
Case Nos. 2017-1118, -1202

In the

United States Court of Appeals
for the

Federal Circuit

ORACLE AMERICA, INC.,

Plaintiff – Appellant

v.

GOOGLE INC.,

Defendant – Cross-Appellant

On Appeal from the United States District Court for the Northern District of California,
Case No. 3:10-cv-03561-WHA ∙ Honorable William H. Alsup, United States District Judge

BRIEF OF AMICUS CURIAE MOZILLA
URGING AFFIRMANCE OF THE JUDGMENT

May 30, 2017

MARCIA HOFMANN
ZEITGEIST LAW PC
25 Taylor Street
San Francisco, California 94102
(415) 830-6664 Telephone
marcia@zeitgeist.law

Counsel for Amicus Curiae Mozilla

COUNSEL PRESS ∙ (800) 3-APPEAL

PRINTED ON RECYCLED PAPER

	

 i

CERTIFICATE OF INTEREST
	

Counsel for amicus curiae certifies the following:

1. The full name of the amicus curiae represented by me is:

Mozilla Corporation

2. The name of the real party in interest (if the party named in the caption is not the

real party in interest) is:

None.

3. All parent corporations and any publicly held companies that own 10 percent or

more of the stock of the amicus curiae represented by me are:

Mozilla Corporation is wholly owned by the Mozilla Foundation, a non-profit
organization. No publicly held corporation owns 10% or more of Mozilla
Corporation’s stock.

4. The names of all law firms and the partners and associates that appeared for the

amicus curiae now represented by me in the district court or are expected to appear
in this court are:

Mozilla did not appear in the district court.

Mozilla is represented before this Court by Marcia Hofmann of Zeitgeist Law PC.

Dated: May 30, 2017 /s/ Marcia Hofmann
 Marcia Hofmann

ii

TABLE OF CONTENTS

TABLE OF AUTHORITIES .. iii

STATEMENT OF INTEREST OF AMICUS CURIAE ... 1

INTRODUCTION .. 2

ARGUMENT .. 3

I. Incorporating Declaring Code Into an Independent Implementation
Can Weigh in Favor of Fair Use Under the First Factor 4

A. Incorporating Code into New and Different Software
is Transformative When it Uses the Underlying Code
in a New Context or Produces a New Creation 4

B. Commerciality May Have Little Weight in a Fair Use
Analysis for an Implementation that Includes Declaring
Code When the New Work is Put Under an Open-Source
License ... 8

II. The Functional Nature of Declaring Code in an Implementation
Can Support a Finding of Fair Use Under the Second and Third
Fair Use Factors ... 10

III. The Use of Declaring Code in an Independent Implementation
Can Weigh in Favor of a Fair Use Under the Fourth Factor 11

A. The Use of Declaring Code in an Independent Implementation
Can Expand the Market for the Original Software 12

B. Independent Implementations are Likely to Enhance the
Value of Underlying Software When They Are Put Under
and Open-Source License ... 15

CONCLUSION .. 19

CERTIFICATE OF COMPLIANCE ... 20

CERTIFICATE OF SERVICE .. 21

iii

TABLE OF AUTHORITIES

CASES

Campbell v. Acuff-Rose Music, Inc.,
510 U.S. 569 (1994) .. 3, 4, 5, 8

Harper & Row, Publishers, Inc. v. Nation Enters.,
471 U.S. 539 (1985) ... 4

Hustler Magazine, Inc. v. Moral Majority, Inc.,
796 F.2d 1148 (9th Cir. 1986) .. 8, 9

Jacobsen v. Katzer,
535 F.3d 1373 (Fed. Cir. 2008) .. 15

Oracle Am., Inc. v. Google Inc.,
750 F.3d 1339 (Fed. Cir. 2014) ... 4, 10

Perfect 10, Inc. v. Amazon.com, Inc.,
508 F.3d 1146 (9th Cir. 2007) .. 4

Planetary Motion, Inc. v. Techsplosion, Inc.,
261 F.3d 1188 (11th Cir. 2001) .. 15

