLD) macro instruction, which requests
loading of a segment. Processing continues in the
requesting segment while the requested segment is being
loaded.

• By a segment load and wait (SEGWT) macro instruction, which
requests loading of a segment. Processing continues in the
requesting segment only after the requested segment is
loaded.

Any of the four methods may be used to make inclusive
references. Only the CALL and branch may be used to make
exclusive references. Heither the SEGLD nor the SEGWT macro
instruction should be used to make exclusive references; because
both imply that processing is to continue in the requesting
segment, an exclusive reference leads to erroneous results when
the program is executed.

CALL statement or CALL Macro Instruction

A CALL statement or a CALL macro instruction refers to an
external name in the segment to which control is to be passed. J.
The external name must be defined as an external reference in
the requesting segment. In Assembler language, the name must be
defined as a 4-byte V-type address constant; the high-order bit

80 MVS/370 Linkage Editor and Loader

Branch Instruction

is reserved for use by the control program, and must not be
altered during execution of the program.

When a CALL is used, the requested segment and any segments in
its path are loaded if they are not part of the path already in
virtual storage. After the segment is loaded, control is passed
to the requested segment at the location specified by the
external name.

A CALL between inclusive segments is always valid. A return can
be made to the requesting segment by another source language
statement, such as RETURN. A CALL between exclusive segments is
valid if the conditions for a valid exclusive reference are met;
a return from the requested segment can be made only by another
exclusive reference, because the requesting segment has been
overlaid.

Any of the branching conventions shown in Figure 36 on page 82
can be used to request loading and branching to a segment. As a
result, the requested segment and any segments in its path are
loaded if they are not part of the path already in virtual
storage. Control is then passed to the requested segment at the
location specified by the address constant placed in general
register 15.

Overlay Programs 81

Example

1

Name l Operation

L
BALR

operandZ,J

RI5,=VCname)
Rn,RI5

2

ADCOH

3

4

56

6 b

7 b

L
BALR

DC

L
BAL

L
BAL

L
BCR

L
BC

L
BC

R15, ADcml
Rn,RI5

VCname)

RI5,=VCname)
Rn,OCO,RI5)4

RI5,=VCname)
Rn,OCRI5)s

RI5,=VCname)
I5,R15

RI5,=VCname)
I5,OCO,RI5)4

RI5,=VCname)
I5,OCR15)S

Figure 36. Branch Sequences for Overlay Programs

Notes to Figure 36:
1

2

J

4

5

6

When the name field is blank, specification of a name is
optional.

R15 must hold a 4-byte address constant that is the address
of an entry name or a control section name in the requested
segment. The address constant must be loaded into the
standard entry point register, register 15.

Rn is any other register and is used to hold the return
address. This register is usually register 14.

This may also be written so that the index register is loaded
with the address constant; the other fields must be zero.

In this format, the base register must be loaded with the
address constant; the displacement must be zero.

This example is an unconditional branch; other conditions are
also allowed.

The address constant must be a 4-byte V-type address constant.
The high-order bit IS reserved for use by the control program,
and must not be altered during execution of the program.

A branch between inclusive segments is always valid; a return
may be made by means of the address stored in Rn. A branch
betweeen exclusive segments is valid if the conditions for a
valid exclusive reference are met; a return can be made only by
another exclusive reference.

segment Load (SEGLDl Macro Instruction

The SEGLD macro instruction is used to provide overlap between
segment loading and processing within the requesting segment.
As a result of using any of the examples in Figure 37, the

82 MVS/370 Linkage Editor and Loader

loading of the requested segment and any segments in its path is
initiated when they are not part of the path already in virtual
storage. Processing then resumes at the next sequential
instruction in the requesting segment while the segment or
segments are being loaded. Control may be passed to the
requested segment with either a CALL or a branch, as shown in
Examples 1 and 2, respectively. A SEGWT instruction can be used
to ensure that the data in the control section specified by the
external name is in virtual storage before processing resumes,
as shown in Example 3.

Example Name l operation operandZ,3

1 SEGLD external name
CALL external name

2 SEGLD external name
branch external name

3 SEGLD external name

SEGWT external name
L Rn,=V(name)

Figure 37. Use of the SEGLD Macro Instruction

Notes to Figure 37:
1

2

3

When the name field is blank, specification of a name is
optional.

External name is an entry name or a control section name in
the requested segment.

Rn is any other register and is used to hold the return
address. This register is usually register 14.

The external name specified in the SEGLD macro instruction must
be defined with a 4-byte V-type address constant. The
high-order bit is reserved for use by the control program and
must not be altered during execution of the program.

Segment wait (SEGWT) Macro Instruction

The SEGWT macro instruction is used to. stop processing in the
requesting segment until the requested segment is in virtual
storage.

As a result of using any of the examples in Figure 38 on page
84, no further processing takes place until the requested
segment and all segments in its path are loaded when not already
in virtual storage. Processing resumes at the next sequential
instruction in the requesting segment after the requested
segment has been loaded.

Overlay Programs 83

Example Name l operation OperandZ,3

1 SEGLD external name

SEGWT external name
L Rn,ADCOH

branch
ADCOH DC VCname)

2 SEGWT external name
L Rn,=VCname)

Figure 38. Use of the SEGWT Macro Instruction

Notes to Figure 38:

2

When the name field is blank, specification of a name is
optional.

External name is an entry name or a control section name In
the requested statement.

Rn is any other register and is used to hold the return
address. This register is usually register 14.

If the SEGWT and SEGLD macro instructions are used together,
overlap occurs between processing and segment loading; use of
the SEGWT macro instruction serves as a check to see that the
necessary information is in storage when it is finally needed
(see Example 1 in Figure 38). In Example 2 in Figure 38, no
overlap is provided; the SEGWT macro instruction initiates
loading, and processing is stopped in the requesting segment
until the requested segment is in virtual storage.

The external name specified in the SEGWT macro instruction must
be defined with a 4-byte V-type address constant. The
high-order bit is reserved for use by the control program, and
must not be altered during execution of the program.

If the contents of a virtual storage location in the requested
segment are to be processed, the entry name of the location must
be referred to by an A-type address constant.

84 MVS/370 Linkage Editor and Loader

J

JOB CONTROL LANGUAGE SUMMARY

This chapter summarizes those aspects of the job
language that pertain directly to the use of the
The major topics covered are the EXEC statement,
and cataloged procedures for the linkage editor.
should be familiar with the job control language
the publication JCL.

EXEC STATEMENT--INTRODUCTION

control
linkage editor.
DD statements,

The reader
as described in

The EXEC statement is the first statement of every job step.
For the linkage editor job step, the following topics are
pertinent:

• The program name of the linkage editor

• Linkage editor options passed to the job step

• Region-size requirements for the linkage editor

For an execution job step following the linkage editor job step,
the linkage editor return code i5 important.

The EXEC statement contains the symbolic name of the load module
to be invoked for execution. The linkage editor can be invoked
with the following program name:

HEWL

LINKEDIT is an alias name for the linkage editor and can also be
used to invoke it.

For example, the following EXEC statement causes the linkage
editor to be invoked:

//LKED EXEC PGM=HEWL

PGM=LINKEDIT could also be used.

To ensure compatibility with the operating system, the linkage
editor can also be invoked by any of the following alias names:
IEWL, IEWLF440, IEWLF880, and IEWLF128.

EXEC STATEMENT--JOB STEP OPTIONS

The EXEC statement also contains a list of options or parameters
to be passed to th£ linkage editor. These options are of four
types:

• Module attributes, which describe the characteristics of the
output load module

• Special processing options, which affect linkage editor
processing

• Space allocation options, which affect the amount of storage
used by the linkage editor for processing and output module
library buffers

• Output options, which specify the kind of output the linkage
editor is to produce

The rest of this section describes the options in each category.
All the options for a particular linkage editor execution are
listed in the PARM parameter on the EXEC statement. They can be
listed in any sequence, as long as the rules for coding
parameters are followed.

Job Control Language Summary 85

MODULE ATTRIBUTES

The module attributes describe the characteristics of the output ."
module, or modules. (If more than one load module is produced ~
by the same linkage editor job step, all output modules will
have the attributes assigned on the EXEC statement.) The
attributes for each load module are stored in the directory of
the output module library along with th~ member name. (The
format of the directory entry of a partitioned data set is given
in Data Areas.)

Module attributes specify whether or not the module:

• Can ever be processed by the linkage editor

• Can be brought into virtual storage only by the LOAD macro
instruction

• Is to be in overlay format

• Can be reused

• Can be placed in the link pack area; that is, is reenterable

• Can be replaced during execution by recovery management;
that is, is refreshable

• Is to be tested by the TSO TEST command

• Is to have specified control sections aligned on page
boundaries

• Is or is not authorized to use the restricted system
resources and functions

After the descriptions of the module attributes, the default and
incompatible attributes are discussed.

scatter Format Attribute

When the scatter format attribute is specified, the linkage
editor produces a load module in a format suitable for either
scatter or block loading.

To assign the scatter format attribute, code SCTR in the PARM
field, as follows:

//LKED

Notes:

EXEC PGM=IEWL,PARM='SCTR, ... '

1. If scatter format is not specified, the block format
attribute is assigned by the linkage editor. (The
programmer cannot specify block format.)

2. If SCTR is specified, the programmer should ensure that the
load module does not contain zero-length control sections,
private code sections, or common areas. The presence of
such sections in a module that is to be scatter loaded can,
under certain circumstances. cause the module to be loaded
incorrectly.

3. The SCTR attribute must be specified when the nucleus for a
VS system is link-edited. In all other instances, if the
SCTR attribute is specified, the linkage editor builds the
output load module appropriately; however, scatter load
support is not provided in VS systems and the attribute/load
module format is ignored when fetching the load module.

86 MVS/370 Linkage Editor and Loader

J

J

Not Editable Attribute

A load module which is marked NE (not editable) is not
reprocessable by the linkage editor. If a module map or a
cross-reference table is requested, the not-editable attribute
is ignored.

To assign the not-editable attribute, code NE in the PARM field,
as follows:

//LKED EXEC PGM=HEWL,PARM='NE, ... '

Note: The not-editable attribute disables the EXPAND function
for the output load module and also limits to 18 the number of
consecutive iterations of AMASPZAP. If the EXPAND function is
required or more than 18 iterations of AMASPZAP are required,
the load module must be re-created.

only-Loadable Attribute

overlay Attribute

A module with the only-loadable attribute can be brought into
virtual storage only with a LOAD macro instruction. Some
subsets of the control program use a smaller control table when
the load module is invoked with a LOAD. This reduces the
overall virtual storage requirements of the module.

The module with the only-loadable attribute must be entered by
means of a branch instruction or a CALL macro instruction. If
an attempt is made to enter the module with a LINK, XCTL, or
ATTACH macro instruction, the program making the attempt is
terminated abnormally by the control program.

To assign the only-loadable attribute, code OL in the PARM field
as follows:

//LKED EXEC PGM=HEWL,PARM='OL, ... '

A program with the overlay attribute is placed in an overlay
structure as directed by linkage editor OVERLAY control
statements. The module is suitable only for block loading; it
cannot be refreshable, reenterable, or serially reusable.

If the overlay attribute is specified and no OVERLAY control
statements are found in the linkage editor input, the attribute
is negated. The condition is considered a recoverable error;
that is, if the LET option is specified, the module is marked
executable.

The overlay attribute must be specified for overlay processing.
If this attribute is omitted, the OVERLAY and INSERT statements
are considered invalid, and the module is not an overlay
structure. This condition is also recoverable; if the LET
option is specified, the module is marked executable.

To assign the overlay attribute, code OVLY in the PARM field as
follows:

//LKED EXEC PGM=HEWL,PARM='OVLY, ... '

See "Overlay Programs" on page 58 for information on the design
and specification of an overlay structure.

Reusability Attributes

Either one of two attributes may be specified to denote the
reusability of a module. (Reusability means that the same copy
of a load module can be used by more than one task either
concurrently or one at a time.) The reusability attributes are
reenterable and serially reusable; if neither is specified, the

Job Control Language Summary 87

module is not reusable and a fresh copy must be brought into
virtual storage before another task can use the module.

The linkage editor only stores the attribute in the directory
entry; it does not check whether the module is really
reenterable or serially reusable. A reenterable module is
automatically assigned the reusable attribute. However, a
reusable module is not also defined as reenterable; it is
reusable only.

REENTERABLE: A module with the reenterable attribute can be
executed by more than one task at a time; that is, a task may
begin executing a reenterable module before a previous task has
finished executing it. This type of module cannot be modified
by itself or by any other module during execution.

If a module is to be reenterable, all the control sections
within the module must be reenterable. If the reenterable
attribute is specified, and any load modules that are not
reenterable become a part of the input to the linkage editor,
the attribute is negated.

To assign the reenterable attribute, code RENT in the PARM
field, as follows:

//LKED EXEC PGM=HEWL,PARM='RENT, ... '

SERIALLY REUSABLE: A module with the serially reusable attribute
can be executed by only one task at a time; that is, a task may
not begin executing a serially reusable module before a previous
task has finished executing it. This type of module must
initialize itself and/or restore any instructions or data in the
module altered during execution.

If a module is to be serially reusable, all its control sections
must be either serially reusable or reenterable. If the
serially reusable attribute is specified, and any load modules
that are neither serially reusable nor reenterable become a part
of the input to the linkage editor, the serially reusable
attribute is negated.

To assign the serially reusable attribute, code REUS in the PARM
field, as follows:

//LKED EXEC PGM=HEWL,PARM='REUS, ... '

Refreshable Attribute

Test Attribute

A module with the refreshable attribute can be replaced by a new
copy during execution by a recovery management routine without
changing either the sequence or results of processing. This
type of module cannot be modified by itself or by any other
module during execution. The linkage editor only stores the
attribute in the directory entry; it does not check whether the
module is refreshable.

If a module is to be refreshable, all the control sections
within it must be refreshable. If the refreshable attribute is
specified, and any load modules that are not refreshable become
a part of the input to the linkage editor, the attribute is
negated.

To assign the refreshable attribute, code REFR in the PARM
field, as follows:

//LKED EXEC PGM=HEWL,PARM='REFR, ... '

A module with the test attribute is to be tested and contains
the testing symbol tables for the TSO TEST command. The linkage
editor accepts these tables as input, and places them in the

88 MVS/370 Linkage Editor and Loader

Authorization Code

output module. The module is marked as being under test. If
the test attribute is not specified, the symbol tables are
ignored by the linkage editor and are not placed in the output
module. If the test attribute is specified, and no symbol table
input is received, the output load module will not contain
symbol tables to be used by the TSO TEST command.

To assign the test attribute, code TEST in the PARM field, as
follows:

//LKED EXEC PGM=HEWL,PARM='TEST, ... '

Note: The test attribute applies to programs using either
TESTRAN or the TSO TEST command. Do not use the 'TEST' option
unless the load module is to be executed by either TSO or
TESTRAN.

The output load module is assigned an authorization code that
determines whether or not the load module may use restricted
system services and resources.

To assign an authorization code through the PARM field, code the
AC parameter as follows:

//LKED EXEC PGM=HEWL"PARM='AC=n, ... '

The authorization code, n, must be 1 to 3 decimal digits with a
value from 0 to 255.

'AC=, ... ' and 'AC= , are equivalent to 'AC=O'. The
authorization code assigned in the PARM field is overridden by
an authorization code assigned through the SETCODE control
statement.

Addressing Hade Attribute

To assign the addressing mode for all the entry points into the
load module (the main entry point, its true aliases, and all the
alternate entry points), code the AMODE parameter as follows:

//LKED EXEC PGM=IEWL,
PARM='AMODE=xxx, ... '

The addressing mode 'xxx' must be either 24, 31, or ANY.

The addressing mode assigned in the PARM field overrides the
separate addressing modes found in the ESD data for the control
sections or private code where the entry points are located.
The addressing mode assigned in the PARM field is overridden by
an addressing mode assigned in the MODE control statement.

If the AMODE parameter occurs more than once in the PARM field
of the EXEC statement, the last valid parameter is used.

If only the AMODE value is specified in the PARM field of the
EXEC statement, an RMODE value of 24 is implied.

Note: The keyword 'AMODE' may also be specified as 'AMOD'.

Residence Hade Attribute

To assign the residence mode for the output load module, code
the RMODE parameter as follows:

//LKED EXEC PGM=IEWL,
PARM='RMODE=xxx, ... '

The residence mode 'xxx' must be either 24 or ANY.

Job Control Language Summary 89

The residence mode assigned in the PARM field overrides the
residence mode accumulated from the input control sections and
private code. The residence mode assigned in the PARM field is
overridden by a residence mode assigned through the MODE control
statement.

If the RMODE parameter occurs more than once in the PARM field
of the EXEC statement, the last valid parameter is used.

If only an RMODE value of ANY is specified in the PARM field of
the EXEC statement, an AMODE value of 31 is implied.

If only an RMODE of 24 is specified, no overriding AMODE value
is assigned; instead, the AMODE value in the ESD data for the
main entry point, a true alias, or an alternate entry point is
used in generating its respective directory entry. If any
control section to be linked has an RMODE=24, then the load
module is marked RMODE=24.

Note: The keyword 'RMODE' may also be specified as 'RMOD'.

Combinations of Addressing Mode and Residence Mode

Default Attributes

In generating a directory entry for the main entry point, a true
alias, or an alternate entry point, the linkage editor validates
the combination of the ANODE value and the RMODE value, as
specified by the user in the PARM field of the EXEC statement,
according to the following table:

Rt1ODE=24 RHOOE=ANY

AMODE=24 valid invalid

AMODE=3l valid valid

Arl0DE=ANY valid invalid

If the AMODE/RMODE combination resulting from the PARM field of
the EXEC statement is invalid, an error message is issued and
the linkage editor ignores the PARM field of the EXEC statement
as the source of AMODE/RMODE data.

Unless specific module attributes are indicated by the
programmer, the output module is not in an overlay structure,
and it is not tested. The module is in block format, not
refreshable, not reenterable, and not serially reusable. If
page boundary alignment is requested, its control sections are
aligned on 4K-byte page boundaries.

One other attribute is specified by the linkage editor after
processing is finished. If, during processing, severity 2
errors were found that would prevent the output module from
being executed successfully, the linkage editor assigns the
not-executable attribute. The control program will not load a
module with this attribute.

If the LET option is specified, the output module is marked
executable even if severity 2 errors occur. (The LET option is
discussed later in this section.)

If the AC parameter is not specified or is coded incorrectly,
the default authorization code of 0 is assigned to the output
load module.

90 MVS/370 Linkage Editor and Loader

Incompatible Attributes

Of the module attributes the programmer may specify, several are
mutually exclusive. When mutually exclusive attributes are
specified for a load module, the linkage editor ignores the
less-significant attributes. For example, if both OVLY and RENT
are specified, the module will be in an overlay structure and
will not be reenterable.

Certain attributes are also incompatible with other job step
options. All job step options are shown in Figure 41 on page 99
along with those options that are incompatible.

SPECIAL PROCESSING OPTIONS

The special processing options affect the executability of the
output module and the use of the automatic library-call
mechanism. These options are the exclusive call option, the let
execute option, and the no automatic-call option.

Exclusive call Option

Let Execute Option

When the exclusive call option is specified, valid exclusive
references have been made between segments, and the linkage
editor marks the output module as executable. However, a
warning message is given for each valid exclusive reference.

To specify the exclusive call option, code XCAL in the PARM
field as follows:

//LKED EXEC PGM=HEWL,PARM='XCAL,OVLY, ... '

The OVLY attribute must also be specified for an overlay
program.

Note: Unless the let execute option is specified. other errors
may cause the module to be marked not executable.

When the let execute option is specified. the linkage editor
marks the output module as executable even though a severity 2
error condition was found during processing. (A severity 2
error condition could make execution of the output load module
impossible.) Some examples of severity 2 errors are:

• Unresolved external references

• Valid or invalid exclusive calls in an overlay program

• Error on a linkage editor control statement

• A library module that cannot be found

• No available space in the directory of the output module
library

To specify the let execute option, code LET in the PARM field as
follows:

//LKED

Note:

EXEC PGM=HEWL,PARM='LET, ... '

If LET is specified, XCAL need not be specified.

No Automatic Library-Call Option

When the no automatic library-call option is specified, the
linkage editor library-call mechanism does not call library
members to resolve external references. The output module is
marked executable even though unresolved external references are

Job Control Language Summary 91

present. If this option is specified. the lIBRARY statement
need not be used to negate the automatic library call for
selected external references. Also. with this option. a SYSlIB
DD statement need not be supplied.

To specify the no automatic library-call option. code NCAl in
the PARM field. as follows:

//lKED EXEC PGM=HEWl. PARM=' NCAL. ... '

Note: Unless the lET option is also specified. other errors may
cause the module to be marked not executable.

SPACE ALLOCATION OPTIONS

SIZE option

These options allow the programmer to specify the storage
available to the linkage editor. and to specify the block size
for the output module. For large modules and SMP. see System
Modification Program (SMP) System Programmers Guide.

The programmer can specify, through the SIZE option, the amount
of virtual storage to be used by the linkage editor and the
portion of that storage to be used as the load module buffer.

The linkage editor provides default values for the SIZE option.
The default values are used if one or both of the values are not
specified correctly by the user or are not specified at all.
These defaults should be adequate for most link-edits. relieving
the programmer from specifying the SIZE option for each
link-edit. The default values are: valuel is 256K bytes and
value2 is 48K bytes.

FORMAT: The format of the SIZE option is:

SIZE=(value1,value2)

SIZE=(value1)

SIZE=(value1,)

SIZE=(,value2)

SIZE=(,)

When coded in the PARM field. value1 and value2 parameters are
enclosed in parentheses as follows:

//lKED
//

EXEC PGM=HEWl.
PARM='SIZE=(valuel.value2), ... '

Both value1 and value2 may be expressed as integers specifying
the number of bytes of virtual storage or as nK. where n
represents the number of 1K (1024) bytes of virtual storage.

When determining the values for the SIZE option, it is best to
establish value2 first, then value1.

VALUE2: Value2 specifies the number of bytes of storage to be
allocated as the load module buffer. The allocation specified
by value2 is a part of the virtual storage specified by value1.

The actual minimum for value2 is 6144 (6K) or the length of the
largest input load module text record. whichever is larger.
AMBlIST may be used to find the size of the load module text
records. If a value less than 6144 (6K) is specified, the
default value of 48K for value2 is used.

The space allocated by value2 is used for: the buffer into which
the input load module text is read, the buffer from which load
module text is written to the intermediate data set, the buffer

92 MVS/370 linkage Editor and loader

J

into which the load module text is read from the intermediate
data set, and the buffers from which the load module text is
written to the output data set. Therefore, the determination of
value2 requires that the programmer consider the record sizes of
the data sets from which any load module text records are to be
read (SYSLIB, any data set referenced by an INCLUDE, any library
data set), the record size for the intermediate data set
(SYSUTl), and the record size for the output load module data
set (SYSlMOD).

Figure 39 lists the direct access devices that may contain data
sets that are the source of input load module text, the
intermediate data set, and the output load module data set, and
lists the maximum record size used for each device by the
linkage editor. These maximum record sizes may always be used
in specifying value2 or, if the programmer can determine them,
exact sizes can be used.

Device Device Maximum SYSUTI or SYSLMOD
Record Size Maximum Record Size
(Bytes) (K Bytes)

2305-1 14136 13

2305-2 14660 14

2314 7294 6

2319 7294 6

3330-1 13030 12

3330-11 130~C 12

3340 8368 8

3344 8368 8

3350 19069 18

3375 32760 18

3380 32760 18

Figure 39. SYSUTI and SYSLMOD Device Types and Their Maximum
Record Sizes

The programmer must specify value2 so that the linkage editor
has sufficient space to allocate buffers that are compatible
with the record sizes for the intermediate data set and the
output load module data set.

The linkage editor optimizes the record size for the device type
of output load module data set unless one of the following
conditions exists.

1. The programmer has specified PARM=' ... DCBS, ... ', and the
SYSLMOD DD statement contains a BLKSIZE subparameter in the
DCB parameter, forcing the linkage editor to write records
having a maximum length equal to the BLKSIZE specification.

2. The output load module data set is an existing data set
having a block size less than the optimum record size,
forcing the linkage editor to write records no longer than
that block size.

3. The programmer has specified a value2 less than twice the
maximum record size for the output load module data set,

Job Control language Summary 93

forcing the linkage editor to write records having a maximum ~,"
size of one-half value2. ~

4. The intermediate data set and the output load module data
set have dissimilar record sizes, forcing the linkage editor
to write records having a maximum size determined for
compatibility between the two data sets.

The linkage editor optimizes the record size of the output load
module data set for its device type but selects a record size
compatible with the intermediate data set (see restrictions
above). Therefore, if the intermediate data set and the output
load module data set reside on the same device type, use of the
load module buffer is optimized. Also, if the data sets are on
different units of the same type, the performance of the linkage
editor is improved.

Figure 40 shows the record sizes used for compatibility between
every combination of device types for the intermediate and
output load module data sets.

