凸包(Convex Hull)问题算法详解

参考:https://blog.csdn.net/Zhang_Chen_/article/details/102417129

前言:

  • 首先,什么是凸包?
    假设平面上有p0~p12共13个点,过某些点作一个多边形,使这个多边形能把所有点都“包”起来。当这个多边形是凸多边形的时候,我们就叫它“凸包”。如下图:
    在这里插入图片描述
  • 然后,什么是凸包问题?
    我们把这些点放在二维坐标系里面,那么每个点都能用 (x,y) 来表示。
    现给出点的数目13,和各个点的坐标。求构成凸包的点?

概述:

  • 凸包(Convex Hull)是一个计算几何(图形学)中的概念。
    在一个实数向量空间V中,对于给定集合X,所有包含X的凸集的交集S被称为X的凸包。X的凸包可以用X内所有点( X1 ,. . . ,Xn )的凸组合来构造。
  • 在二维欧几里得空间中,凸包可想象为一条刚好包着所有点的橡皮圈。用不严谨的话来讲,给定二维平面上的点集,凸包就是将最外层的点连接起来构成的凸多边形,它能包含点集中所有的点
  • 凸包问题:给定点集,求构成凸包的点

1. 穷举法(暴力法、蛮力法)

  • 时间复杂度:O(n³)。
  • 思路:两点确定一条直线,如果剩余的其它点都在这条直线的同一侧,则这两个点是凸包上的点,否则就不是。
  • 步骤:
  1. 将点集里面的所有点两两配对,组成在这里插入图片描述
    条直线。对于每条直线,再检查剩余的( n − 2 ) 个点是否在直线的同一侧。

  2. 如何判断一个点 p 3 p3 p3是在点 p 1 、 p 2 p1、p2 p1p2连成的直线的左边还是右边呢?坐标: p 1 ( x 1 , y 1 ) , p 2 ( x 2 , y 2 ) , p 3 ( x 3 , y 3 ) p 1 ( x 1 , y 1 ) , p 2 ( x 2 , y 2 ) , p 3 ( x 3 , y 3 ) p1(x1,y1)p2(x2,y2)p3(x3,y3)
    在这里插入图片描述

2. 分治法

  • 时间复杂度:O(n㏒n)。
  • 思路:应用分治法思想,把一个大问题分成几个结构相同的子问题,把子问题再分成几个更小的子问题……。然后我们就能用递归的方法,分别求这些子问题的解。最后把每个子问题的解“组装”成原来大问题的解。
  • 步骤:
  1. 把所有的点都放在二维坐标系里面。那么横坐标最小和最大的两个点 P 1 、 P n P1、Pn P1Pn一定是凸包上的点。直线 P 1 P n P1Pn P1Pn把点集分成了两部分,即X轴上面和下面两部分,分别叫做上包和下包。
  2. 对上包:求距离直线 P 1 P n P1Pn P1Pn最远的点,假设为点 P m a x Pmax Pmax
  3. 作直线 P 1 P m a x 、 P n P m a x P1Pmax、PnPmax P1PmaxPnPmax,把直线 P 1 P m a x P1Pmax P1Pmax左侧的点当成是上包,把直线 P n P m a x PnPmax PnPmax右侧的点也当成是上包。
  4. 重复步骤 2、3。
  5. 对下包也作类似操作。
    在这里插入图片描述
  6. 然而怎么求距离某直线最远的点呢?设有一个点 p 3 p3 p3和直线 p 1 p 2 p1p2 p1p2。坐标: p 1 ( x 1 , y 1 ) , p 2 ( x 2 , y 2 ) , p 3 ( x 3 , y 3 ) p1(x 1 , y 1 ) , p 2 ( x 2 , y 2 ) , p 3 ( x 3 , y 3 ) p1(x1,y1)p2(x2,y2)p3(x3,y3)
    在这里插入图片描述
    注意:在步骤1中,如果横坐标最小的点不止一个,那么这几个点都是凸包上的点,此时上包和下包的划分就有点不同了,需要注意。

代码实现:

#include <iostream>
#include <vector>

using namespace std;

vector<vector<int>> convex_hull; /*convex_hull储存所有凸包点*/

/*GetResult()实现功能:以坐标P0(x1,y1)和Pn(x2,y2)为直线,找出pack里面里这条直线最远的点Pmax
并找出直线P0Pmax和PmaxPn的上包,进行递归
*/

void GetResult(vector<vector<int>> point, int x1, int y1, int x2, int y2)
{
    /*tmax:最远点在point中的索引
    Rmax:最远距离的值*/
    int i, x3, y3, R, Rmax, tmax; 
    vector<vector<int>> result_pack; /*存放上包点或者下包点*/
    