Sega Enters., Ltd. v. Accolade, Inc.,
977 F.2d 1510 (1992) ... 8, 9, 11, 12, 16

Sony Computer Entm’t v. Connectix Corp.,
203 F.3d 596 (9th Cir. 2000) ... 8, 11

Sony Corp. of Am. v. Universal City Studios, Inc.,
464 U.S. 417 (1984) ... 8

Stewart v. Abend,
495 U.S. 207 (1990) ... 3

CONSTITUTIONS

U.S. Const. art. I, § 8, cl. 8 ... 3

STATUTES

17 U.S.C. § 107 ... 3, 4, 8, 10, 11

iv

OTHER AUTHORITIES

API: Geolocate, Mozilla, at https://mozilla.github.io/ichnaea/api/geolocate.html 14

BetterTLS, Netflix Technology Blog (Apr. 10, 2017),
at https://medium.com/netflix-techblog/bettertls-c9915cd255c0.............. 17, 18

Enguerrand Decorne et al., OCaml Inside: a Drop-in Replacement for Libtls, Ocaml
Users and Developers Workshop 2016 at 1 (Aug. 8, 2016),
at https://www.cl.cam.ac.uk/~jdy22/papers/ocaml-inside-a-drop-in-
replacement-for-libtls.pdf ... 6

Tony DiCola, MicroPython Basics: What is MicroPython, Adafruit (Oct. 21, 2016),
at https://learn.adafruit.com/micropython-basics-what-is-
micropython/overview ... 7

Robert Eckstein, James Gosling on Open Sourcing Sun’s Java Platform Implementations,
Part 2, Oracle Technology Network (Nov. 2006),
at https://www.oracle.com/technetwork/articles/java/gosling-os2-qa-
136546.html .. 17

FAQ, Toybox at https://landley.net/toybox/faq.html .. 7

Hamish SF Fraser et al., Adaptation of a Web-Based, Open Source Electronic Medical
Record System Platform to Support a Large Study of Tuberculosis Epidemiology,
12 BMC Med. Informatics and Decision Making 125 (2012),
at https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186
/1472-6947-12-125 .. 9

Google Maps Geolocation API, Google Maps APIs,
https://developers.google.com/maps/documentation/geolocation/intro 14

Erin Green, Under the Hood: Box’s HHVM Migration, Facebook Code
(July 14, 2015), at https://code.facebook.com/posts/
1607907626123431/under-the-hood-box-s-hhvm-migration 6

JDK-7195480: javax.smartcardio does not detect cards on Mac OS X, Oracle Java Bug
Database, at http://bugs.java.com/bugdatabase/view_
bug.do?bug_id=7195480 .. 14

JNASmartCardio, Github, https://github.com/jnasmartcardio/jnasmartcardio 13, 14

Matthew Green, TweetNaCL, A Few Thoughts on Cryptographic Engineering
(July 20, 2013), at https://blog.cryptographyengineering.com/
2013/07/20/tweetnacl .. 5

v

Make Android Self-Hosting (musl, toybox, qcc), Aboriginal Linux,
at https://landley.net/aboriginal/about.html#selfhost .. 7

Pierre N. Leval, Toward a Fair Use Standard, 103 Harv. L. Rev. 1105 (1990) 4

Paul W. McBurney and Collin McMillan, Automatic Documentation Generation via
Source Code Summarization of Method Context, Proceedings of 22nd
International Conference on Program Comprehension at 279 (2014),
at https://www3.nd.edu/~cmc/papers/mcburney_icpc_2014.pdf 10

Steven Melendez, How Facebook’s Massive Open-Source Push Delivers Better Code
and Better Engineers, Fast Company (Jan. 26, 2015), at
https://www.fastcompany.com/3038842/how-facebooks-massive-
open-source-push-delivers-better-code-and-better-engineers 15, 16

Netflix Technology Blog (July 13, 2012), at https://medium.com/netflix-
techblog/open-source-at-netflix-c2c4e036e144 .. 17, 18

Open Source (Almost) Everything, Tom Preston-Werner (Nov. 22, 2011),
at http://tom.preston-werner.com/2011/11/22/open-source-
everything.html .. 16

Open Source at Netflix, Netflix Technology Blog (July 13, 2012),
at https://medium.com/netflix-techblog/bettertls-c9915cd255c0.............. 17, 18

Preact, https://preactjs.com. Preact ... 13

Preact-Compat, Github, https://github.com/developit/preact-compat 13

TweetNaCL: a Crypto Library in 100 Tweets, https://tweetnacl.cr.yp.to 5

Ryan Wilcox, The Many Interpreters and Runtimes of the Ruby Programming Language,
Toptal, at https://www.toptal.com/ruby/the-many-shades-of-the-ruby-
programming-language ... 11

	

 1

STATEMENT OF INTEREST OF AMICUS CURIAE1

Amicus curiae Mozilla Corporation is a technology company that believes the

jury’s finding of fair use in this case recognizes the value of independent

reimplementation, which is vital to software development.