SYSLMOD Record Size SYSUTI Record Size

Maximum Maximum Minimum
Record Record Load Module

Device Size Device Size Buffer Area
Used Produced Used Produced (Value2)

IBM 2305-1 13K 2305-1,2305-2 13K 26K
IBM 2305-1/-2 12Kl 2314,2319 6K 24K

12Kl 3330,3330-11 12K 24K
12K! 3340 6K 24K

2305-1 13K 3350,3375,3380 13K2 26K
2305-2 14K 3350,3375,3380 14K2 28K

IBM 2314 6K 2305-1,2305-2 12K2 12K
IBM 2319 6K 2314,2319 6K 12K

6K 3330,3330-11 12K2 12K
6K 3340 6K2 12K
6K 3350,3375,3380 18K 18K

IBM 3330 12K 2305-1,2305-2 12K2 24K
IBM 3330-11 12K 2314,2319 6K 24K

12K 3330,3330-11 12K 24K
12K 3340 6K2 24K
12K 3350,3375,3380 12K2 24K

IBM 3340 7K 2305-1,2305-2 7K 14K
IBM 3344 6Kl 2314,2319 6K 12K

6K 3330,3330-11 12K 12K
8K 3340 8K 16K
8K 3350,3375,3380 16K 16K

IBM 3350 13Kl 2305-1 13K 26K
14Kl 2305-2 14K 28K

IBM 3375/3380 18K 2314,2319 6K 36K
12Kl 3330,3330-11 12K 24K
18K 3340 6K 36K
18K 3350,3375,3380 18K 36K

Figure 40. load Module Buffer Area and SYSlMOD and SYSUTI Record
Sizes

94 MVS/370 linkage Editor and loader

Notes to Figure 40:

1 The SYSLMOD record size is reduced to less than the maximum
to make it compatible with the SYSUTI record size.

2 The SYSUTI record size is reduced to less than the maximum to
to make it compatible with the SYSLMOD record size.

Value2 should be, minimally, twice the record size for the
output load module data set. If value2 can be made larger than
twice the record size for the output load module data set, the
increase should be the larger of the record sizes for the
intermediate and output load module data sets.

The practical maximum for value2 is the length of the load
module to be built, plus 4K bytes if the length of the load
module to be built is equal to or greater than 40960 (40K). Any
space allocated to the load module buffer above this amount is
not used and does not need be allocated to value2.

If a value2 is specified that cannot be
available storage, value2 is reduced to
multiple of storage that is available.
never decreases value2 to less than the

accommodated in the
the next lower 2K-byte
This reduction, however.
minimum, 6144 (6K).

The optimal value2 is the practical maximum. as explained above.
If the entire load module is contained in storage, the
performance of the linkage editor is improved and the use of the
intermediate data set may be eliminated.

Examples of Value2 Determination

1. A load module of between 21K and 22K bytes is to be built.
The load module data set is a new data set on an IBM 3330
Disk Storage device. The intermediate data set is allocated
to an IBM 3340 Direct Access Storage device. A SYSLIB data
set is to be used, residing on a 3330. The entire load
module could be contained in the load module buffer if
value2 were 22K bytes (the load module size). The practical
minimum for value2 would be 12K bytes (the size of the
largest possTb~nput load module text record from the
SYSLIB data set). However, value2 should be at least as
large as two records to be written to the load module data
set (that is, 24K bytes). There is a reconciliation
necessary in this case between the two dissimilar device
types for the intermediate and output load module data sets;
but the record size of the output load module data set is an
even multiple of the record size of the intermediate data
set so no adjustment of the record sizes is made.
Therefore, the practical minimum, as well as the practical
maximum and optimal value2 in this case is 24K bytes.

2. A load module of more than 50K bytes is to be relink-edited;
however, a maximum of 40K bytes is available to be allocated
to value2. The output load module data set is an old data
set residing on a 3340, written with maximum record size.
The intermediate data set is allocated to an IBM 2305-2
Fixed Head Storage device. The link-edit involves a control
section in the SYSLIN data set that will replace a control
section in the old load module, followed by an INCLUDE
statement naming the old load module on the SYSLMOD data
set. The maximum for value2 cannot ·be satisfied, since only
40K bytes is available. The size of two maximum records
written to a 3340 would be 14K bytes. However, the size of
one record to be written or to be read from the intermediate
data set is 14K bytes. Therefore, the minimum for value2 in
this case is 14K bytes. This is sufficient space for one
input load module text record or one record written to or to
be read from the intermediate data set or two records
written to the output load module data set.

3. The output load module data set resides on a 2305-2. The
intermediate data set is allocated to a 3330. All load
module input comes from a 3330. Value2 in this case is 24K

Job Control Language Summary 95

bytes, because the input load module text records are, at J ..
most, 12K bytes, the records written to and read from the
intermediate data set are 12K bytes, and the records written
to the output load module data set are 12K bytes. The
maximum record size of 14K bytes for the 2305-2 is reduced
to 12K bytes for this link-edit in order to be compatible
with the intermediate data set.

An alternative for value2 in the above example is 12K bytes.
This 12K bytes is adequate for the input load module text
records and the records written to and read from the
intermediate data set. The 12K value forces a maximum
record size of 6K bytes to be written to the output load
module data set. At 6K bytes each, two records can be
written on a 2305-2 track while, as in the above example,
only one record of 12K bytes can be written on a 2305-2
track.

4. The output load module data set is a new data set allocated
to a 3330. The programmer has specified the linkage editor
parameter DCBS, and the SYSLMOD DD statement contains
' ... DCB=(... BLKSIZE=3072, ...), ... '. The only load module
input comes from a data set created previously in a similar
manner. The intermediate data set is allocated to a 3340.
The minimum for value2 in this case is 6K bytes; the input
load module records are 3K bytes at most, the intermediate
data set records are 7K bytes at most, and, as directed by
the programmer, the linkage editor produces records having a
maximum size of 3K bytes on the output load module data set.

VALUEI: Valuel specifies the number of bytes of virtual storage
available to the linkage editor regardless of the private area
size. The storage specified by value1 includes the allocation
specified by value2.

The absolute minimum for valuel is the design point of the
linkage editor, 96K bytes-.---I~a value less than the minimum for
valuel is specified, the default options for both value1 and
value2 are used.

The practical minimum for value1 is 98304 (96K) bytes plus any
excess in value2 over 6144 (6K) bytes, plus any additional space
required to support the blocking factor for the SYSLIH, object
module library, and SYSPRIHT data sets.

The design point of the linkage editor provides for the minimum
load module buffer--6144 (6K) bytes of virtual storage. If a
load module buffer larger than 6144 (6K) bytes is specified in
value2, valuel must be increased by the excess of that value2
over 6144 C6K) bytes.

The linkage editor supports three different blocking factors for
the SYSLIH, object module library, and SYSPRIHT data sets; they
are 5, 10, and 40 to 1. The requirement for additional space
depends upon the blocking factor that is to be supported.

The following table shows the additional space required to
support each blocking factor.

Blocking Space
Factor Required

5 to 1 o or OK

10 to 1 18432 or 18K

40 to 1 28672 or 28K

Blocking factors of 1 through 4, 6 through 9, and 11 through 39
are treated as blocking factors of 5, 10, and 40, respectively.
Blocking factors greater than 40 are invalid.

96 MVS/370 Linkage Editor and Loader

DeBS opt;on

The additional space requirement is determined by the largest
blocking factor among the affected data sets.

The blocking factor supported is dependent upon space available
after value2 has been allocated to the load module buffer out of
value!. Therefore, if the space provided in value! is
insufficient, the next smallest blocking factor is used.

The performance of the linkage editor can be improved by the
allocation of additional storage by value!, especially in
providing for the optimal value2.

The maximum value that can be specified for value! is 9999999 or
9999K. However, the amount of virtual storage actually
allocated for value! is the smaller of:

• The region size

• The amount specified for value1

Examples of Valuel Determ;nat;on

1. Assume that an optimum value2 of 36K bytes has already been
determined for the link-edit. An appropriate value! is 126K
bytes, because an additional 30K bytes, above the minimum of
96K bytes, is needed to support the allocation of 36K bytes
to value2 and no additional storage is required to support
the blocking factors for SYSlIH, SYSPRIHT, and any object
module libraries.

2. The minimum for value2 (6K bytes) is used. All the object
module libraries are blocked 5-to-1, except one that is
blocked 10-to-1. The SYSlIH and SYSPRINT data sets are
assigned blocking factors of 5. An appropriate value! for
this link-edit is 114K bytes, the minimum plus the 18K bytes
needed to support the blocking factor of 10-to-1 on the
object module library.

The DeBS option allows the programmer to specify the block size
for the SYSlMOD data set in the DeB parameter of SYSlMOD DO
statement.

If the DeBS option is specified, the block size value in the
DSeB for the SYSlMOD data set may be overridden. If the DeBS
option is not specified, the block size value in the DSeB for
the SYSlMOD data set may not be overridden.

If the DeBS option is specified and no block size value is
provided in the DCB parameter of the SYSlMOD DO statement, the
linkage editor uses the maximum track size for the device. If
the DeBS option is not specified and a block size value is
provided in the DeB parameter of the SYSlMOD DO statement, the
block size value in the DeB parameter of the SYSlMOD DO
statement is ignored by the linkage editor.

Even though the DeBS option is specified, the linkage editor
will not allow the programmer to set the block size for the
SYSlMOD data set to a value less than the minimum; that is, 256,
or 1024 if the SeTR option is specified, or a value less than
the block size in the DSeB for an existing data set.

The block size specified by the programmer will be used unless
(1) it is larger than the maximum record size for the device, in
which case the maximum record size is used, or (2) it is less
than the minimum block size, in which case the minimum block
size is used.

The following example shows the use of the DCBS option for an
IBM 3350 Direct Access Storage device:

Job Control language Summary 97

OUTPUT OPTIONS

//LKED

//SYSLMOD
//

EXEC

DD

PGM=HEWL,PARM='XREF,DCBS'

DSNAME=LOADMOD(TEST),DISP=(NEW,KEEP),
DCB=(BLKSIZE=3072), ...

As a result, the linkage editor uses a 3K-byte block size for
the output module library.

These options control the optional diagnostic output produced by
the linkage editor. The programmer can request that the linkage
editor produce a list of all control statements and a module map
or cross-reference table to help in testing a program. The
format of each is described in "Output from the Linkage Editor"
on page 33.

In addition, the programmer can request that the numbered
error/warning messages generated by the linkage editor appear on
the SYSTERM data set as well as on the SYSPRINT data set.

Control statement Listing option

Module Map option

To request a control statement listing, code LIST in the PARM
field, as follows:

//LKED EXEC PGM=HEWL,PARM='LIST, ... '

When the LIST option is specified, all control statements
processed by the linkage editor are listed in card-image format
on the diagnostic output data set.

To request a module map, code MAP in the PARM field, as follows:

//LKED EXEC PGM=HEWL,PARM='MAP, ... '

When the MAP option is specified, the linkage editor produces a
module map of the output module on the diagnostic output data
set.

Cross Reference Table option

To request a cross-reference table, code XREF in the PARM field,
as follows:

//LKED EXEC PGM=HEWL,PARM='XREF, ... '

When the XREF option is specified, the linkage editor produces a
cross-reference table of the output module on the diagnostic
output data set. The cross-reference table includes a module
map; therefore, both XREF and MAP need not be specified for one
linkage editor job step.

Alternate output (SYSTERM) option

To request that the numbered linkage editor error/warning
messages be generated on the data set defined by a SYSTERM DD
statement, code TERM in the PARM field, as follows:

//LKED EXEC PGM=HEWL,PARM='TERM, ... '

98 MVS/370 Linkage Editor and Loader

When the TERM option is specified, a SYSTERM DD statement must
be provided. If it is not, the TERM option ;s negated.

Output specified by the TERM option supplements printed
diagnostic information; when TERM is used, linkage editor
error/warning messages appear in both output data sets.

INCOMPATIBLE JOB STEP OPTIONS

~
~

,s~ --- ~
~
~

~

~
~

~
~
X
~ ~ ~

~

When mutually exclusive job step options are specified for a
linkage editor execution, the linkage editor ignores the less
significant options. Figure 41 illustrates the significance of
those options that are incompatible. When an X appears at an
intersection, the options are incompatible. The option that
appears higher in the list is selected.

~ v
~
~

~

~ ~
~

X
?

~
~

~ 0
v
~

&
~
~

~
~

& ~.

~

I
~

Figure 41. Incompatible Job Step Options for the Linkage Editor

For example, to check the compatibility of XREF and HE, follow
the XREF column down and the HE row across until they intersect.
Because an X appears where they intersect, they are
incompatible; XREF is selected; HE is negated.

Job Control Language Summary 99

If incorrect values are specified for the SIZE parameter, the
default values are used. If incompatible options are detected,
the message

*** OPTIONS INCOMPATIBLE ***
is printed. This message follows the standard module
disposition message.

If the incompatible options OVLY and AMODE or RMODE are
specified, a diagnostic message is issued.

EXEC STATEHENT--REGION PARAMETER

The REGION parameter specifies the maximum amount of storage
that can be allocated to satisfy a request for storage that the
linkage editor makes. In its minimal situation, the linkage
editor requires a REGION parameter of not less than 96K bytes;
in its default situation, not less than 256K bytes; and, in its
maximal situation (see "Appendix D. Size Parameter Guidelines"
on page 159), not less than 1500K bytes.

EXEC STATENENT--RETURN CODE

The linkage editor passes a return code to the control program
upon completion of the job step. The return code reflects the
highest severlty code recorded in any iteration of the linkage
editor within that job step. The highest severity code
encountered during processing is multiplied by 4 to create the
return code; this code is placed into register 15 at the end of
linkage editor processing. Figure 42 contains the return codes,
the corresponding severity code, and a description of each.

Severity Return
Code Code Description

00

04

08

DC

10

o
1

2

3

4

Normal conclusion

Warning messages have been listed; execution
should be successful. For example, if the
overlay option is specified and the overlay
structure contains only one segment, a
return code of 04 is placed in register 15.

Error messages have been listed; execution
may fail. The module is marked not executable
unless the LET option is specified. For
example, if the block size of a specified
library data set cannot be handled by the
linkage editor, a return code of 08 is placed
in register 15.

Severe errors have occurred; execution is
impossible. For example, if an invalid entry
point has been specified, a return code of DC
is placed in register 15.

Terminal errors have occurred; the
processing has terminated. For example, if
the linkage editor cannot handle the blocking
factor requested for SYSPRINT, a return code
of 10 is placed in register 15.

Figure 42. Linkage Editor Return Codes

The programmer may use a return code to determine whether or not
the load module is to be executed by using the condition

100 MVS/370 Linkage Editor and Loader

J

DD STATEHENTS

parameter (CONO) on the EXEC statement for the load module. The
control program compares the return code with the values
specified in the CONO parameter, and the results of the
comparisons are used to determine subsequent action. The CONO
parameter may be specified either in the JOB statement or the
EXEC statement (see the publication JCl).

Every data set used by the linkage editor must be described with
a DD statement. Each DO statement must have a name, unless data
sets are concatenated. The DO statements for data sets required
by the linkage editor have preassigned names; those for
additional input data sets have user-assigned names; those for
concatenated data sets (after the first) have no names.

In addition to the name, the DO statement provides the control
program with information about the input/output device on which
the data set resides, and a description of the data set itself.
All of the job control language facilities for device
description are available to the users of the linkage editor.

Besides information about the device, the DO statement also
contains a data set description which includes the data set name
and its disposition. Information for the data control block
(DCB) may also be given.

General information pertinent to the linkage editor on the data
set name and DCB information follows; information on disposition
is given in the discussion for each data set.

DATA SET NAHE: The linkage editor uses either sequential or
partitioned data sets. For sequential data sets, only the name
of the data set is specified; for partitioned data sets, the
member name must also be specified either on the DO statement or
with a control statement.

When input data sets are passed from a previous job step, or
when the output load module is being tested, a recommended
practice is to use temporary data set names (that is, &&dsname).
Use of temporary names ensures that there are no duplicate data
sets with out-of-date modules. A data set with a temporary name
is automatically deleted at the end of the job. When a module
is to be stored permanently, a data set name without ampersands
is used.

DCB INFORHATION: Before a data set can be used for input,
information describing the data set must be placed in the data
control block (DCB). If this information does not exist in the
DCB or header label, or if no labels are used (magnetic tape
does not require labels), the programmer must specify it in the
DCB parameter on the DO statement.

Record format (RECFM), logical record size (lRECl), and block
size (BlKSIZE) subparameters of the DCB parameter are discussed
as they apply to the linkage editor. Specific information on
each as it applies to the linkage editor data sets is given in
the description of the data set later in this section. Other
DCB information (tape recording technique, density, and so
forth) is described in the publication JCl.

Record For~at: The following record formats are used with the
linkage editor:

F The records are fixed length.

FB The records are fixed length and blocked.

FBA The records are fixed length, blocked, and contain
American National Standard Institute (ANSI) control
characters.

Job Control language Summary 101

FBS The records are fixed length. blocked. and written in
standard blocks.

FA The records are fixed length and contain ANSI control
characters.

FS The records are fixed length and written in standard
blocks.

U The records are undefined length.

UA The records are undefined length and contain ANSI
control characters.

A record format of FS or FBS must be used with caution. All
blocks in the data set must be the same size. This size must be
equal to the specified block size. A truncated block can occur
only as the last block in the data set.

Note: Track overflow is npver used by the linkage editor. When
moving or copying load modules. it is recommended that the track
overflow feature not be used on the target data set. as errors
may occur in fetching the load modules for execution.

LOGICAL RECORD AND BLOCK SIZE: Blocking is allowed for input
object module data sets and the diagnostic output data set. The
blocking factors used to determine buffer allocations are 5. 10.
and 40. The BlKSIZE must therefore be a multiple of lRECl. See
the description of blocking factors in the discussion of the
SIZE option.

When the DCBS option is specified. a block size should be
specified for the output load module library (see "SYSlMOD DD
Statement" on page 104).

LINKAGE EDITOR DD STATEMENTS

SYSLIN DD Statement

The linkage editor uses six data sets; of these, four are
required. The DD statements for these data sets must use the
preassigned ddnames given in Figure 43. The descriptions that
follow give pertinent device and data set information for each
linkage editor data set.

Data set ddname Required

Primary input data set SYSLIN Yes

Automatic call library SYSLIB Only if the
automatic library
call mechanism is
used

Intermediate data set SYSUTl Yes

Diagnostic output data set SYSPRINT Yes

Output module library SYSlMOD Yes

Alternate output data set SYSTERM Only if the TERM
option is specified

Figure 43. linkage Editor ddnames

The SYSLIN DD statement is always required; it describes the
primary input data set that can be assigned to a direct access
device, a magnetic tape unit. or the card reader. The data set

102 MVS/370 linkage Editor and Loader

SYSLIB DD statement

SYSUTl DD statement

may be either sequential or partitioned; in the latter case, a
member name must be specified.

If SYSLIH is assigned to a card reader or "pseudo card reader,"
input records must be unblocked and 80 bytes long. (A pseudo
card reader is defined as input from a tape or a direct access
device in card reader mode.)

This data set must contain object modules and/or control
statements. Load modules used in the primary input data set are
considered a severity 4 error.

The recommended disposition for the primary input data set is
SHR or OLD.

The DCB requirements are shown in Figure 44.

DCB Requirements

LRECL

80

80

BLKSIZE

80

400,800,3200 1

RECFM

F,FS

FB,FBS

lThese are the maximum block sizes allowed for each of the
optimal blocking factors (5, 10, and 40). Which maximum is
applicable depends on the value given to valuel and value2 of
the SIZE option.

Figure 44. DCB Requirements for Object Module and Control
Statement Input

The SYSLIB DD statement is required when the automatic
library-call mechanism is to be used. This DD statement
describes the automatic call library, which must be assigned to
a direct access device. The data set must be partitioned, but
member names should not be specified.

The recommended disposition for the call library is SHR or OLD.

If concatenated call libraries are used, object and load module
libraries must not be mixed. If only object modules are used,
the call library may also contain control statements.

The DCB requirements for object module call libraries are given
in Figure 44. The DCB requirement for load module call
libraries is a record format of Ui the block size used for
storage allocation is equal to the maximum for the device used,
not the record read. Hote that the linkage editor recognizes
object and load module call libraries solely from their record
format, and not from the data within them.

This data set must not be assigned to SYSOUT.

The SYSUTI DD statement is always required; it describes the
intermediate data set, which is a sequential data set assigned
to a direct access device. Space must be allocated for this
data set, but the DCB requirements are supplied by the linkage
editor.

Job Control Language Summary 103

SVSPRINT DD statement

SVSLHOD DD statement

The SYSPRINT DD statement is always required; it describes the
diagnostic output data set, which is a sequential data set
assigned to a printer or to an intermediate storage device. If
an intermediate storage device is used, the data records contain
a carriage control character as the first byte.

The usual specification for this data set is SYSOUT=A. The
programmer may assign a block size. The record format assigned
by the linkage editor depends on whether blocking is used or
not.

Figure 45 shows the DCB requirements for SYSPRINT. The only
information that can be supplied by the programmer is the block
size.

DeB Requirements for SVSPRINT

LRECL

121

121

BLKSIZE

121

n x 121 where n
is less than or
equal to 40

RECFM

FA

FBA

Note: The value specified for BLKSIZE, either on the DCB
parameter of the SYSPRINT DD statement or in the DSCB (data set
control block) of an existing data set, must be a multiple of
121; if it is not, the linkage editor issues a message to the
operator's console and terminates processing.

Figure 45. DCB Requirements for SYSPRINT

The SYSLMOD DD statement is always required; it describes the
output module library, which must be a partitioned data set
assigned to a direct access device.

A member name may be specified on the SYSLMOD DD statement. If
a member name is specified, it is used only if a name was not
specified on a NAME control statement. This member name must
conform to the rules for the name on the NAME control statement.
This would imply the replacement of an identically named member
in the output load module library, if one exists.

If SYSLMOD is to be referenced by an INCLUDE statement, the
member name on the DO statement, if present, must be the name of
an existing member.

If the member is to replace an identically named member in an
existing library, the disposition should be OLD or SHR. If the
member is to be added to an existing library, the disposition
should be MOD, OLD, or SHR. If no library exi sts and the member
is the first to be added to a new library, the disposition
should be NEW or MOD. If the member is to be added to an
existing library that may be used concurrently in another region
or partition, the disposition should be SHR.

The record format U is assigned by the linkage editor. See
"Appendix G. Storage Considerations" on page 180.

Procedures used by the linkage editor to assign block size are:

1. If the data set is new:

a. Without the DeBS option specified:

104 MVS/370 Linkage Editor and Loader

SYSTERH DD statement

• The DSCB (data set control block) reflects the
maximum block size available for the device type if
it is not restricted by value2 of the size
parameter.

• If SCTR is specified, the block size is 1024.

b. With the DCBS option specified, the DSCB block size is
the smaller of:

• The maximum track siz9 for the device.

• The value of the BlKSIZE subparameter on the DCB
parameter of the SYSlMOD DD statement.

• The actual output buffer length (half the number
specified for value2 if the size option was
utilized).

c. The minimum DSCB block size is 256 without the SCTR
option specified and 1024 with the SCTR option.

2. For preallocated data sets not previously opened, a block
size is assigned as for new data sets.

3. When the DSCB block size already exists (not a new or
preallocated data set) and the SCTR option is specified,
1024 is used.

4. When the DSCB block size already exists and the DCBS or SCTR
option is not specified, the larger of the existing block
sizes or 256 is used.

5. See "DCBS Option" on page 97 for the procedure when the DSCB
block size exists and the DCBS option is specified.

Note: When a new data set is created at linkage editor time
without the DCBS option specified, the DSCB reflects the maximum
block size available for the device type.

If the SYSlMOD DD statement is used as a source of load module
input, the SYSlMOD data set is read with a record format of U in
all cases.

In the following example, the SYSlMOD DD statement specifies a
permanent library on an IBM 3350 Disk Storage Device:

//SYSlMOD
//

DD DSNAME=USERlIB(TAXES),DISP=MOD,
UNIT=3350, ...

The linkage editor assigns a record format of U, and a logical
record and block size of 18K bytes, the maximum for a 3350.
However, consider the following example:

//lKED

//SYSlMOD
//

EXEC

DD

PGM=HEWl,PARM='XREF,DCBS'

DSNAME=USERlIB(TAXES),DISP=MOD,
UNIT=3340,DCB=(BlKSIZE=3072), ...

The linkage editor still assigns a record format of U, but the
logical record and block size are now 3K bytes rather than 7K
bytes, because of the use of the DCBS option.

The SYSTERM DD statement is optional; it describes a data set
that is used only for numbered error/warning messages. Although

Job Control language Summary 105

intended to define the terminal data set when the linkage editor
is being used under the Time Sharing Option (TSO) of MVS, the
SYSTERM DD statement can be used in any environment to define a
data set consisting of numbered error/warning messages that
supplements the SYSPRINT data set.

SYSTERM output is defined by including a SYSTERM DD statement
and specifying TERM in the PARM field of the EXEC statement.
When SYSTERM output is defined, numbered messages are then
written to both the SYSTERM and SYSPRINT data sets.

The following example shows how the SYSTERM DD statement could
be used to specify the system output unit:

//SYSTERM DD SYSOUT=A

The nCB requirements for SYSTERM (LRECL=121,BLKSIZE=121, and
RECFM=FBA) are supplied by the linkage editor. If necessary,
the linkage editor will modify the DSCB (data set control block)
of an existing data set to reflect these values.

ADDITIONAL DD STATEMENTS

Each ddname specified on an INCLUDE or a LIBRARY control
statement must also be described with a DD statement. These DD
statements describe sequential or partitioned data sets,
assigned to magnetic tape units or direct access devices (not
pseudo card readers).

The ddnames are specified by the user with any other necessary
information. The DCB requirements for these data sets are shown
in Figure 46.

Include Control Statement

Object modules and/or
control statements

Load modules

Library Control statement

Object modules and/or
control statements

Load Modules

LRECL

80

maximum
for device,
or one-half
of value2,
whichever
is smaller

80
80

maximum
for device,
or one-half
of value2,
whichever
is smaller

BLKSIZE

80

equal to
LRECL

80
400,800,3200 1

equal to
LRECL

RECF"

F,FS

U

F,FS
FB,FBS

U

Figure 46. DCB Requirements for Additional Input Data Sets

Note to Figure 46:

1 These are the maximum block sizes allowed for each of the ~
optimal blocking factors (5, 10, 40). Which maximum is
applicable depends on the values given to valuel and value2
of the SIZE option.

106 MVS/370 Linkage Editor and Loader

CATALOGED PROCEDURES

When concatenated data sets are included, each data set must
contain records of the same format, record size, and block size.
If the data sets reside on magnetic tape, the tape recording
technique and density must also be identical.

