# DISSERTATION

Investigations on Marine Natural Products from Indo-Pacific Nudibranchia (Mollusca: Gastropoda): Chemoecology, Medicinal Potential & Toxin Resistance

CORA HERTZER

2022





# Investigations on Marine Natural Products from Indo-Pacific Nudibranchia (Mollusca: Gastropoda): Chemoecology, Medicinal Potential & Toxin Resistance

## Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

# **Cora Hertzer**

aus

Berlin-Lichtenberg

Bonn, 2022

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

Diese Arbeit wurde am Institut für Pharmazeutische Biologie und in Zusammenarbeit mit dem Zoologischen Forschungsmuseum Alexander König in Bonn durchgeführt.

- Gutachterin: Prof. Dr. Gabriele M. König Institut für Pharmazeutische Biologie
- Gutachterin: Prof. Dr. Heike Wägele
  Zoologisches Forschungsmuseum Alexander König

Tag der Promotion: 11.03.2022 Erscheinungsjahr: 2022 Einige Teile dieser Arbeit wurden bereits in ähnlicher Form als wissenschaftliche Fachartikel veröffentlicht oder sind für eine zukünftige Veröffentlichung vorgesehen. Entsprechende Texte und Abbildungen wurden als solche gekennzeichnet und zitiert.

KAPITEL I: "Investigations of the natural products and chemical ecology of *Phyllodesmium longicirrum* (Nudibranchia: Aeolidioidea)" war Teil meiner Masterarbeit, die unter der Betreuung von Prof. Gabriele M. König und Prof. Heike Wägele durchgeführt und geschrieben wurde. KAPITEL I hat zu den folgenden zwei Publikationen beigetragen:<sup>1,2</sup>

- Bogdanov A, Hertzer C, Kehraus S, Nietzer S, Rohde S, Schupp PJ, Wägele H, König GM. Defensive Diterpene from the Aeolidoidean Phyllodesmium longicirrum. *J Nat Prod.* 2016;79(3):611-615. doi:10.1021/acs.jnatprod.5b00860
- Bogdanov A, Hertzer C, Kehraus S, Nietzer S, Rohde S, Schupp PJ, Wägele H, König GM. Secondary metabolome and its defensive role in the aeolidoidean Phyllodesmium longicirrum, (Gastropoda, Heterobranchia, Nudibranchia). *Beilstein J Org Chem.* 2017;13:502-519. doi:10.3762/bjoc.13.50

KAPITEL II: "Antibacterial scalarane from *Doriprismatica stellata* nudibranchs (Nudibranchia: Chromodorididae), egg ribbons, and their dietary sponge *Spongia* cf. *agaricina* (Demospongiae: Dictyoceratida) " wurde in ähnlicher Form als folgender Fachartikel publiziert:<sup>3</sup>

 Hertzer C, Kehraus S, Böhringer N, Kaligis F, Bara R, Erpenbeck D, Wörheide G, Schäberle TF, Wägele H, König GM. Antibacterial scalarane from Doriprismatica stellata nudibranchs (Gastropoda, Nudibranchia), egg ribbons, and their dietary sponge Spongia cf. agaricina (Demospongiae, Dictyoceratida). *Beilstein J Org Chem*. 2020;16(1):1596-1605. doi:10.3762/bjoc.16.132

Teile der folgenden Einleitung und KAPITEL III sind für eine zukünftige Veröffentlichung in einem Fachartikel vorgesehen.

Für meine Schwester.

## CONTENTS

| ABBREVIATIONS                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------|
| GENERAL INTRODUCTION                                                                                                                    |
| Marine Natural Products1                                                                                                                |
| Gastropods: Mucus, Natural Products & Medicinal Potential 1                                                                             |
| Heterobranchia: Taxonomy, Key Characters & Survival Strategies4                                                                         |
| Chemistry of Doridina                                                                                                                   |
| Mantle Dermal Formations (MDFs) and Chemical Transformation11                                                                           |
| Coevolution: Toxicity & Resistance11                                                                                                    |
| Biodiversity: The Indo-Malay Archipelago and Coral Triangle13                                                                           |
| AIMS OF THE THESIS                                                                                                                      |
| CHAPTER I: Investigations of the natural products and chemical ecology of <i>Phyllodesmium longicirrum</i> (Nudibranchia: Aeolidioidea) |
| Abstract                                                                                                                                |
| Introduction                                                                                                                            |
| Ecology of the Genus Phyllodesmium                                                                                                      |
| Chemical Ecology of Alcyonacea Soft Corals Associated with Phyllodesmium20                                                              |
| Secondary Metabolites of <i>Phyllodesmium longicirrum</i>                                                                               |
| Aim of the Study                                                                                                                        |
| Results                                                                                                                                 |
| Cembranoid Diterpenes                                                                                                                   |
| Polycyclic Diterpenes                                                                                                                   |
| Biscembranes                                                                                                                            |
| Chemical Defence                                                                                                                        |
| Discussion and Conclusion                                                                                                               |
| Terpenoids Isolated from Phyllodesmium longicirrum                                                                                      |
| Predator-Prey Relationship between P. longicirrum and Alcyoniidaen Soft Corals 37                                                       |
| Dietary Chemicals as Defensive Weapons                                                                                                  |

| CHAPTER II: Antibacterial scalarane from <i>Doriprismatica stellata</i> nudibranchs (Nudibranchia:                        |
|---------------------------------------------------------------------------------------------------------------------------|
| Chromodorididae), egg ribbons, and their dietary sponge Spongia cf. agaricina                                             |
| (Demospongiae: Dictyoceratida)                                                                                            |
| Abstract                                                                                                                  |
| Introduction                                                                                                              |
| Results                                                                                                                   |
| Chemical investigation on <i>Doriprismatica stellata</i> nudibranchs, egg ribbons and <i>Spongia</i> cf. <i>agaricina</i> |
| Antibacterial activity                                                                                                    |
| Discussion                                                                                                                |
| CHAPTER III: Protection from self-intoxication: A novel actin isoform in Chromodoris                                      |
| nudibranchs supports sequestration and storage of the cytotoxin latrunculin A54                                           |
| Abstract                                                                                                                  |
| Introduction                                                                                                              |
| Nudibranchia, the Genus Chromodoris and Their MNPs55                                                                      |
| Sponges Containing Latrunculins56                                                                                         |
| Latrunculin A                                                                                                             |
| Actin                                                                                                                     |
| Actin Isoforms: Evolution and Functions58                                                                                 |
| Actin Targeting Toxins: Mode of Action, Resistance and Disorders                                                          |
| Aim of the Study                                                                                                          |
| Results                                                                                                                   |
| Chemical Investigation of Chromodoris Nudibranchs and Cacospongia mycofijiensis63                                         |
| MALDI-MS Imaging64                                                                                                        |
| Fluorescence Microscopy                                                                                                   |
| Comparative Analysis of Heterobranchia Actin Genes                                                                        |
| In Vivo Toxicity Assay72                                                                                                  |
| Discussion73                                                                                                              |
| GENERAL CONCLUSION AND OUTLOOK                                                                                            |