Mozilla is a global, mission-driven organization that works with a community

of software developers around the globe to create open-source software such as the

Firefox browser. Firefox is among the most popular browsers in the world. Several

hundred million users rely on it to discover, experience, and connect to the Internet

on computers, tablets, and mobile phones.

Mozilla’s mission is guided by a set of principles recognizing that, among other

things, free and open software promotes the development of the Internet as a global

public resource, and that the effectiveness of that resource depends on

interoperability. Mozilla is also the custodian of an open-source/free-software license

called the Mozilla Public License.2 The current version of that license explicitly

recognizes fair use and equivalent rights under copyright laws.

																																																								
1 All parties have consented to the filing of this brief. It was not written in whole or
part by counsel for any party. No person or entity other than undersigned counsel or
amicus has made a monetary contribution to the preparation or submission of this
brief.
2 At https://www.mozilla.org/en-US/MPL. All of the websites cited in this brief were
last visited on May 30, 2017.

	

 2

INTRODUCTION

 This case is about the freedom to build technology. Like any developer, when

Google developed a new product—the Android platform—it wanted to ensure that

other developers could begin writing software without having to learn a new

programming language. To achieve this goal, Google used the declaring code and

structure, sequence and organization of 37 of 166 Java API packages. Appx51938.

Google implemented those packages with its own code to create the Android

smartphone environment. Appx51098.

 Although this case is about Google’s use of Oracle’s APIs, this Court’s decision

will affect developers around the world who are working every day to create new and

innovative technologies to solve real problems. Developers rely on declaring code in

the API development process to enable their software programs to interact with other

software. This use results in independent implementations that are efficient and easy

for other software developers to use.

 The incorporation of declaring code in independent implementations aligns

with the fundamental purpose of copyright, which is to promote creative works.

Oracle argues that Google’s use of declaring code in Android cannot be a fair use as a

matter of law. Oracle Br. 25-55. If accepted by this Court, Oracle’s proposed rule will

have far-reaching implications for competition and the speed at which technologies

are created. Technology will be less inclusive, slower to develop, and more expensive.

	

 3

There must be latitude for such uses of code to be fair so that the software industry

can continue to flourish.

ARGUMENT

A finding that re-using declaring code in an independent implementation is a

fair use is consistent with the fundamental purpose of copyright law: to “promote the

progress of Science and useful Arts.” U.S. Const. art. I, § 8, cl. 8. Copyright law

protects original expression while giving others the latitude to build upon earlier

works to create new ones. This breathing room is created primarily through the fair

use doctrine, which requires the courts “to avoid rigid application of the copyright

statute when, on occasion, it would stifle the very creativity which that law is designed

to foster.” Campbell v. Acuff-Rose Music, Inc., 510 U.S. 569, 577 (1994) (quoting Stewart v.

Abend, 495 U.S. 207, 236 (1990)).

The Copyright Act lists four fair use factors for courts to consider: “(1) the

purpose and character of the use, including whether such use is of a commercial

nature or is for nonprofit educational purposes; (2) the nature of the copyrighted

work; (3) the amount and substantiality of the portion used in relation to the

copyrighted work as a whole; and (4) the effect of the use upon the potential market

for or value of the copyrighted work.” 17 U.S.C. § 107(1)-(4). As this Court has

recognized, these factors are “nonexclusive,” and other considerations may be taken

	

 4

into account as well. Oracle Am., Inc. v. Google Inc., 750 F.3d 1339, 1373 (Fed. Cir. 2014)

(quoting Harper & Row, Publishers, Inc. v. Nation Enters., 471 U.S. 539, 549 (1985)).

I. Incorporating Declaring Code Into an Independent Implementation Can
Weigh in Favor of Fair Use Under the First Factor.

The first fair use factor is “the purpose and character of the use, including

whether such use is of a commercial nature or is for nonprofit educational purposes.”