If the SYSlMOD DD statement is used as a source of load module
input, the SYSlMOD data set is read with a record format of U in
all cases.

To facilitate the operation of the system, the control program
allows the programmer to store EXEC and DD statements under a
unique member name in a procedure library. Such a series of job
control language statements is called a cataloged procedure.
These job control language statements can be re-called at any
time to specify the requirements for a job. To request this
procedure, the programmer places an EXEC statement in the input
stream. This EXEC statement specifies the unique member name of
the procedure desired.

The specifications in a cataloged procedure can be temporarily
overridden, and DD statements can be added. The information
altered by the programmer is in effect only for the duration of
the job step; the cataloged procedures themselves are not
altered permanently. Any additional DD statements supplied by
the programmer must follow those that override the cataloged
procedure.

LINKAGE EDITOR CATALOGED PROCEDURES

Procedure LKED

Two linkage editor cataloged procedures are provided: a
single-step procedure that link-edits the input and produces a
load module (procedure lKED), and a two-step procedure that
link-edits the input, produces a load module, and executes that
module (procedure lKEDG). Many of the cataloged procedures
provided for language translators also contain linkage editor
steps. The EXEC and DD statement specifications in these steps
are similar to the specifications in the cataloged procedures
described in the following paragraphs.

The cataloged procedure named lKED is a single-step procedure
that link-edits the input, produces a load module, and passes
the load module to another step in the same job. The statements
in this procedure are shown in Figure 47; the following text
describes these statements.

//lKED
//SYSPRINT
//SYSlIN
//SYSlMOD
//
//SYSUTI
//

EXEC
DD
DD
DD

DD

PGM=HEWl,PARM='XREF,lIST,lET,NCAl',REGION=96K
SYSOUT=A
DDNAME=SYSIN
DSNAME=&&GOSET(GO),SPACE=(1024,(SO,20,1»,
UNIT=SYSDA,DISP=(MOD,PASS)
UNIT=(SYSDA,SEP=(SYSlMOD,SYSLIH»,
SPACE=(1024,(200,20»

Figure 47. statements in the LKED Cataloged Procedure

STATEMENT NUMBERS: The 8-digit numbers on the right side of each
statement (not shown in Figure 47) are used to identify each
statement and would be used, for example, when permanently
modifying the cataloged procedure with the system utility
program IEBUPDTE. For a description of this utility program,
see utilities.

Job Control Language Summary 107

EXEC STATEMENT: The PARM field specifies the XREF. LIST, LET,
and NCAL options. If the automatic library-call mechanism is to
be used, the NCAL option must be overridden, and a SYSLIB DD
statement must be added. Overriding and adding DD statements is
discussed later in this section.

SYSPRINT STATEMENT: The SYSPRIHT DD statement specifies the
SYSOUT class A. which is either a printer or an intermediate
storage device. If an intermediate storage device is used,
American National Standard Institute control characters
accompany the data to be printed.

SYSLIN STATEMENT: The specification of DDHAME=SYSIH allows the
programmer to specify any input data set as long as it fulfills
the requirements for linkage editor input. The input data set
must be defined with a DD statement with the ddname SYSIH. This
data set may be either in the input stream or reside on a
separate volume.

If the data set is in the input stream, the following SYSIH
statement is used:

//LKED.SYSIH DD

If this SYSIH statement is used, it may be anywhere in the job
step DD statements as long as it follows all overriding DD
statements. The object module decks and/or control statements
should follow the SYSIH statement, with a delimiter statement
(/*) at the end of the input.

If the data set resides on a separate volume, the following
SYSIH statement is used:

//LKED.SYSIH DD (parameters describing the input data set)

If this SYSIH statement is used, it may be anywhere in the job
step DD statements as long as it follows all overriding DD
statements. Several data sets may be concatenated, as described
in "Input to the Linkage Editor" on page 19.

SYSLMOD STATEMENT: The SYSlMOD DD statement specifies a
temporary data set and a general space allocation. The
disposition allows the next job step to execute the load module.
If the load module is to reside permanently in a library. these
general specifications must be overridden.

SYSUTI STATEMENT: The SYSUTI DD statement specifies that the
intermediate data set is to reside on a direct access device,
but not the same device as either the SYSLMOD or the SYSLIH data
sets. Again, a general space allocation is given.

SYSLIB STATEMENT: Hote that there is no SYSlIB DD statement. If
the automatic library-call mechanism is to be used with a
cataloged procedure, a SYSlIB DD statement must be added; also,
the NCAl option in the PARM field of the EXEC statement must be
negated.

INVOKING THE LKED PROCEDURE: To invoke the lKED procedure, code
the following EXEC statement:

//stepname EXEC lKED

where stepname is optional and is the name of the job step.

The following example shows a sample JCl sequence for using the
lKED procedure in one step to link-edit object modules to
produce a load module, then execute the load module in a
subsequent step.

108 MVS/370 Linkage Editor and loader

Procedure LKEDG

//LESTEP EXEC LKED

(Overriding and additional DD statements for the LKED step)

//LKED.SYSIN DD *

(Object module decks and/or control statements)

//EXSTEP EXEC PGM=*.LESTEP.LKED.SYSLMOD

(DD statements and data for load module execution)

(If data is supplied for the execution step)

Note: LESTEP invokes the LKED procedure and EXSTEP executes the
load module produced by LESTEP.

The cataloged procedure named LKEDG is a two-step procedure that
link-edits the input, produces a load module, and executes that
load module. The statements in this procedure are shown in
Figure 48. The two steps are named lKED and GO. The
specifications in the statements in the lKED step are identical
to the specifications in the lKED procedure.

//lKED
//SYSPRINT
//SYSlIH
//SYSLMOD
//
//SYSUTI
//
//GO

EXEC
DD
DD
DO

DD

EXEC

PGM=HEWl,PARM='XREF,lIST,NCAL',REGION=96K
SYSOUT=A
DDHAME=SYSIH
DSNAME=&&GOSET(GO),SPACE=(1024,(SO,20,1»,
UHIT=(SYSDA,DISP=(MOD,PASS)
UNIT=(SYSDA,SEP=(SYSlMOD,SYSLIN»,
SPACE=(1024,(200,20»
PGM=*.LKED.SYSLMOD,COND=(4,LT,LKED)

Figure 48. Statements in the LKEDG Cataloged Procedure

GO STEp: The EXEC statement specifies that the program to be
executed is the load module produced in the lKED step of this
job. This module was stored in the data set described on the
SYSLMOD DD statement in that step. (If a NAME statement was
used to specify a member name other than that used on the
SYSlMOD statement, use the lKED procedure.)

The condition parameter specifies that the execution step is to
be bypassed if the return code issued by the LKED step is
greater than 4.

INVOKING THE LKEDG PROCEDURE: To invoke the lKEDG procedure,
code the following EXEC statement:

//stepname EXEC LKEDG

where stepname is optional and is the name of the job step.

The following example shows a sample JCl sequence for using the
lKEDG procedure to link-edit object modules, produce a load
module, and execute that load module.

Job Control Language Summary 109

IITWOSTEP EXEC lKEDG.

(Overriding and additional DD statements for the lKED step)

IllKED.SYSIN DD *
(Object module decks and/or control statements)

(DD statements for the GO step)

IIGO.SYSIN DD

(Data for the GO step)

OVERRIDING CATALOGED PROCEDURES

The programmer may override any of the EXEC or DD statement
specifications in a cataloged procedure. These new
specifications remain in effect only for the duration of the job
step. For a detailed description of overriding cataloged
procedures. see the publication JCl.

overriding the EXEC Statement

The EXEC statement in a cataloged procedure is overridden by
specifying the changes and additions on the EXEC statement that
invokes the cataloged procedure. The stepname should be
specified when overriding the EXEC statement parameters.

For example. the REGION parameter can be increased as follows:

IllESTEP EXEC lKED.REGION.lKED=136K

The rest of the specifications on the EXEC statement of
procedure lKED remain in effect.

If the PARM field is to be overridden. all the options specified
in the cataloged procedure are negated. That is. if XREF. lIST.
or NCAl is desired when overriding the PARM field. it must be
respecified. In the following example. the OVlY option is added
and the NCAl option is negated:

III ESTEP EXEC lKED.PARM.lKED='OVlY.XREF,lIST'

As a result, the XREF and LIST options are retained. but the
NCAl option is negated; when NCAl is negated. a SYSlIB DD
statement must be added.

If you use the lKEDG procedure and want to execute the load
module just built. an efficient way is to sp~cify the parameter
lET in the lKED step and invoke the lKEDG procedure with the
following EXEC statement:

Iistepname
II

EXEC

110 MVS/370 linkage Editor and loader

lKEDG.PARM.lKED='XREF,lIST,NCAl,lET',
COND.GO=(8.lT,lKED)

Overriding DD statements

ADDING DD STATEHENTS

Each DD statement that is used to override a DD statement in the
LKED step of either the LKED procedure or the LKEDG procedure
must begin with //LKED.ddname

Any of the DD statements in the cataloged procedures can be
overridden as long as the overriding DD statements are in the
same order as they appear in the procedure. If any DD
statements are not overridden, or overriding DD statements are
included but are not in sequence, the specifications in the
cataloged procedure are used.

Only those parameters specified on the overriding DD statement
are affected; the rest of the parameters remain as specified in
the procedure. In the following example, the output load module
is to be placed in a permanent library:

//LIBUPDTE EXEC
//LKED.SYSLMOD DO
//LKED.SYSIN DD

LKED
DSHAME=LOADLIB(PAYROLL),DISP=OLD
DSNAME=OBJMOD,DISP=(OLD,DELETE)

Unit and volume information should be given if these data sets
are not cataloged.

As a result of the statements in the example, the LKED procedure
is used to process the object module in the OBJMOD data set.
The output load module is stored in the data set LOADLIB with
the name PAYROLL. The SPACE parameter on the SYSLMOD DD
statement and the other specifications in the procedure remain
in effect.

DD statements for additional data sets can be supplied when
using cataloged procedures. These additional DD statements must
follow any overriding DD statements.

Each additional DD statement for the LKED step must begin with
//LKED.ddname ... and, for the GO step, must begin with
//GO.ddname

In the following example, the automatic library-call mechanism
is to be used along with the LKEDG procedure:

//CPSTEP
//LKED.SYSLMOO
//LKEO.SYSLIB
//LKED.SYSIN

EXEC
DD
DD
DD

LKEDG,PARM.LKED='XREF,LIST'
DSNAME=LOADLIB(TESTER),DISP=OLD, ...
DSNAME=SYL1.PL1LIB,DISP=SHR

*
(Object module decks and/or control statements).

/*
//GO.SYSIN DD

(Data for execution step)

The NCAL option is negated, and a SYSLIB DD statement is added
between the overriding SYSLMOD DD statement and the SYSIN DD
statement.

Job Control Language Summary 111

LINKAGE EDITOR CONTROL STATEMENT SUMMARY

General Format

Format conventions

This chapter summarizes the linkage editor control statements.
The description of each statement includes:

• What the statement does

• The format of the statement

• Placement of the statement in the input

• Notes on use, if any

• One or more examples that include job control language
statements, when necessary

The control statements are described in alphabetic order.
Before using this chapter, the user should be familiar with the
following information on general format, format conventions, and
placement.

Each linkage editor control statement specifies an operation and
one or more operands. Nothing must be written preceding the
operation, which must begin in or after columm 2. The operation
must be separated from the operand by one or more blanks.

A control statement can be continued on as many cards as
necessary by terminating the operand at a comma, and by placing
a nonblank character in column 72 of the card. Continuation
must begin in column 16 of the next card. A symbol cannot be
split; that is, it cannot begin on one card and be continued on
the next.

The following conventions are used in the formats to describe
the coding of the linkage editor control statements:

• Boldface type indicates the exact characters to be entered.
Such items must be entered exactly as illustrated (in
uppercase, if applicable).

• Lowercase underscored type specifies fields to be supplied
by the user.

• Other punctuation (parentheses, commas, spaces, etc.) must
be entered as shown.

• Braces { } indicate a choice of entry; unless a default is
indicated, you must choose one of the entries.

• Brackets [] indicate an optional field or parameter.

• An ellipsis (••• J indicates that multiple entries of the
type immediately preceding the ellipsis are allowed.

• Items separated by a vertical bar (I) represent
alternative items. No more than one of the items may be
selected.

Placement Information

Linkage editor control statements are placed before, between, or
after modules. They can be grouped, but they cannot be placed
within a module. However, specific placement restrictions may

112 MVS/370 Linkage Editor and Loader

J

be ;mposed by the nature of the funct;ons be;ng requested by the
control statement. Any placement restr;ct;ons are noted.

L;nkage Ed;tor Control Statement Summary 113

ALIAS Statement

The ALIAS statement specifies additional names for the output
library member, and can also specify names of alternative entry
points. Up to 16 names can be specified on one ALIAS statement,
or separate ALIAS statements for one library member. The names
are entered in the directory of the partitioned data set in
addition to the member name.

FORHAT: The format of the ALIAS statement is:

ALIAS {symbollexternal name}

symbol
specifies an alternate name for the load module. When the
module is executed, the main entry point is used as the
starting point for execution.

external name
specifies a name that is defined as a control section name
or entry name in the output module. When the module is
called for execution, execution begins at the external name
referred to.

PLACEMENT: An ALIAS statement can be placed before, between, or
after object modules or other control statements. It must
precede a NAME statement used to specify the member name, if one
is present.

Hotes:

1. In an overlay program, an external name specified by the
ALIAS statement must be in the root segment.

2. No more than 16 alias names can be assigned to one output
module.

3. Each alias specified for a load module is retained in the
directory entry for the module; the linkage editor does not
delete an old alias. Therefore, each alias that is specified
must be unique; assigning the same alias to more than one
load module can cause incorrect module references.

4. Obsolete alias names should be deleted from the PDS
directory using a system utility such as IEHPROGM, to avoid
future name conflicts.

5. If the replace option is in effect for the output load
module (that is, the load module built in this link-edit
does or may replace an identically named load module in the
output module library), the replace option is in effect for
each ALIAS name for the load module as well as for the
primary name.

EXAMPLE: An output module, ROUT1, is to be assigned two
alternate entry points, CODE1 and CODE2. In addition, calling
modules have been written using both ROUT 1 and ROUTONE to refer
to the output module. Rather than correct the calling modules,
an alternative library member name is also assigned.

ALIAS
NAME

CODE1,CODE2,ROUTONE
ROUT1

Because CODE1 and CODE2 are entry names in the output module,
execution begins at the point referred to when these names are
used to call the module. The modules that call the output
module with the name ROUTONE now correctly refer to ROUT1 at its
main entry point. The names CODE1, CODE2, and ROUTONE appear in
the library directory along with ROUT1.

114 MVS/370 Linkage Editor and Loader

J

J

CHANGE statement

The CHANGE statement causes an external symbol to be replaced by
the symbol in parentheses following the external symbol. The
external symbol to be changed can be a control section name. an
entry name. or an external reference. More than one such
substitution may be specified in one CHANGE statement.

FORMAT: The format of the CHANGE statement is:

CHANGE externalsymbol(newsymboll
[,externalsymbol(newsymboll] •••

external symbol
is the control section name, entry name. or external
reference that is to be changed.

newsymbol
is the name to which the external symbol is to be changed.

PLACEMENT: The CHANGE control statement must be placed
immediately before either the module containing the external
symbol to be changed. or the INCLUDE control statement
specifying the module. The scope of the CHANGE statement is
across the immediately following module (object module or load
module); the END record in the immediately following object
module or the end-of-module indication in the immediately
following load module delimits the scope of the CHANGE
statement.

Notes:

1. External references from other modules to a changed control
section name or entry name remain unresolved unless further
action is taken.

2. If the external symbol specified on the CHANGE statement is
misspelled, the symbol will not be changed. Linkage editor
output. such as the cross-reference listing or module map.
can be used to verify each change.

3. When a REPLACE statement that deletes a control section is
followed by a CHANGE statement with the same control section
name. unpredictable results will occur.

EXAMPLE 1: Two control sections in different modules have the
name TAXROUT. Because both modules are to be link-edited
together, one of the control section names must be changed. The
module to be changed is defined with a DD statement named
OBJMOD. The control section name could be changed as follows:

//OBJMOD
//SYSLIN

CHANGE
INCLUDE

DD DSNAME=TAXES,DISP=COLD,KEEP), ...
DD *

TAXROUTCSTATETAX)
OBJMOD

As a result, the name of control section TAXROUT in module TAXES
is changed to STATETAX.

linkage Editor Control statement Summary 115

EXAMPLE 2: A load module contains references to TAXROUT that
must now be changed to STATETAX. This module is defined with a
DD statement named LOADMOD. The external references could be
changed at the same time the control section name is changed, as
follows:

//OBJMOD DO DSNAME=TAXES,OISP=(OLD,DELETE), .•.
//LOADMOD DD OSNAME=LOAOLIB,OISP=OLO, ...
//SYSLIN DO *

CHANGE TAXROUT(STATETAX)
INCLUDE OBJMOO
CHANGE TAXROUT(STATETAX)
INCLUDE LOADMOD(INVENTRY)

As a result, control section name TAXROUT in module TAXES and
external reference TAXROUT in module INVENTRY are both changed
to STATETAX.

116 MVS/370 linkage Editor and Loader

J

ENTRY statement

The ENTRY statement specifies the symbolic name of the first
instruction to be executed when the program is called by its
module name for execution. An ENTRY statement should be used
whenever a module is reprocessed by the linkage editor. If more
than one ENTRY statement is encountered, the first statement
specifies the main entry point; all other ENTRY statements are
ignored.

FORMAT: The format of the ENTRY statement is:

ENTRY externalname

external name
is defined as either a control section name or an entry
name in a linkage editor input module.

PLACEMENT: An ENTRY statement can be placed before, between, or
after object modules or other control statements. It must
precede the NAME statement for the module, if one is present.

Notes:

1. In an overlay program, the first instruction to be executed
must be in the root segment.

2. The external name specified must be the name of an
instruction, not a data name, if the module is to be
executed.

EXAMPLE: In the following example, the main entry point is
INIT1:

//LOADLIB DD DSNAME=LOADLIB,DISP=OLD, ...
//SYSLIN DD *

ENTRY INIT1
INCLUDE LOADLIB(READ,WRITE)

.
ENTRY READIN

INIT1 must be either a control section name or an entry name in
the linkage editor input. The entry point specification of
READIN is ignored.

Linkage Editor Control Statement Summary 117

.f
j

/ !
EXPAND statement

The EXPAND statement lengthens control sections or named common
sections by a specified number of bytes.

FORMAT: The format of an EXPAND statement is

EXPAND name(xxxx)
[,name(xxxx)] •••

is the symbolic name of a common section or control section
whose length is to be increased.

is the decimal number of bytes to be added to the length of
a common section. The maximum is 4095 for each section
indicated. Binary zeros will be added for an expanded
control section.

The EXPAND statement is followed by a message, IEW0740, that
indicates the number of bytes added to the control section and
the offset, relative to the start of the control section, at
which the expansion begins. The effective length of the
expansion is given in hexadecimal and may be greater than the
specified length if, after the specified expansion, padding
bytes must be added for alignment of the next control section or
named common section.

PLACEMENT: An EXPAND statement can be placed before, between, or
after other control statements or object modules. However, the
statement must follow the module containing the control or named
common section to which it refers. If the control section or
named common section is entered as the result of an INCLUDE
statement, the EXPAND statement must immediately follow the
INCLUDE statement.

Note: EXPAND should be used with caution so as not to increase
the length of a program beyond its own design limitations. For
example, if space is added to a control section beyond the range
of its base register addressability, that space is unusable.

EXAMPLE: In the following example, EXPAND statements add a
250-byte patch area (initialized to zeros) at the end of control
section CSECT! and increase the length of named common section
COM! by 400 bytes.

//LKED
//SYSPRINT
//SYSUTl
//SYSLMOD
/ /SYSLIN
//
//

EXPAND
EXPAND
NAME

/ *

EXEC
DO
DO
DD
DO

DO

PGM=HEWL
SYSOUT=A
UNIT=SYSDA,SPACE=(TRK,(10,4»
DSNAME=PDSX,DISP=OLD
DSNAME=&&LOADSET,DISP=(OLD,PASS),
UNIT=SYSDA

* CSECTl< 250)
COMl(400)
MODU R)

118 MVS/370 Linkage Editor and Loader

J

IDENTIFY statement

,
\

The IDENTIFY statement specifies any data supplied by th,iuser
to be entered into the CSECT identification (lOR) records for a
particular control section. The statement can be used either to
supply descriptive data for a control section or to provide a
means of associating system-supplied data with executable code.

FORMAT: The format of the IDENTIFY statement is:

IDENTIFY c5~ctname('data')[,csectname('data')] •••

csectname
is the symbolic name of the control section to be
identified.

specifies up to 40 EBCDIC characters of identifying
information. The user may supply any information desired
for identification purposes.

The rules of syntax for the operand field are:

1. No blanks or characters may appear between the left
parenthesis and the leading single quotation mark nor
between the trailing single quotation mark and the right
parenthesis.

2. The data field consists of from 1 to 40 characters;
therefore, a null entry must be represented, minimally, by a
single blank.

3. Blanks may appear between the leading single quotation mark
and the trailing single quotation mark. Each blank counts
as 1 character toward the 40-character limit.

4. A single quotation mark between the leading quotation mark
and the trailing quotation mark is represented by 2
consecutive quotation marks. The pair of quotation marks
counts as 1 character toward the 40-character limit.

5. Any EBCDIC character may appear between the leading
quotation mark and the trailing quotation mark. Each
character counts as 1 character toward the 40-character
limit.

6. The IDENTIFY statement may be continued; however, a whole
operand must appear on a single card image and at least 1
whole operand must appear on each card image of the
continued statement.

7. If a leading quotation mark is found, all characters are
absorbed until a trailing quotation mark is found or the
40-character limit is exhausted.

8. Blanks may not appear between the CSECT name and the left
parenthesis.

9. A blank following a left parenthesis terminates the operand
field; a blank following a comma that terminates an operand
also terminates the operand field of that card image.

PLACEMENT: An IDENTIFY statement can be placed before, between,
or after other control statements or object modules. The
IDENTIFY statement must follow the module containing the control
section to be identified or the INCLUDE statement specifying the
module.

Note: When two or more IDENTIFY statements specify the same
CSECT name, only the last statement is effective.

Linkage Editor Control Statement Summary 119

EXAMPLE: In the following example, IDENTIFY statements are used J ..
to identify the source level of a control section, a PTF
application to a control section, and the functions of several
control sections.

//LKED
//SYSPRINT
//SYSUTl
//SYSLMOD
//OLDMOD
//PTFMOD
//SYSLIN

EXEC
DD
DD
DD
DD
DD
DD

PGM=HEWL
SYSOUT=A
UNIT=SYSDA,SPACE=CTRK,(lO,S»
DSNAME=LOADSET,DISP=OLD
DSNAME=OLD.LOADSET,DISP=OLD
DSNAME=PTF.OBJECT,DISP=OLD

*
(input object deck for a control section named FORT)

IDENTIFY
INCLUDE
IDENTIFY
INCLUDE
IDENTIFY

FORTC'LEVEL 03')
PTFMODCCSECT4)
CSECT4('PTF99999')
OLDMOD(PROG1)
CSECT1('I/O ROUTINE'),
CSECT2C'SORT ROUTINE'),
CSECT3('SCAN ROUTINE')

Execution of this example produces IDR records containing the
following identification data:

•

•

The name of the linkage editor that produced the load
module, the linkage editor version and modification level,
and the date of the current linkage editor processing of the
module. This information is provided automatically.

User-supplied data describing the functions of several
control sections in the module, as indicated on the third
IDENTIFY statement.

• If the language translator used supports IDR, the
identification records produced by the linkage editor also
contain the name of the translator that produced the object
module, its version and modification level, and the data of
compilation.

The IDR records created by the linkage editor can be referenced
by using the LISTIDR function of the service aid program
AMBLIST. For instructions on how to use AMBLIST, see System
Programming Library: Service Aids.

120 MVS/370 Linkage Editor and Loader

J

INCLUDE statement

The INCLUDE statement specifies sequential data sets and/or
libraries that are to be sources of additional input for the
linkage editor. INCLUDE statements are processed in the order
in which they appear in the input. However, the sequence of
data sets and modules within the output load module does not
necessarily follow the order of the INCLUDE statements.

FORMAT: The format of the INCLUDE statement is:

INCLUDE

ddname

ddname[(membername[, •••])]
[,ddname[(membername[, •••])]] •••

is the name of a DD statement that describes either a
sequential or a partitioned data set to be used as
additional input to the linkage editor. For a sequential
data set, ddname is all that must be specified. For a
partitioned data set, at least one member name must also be
specified.

membername
is the name of or an alias for a member of the library
defined in the specified DD statement. The membername must
not be specified again on the DD statement.

PLACEMENT: An INCLUDE statement can be placed before, between,
or after object modules or other control statements.

Note: A NAME statement in any data set specified in an INCLUDE
statement is invalid; the NAME statement is ignored. All other
control statements are processed.

EXAMPLE 1: In the following example, an INCLUDE statement
specifies two data sets to be the input to the linkage editor:

IIOBJMOD
IILOADMOD

DD
DD

DSNAME=&&OBJECT,DISP=(OLD,DELETE)
DSNAME=LOADLIB,DISP=SHR, ...

IISYSLIN DD *
INCLUDE OBJMOD,LOADMOD(TESTMOD,READMOD)

Note that a DD statement must be supplied for every ddname
specified in an INCLUDE statement.

EXAMPLE 2: Two separate INCLUDE statements could have been used
in the preceding example, as follows:

INCLUDE OBJMOD
INCLUDE LOADMOD(TESTMOD,READMOD)

Linkage Editor Control statement Summary 121

INSERT Statement

The INSERT statement repositions a control section from its
position in the input sequence to a segment in an overlay
structure. However, the sequence of control sections within a
segment is not necessarily the order of the INSERT statements.