| SUMMARY                                                                        |
|--------------------------------------------------------------------------------|
| MATERIAL AND METHODS                                                           |
| General Experimental Procedures                                                |
| Biological Material                                                            |
| Extraction and Isolation91                                                     |
| UV/Vis and IR Spectroscopy96                                                   |
| Optical Rotation96                                                             |
| NMR Spectroscopy97                                                             |
| MALDI-MS-Imaging                                                               |
| Fluorescence Microscopy                                                        |
| PCR Amplification, Sequencing and Alignment100                                 |
| Antibacterial Activity                                                         |
| Chemical Defence Assay                                                         |
| In Vivo Toxicity Assay                                                         |
| REFERENCES                                                                     |
| APPENDIX                                                                       |
| SUPPLEMENTARY INFORMATION FOR CHAPTER I                                        |
| SUPPLEMENTARY INFORMATION FOR CHAPTER II                                       |
| SUPPLEMENTARY INFORMATION FOR CHAPTER III                                      |
| PUBLICATIONS, PARTICIPATION IN OTHER STUDIES, TALKS & CONFERENCE CONTRIBUTIONS |
| X                                                                              |
| CURRICULUM VITAEXI                                                             |
| ACKNOWLEDGEMENTS / DANKSAGUNGXII                                               |

### **ABBREVIATIONS**

| $[\alpha]_D^{20}$ | Specific optical rotation                                     |  |  |  |
|-------------------|---------------------------------------------------------------|--|--|--|
| δ                 | NMR chemical shift [ppm]                                      |  |  |  |
| 8                 | Molar attenuation coefficient                                 |  |  |  |
| $\lambda_{max}$   | Wavelength at which the maximum fraction of light is absorbed |  |  |  |
| Vmax              | Maximum frequency                                             |  |  |  |
| 1D                | One dimensional                                               |  |  |  |
| 2D                | Two dimensional                                               |  |  |  |
| ATR               | Attenuated Total Reflection                                   |  |  |  |
| С                 | Concentration [mg/mL]                                         |  |  |  |
| BLAST             | Basic Local Alignment Search Tool                             |  |  |  |
| CaCl <sub>2</sub> | Calcium chloride                                              |  |  |  |
| CHCl <sub>3</sub> | Chloroform                                                    |  |  |  |
| CDCl <sub>3</sub> | Deuterated chloroform                                         |  |  |  |
| COSY              | Correlation spectroscopy                                      |  |  |  |
| DAD               | Diode array detector                                          |  |  |  |
| DCM               | Dichloromethane                                               |  |  |  |
| DMSO              | Dimethyl sulfoxide                                            |  |  |  |
| DEPT              | Distortionless enhancement by polarization transfer           |  |  |  |
| ESI               | Electrospray ionization                                       |  |  |  |
| EtOAc             | Ethyl acetate                                                 |  |  |  |
| EtOH              | Ethanol                                                       |  |  |  |
| H <sub>2</sub> O  | Water                                                         |  |  |  |
| HESI              | Heated electrospray ionization                                |  |  |  |
| HMBC              | Heteronuclear multiple bond correlation                       |  |  |  |
| HPLC              | High performance liquid chromatography                        |  |  |  |

| HPLC-MS            | High performance liquid chromatography-mass spectrometry              |  |  |  |
|--------------------|-----------------------------------------------------------------------|--|--|--|
| HR-ESI-MS          | High-resolution-electrospray ionization-mass spectrometry             |  |  |  |
| HR-APCI-MS         | High-resolution-atmospheric pressure chemical ionization-             |  |  |  |
|                    | mass spectrometry                                                     |  |  |  |
| HSQC               | Heteronuclear single quantum coherence                                |  |  |  |
| IR                 | Infrared                                                              |  |  |  |
| J                  | Coupling constant                                                     |  |  |  |
| KCl                | Potassium chloride                                                    |  |  |  |
| LC-ESI-MS          | Liquid chromatography-electrospray ionization- mass spectrometry      |  |  |  |
| <i>m/z</i> .       | Mass-to-charge ratio                                                  |  |  |  |
| $[M+H]^+$          | Protonated molecular ion                                              |  |  |  |
| MALDI MSI          | Matrix-assisted laser desorption/ionization mass spectrometry imaging |  |  |  |
| MDF                | Mantle dermal formation                                               |  |  |  |
| MeOH               | Methanol                                                              |  |  |  |
| MeOD/MeOH-d4       | Tetradeuteromethanol                                                  |  |  |  |
| MgCl <sub>2</sub>  | Magnesium chloride                                                    |  |  |  |
| MgSO <sub>4</sub>  | Magnesium sulfate                                                     |  |  |  |
| MNPs               | Marine natural products                                               |  |  |  |
| MS                 | Mass spectrometry                                                     |  |  |  |
| NaCl               | Sodium chloride                                                       |  |  |  |
| NaHCO3             | Sodium bicarbonate                                                    |  |  |  |
| NCBI               | National Center for Biotechnology Information                         |  |  |  |
| NH <sub>4</sub> Ac | Ammonium acetate                                                      |  |  |  |
| NMR                | Nuclear magnetic resonance                                            |  |  |  |
| NOE                | Nuclear overhauser effect                                             |  |  |  |
| NOESY              | Nuclear overhauser enhancement spectroscopy                           |  |  |  |
| NP                 | Natural product                                                       |  |  |  |

| OD                   | Optical density                                                                                                                     |  |  |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|
| PCR                  | Polymerase chain reaction                                                                                                           |  |  |
| рН                   | Potential/power of hydrogen                                                                                                         |  |  |
| ppm                  | Parts per million                                                                                                                   |  |  |
| ROE                  | Rotating-frame nuclear overhauser effect                                                                                            |  |  |
| ROESY                | ROE correlation spectroscopy                                                                                                        |  |  |
| RP                   | Reversed phase                                                                                                                      |  |  |
| sp.                  | Specimens                                                                                                                           |  |  |
| UV/VIS               | Ultraviolet-visible                                                                                                                 |  |  |
| UHPLC                | Ultra high-performance liquid chromatography                                                                                        |  |  |
| UPLC-HR-MS           | Ultra-performance liquid chromatography-high-resolution                                                                             |  |  |
|                      | mass spectrometry                                                                                                                   |  |  |
| VLC                  | Vacuum liquid chromatography                                                                                                        |  |  |
| WoRMS                | World Register of Marine Species                                                                                                    |  |  |
| <sup>13</sup> C NMR: | $s = qC; d = CH, t = CH_2, q = CH_3$                                                                                                |  |  |
| <sup>1</sup> H NMR:  | s = Singulet, d = Doublet, dd = Doublet of doublets, t = Triplet,<br>m = Multiplet, br = Broad signal, $^{b}$ = Overlapping signals |  |  |

#### **GENERAL INTRODUCTION**

#### Marine Natural Products

The interdisciplinary project 'INDOBIO Indonesian Opisthobranchs and associated microorganisms – From Biodiversity to drug lead discovery', funded by the German Federal Ministry of Education and Research (BMBF), had the aim to document the state of the art biodiversity in North Sulawesi, Indonesia,<sup>4–7</sup> with an emphasis on heterobranch sea slugs, their food sources, associated microorganisms and their potential for drug lead discovery.<sup>3,8–10</sup> This dissertation is a part of the INDOBIO project and focuses on the marine natural products (MNPs) from nudibranchs of the Central Indo-Pacific Ocean.

