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ABSTRACT ‍
Despite the high prevalence of tendon pathology in athletes, 
the underlying pathogenesis is still poorly understood. 
Various aetiological theories have been presented and 
rejected in the past, but the tendon cell response model 
still holds true. This model describes how the tendon cell 
is the key regulator of the extracellular matrix and how 
pathology is induced by a failed adaptation to a disturbance 
of tissue homeostasis. Such failure has been attributed 
to various kinds of stressors (eg, mechanical, thermal and 
ischaemic), but crucial elements seem to be missing to fully 
understand the pathogenesis. Importantly, a disturbance of 
tissue pressure homeostasis has not yet been considered a 
possible factor, despite it being associated with numerous 
pathologies. Therefore, we conducted an extensive narrative 
literature review on the possible role of intratendinous 
pressure in the pathogenesis of tendon pathology. This 
review explores the current understanding of pressure 
dynamics and the role of tissue pressure in the pathogenesis 
of other disorders with structural similarities to tendons. 
By bridging these insights with known structural changes 
that occur in tendon pathology, a conceptual model was 
constituted. This model provides an overview of the possible 
mechanism of how an increase in intratendinous pressure 
might be involved in the development and progression 
of tendon pathology and contribute to tendon pain. In 
addition, some therapies that could reduce intratendinous 
pressure and accelerate tendon healing are proposed. 
Further experimental research is encouraged to investigate 
our hypotheses and to initiate debate on the relevance of 
intratendinous pressure in tendon pathology.

INTRODUCTION
Tendinopathy, the clinical syndrome of tendon 
pain and dysfunction, remains a challenge of major 
concern for athletes and accounts for approx-
imately 30% of all overuse injuries.1–4 Despite 
strong advances in tendon research over recent 
decades, there is still a limited understanding of the 
underlying mechanisms involved in the develop-
ment of tendon pathology that underpins tendinop-
athy. Consequently, management of this debilitating 
condition remains challenging, presumably because 
current treatment modalities do not directly address 
all aspects of the natural history of the disease. For 
example, 60% of patients still experience symp-
toms after completing an exercise-based rehabili-
tation programme.5 These unsatisfactory treatment 
results, which might even lead to the premature 
end of a sporting career, continue to frustrate clini-
cians and athletes. The list of alternative treatment 

options, such as shockwave therapy, injections 
(platelet-rich plasma, prolotherapy, corticosteroids, 
high volume, sclerotherapy), nitric oxide patches, 
surgical debridement, etc is long and illustrates that 
despite meritorious attempts, a ‘magic bullet’ for 
tendinopathy will remain elusive when there are 
still significant gaps in knowledge of the patho-
genesis of tendon pathology.6 7 Should we simply 
acknowledge the difficult nature of tendinopathies 
or further invest in fundamental tendon research 
to create new hypotheses and insights? We propose 
the latter and therefore aimed to explore the poten-
tial role of intratendinous pressure in the develop-
ment and progression of tendon pathology in both 
upper and lower limbs. This conceptual paper was 
developed on the basis that pressure dynamics in 
tendons have received little to no attention to date, 
yet may provide a coherent pathophysiological 

WHAT IS ALREADY KNOWN ABOUT THIS TOPIC
	⇒ Tendinopathy remains a major problem for 
athletes, accounting for 30% of all overuse 
injuries.

	⇒ Despite advances in tendon research, the 
pathogenesis of tendon pathology is still poorly 
understood.

	⇒ A disturbance of intratendinous pressure 
homeostatis has not yet been considered a 
possible factor.

WHAT THIS STUDY ADDS
	⇒ Remodelling of tendon tissue into 
fibrocartilage-like tissue can result in an 
increase in intratendinous resting and dynamic 
pressure, mainly due to an excess of water-
binding glycosaminoglycans and proteoglycans.

	⇒ An increase in intratendinous resting pressure 
might explain the hypoxic state and the 
formation of leaky (neo)vessels in tendon 
pathology.