17 U.S.C. § 107(1). The use of declaring code as part of an independent

implementation can favor a finding of fair use under this factor because it can be

transformative. And when an implementation is put under an open-source license, that

decision has important public benefits that may mitigate an otherwise commercial

purpose.

A. Incorporating Code into New and Different Software is
Transformative When it Uses the Underlying Code in a New
Context or Produces a New Creation.

The keystone of the first factor in a fair use analysis is the purpose and

character of the use. 17 U.S.C. § 107(1); Campbell, 510 U.S. at 578-79; see also Pierre N.

Leval, Toward a Fair Use Standard, 103 Harv. L. Rev. 1105, 1111 (1990). A use is more

likely to be considered fair when it “changes” the underlying copyrighted work or uses

it “in a different context” so that the work is “transformed into a new creation.”

Oracle, 750 F.3d at 1374 (quoting Perfect 10, Inc. v. Amazon.com, Inc., 508 F.3d 1146,

1165 (9th Cir. 2007)).

	

 5

 The relevant question in a fair use analysis of the use of declaring code in a new

implementation should not be whether the use transforms declaring code per se, but

whether the implementation as a whole—including the declaring code—is a new and

different work. A programmer reusing an existing piece of code can radically depart

from the underlying purpose of the original work by implementing the package

differently while retaining the basic declaring code to ensure the work remains

compatible with others. These departures can be transformative, “add[ing] something

new, with a further purpose or different character” to the declaring code. Campbell,

510 U.S. at 579. A finding that Google’s use could not be fair as a matter of law would

potentially imperil many transformative uses of declaring code.

An implementation may be transformative because it puts the code in a new

and different context. For example, TweetNaCL is a re-implementation that performs

many common security functions and is written to be as compact as possible: small

enough to include in applications that could not fit a full security suite. TweetNaCL: a

Crypto Library in 100 Tweets, https://tweetnacl.cr.yp.to; see also Matthew Green,

TweetNaCL, A Few Thoughts on Cryptographic Engineering (July 20, 2013).3

Applications that use this library integrate its functionality, giving it new context and

purpose.

An implementation can change the affordances of a language. For example,

Facebook has produced HHVM, a virtual machine that runs programs written in the
																																																								
3 At https://blog.cryptographyengineering.com/2013/07/20/tweetnacl.

	

 6

language PHP. HHVM, http://hhvm.com. Before HHVM, PHP was usually

interpreted into the language C++ or compiled as a static binary. HHVM uses the

building blocks of the PHP language, similar to declaring code in an API, but runs the

language in a different way. The result creates vast gains in speed and efficiency over

executing PHP on the standard interpreter. See, e.g., Erin Green, Under the Hood: Box’s

HHVM Migration, Facebook Code (July 14, 2015).4 HHVM thus transforms PHP by

giving it new characteristics and performance capabilities.

 An implementation might solve for a particular weakness inherent in other

code performing similar functions. For example, one group of programmers built a

version of an important piece of security software in a new language that minimized

the potential for certain security problems. Enguerrand Decorne et al., OCaml Inside: a

Drop-in Replacement for Libtls, Ocaml Users and Developers Workshop 2016 at 1 (Aug.

8, 2016).5 The programmers used the original software’s declaring code to make the

more secure implementation compatible with software that had been designed to use

the more vulnerable implementation. The new implementation could replace the

original version, immediately reducing the potential for security flaws.

An implementation may be developed to work within the constraints of

embedded systems, allowing for expansion into entirely new and sometimes

																																																								
4 At https://code.facebook.com/posts/1607907626123431/under-the-hood-box-s-
hhvm-migration.
5 At https://www.cl.cam.ac.uk/~jdy22/papers/ocaml-inside-a-drop-in-replacement-
for-libtls.pdf.

	

 7

unexpected applications. For example, MicroPython is an implementation of the

Python programming language for small circuit boards. MicroPython,

https://micropython.org. Programmers who use it can build projects on connected

devices such as a detector that can tell whether a door is open or closed. Tony

DiCola, MicroPython Basics: What is MicroPython, Adafruit (Oct. 21, 2016).6 MicroPython

transforms the underlying code by implementing parts of the Python language in a

different system, giving it new context and possibilities for development.