Marine habitats cover more than 70% of the Earth, provide vital ecosystem services,<sup>11–15</sup> and are home to a multitude of organisms capable of the production of invaluable MNPs.<sup>16-22</sup> In habitats with exceptional biodiversity, such as the coral reefs of the Indo-Pacific Ocean,<sup>23</sup> intense competition and feeding pressure lead to a vast chemical diversity and a variety of bioactive structures, ranging from small molecules to large and complex proteins.<sup>24</sup> Bioactive MNPs are of high interest for pharmacological applications, as they can become important lead structures in the drug development process.<sup>8,9,16,22,25-40</sup> These metabolites may provide evolutionary advantages and are found particularly in exposed, sessile, and slow-moving organisms, like invertebrates, that use them to adapt to abiotic and biotic factors of their complex environments and ecological niches.<sup>18,29,41,42</sup> Due to their diversity in structure and function, they play key roles as semiochemicals for inter- and intra-specific communication, reproduction and development, in the competition for space, as venom to capture prey, or as a defence against predators, pathogens and overgrowth by fouling organisms.<sup>42–59</sup> Furthermore, prophylactic or therapeutic self-medication behaviour (zoopharmacognosy) has been observed, for example in Indo-Pacific bottlenose dolphins (*Tursiops aduncus*), which regularly rub on gorgonians (Rumphella sp.), that are covered in mucus with bioactive, antimicrobial, antioxidant and anti-inflammatory MNPs.<sup>60–63</sup> Similar to other invertebrates, marine gastropods present multiple fascinating and advantageous molecules.

#### Gastropods: Mucus, Natural Products & Medicinal Potential

All organisms from all kingdoms of life produce mucus, which can have a wide range of functions. It is often an essential barrier against biotic and abiotic factors of the surrounding environment and a first line of defence against pathogenic organisms and predators.<sup>64,65</sup>

In gastropods, mucus composition varies according to species, its role and formulation, which can be adjusted to serve multiple functions and needs. Typically, the mucus consists of around 90-99% water, mucopolysaccharides, a mucin-like glycoprotein complex, antimicrobial peptides, metal ions and may contain further bioactive small molecules. Epithelial goblet cells in mucus glands and the pedal gland secrete the mucus with lubricant and adhesive properties. It is produced for locomotion, reproduction, adhesion to any type of surface, and to minimize body desiccation, the effects of physical damage or harmful substances.<sup>66–75</sup>

For centuries, terrestrial gastropods and their mucus have been used in folkloric and traditional medicine.<sup>76–78</sup> More recently, anticancer, antioxidant, anti-inflammatory, antimicrobial, and skin-regenerating properties of slug mucus have been studied and confirmed.<sup>66–69,78–80</sup> Furthermore, gastropod mucus continues to inspire the development of medicinal adhesives and further biomimetic fibers.<sup>70,71,81,82</sup>

Marine gastropods have equally great medicinal potential as their terrestrial counterparts, but are lesser known from ethnomedical reports, due to the difficulty of collecting marine organisms.<sup>16,83</sup> Nonetheless, with increasing interest in the marine environment and improved technological capabilities allowing for better accessibility, several drugs based on MNPs isolated from marine gastropods have been developed. For example: the first "directly from the sea" drug PRIALT®, a treatment for severe pain derived from a small peptide  $\omega$ -conotoxin MVIIA venom (ziconotide, Figure 1.1) produced by the fish hunting snail *Conus magus*,<sup>84,85</sup> the anticancer drug Adcetris®,<sup>86,87</sup> which is based on the cytotoxic peptide dolastatin 10 (Figure 1.1) isolated from *Dolabella auricularia*,<sup>88</sup> and the anti-tumour depsipeptide kahalalide F (Figure 1.1), which was isolated from *Elysia* species.<sup>89–92</sup>

Some heterobranch gastropods are capable of *de novo* biosynthesis. For example, the biosynthesis of polyproprionates by sacoglossans and biosynthesis of terpenoids by nudibranchs have liberated some of these slugs from dependance on a particular food source.<sup>45,93–98</sup> However, more frequently they sequester, accumulate and store, with or without biotransformation, MNPs produced by their preferred food sources (mainly algae, Porifera, Bryozoa, Tunicata and Cnidaria), or their symbiotic microorganisms.<sup>45,57,95,99–104</sup> For example, dolastatin 10 is produced by cyanobacteria of the genus *Symploca* <sup>105</sup> and kahalalides are produced by the bacterium "*Candidatus* Endobryopsis kahalalidefaciens" as part of a complex tripartite marine symbiosis between the sacoglossan sea slug *Elysia rufescence*, the algae *Bryopsis* sp. and their bacterial symbiont.<sup>106</sup>



Hence, MNPs are not only pharmacologically interesting, but can also reveal important ecological and coevolutionary relationships and mechanisms.

kahalalide F



Conus magus Linnaeus, 1758



Elysia rufescens Pease, 1871

**Figure 1.1** Bioactive natural products from marine gastropods used as drug lead structures. Pictures of *C. magus* (© Ashton Williams), *D. auricularia* (© ivansls) and *E. rufescens* (© uwkwaj) were taken from @iNaturalist.org.

#### Heterobranchia: Taxonomy, Key Characters & Survival Strategies

Heterobranchia is a large, highly diverse and important group of gastropods with  $\sim 44000$ described species, that show the greatest morphological and ecological disparity among all gastropod clades. This group currently comprises two infraclasses: the so-called 'lower Heterobranchia' and Euthyneura, including a variety of snails, slugs, false limpets, and even bivalved gastropods with clam-like shells.<sup>107,108</sup> Heterobranchs have evolved to colonize virtually all habitats, from marine, to freshwater, to terrestrial areas, due to numerous adaptations.<sup>108,109</sup> For more than a century, heterobranch gastropods were divided into the paraand polyphyletic subtaxa "Opisthobranchia" (sea slugs and related snails) and "Pulmonata" (aquatic or terrestrial slugs and snails), that reflected researchers' preferences for a particular fauna or habitat, rather than monophyly.<sup>101,110,111</sup> Therefore, these approaches were abandoned and merged into the concept of Heterobranchia, as originally established by Burmeister in 1837 and revived by Haszprunar in 1985.<sup>112</sup> Since then, much research has been dedicated to resolving phylogenetic relationships among the taxon and to support or reject previous considerations of monophyly, as for example in works on Nudibranchia,<sup>113–120</sup> Sacoglossa,<sup>121</sup> Cephalaspidea,<sup>122</sup> Aplysiidae,<sup>123</sup> Stylommatophora,<sup>124</sup> Pteropoda,<sup>125</sup> and Runcinida.<sup>126</sup> In recent years, many of these taxonomic groupings have undergone systematic rearrangements and are continuously rearranged, based on the advancements in molecular techniques and computational analyses.<sup>111,117,118,127–129</sup> However, the phylogeny of the major heterobranch clade, Euthyneura, still remains partially unresolved and heavily discussed.<sup>108,129–131</sup> Currently, among Euthyneura two major clades are accepted: Tectipleura (Euopisthobranchia + Panpulmonata), and Ringipleura [Ringiculoidea + Nudipleura (Pleurobranchida + Nudibranchia)].<sup>129,130</sup> A coherent understanding of the evolutionary relationships between this group of molluscs and the factors that drive evolution between their clades is not only relevant, but a necessity for further scientific considerations.