If a symbol specified in the operand field of an INSERT
statement is not present in the external symbol dictionary, it
is entered as an external reference. If the reference has not
been resolved at the end of primary input processing, the
automatic library-call mechanism attempts to resolve it.

FORMAT: The format of the INSERT statement is:

INSERT csectname, •••

csectname
is the name of the control section to be repositioned. A
particular control section can appear only once within a
load module.

PLACEMENT: The INSERT statement must be placed in the input
sequence following the OVERLAY statement that specifies the
origin of the segment in which the control section is to be
positioned. If the control section is to be positioned in the
root segment, the INSERT statement must be placed before the
first OVERLAY statement.

Note: Control sections that are positioned in a segment must
contain all address constants to be used during execution
unless:

• The A-type address constants are located in a segment in the
path.

• The V-type address constants used to pass control to another
segment are located in the path. If an exclusive reference
is made, the V-type address constant must be in a common
segment.

• The V-type address constants used with the SEGLD and SEGWT
macro instructions are located in the segment.

EXAMPLE: The following INSERT (and OVERLAY) statements specify
the overlay structure shown in Figure 49 on page 123:

// EXEC

//SYSLIN DD

/*

IHSERT CSA
INSERT CSB
OVERLAY ALPHA
INSERT CSC,CSD
OVERLAY ALPHA
INSERT CSE

PGM=HEWL,PARM='OVLY,XREF,LIST'

122 MVS/370linkage Editor and Loader

J

J

LIBRARY statement

T
CSA

t
CSB

A~HA

esc

t CSE

1
eSD

1
Figure 49. Overlay Structure for INSERT Statement Example

The LIBRARY statement can be used to specify:

• Additional automatic call libraries. which contain modules
used to resolve external references found in the program.

• Restricted no-call function: External references that are
not to be resolved by the automatic library call mechanism
during the current linkage editor job step.

• Hever-call function: External references that are not to be
resolved by the automatic library call mechanism during any
linkage editor job step.

Combinations of these functions can be written in the same
LIBRARY statement.

FORHAT: The format of the LIBRARY statement is:

LIBRARY

ddname

(ddnamg(membername[, •••])
(externalreference[, •••])
.(externalreference[, •••])}, •••

is the name of a DO statement that defines a library.

membername
is the name of or an alias for a member of the specified
library. Only those members specified are used to resolve
references.

linkage Editor Control Statement Summary 123

external reference
is an external reference that may be unresolved after \
primary input processing. The external reference is not to ~
be resolved by automatic library call.

indicates that the external reference is never to be
resolved; if the * (asterisk) is missing, the reference is
left unresolved only during the current linkage editor run.

PLACEMENT: A LIBRARY statement can be placed before, between, or
after object modules or other control statements.

Notes:

1. If the unresolved external symbol is not a member name in
the library specified, the external reference remains
unresolved unless defined in another input module.

2. If the NCAL option is specified, the LIBRARY statement
cannot be used to specify additional call libraries.

3. Members called by automatic library call are placed in the
root segment of an overlay program, unless they are
repositioned with an INSERT statement.

4. Specifying an external reference for restricted no-call or
never-call by means of the LIBRARY statement prevents the
external reference from being resolved by automatic
inclusion of the necessary module from an automatic call
library; it does not prevent the external reference from
being resolved if the module necessary to resolve the
reference is specifically included or is included as part of
an input module.

EXAMPLE: The following example shows all three uses of the
LIBRARY statement:

//
//TESTLIB

EXEC
DD

PGM=HEWL,PARM='LET,XREF,LIST'
DSNAME=TEST,DISP=SHR, ...

//SYSLIN DD *
LIBRARY TESTLIB(DATE,TIME),(FICACOMP),*(STATETAX)

/*

As a result, members DATE and TIME from the additional library
TESTLIB are used to resolve external references. FICACOMP and
STATETAX are not resolved; however, because the references
remain unresolved, the LET option must be specified on the EXEC
statement if the module is to be marked executable .• In
addition, STATETAX will not be resolved in any subsequent
reprocessing by the linkage editor.

124 MVS/370 Linkage Editor and Loader

J

MODE statement

The MODE statement specifies the residence mode for the output
load module and/or the addressing mode for all the entry points
into the load module (the main entry point, its true aliases,
and all the alternate entry points).

FORMAT: The format of the MODE statement is as follows:

modespec(,modespec)

mode spec
is either of the following:

• The designation of an addressing mode for the output load
module by one of the following:

AMODE(24)

AMODE(31)

AMODE(ANY)

• The designation of residence mode for the output load module
by one of the following:

RMODE(24)

RMODE(ANY)

PLACEMENT: The MODE control statement can be placed before,
between, or after object modules or other control statements.
It must precede the NAME s+atement for the module, if one is
present.

Notes:

1. The residence mode assigned by the MODE control statement
overrides the residence mode accumulated from the input
control sections and private code. The residence mode
assigned by the MODE control statement also overrides the
residence mode assigned by the RMODE parameter in the PARM
field of the EXEC statement.

2. The addressing mode assigned by the MODE control statement
overrides the separate addressing modes found in the ESD
data for the control sections within which the entry points
are located. The addressing mode assigned by the MODE
control statement overrides the addressing mode assigned by
the AMODE parameter in the PARM field of the EXEC statement.

3. If more than one MODE control statement is encountered in
the link-edit of a load module, the last valid mode
specification is used. Likewise, if a mode specification
occurs more than once within a MODE statement, the last
valid mode specification is used.

4. If only one value, either AMODE or RMODE, is specified in
the MODE control statement, the other value is implied
according to the following table:

Linkage Editor Control Statement Summary 125

Value Specified Value Implied

AMODE=24 RMODE=24

AMODE=31 RMODE=24

AMODE=ANY RMODE=24

RMODE=24 see below

RMODE=ANY AMODE=31

If only an RMODE of 24 is specified, no overriding AMODE
value is assigned; instead, the AMODE value in the ESD data
for the main entry point, a true alias, or an alternate
entry point is used in generating its respective directory
entry.

5. In generating a directory entry for either the main entry
point, a true alias, or an alternate entry point, the
linkage editor validates the combination of the AMODE value
and the RMODE value, as specified by the user in the MODE
control statement(s), according to the table below:

RMODE=24 RMODE=ANY

AMODE=24 valid invalid

AMODE=31 valid valid

AMODE=ANY valid invalid

6. If the AMODE/RMODE combination resulting from the MODE
control statement(s) is invalid, an error message is issued
and the linkage editor ignores the MODE control statement(s)
as the source of AMODE/RMODE data.

EXAMPLE: In the following example, an output load module, named
NEWMOD, is created; it is given a true alias of TESTMOD; the
residence mode for the load module is ANY; the addressing mode
for both the main entry point, NEWMOD, and the true alias,
TESTMOD, is 31.

//SYSLMOD DO DSH=TESTlOAD, DISP=MOD, ...
//SYSLIN DO *

/*

MODE
ALIAS
NAME

.
AMODE(31),RMODECANY)
TESTMOD
HEWMOD

126 MVS/370 linkage Editor and Loader

J

J

NAME statement

The NAME statement specifies the name of the load module created
from the preceding input modules, and serves as a delimiter for
input to the load module. As a delimiter, the NAME statement
allows multiple load module processing in one linkage editor job
step. The NAME statement can also indicate that the load module
replaces an identically named module in the output module
library.

FORMAT: The format of the NAME statement is:

NAME membername[(R)]

membername
is the name to be assigned to the load module that is
created from the preceding input modules.

(R)
indicates that this load module replaces an identically
named module in the output module library. If the module
is not a replacement, the parenthesized value (R) should
not be specified.

PLACEMENT: The NAME statement is placed after the last input
module or control statement that is to be used for the output
module.

Notes:

1. Any ALIAS statement used must precede the NAME statement.

2. A NAME statement found in a data set other than the primary
input data set is invalid. The statement is ignored.

EXAMPLE: In the following example, two load modules, RDMOD and
WRTMOD, are produced by the linkage editor in one job step:

//SYSLMOD DD
//NEWMOD DD
//SYSLIN DD
// OD

/*

NAME RDMODCR)
INCLUDE NEWMOn
NAME WRTMOD

DSNAME=AUXMODS,DISP=MOD, ...
DSNAME=&&WRTMOD,DISP=OLD
DSNAME=&&RDMOD,DISP=OLD

*

As a result, the first module is named ROMOD and replaces an
identically named module in the output module library AUXMODS;
the second module is named WRTMOD and is added to the library.

Linkage Editor Control statement Summary 127

ORDER statement

The ORDER statement indicates the sequence in which control
sections or named common areas appear in the output load module.
The control sections or named common areas appear in the
sequence in which they are specified on the ORDER statement.
When multiple ORDER statements are used, their sequence further
determines the sequence of the control sections or named common
areas in the output load module; those named on the first
statement appear first, and so forth.

FORMAT: The format of the ORDER statement is:

ORDER {common area name[(P))lcsectname[(P))), •••

common area name
is the name of the common area to be sequenced.

csectname

(P)

is the name of the control section to be sequenced.

indicates that the starting address of the control section
or named common area is to be on a page boundary within the
loa~ module. The control sections or common areas are
aligned on 4K-byte page boundaries.

PLACEMENT: An ORDER statement can be placed before, between, or
after object modules or other control statements.

Notes:

1. A control section or common area can be named on only one
ORDER statement. If the same name is used more than once, \
except when it is the last operand on one ORDER statement ~
and the first operand on the next, the name is ignored, as
is the balance of the control statement on which it appears.

2. The control sections and common areas named as operands can
appear in either the primary input or the automatic call
library, or both.

3. If a control section or a named common area is changed by a
CHANGE or REPLACE control statement and sequencing is
desired, specify the new name on the ORDER statement. The
ORDER statement refers to the control section by its new
name.

EXAMPLE: In this example, the control sections in the load
module lDMOD are arranged by the linkage editor according to the
sequence specified on ORDER statements. The page boundary
alignments and the control section sequence made as a result of
these statements are shown in Figure 50 on page 129. Assume
each control section is lK byte in length.

~ ~

128 MVS/370 Linkage Editor and loader

JCL and Control Statements

//SYSLMOD DD DSNAME=PVTLIB,DISP=OLD, •••
//SYSLIN DD *

/*

ORDER
ORDER
ORDER
INCLUDE

ROOTSEG(P) ,MAINSEG,SEG1,SEG2
SEG3 (P) ,ENTRYl
FSTPART,SESECTA,SESECTB(P)
SYSLMOD(LDMOD)

OK

4K

8K

Output Load Module

LDMOD

/' /'
ROOTSEG

/
MAINSEG

./
SEGI

./
SEG2

V
SEG3

./
ENTRY!

./
FSTPART

./
SESECTA

./'"
SESECTB

Figure 50. Output load Module for ORDER Statement Example. The control section name
PART1 is changed by a CHANGE statement to FSTPART. The ORDER statement
refers to the control section by its new name.

linkage Editor Control Statement Summary 129

OVERLAY statement

The OVERLAY statement indicates either the beginning of an\
overlay segment, or of an overlay region. Because a segment or ~
a region is not named, the programmer identifies it by giving
its origin (or load point) a symbolic name. This name is then
used on an OVERLAY statement to signify the start of p new
segment or region.

FORMAT: The format of the OVERLAY statement is:

OVERLAY symbol(REGION)

symbol
is the symbolic name assigned to the or1g1n of a segment.
This symbol is not related to external symbols in a module.

(REGION)
specifies the origin of a new region.

PLACEMENT: The OVERLAY statement must precede the first module
of the next segment, the INCLUDE statement specifying the first
module of the segment, or the INSERT statement specifying the
control sections to be positioned in the segment.

Notes:

1. The OVLY option must be specified on the EXEC statement when
OVERLAY statements are to be used.

2. The sequence of OVERLAY statements should reflect the order
of the segments in the overlay structure from top to bottom,
left to right, and region by region.

3. No OVERLAY statement should precede the root segment.

EXAMPLE: The following OVERLAY and INSERT statements specify the
overlay structure in Figure 51 on page 131.

// EXEC PGM=HEWL,PARM='OVLY,XREF,lIST'

.
//SYSLIN DD DSNAME=&&OBJ, ...
// DD *

INSERT CSA
OVERLAY ONE
INSERT CSB
OVERLAY TWO
INSERT CSC
OVERLAY TWO
INSERT CSD
OVERLAY ONE
INSERT CSE,CSF
OVERLAY THREE(REGION)
INSERT CSH
OVERLAY THREE
INSERT CSI

J

130 MVS/370 Linkage Editor and Loader

REGION I

I
CSB

I
TWO

esc
.1

CSo

~

REGION 2 CSH

J..

T
('SA

I
ONE I

CSE

+
CSF
....l...

CSI

J..

Figure 51. Overlay Structure for OVERLAY Statement Example

Linkage Editor Control Statement Summary 131

PAGE statement

The PAGE statement aligns a control section or named common area
on a 4K-byte page boundary in the load module.

FORMAT: The format of the PAGE statement is:

PAGE {common area namelcsectname), •••

common area name
is the name of the common area to be aligned on a page
boundary.

csectname
is the name of the control section to be aligned on a page
boundary.

PLACEMENT: The PAGE statement can be placed before, between, or
after object modules or other control statements.

Notes:

1. If a control section or a named common area is changed by a
CHANGE or REPLACE control statement, and page alignment is
wanted, specify the new name in the PAGE statement.

2. The control sections and common areas named as operands can
appear in either the primary input or the automatic call
library, or both.

EXAMPLE: In this example, the control sections in the load
module LDMOD are aligned on page boundaries as specified in the
following PAGE statement:

PAGE ALIGN,BNDRY4K,EIGHTK

The job control statements and linkage editor control statements
as well as the output load module are shown in Figure 52 on page
133. Assume each control section is 3K bytes in length.

132 MVS/370 Linkage Editor and Loader

J

J

JCL And Control Statements

//LKED

//SYSLMOD
//SYSLIN

PAGE
INCLUDE

/*

EXEC PGM=HEWL,PARM=, ...

DD
DD

DSNAME=PVTLIB,DISP=OLD, ...

*
ALIGN, BNDRY4K, EIGHTK
SYSLMOD(LDMOD)

Figure 52. Output Load Module for PAGE Statement Example

OK

4K

8K

Output Load Module

LDMOD

./ /
ALIGN

/"
Empty Space
Due to Boundary
Alignment

/
BNDRY4K

./"
Empty Space
Due to Boundary
Alignment ./

EIGHTK

l/

Linkage Editor Control Statement Summary 133

REPLACE statement

The REPLACE statement specifies one or more of the following:

• The replacement of one control section with another

• The deletion of a control section

• The deletion of an entry name

When a control section is replaced, all references within the
input module to the old control section are changed to the new
control section. Any external references to the old control
section from other modules are unresolved unless changed.

When a control section is deleted, the control section name is
also deleted from the external symbol dictionary, unless
references are made to the control section from within the input
module. If there are any such references, the control section
name is changed to an external reference. External references
from other modules to a deleted control section also remain
unresolved.

When deleting an entry name, if there are any references to it
within the same input module, the entry name is changed to an
external reference.

FORMAT: The format of the REPLACE statement is:

REPLACE {csectname-1[(csectname-2)],entryname}

csectname
is the name of a control section. If only csectname-1 is
used, the control section is deleted; if csectname-2 is
also used, the first control section is replaced with the
second.

entryname
is the entry name to be deleted.

PLACEMENT: The REPLACE statement must immediately precede either
(1) the module containing the control section or entry name to
be replaced or deleted, or (2) the INCLUDE statement specifying
the module. The scope of the REPLACE statement is across the
immediately following module (object module or load module).
The END record in the immediately following object module or the
end-of-module indication in the load module terminates the
action of the REPLACE statement. If the REPLACE statement i~
the last control statement in the SYSLIN data set, and there are
unresolved external references to be resolved from SYSLIB, the
REPLACE function operates on the first module from SYSLIB by an
AUTO CALL.

Notes:

1. Unresolved external references are not deleted from the
output module even though a deleted control section contains
the only reference to a symbol.

2. When some but not all control sections of a separately
assembled module are to be replaced, A-type address
constants that refer to a deleted symbol will be incorrectly
resolved, unless the entry name is at the same displacement
from the origin in both the old and the new control
sections.

3. If no INCLUDE statement follows the REPLACE statement, one
module may be left out of AUTO CALL. Message 1EW0132 is
issued.

4. If the control section identified as csectname-1 (specified
on the REPLACE statement) is misspelled, the control section

134 MVS/370 Linkage Editor and Loader

J

will not be replaced or deleted. linkage editor output,
such as the cross-reference listing and module map, can be
used to verify each change.

EXAMPLE: In the following example, assume that control section
INT7 is in member lOANCOMP and that control section INT8, which
is to replace INT7, is in data set &&NEWINT. Also assume that
control section PRIME in member LOANCOMP is to be deleted.

//NEWMOO DO
//OLDMOD DD
//SYSLIN DD

ENTRY MAINENT
INCLUDE NEWMOD

DSNAME=&&NEWINT,DISP=(OLD,DELETE)
DSNAME=PVTLIB,DISP=OLD, ...

*
REPLACE INT7CINT8),PRIME
INCLUDE OLDMODCLOANCOMP)

/*

As a result, INT7 is removed from the input module described by
the OLDMOD DO statement, and INT8 replaces INT7. All references
to INT7 in the input module now refer to INT8. Any references
to INT7 from other modules remain unresolved. If there are no
references to PRIME in LOANCOMP, control section PRIME is
deleted; the control section name is also deleted from the
external symbol dictionary.

Linkage Editor Control Statement Summary 135

SETCODE statement

The SETCODE statement assigns the specified authorization code
to the output load module. The authorization code is placed in
the directory entry for the output load module.

FORHAT: The format of the SETCODE statement is as follows:

SETCODE AC(authorizationcodeJ

authorizationcode
is I to 3 decimal digits specifying a value from 0 to 255.

PLACEMENT: A SETCODE statement can be placed before, between, or
after object modules or other control statements. It must
precede the NAME statement for the module, if one is present.

Notes:

1. The authorization code assigned by the SETCODE statement
overrides the authorization code assigned by the AC
parameter in the PARM field of the EXEC statement.

2. If more than one SETCODE statement is encountered in the
link-edit of a load module, the last valid authorization
code assigned is used.

3. The operand 'AC()' results in an authorization code of
zero.

EXAMPLE: In the following example, an authorization code of I is
assigned to the output load module MODI.

//lKEO
//SYSPRINT
//SYSUTI
//SYSLMOD
//SYSLIN
//
//

SETCODE
NAME

EXEC
DD
DO
DO
DO

DD

PGM=HEWl
SYSOUT=A
UNIT=SYSDA,SPACE=(TRK,(IO,S»
DSHAME=SYSI.lINKlIB,DISP=OlD
DSNAME=&&lOADSET,DISP=(OLD,PASS)
UNIT=SYSDA

* AC(I)
MODIeR)

136 MVS/370 linkage Editor and loader

J

SETSSI statement

The SETSSI statement specifies hexadecimal information to be
placed in the system status index of the directory entry for the
output module.

FORMAT: The format of the SETSSI statement is:

SETSSI xxxxxxxx

xxxxxxxx
represents 8 hexadecimal characters (0 through 9 and A
through F) to be placed in the 4-byte system status index
of the output module library directory entry.

PLACEMENT: The SETSSI statement can be placed before. between,
or after object modules or other control statements. If one is
present. it must precede the NAME statement for the module.

Note: A SETSSI statement must be provided whenever an
IBM-supplied load module is reprocessed by the linkage editor.
If the statement is omitted, no system status index information
is present.

Linkage Editor Control Statement Summary 137

APPENDIX A. SAMPLE PROGRAMS

This appendix contains sample linkage editor programs. The
material presented for each program includes a description of
the program, the job control language necessary for the linkage
editor job step, linkage editor control statements (if any), and
the linkage editor output. The sample programs are:

• Link-editing a COBOL and a FORTRAN object module (COBFORT)

• Replacing one control section with another by using the
REPLACE statement (RPlACJOB)

• Creating a multiple-region overlay program (REGNOVLY)

• Placing the control statements for the multiple region
overlay program in a partitioned data set, and using them
CPARTDS)

The output for each program includes a cross-reference table, a
module map, a control statement listing, and diagnostic
messages, if any.

SAMPLE PROGRAM COB FORT

Job Control Language

Sample program COBFORT link-edits a COBOL object module and a
FORTRAN object module to form one load module. The source
programs were compiled in two steps previous to the linkage
editor job step, and the output from each compilation was placed
in data set &&OBJMOD.

The job control language for the linkage editor job step of this
sample program is:

IILKED
IISYSUTI
II
IISYSlIB
II
IISYSlMOD
II
II
IISYSPRINT
IISYSlIN
1*

Statement

EXEC

SYSUTI

EXEC
DD

DD
DD
DO

DO
DO

PGM=HEWL,PARM='XREF'
DSNAME=&&UTl,UNIT=SYSDA,SPACE=(TRK,
(100,10»
DSNAME=SYSl.COBlIB,DISP=SHR
DSNAME=SYSl.FORTlIB,DISP=SHR
DSNAME=&&LOADMDCGO),UNIT=SYSDA,
DISP=(NEW,PASS),SPACE=(TRK,
(100,10,1»
SYSQUT=A
DSNAME=&&OBJMOD,DISP=(OlD,DELETE)

Explanation

Causes the execution of the linkage editor. The
PARM field option requests a cross-reference table
and a module map to be produced on the diagnostic
output data set.

Defines a temporary direct access data set to be
used as the intermediate data set.

138 MVS/370 linkage Editor and loader

SYSLIB

SYSLMOD

SYSPRINT

SYSLIN

Linkage Editor output

Defines the automatic call library; the call
libraries for COBOL and FORTRAN are concatenated;
both are used to resolve external references.

Defines a temporary data set to be used as the
output module library; the load module is assigned a
member name of GO, and is passed to a subsequent
step for execution.

Defines the diagnostic output data set, which is
assigned to output class A.

Defines the primary input data set, &&OBJMOD, which
contains both input object modules; this data set
was passed from a previous job step and is to be
deleted at the end of this job step.

Figure 53 on page 140 shows the linkage editor output for
COBFORT. The listing header indicates the options specified
(XREF), and the SIZE option values in decimal (196608 for value1
and 65536 for value2). Because XREF is specified, the heading
CROSS REFERENCE TABLE precedes the rest of the output.

Figure 53 also shows the module map for COBFORT. IPCT30 and
TX652F are the names of the input control sections. The rest of
the control sections are either from the COBOL automatic call
library or from the FORTRAN automatic call library. (They can
be distinguished by the initial three letters; ILB indicates a
COBOL control section, IHC a FORTRAN control section.) The
origin and length (in hexadecimal) of each control section
follow the name.

To the right of each control section is a list of the entry
names defined in each control section. The location (in
hexadecimal) of each entry name is also given. For example, in
control section IHCCOMH2 (the asterisk is not a part of the
name; it indicates that the control section is from the
automatic call library), entry name SEQDASD is defined at
location 154A.

Figure 53 shows the cross-reference table for COBFORT. The
table contains the location of any address constant that refers
to a symbol defined in another control section. The symbol the
address constant refers to is also listed, along with the
control section in which the symbol is defined. For example, at
location 1FO in control section IPCT30 (determined by using the
module map; 1FO falls between origin 00 and origin 360), an
address constant refers to symbol IHDFDISP, defined in control
section IHDFDISP.

The entry address is 00 and the total length of the load module
is 4AE8. Note that the length of the module is rounded up to a
doubleword boundary.

The disposition message at the end of the output in Figure 53
indicates that the load module GO has been added to the output
module library. The library did not contain any other module
with that name. The four asterisks identify the message.

SAMPLE PROGRAM RPLACJOB

Sample program RPLACJOB shows the use of the REPLACE statement
to replace one control section with another. The source program
for the new control section (NEWMOD) is processed in a previous
job step and passed to the linkage editor job step. The control
section (SUBONE) to be replaced is in an existing load module.
Figure 54 on page 141 shows the linkage editor output for the
job step that created this load module. Note that the entry
address is FO, which is the location of the entry point MAINMOD
(specified on the ENTRY control statement).

Appendix A. Sample Programs 139

Module Map
F64-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED XREF

DEFAULT OPTIONS(S) USED - SIZE-(196608,65536)

CROSS REFERENCE TABLE

CONTROL SECTION

NAME ORIGIN LENGTH

IPCT30 00 360
TX652F 360 lEO
I HCFCOMHO 540 CD9

I HCCOMH2 0 1220 434

IHDFDISpo 1658 626
IHCFCVTHo lC80 119D

IHCFlNTHO 2E20 39E

IHCFIOSHo 31CO 100E

IHCUOPT ° 41DO 8
IHCTRCH ° 41D8 2D4

I HCUATBLo 44BO 638

Cross-Reference Table

LOCATION REFERS TO SYMBOL
lFO
410

1108
1 lee
1128
1114
l11C
1124
10E4
14AC
1264
2C78
3120
3000
3124
3FF8
4300
43D8

ENTRY ADDRESS

TOTAL LENGTH

IHDFDISP
IBCOM.
ACCON'
MITH.
IHCUOPT
FCVLOUTP
FCVCOUTP
FCVZOUTP
IHCERRM
I HCFCOMH
IBCOM.
IHCERRM
INTSWTCH
I HCUOPT
FIOCS'
IHCUATBL
IBCOM.
FIOCS'

00

4AE8

ENTRY

NAME LOCATION NAME

I BCOM. 540 FDIOCS.