Likewise, toybox is a “from scratch” implementation of common Linux

command-line utilities in a small, single executable that makes it more suited for

minimal environments such as the Android platform. Toybox,

https://landley.net/toybox. It was created to allow Android devices to run these

tools, which made it possible to use Android as a development environment. Make

Android Self-Hosting (musl, toybox, qcc), Aboriginal Linux.7 The toybox implementation

makes it possible for Linux tools to function in a different context, on a new system

while maintaining the same interface and behavior that had become standard for

those tools. Toybox brought such value to the Android platform that it was merged

into official Android versions beginning in 2015. FAQ, Toybox.8

The conclusion that these can all be forms of transformative uses is consistent

with binding Ninth Circuit precedent, which has found that that producing a new
																																																								
6 At https://learn.adafruit.com/micropython-basics-what-is-micropython/overview.
7 At https://landley.net/aboriginal/about.html#selfhost.
8 At https://landley.net/toybox/faq.html.

	

 8

platform that creates new opportunities for consumers can be a fair use, even if there

are similarities in function and output. Sony Computer Entm’t v. Connectix Corp., 203 F.3d

596, 606-07 (9th Cir. 2000); Sega Enters., Ltd. v. Accolade, Inc., 977 F.2d 1510, 1522

(1992). They all create powerful new opportunities for existing copyrighted works,

ensuring the advancement of software development and building on what came

before. A finding by the Federal Circuit that Google’s acts in this case cannot be fair

use as a matter of law would cast a legal shadow over these many forms of re-

implementation.

B. Commerciality May Have Little Weight in a Fair Use Analysis for
an Implementation that Includes Declaring Code When the New
Work is Put Under an Open-Source License.

A consideration under the first fair use factor is whether “a use is of a

commercial nature or is for nonprofit educational purposes.” 17 U.S.C. § 107(1). The

commerciality of a use is “not conclusive,” Sony Corp. of Am. v. Universal City Studios,

Inc., 464 U.S. 417, 448 (1984), and should not be elevated to a “hard presumptive

significance,” Campbell, 510 U.S. at 585. And as the Ninth Circuit has noted, a court

may take into account “the public benefit resulting from a particular use

notwithstanding the fact that the alleged infringer may gain commercially.” Sega, 977

F.2d at 1523; see also Hustler Magazine, Inc. v. Moral Majority, Inc., 796 F.2d 1148, 1152-53

(9th Cir. 1986).

Companies often produce software for private commercial gain. But when

software is put under an open-source license, as Google has done in this case, that

	

 9

decision has important public benefits that are also relevant to the fair use analysis.

Sega, 977 F.2d at 1523; Hustler, 796 F.2d at 1152-3. Code offered to others under an

open-source license will run on new platforms, be used for new purposes, tackle new

problems, and create new solutions	ranging from commercial to non-profit and

educational. For example, a group of medical researchers re-implemented an open-

source medical records platform to develop a new system for a study on tuberculosis

epidemiology. Hamish SF Fraser et al., Adaptation of a Web-Based, Open Source Electronic

Medical Record System Platform to Support a Large Study of Tuberculosis Epidemiology, 12 BMC

Med. Informatics and Decision Making 125 (2012).9	They were able to incorporate the

platform into their academic research to advance the state of medical knowledge, a

non-commercial use with significant social benefits. 	

Open-source licensing also helps the larger ecosystem to thrive by giving

developers the ability to quickly and efficiently build new software to run on an

existing platform, which makes innovation easier and in turn will give consumers

more choice.

Because the public benefits that flow from open-source licensing are

substantial, the decision to put an implementation under an open-source license

should offset any commercial nature of the developer’s use of declaring code in the

implementation.

																																																								
9 At https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/1472-
6947-12-125.

	

 10

II. The Functional Nature of Declaring Code in an Implementation Can
Support a Finding of Fair Use Under the Second and Third Fair Use
Factors.

The second fair use factor considers “the nature of the copyrighted work,” 17

U.S.C. § 107(2), and the third fair use factor weighs “the amount and substantiality of

the portion used in relation to the copyrighted work as a whole,” id. § 107(3). In an

implementation that includes declaring code, these factors can both weigh in favor of

a fair use finding, particularly due to the functional nature of the code at issue.

For purposes of the second fair use factor, the nature of declaring code is

highly functional: it “identifies [a] prewritten function.” Oracle, 750 F.3d at 1349. As

this Court has recognized, even if API packages are protected by copyright, their

functional aspects “may be relevant to a fair use analysis.” Id. at 1376-77. The more

functional the code, the more likely its use is fair.