Several heterobranchs serve as model organisms and lay the foundation for important research, such as the investigation on chloroplast incorporation (kleptoplasty),<sup>132–135</sup> chemical interactions and defence mechanisms by incorporation of MNPs (kleptochemistry),<sup>24,104</sup> neurobiological and behavioural studies,<sup>136,137</sup> ecotoxicology,<sup>138</sup> ecosystem wellbeing and climate change,<sup>139</sup> host-parasite interactions,<sup>140</sup> and pharmaceutical research.<sup>26,35,40,141</sup> Members of the Nudipleura clade can be described as marine gastropods, that have undergone partial and in some cases complete detorsion of the visceral mass and display some of the most spectacular and diverse body forms, patterns and colors found in nature.<sup>101,109</sup> Their intriguing phenotypes are the result of adaptations, coping with a reduced, internalized, or completely lost shell.<sup>101,142</sup>

The consequence of shell reduction is certainly a loss of physical protection. However, it also enables the exploration and exploitation of new habitats and various food sources, leading to the evolution of unique key characters and survival strategies, which in turn increases radiation within these taxa.<sup>101,111,143</sup> Some of these key characters and survival strategies involve the sequestration, retention and maintenance of photosynthetic units. This can either be the sequestration of functional chloroplasts from siphonaceous algae, as done by the herbivorous taxon Sacoglossa,<sup>133,135,144-147</sup> or the ingestion and further mutualistic symbiosis with zooxanthellae of the genus Symbiodinium, mostly obtained from soft corals. The latter is described for the Cladobranchia, one of the two diverse suborders of Nudibranchia.<sup>145,148–150</sup> The incorporation of chloroplasts or zooxanthellae provides color camouflage, but more importantly, it enables the host to survive periods of food shortage, due to additional nutrients, gained as photosynthetic products from the symbionts.<sup>133,135,145,151,152</sup> One might assume that shell-less sea slugs are easy prey for predators like fish and decapods, especially in habitats characterized by intense feeding pressure, such as coral reefs. However, reports of their predation are scarce and have only recently been reported and summarized in the scientific literature.<sup>44,56,153–159</sup> The lack of a shell and this surprising immunity against predation is correlated with alternative defence mechanisms.<sup>2,160,161</sup> Besides mineral-based subepidermal spicules,<sup>113,162–164</sup> aposematic or cryptic coloration, and mimicry,<sup>120,165–169</sup> many sea slugs of the Nudipleura clade evolved the ability to steal, incorporate and utilize the defence system of their prey.<sup>95,153,160,170,171</sup> Although members of the order Pleurobranchida are known to defend themselves with acid secretions, produced by their epithelial cells and subepithelial glands of the epidermis,<sup>172</sup> some species have been found to additionally accumulate neurotoxic alkaloids, such as the ergot alkaloid ergosinine,<sup>173</sup> tetrodotoxin,<sup>174–176</sup> and paralytic shellfish toxins, like saxitoxin and its analogues (Figure 1.2).<sup>177</sup> Yet, the exact origins of these neurotoxins in pleurobranchids are unclear,<sup>175</sup> and it is unknown how these gastropods protect themselves from autotoxicity (i.e., self-intoxication).



Pleurobranchus forskalii Rüppell & Leuckart, 1828





tetrodotoxin (TTX) saxitoxin (STX)

Pleurobranchaea maculata Quoy & Gaimard, 1832



Alternative defence mechanisms have been hypothesized as the main driver for the diversification of Nudibranchia (~ 2500 species, as currently listed in WoRMS;<sup>178</sup> World Register of Marine Species).<sup>101,111,142</sup> Cladobranchia and Doridina, the two suborders of Nudibranchia, share ancestors that switched from algal food sources to feeding on sponges (Porifera). Sponges are repellent to most other predators due to mechanical (spicules) and chemical (metabolites) defences. The ancestors of Cladobranchia and Doridina nudibranchs were able to detoxify, sequester and use these metabolites; an ability, which is inherited by their progeny.<sup>95,179</sup> Nevertheless, within the different groups of Nudibranchia there have been multiple shifts to feed on different food sources.

The Cladobranchia (~ 1000 species, as listed in WoRMS) are a highly diverse group in which there has been a shift in prey preference, from feeding on Porifera to a variety of animal taxa, including Crustacea, Bryozoa, Hydrozoa, and Anthozoa (e.g. Hexacorallia & Octocorallia).<sup>95,128,142,180</sup> Traditionally, Cladobranchia consisted of three taxonomic divisions: Dendronotoidea (~ 250 species), Arminoidea (~ 100 species), and Aeolidioidea (~ 600 species). Yet, the evolutionary history and majority of phylogenetic relationships among Cladobranchia remain unclear, although recent studies have provided a solid foundation and framework for future work on their taxonomy.<sup>118,128</sup> Currently, cladobranchs are divided into the seven

superfamilies: Aeolidioidea, Arminoidea, Dendronotoidea, Doridoxoidea, Fionoidea, Proctonotoidea, and Tritonioidea.<sup>181</sup> The Aeolidioidea outnumber the other clades, which is most likely the result of an enhanced speciation and radiation, due to their ability to incorporate and utilize nematocysts (stinging capsules) from their cnidarian prey, primarily hydrozoans.<sup>101,113,142,180,182</sup> Although the sequestration and incorporation of nematocysts is unique to cladobranchs, especially aeolids, it needs to be noted that this ability originated at least twice within the Cladobranchia.<sup>182</sup> These "kleptocnides" are ingested along with the prey, pass through the digestive system into the terminal branches of the digestive glands (cerata), and are stored within the cnidosac, at the tip of the cerata, where they mature by acidification.<sup>182–185</sup> Cnidosacs may function as a storage and disposal organ, to protect the nudibranchs digestive system from possible harm; however, many studies support their function as an important additional defence mechanism.<sup>168,184–188</sup>

Less is known about chemical defences in the Aeolidioidea.<sup>142</sup> Almost all members of the genus *Phyllodesmium* Ehrenberg, 1831 (Aeolidioidea: Myrrhinidae) have switched and specialized from feeding on Hydrozoa to feeding on Octocorallia, particularly Alcyonacea.<sup>1,2,151,189</sup> Chemical investigation of *P. briareum* and its prey organism *Briareum* sp. revealed cytotoxic briarane diterpenes, such as brianthein W and excavatolide C, and several cembrane diterpenes, such as the cytotoxic 11-episinulariolide acetate, were isolated from *P. magnum* (Figure 1.3).<sup>189</sup>



Figure 1.3 Selected cytotoxic metabolites from *Phyllodesmium* species.

Most *Phyllodesmium* species do not store nematocysts, despite having cerata with cnidosacs.<sup>113,152,189,190</sup> This begs the question of whether they use a chemical defence strategy instead to protect themselves from predation. Further detailed exploration of this question is the aim of the following "Chapter I: Investigations of the natural products and chemical ecology of *Phyllodesmium longicirrum* (Nudibranchia: Aeolidioidea)".

