近世代数:循环群与变换群

首先的首先,我们要对“包含M的最小子群”这个概念彻底了解:

 想象一下:一个群G中,有一个小小的子集(注意是子集),有很多群包括这个子集,而这些群的交集就是<M>,如何证明<M>也是一个子群呢?想象一下,假如有aob=c而c不在<M>里的情况,既然c不在<M>里,那就肯定有子群包含了a,b但不包含c,那他就不是子群了,可见<M>肯定是子群。可以看到,只要包含M就会包含<M>(假如有不包含<M>的部分,那<M>就得相应地变小)。

现在我们彻底了解了,讲生成系:

 可以看到想要成为生成系很容易,只要作为一个子集被子群(哪怕只有一个)包括了,那就有了<M>,有了自己生成的子群(一个M倒是只能生成一个<M>),自己就成生成系了。

注意:<M>=<a1,a2,a3>可不是这个生成的子群元素就是a1,a1,a3的意思,是生成系元素是a1,a2,a3的意思,<M>本体可以大得多。

从这个地方开始,你就要想一想为什么M可以被称为生成系,<M>要叫生成群了。这样想:我有一个子集M,我想要让他变成群,但他自己不够,自己的元素乘了几下就跑出去了,那小子还要有逆元,单位元,我得加几个元素才能保证元素乘来乘去而不会跑出去。我就给他加几个元素。加几个才可以呢?那就找到那些包含了M的子群,他们的交集是最小的子群,也就是说,想要把M变成群,加成<M>这样就可以了。

那么,这个时候你可能就会想了:假如M里有a和b,aob=c,那我就要把c放进来。aoc=d,那我就要把d放进来···那岂不没完没了了?那可不一定。aoc不一定是d也可能是b呀,乘到最后可能会回去,是不是又“循环”的感觉了?对!(当然他也确实有可能是无限群)

这个理解了,那接下来就是循环群了:

 这里可以向上解释一下:a在这里是生成元,在上面相当于生成系。G在这里被a生成了,可不就是上面那无数子群取交所得的<a>,生成群。不过这里,G自己翻生当主人,自己成了群。

我刚刚讲到,M生成<M>的过程就是M里的a,b乘来乘去,把不认识的元素加到自己的集合里来的过程。现在M里面只有a一个元素了,那a只能自娱自乐,自己乘自己,于是所有元素都成了a的幂。当然他也不一定就是无限群。刚刚有讲过,有可能“循环”的。

来几个循环群的例子:

对各个例子的解释:

1.我现在M={1},子群想要包含1,假如只是简单地包几个数的话都不是群,(注意正整数加群不是循环群,群要有逆元呀)最后只能变成整个整数。还可以用-1做生成元。注意不可以用2,-2之类的,得到的循环群会是2*Z。

a的阶数是无穷,那a就没指望“循环”了,加上e,逆元····就成了上面那样。

a的阶数有穷,那就可以“循环”了,就成了上面那样。你可能会问:为什么没有a-1之类的?笨啦,a-1不就是a^n-1吗?

同构会不会忘了是怎么回事?就是元素,映射,隐射结果全部双射对应的意思。

来几个推论:

 当然啦,刚刚就有证。

 记得刚刚的整数加群吗?1和-1都是生成元。可以这样理解:a乘来乘去有了正半部分,逆元就有了反半部分,那a^-1也是这样。

那Euler函数是什么呢?:

就是对于一个正整数n,小于n且和n互质的正整数(包括1)的个数,记作φ(n) 。

假如有某个数k不和n互质,那k多乘几次肯定会有漏掉的元素。产生的群还是循环群,但变小了,和原来的不一样了。

 首先可以看到,<M>的子群还是循环群(就叫它<n>吧),n和M肯定不一回事。(假如是的话那<M>可就不是M的生成群了)其实我们刚刚举过例子了。|a|=n的时候我用一个不和n互质的数k,a^k做生成元产生的群肯定相较于原来的漏掉了一些,但还是生成群,并且是子群。假如|a|=无穷,就以整数加群为例,我拿2做生成元,产生的群是2*Z,是Z的子群,还是循环群。

第一部分很显然。第二部分则直接不装了:我k就是和n有一腿,我这都不是不互质了,我直接是人家因子,那不晓得漏掉几多。就比如说n=6,k=2,那以a^(6/2也就是3)为生成元的循环群就只有{a3,a6=e}.

T(n)=2+小于n且与n不互质的数的个数(注意这个地方算的是不互质的)

刚刚算互质的是因为互质代表了产生的循环群和原来的一样(就成为了“其他生成元”),那就不是我们现在想要的了(前面加2是所有群天生就有的,显然这里的n要大于1),不互质的话就有漏的,就是子群了。

变换群:

集合的变换还记得是什么吗?就是让集合的每一个值对应集合里的另一个值(也可以是原来哪一个)而变换的乘法就是“先换成A,再换成B”那样。因为在大家都是双射变换时“先换A,再换B”这样的效果必然会等于 “直接按C换”故可以成群。所以这个群就是有一大堆的变换组成的。

对称群:

 

 你想呀,成群的话那肯定有逆元对不对,逆元是什么?不就是把变换的前后交换一下对不对?假如有一个元素只是单射而不是双射,那逆元不就是一个对多个了?所以肯定是双射。

这样看,是不是变换群很难是非双射?确实,你可以看ppt上举的例子,真就逆天。

我感觉,最直观的记法就是:有恒等变换这一条把ppt上的逆天例子排除了。

解释一下:群都是满足消去律的,ax1=ax2那x1,x2就相等了,所以一定是双射。

双射变换群肯定是对称群的子群呀。 

  • 2
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值