    /*上包点或者下包点计数,初始化为零*/
    result_pack.push_back({0});
    
	x3 = point[1][0];
    y3 = point[1][1];
    R = x1*y2 + x3*y1 + x2*y3 - x3*y2 - x2*y1 - x1*y3;
    Rmax = R;
    tmax = 1;

    if (R >= 0)
    {
        result_pack.push_back({x3, y3});
        result_pack[0][0] = result_pack[0][0] + 1;
    }
    
    for(int i=2;i<=point[0][0];i++) /*从点集的第二个点开始循环*/
    {
        x3 = point[i][0];
        y3 = point[i][1];
        R = x1*y2 + x3*y1 + x2*y3 - x3*y2 - x2*y1 - x1*y3;
        if(R >= 0) /*如果R>=0,则是同一测包(上包或下包)的点*/
        {
            result_pack.push_back({x3, y3});
            result_pack[0][0] = result_pack[0][0] + 1;
        }
        if(R > Rmax)
        {
            Rmax = R;
            tmax = i;
        }
    } /*找到一测距离直线最远的点的距离和索引*/
    
    if(Rmax <= 0) /*如果已经是边界点了*/
    {
        for(int i=1;i<=result_pack[0][0];i++)
        {
            x3 = result_pack[i][0];
            y3 = result_pack[i][1];
            R = x1*y2 + x3*y1 + x2*y3 - x3*y2 - x2*y1 - x1*y3;
            if(R == 0 && !((x3==x2&&y3==y2)||(x3==x1&&y3==y1))) /*如果R是零并且这个新点不是决定直线的两个点,则加入凸包点集合*/
            {
                convex_hull.push_back({result_pack[i][0], result_pack[i][1]});
                convex_hull[0][0] = convex_hull[0][0] + 1;
            }
        }
        return;
    }
    else
    {
        convex_hull.push_back({point[tmax][0], point[tmax][1]});
        convex_hull[0][0] = convex_hull[0][0] + 1;
        if(result_pack[0][0] == 0)
            return;
    }
    GetResult(result_pack, x1, y1, point[tmax][0], point[tmax][1]);
    GetResult(result_pack, point[tmax][0], point[tmax][1], x2, y2);
}

int main(int argc, char** argv)
{
    vector<vector<int>> pointset; /*pointset储存所有点*/
    int count=1; /*整型变量conut用于计数*/
    int x1, y1, x2, y2, x3, y3; /*三个点的坐标*/
    convex_hull.push_back({0}); /*convex_hull的第一行第一列元素存放凸包点的个数,初始化为0*/
	pointset.push_back({0}); /*pointset的第一行第一列元素存放点集里面有几个点,初始化为0*/
    
	cout<<"===请输入所有点的坐标==="<<endl;
    
    /*初始化点集*/
    int x, y;
    while(count<20) /*设置输入20个点*/
	{
		cout<<"请输入点"<<count<<"的x轴坐标:"<<endl;
		cin>>x;
		cout<<"请输入点"<<count<<"的y轴坐标:"<<endl;
		cin>>y;
		pointset.push_back({x, y});
        count++;
	}
    /*点集里一共有多少个点*/
	pointset[0][0] = count-1; 

	x1 = pointset[1][0];
    y1 = pointset[1][1];
    
	x2 = x1;
    y2 = y1;
    
	for(int i=2;i<=pointset[0][0];i++)
    {
        x3 = pointset[i][0];
        y3 = pointset[i][1];
        if(x3 < x1)
        {
            x1 = x3;
            y1 = y3;
        } /*找到x最小的点赋给(x1, y1)*/
        else if(x3 > x2)
        {
            x2 = x3;
            y2 = y3;
        } /*找到x最大的点赋给(x2, y2)*/
    }

	/*两点是凸包点*/
    convex_hull.push_back({x1, y1});
    convex_hull.push_back({x2, y2});
	
	/*凸包点个数加二*/
    convex_hull[0][0] += 2;
    
    /*因为新x1-x2和x2-x1符号相反,所以上包点和下包点对应的“计算距离公式分子绝对值内的数学表达式”的一正一负
    所以下面调换x1和x2顺序作为输入保证两者计算的“计算距离公式分子绝对值内的数学表达式”为正的情况各是上包点和下包点中的一种*/
	GetResult(pointset, x1, y1, x2, y2);
    GetResult(pointset, x2, y2, x1, y1);