#### Chemistry of Doridina

Development of a chemical defence was proposed to be a preadaption in the Nudipleura clade, enabling them to dispense their shell in the first place, leading to enhanced speciation and radiation, especially in the suborder Doridina.<sup>160,191</sup> The Doridina (~ 1500 species, currently listed in WoRMS) are by far the best-studied group of heterobranchs with regard to defensive chemical compounds. They consist of two infraorders, Bathydoridoidei and Doridoidei. Even the most basal species, such as the Antarctic *Bathydoris hodgsoni* and *Prodoris (Bathydoris) clavigera* are protected by bioactive chemical compounds, as for example by drimane sesquiterpenes, such as hodgsonal (Figure 1.4), from potential predators like the sea star *Odontaster validus* or the anemone *Epiactis* sp.<sup>104,192,193</sup>





hodgsonal

Bathydoris hodgsoni Eliot, 1907

**Figure 1.4** Feeding deterrent sesquiterpene hodgsonal, isolated from the Antarctic nudibranch *Bathydoris hodgsoni*. The picture of *B. hodgsoni* was taken from @sealifebase.ca, © Wolf E. Arntz.<sup>194</sup>

While Bathydoridoidei includes only one family with two genera (Bathydorididae; *Bathydoris* and *Prodoris*), the highly diverse Doridoidei currently consist of 19 families, divided into the five superfamilies: Chromodoridoidea, Doridoidea, Onchidoridoidea, Phyllidioidea, and Polyceroidea. Over the years, there have been a number of excellent reviews about the chemistry of molluscs and nudibranchs,<sup>9,95,104,160,195–203</sup> and each year there are new bioactive MNPs isolated and reported in the scientific literature and annual review of marine natural products.<sup>204</sup> Listing all of them would be beyond the scope of this introduction. Nonetheless, the chemistry of specific related genera relevant to this thesis, such as *Doriprismatica* and *Chromodoris*, are investigated in "CHAPTER II: Antibacterial scalarane from *Doriprismatica* stellata nudibranchs (Nudibranchia: Chromodorididae), egg ribbons, and their dietary sponge *Spongia* cf. *agaricina* (Demospongiae: Dictyoceratida)" and "CHAPTER III: Protection from self-intoxication: A novel actin isoform in *Chromodoris* nudibranchs supports sequestration and storage of the cytotoxin latrunculin A", respectively.

Although chemotaxonomic approaches have proven useful, it must be noted that the chemistry of nudipleuran gastropods is strongly influenced by their respective food source and can vary inter- and intra-specifically depending on geographic location and available prey.<sup>205,206</sup> Many MNPs, that are sequestered by dorid nudibranchs, are terpenoids, especially oxygenated sesqui-, di-, and sesterterpenes. Terpenes and terpenoids belong to the largest class of natural products, with more than 80,000 naturally occurring compounds reported.<sup>207–209</sup> All terpenoids are built by successive addition of isoprene units  $(C_5)$ , composed from the precursors: isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), which are either derived from the mevalonate or deoxyxylulose phosphate pathway.<sup>207–211</sup> Terpenes are simple hydrocarbons, whereas terpenoids are modified terpenes with additional functional groups. They are categorized according to the number of carbons and isoprene units: hemiterpene/isoprene ( $C_5$ ), monoterpenes ( $C_{10}$ ), sesquiterpenes ( $C_{15}$ ), diterpenes ( $C_{20}$ ), sesterterpenes ( $C_{25}$ ), triterpenes ( $C_{30}$ , e.g., steroids and saponins) and tetraterpenes ( $C_{40}$ , e.g., carotenoids). Terpenoids have significant biological activities, such as antimicrobial, anticancer, anti-inflammatory, antioxidant, antiallergic, antidiabetic, immunomodulatory, antiinsecticidal, and as skin permeation enhancer.<sup>212-224</sup> They are known to have anti-fouling properties and serve as allelopathic agents in the inter-specific competition for space.<sup>225–227</sup> Furthermore, they play important roles in communication, reproduction and defence.<sup>225–228</sup> Some examples of terpenoids from dorid nudibranchs are the spongian-type furanoterpenoids, diterpenoids, and sesquiterpenoids; and scalarane-type sesqui- and sesterterpenoids (Figure 1.5), which can be found in the genera Cadlina, Chromodoris, Doriprismatica, Felimare, Felimida, Glossodoris and Goniobranchus.<sup>95,198,205,229–235</sup> Cadlina and Phyllidia contain nitrogenous terpenes, such species may further as isocyanides and isothiocyanates,179,236,237 and a Phylidiella pustulosa clade was found to contain rare dichloroimidic sesquiterpene derivatives (Figure 1.5).<sup>10</sup>

Further fascinating MNPs isolated from dorids are isoquinoline alkaloids and macrolides with antitumoral activity (Figure 1.6), such as jorumycin from *Jorunna funebris*, which led to the development of PM00104 (Zalypsis®),<sup>238–241</sup> or the trisoxazol macrolides kabiramides, halichondramides and ulapualides from *Hexabranchus sanguineus*,<sup>43,242–244</sup> sphinxolide from an unknown nudibranch,<sup>245</sup> and latrunculins, such as latrunculin A, from *Chromodoris* species.<sup>246–248</sup>



terpenoids with nitrogen and chloride functionalities

**Figure 1.5** Examplary types of terpenoids found in dorid nudibranchs. Spongian- and scalaran-type terpenoids are frequent in the genera *Chromodoris*, *Doriprismatica*, *Felimare*, *Felimida*, *Glossodoris* and *Goniobranchus*, whereas *Cadlina*, *Phyllidia* and *Phylidiella* may also contain terpenoids with nitrogen and chloride functionalities, such as isocyanides, isothiocyanates and dichloroimidic sesquiterpenes.



**Figure 1.6** Examples of an alkaloid (jorumycin) and macrolides with antitumoral activity isolated from dorid nudibranchs.

#### Mantle Dermal Formations (MDFs) and Chemical Transformation

Nudibranchs of the Chromodorididae family store high concentrations of sequestered compounds in the heavily glandular, exposed mantle tissue, especially in specialized spherical storage glands in the subepithelial layer, which consist of cells with large, non-staining vacuoles: the so-called mantle dermal formations (MDFs).99,101,113,249-252 These MDFs are highly concentrated chemical packages, deterring predators which might not have been deterred by lower concentrations of the metabolites uniformly distributed in the mantle.<sup>253</sup> Furthermore, MDFs are situated in the often brightly and aposematically colored mantle rim, drawing the predators' attention towards this well-defended area.<sup>143,167,248,252</sup> The evolution of defensive mantle glands and MDFs is considered a key innovation that has contributed to the extensive radiation and speciation of the Chromodorididae.<sup>143</sup> However, storage of secondary metabolites and a defensive role of MDFs might have evolved secondarily to their primary function as excretory or detoxification organs, expelling toxic substances and avoiding autotoxicity.<sup>101,113,251,253,254</sup> The secretion of toxic waste material by mantle glands or its accumulation in MDFs is an additional selective advantage against predation in combination with the prevention of autotoxicity. Hence, localization and storage of toxic compounds in MDFs can be considered a form of compartmentalization strategy in Chromodorididae. Chemical transformation is another common detoxification mechanism among marine heterobranch molluscs.<sup>104,203</sup> In Chromodorididae, this was investigated for Felimare and Glossodoris nudibranchs, where the biotransformation of dietary scalaranes and sesquiterpenes, such as scalaradial, into related molecules, in particular 6-keto or 12-keto derivatives, was demonstrated.<sup>57,100,195,203,232,233,251,255,256</sup> Injection of scalaradial into G. pallida proved to be non-toxic to the nudibranch and resulted in rapid conversion of this compound in less than 24 h. These biotransformed molecules are also further stored in the mantle tissue and are used as feeding deterrents against crabs and reef fish.<sup>57</sup>