SEQDASD 154A

ADCON. lC80 FCVAOUTP
FCVIOUTP 2288 FCVEOUTP

ARITH# 2E20 ADJSWTCH

FlOCS# 31CO

IHCERRM 41D8

IN CONTROL SECTION LOCATION
IHDFDISP lF4
I HCFCOMN 5FC
IHCFCVTH 1100
IHCFINTH 112C
IHCUOPT 1110
I HCFCVTH 1118
IHCFCVTH 1120
IHCFCVTH 10EO
IHCTRCH 14A9
IHCFCOMH 1268
IHCFCOMN 2C7C
IHCTRCH 311C
IHCFCOMN 30D4
IHCUOPT 3128
1 HCFIOSH 32F8
1 HCUATBL 4004
1 HCFCOMH 43D4
IHCFlOSH

DOES NOT EXIST BUT HAS BEEN ADDED TO DATA SET

AUTHORIZATION CODE IS o.

LOCATION NAME LOCATION NAME LOCATION

5FC INTSWTCH l1FE

lD2A FCVLOUTP lDBA FCVZOUTP lFOA
27BA FCVCOUTP 29D4 INT6SWCH 2CBB

30D8

REFERS TO SYMBOL IN CONTROL SECTION
TX652F TX652F
SEQDASD I HCCOMH2
FlOCS. IHCFIOSH
ADJSWTCH IHCFINTH
FCVEOUTP IHCFCVTH
FCVIOUTP IHCFCVTH
FCVAOUTP IHCFCVTH
I HCCOMH2 I HCCOMH2
I HCFCOMN I HCFCOMH
I HCERRM IHCTRCH
IBCOM' IHCFCOMH
IBCOM. IHCFCOMH
INT6SWCH I HCFCVTH
ACCON' 1 HCFCVTH
I HCERRM 1 HCTRCH
IBCOM. IHCFCOMH
ACCON. IHCFCVTH

Figure 53. Linkage Editor Output for Sample Program COBFORT

140 MVS/370 Linkage Editor and Loader

F64-L!VEL LINKAGE EDITOR OPTIONS SPECIFIED XREF,LIST
DEFAULT OPTION(S) USED - SIZE-('96608,65536)

I!WOOOO ENTRY MAINMOD

CROSS REFERENCE TABLE

CONTROL SECTION ENTRY

NAME ORIGIN LENGTH NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION
SUBONE 00 EF

SUB' 00
MAINMOD FO '46

LOCATION REFERS TO SYMBOL IN CONTROL SECTION LOCATION REFERS TO SYMBOL IN CONTROL SECTION
, 'C SUBONE SUBONE

ENTRY ADDRESS FO

TOTAL LENGTH 238
•••• GO DOES NOT EXIST BUT HAS BEEN ADDED TO DATA SET
AUTHORIZATION CODE IS O.

Figure 54. Linkage Editor Output for Job Step that Created SUBONE

Job Control Language

The job control language for the replacement job step of this
sample program is shown below.

//LKED
//SYSUTl
/ /lNPUTX
//
//SYSLMOD
//
//SYSPRINT
//SYSLIN
//
//

EXEC
DO
DD

DD

DD
DD

DO

PGM=HEWL,PARM='XREF,LIST'
UHIT=SYSDA,SPACE=(TRK,(100,10»
DSHAME=LOADLIB,DISP=OLD,UHIT=SYSDA,
VOL=SER=SCRTCH
DSHAME=LOADLIBCGO),DISP=OLD,UNIT=SYSDA,
VOL=SER=SCRTCH
SYSOUT=A
DSHAME=&&OBJMOD,DISP=(OLD,DELETE),
UHIT=SYSDA
*

Linkage Editor Control Statements

Appendix A. Sample Programs 141

statement

EXEC

SVSUTI

INPUTX

SVSLMOD

SVSPRINT

SVSLIN

Explanat;on

Causes the execution of the linkage editor. The PARM
field options request a cross-reference table and a
module map CXREF), and a control statement listing
(LIST) to be produced on the diagnostic output data
set.

Defines a temporary direct access data set to be
used as the intermediate data set.

Defines a permanent data set, used later as
additional linkage editor input.

Defines a permanent data set to be used as the
output module library. Note that it i~ the same data
set that was described on the INPUTX DD statement.
The output load module is added to the data set,
under the member name GO.

Defines the diagnostic output data set, which is
assigned to output class A.

Defines the primary input data set, &&OBJMOD, which
contains the object module for the replacement
control section. This data set is temporary and was
passed from a previous job step; it is to be deleted
at the end of this job. This statement also
concatenates the input stream to the primary input
data set. The input stream contains linkage editor
control statements that must be followed by a /*
statement.

Figure 55. Job Control Statements for RPLACJOB

LINKAGE EDITOR CONTROL STATEMENTS

The input stream contains the linkage editor control statements
that are necessary for the replacement of SUBONE with NEWMOD.
The control statements are shown below:

ENTRY
REPLACE
INCLUDE

statement

ENTRY

REPLACE

INCLUDE

MAINMOD
SUBONECNEWMOD)
IHPUTXCGO)

Explanat;on

Specifies that the entry point is to be MAINMOD.

Specifies that control section SUBONE in the module
that follows the REPLACE statement is to be replaced
by control section NEWMOD. .

Specifies additional input: member GO of the data
set described on the INPUTX DD statement. This
library member contains the control section to be
replaced. Because this member name is identical to
that specified on the SYSLMOD DD statement, the
output load module replaces the existing library
member.

Figure 56. Linkage Editor Control Statements for RPLACJOB

142 MVS/370 Linkage Editor and Loader

J

Linkage Editor output

Figure 57 shows the linkage editor output for sample program
RPLACJOB. The listing h~ader indicates the options specified
(XREF and LIST), and the SIZE option values used (196608 for
valuel and 65536 for value2).

F6.-LEVEL LINKAGE EDITOR OPTIONS SPECIfIED XREf.LIST
DEFAULT OPTION(S) USED - SIZE=/1f:J660B,b'J')36l

I EWOOUO ENTRY MAINMOD
I EWOOOO REPLACE SUBONE(NEWMODI
I EWOOOO INCLUDE INPUTX(GOJ

CROSS REfERENCE TABLE

comROL SECTION ENTRY

NAME ORICiIN LENGTH NAME LOCATION NAME LOCATION NAME LCX:ATION NAME LOCATION

NEWMOD 00 fl
MAINMOD f8 146

LOCATION REFERS TO SYMBOL IN CONTROL SECTION LOCATION REFERS W) SYMBOL IN CONTROL SECTION
12. NEWMOD NEWMOD

ENTR Y ADDRESS f8

TOTAL LENGTH 2.0
•••• GO NOW REPLACED IN DATA SET
AUTHORIZATION CODE IS O.

Figure 57. Linkage Editor Output for Sample Program RPLACJOB

Because the LIST option is specified, a control statement
listing is produced. Each control statement is preceded by a
special message number, IEWOOOO. Because XREF is specified, the
heading CROSS REFERENCE TABLE precedes the rest of the output.

The module map shows that control section NEWMOD is now part of
the load module, and that control section SUBONE has been
deleted. The new entry address is Fa, because NEWMOn is longer
than SUBONE. The total length of the load module is 240 bytes.

The cross-reference table indicates that at location 124 in
MAINMOD, an address constant refers to symbol NEWMOD, defined in
control section NEWMOD. Note that before the replacement
occurred, the address constant in MAINMOD referred to SUBONE,
defined in control section SUBONE (Figure 54 on page 141). When
the REPLACE statement is used to replace a control section,
references to the old control section from within the same input
module are also changed.

The disposition message indicates that the output load module
(GO) has been added to the output module library.

SAMPLE PROGRAM REGNOVLV

Sample program REGNOVLY creates a multiple-region overlay
structure. The structure produced is shown in Figure 58 on page
144. In this program, some of the references between control
sections are:

CSA to CSE

CSB to CSE

CSB to CSD

CSD to esc

The reference from CSB to CSE is a valid exclusive call, because
there is a reference to CSE in the segment common to both CSB
and CSE; the reference from CSD to CSC is invalid, because there
is no reference to CSC in the common segment.

Appendix A. Sample Programs 143

REGION I 1
eSA >- Root Segment I

Alpha

eSB >- Segment 2 eSE Segment 5

1
Beta

esc :> Segment 3 eSD >- Segment 4

"""'----
Gamma l REGION 2

eSF >- Segment 6 esc Segment 7

l~ 1

Figure 58. Overlay Tree for Multiple-Region Sample Program REGNOVLY

Job Control Language

The source programs for all the control sections were compiled
in previous job steps. All the object modules were placed in
the same data set, which wa5 passed to the linkage editor job
step.

The job control language for the linkage editor job step of thi5
sample program is ~hown below.

144 MVS/370 Linkage Editor and Loader

J

J

//LKED
//SYSUT1
//
//SYSLIB
//SYSLMOD
//
//SYSPRIHT
//SYSLIH
//

EXEC
DD

DD
DD

PGM=HEWL,PARM='XREF,LIST,OVLY,LET'
DSHAME=&&UT1,UNIT=SYSDA,SPACE=(TRK,
(100,10»
DSHAME=SYS1.COBLIB,DISP=SHR
DSHAME=&&OVLYJB(GO),UHIT=SYSDA,
DISP=(HEW,PASS),SPACE=(TRK,(100,10,1»

DD SYSOUT=A
DD DSHAME=&&OBJMOD,DISP=(OLD,DELETE)
DD *

Linkage
/*

Editor Control statements

statement

EXEC

SYSUTI

SYSLIB

SYSLMOD

SYSPRINT

SYSLIN

Explanation

Causes the execution of the linkage editor. The
PARM field options request a cross-reference table
and a module map (XREF), and a control statement
listing (LIST) to be produced on the diagnostic
output data set. The module is to be assigned the
overlay attribute (OVLY), and marked executable in
spite of severity 2 errors (LET). The LET option is
specified to permit testing of the output module,
even though an invalid exclusive call is present.
The XCAL option allows only valid exclusive calls.

Defines a temporary direct access data set to be
used as the intermediate data set.

Defines the automatic call library (SYSI.COBLIB) to
be used to resolve external references. All control
sections from this library are placed in the root
segment; they remain there unless they are
repositioned.

Defines a temporary data set to be used as the
output module library; the load module is assigned
the member name GO and is passed to a subsequent
step for execution.

Defines the diagnostic output data set, which is
assigned to output class A.

Defines the primary input data set, &&OBJMOD, which
contains the object modules for the overlay
structure. This data set is temporary and was
passed from a previous job step; it is to be deleted
at the end of this job. This statement also
concatenates the input stream to the primary input
data set. The input stream contains linkage editor
control statements, which must be delimited by a /*
statement.

Figure 59. Job Control Statements for REGNOVLY

Linkage Editor Control statements

The input stream contains the linkage editor control statements
that structure the overlay program. The control statements are:

INSERT CSA
ENTRY CSA
OVERLAY ALPHA
INSERT CSB

Appendix.A. Sample Programs 145

Linkage Edito~ output

OVERLAY BETA
INSERT esc
OVERLAY BETA
INSERT CSD
OVERLAY ALPHA
INSERT CSE
OVERLAY GAMMA(REGION)
INSERT CSF
OVERLAY GAMMA
INSERT CSG

Figure 60 on page 147 shows the linkage editor output for sample
program REGNOVLY. The list header indicates the options
specified and the SIZE option values used.

146 MVS/370 Linkage Editor and Loader

J

F64-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED XREF,LIST,OVLY,LET
DEFAULT OPTION(S) USED - SIZEz(196608,65536)

IEWOOOO INSERT CSA
IEWOOOO ENTRY CSA
IEWOOOO OVERLAY ALPHA
IEWOOOO INSERT CSB
IEWOOOO OVERLAY BETA
IEWOOOO INSERT CSC
IEWOOOO OVERLAY BETA
IEWOOOO INSERT CSD
IEWOOOO OVERLAY ALPHA
IEWOOOO INSERT CSE
I EWOOOO OVERLAY GAMMA(REGION)
I EWOOOO INSERT CSF
IEWOOOO OVERLAY GAMMA
IEWOOOO INSERT CSG
IEWOl72 2 CSE
IEW0182 4 CSC

CROSS REFERENCE TABLE

Root Segment 1:
CONTROL SECTION ENTRY

NAME ORIGIN LENGTH SEG. NO. NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION
$SEGTAB 00 34 1

CSA 38 366
ILBODSPO- 3AO 6F8
ILBOSTPO* A98 35

ILBOSTPl ME
$ENTAB ADO 30

LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO.
2CO ILBODSPO ILBODSPO 2C4 ILBOSTPO ILBOSTPO
2C8 CSG CSG 2CC CSE CSE
200 CSB CSB 204 I LBOSTP 1 ILBOSTPO

Segment 2:
CONTROL SECTION ENTRY

NAME ORIGIN LENGTH SEG. NO. NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION
CSB BOO 360 2

$ENTAB E60 18

LOCATION REFERS TO SYMBOL IN CONTROL SECT ION SEG. NO. LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO.
054 ILBODSPO ILBODSPO 050 ILBOSTPO ILBOSTPO
058 CSE CSE 060 ILBOSTPl ILBOSTPO
D5C CSD CSD 4

Segment 3:
CONTROL SECTION ENTRY

NAME ORIGIN LENGTH SEG. NO. NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION
CSC E78 336 3

LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO.
10CC ILBODSPO ILBODSPO 10C8 ILBOSTPO ILBOSTPO
1000 ILBOSTPl ILBOSTPO

Segment 4:
CONTROL SECTION ENTRY

NAME ORIGIN LENGTH SEG. NO. NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCAT ION
CSD E78 362

LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO.
10CC ILBODSPO ILBODSPO 1 10C8 ILBOSTPO ILBOSTPO
1004 ILBOSTPl ILBOSTPO 1000 CSC CSC

Figure 60 (Part 1 of 2). Linkage Editor Output for Sample Program REGHOVLY

Appendix A. Sample Programs 147

CROSS REFERENCE TABLE

Seament!:
CONTROL SECTION ENTRY

NAME
CSE

ORIGIN LENGTH SEG. NO.
BOO 336 5

NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION

LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO.
054 ILBOOSPO ILBOOSPO 1 050 ILBOSTPO ILBOSTPO
058 ILBOSTP1 ILBOSTPO

Segment 6:
CONTROL SECTION ENTRY

NAME
CSF

ORIGIN LENGTH SEG. NO. NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION
11EO 2FA 6

LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO.
1430 ILBOSTPO ILBOSTPO 1 1434 ILBOSTP1 ILBOSTPO

Seament 7:
CONTROL SECTION ENTRY

NAME
CSG

ORIGIN LENGTH SEG. NO. NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION
11EO 336 7

LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO.
1434 ILBODSPO ILBODSPO 1 1430 ILBOSTPO ILBOSTPO 1
1438

ENTRY ADDRESS
ILBOSTP1
38

TOTAL LENGTH 1 518

ILBOSTPO

····GO DCES NOT EXIST BUT HAS BEEN ADDED TO DATA SET
AUTHORIZATION CODE IS O.

DIAGNOSTIC MESSAGE DIRECTORY
IEW0172 ERROR - EXCLUSIVE CALL FROM SEGMENT NUMBER PRINTED TO SYMBOL PRINTED.
IEW0182 ERROR - INVALID EXCLUSIVE CALL FROM SEGMENT NUMBER PRINTED TO SYMBOL PRINTED.

Figure 60 (Part 2 of 2). Linkage Editor Output for Sample Program REGNOVLY

Because the LIST option was specified, the control statement
listing is produced. Each control statement is preceded by a
special message number, IEWOOOO.

The control statement listing is followed by two diagnostic
message numbers (IEW0172 and IEW0182). The explanation of the
messages and the information following each message are given at
the end of the output in the diagnostic message directory.

The output for each segment contains a module map and a
cross-reference table. The segments are listed as they appear
in the overlay structure, top to bottom, left to right, and
region by region. (Note that this is also the sequence in which
the OVERLAY and INSERT statements must be given.)

Within each segment, a module map lists the control sections in
ascending sequence according to their assigned origin. The
origin, length, and segment number are listed for each control
section, along with any entry names and the location at which
each entry name is defined. For example, the root segment has
five control sections: $SEGTAB, which is always the first
control section in the root segment; CSA, which is from the
object module input; ILBODSPO and ILBOSTPO, which are from the
automatic call library (indicated by an asterisk) and were not
repositioned; and $ENTAB, which, when present, is always the
last control section in any segment (as also in segment 2). One
entry name is defined, ILBOSTPI at location D58 in control
section ILBOSTPO.

The cross-reference table for each segment contains all the
address constants that refer to symbols defined in other control
sections. The location of the address constant is followed by
the symbol referred to, the control section in which the symbol
is defined, and the segment in which the control section is

148 MVS/370 Linkage Editor and Loader

J

located. For example, in the root segment, an address constant
at location llEO refers to symbol CSG, which is defined in
control section CSG in segment 7. Although the region is not
given, the overlay tree in Figure 58 on page 144 shows that
segment 7 is in region 2.

At the end of the output for all the segments are the entry
address and total length. The entry address is 38, which is the
origin of CSA, the specified entry point. The total length
given refers to main storage used, not device storage. The
length given, therefore, is that of the longest path. The
longest path is that formed by the root segment and segments 2,
4, and 7; the length given is 1518.

However, if the given lengths of the control sections in each
segment are added, the result is 1403. The discrepancy exists
because the given lengths do not include the padding bytes
necessary to make control sections begin on a doubleword address
(multiple of 8). For example, in the root segment, the length
of $SEGTAB is 34; however, the origin of CSA which follows
$SEGTAB is 38 (decimal 56). Four additional bytes are needed so
that the origin of CSA is a multiple of 8.

The disposition messaqe indicates that the load module GO has
been added to the output module library. The library did not
contain any other module by that name. The four asterisks
identify the message.

The last item in the output for this sample program is the
diagnostic message directory. The directory contains the text
for the message numbers listed after the control statement
listing. The directory must be correlated to the information
following the number to interpret the message.

For example, message IEW0172 is an error message that indicates
that an exclusive call was made from the segment number printed
(2) following the message number~the symbol printed (CSE).
The output for segment 2 indicateS-that this call is at location
D58 in control section CSB, and the symbol is defined in control
section CSE in segment 5. This is the valid exclusive call from
CSB to CSE described earlier. (If XCAL were specified, a
warning message would be issued instead of an error message.)

If an invalid exclusive call is detected, message IEW0182
appears as shown. This is also an error message; it indicates
that an invalid exclusive call was made from segment 4 to symbol
CSC. This call is at location E78 in control section CSO, and
the symbol is defined in control section CSC in segment 3. This
is the invalid exclusive call from CSD to CSC, also described
earlier.

SAMPLE PROGRAM PARTDS

Sample program PARTOS illustrates that linkage editor control
statements can be placed in a separate data set and then used as
input. For convenience, the control statements are those for
sample program REGHOVLY, described previously. These control
statements are placed in a partitioned data set. When the
member that contains the control statements is referenced, the
linkage editor uses the control statements to produce the
overlay structure shown in Figure 58 on page 144.

Figure 61 on page 150 shows the input statements for the
IEBUPDTE utility program used to place the control statements in
a partitioned data set.

Appendix A. Sample Programs 149

IIPARTDS JOB
IICTLG EXEC
IISYSUT2 DD
II
IISYSPRINT DD
IISYSIN DD
.1 ADD
.1 NUMBER

INSERT CSA
ENTRY CSA
OVERLAY ALPHA
INSERT CSB
OVERLAY BETA
INSERT CSC
OVERLAY BETA
INSERT CSD
OVERLAY ALPHA
INSERT CSE

(accounting information)
PGM=IEBUPDTE,PARM=(NEW)
DSNAME=OVLYLIB,UNIT=2314,VOL=SER=DA028,DISP=(NEW,KEEP),
SPACE=(TRK,(10,5,2)),DCB=(LRECL=80,BLKSIZE=80,RECFM=F)
SYSOUT=A

*
NAME=cOVLY,LEVEL=OO,SOURCE=OO,LIST=ALL

NEW1=10,INCR=5

OVERLAY GAMMA(REGION)
INSERT CSF
OVERLAY GAMMA
INSERT esc

·1 ENDUP
1*

Figure 61. Input Statements for IEBUPDTE Utility Program

J

The source programs for all the control sections were compiled J
in previous job steps. All the object modules were placed in

Job Control Language

the same data set, which was passed to the linkage editor job
step. The input modules are those used for sample program
REGI'WVl Y.

The job control language for the overlay program job step of
this sample program is shown below.

//LKED
//SYSUTl
//
//OVLYCDS
//
//SYSLIB
//SYSLMOD
//
//SYSPRIHT
//SYSLIH
//

EXEC
DD

DD

DD
DD

DD
DD
DD

PGM=HEWL,PARM='XREF,LIST,OVLY,LET'
DSHAME=&&UT1,UHIT=SYSDA,SPACE=(TRK,
(100,10»
DSHAME=OVLYLIB,UHIT=SYSDA,
VOL=SER=SCRTCH,DISP=OLD
DSHAME=SYS1.COBLIB,DISP=SHR
DSHAME=&&OVLYJB(GO),UHIT=SYSDA,
DISP=(HEW,PASS),SPACE=(TRK,(100,10,1»
SYSOUT=A
DSHAME=&&OBJMOD,DISP=(OLD,DELETE)

*
(Linkage Editor Control Statements)

150 MVS/370 Linkage Editor and Loader

J

statement

EXEC

SYSUTl

OVLYCDS

SYSLIB

SYSLHOD

SYSPRINT

SYSLIN

Explanation

Causes the execution of the linkage editor. The PARM
field options request a cross-reference table and a
module map (XREF), and a control statement listing
(LIST) to be produced on the diagnostic output data
set. The output load module is to be assigned the
overlay attribute COYLY), and is to be marked
executable despite severity 2 errors (LET).

Defines a temporary direct access data set to be
used as the intermediate data set.

Defines a permanent data set to be used later as
additional input; this is the partitioned data set
which was created by IEBUPDTE and contains the
control statements for structuring the overlay
program.

Defines the automatic call library (SYSl.COBLIB) to
be used to resolve external references. All control
sections from this library are placed in the root
segment; they remain there unless they are
repositioned.

Defines a temporary data set to be used as the
output module library; the load module is to be
assigned the member name GO, and is passed to a
subsequent step for execution.

Defines the diagnostic output data set, which is
assigned to output class A.

Defines the primary input data set. &&OBJMOD. which
contains the object modules for the overlay
structure. This data set is temporary and was
passed from a previous job step; it is to be deleted
at the end of this job. This statement also
concatenates the input stream to the primary input
data set. The input stream contains linkage editor
control statements that must be delimited by a /*
statement.

Figure 62. Job Control Statements for PARTDS

Linkage Editor Control statements

The input stream contains an INCLUDE statement, as follows:

INCLUDE OVLYCDS(OVLY)

This statement causes the control statements to be read from the
partitioned data set described on the OVLYCDS DD statement. The
member name of the statements is OVLY. the same name used in the
ADD statement for the utility program.

Linkage Editor output

The output of this sample program is identical to the output
from the REGNOVLY sample program, with one exception. The list
of control statements begins with the statement

IEWOOOO INCLUDE OVLYCDS(OVLY)

This statement is followed by a list of the control statements
read from the additional input data set specified in this

Appendix A. Sample Programs 151

INCLUDE statement. The rest of the output is identical to that
shown in Figure 60 on page 147.

152 MVS/370 Linkage Editor and loader

J

J

J

APPENDIX B. INVOKING THE LINKAGE EDITOR

The linkage editor can be invoked by a problem program at
execution time through the use of one of the following macro
instructions.

[s~mbol] [LINK] EP=linkeditname

PARAH=(optionlist[,ddname list]),
VL=l

[s~mbol] [ATTACH] EP=linkeditname

PARAH=(optionlist[,ddname list]),
VL=l

I [5Vmbol] [LOAD] EP=linkeditname

I [.vmbol] [XCTL] EP=linkeditname

EP= linkeditname
specifies the symbolic name of the linkage editor. The
entry point at which execution is to begin is determined
by the control program (from the library directory entry).
Any of the symbolic names that can be used as operands of
the EXEC command's PGM parameter are acceptable as the
"linkeditname".

PARAH=(optionlist[,ddname list])
specifies, as a sublist, address parameters to be passed
from the problem program to the linkage editor. The first
fullword in the address parameter list contains the
address of the option and attribute list for the load
module. The second fullword contains the address of the
ddname list. If standard ddnames are to be used, this
list may be omitted.

optionlist
specifies the address of a variable-length list
containing the options and attributes. This address
must be written even though no list is provided.

The option list must begin on a halfword boundary.
The 2 high-order bytes contain a count of the number
of bytes in the remainder of the list. If no options
or attributes are specified, the count must be zero.
The option list is free form, with each field
separated by a comma. No blanks or zeros should
appear in the list.

ddname list
specifies the address of a variable-length list
containing alternative ddnames for the data sets used
during linkage editor processing. If standard
ddnames are used, this operand may be omitted.

Appendix B. Invoking the Linkage Editor 153

The ddname list must begin on a halfword boundary. J
The 2 high-order bytes contain a count of the number .
of bytes in the remainder of the list. Each name of
less than a bytes must be left justified and padded
with blanks. If an alternate ddname is omitted from
the list, the standard name will be assumed. If the
name is omitted within the list, the a-byte entry
must contain binary zeros. Names can be omitted from
the end by merely shortening the list.

The sequence of the a-byte entries in the ddname list
is as follows:

Entry Al termite Name For:

1

2

3

4

5

6

7

8

9-11

12

VL=l

SYSLIN

Member name (the name under
which the output load module
is stored in the SYSLMOD data
set; this entry is used if the
name is not specified on the
SYSLMOD DD statement or if
there is no NAME control
statement)

SYSLMOD

SYSLIB

Not applicable

SYSPRINT

Not applicable

SYSUTl

Not applicable

SYSTERM

specifies that the sign bit is to be set to 1 in the last
fullword of the address parameter list.

When the linkage editor completes processing, a condition code
is returned in register 15 (see Figure 42 on page 100 for a
list of linkage editor return codes).

154 MVS/370 linkage Editor and loader

APPENDIX C. STORAGE REQUIREMENTS AND CAPACITIES

Capacities

This appendix describes the record-processing capacities of the
linkage editor, the types of devices that can be used for the
intermediate data set (SYSUTl), and the amount of virtual
storage the linkage editor requires.