In fact, a common use of declaring code is to automatically generate the

documentation for software. There are software applications whose sole purpose is to

parse source code files and associated comments—including any declaring code—to

visualize and index the overall structure and components of software. Paul W.

McBurney and Collin McMillan, Automatic Documentation Generation via Source Code

Summarization of Method Context, Proceedings of 22nd International Conference on

Program Comprehension at 279 (2014).10

																																																								
10 At https://www3.nd.edu/~cmc/papers/mcburney_icpc_2014.pdf.

	

 11

As for the third fair use factor, an implementation does not have to incorporate

much declaring code to achieve compatibility. Implementations might only use the

code that defines the basic inputs and the outputs of the implementation, which may

be quite minimal.

But even if an implementation uses a substantial amount of declaring code, that

use may be fair when it is necessary to gain access to the functional elements

embodied in the declaring code. Connectix, 203 F.3d at 603-04; Sega, 977 F.2d at 1527-

28. A programming language specification may have many different implementations

that emphasize different features. See Ryan Wilcox, The Many Interpreters and Runtimes of

the Ruby Programming Language, Toptal.11 All of these implementations must share

declaring code with the language to conform to the specification, i.e., in order to be

that programming language. Thus, the functional nature of declaring code used in an

independent implementation may support a finding of fair use under the second and

third factors.

III. The Use of Declaring Code in an Independent Implementation Can
Weigh in Favor of a Fair Use Under the Fourth Factor.

The fourth factor of the fair use analysis considers the effect of the use on the

potential market for the original work. 17 U.S.C. § 107(4). The relevant question is

whether the use would adversely affect the market for the work by “diminishing

potential sales, interfering with marketability, or usurping the market[.]” Sega, 977 F.2d

																																																								
11 At https://www.toptal.com/ruby/the-many-shades-of-the-ruby-programming-
language.

	

 12

at 1523. Implementations can actually expand the market for software that they

incorporate. And if the implementation is put under an open-source license, those

terms can increase the value of the underlying work in other ways, as well.

A. The Use of Declaring Code in an Independent Implementation
Can Expand the Market for the Original Software.

An implementation that includes declaring code can create new market

opportunities for the underlying work by spurring innovation, increasing demand for

the underlying technology, and creating opportunities to attract more users.

For example, when Philips Lighting introduced the Hue connected lightbulb, it

published an API so that developers could build add-on innovation. One developer

re-implemented the API as a library rather than a web service. Node Hue API, Github,

https://github.com/peter-murray/node-hue-api. Users can integrate that library with

Node-RED, a tool that makes programming more intuitive. node-red-contrib-node-hue,

Node-RED, https://flows.nodered.org/node/node-red-contrib-node-hue. These

integrations make the API accessible to a wider range of users who wish to program

Hue lights, expanding the market and increasing user demand for the product.

Likewise, Mozilla has adopted Google Chrome’s extensions API—which

enables developers to build extensions that add new features to web browsers—for its

own Firefox browser. WebExtensions, Mozilla Developer Network.12 Mozilla’s choice

to support WebExtensions allows developers to build one extension and, after a few

																																																								
12 At https://developer.mozilla.org/en-US/Add-ons/WebExtensions.

	

 13

tweaks, deploy the extension in a number of different browsers, such as Google’s

Chrome browser, Mozilla’s Firefox browser, and Microsoft’s Edge browser. This

increases the number of potential extensions available to all users, allowing them to

easily enhance and add new functionality to their chosen browser. Google benefits

when others create new implementations of its extensions API (as Mozilla has),

because Chrome users gain access to many new features that allow them to customize

the browser to fit their needs and preferences.

Developers and users may choose a new implementation because it has

capabilities that a different implementation does not, but keeping the same declaring

code helps preserve the market for the original. For instance, Preact.js, an alternative

to Facebook’s React library, uses a nearly identical API but requires less memory and

has higher performance. See Preact, https://preactjs.com. Preact is designed so that

developers can add a compatibility layer and use React components in a Preact

application. Preact-Compat, Github, https://github.com/developit/preact-compat.

Preact creates a whole new environment where developers can use React components,

increasing the functionality of React and expanding the market for React as a library.