#### Coevolution: Toxicity & Resistance

Predator-prey relationships between chemically protected organisms, like nudibranchs and their prey, are the result of a complicated evolutionary history that requires a tandem origin of toxin production or acquisition, unique genetic, physiological and morphological adaptations, and ecological transformations. Therefore, these antagonistic coevolutionary processes can have profound effects on macroevolutionary patterns and are considered to be main drivers of genotypic adaptations that can lead to the development of diverse resistance mechanisms.<sup>257–260</sup> Nonetheless, novel adaptations must originate and function within an already established

genome and the underlying mechanisms of resistance evolve under the influence of diversifying and purifying (i.e., stabilizing) selection in connection with increased toxin exposure.<sup>261–271</sup>

These coevolutionary processes and the evolution of toxin resistance have been investigated well in plant-herbivore interactions,<sup>272–286</sup> especially for cardiac glycosides from plants, bufonid toads and fireflies, and the widespread convergent evolution of resistant sodium-potassiumpumps in insects, amphibians, reptiles, and mammals.<sup>274,278,281,284,287–295</sup> Further examples can be found in the anthropogenic use of insecticides, herbicides, antimicrobials and resistances evolved by the targeted organisms,<sup>265,296–312</sup> as well as the evolution of self-resistant enzymes in microbial NP producers to prevent self-harm,<sup>313</sup> or grazers that evolved resistance to harmful algal blooms.<sup>263,268,314–318</sup> Among vertebrates, dendrobatid poison frogs and poisonous *Pitohui* and Ifrita birds are able to sequester and use alkaloids as a defensive 'toxin mantle'.<sup>269,319–326</sup> Grasshopper mice, that prey on bark scorpions, can even use the scorpion venom as an analgesic to their own advantage, as they have developed resistant voltage-gated sodium channels.<sup>327</sup> Opossums, that prey on vipers, have evolved a resistant hemostatic von Willebrand factor blood protein, 328,329 and various organisms, that coevolve with venomous snakes using  $\alpha$ -neurotoxins, have convergently evolved resistant alpha-1 nicotinic acetylcholine receptors.<sup>259,330-333</sup> Furthermore, extensive research on the complex and diverse predator-prey interactions using the neurotoxins tetrodotoxin (TTX) and paralytic shellfish toxins (PSTs), revealed the widespread convergent evolution of resistant voltage-gated sodium channels as a resistance mechanism against TTX and PSTs. 50,159,177,265,267,271,302,334-357

These studies, among many more, have taught us that there are a few general mechanisms, which enable these antagonistic coevolutionary processes of developing toxicity, resistance to these toxins, and the prevention of autotoxicity (i.e., self-intoxication). To survive and gain an advantage, organisms that produce or acquire toxic natural products must be resistant to the action of these substances.<sup>258,271,313,358,359</sup> For this purpose, seven major underlying strategies have established, which can be used alone or in synergy and in addition to behavioural aspects: (1) Compartmentalization, or (sub)cellular localization, where toxins are concentrated away from any vulnerable targets in vesicles, vacuoles, compartments or glands; (2) efflux pump transport proteins, like ATP-binding cassette (ABC) transporters, which are one of the most common mechanisms for the extrusion of toxic compounds; (3) production or storage of an inactive prodrug, which converts to the active defence only after excretion or uptake by a predator/competitor; (4) chemical transformations, that inactivate a toxic metabolite either by addition of a chemical entity or degradation; (5) toxin scavenging, where molecules, often proteins, are produced to bind to a toxin with a higher affinity than the target and inactivate it

in a 'self-sacrifice'; (6) off-target repurposing, where another target is produced with enhanced binding affinities, but altering the physiological effect of the toxin in a beneficial way; (7) and target-site insensitivity modifications, where the gene sequence of a target is altered to inhibit toxin binding to that target.<sup>258,264,271,358–361</sup>

Several Heterobranchia, especially many dorid nudibranchs, acquire and use toxins from their prey. They must be able to protect themselves from autotoxicity to survive and gain an advantage. Even though a vast number of chemical investigations provide us with fascinating and invaluable MNPs, little is known about the underlying mechanisms that allow for the sequestration and accumulation of these toxins in nudibranchs. Further exploration of this topic and a possible resistance mechanism in *Chromodoris* nudibranchs are the aims of "CHAPTER III: Protection from self-intoxication: A novel actin isoform in *Chromodoris* nudibranchs supports sequestration and storage of the cytotoxin latrunculin A".

#### Biodiversity: The Indo-Malay Archipelago and Coral Triangle

The tropical Central Indo-Pacific Ocean is the region of greatest biodiversity in the marine world, including a high diversity of predators and presumably the highest level of species competititon.<sup>362–366</sup> It is the largest biogeographical realm, spanning more than half of the world. At the heart of this area lies the Indo-Malay Archipelago (also referred to as Nusantara, Indonesian Archipelago, Indo-Australian Archipelago and Coral Triangle, depending on the respective delineation) with more than 25,000 islands. Especially Indonesia, which consists of around 7,000 islands and 70% sea, is the largest archipelago country in the world. Additionally, as a maritime bottleneck, Indonesia is of particular importance for global ocean circulation, climate variability and biogeochemistry.<sup>367,368</sup> Its inter-oceanic currents provide the only connection between the world's oceans at low latitudes and connect the tropical Pacific and Indian Ocean via the Indonesian Throughflow (ITF).

The exceptional biodiversity of this region is the result of several unique factors and was only able to develop in this area due to a large and extreme diversity of habitats, created by the extensive and complex coastlines of the archipelago and its key ecosystems: the coral reefs, mangrove forests, and seagrass meadows.<sup>363,364,369</sup> These coastal and oceanic ecosystems have the highest diversity in the Indo-Malay region, which has the greatest concentration of tropical shallow water habitat on Earth. They are tightly connected and interdependant for the exchange of organisms, food and nutrients. Furthermore, they provide crucial ecosystem services, such as blue carbon storage, coastal protection, nursery habitats and are an important source of

income for local communities.<sup>370,371</sup> However, this vital region is also vulnerable and currently threatened by a multitude of direct human-induced pressures (e.g. pollution, overfishing, poaching and habitat destruction), rising temperatures, the climate crisis, deoxygenation and acidification. These stressors can drive mass mortality and have a dramatic impact on the diversity and integrity of the key coastal ecosystems (mangrove forests, seagrass beds and coral reefs), making them a top priority for conservation.<sup>12,14,363,366,370–375</sup>