    /*打印凸包点*/
    cout<<"\n\n构成凸包的点有:"<<endl;
    for(int i=1;i<=convex_hull[0][0];i++)
    {
        cout<<"("<<convex_hull[i][0]<<", "<<convex_hull[i][1]<<")"<<endl;
    }
}

3. Jarvis步进法

  • 时间复杂度:O(nH)。(其中 n 是点的总个数,H 是凸包上的点的个数)
  • 思路:纵坐标最小的那个点一定是凸包上的点,例如下图中的 P 0 P 0 P0。从 P 0 P 0 P0开始,按逆时针的方向,逐个找凸包上的点,每前进一步找到一个点,所以叫作步进法。
  • 怎么找下一个点呢?利用夹角。假设现在已经找到 P 0 , P 1 , P 2 P 0 , P 1 , P 2 P0P1P2了,要找下一个点:剩下的点分别和 P 2 P 2 P2组成向量,设这个向量与向量 P 1 P 2 P 1 P 2 P1P2的夹角为 β 。当 β 最小时就是所要求的下一个点了,此处为 P 3 P 3 P3
    在这里插入图片描述
  • 注意
  1. 找第二个点 P 1 P 1 P1时,因为已经找到的只有 P 0 P 0 P0一个点,所以向量只能和水平线作夹角 α,当 α 最小时求得第二个点。
  2. 共线情况:如果直线 P 2 P 3 P 2 P 3 P2P3上还有一个点 P 4 P 4 P4,即三个点共线,此时由向量 P 2 P 3 P 2 P 3 P2P3和向量 P 2 P 4 P 2 P 4 P2P4产生的两个 β 是相同的。我们应该把 P 3 、 P 4 P 3、 P 4 P3P4都当做凸包上的点,并且把距离 P 2 P 2 P2最远的那个点(即上图中的 P 4 P 4 P4)作为最后搜索到的点,继续找它的下一个连接点。

4. Graham(格拉翰)扫描法

  • 时间复杂度:O(n㏒n) 。
  • 思路:Graham扫描的思想和Jarvis步进法类似,也是先找到凸包上的一个点,然后从那个点开始按逆时针方向逐个找凸包上的点,但它不是利用夹角。
    在这里插入图片描述
  • 步骤:
  1. 把所有点放在二维坐标系中,则纵坐标最小的点一定是凸包上的点,记为 P 0 P 0 P0
  2. 把所有点的坐标平移一下,使 P 0 P 0 P0作为原点。
  3. 计算各个点相对于 P 0 P 0 P0的幅角 α ,按从小到大的顺序对各个点排序。当 α 相同时,距离 P 0 P 0 P0比较近的排在前面。例如上图得到的结果为 P 1 , P 2 , P 3 , P 4 , P 5 , P 6 , P 7 , P 8 P 1 , P 2 , P 3 , P 4 , P 5 , P 6 , P 7 , P 8 P1P2P3P4P5P6P7P8。我们由几何知识可以知道,结果中第一个点 P 1 P 1 P1和最后一个点 P 8 P 8 P8一定是凸包上的点。
  4. 以上,我们已经知道了凸包上的第一个点 P 0 P 0 P0和第二个点 P 1 P 1 P1,我们把它们放在栈里面。现在从步骤3求得的那个结果里,把 P 1 P 1 P1后面的那个点拿出来做当前点,即 P 2 P 2 P2。接下来开始找第三个点。
  5. 连接栈最上面的两个元素,得到直线L。看当前点是在直线L的右边还是左边。如果在直线的右边就执行步骤6;如果在直线上,或者在直线的左边就执行步骤7。
  6. 如果在右边,则栈顶的那个元素不是凸包上的点,把栈顶元素出栈。执行步骤5。
  7. 当前点是凸包上的点,把它压入栈,执行步骤8。
  8. 检查当前的点是不是步骤3那个结果的最后一个元素。是最后一个元素的话就结束。如果不是的话就把当前点后面那个点做当前点,返回步骤5。
  9. 最后,栈中的元素就是凸包上的点了。
    以下为用Graham扫描法动态求解的过程:
    在这里插入图片描述
  • Graham(格拉翰)扫描法要求开始时必须至少知道一个必然在凸包上的点作为起始点(还好这比较简单)。它有个缺点就是直接用它去求一个给定多边形的凸包可能会导致错误,因此算法开始前必须将点有序化。

5. Melkman算法

  • 28
    点赞
  • 99
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值