	⇒ An increase in intratendinous dynamic pressure 
might make tendon pathology progressive and 
induce load-related tendon pain.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ Treatments aimed at inhibiting maladaptive 
remodelling (eg, modified physiotherapy) or 
reducing intratendinous pressure (eg, human 
recombinant hyaluronidase) might be promising 
therapies that should be investigated.
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explanation for some of the mechanisms and structural manifes-
tations involved in tendon pathology and pain. These reflections 
and the subsequent literature review led to several discussions 
among the authors that served as the basis for our integrative 
conceptual model summarised in figure  1. To facilitate the 
understanding of our model, each component will be discussed 
separately throughout the paper. We would like to point out that 
it is not our intention to claim that this model could lead us to 
the holy grail in tendon pathology, but rather to open a debate so 
that new experimental research can emerge and potentially serve 
as a stepping stone for the discovery of new targeted therapies to 
improve tendon healing.

METHODOLOGICAL CONSIDERATIONS
This narrative review article encompasses a literature search on four 
main aspects: (1) the relationship between compressive overload 
and tendon structure or pathology, (2) our current understanding 
of intratendinous pressure dynamics, (3) how structural changes in 
tendon pathology might disturb tissue pressure homeostasis and vice 
versa and (4) the recognised role of increased tissue pressure in the 
pathogenesis of other disorders that share structural similarities with 
tendons. By synthesising the scientific input gathered in the articles 
addressing these main areas, the authors attempted to answer the 
following research questions: (1) Can intratendinous pressure play a 
role in the development of tendon pathology? (2) Can a disturbance 
of intratendinous pressure be correlated with the clinical and para-
clinical manifestations of tendon pathology? (3) Can novel therapies 
safely intervene in changing the intratendinous pressure to obtain 
better results in the future? We included previous review articles 
and consensus statements regarding the pathogenesis of tendon 
pathology, and the electronic database PubMed was searched from 
database inception to January 2022 using domain-specific terms 
(see online supplemental appendix). In addition, reference lists of 
articles obtained from this search were also examined for additional 
relevant articles. Only papers that made a significant contribution 
to the body of knowledge on this topic were included for review.

Proposed steps or mechanisms in the pathogenesis
Compressive overload as pathogenic stimulus
Excessive load or training volume is considered the main trigger 
for tendinopathy.8 Traditionally, it was thought that the nature of 
this overload was purely tensile. However, evidence has emerged 

that tendons are also exposed to compressive loads, both in 
upper and lower limbs.9–11 External compression or impinge-
ment occurs mainly at the insertion, where tendons wrap around 
bony protuberances or convex surfaces.12–15 Two clear exam-
ples in the lower limbs are the Achilles tendon and the gluteus 
medius, where compression occurs at the posterosuperior border 
of the calcaneus12 13 and the greater trochanter,16 17 respectively. 
Some examples in the upper limbs include the long head of the 
proximal biceps tendon (at the level of the humeral head and 
bicipital groove)18–21, the distal biceps tendon (at the level of the 
radial tuberosity),14 22 23 the extensor carpi radialis brevis tendon 
(at the level of the lateral epicondyle and the capitellum)24 25 and 
the supraspinatus tendon (at the level of the humeral head and 
greater tuberosity).21 26–29 Internal compression, on the other 
hand, can also occur in the midsubstance because of the Poisson 
effect or torsion during tensile loading.30–32 It should be noted 
that for both types of compression, the amount of compressive 
load will be higher when more tensile load is applied, demon-
strating the close relationship between tensile and compressive 
loads in tendons.13 31

(Mal)adaptive tendon matrix remodelling
Mechanotransduction describes the ability of a cell to detect and 
convert mechanical stimuli into biochemical signals, resulting 
in intracellular changes and remodelling of the extracellular 
matrix (ECM) to adapt to the external loading environment.9 
In mechanically active tissues, such as tendons, this mechano-
transduction process plays a crucial role in tissue protection. It 
has been shown that the tendon micro-architecture continuously 
adapts to the applied or removed loads, and that this adaptive 
process is driven by the tenocyte. Fibrocartilage metaplasia, 
which is characterised by an increase in (1) glycosaminoglycans 
(GAGs), ie, hyaluronan (HA), chondroitin (CS) and dermatan 
sulfate (DS), (2) large proteoglycans (PGs), ie, aggrecan and 
versican, (3) rounded and enlarged tenocytes and (4) collagen 
type II, can therefore be considered a physiological adaptation to 
compressive loads, as it increases the resistance of tendon tissue 
to compressive loads.33 34 A typical example is the fibrocartilage 
at entheses, which are characterised by a four-zone gradient, 
transitioning from tendon to bone (figure 2). In this deep tendon 
area, compressive loads are extremely high and tensile loads 
are rather limited.13 35–37 However, when compressive loads are 