The minimum storage requirement and processing capacities of
the linkage editor program are described in Figure 59 on page
145. To increase the capacity for processing external symbol
dictionary records, intermediate text records, relocation
dictionary records, and identification records, increase value1
and/or value2 of the SIZE option. Output text record length
can be increased by increasing the SIZE option values, but in
no case may the record length ever exceed the lowest track
length for the device or 18K bytes. The number of overlay
segments and regions that can be processed is not affected by
increasing the storage available.

Function
capacity
(Bytes)

Virtual storage allocated (i n bytes) 96K

Maximum number of entries in composite external 558
symbol dictionary (CESD)

Maximum number of intermediate text records 372

Maximum number of relocation dictionary (RlD) 192
records

Maximum number of segments per program 255

Maximum number of overlay regions per program 4

Maximum blocking factor for input object modules 5
object modules (number of 80-column card images
per physical record)

Maximum blocking factor for SYSPRINT output 5
(number of 12l-character logical records per
physical record)

Figure 63 (Part 1 of 2). linkage Editor Capacities for Minimal
SIZE Values (96K bytes, 6K bytes)

Appendix C. Storage Requirements and Capacities 155

Capacity
Function (Bytes)

Output text record length (in bytes):

On IBM 2305-1 Fixed Head Storage Fad 1 i ty 3072 1

On IBM 2305-2 Fixed Head Storage Facility 3072 1

On IBM 2314 Storage Control Fad 1 i ty 3072 1

On IBM 2319 Disk Storage Fad 1 i ty 3072 1

On IBM 3330 Disk Storage Facility 3072 1

On IBM 3330-11 Disk Storage Facility 3072 1

On IBM 3340 Disk Storage Facility 3072 1

On IBM 3344 Direct Access Storage Device 3072 1

On IBM 3350 Direct Access Storage Device 3072 1

On IBM 3375 Direct Access Storage Device 3072 1

On IBM 3380 Direct Access Storage Device 3072 1

Figure 63 (Part 2 of 2). Linkage Editor Capacities for Minimal
SIZE Values (96K bytes, 6K bytes)

Note to Figure 63:

The maximum output text record length is achieved when
value2 of the SIZE parameter is at least twice the record
length size. For example, on a 3330, 12288 byte records are
written when value2 is at least 24576.

For the composite external symbol dictionary, the number of
entries permitted can be computed by subtracting, from the
maximum number given in Figure 63 on page 155, one entry for
each of the following:

• A data definition name (ddname) specified in LIBRARY
statements

• A data definition name (ddname) specified in INCLUDE
statements

• An ALIAS statement

• A symbol in REPLACE or CHANGE statements that are in the
largest group of such sta~ements preceding a single object
module in the input to the linkage editor

• The segment table (SEGTAB) in an overlay program

• An entry table (EHTAB) in an overlay program

To compute the number of intermediate text records that will be
produced during processing of either program, add one record
for each group of ~ bytes within each control section, where ~
is the record size for the intermediate data set. The minimum
value for ~ is 1024; a maximum is chosen depending on the
amount of storage available to the linkage editor and the
devices allocated for the intermediate and output data sets.

156 MVS/370 Linkage Editor and Loader

The number of intermediate text records that can be handled by
a linkage editor program is less than the maximums given in
Figure 63 on page 155 if the text of one or more control
sections is not in sequence by address in the input to the
linkage editor.

The total length of the data fields of the CSECT identification
records associated with a load module cannot exceed 32K (32768)
bytes. To determine the number of bytes of identification data
contained in a particular load module, use the following
formula:

SIZE = 269 + 16A + 318 + 2C + len + 6)

where:

A = the number of compilations or assemblies by a processor
supporting CSECT identification that produced the object
code for the module.

B = the number of preprocessor compiler compilations by a
processor supporting CSECT identification that produced
the object code for the module.

C = the number of control sections in the module with END
statements that contain identification data.

I = the number of control sections in the module that contain
user-supplied data supplied during link-editing by the
optional IDENTIFY control statement.

n = the average number of characters in the data specified by
IDENTIFY control statements.

Notes:

1. The size computed by the formula includes space for
recording up to 19 HMASPZAP modifications. When 75~ of
this space has been used, a new 251-byte record is created
the next time the module is reprocessed by the linkage
editor.

2. To determine the approximate number of records involved,
divide the computed size of the identification data by 256.

EXAMPLE: A module contains 100 control sections produced by 20
unique compilations. Each control section is identified during
link-editing by 8 characters of user data specified by the
IDENTIFY control statement. The size of the identification
data is computed as follows:

A = 20
I = 100
n = 8

269 + 320 + 1400 = 1989 bytes

If the optional user data specified on the IDENTIFY control
statements is omitted, the size can be reduced considerably, as
computed below:

269 + 320 = 589 bytes

The maximum number of downward calls made from a segment to
other segments lower in its path can never exceed 340. To
compute the maximum number of downward calls allowed, subtract
12 from the SYSlMOD record size and then divide the difference
by 12. Examples of maximum downward calls are 84 for a SYSLMOD
record size of 1024 bytes and 340 for a SYSLMOD record size of
6144 bytes.

Appendix C. Storage Requirements and Capacities 157

Intermediate Data set

The intermediate data set (SYSUTl) is used by the linkage
editor to hold intermediate data records during processing.
The linkage editor places intermediate data in this data set
when storage allocated for input data or certain forms of
out-of-sequence text is exhausted.

The following direct access devices. if supported by the
system. can be used for this data set:

IBM 2305-1 Fixed Head storage Facility

IBM 2305-2 Fixed Head storage Facility

IBM 2314 Storage Control Facility

IBM 2319 Disk Storage Facility

IBM 3330 Disk Storage Facility

IBM 3330-11 Disk Storage Facility

IBM 3340 Disk Storage Facility

IBM 3344 Direct Access Storage Device

IBM 3350 Direct Access Storage Device

IBM 3375 Direct Access Storage Device

IBM 3380 Direct Access Storage Device

158 MVS/370 linkage Editor and loader

,

APPENDIX D. SIZE PARAMETER GUIDELINES

This appendix gives guidelines for determining appropriate SIZE
parameter values for a linkage editor job step.

First--determine Value2 of the SIZE parameter.

where:

a is the length of the load module to be built.

b is 0, if the length of the load module to be built is <
40K bytes.

is 4K, if the length of the load module to be built is ~
40K bytes.

c is an integer equal to or greater than 2, such that c~d
or c~e is ~ 999999 or 9999K bytes (c is the integer that
represents the number of buffers to be reserved for
SYSlMOD).

d is the track capacity of the SYSlMOD device, or 18K
whichever is larger.

e is the block size of the SYSlMOD data set.

f is the length of the largest text record in load module
input.

g is the track capacity of the SYSUTI device, or 18K
whichever is larger.

Selecting the largest of the above parameters provides optimal
results.

Second--determine Valuel of the SIZE parameter.

Valuel = h + j + k

Valuel must range between hand 9999K or 9999999

where:

h = 96K

j is the excess of Value2 over 6K

k is the additional storage required to support the
blocking factor for SYSlIN, object module libraries, and
SYSPRINT:

Blocking Factor K (Bytes)

5 to 1 0

10 to 1 18

40 to 1 28

Thfrd--determine the REGION parameter.

REGION = Equal to or greater than Valuel

Appendix D. Size Parameter Guidelines 159

PART 2. LOADER

The Loader is a processing program that combines basic editing
and loading functions of the linkage editor and program fetch
into one job step. Therefore. the load function is equivalent
to the link-edit-go function. The loader can be used for
compile-load and load jobs.

The loader will load object modules produced by a language
processor and load modules produced by the linkage editor into
virtual storage for execution. Optionally. it will search a
call library (SYSLIB) or a resident link pack area. or both. to
resolve external references. The loader does not produce load
modules for program libraries.

The functional characteristics. compatibility and restrictions.
performance considerations. and storage considerations of the
loader are described in the following sections.

FUNCTIONAL CHARACTERISTICS

The loader is reenterable and. therefore. can reside in the
resident link pack area.

The loader combines the following basic functions of the
linkage editor and program fetch:

1. Rp.solution of external references between program modules.

2. Optional inclusion of modules from a call library (SYSLIB)
or from a link pack area. or from both (Figure 64 on page J ..
161 and Figure 65 on page 162). (Inclusion of modules from
a call library or the link pack area is performed. if
requested. when external references remain unresolved after
processing the primary input to the loader. If both are
requested. the link pack area is searched first.)

3. Automatic deletion of duplicate copies of program modules
(Figure 66 on page 162). (The first copy is loaded and all
following requests use that copy.)

4. Relocation of all address constants so that control may be
passed directly to the assigned entry point in virtual
storage.

160 MVS/370 Linkage Editor and Loader

J

Obj eet and(or

Load Modules ./

A

B

c

SYSLIN

---tl.~(Looda

I
(C-./----<'./

Object or
Load Modules

t--------I"/
D

E

F

G

SYSLIB - called automatically when references
were unresolved at the end of input
from SYSLIN,

A

B

('

D

E

I'

G

Virtual Storage

Figure 64. loader Processing--SYSlI8 Resolution

Part 2. loader 161

Object and/or

"-
Load Modules

A

B

C

......

SYSLIN

..

User's Region

1---------

)#'

A

c)
H~

.......... /'

Object or

r-.... Load Modules

D

E ./
./

F ./
./

.......
H

./
./

./
./

./

SYSLIB - Called automatically when
references remain unresolved
at the end of inpu t from
SYSLIN and after searching
the link pack area.

Link Pack Area

Virtual Storage

References made in B to
D, E, F, and G are
resolved to the link
pack area.

Modules in link pack
area must be
re-enterable .

Figure 65. Loader Processing--Link Pack Area and SYSLIB Resolution

./ /" ----Object and/or --
---- -----

Load Modules/" V' t:/'
E/

/'

D
A
B
C
D l/

SYSLIN

Figure 66. Loader Processing--Automatic Editing

162 MVS/370 Linkage Editor and Loader

Virtual Storage

The first copy is
loaded

J

COMPATIBILITY AND RESTRICTIONS

The loader accepts the same basic input as the linkage editor:

1. All object modules that can be processed by the linkage
editor can be input to the loader.

2. All load modules produced by the linkage editor can be
input to the loader (except load modules edited with the NE
option).

The loader supports the following linkage editor options: MAP,
LET, NCAL, SIZE, and TERM. All other linkage editor options
and attributes are not supported, but, if used, they will not
be considered as errors. A message will be listed on SYSLOUT
indicating that they are not supported. The supported options
are specified in the PARM field of the EXEC statement, or with
the LINK, ATTACH, LOAD, or XCTL macro instruction. In addition
to the supported linkage editor options, the loader provides
several other options. All loader options are described under
"EXEC Statement" on page 164.

The loader does not process linkage editor control statements
(for example, INCLUDE, NAME, OVERLAY, etc.). If they are used,
they will not be treated as errors, and a message will be
listed on SYSLOUT indicating that the control statements are
not supported.

The loader and the linkage editor are bound by the same input
conventions. (These conventions are discussed in Part 1 of
this publication.) In addition, the loader can accept load
modules in the SYSLIN data set and object modules from a data
area in virtual storage.

The loader does not use auxiliary storage space for work areas;
that is, there is no loader function corresponding to the
linkage editor's creation of intermediate work data sets or
output load modules.

Time Sharing option (TSO)

When the loader is used under TSO, it is invoked by the loader
prompter, a program that acts as an interface between the user
and the operating system and the loader. Under TSO, execution
of the loader and definition of the data sets used by the
loader are described to the system through use of the LOADGO
command that causes the prompter to be executed. Operands of
the LOADGO command can also be used to specify the loader
options a job requires.

Complete procedures for using the LOADGO command to load and
execute an object module are given in TSO Command Language
Reference.

Processing Object Modules in Virtual storage

The loader can act as an interface with a compiler that has the
ability to construct a data area of one or more object modules
in virtual storage as an alternative to a data set on a
secondary storage volume (such as a tape or disk). The
compiler passes the loader a description of the internal data
area, which the loader then processes as primary input. This
internal data area replaces external SYSLIN data set input to
the loader.

Instead of placing text records for the object module in the
internal data area, the compiler can pass pointers to preloaded
text. The loader can then perform its relocation and linkage
functions on the preloaded text itself; text is not moved
during processing.

Part 2. Loader 163

USING THE LOADER

This section discusses how to prepare an input deck for the
loader and how to invoke the loader; it also describes the
output from the loader.

INPUT FOR THE LOADER

EXEC STATEHENT

PARH Field Format

LOADER OPTIONS

The input deck for the loader must contain job control language
statements for the loader and. optionally. for the loaded
program (Figure 67).

//name
//name

//SYSLIN
//SYSLIB
//SYSLOUT
//SYSTERM

JOB
EXEC

DD
DD
DD
DD

parameters
PGM=LOADER,
PARM=(parameters)
parameters
parameters
parameters
parameters

// (optional DD statements and data
// required for loaded program)

(optional)

(optional)
(optional)
(optional)

Figure 67. Input Deck for the Loader--Basic Format

Only the EXEC statement and the SYSLIN DO statement are
required for a loader step. The JOB statement is required if J.
the loader is the first step in the job.

The EXEC statement is used to call the loader and to specify
options for the loader and the loaded program. The loader is
called by specifying PGM=HEWLDRGO or PGM=LOADER (see "Invoking
The Loader" on page 170).

Loader and loaded program options are specified in the PARM
field of the EXEC statement. The PARM field must have the
following format:

,PARH='(loaderoption(, •••)(/programoption(, •••)))'

Hote that the loaded program option(s). if· any, must be
separated from the loader option(s) by a slash (/). If there
are no loader options, the program option must begin with a
slash. The entire PARM field may be omitted if there are no
loader or loaded program options.

Parameters must be enclosed in single quotation marks when
special characters (/ and =) are used.

The loader options are outlined below. Fields that must be
supplied by the user are underlined; default options are
underlined in boldface type.

J

164 MVS/370 Linkage Editor and Loader

Param2ter options

PARM= ~ALLINOCALL
EP=name
LETINOLET
MAPIHOHAP
NAME=nameINAME=~~GO
PRINTINOPRINT
RESINORES
SIZE=siz~lsIZE=300K
TERMIHOTERM

CALLINOCALL: Automatically Searching SVSLIB

Explanation: CALLINOCALL are options specifying whether an
automatic search of the SYSLIB data set is made when the loader
is invoked.

CALL
Indicates that the SYSLIB data set will automatically be
searched when the loader is invoked.

NOCALL
Indicates that no automatic search of the SYSLIB data set
is to be made.

Abbreviations:

NOCALLINCAL

Default: The default is CALL.

Restrictions: If the SYSLIB DO statement is not included in
the input deck, the CALLINOCALL option is ignored.

If the NOCALL option is specified, the NORES option is
automatically set.

EP=name: specifying the Program Entry Point

Explanation: EP=n£mg is a loader option that specifies the
external name to be assigned as the entry point of the loaded
program.

Abbreviations: None.

Default: None.

Restrictions: EP=name must be specified if the entry point of
the loaded program~in an input load module.

For FORTRAN, ALGOL, and PL/I, these entry points must be named
MAIN, IHIFSAIN, and IHENTRY, respectively, unless changed by
compiler options.

LETINOLET: Executing with severity 2 Errors

Explanation: LETI~IOLET are loader options specifying whether
the loader should try to execute the object program if a
severity 2 error condition is found. A severity 2 error
condition is one that could make execution of the loaded
program impossible.

LET
Indicates that the loader will attempt to execute the
program even if a severity 2 error is found.

Using the Loader 165

NOLET
Indicates that the loader will not attempt to execute the
program if a severity 2 error is found.

Abbreviations: None.

Default: The default IS NOLET.

HAPINOHAP: printing a Program Hap

Explanation: HAPINOHAP are loader options specifying whether
to produce a map of the loaded program that lists external
names and their absolute storage addresses on the SYSlOUT data
set. The module map is described in "loader Output" on page
174.

HAP
Indicates that a program map wi 11 be printed.

NOHAP
Indicates that a program map wi 11 not be printed.

Abbreviations: None.

Default: The default is NOMAP.

Restrictions: If the SYSlOUT DO statement is not used in the
input deck, the MAPINOMAP option is ignored.

NAHE=name: Identifying the Loaded Program

Explanation: NAHE=name is a loader option specifying the name
to be used to identify the loaded program to the system.

Abbreviations: None.

Default: If this option is not used, the loaded program will
be named **GO.

PRINTINOPRINT: Printing Hessages on SVSLOUT

Explanation: PRINTINOPRINT are loader options specifying that
informational and diagnostic messages are to be produced on the
SYSlOUT data set.

PRINT
Indicates that messages are printed in SYSlOUT.

NOPRINT
Indicates that no messages are printed in SYSlOUT.

Abbreviations: None.

Default: The default is PRINT.

Restrictions: If NOPRINT is specified, the SYSlOUT data set is
not opened.

RESINORES: Automatically searching the Link Pack Area Queue

Explanation: RESINORES are loader options specifying whether
an automatic search of the link pack area queue is to be made
after processing the primary input (SYSlIN) and before
searching the SYSlIB data set.

RES
Indicates that an automatic search of the link pack area
queue is to be made.

166 MVS/370 linkage Editor and Loader

NaRES
Indicates that no automatic search of the link pack area
queue is to be made.

Abbreviations: None.

Default: The default is RES.

Restrictions: When the RES option is specified, the CAll
option is also automatically set.

SIZE=size: Specifying virtual storage

Explanation: SIZE=size is a loader option specifying the
amount of dynamic virtual storage, in bytes, that can be used
by the loader. See "Appendix F. loader Return Codes" on page
178 for more information on size.

Abbreviations: None.

Default: If this option is not specified, the size defaults to
300K bytes.

TERMINOTERM: Sending Messages to SVSTERM

Explanation: TERMINOTERM are loader options specifying whether
to send numbered diagnostic messages to the SYSTERM data set.
Although TERMINOTERM is intended to be used when operating
under the Time Sharing Option (TSO), the SYSTERM data set can
be used to replace or supplement the SYSlOUT data set at any
time.

TERM
Indicates that numbered diagnostic messages are sent to
the SYSTERM data set.

NOTERM
Indicates that no messages are to be sent to SYSTERM.

Abbreviations: None.

Default: The default is NOTERM.

Restrictions: If the SYSTERM DD statement is not included in
the input deck, the TERM option is ignored.

EXEC STATEMENT EXAMPLE

The following are examples of the EXEC statement. In these
examples, X and Yare parameters required by the loaded
program.

//lOAD
//lOAD
//
//lOAD
//lOAD
//LOAD
//LOAD

//

EXEC
EXEC

EXEC
EXEC
EXEC
EXEC

PGM=LOADER
PGM=HEWLDRGO,
PARM='MAP,EP=FIRST/X,Y'
PGM=lOADER,PARM='/X,Y'
PGM=LOADER,PARM=HOPRINT
PGM=LOADER,PARM=(MAP,lET)
PGM=LOADER,
PARM='NAME=NEWPROG,TERM,NOPRINT'

For further details in coding the EXEC statement, refer to the
publication JCL.

Using the Loader 167

DD STATE"ENTS

SYSLIN DD statement

The loader uses four DD statements, named SYSLIH, SYSLIB,
SYSLOUT, and SYSTERM. The SYSLIH DD statement must be used in
every loader job. The others are optional.

The following considerations apply to the DCB parameter of
SYSLIH, SYSLIB, and SYSLOUT.

• For better performance, BLKSIZE and BUFHO can be specified.

• If BUFHO is omitted, BUFHO=2 is assumed.

• Any value given to BUFHO is assumed for HCP (number of
channel programs).

• If RECFM=U is specified, BUFHO=2 is assumed, and BLKSIZE
and LRECL are ignored.

• RECFM=V is not accepted.

• RECFM=FBSA is always assumed for SYSLOUT.

• If RECFM is omitted, RECFM=F is assumed for SYSLIN and
SYSLIB.

• If BLKSIZE is omitted, the value given to LRECL is assumed.

• LRECL=121 is assumed for SYSLOUT unless the loader is
operating under the Time Sharing Option (TSO), when
LRECL=81 is assumed.

• If LRECL is omitted, LRECL=80 is assumed for SYSLIN and
SYSLIB.

• If OPTCD=C is used to specify chained scheduling, and if
the necessary data management routines are not resident, an
additional 2K bytes (2048 bytes) of virtual storage is
needed in the user's region.

Note: The SYSTERM data set will always consist of unblocked
81-character records with BUFHO=2 and RECFM=FSA. Because these
values are fixed, the DCB parameter need not be used.

In addition to the DD statements used by the loader, any DD
statements and data required by the loaded program must be
included in the input deck.

The SYSLIH DD statement defines the input data for the loader.
This input can be either object modules produced by a language
translator, or load modules produced by the linkage editor, or
both. The data sets defined by the SYSLIN DD statement can be
either sequential data sets or members of a partitioned data
set, or both. The DSHAME parameter for a partitioned data set
must indicate the member name, that is,

DSHAME=dsname(membername).

Concatenation can be used to include more than one module in
SYSLIH.

The foll~wing are examples of the SYSLIH DO statement. The
first example defines a member of a previously cataloged
partitioned data set:

//SYSLIH
//

DD DSHAME=OUTPUT.FORT(MOOI2),
DISP=OLD,DCB=BLKSIZE=3200

The second example defines a sequential data set on magnetic
tape:

168 MVS/370 Linkage Editor and Loader

J

SYSLIB DD statement

SYSLOUT DD statement

//SYSLIN
//
//

DD DSNAME=PROG1S.UNIT=3400-6.DISP=(OLD.
KEEP).VOLUME=(PRIVATE.RETAIN.
SER=MCS167)

The third example defines a data set that was the output of a
previous step in the same job:

//SYSLIN
//

DD DSNAME=*.COBOL.SYSLIN.DISP=(OLD.
DELETE)

The fourth example shows the concatenation of three data sets.
The first two data sets are members of different partitioned
data sets; the first is an object module. and the second is a
load module. The third data set is in the input stream
following a SYSLIH DO statement (see "Loaded Program Data" on
page 170).

//SYSLIN
//
//
//
//

DO

DD

DO

DSNAME=PGMLIB.SET1(RFS1).DISP=OLD.
DCB=(BLKSIZE=3200.RECFM=FB)
DSNAME=PGMLIB.SET2(ABCS).DISP=OLD.
DCB=RECFM=U
DDNAME=SYSIN

The SYSLIB data set contains IBM-supplied or user-written
library routines to be i~cluded in the loaded program. The
data set is searched when unresolved references remain after
processing SYSLIN and optionally searching the link pack area.

The SYSLIB data set is used to resolve an external reference
when the following conditions exist: the external reference
must be (1) a member name or an alias of a module in the data
set. and (2) defined as an external name in the external symbol
dictionary of the module with that name. If the unresolved
external reference is a member name or an alias in the library.
but is not an external name in that member. the member is
processed but the external reference remains unresolved unless
subsequently defined.

The data set defined by the SYSLIB DD statement must be a
partitioned data set that contains either object modules or
load modules. but not both. Concatenation may be used to
include more partitioned data sets in SYSLIB. All concatenated
data sets must contain the same type of modules (object or
load).

The following are examples of the SYSLIB DO statement. The
first example defines a cataloged partitioned data set that can
be shared by other steps:

//SYSLIB DD DSNAME=SYSI.ALGLIB.DISP=SHR

The second example shows the concatenation of two data sets:

//SYSLIB
//

DD
DO

DSNAME=SYSl.PL1LIB.DISP=SHR
DSNAME=LIBMOD.MATH.DISP=OLD

The SYSLOUT DO statement is used for error and warning messages
and for an optional map of external references (see "Loader
Output" on page 174). The data set defined by this DD
statement must be a sequential data set. The DCB parameter can
be used to specify the blocking factor (BLKSIZE) of this data
set. For better performance. the number of buffers (BUFNO) to
be allocated to SYSLOUT can also be specified.

The following are examples of the SYSLOUT DD statement. The
first example specifies the system output unit:

//SYSLOUT DD SYSOUT=A

Using the Loader 169

The second example defines a sequential data set on a 3800
printer:

//SYSLOUT
//

DD UHIT=3800,DCB=(BLKSIZE=121,
BUFHO=4)

SYSTERM DD statement

LOADED PROGRAM DATA

INVOKING THE LOADER

The SYSTERM DD statement defines a data set that is used for
numbered diagnostic messages only. When the loader is being
used under the Time Sharing Option (TSO) of the operating
system, the SYSTERM DO statement defines the terminal output
data set. However, SYSTERM can also be used at any time to
replace or supplement the SYSLOUT data set. Because the
SYSTERM data set is not opened unless the loader must issue a
diagnostic message, using SYSTERM instead of SYSLOUT can reduce
loader processing time.

When the SYSTERM data set replaces the SYSLOUT data set, the
numbered messages in the SYSTERM data set are the only
diagnostic output; when SYSTERM supplements the SYSLOUT data
set, the numbered messdges appear in both data sets, and
optional diagnostic and informational output, such as a list of
options or a module map, can be obtained on SYSLOUT.

The DCB parameters for SYSTERM are fixed and need not be
specified. The SYSTERM data set always consists of unblocked
81-character records with BUFNO=2 and RECFM=FSA.

The following example shows the SYSTERM DO statement when used
to specify the system output unit:

//SYSTERM DO SYSOUT=A

Loaded program data and loader data can both be specified in
the input reader. Loaded program data can be defined by a DD
statement following the loader data.

Figure 68 shows the loading of a previou~ly compiled FORTRAN
problem program. The program to be loaded (loader data)
follows the SYSLIH DO statement. The loaded program data
follows the FT05FOOI DO statement.