 Developers may have to switch to a new implementation when a flaw is

discovered in the original implementation. The ability to re-implement with the same

API may keep them from abandoning the platform entirely. For example,

JNASmartCardio is a re-implementation of an Oracle Java library for interacting with

smartcards such as chip and pin credit cards. JNASmartCardio, Github,

	

 14

https://github.com/jnasmartcardio/jnasmartcardio. JNASmartCardio included a fix

for a flaw in the official implementation that had made smartcard readers running

Oracle’s Java 7 for Mac unable to function correctly. JDK-7195480: javax.smartcardio

does not detect cards on Mac OS X, Oracle Java Bug Database.13 Until the flaw was

fixed—a process that took more than a year and a half—the person who discovered

the problem suggested using Apple’s version of Java instead of the original

implementation. Id. But users of JNASmartCardio were able to fix the flaw in their

projects more easily than in the versions of the code bundled with the standard Java

environment. The availability of JNASmartCardio may have kept some of those

developers from choosing Apple’s version of Java over Oracle’s or abandoning Java

altogether.

And an implementation may create new opportunities to use software that

otherwise is not reachable with existing code. For example, Mozilla purposefully

created its Geolocate API to use the same interface as the Google Maps Geolocation

API endpoint, while adding some additional calls to allow for more features. Compare

Service API: Geolocate, Mozilla,14 with Google Maps Geolocation API, Google Maps APIs.15

As a result, developers do not have to change their API calls when making a request

for location information from Mozilla Location Services, and Mozilla preserves the

flexibility to develop new features that the Google API does not support. The
																																																								
13 At http://bugs.java.com/bugdatabase/view_bug.do?bug_id=7195480.
14 At https://mozilla.github.io/ichnaea/api/geolocate.html.
15 At https://developers.google.com/maps/documentation/geolocation/intro.

	

 15

implementation creates new demand and helps to solidify the viability of the

technology, benefiting Mozilla, Google, and others on the Internet.

Thus, an implementation that includes declaring code may create a range of

new opportunities for the underlying software, rather than adversely affect the market

for the work.

B. Independent Implementations are Likely to Enhance the Value of
Underlying Software When They Are Put Under and Open-Source
License.

Implementations are particularly likely to encourage new innovation when

placed under an open-source license, which may grow the market for both works by

encouraging the development of new technologies that utilize the code in both

implementations. One of the most fundamental aspects of an open-source license is

that any new work released under the license is available for anyone to use—including

the developer of the underlying software.

As this Court has found, the value of software distributed under open-source

licenses is manifold. Jacobsen v. Katzer, 535 F.3d 1373, 1378-79 (Fed. Cir. 2008); see also

Planetary Motion, Inc. v. Techsplosion, Inc., 261 F.3d 1188, 1200 (11th Cir. 2001). The

benefits are not limited to licensing royalties. They also include reputational

enhancement, product improvements, and other economic benefits. Jacobsen, 535 F.3d

at 1378-9; see also Steven Melendez, How Facebook’s Massive Open-Source Push Delivers

	

 16

Better Code and Better Engineers, Fast Company (Jan. 26, 2015);16 Open Source (Almost)

Everything, Tom Preston-Werner (Nov. 22, 2011) (co-founder of Github explaining

that open sourcing code is “great advertising,” helps to attract and retain talent, and

reduces duplication of coding effort, among other things).17 Developers may put an

implementation under an open-source license to reap these benefits, which do not

“diminish[] potential sales, interfer[e] with marketability, or usurp[] the market” for an

underlying work incorporated into the implementation. Sega, 977 F.2d at 1523. To the

contrary, the license can help build adoption and expand the market for the

reimplementation and the underlying work.

Sun itself recognized the value for itself and other developers when it released

Java under an open-source license. Sun put its Java platform implementations under a

version of the GNU General Public License to grow the reach of Java and the

number of developers familiar with it so that Sun could license complementary

technologies. Appx50499. Sun also benefited in indirect ways. For example, a group

of reimplementers created the GNU Classpath open-source version of the Java API

without Sun’s permission. Appx50990-50992. Sun’s discussions with the

reimplementers ultimately helped Sun to improve the quality of its own API.

Appx50992.