Figure 1  Conceptual framework describing the role of intratendinous pressure in the pathogenesis of tendon pathology. CS, chondroitin sulfate; 
DS, dermatan sulfate; HA, hyaluronan.
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suddenly increased in magnitude, metaplasia from a tensile to a 
fibrocartilaginous morphology can become excessive and occur 
beyond the ‘classical’ zone.9 21 38 This change in phenotype can 
have a number of negative consequences for tendons, especially 
for areas that are also exposed to a significant amount of tensile 
loads. First, it may gradually reduce the tendon’s tensile stiffness, 
which explains why the combination of tensile and compressive 
overloads is most damaging to tendons.26 33 39–41 Second, due to 
the strong water-binding properties of negatively charged GAGs 
and PGs, it also induces fluid accumulation, increasing suscepti-
bility to external compression as tendon thickness increases and 
making the compressive overload progressive.10 42 43 Third, it 
may also disrupt intratendinous pressure dynamics, which will be 
clarified in the following sections.9 44 These arguments indicate 
that excessive remodelling of tendon tissue into fibrocartilage-
like tissue due to compressive overload may result in failure 
to achieve optimal tendon matrix homeostasis and is therefore 
considered potentially maladaptive in our model.43–46 In addi-
tion, if overload persists, the change of tissue phenotype may 
alter the tendon cell response and result in loss of the organised 
structure of the fibrocartilage matrix, and thus also be the first 
stage of tendon pathology.

Volume expansion induces an increase in intratendinous resting 
pressure
Although somewhat ignored in tendons, every structure in our 
body (eg, nerves, muscles, joints, brain) has a total tissue pres-
sure (TTP), which is the sum of the interstitial fluid pressure 
(IFP) and the solid stress (SS).47 While IFP correlates only with 
the amount of free fluid, SS is the pressure exerted by the cells, 
collagen and GAGs or PGs, including their bound fluid.48 The 
TTP can vary slightly but usually remains below 10 mm Hg 
in normal conditions.49 However, in various pathologies, such 
as muscular compartment syndromes, compression induced 
neuropathies, osteoarthritis and tumours, TTP may increase 
significantly.48 50–54 In these disorders, the TTP increase is 
attributed to either a solitary increase in IFP or SS or the combi-
nation, with the associated volume expansion being resisted by 
an enclosed sheath. For example, intraneural pressure increases 
fourfold in compressive neuropathies due to fluid accumulation 

beneath the impermeable perineurium.54 In tendon pathology, 
this phenomenon also seems plausible, as the cellular prolifera-
tion and upregulation of several components of the ECM, espe-
cially GAGs and PGs with its bounded fluid, may induce a strong 
swelling pressure (figure 3).55–58 It is unclear which sheath would 
primarily resist the volume expansion, but both the endotenon 
(interfascicular matrix (IFM)) and epitenon seem possible as they 
have a fairly low permeability and closely surround the fascicles 
and the whole tendon, respectively.59 60 The increase of TTP in 
these confined spaces, namely intrafascicular or interfascicular, 
respectively, can therefore lead to a ‘miniature compartment 
syndrome’ in tendons, whereby continuous pressure is exerted 
on the associated tenocytes and ECM.54 61 This term was coined 
by Lundborg et al, who described that the swollen nerve fascicles 
in neuropathies exhibit a behaviour similar to that of a muscle 
compartment in chronic compartment syndrome.54 For conve-
nience, TTP is further discussed as intratendinous pressure.