//LOAD
//LDR
//SYSLIB
//SYSLOUT
//FT06FOOI
//SYSLIN

/*
//FT05FOOI

JOB
EXEC
DD
DO
DO
DO

MSGLEVEL=1
PGM=LOADER,PARM=MAP
DSNAME=SYSl.FORTLIB,OISP=SHR
SYSOUT=A
SYSOUT=A

*
(Loader data)

DD

(Loaded program data)

Figure 68. Loader and Loaded Program Data Input Stream

The loader can be referred to by either its program name,
HEWLDRGO, or its alias, LOADER. The loader can be invoked

170 MVS/370 Linkage Editor and Loader

J

J

J

through the EXEC statement, as described in "Input for the
Loader" on page 164, or through one of the following macro
instructions.

[s~mbol] LINK EP=loadername,
PARAM=(optionlist[,ddname list]),
VL=l

[s~mbol] ATTACH EP=loadername,
PARAM=(optionlist[,ddname list]),
VL=l

LOAD EP=loadername

1[5vmbOll XCTL EP=loadername

EP=loadername
specifies the symbolic name of the loader. The entry point
at which execution is to begin is determined by the control
program from the library directory entry.

PARAM=(optionlist[,ddname list])
specifies, as a sublist, address parameters to be passed to
the loader. The first fullword in the address parameter
list contains the address of the option list for the loader
and/or loaded program. The second fullword contains the
address of the ddname list. If standard ddnames are to be
used, ddname list may be omitted.

optionlist
specifies the address of a variable-length list
containing the loader and loaded program options.
This address must be written even though no real list
is provided; for example, when the optionlist points
to a halfword of zero.

The option list must begin on a halfword boundary.
The two high-order bytes contain a count of the number
of bytes in the remainder of the list. If no options
are specified, the count must be zero.

The option list is free form, with the loader and
loaded program options separated by a slash (/), and
with each option separated by a comma. No blanks or
zeros should appear in the list.

ddname list
specifies the address of a variable-length list
containing alternative ddnames for the data sets used
during loader processing. If the standard ddnames are
used, this operand may be omitted.

The format of the ddname list is identical to the
format of the ddname list for invoking the linkage
editor; the 8-byte entries in the list are as follows:

Using the Loader 171

Entry Alternate Name For:

1 SYSLIN

2 not applicable

3 not applicable

4 SYSLIB

5 not applicable

6 SYSLOUT

7-11 not applicable

12 SYSTERM

VL=l
specifies that the sign bit is to be set to 1 in the last
fullword of the address parameter list.

Figure 69 shows an Assembler language program that uses the LINK
macro instruction to refer to the loader.

PARM
OPTIONS
LENGTH
SAVEAREA

SAVE

· LA

· LINK

L
RETURN

· DS
DC
DC
EQU
DS

· END

(14,12)

13,SAVEAREA

Initialize save
registers and point
to new save area

EP=LOADER,PARAM=(PARM),VL=1

13,4(3)
04,12),T

OH
AL2(LENGTH)
C'NOPRINT,CALL/X,Y,Z'
*-OPTIONS
18F

Length of options
loader and loaded
program options
Save area

Figure 69. Using the LINK Macro Instruction to Refer to the
Loader

If desired, the loader may be used to process a program but not
execute it. To invoke just the portion of the loader that
processes input data, specify either the name HEWLOAD or the
name HEWLOADR with a LOAD and CALL macro instruction.

J

J

HEWLOAD loads and identifies the program. HEWLOAD returns the \
address of an 8-character name in register 1. This name can be ~
used with an ATTACH, LINK, LOAD, or XCTL macro instruction to
invoke the. loaded program. A user program that is going to
attach a loaded program should avoid specifying SZERO=NO in its
ATTACH macro. If SZERO=NO must be specified, the user program

172 MVS/370 Linkage Editor and Loader

FREE

PARMI
OPTIOHSI
L ENGTHI

PARM2
OPTIONS2
LENGTH2
SAVEAREA

SAVe

ST
LA

.
LOAD
LR
CALL

.
LR
LR
LR

DELETE
CH
BH
LR

CALL

should issue a LOAD for the loaded program before performing the
ATTACH and a DELETE for the loaded program after the ATTACH.

HEWLOADR loads the program but will not identify it. HEWLOADR
returns the entry point of the loaded program in register O.
Register 1 points to two fullwords: the first points to the
begining of storage occupied by the loaded program; the second
contains the size of the loaded program. This location and sizQ
can then be used in a FREEMAIH macro instruction to free the
storage occupied by the loaded program when it is no longer
needed.

Figure 70 shows an Assembler language program that uses the LOAD
and CALL macro instructions to refer to HEWLOADR. Figure 71 on
page 174 shows an Assembler language program that uses the LOAD
and CALL macro instructions to refer to HEWLOAD.

(14,12),T

13,SAVEAREA+4
13, SAVEAREA

EP=HEWLOADR
15,0
(15),(PARMl),VL=1

7,15
5,0
6,1

EP=HEWLOADR
7,=H'4'
FREE
15,5

(15),(PARM2),VL=1

Initialize save registers
and point to new save area

Load the loader
Get its entry point address
Invoke the loader

~ave return code
Sav~ e~try t~ loaded program
Save ~~:~~ t: list containing
Start address ~nd length
Delete loader
Verify successful loading
Negative branch
Loading successful--get entry
point address for CALL
Invoke program

L 0,4(6) Get length into register 0
Get start address L 1,0(6)

FREEMAIH R,LV=(O),A=(I)

L
RETURN
OS
DC
DC
EQU
OS
DC
DC
EQU
OS

END

13,4(13)
(14,12LT
OH
AL2<LEHGTHl>
C'HOPRIHT,CALL'
*-OPTIONSI
OH
AL2<LENGTH2)
C'X,Y,Z'
*-OPTIONS2
18F

Delete loaded program

Length of loader options
Loader options

Length of loaded program options
Loaded program options

Save area

Figure 70. Using the LOAD and CALL Macro Instructions to Refer to HEWLOADR (Loading
Without Identification)

Using the Loader 173

ERROR

PARMI
OPTIONS1
LENGTH1

PARM2
OPTIONS2
LENGTH2
SAVEAREA
PGMNAM

SAVE

.
ST
LA

LOAD
LR
CALL
LR
MVC
DElETE
CH
BH
LINK

L
RETURN
DS
DC
DC
EQU
DS
DC
DC
EQU
DS
DS

END

(14,12),T

13, SAVEAREA+4
13,SAVEAREA

Initialize save registers and
point to new save area

EP=HEWLOAD Load the loader
15,0 Get its entry point address
(15),(PARM1),YL=1 Invoke the loader
7,15 Save the return code
PGMNAM(8),0(1) Save program name
EP=HEWLOAD Delete the loader
7,=H'4' Verify successful loading
ERROR Negative branch
EPLOC=PGMNAM,PARM=(PARM2),YL=1

13,4(13)
(14,12),T
OH
AL2ClENGTHU
C'MAP'
*-OPTIONS1
OH
AL2(LENGTH2)
C'X,Y,Z'
*-OPTIONS2
18F
2F

Loading successful,
invoke program

Length of loader options
Loader options

Length of loaded program options
Loaded program options

Save area
Program name

Figure 71. Using the LOAD and CALL Macro Instructions to Refer to HEWLOAD (Loading
With Identification)

LOADER OUTPUT

For further information on the use of these macro instructions,
see System Programming Library: Supervisor Services and Macro
Instructions.

Loader output consists of a collection of diagnostics and error
messages, and of an optional storage map of the loaded program.
This output is produced in the data set defined by the SYSLOUT
DO and SYSTERM DD statements. If these are omitted, no loader
output is produced.

SYSLOUT output includes a loader heading, and the list of
options and defaults requested through the PARM field of the
EXEC statement. The SIZE stated is the size obtained, and not
necessarily the size requested in the PARM field. Error
messages are written when the errors are detected. After
processing is complete, an explanation of the error is written.
Loader error messages are similar to those of the linkage editor
and are listed in Linkage Editor and Loader Messages.

SYSTERM output includes only numbered warning and error

J

messages. These messages are written when the errors are J
detected. After processing is complete, an explanation of each
error is written.

174 MVS/370 Linkage Editor and Loader

The storage map includes the name and absolute address of each
control section and entry point defined in the loaded program.
Each map entry marked with an asterisk (*> comes from the data
set specified on the SYSLIB DD statement. Two asterisks (**>
indicate the entry was found in the link pack area; three
asterisks (***> indicate the entry comes from text that was
preloaded by a compiler. The TYPE column indicates what each
entry on the map is used for: SD=control section, LR=label
reference, and PR=pseudo register.

The map is written as the input to the loader is processed, so
all map entries appear in the same sequence in which the input
ESD items are defined. The total size and storage extent of the
loaded program are also included. For PL/I programs, a list is
written showing pseudo registers with their addresses assigned
relative to zero. Figure 72 shows an example of a module map.
The loader issues an informational message when the loaded
program terminates abnormally.

OPTIONS USED- PRINT, MAP, NOLET. CALL, NORES, S lZE-=-424 1 76

NAME TYPE ADDR NAME TYPE Af'DR NAME TYPE ADDR NAMF TYPE

SAMPL2B so
SYSIN SD
IHEDIA SD
IHEVPA SD

IHEVPCA. LR
IHEONC so
IHEDMA SD
IHEVFAA. LR

IHElOB SO

IHESARC '" LR
IHEBEGA. LR
IHEERRA· LR
IHEITAZ. LR
IHEOCNB' LR
IHEV'T8 SO

IHEQINV

SYSIN
IHEQLW3

IHEQFVD
IHEQEVT

IHEQSFC

PR
PR

PR

PR

PR

PR

lEW 1 00' I HEUPBA

IEW1001 IHEUPAA

lEW 100 1 IHETERII

IEwlQOl IHEM91c

IEW1001 IHEM91B

IEW100l IHEM9111
IEW10Cl IHEODOD

lEW 1 00 1 I HEVPFA

IEW1001 IHEVPDA

lEW 1 00 1 I HEDBNII

IEW1QOl IHEVSFA

IEW100l [HEVSBA
IEW1001 IHEVCAA

IEwlOOl IHEVSAA

IEW100l IHEDN8A

IEW100l IHEUPBB
IEW100l IHEUPAB
IEW1001 IHEVSEB

TOT AL LENGT H

ENTRY ADDRESS

161EO SAMPL2BA SD

17048 I HEVQC Sf)

183('0 IHEOIAA· LR

18870 I HEVPAA. LR

189F8 IHEVFE SD
laCS8 IHEONCA. LR
19010 IHEOMAA. LR
19160 IHEVPB SD

19488 IHEIOBA. LR

1A9cB I HESAIJ(). ('k

lAE28 IHEERR SD
l11E86 IHEERRF' LR
1881E IHEITAX. LR

lB8&2 [HEIOD SO

1BCFO IHEVTBA. LR

00 IHEGERR

14 IHEQLSA
28 IHEQLW4

3C I HEQC'fL

'>8 IHEQSLII
70

S068

'7POO

PH

PR
PR

PH

PR

16EC8 IHEMAIN SlJ
17Il80 I HEVVCA '" LR

lHJ('() lHEDIAS '" LR

lH87u IHEVFl SD

188E8 IHEVFEA. LR
1 HeRB] HEOOA SD

13Ul(J IHEVfn SD
1 '1248 I HEVPBA. LR

"-J488 {HEIGBB. LR

lAYDE IHESAff. LR

lAEbH IHEEPRD. LR
184E2 IHEIOf 51)

lBB2A IHEITAA. LR

lBASO IHEIOOC. LR

1 BCFU I HEV\...IA SD

SAMPL2BB

1B IHEQLWO

2(J HE_ILWE

40 IHEl)f()P
btl I HE\.JSAR

PR

PR

PH

PR

PH

17('F8 I HENTRY SO

1 7D8{ I I HE\"1,)8 SD

lH3(-2 IHEVFE SD

lH'1DU IHEVF(·A. * LR

113BEH IHEVSC S[l

18F3(J IHEI)I.)AA. Lk

141()H JHEV~'l)A * LR

19:14H IHEXIS SD

1 44Cj(j IHEl'IB(' * Lk

lAAll-< IHEPRT S["l

lAE613 IHEERR(• LR

18'Jt30 I HE1UF'B. LR

lBI:l3E IHEIJ('N SD

IBA')u IHEluDP * LR

lB078 IHEVVAA. LR

SAMPL2B('

Ie IHEVLWl
W IHEVL('A

41-1 I HEVAlli'

1-14 I HEVLWF

PR

PR

PR

PR

PR

IEW1001 WARNING - UNRESOLVED EXTERNAL REFEREN(-1: (NuCALL SPE('IFIE1)1

Figure 72. Module Map Format Example

ADDR NAME TYPE ADOR

l70U(l IHE-:SPRT Sf)

17PD8 IHEVVBA* 1,1
1 Htd)H I HEVPEA* [,p

189UU IHEVPC * su
lBcnH IHEvsc-A* LR

1 HF 3() J HEDOAB* LR

l'jI()H IHEVfA • .sO

1~3Fl) IHEX!SU* LP

1'149H !Hr-:I()B(). LR

lAB70 IHf-:PRTA* Lk

lAE72 IHEf.RRB* I.R

1 B~8(i I HEl(WA* LR

1 E:lH61J I HEOCNA* LR

IBA52 iH~I()DT. LR
lBDi8

(' 1 HEVSPR FE:

211 IHEVLW2 PR
34 I Hf:t,]VDA PP

4(IHF.VXLV PR

f,H I HEVRT(PR

17010

17fD8
1 Ht)OH

lb9f-'H

l~CUH

18f32

191f,l)

19lfO
194AI!

lAB7(l

lAE7('

18'J82
1 B8h(l

1884A

3H

h(

Using the Loader 175

APPENDIX E. SAMPLE INPUT FOR THE LOADER

Figure 73 shows an input deck for a load job. A previously
assembled program, MASTER, is to be loaded. The SYSlOUT,
SYSlIB, and SYSTERM DD statements are not used.

//lOAD
//
//SYSLIN

JOB
EXEC
DD

MSGlEVEl=1
PGM=lOADER
DSNAME=MASTER,DISP=OlD

(DD statements and data required for execution of MASTER)

Figure 73. Input Deck for a load Job

Figure 74 shows an input deck for a compile-load job. The OS/VS
COBOL (IKFCBlOO) compiler is used for the compile step. The
loaded program requires the SYSOUT, TAXRATE, and SYSIN DD
statements.

//JOB
//COBOl
//SYSPRINT
//SYSPUNCH
//SYSUTl
//SYSUT2
//SYSUT3
//SYSUT4
//SYSLIN
//
//SYSIN

JOB
EXEC
DD
DD
DD
DD
DD
DD
DD

DD

(source program)

//lOAD
//
//SYSLIN
//
//SYSlOUT
//SYSLIB
//SYSOUT
//lAXRATE
//SYSIN

EXEC

DD

DD
DD
DD
DD
DD

22,MCS,MSGlEVEl=1
PGM=IKFCBlOO,PARM=DMAP,REGION=256K,RD=R
SYSOUT=A
SYSOUT=B
UNIT=SYSDA,SPACE=(TRK,(lOO,lO»
UNIT=SYSDA,SPACE=(TRK,(lOO,10»
UNIT=SYSDA,SPACE=(TRK,(lOO,10»
UNIT=SYSDA,SPACE=(TRK,(100,10»
DSNAME=&&lOADSET,DISP=(MOD,PASS),
UNIT=SYSSQ,SPACE=(TRK,(30,lO»
*

PGM=lOADER,PARM='MAP,lET',COND=(5,lT,
COBOL)
DSNAME=*.COBOl.SYSlIN,DISP=(OlD,
DELETE)
SYSOUT=A
DSNAME=SYS1.COBlIB,DISP=SHR
SYSOUT=A
DSNAME=TAXRATE,DISP=OlD

*
(Data for loaded Program)

Figure 74. Input Deck for a Compile-load Job

Figure 75 on page 177 shows the compilation and loading of three
modules. In the first three steps, the OV/VS FORTRAN (FORTVS)
compiler ;s used to compile a main program, MAIN, and two
subprograms, SUBI and SUB2. Each of the object modules is .~
placed in a sequential data set by the compiler and passed to ~
the loader job step. In addition to the FORTRAN library, a
private library, MYlIB, is used to resolve external references.

176 MVS/370 linkage Editor and loader

In the loader job step, MYlIB is concatenated with the SYSlIB DD
statement. SUBI and SUB2 are included in the program to be
loaded by concatenating them with the SYSlIN DD statement. The
SYSTERM statement is used to define the diagnostic output data
set. The loaded program requires the FTOIFOOI and FTI0FOOl DD
statements for execution, and it does not require data in the
input stream.

//JOBX
//STEPI

//SYSLIN
//SYSIN

JOB
EXEC PGM=FORTYS,PARM='NAME=MAIN,lOAD'

· DD
DD

DSNAME=&&GOFIlE,OISP=(.PASS),UHIT=SYSSQ
lE

(Source module for MAIH)

/lE
//STEP2

//SYSLIH
//SYSIH

EXEC PGM=FORTVS,PARM='HAME=SUBl,lOAD'

· DD
00

DSHAME=&&SUBPROGl,DISP=(,PASS),UHIT=SYSSQ
lE

(Source module for SUBl)

/lE
//STEP3

//SYSLIH
//SYSIH

EXEC PGM=FORTYS,PARM='NAME=SUB2,lOAD'

· DD
DD

DSNAME=&&SUBPROG2.DISP=(,PASS),UHIT=SYSSQ
lE

(Source module for SUB2)

/lE
//STEP4
//SYSTERM
//SYSLIB
//
//SYSLIH
//
//
//FTOIFOOI
//FTI0FOOI
/lE

EXEC
DD
DO
DO
DO
DD
DD
DO
DO

PGM=lOADER
SYSOUT=A
OSNAME=SYSl.FORTlIB,DISP=OlO
DSHAME=MYlIB,DISP=OlD
OSHAME=lE.STEPl.SYSlIH.DISP=OlD
DSNAME=*.STEP2.SYSlIH,DISP=OlD
DSNAME=lE.STEP3.SYSlIH,DISP=OlD
DSNAME=PARAMS,OISP=OlD
SYSOUT=A

Figure 75. Input Deck for Compilation and loading of the Three
Modules

Appendix E. Sample Input for the loader 177

APPENDIX F. LOADER RETURN CODES

The return code of a loader step is determined by the return
codes resulting from loader processing and from loaded program
processing.

The return code indicates whether errors occurred during the
execution of the loader or of the loaded program. The return
code can be tested through the COHD parameter of the JOB
statement specified for this job and/or the COHD parameter of
the EXEC statement specified in any succeeding job step. (For
details, see the publication JCl). Figure 76 shows the return
codes. 1 ---

Code Loader Program
Returned Return Return
to Caller Code Code Conclusion or Meaning

0 0 0 Program loaded successfully,
and execution of the loaded
program was successful.

0 4 0 The loader found a condition
that may cause an error during
execution, but no error
occurred during execution of
the loaded program.

0 8UET> 4 The loader found a condition
that may cause an error during
execution, but no error
occurred during execution of
the loaded program.

4 0 4 Program loaded successfullY,
and an error occurred during
execution of the loaded
program.

4 4 4 The loader found a condition
that may cause an error during
execution, and an error did
occur during execution of the
loaded program.

4 8 (l ET> 4 The loader found a condition
that may cause an error during
execution, and an error did
occur during execution of the
loaded program.

8 0 8 Program loaded successfully,
and an error occurred during
execution of the loaded
program.

Figure 76 (Part 1 of 2). Return Codes

1 Error diagnostics (SYSOUT and/or SYSTERM data set) for the
loader will show the severity of errors found by the loader.

178 MVS/370 linkage Editor and loader

Code Loader Program
Returned Return Return
to Caller Code Code Conclusion or Meaning

8 4 8 The loader found a condition
that may cause an error during
execution, and an error did
occur during execution of the
loaded program.

8 8CLET> 8 The loader found a condition
that may cause an error during
execution, and an error did
occur during execution of the
loaded program.

8 8 The loader found a condition
that could make execution
impossible. The loaded
program was not executed.

12 0 12 Program loaded successfully,
and an error occurred during
execution of the loaded
program.

12 4 12 The loader found a condition
that may cause an error during
execution, and an error did
occur during execution of the
loaded program.

12 8 (L ET> 12 The loader found a condition
that may cause an error during
execution, and an error did
occur during execution of the
loaded program.

12 12 The loader could not load the
program successfully;
execution impossible.

16 0 16 Program loaded successfully,
and the loaded program found a
terminating error.

16 4 16 The loader found a condition
that may cause an error during
execution, and a terminating
error was found during
execution of the loaded
program.

16 8CLET> 16 The loader found a condition
that may cause an error during
execution, and a terminating
error was found during
execution of the loaded
program.

16 16 The loader could not load
program; execution impossible.

Figure 76 (Part 2 of 2). Return Codes

Appendix F. Loader Return Codes 179

APPENDIX G. STORAGE CONSIDERATIONS

The loader requires virtual storage space for the following
items:

• Loader code

• Data management access methods

• Buffers and tables used by the loader (dynamic storage)

• Loaded program (dynamic storage)

Region size includes all four of the above items; the SIZE
option refers to the last two items.

For the SIZE option, the minimum required virtual storage is 4K
bytes plus the size of the loaded program. This minimum
requirement grows to accommodate the extra table entries needed
by the program being loaded. For example, FORTRAN requires at
least 3K bytes plus 4K bytes plus the size of the loaded
program, and PL/I needs at least 8K bytes plus 4K bytes plus the
size of the loaded program. Buffer number (BUFNO) and block
size (BLKSIZE) could also increase this minimum size. Figure 77
shows the app~opriate storage requirements in bytes.

The maximum virtual storage that can be used is whatever virtual
storage is available up to 8192K bytes.

Allor part of the storage required is obtained from user
storage. If the access methods are made resident at IPL time,
they are allocated in system storage. However, 6K bytes is
always reserved for system use.

The loader code could also be made resident in the link pack
area. If so, it requires the following space: HEWLDRGO, the
control/interface module (alias LOADER), approximately 700
bytes; HEWLOADR, the loader processing portion, approximately
13 664 bytes.

The size of the loaded program is the same as if the program had
been processed by the linkage editor and program fetch.

The loader does not use auxiliary storage space for work areas.

APproximate
virtual storage
Requirements

Consideration (in Bytes) Comments

Loader Code Control 2000

Loader Code Processing 14000

Data Management 6K BSAM

Object Module Buffers BUFNO~HBLKSIZE + 24) Concatenation of
and DECBs different BLKSIZE and

BUFNO must be
considered. (Minimum
BUFNO=2)

Load Module Buffer and 304
DECBs

Figure 77 (Part 1 of 2). Virtual Storage Requirements

180 MVS/370 Linkage Editor and Loader

J

APproximate
virtual storage
Requirements

Consideration (in Bytes) Comments

SYSTERM DCB Buffers and 312 Allocated if TERM
DECBs option is specified

SYSLOUT Buffers and BUFNO*(BlKSIZE + 24) Buffer size rounded up
DECBs to integral number of

double words. (Minimum
BUFNO=2)

Size of program being Program size Program size i s
loaded restricted only by

available virtual
storage, up to 8
megabytes

Each external relocation 8
dictionary entry

Each external symbol 20

largest ESD number 4n (n is the largest Allocated in
number of ESDs in any increments of 32
input module) entries

Fixed Loader Table Size 1260 Subtract 88 if NOPRINT
is specified

Condensed Symbol Table 12n (n i s the total Bui It only if TSO is
number of control operating and space is
sections and common available
areas in the loaded
program)

System Requirements 4000

Figure 77 (Part 2 of 2). Virtual Storage Requirements

Appendix G. Storage Considerations 181

APPENDIX H. LOAD MODULE FORMAT

The format of a load module built by the linkage editor is shown
in Figure 78.

In writing the output load module to the SYSlMOD data set, the
linkage editor does not use the track overflow feature. When
moving or copying load modules, the track overflow feature must
not be used on the target data set, as errors may occur in
fetching the load modules for execution.

1 TR-p2, It TloST optIOn <lnd SYM record, present

1 r fR -p 2. 'f ,.0 fEST op"""
TTR-T3, IfOVLY option uscd

I 1 TTR-N/S I, If S(TR
+ ,option

rR-T'. 'f "" OYL Yo,"'"''

1 SYM 1 1.-1 _C_E_S_D-.J lOR l..,£!!;j I SECT AB 1 I SCTR I ~ 1st TXT I ENTAB 1 (continued)

t Present if TEST
option and S YM
records present

t prescnt1t' OVL Y t Present if SCTR
option and murc
than I segment

option is used

1 RLD 1 I CTRL.RLD •. jjCn,RLD,TXT,ENTAB I 1 RLD I I

t Carries EOS if t Carries LOM
following ENTAB if this is RLD

for Last TXT

ITTR-N/S: TTR of the note list or scatter/translation table. Used for
modules in scatter load format or overlay structure only.

2TTR- P: TTR of tIle first block of the named member (load module).

3TTR- T: TTR of the first block of te,t.

Figure 78. load Module Format

182 MVS/370 linkage Editor and loader

cn I I TXT

t Carries EOM
if no RLDs
for Last TXT

+ Present if OVL Y option
used and more than I

segJllent

TTR-N/S I, if OVL Y option
and more than I segment

• TTR 1

t Present if OVL Y option
and m ore than I segmcn t

GLOSSARY

This glossary includes definitions
developed by the American National
Standards Institute (ANSI). This
material is reproduced from the American
National Dictionary for Information
Processing, copyright 1977 by the
Computer and Business Equipment
Manufacturers Association, copies of
which may be purchased from the American
National Standards Institute, 1430
Broadway. New York. New York 10018.
ANSI definitions are preceded by an
asterisk(*).