																																																								
16 At https://www.fastcompany.com/3038842/how-facebooks-massive-open-source-
push-delivers-better-code-and-better-engineers.
17 At http://tom.preston-werner.com/2011/11/22/open-source-everything.html.

	

 17

Sun recognized that software developed by others would also benefit from the

decision to put Java under an open-source license. As James Gosling, the “father of

Java technology,” said at that time, other open-source implementations of the Java

programming language would “certainly be able to mine our source for stuff to

incorporate into their projects.” Robert Eckstein, James Gosling on Open Sourcing Sun’s

Java Platform Implementations, Part 2, Oracle Technology Network (Nov. 2006).18

Indeed, Java is widely popular today in part because of Android’s success and the

innovation built on top of the Android platform.

Other companies realize the inherent value of releasing their code under an

open-source license. Developers ranging from Microsoft to Adobe to IBM host open-

source projects to which developers can contribute, improving not just the code but

the larger ecosystem, as well.19 Netflix, for example, open sources a number of its own

internal projects to improve the software and the market. Open Source at Netflix, Netflix

Technology Blog (July 13, 2012);20 see also Netflix Open Source Software Center,

https://netflix.github.io. In one recent case, Netflix created and open sourced a

software suite to test implementations of TLS, an Internet protocol that protects

communications through end-to-end encryption. BetterTLS, Netflix Technology Blog

(Apr. 10, 2017).21 Netflix discovered that many browsers had implemented TLS in a

way that left users exposed to a certain security issue. By open sourcing the test suite,

																																																								
18 At https://www.oracle.com/technetwork/articles/java/gosling-os2-qa-
136546.html.

	

 18

Netflix made it possible for other vendors to detect the issue quickly and easily. In

fact, both Google and Oracle improved their TLS implementations as a result. Id.

Thus, independent implementations may not only expand the market for the

software that they incorporate, but can also increase the value of the underlying work

in other ways. Implementations put under an open-source license are particularly

likely to encourage new innovation and benefit the developer of the original work.

These realities weigh in favor of a fair use finding under the fourth factor.

In sum, the use of declaring code in an independent implementation can weigh

in favor of fair use under every factor. A finding that such a use cannot be a fair use as

a matter of law would be at odds with the fundamental purpose of copyright law: to

promote progress. Mozilla urges this Court to reject that position and ensure the law

allows flexibility for fair uses of software, in turn fostering innovation.

																																																																																																																																																																																			
19 See https://github.com/Microsoft; https://github.com/adobe;
https://github.com/ibm.
20 At https://medium.com/netflix-techblog/open-source-at-netflix-c2c4e036e144.
21 At https://medium.com/netflix-techblog/bettertls-c9915cd255c0.

	

 19

CONCLUSION

Mozilla respectfully asks this Court to uphold the jury verdict in Google’s favor

and affirm the district court’s judgment.

Dated: May 30, 2017 Respectfully submitted,

/s/ Marcia Hofmann
Marcia Hofmann
Zeitgeist Law PC
25 Taylor Street
San Francisco, CA 94102
Telephone: (415) 830-6664
marcia@zeitgeist.law

Counsel for Amicus Curiae

	

 20

CERTIFICATE OF COMPLIANCE WITH TYPE-VOLUME
LIMITATION, TYPEFACE REQUIREMENTS,

AND TYPE STYLE REQUIREMENTS

I certify that the foregoing brief complies with the type-volume limitation of

Federal Rules of Appellate Procedure 29(a)(5) and 32(a)(7), as well as Federal Circuit

Rule 28.1. This brief contains 4,130 words, excluding the parts of the brief exempted

by Federal Rule of Appellate Procedure 32(f).

This brief’s type size and typeface comply with Federal Rule of Appellate

Procedure 32(a)(5) and (6) and Federal Circuit Rule 28.1. It was written in Garamond

proportionally spaced typeface with 14-point font.

Dated: May 30, 2017 /s/ Marcia Hofmann
 Marcia Hofmann

	

 21

CERTIFICATE OF SERVICE

I hereby certify that on May 30, 2017, I electronically filed the foregoing amicus

curiae brief with the Clerk of the Court for the United States Court of Appeals for the

Federal Circuit by using the appellate CM/ECF system.

I certify that all participants in the case are registered CM/ECF users and that

service will be accomplished by the appellate CM/ECF system.

 /s/ Marcia Hofmann
 Marcia Hofmann