Increased intratendinous resting pressure impairs vascularisation
Although controversial, biopsy and in vivo model studies suggest 
that hypoperfusion and subsequent hypoxia are features of 
tendon failure.62 Indeed, histopathological changes in chronic 
tendinopathies consist of necrotic tenocytes and an excess of 
blood vessels with narrowed lumen.63–68 In addition, microdial-
ysis studies have shown high levels of lactate within tendinosis, 
even in tendons at rest, suggesting that hypoxia may persist.69 
However, the exact mechanism of how hypoxia develops and 
can persist in tendinopathy has not yet been defined. We specu-
late that an increased intratendinous resting pressure (IRP) might 
be a crucial contributor, as it impairs vascularisation in two ways 
(figure 4). First, the elevated pressure is transmitted to the post-
capillary venules, increasing venous pressure and decreasing the 
arteriovenous pressure gradient.70 Indeed, an increase in venous 
pressure, indicating venous congestion, has already been found 
in midportion tendinopathy.71 72 Second, further increase of 
the IRP could also cause the capillaries to deform or collapse, 
reducing their radius and decreasing capillary blood inflow. A 
similar phenomenon has already been described in oedematous 
neuropathies53 54 73–75 and it may explain why narrowed vascular 
lumens are also found in degenerative tendinopathies. The IRP 
thresholds that can impede blood flow are based on the mean 
capillary and venous intravascular pressures, ie, 30 mm Hg and 
15 mm Hg, respectively.76 For example, pressure thresholds 
for chronic exertional compartment syndrome are intramus-
cular resting pressure >15 mm Hg, a one-minute postexercise 
pressure of >30 mm Hg or a 5 min postexercise pressure >20 
mm Hg.77 It should be mentioned that there is also a reciprocal 
relationship between tissue pressure and hypoxia. First, hypoxia 
can lead to arteriolar vasodilation and an increase in vascular 
permeability, allowing more fluid to enter the affected compart-
ment.70 Second, it has already been shown in retinopathies and 
tumours that neovessels, which are formed during prolonged 
hypoxia, typically have a chaotic, leaky architecture.78 Järvinen 
recently noted that leakage can also occur in the neovessels typi-
cally found in chronic tendinopathies.63 As described in muscles, 
nerves and tumours, blood vessel leakage increases IFP, creating 
a vicious cycle, which theoretically could also occur in tendinop-
athies.70 73 77 79

Reduced permeability induces an increase in intratendinous dynamic 
pressure
Approximately 70% of the weight of tendons consists of water, 
which is either free or bound to the ECM.80–82 However, the 

Figure 2  Illustration of the enthesis showing the presence of 
fibrocartilage in areas where tendon and bone are adjacent. Picture 
adapted with permission from Elsevier.156
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amount of water may vary due to fluid movement inwards and 
outwards of the tendon. Tendons undergo lateral contraction 
during tensile loading (Poisson’s ratio >0.5), which generates 
a positive fluid pressure and leads to radial fluid exudation and 
consequently volume shrinkage (figure  5A).83 This phenom-
enon, in part, explains the acute reduction in tendon thickness in 
response to exercise, equating to a cumulative transverse strain 
of approximately 6%.84–87 Moreover, fluid and SS pressurisation 
is also thought to be responsible for the observed decrease in 
microvascular blood flow during passive stretching in tendons, 
muscles and nerves, and the poststretch hyperaemia reaction 
that follows when tension is released.88–92 For convenience, we 
will further use the term intratendinous dynamic pressure (IDP) 
to refer to the amount of internal pressure generated during 
tensile loading in tendons. Although a direct analysis of IDP has 
not yet been carried out, a positive correlation between fluid 
pressure and passive strain has already been demonstrated in 
nerves and muscles.93–96 For example, intraneural pressure in the 
sciatic nerve increases from 8 mm Hg to 56 mm Hg during a 
straight leg raise.95 Theoretical and experimental studies have 
also shown that fluid pressure increases strongly when hydraulic 
permeability of the ECM decreases, as this is associated with 
a higher resistance to fluid flow.31 60 80 83 97–101 Such a decrease 
in transverse permeability typically occurs in tendon pathology 
due to the increase of water-retaining GAGs and PGs. Fluid can 