_address. An identification, as
represented by a name, label, or number.
for a register, location in storage. or
any other data source or destination
such as the location of a station in a
communication network; any part of an
instruction that specifies the location
of an operand for the instruction.

address constant. A value, or an
expression representing a value. used in
the calculation of storage addresses;
can be used for branching or retrieving
data.

addressing mode (AMODE). The attribute
of an entry point in which control is
received.

address translation. The process of
changing the address of a data item or
an instruction from its virtual address
to the real storage address of the
location where it will reside. See also
dynamic address translation.

alias name. An alternate name or entry
point for a load module that is also
entered in the output module library
directory entry along with the member
name.

automatic call library mechanism. The
process whereby control sections are
processed by the linkage editor or
loader to resolve external references to
members of partitioned data sets not
resolved by primary input processing.

auxiliary storage. Data storage other
than virtual storage; for example,
storage on magnetic tape or
direct-access devices.

common area. A control section used to
reserve a virtual storage area that can
be referred to by other modules; may be
either named or unnamed (blank).

common segment. A segment upon which
two exclusive segments are dependent.

composite external symbol dictionary
(CESD1. Control information associated

with a load module that identifies the
external symbols in the module.

control section. That part of a program
(instructions and data) specified by the
programmer to be a relocatable unit, all
elements of which are to be loaded into
adjoining storage locations for
execution. Abbreviated CSECT.

control section name. The symbolic name
of a control section.

demand paging. Transfer of a page from
external page storage to real storage at
the time it is needed for execution.

downward reference. A reference made
from a segment to another segment lower
in the same path; that is, farther from
the root segment.

dynamic address translation (DAT). (1)
The change of a virtual storage address
to a real storage address during
execution of an instruction. See also
address translation. (2) A hardware
feature that performs the translation.

entry name. A name within a control
section that defines an entry point. and
can be referred to for execution by any
control section.

exclusive reference. A reference
between exclusive segments; that is, a
reference from a segm~nt in storage to
an external symbol in a segment that
will cause overlay of the calling
segment.

eXClusive segments. Segments in the
same region of an overlay program.
neither of which is in the path of the
other; they cannot be in virtual storage
simUltaneously.

external name. A name that can be
referred to by any control section or
separately assembled or compiled module;
that is, a control section name or an
entry name.

external page storage. The portion of
auxiliary storage that is used to
contain pages.

external reference. (1) A reference to
a symbol that is defined as an external
name in another module. (2) An external
symbol that is defined in another
module; that which is defined in the
Assembler language by an EXTRN statement
or by a v-type address constant, and is
resolved during linkage editing. See
also weak external reference.

Glossary 183

external symbol. A control section
name, entry point name, or external
reference that is defined or referred to
in a particular module. A symbol
contained in the external symbol
dictionary.

external symbol dictionary (ESD).
Control information, associated with an
object or load module that identifies
the external symbols in the module.

inclusive reference. A reference
between inclusive segments; that is, a
reference from a segment in storage to
an external symbol in a segment that
will not cause overlay of the calling
segment.

inclusive segments. Segments in the
same region of an overlay program that
are in the same path; they can be in
virtual storage simultaneously.

invalid exclusive reference. An
exclusive reference in which a common
segment does not contain a reference to
the symbol used in the exclusive
reference.

library. In this publication, a
partitioned data set that always
contains named members.

load module. The output of the linkage
editor; a program in a format suitable
for loading into virtual storage for
execution.

load module buffer. An entity of
virtual storage used by the linkage
editor to read input load module text
records and possibly to retain the text
information in storage for subsequent
writing of the output load module text
records.

*module. A program unit that is
discrete and identifiable with respect
to compiling, combining with other
units, and loading, for example, the
input to, or output from, an assembler,
compiler, linkage editor, or executive
routine.

multiple load module processing. A
method of processing whereby two or more
load modules can be produced in a single
linkage editor job step.

*object module. A module that is the
output of an assembler or compiler and
is input to a linkage editor.

overlay program. A program in which
certain control sections can use the
same storage locations at different
times during execution.

*overlay supervisor. A routine that
controls the proper sequencing and
positioning of segments of computer
programs in limited storage during their
execution.

184 MVS/370 linkage Editor and loader

overlay tree. A graphic representation
showing the relationships of segments of
an overlay program and how the segments
are arranged to use the same main
storage area at different times.

page. (1) A fixed-length block of
instructions, data, or both, that can be
transferred between real storage and
external page storage. (2) To transfer
instructions, data, or both between real
storage and external page storage.

page fault. A program interruption that
occurs when a page that is marked "not
in real storage" is referred to by an
active page.

paging. The process of transferring
pages between real storage and external
page storage.

path. All of the segments in an overlay
tree between a given segment and the
root segment, inclusive.

private code. An unnamed control
section.

program. A logically self-contained
sequence of operations or instructions
that, when followed in some
predetermined sequence, will produce a
specified result; a sequence of
instructions to be performed by a
computer; one or more modules, in source
language or relocatable object code, or
one module in executable code, that is a
logically self-contained process.

program fetch. A program that prepares
load modules for execution by loading
them at specific storage locations; it
also readjusts each address constant.

pseudo-register. In PL/I, a location in
virtual storage that is used as a
pointer to dynamically acquired virtual
storage. It enables the PL/I compiler
to generate reenterable code. External
dummy sections give the programmer using
Assembler F or Assembler H the same
facility.

real storage. The storage from which
the central processing unit can directly
obtain instructions and data, and to
which it can directly return results.

reenterable load module. A module that
can be used concurrently by more than
one task.

refreshable load module. A load module
that cannot be modified by itself or by
any other module during execution; can
be replaced by a new copy during
execution by a recovery management
routine without changing either the
sequence or results of processing.

region. In an overlay structure, a
contiguous area of virtual storage
within which segments can be loaded
independently of paths in other regions.
Only one path within a region can be in
virtual storage at anyone time.

relocation. The modification of address
constants required to compensate for a
change of origin of a module, program,
or control section.

RSECT. A read-only CSECT in the
nucleus.

root segment. That segment of an
overlay program that remains in virtual
storage at all times during the
execution of the overlay program; the
first segment in an overlay program.

residence mode (RHODE). Defines whether
the program must be resident in storage
addressable by 24-bit addressing or 31-
bit addressing.

scatter format. A load module attribute
that permits the control program to
dynamically load control sections into
noncontiguous areas of virtual storage.

segment. The smallest functional unit
~one or more control sections) that can
be loaded as one logical entity during
execution of an overlay program.

serially reusable load module. A module
that cannot be used by a second task
until the first task has finished using
it.

source module. The source statements
that constitute the input to a language
translator for a particular translation.

storage block. A 2K-byte block of real
storage to which a storage key can be
assigned, processor-model dependent.

upward reference. A reference made from
a segment to another segment higher in
the same path; that is, closer to the
root segment.

valid eXClusive reference.
reference in which a common
contains a reference to the
in the exclusive reference.

An exclusive
segment
symbol used

virtual address. An address that refers
to virtual storage and must, therefore,
be translated into a real storage
address when it is used.

virtual storage. Addressable space that
appears to the user as real storage,
from which instructions and data are
mapped into real storage locations. The
size of virtual storage is limited by
the addressing scheme of the computing
system and the amount of auxiliary
storage available, rather than by the
actual number of real storage locations.

weak external reference. An external
reference that does not have to be
resolved during linkage editing. If it
is not resolved, it appears as though
its value was resolved to zero.
Abbreviated WXTRN.

Glossary 185

Special Characters

$PRIVATE 43
HGO 166

A-type address constant
replac-ing control sections 49,134
SEGWT macro 84

AC option 15. 89
adcons

See address constant
additional call libraries 27
additional input sources

automatic call library 24-28
general description of 12. 19
included data sets 29-32
libraries 24-32
processing of 24-32
specification of

automatic call library 26
INCLUDE statement 30-32
LIBRARY statement 26. 123

address
assignment 8
of main entry point

module map 43
specifications 36

sequence in object module text 6
address constant 4. 6

See also A-type. V-type address
constant

resolution of 4-6
addressing mode

assignment
linkage editor 15

combinations
residence mode 90

control section name 5
default 16
entry point 37
linkage editor 1
options 77
override 16
parameter

linkage editor 89
private code 5

al i as name
example 35
linkage editor 85
loader 170
specifying 35

ALIAS statement 35. 114
alignment, page 56
alternate output data set

See SYSTERM data set
AMODE

See addressing mode
assigning block size. linkage
editor 104

asynchronous overlay supervisor 80
attributes. module

186 MVS/370 Linkage Editor and Loader

See module attributes
authorization codes

See AC option
Authorized Program Facility (APF) 15
automatic call library for loader

DO statement for 168
description of 160
options 164

automatic call library mechanism 43
See also call library. linkage editor
module map 43

automatic deletion of modules 160
automatic replacement

control sections 49-51
examples 49-51
modules 35
note on overlay programs 49

automatic search
of link pack area queue 166
of SYSLIB 165

blank common area
collection of 37, 77
definition 5
module map 43

BlKSIZE operand (DCB macro) 101-107
block size 101-107
blocking factors. SIZE option 96, 159
branch instructions, in overlay

programs 80-82
buffer, load module

See load module buffer
BUFNO operand (DCB macro)

loader DO statements 168

call library. linkage editor
additional libraries 27
concatenating 26
ddname 25
example 25
NCAL option 28
negating 28, 92
never-call 28
restricted no-call 27
specification of 25-26

call library. loader
DO statement for 168-170
description 160
options for use 164

CALL loader option 165
CALL macro

definition 80
invoking the loader 173
with only loadable attribute 87

capacities. linkage editor 155
cataloged procedure

adding 00 statements 111
definition 107

linkage editor 107
LKED 107-109
LKEDG 109-110
overriding 110-111

CESD
See composite external symbol
dictionary

CHANGE statement
example 47
summary 115-116
using INCLUDE statement
using REPLACE statement

changing external symbols
class test table 67

55
55

47

collection of common areas 37, 77-79
common area

blank 5
collecti on
definition
lengthening
module map
named 5

of 37, 77, 79
5

15, 118
42

ordering named 55-56
reserving storage for 37

common segment
definition 65
exclusive references 65
promotion of common areas 77

comparison of linkage editor and
loader 1, 160

compatibility, linkage editor and
loader 163

composite external symbol dictionary
definition 7
number of entries permitted 156

concatenation
call libraries 26
data sets -

linkage editor 31
loader 168
restrictions 107

COND parameter
determining load module
execution 100

in LKEDG 109
specified in EXEC statement 100
specified in JOB statement 100

condition parameter
See COND parameter

constant
See address constant

control dictionaries 4
control section

aligning on page boundary 56
definition 3
deleting 53
external symbol dictionary 4
lengthening 15, 118
module map 42
name

changing 47
external symbol dictionary 4

ordering of 55-56
positioning 73
replacing 48

control statements
as input 22
concatenating object module data
set 22

continuation of 112
format conventions 112
general format 112
listing 41
listing option 98

placement information 112
summary list 112

cross reference table
option 98
producing 43
sample 44

CSECT identification records
function 15
object and load modules 4
storage required 157
using IDENTIFY statement 119

data definition statements
See DO statements

data for loaded program 170
data set

concatenation of 26, 31, 168-170
linkage editor

input 19
output 33

loader 168
DCB information

linkage editor 101
loader 168

DCBS option, block size 97
DD statement

general description 101
linkage editor data sets

ddnames 101-103
SYSLIB 27, 103
SYSLIN 102
SYSLMOD 104
SYSPRINT 104
SYSTERM 105
SYSUTl 103

loader data sets
ddnames 168, 171
SYSLIB 169
SYSLIH 168
SYSLOUT 169
SYSTERM 170

ddname list 153
ddnames, linkage editor

invoking 101-107
loader

automatic call library 168
diagnostic data set 170
input data set 168
specifying alternate names 153,

171
default module attributes 90
deleting a control section 53
deleting an entry name 53
deleting modules 160
diagnostic messages

linkage editor
directory 39
format 39-41

loader
defined by SYSLOUT DD and SYSTERM

DO 174
format 174

diagnostic output
linkage editor

messages 39
optional 41-44
options, summary 14-15

loader
data set 170

Index 187

format 174
options 164

dictionaries
composite external symbol 7, 156
external symbol 5
relocation 4, 6, 155

directory entry
authorization code 37
changing 48

disposition messages 39-40
downward call

See downward reference
downward reference

definition 58
maximum number 157

editing
conventions 45-46
module 45-46

end of module indication 7
END statement

object module 4
specifying entry point 36

ENTAB (entry table) 68
entry address, module map 43
entry name

definition 5
ESD

changing 47
deleting 53
module map 42

entry point
example 36
loaded program 165, 173
specification of

END statement 36
ENTRY statement 36, 117

ENTRY statement
main entry point 36
summary 117

entry table 68
EOM (end of module indication) 7
EP loader option 165
error conditions

See severity code
error messages

See diagnostic messages
ESD (external symbol dictionary) 5
exclusive call option 91
exclusive reference

definition 64
entry table 68
restrictions 65
segment table 68
XCAL option 91

exclusive segments
note on overlay programs 49

EXEC statement
linkage editor

introduction 85
job step options 85
program name 85
REGION parameter 100
return code 100

loader
description 164, 167
examples 167

executable module 90
EXPAND statement 15, 118

188 MVS/370 linkage Editor and loader

external dummy section 5, 13, 38
See also pseudo register
definition 5
processing of 13, 38

external name 3
See also control section name, entry

name
definition 3

external reference
changing 47
definition 3, 5
external symbol dictionary 5
resolving 9, 24
weak

automatic library-call 24
cross reference table 44

external symbol
changing 47
definition 3

external symbol dictionary 5

functions
linkage editor 9-10
loader 160

HEWl 85, 107
HEWLOAD 172, 174
HEWLOADR 172

IDENTIFY statement summary 119
lOR

See CSECT identification records
IEBUPDTE program

input statements 149
INCLUDE statement

requesting additional data sets as
input 29

specifying ddname of DO statement 29
summary 121

included data sets
concatenated data sets 30
library members 30
linkage editor 29
sequential data sets 30

inclusive reference
when to use 65

inclusive segments
definition 64

incompatible job step options 99
incompatible module attributes 91
input data sets

linkage editor 19
loader 168

input processing 19
input sources

linkage editor 7
loader 164, 168

INSERT statement
summary 122

using 75
intermediate data set

devices supported 158
linkage editor 7
loader 163
SIZE option 92, 155
storage required 155
SYSUT1 DD statement 103

intermediate text records, number
produced 157

internal data area 163
invalid attributes or options 39
invalid exclusive reference

i llustrat ion 66
invocation of

linkage editor 153
loader 170

job control language summary 85
job control statements

linkage editor 85
loader processing

basic format 164
compile-load job 176
load job 178
multiple compilations 176

job step
options

EXEC statement 85

let execute option 91
LET option

linkage editor 91, 145
loader 163, 165
overlay programs 77

library call
See automatic call library for loader

library members
including 30
input to linkage editor 20
input to loader 168

LIBRARY statement
additional call libraries 27
HCAL option 92
never-call function 28
restricted no-call function 27
summary 123
using 26

LINK command 18
LINK macro

invoking
linkage editor 153
loader 172

link pack area resolution
loader 166

linkage editor
assigning block size 104
capacities 155
cataloged procedures 107
compared to loader 1, 160
control statement summary 112
DO statements 102-107

functions 9-10
input

additional data sets 19
control statements 23
object modules 23
primary data sets 19

invoking 153
output 33
processing 7
relationship to operating system 18
storage requirements 155
when to use 1

LINKEDIT 85
linking modules 10
LIST option 41, 98
LKED procedure 107-109
LKEDG procedure 109-110
LOAD macro

invoking the loader 173
only loadable modules 87

load module
attribute assignment 14
attributes 86
buffer 92
definition 2
entry point 36
input

linkage editor 19
loader 164

linkage editor output 33
multiple processing of 38
structure 4

load module buffer
allocating storage 92

load module creation 7
load module format

loader
example

load point 63, 71
load step 1, 164
loaded program

data 170
module map 175
options 164, 167
return codes 178

loader
abnormal termination message

(VS2) 175
alias name 170
compared to linkage editor 1, 160
compatibility with linkage
editor 163

data sets 168
input 160, 164
invoking 170
options 164, 167
output 174
program name 170
restrictions 163
return codes 178
when to use 1

LOADGO command 163
loading

with identification 174
without identification 173

logical record length
linkage editor data sets

blocking factors 102
diagnostic output 104
input 102

SIZE option 92
LRECL operand (DCB macro) 101-102

Index 189

macros, linkage editor
format 153

MAP option
linkage editor 42-43, 98
loader 163, 166

maximum record size for device
types 93-94

member name
definition 34
example 34
speci fyi ng 34

member, partitioned data set
including 30
input to the linkage editor 20
input to the loader 168

messages
disposition 39-40
examples 41
format 40
text 41
unnumbered 40

MODE statement
example 126
specifying addressing mode 125
specifying residence mode 125
summary 125-126
values 125

modular programming 2
module attributes

default attributes 90
describing output module 86
incompatible attributes 91, 99
not editable 87
not-executable 90
only loadable 87
overlay 87
refreshable 88
reusability

reenterable 87
serially reusable 87

scatter format 86
test 88

module disposition messages 39
module editing

general description 45
summary 11

module linking 10-12
module map

linkage editor
description 42-43
example 43
MAP option 98

loader
description 175
example 175
specifying 166

module, definition 2
multiple load module processing

producing 38
multiple region overlay program

general description 68
specifying 72
using 68

190 MVS/370 linkage Editor and Loader

NAME loader option 166
NAME statement

multiple load module processing 38
replace function 35
summary 127
SYSlMOD DD 34

named common area
aligning on page boundary 56
collection of 37, 77
definition 5
module map 42

HeAL option
linkage editor 28, 91
loader 163, 165

NE attri bute 87
negation of automatic library call

linkage editor 28
loader

diagnostic output 166
module map 166
search of link pack area 166

not editable attribute 87
not executable attribute 92
reenterable attribute 88
refreshable attribute 88
serially reusable 88

never-call function
cross reference table 44
specifying external references 28

no automatic library call option 91
no-call 28
NOCAll loader option 165
node point

See load point
NOLET loader option 165
NOMAP loader option 166
NOPRINT loader option 166
NORES loader option 166
not editable attribute

linkage editor 87
loader 163

not-executable attribute 91
NOTERM loader option 167

object module
definition 2
input to linkage editor 23
input to loader 168
structure 4
virtual storage 163

Ol attribute 87
only loadable attribute 87
optional output 41
options, incompatible 99
options, linkage editor

addressing mode 77
module attributes 86
output 98
residence mode 77
space allocation 92
special processing 91-92

ORDER statement 55-56, 128
origin

control section in module map 42
region 72

segments 63
output module library 33
output of linkage editor

diagnostic messages 39
load module 33
optional output 41-44
output module library 33
output options 98

output of the loader
messages 174
module map 175
specifying 164-167

output text record length 155
overlap of loading and processing,

overlay segments 82
overlay attribute

specifying 87
overlay program

communication 80
design 58
module map 42
multiple region 68
process 67-68
region origin 72
respecifying control statements 71
sample program 143-149
segment origin 63, 71
single region 59
special considerations 77
specifying 70
storage requirements 79-80

OVERLAY statement
specifying 70-76
summary 130

overlay supervisor, definition 67
overlay tree

positioning segments 61
overriding cataloged procedures

DD statements 111
EXEC statement 110

OVLY attribute 87

page boundary
aligning control sections or named

common areas 56
PAGE statement

aligning control sections 56
summary 132

parameter
addressing mode 89
combination 89
residence mode 89

partitioned data set
input

linkage editor 20
loader 168

output, linkage editor 33
path

in overlay program 58
placement of control statements 112
positioning control sections 73
preloaded text 163, 175
primary input data set

control statements 22
job control language
specifications 19

object modules 19, 23
PRINT loader option 166
private call libraries 26

private code
definition 5
module map 43

procedure LKED 107-109
procedure LKEDG 109-110
processing history, tracing

CSECT Identification record 15
processing options, special 91
program fetch

functions 8
prompter

linkage editor, function of 18
loader, function of 163

pseudo register
definition 5
module map 43
processing of 13, 38

read-only attribute, assignment 18
RECFM

See record format
record format (RECFM)

linkage editor data sets
diagnostic output 107
input 101-102
load modules 102-107

loader data sets 168
record size

maximum
device type 93

reenterable attribute 87
reenterable load module

module attribute 88
REFR attribute 88
refreshable attribute 88
refreshable load module

module attribute 91
REGION parameter

specifying storage 100
region, overlay programs

specifying 72
using 68

region, virtual storage
linkage editor

cataloged procedures 107
SIZE option 97

loader 173
relocating a load module 2
relocation dictionary

number of entries 155
using 6

RENT attribute 88
replace function 35, 48-54
REPLACE statement

deleting CSECT 54
example 52
sample program 139-143
summary 134-135
using 51

replacing control sections, assembler
language note 48

replacing external symbols
See CHANGE statement, changing
external symbols

replacing load modules with the same
name 35

repositioning control statements
automatic call library 76
INSERT control statement 73, 122

Index 191

reprocessing load modules
entry point assignment 36
not editable attribute 87

RES loader option 166
reserving storage 37
residence mode

assignment
linkage editor 16
output load module 33

combinations
addressing mode 90

control section name 5
default 17
entry point 37
options 77
override 17
parameter

linkage editor 89
private code 5

resolving external references 9, 24
restricted no-call function 27
restrictions, virtual storage size
requirements 89

return codes
linkage editor 100
loader 178
severity code 40

REUS attribute 87
reusability attributes

general description 87
reenterable 87
serially reusable 87

RLD
See relocation dictionary

RMODE
See residence mode

root segments
definition 58
OVERLAY 71
segment table 68

sample programs 138
scatter loading 86
SCTR attribute 86
SEGLD macro 80
segment 61, 63, 64, 67

See also exclusive, inclusive, root
segments

communication 64-67
dependency 61
origin 63

segment load macro 82-83
segment table 68
segment wait macro

SEGLD 84
using 83

SEGTAB (segment table) 68
SEGWT macro

SEGLD 84
using 83

sequential data set
INCLUDE statement 30
input to linkage editor 19, 30
input to loader 168

serially reusable
attribute 88

SETCODE statement 15, 136
SETSSI statement 137
severity code

192 MVS/370 linkage Editor and Loader

linkage editor messages 40
return codes 100
severity 0,2 errors 40

SIZE option
linkage editor 92, 159
loader 167, 180

space allocation
DCBS option 97
maximum values 92, 95
minimum values 92, 95
SIZE option 92
specifying storage 92

special processing options
affecting automatic library call

mechanism 91
affecting output module 91
summary 14

static external areas 37
SYSlIB DD statement

automatic call library 24
linkage editor 103
loader 169

SYSLIN DD statement 102, 168
See also automatic call library for

loader
linkage editor 102, 168

SYSLMOD DD statement 38, 39, 104
See also output module library
function 104
NAME statement 38-39
referenced by INCLUDE statement 104

SYSLOUT DD statement 166, 169
SYSPRINT DD statement 104
system call library

example 25
list 25

system status index information, storage
of 14

SYSTERM data set
linkage editor 41, 98, 105
loader 168, 170, 174

SYSTERM DD statement
linkage editor 41, 98, 105
loader 168, 170, 174

SYSUT1 DD statement 103

TEMP NAME 34
temporary data set 21, 34
TERM option

linkage editor 41, 98, 106
loader 167

TEST attribute 88
text

message 41
note 6
processing out-of-order 4

time sharing option
See TSO

tracing processing history 15
TRANSFORM table 67
tree structure

positioning of segments 61
purpose of 60

TSO (time sharing option)
linkage editor

invoking 18
SYSTERM data set 106
TERM option 41

loader

invoking 163
SYSTERM data set 167, 170
TERM option 167

unnumbered messages 39-40
unresolved references

automatic library-call, resolving
with 24

cross reference table 44
upward reference, definition 58
user-specified

input 7
storage 14

user-written library 25

V-type address constant
branch instruction, overlay
CAll 82
SEGLD 83
SEGWT 84

valid exclusive reference 65

82

virtual storage requirements
linkage editor 155
loader 180
overlay programs 79-80
restrictions 89

wait for loading of segment 83
warning messages 40-41
weak external reference

automatic library-call 24
cross reference table 44
definition 5
level F linkage editor 12

XCAl option
XCTl macro

input to
invoking

XREF option

77, 91

loader 163
the loader

98
171

Index 193

GC26-4061-0

-------- - ~------------------, -
®

s:
<
U'l --W
~
o
r
::::l
';<;"
Ql

<C
(I)

m
0-
.....
o .,
Ql

::::l
0-

r
o
Ql

0-
(I) .,
'TI

CD
z
!='
U'l w
~
o
W

Cl
(")
I\.l
OJ
.i:>.
o
OJ

6

L

Q) o
z

MVS/370 Linkage Editor and Loader
GC26-4061-0

Reader's
Comment
Form

This manual is part of a library tha t serves as a reference source for systems analysts, programmers, and operators of
IBM systems. You may use this form to communicate your comments about this publication, its organization, or
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any, are deemed
appropriate.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any
requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to
the IBM hranch office serving your locality.

Ust TNLs here:

If you have applied any technical newsletters (TN Ls) to this book, please list them here:

Last TNL _________ _

Previous TNL _________ _

Previous TNL _________ _

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you
may mail directly to the address in the Edition Notice on the back of the title page.) Thank
you for your cooperation.

G C26-4061-0

Reader's Comment Form

Fold and tape Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WI LL BE PAl D BY ADDRESSEE

I BM Corporation
P_o. Box 50020
Programming Publishing
San Jose, California 95150

F old and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

...
F old and tape Please do not staple Fold and tape

------- - -------. ---- - - ------______ 't'_
®

GC26-4061-0

:5:
<
Ul

---W
-..J
0
r
:J
7<"
OJ

tel
co
m
Cl. ,...

~
0
OJ
:J
Cl.

r
0
OJ
Cl.
co
.....

""T1

ro
z
0

Ul
W
-..J
0
W

-c
:J
.-+
co
Cl.

:J

C
Ul

:r>

C)
n
N
O"l
.i::.
0
O"l

6