A factor that contributes to the high diversity of this region is that it has been tectonically unstable for at least 38 million years, therefore creating ever-changing environments and disturbances that lead to an extreme habitat heterogeneity of complex shallow habitats alongside deep (~ 150 m) ocean. The shallow ecosystems are further affected by rapid changes (over geologic time) in sea level, resulting in more localized differences in oceanographic patterns and isolation or linkage of populations.<sup>363,365</sup> According to fossil records, it has been suggested that corals of the Coral Triangle (CT) are the world's youngest, which have either evolved in this region or survived there while going extinct in other places.<sup>363,376</sup>

Many reef-dwelling species are also represented by a free-living phase (such as larvae), in which the dispersal of these organisms is determined by the duration of their free-living phase and the speed and direction of the currents. This is especially true for bottom-dwelling marine invertebrates, which rely on dispersal and long-distance transport of their planktonic larvae by currents.<sup>363,364,369</sup> The CT acts as a 'catch basin' for all larvae that move towards the region via both the South Equatorial Current (SEC) and North Equatorial Current (NEC). Dispersion away from the CT occurs northward to mainland Japan via the Kuroshio Current, southward along the west Australian coast via the ITF and Leeuwin Current, and southward along the east Australian coast (to the Great Barrier Reef and into the Tasman Sea) via the East Australian Current (EAC).<sup>363,364,369</sup> Currents can act as both genetic barriers (in vicariance) and as paths of genetic connectivity. All of these conditions promote reticulate evolution in the CT (sometimes referred to as 'evolutionary cauldron'), enhanced by the ever-changing habitat diversity and the complexity of ocean surface currents, which lead to the great biodiversity of the CT and Indo-Malay coastlines.<sup>363</sup>

Species diversity attenuates away from the CT at progressively increasing distance according to ocean temperature. Heterobranch sea slugs also show such a pattern of rapid attenuation of species diversity from ~ 1,000 species in the northern Great Barrier Reef to ~ 500 species in central New South Wales.<sup>377,378</sup> Climate change can influence this pattern and southern range extension with a poleward shift has been described for many taxa, including sea slugs.<sup>378–381</sup>

However, there is a lack of baseline data for marine invertebrates and sampling bias may further affect our knowledge and perception of species richness, which also strongly depends on sampling strategy.<sup>369,382</sup> Recently though, as part of the INDOBIO project, considerable sampling effort has led to several publications on Heterobranchia species in North Sulawesi, Indonesia, increasing our knowledge for this group in this important region.<sup>4–7</sup> Furthermore, joint initiatives like the Sea Slug Forum (seaslugforum.net) or iNaturalist (inaturalist.org) and citizen scientist projects including volunteers in data collection for marine ecosystems, such as the 'sea slug census', can provide valuable data for research and may help to reinforce the importance of marine ecosystem health.<sup>383</sup> As most sea slugs are specialists that depend on specific food sources, documenting their species numbers and distribution can reveal valuable information on other important taxa and the state of the ecosystem as well.

#### AIMS OF THE THESIS

This dissertation is part of the interdisciplinary project INDOBIO, in which it focusses on the investigation of MNPs from nudibranchs and their food sources of the Central Indo-Pacific Ocean, namely *Phyllodesmium longicirrum* from Lizard Island, northern Great Barrier Reef, Australia, *Doriprismatica stellata* and five *Chromodoris* species from North Sulawesi, Indonesia. Furthermore, isolated MNPs were examined for their possible chemoecological role and medical potential. A mechanism for the prevention of autotoxicity was explored.

CHAPTER I focusses on the chemical investigation of MNPs from *P. longicirrum*. Unlike other Aeolidioidea, members of the highly diverse genus *Phyllodesmium* changed their food preference from Hydrozoa to Octocorallia and most of them do not store nematocysts for protection, despite having cerata. Instead, they incorporate symbiotic zooxanthellae and may sequester terpenoid metabolites from their prey. After extraction, chromatographic isolation and structure elucidation, pure NPs were examined in a fish feeding deterrence assay with the generalist pufferfish *Canthigaster solandri*, to test for a possible ecological function in defence. Additionally, isolated NPs were compared to metabolites from alcyonacean sources to determine the most likely octocorallian prey.

CHAPTER II investigates the biochemical relationship between *D. stellata* nudibranchs, their egg ribbons, and the associated dietary sponge, with an emphasis on a structurally new specialized metabolite, shared by all samples. The sponge was identified as *Spongia* cf. *agaricina* to increase knowledge on the specialized predator-prey relationship for this hardly investigated species of nudibranchs. Lipophilic extracts and the shared isolated pure NP were tested for antibacterial activity to identify a possible ecological function and its potential as drug lead structure.

CHAPTER III focusses on four key objectives: (1) chemical investigation of five closely related chromodorid nudibranchs: *C. annae*, *C. dianae*, *C. lochi*, *C. strigata* and *C. willani*, and their spongian food source, identified as *Cacospongia mycofijiensis*; (2) chemical analysis of the distribution of the shared main metabolite LatA within the nudibranchs' body and mucus and its visualization in cross-sections of *Chromodoris* specimen using MALDI MSI; (3) evalutation of the toxicity and mode of action of the isolated LatA using HEK-293 cells, *Chromodoris* and *Elysia viridis* heterobranchs; (4) investigation of a potential molecular resistance mechanism of *Chromodoris* nudibranchs, by sequencing and comparison of the obtained actin nucleotide and amino acid sequences from different heterobranch sea slugs.

# CHAPTER I: Investigations of the natural products and chemical ecology of *Phyllodesmium longicirrum* (Nudibranchia: Aeolidioidea)

Large parts of this chapter are from the master thesis written by the authoress of this thesis, supervised by Prof. Gabriele M. König and Prof. Heike Wägele. The results contributed to the publications Bogdanov et al. 2016, 2017.<sup>1,2</sup>

#### Abstract

The constant struggle of prey organisms against predation led to the evolution of remarkable defence mechanisms to avoid detection or fight off predators. Aeolid nudibranchs lack a protective shell. Instead, they are well known for the ability to sequester nematocysts from their hydrozoan prey and use them for their own defence. Yet, there is one genus within this taxon, which does not store and utilize nematocysts. Members of *Phyllodesmium* have specialized to feed on alcyonacean soft corals, which house symbiotic zooxanthellae. Furthermore, they are a rich source of terpenoid MNPs. However, besides being camouflaged to avoid detection, little is known about the defence mechanisms of *Phyllodesmium*.

Here we show that one of the largest species, *P. longicirrum*, incorporates terpenoid compounds, especially cembranoid diterpenes. These metabolites are acquired from its prey, species of the soft coral genus *Sarcophyton*. Investigation of the lipophilic extract of a single *P. longicirrum* specimen led to the isolation of nine terpenoid metabolites: the cembranoid diterpene (2R,11R,12R)-isosarcophytoxide (1), its epimer (2S,11R,12R)-isosarcophytoxide (2), the related (3R,4S,11R,12R)-bisepoxide (3), and the  $\gamma$ -lactone bearing cembranes sarcophytonin B (4) and 13-dehydroxysarcoglaucol-16-one (5); the two polycyclic diterpenes 4-oxo-chatancin (6) and 1-*O*-methyl-4-oxo-chatancin (7); and the two biscembranes bisglaucumlide L (8) and bisglaucumlide M (9).