therefore be trapped inside the tendon matrix during tensile 
loading, resulting in significantly higher IDP (figure  5B). In 
addition, since free fluid volume is also increased in tendon 
pathology, allowing more fluid to be trapped, the pressurisa-
tion effect can be even more pronounced.81 102 These assump-
tions are consistent with clinical findings that tendon thickness 
decreases less after exercise in patients with tendinopathy.103 104 
Moreover, it also implies that for the same amount of tensile 
load, tendon cells will experience more IDP in tendon pathology 
than in healthy tendons, which again creates a vicious cycle, and 
represent a plausible mechanism for the progression of tendon 
pathology.

How does this model fit into the continuum model?
The continuum model by Cook et al classifies tendinopathy 
based on the changes and distribution of disorganisation within 
the tendon. Three different phases were distinguished, namely 
reactive tendinopathy, tendon disrepair and degenerative tend-
inopathy.105 106 Each of these phases might also be related to 
changes in intratendinous pressure. Reactive tendinopathy, due 
to (compressive) overload, is essentially accompanied by an 
accumulation of hydrophilic GAGs, PGs and associated fluid.107 
These GAGs (eg, HA) and PGs (eg, aggrecan and versican) can be 
produced rapidly, within a few hours to days, and are responsible 

Figure 3  Illustration of how swelling pressure in tendon pathology may occur, resulting in an increased intratendinous resting pressure.
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for the rapid tendon swelling.105 As already described in detail 
for tumours, it is precisely these GAGs that increase the SS and 
consequently cause the IRP to rise sharply.108–111 Moreover, 
the increase in GAGs is also responsible for the reduced matrix 
permeability, which further leads to an increase in IDP.44 60 112 113 
Fortunately, GAGs and PGs have a fast turnover rate, which 
means they can also be degraded just as quickly.105 Therefore, 
by removing the compressive stimulus on the tenocyte, GAGs, 
PGs and associated fluids might decrease, and a normalisa-
tion of the IRP and IDP could occur. This explains why rest is 
so successful in the reactive phase.105 However, if the athlete 
continues to train with a swollen, less permeable tendon, the 

tenocyte will gradually experience more pressure for the same 
amount of load, further stimulating the production of GAGs, 
PGs and associated fluid, resulting in persistently high IRP and 
IDP. As a result, the tendon matrix may enter the disrepair phase, 
on the one hand, due to hypoxia and, on the other hand, due to 
physical disruption because of high IRP and IDP, respectively. 
It has recently been highlighted that degradation of the IFM 
precedes damage to the intrafascicular matrix and is therefore 
an important feature of the progression of tendon pathology.107 
Our theory may also fit these findings. Since the IFM cell popula-
tion is more metabolically active than the fascicular tenocytes, it 
is also more oxygen-dependent.114–116 Ischaemia will, therefore, 

Figure 4  Illustration of how ischaemia may occur in tendons due to an increased IRP. (A) Normal fascicle in which pressure gradient is necessary 
for adequate intrafascicular circulation. (B) IRP in tendon pathology may be increased, inducing vascular collapse and a reduced arteriovenous 
pressure gradient. The resulting hypoxia stimulates vascular permeability and the formation of leaky neovessels, which further contribute to an 
increase in IFP. It should be noted that the IRP can also increase interfascicularly with the same phenomena, but with the epitenon as the main barrier 
sheath. IFP, interstitial fluid pressure; IRP, intratendinous resting pressure.

Figure 5  Illustration of how IDP occurs in tendons, resulting in fluid exudation. (A) During tensile loading, tendon fluid moves radially from 
the tendon core to the outside, due to lateral contraction and the associated increase in pressure. (B) In tendon pathology, hydraulic permeability 
decreases due to the accumulation of GAGs and PGs, resulting in fluid entrapment and higher IDP. GAGs, glycosaminoglycans; IDP, intratendinous 
dynamic pressure; PGs, proteoglycans.
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have a greater detrimental effect on IFM cells, which will more 
quickly alter phenotype or succumb to apoptosis. Furthermore, 
we believe that mechanical disruption will also start in the IFM 
due to high IDP, as pressurisation begins within the packed 
microstructure of tendon fascicles (figure  6).60 97 117 118 Even-
tually, if the patient continues their activities during this phase 
of disrepair, prolonged oedema and hypoxia will also lead to 
cell apoptosis and irreversible matrix breakdown products 
within the fascicles.119 This theory is already accepted to explain 
tissue changes that occur in chronic compressive neuropathies 
due to increased intraneural pressure.52 75 In turn, the damaged 
collagen network may also further fail to oppose the swelling 
pressure, resulting in loss of parallel alignment with large 
deposits of GAGs and PGs in between.17 119–122 The degenerative 
phase has then reached the affected tendon region. Finally, it 
should not be ignored that proinflammatory cytokines are also 
observed in tendinopathies. It is suggested that these should be 
attributed mainly to the mechanosensitive tenocytes in response 
to overload or disruption of homeostasis.106 Since local chronic 
inflammation also occurs in compressive neuropathies because 
of increased intraneural pressure, this could theoretically also be 
the case for tendons.52 123

How does this model relate to (para)clinical features of 
tendinopathy?
Pain
In general, the term ‘tendinopathy’ refers to a pathological 
condition of a tendon with a complaint of pain and decreased 
function.124 At present, there are still many questions about the 
identity of the nociceptive driver in tendinopathy as the relation 
between tendon pain and tissue disruption is not straightfor-
ward.125 126 We speculate that a disturbance of the intratendinous 
pressure homeostasis might be involved in pain perception. First, 
an increase in intratendinous pressure can activate the mechano-
nociceptors located in the peritendinous connective tissue (both 
endo- and epitenon), subsequently firing the fast, myelinated 
Aδ fibres and the slow, non-myelinated C fibres. These fibres 
are responsible for the first, sharp pain and the later, dull pain, 
respectively. Both nociceptors have a noxious pressure threshold 
around 100 mm Hg tissue pressure, but their firing frequency, 
and thus the sensation of pain, increases significantly as pressure 
rises.127–129 We suggest that such high pressures in tendons can 
only be achieved during loading (IDP) and if the matrix perme-
ability is sufficiently reduced. This is consistent with the obser-
vation that tendon pain correlates well with load intensity and 

GAG or PG content.106 130 Moreover, since IDP also correlates 
with strain rate, this elucidates why fast loading exercises (eg, 
plyometrics) are more provocative than slow exercises (eg, 
isometrics).131–133 Furthermore, it also clarifies the warming-up 
effect in tendinopathy, since tendon preconditioning leads 
to controlled fluid exudation, which will reduce the IDP.134 
Conversely, it may also explain morning stiffness, as fluid reab-
sorption and accumulation typically occur at night, as already 
described in carpal tunnel syndrome.135 As a result, presumably 
higher IDP pressures will occur in a stiff, overhydrated tendon 
during the first steps in the morning. Finally, two other noxious 
stimuli that are highly elevated in tendon pathology, namely 
glutamate and lactate, can also be associated with our pressure 
model.69 119 136 Glutamate is typically released by activation of 
C fibres, while lactate is a consequence of prolonged hypoxia.

Swelling
Another clinical feature of tendon pathology is swelling, usually 
fusiform in shape,137 which is mainly attributed to the strong 
increase in highly negatively charged GAGs and PGs that induce 
water absorption.8 For example, in patellar tendinopathy, the 
GAG content increases fivefold, accompanied by a fluid increase 
of more than 16%.34 Yet, the amount of free fluid also appears 
to increase in tendinopathy.138 Within our conceptual model, 
tendon swelling also occupies a central position, as it is neces-
sary to obtain swelling stress and consequently an increase in 
IRP. However, there are two important factors to consider. First, 
based on tumour studies, an increase in GAG-bound fluid (SS) 
will have a significantly greater impact on IRP than an increase 
in free fluid (IFP).108–110 139 140 Second, the amount of swelling 
pressure will be highly dependent on the location of the fluid 
accumulation within the tendon matrix (figure 7). Indeed, the 
intrinsic compartment, the fascicle, has a much smaller diffu-
sion space than the large extrinsic compartment of the IFM.65 
By analogy, it has already been described in nerves that a small 
fascicular fluid increase is associated with an intense pressure 
increase (up to 750 mm Hg), whereas the same fluid increase in 
the IFM resulted in a significantly lower pressure (up to 60 mm 
Hg).141 Although PGs and GAGs occur both inter- and intrafas-
cicularly, fluid accumulation appears to occur primarily inter-
fascicularly and, consequently, extremely high resting pressures 
(> 100 mm Hg) are unlikely to occur in tendon pathology.55–58

Structural findings
Tendon pathology is rarely homogeneous in terms of severity 
of tendon damage—some fascicles are more affected than 
others.142 143 Recently, it was described that the degree of perme-
ability of the fascicles differs and that this might play a role in 
the development of tendon pathology.144 These observations fit 
perfectly in our conceptual model. We believe that the IRP and 
IDP will also be heterogeneous, as it is related to the amount 
of fluid in the fascicles and the permeability of the IFM in the 
affected tendon region. Consequently, disrepair of the IFM is 
expected to occur mainly in the regions where the intratendi-
nous pressures are highest.

Therapeutic implications
The quest for novel therapies in sports medicine must be based 
on discoveries through basic science. This conceptual model 
proposes a central role of increased intratendinous pressure 
in the pathogenesis of tendon pathology. Therefore, strategies 
that can restore intratendinous pressure might be relevant to 
consider as an (additional) treatment strategy. We speculate that 

Figure 6  Illustration of how disruption of the interfascicular matrix 
may occur in tendons due to high intratendinous dynamic pressure.
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this can be achieved in two ways. On the one hand, maladap-
tive mechanotransduction must be addressed. This can be done 
by reducing the amount of compressive load, but still exerting 
sufficient tensile forces on the tenocyte during rehabilitation 
to restore its normal phenotype and promote proper ECM 
synthesis. For example, in insertional Achilles tendinopathy, 
this can be relatively easily achieved by reducing the amount 
of dorsiflexion.10 145 146 In addition, heavy-slow resistance exer-
cises would also give better results than high-speed exercises, 
as these are associated with a lower IDP.132 On the other hand, 
drug treatment that directly targets the elevated GAG content 
might also be a very powerful tool. A potential treatment that 
has been mentioned recently for tendinopathies is human recom-
binant hyaluronidase, as it degrades HA, CS and DS from the 
ECM to preinjury levels.147 148 The removal of these excess 
GAGs can liberate the bound fluid and significantly reduce the 
fluid content, resulting in a lower IRP, thus enabling vascular 
re-expansion.101 140 149 This novel agent is already used for 
tumours as it successfully reduces interstitial pressure to enhance 
the delivery of cytotoxic agents.150 Furthermore, since enzy-
matic degradation of GAGs also increases matrix permeability, 
allowing the fluid to exude more easily during loading, this will 
also result in a lower IDP.80 The use of human recombinant hyal-
uronidase may therefore be particularly useful in the reactive 
or early disrepair phase, before irreparable structural damage 
has occurred. Fortunately, previous experimental studies have 
shown that depletion of GAGs from tendon fascicles does not 
decrease tensile stiffness.40 147 151 152 We, therefore, speculate that 
this treatment, which has been used in different medical applica-
tions for over 60 years, could be safe for tendons as well.153–155

Future research
Further research into the relationship between intratendinous 
pressure dysregulation and tendon pathology is a promising 
domain. A better understanding of intratendinous pressure 
dynamics could provide invaluable information about the aeti-
ology and progression of tendon pathology. This would allow 
researchers and clinicians to translate this information into 
the identification of potential risk factors and effective treat-
ment strategies, leading to better outcomes for all tendinopathy 
patients. More specifically, we propose to first focus on identi-
fying the suspected elevated IRP and IDP in tendon pathology, 
using minimal or non-invasive techniques. In addition, the 
effects of the mentioned treatment strategies that could reduce 
these intratendinous pressures should also be investigated.

Twitter Lauren Pringels @LaurenPringels, Jill L Cook @profjillcook, Erik Witvrouw 
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