All of these compounds were either previously isolated from species of the genus *Sarcophyton*, or show a strong similarity to their compounds, supporting that *P. longicirrum* sequestered these metabolites from its prey. Furthermore, metabolites **6** and **2** significantly deterred feeding by the generalist pufferfish *Canthigaster solandri*, which emphasizes their ecological role in defence. Compound **1**, the epimer of **2**, exhibited no significant deterrence, suggesting that feeding deterrence might be conformation-dependant. *Phyllodesmium* is the species-richest genus within the Aeolidioidea. This is most likely because of an enhanced radiation and

speciation due to the shift from a hydrozoan to an alcyonacean food source, and the successful scavenging of their prey. The incorporation of symbiotic zooxanthellae provides additional nutrition, and the sequestration of defensive metabolites is a metabolically cheap and effective protection from predators, leading to a higher viability.

**Keywords:** chemical defence; chemoecology; natural compounds; Nudibranchia; *Phyllodesmium longicirrum* 

#### Introduction

#### Ecology of the Genus Phyllodesmium

The genus Phyllodesmium Ehrenberg, 1831 (Aeolidioidea: Myrrhinidae) is unique among aeolids, because its members switched and specialized from feeding on Hydrozoa to feeding on Octocorallia, particularly Alcyonacea (Figure 2.1).<sup>1,2,151,189</sup> They are distributed in the Indo-Pacific Ocean, including coral reefs close to Japan, New Zealand and South Africa, where they live as stenophagous predators in a close ecological relationship with their octocoral prey.<sup>151,190</sup> The more primitive species, e.g. *Phyllodesmium serratum*, feed on corals that lack photosynthetic zooxanthellae, e.g. *Clavularia* and *Carijoa*, and show minimal or no branching of their digestive tract. While more derived species, with exceedingly branched digestive glands, have further evolved to participate in a mutualistic symbiotic relationship with photosynthetic zooxanthellae of the genus Symbiodinium.<sup>132,151,384</sup> This relationship is quite fascinating, since these slugs feed on the primary host, consume and digest the coral, while selectively preserving and translocating the entire symbiont into cells of the cerata, where exposure to sunlight is at its highest.<sup>132,151,384</sup> It was hypothesized that the acquisition of a photosynthetic ability is one of several important traits, which enhances speciation.<sup>132</sup> Indeed, Phyllodesmium is the species-richest genus (~30 species), compared to the other myrrhinid genera, which all comprise only one to five species each (see WoRMS). However, it should be noted that there is a high variation in the ability to retain zooxanthellae among different species of *Phyllodesmium*; with some aposymbiotic species, which completely digest the symbiont along with their prey, some retaining them for a short time, and others, being able to preserve the zooxanthellae for significant periods of food shortage.<sup>132,384</sup>

Unlike other aeolids, most members of *Phyllodesmium* do not incorporate and use nematocysts, but instead favour the symbiosis with *Symbiodinium* and an astounding mimicry (= crypsis) with their home coral for protection.<sup>151,385</sup> A likely explanation is that alcyonacean corals either completely lack or possess only a few, small nematocysts of the atrichous isorhiza type.<sup>226,385-387</sup>

However, a study conducted by Yoffe et al. 2012,<sup>389</sup> revealed that *Heteroxenia fuscescens* (Alcyonacea: Xeniidae) possesses an abundant array of nematocysts, challenging the general perception on stinging cells in this group. Indeed, there is one species, Phyllodesmium *jakobsenae*, which feeds on xeniid soft corals and has two different types of cerata, with the smaller ones storing nematocysts of its prey.<sup>152</sup> Yet, it is uncertain whether these kleptocnides are effectively used by *P. jakobsenae* as an additional defence, or are merely stored in the cerata to be excreted later on. Interestingly, around half of the Phyllodesmium species form a monophyletic clade, which have all specialized on feeding upon soft corals of the family Xeniidae, with the only exception of P. koehleri, which has specialized on feeding upon Lemnalia, members of the family Nephtheidae (Figure 2.1).<sup>132,189</sup> This additional "miniradiation" on the Xeniidae was proposed to be triggered by the alternative composition of natural products in this family, which might enhance their defence.<sup>132,390</sup> The other zooxanthellate species of *Phyllodesmium* either feed on different genera of the family Alcyoniidae, e.g. Sarcophyton and Sinularia, or have specialized on members of the Anthotheidae, Briareidae or Tubiporidae (Figure 2.1).<sup>132</sup> To date, only five species of Phyllodesmium have been chemically investigated: P. guamensis, P. lizardensis, P. briareum, P. magnum and P. longicirrum,<sup>1,2,189,390–393</sup> revealing a large variety of terpenes, especially sesquiterpenes, cembranes and briaranes, derived from their octocoral food source.



**Figure 2.1** Cladogram of the genus *Phyllodesmium*, with zooxanthellate (green) and azooxanthellate (red) species and their respective alcyonacean food source (genus and family), if known. Arrows indicate relevant secondary metabolites isolated from the respective coral family, taken from Bogdanov et al., 2014.<sup>189</sup>

#### Chemical Ecology of Alcyonacea Soft Corals Associated with Phyllodesmium

Since the early Cretaceaous, hard corals (Hexacorallia: Scleractinia) and soft corals (Octocorallia: Alcyonacea) have been on separate evolutionary paths, diverging greatly in morphology, physiology, and chemical composition.<sup>394,395</sup> Coral reefs are mainly associated with scleractinians, but alcyonaceans dominate many reefs of the Indo-Pacific Ocean, with the most prolific genera being *Lobophytum*, *Nepthea*, *Sinularia*, and *Sarcophyton*.<sup>227,387,396,397</sup> Usually, soft corals are not considered as reef builders, however, a study by Jeng et al. 2011,<sup>398</sup> has shown that colonies of *Sinularia* are able to cement their calcium carbonate sclerites and consolidate them at their base into spiculite, laying a new foundation for future corals.

Octocorals are sessile throughout their adult life phase and cannot escape biotic and abiotic stress factors of their habitat by means of running away, or having a physical protection, like scleractinians.<sup>44,387</sup> Instead, they are known to possess high levels of MNPs, which are attributed to be the reason for their evolutionary success in the Indo-Pacific.<sup>227,399–403</sup> The highest diversity of toxic or deterrent MNPs is found in coral reefs, which are characterized by intense competition and feeding pressure due to carnivorous predators.<sup>44,227</sup> Since the beginning of marine natural product research in the mid-1960's, more than 3000 compounds have been isolated from Octocorallia.<sup>401–407</sup> These secondary metabolites, mainly diterpenoids, sesquiterpenoids and steroids, serve multiple functions, which are not mutually exclusive.<sup>226,227</sup> Most of them have been investigated for important pharmacological activities, showing antimicrobial, antiviral, anti-inflammatory, antitumor, HIV-inhibitory and cytotoxic activities, as well as cardiac and vascular responses.<sup>224,397,408–411</sup> Especially terpenoids from alcyonaceans have been shown to provide notable bioactivities.<sup>224,397,409</sup>

Although much research was dedicated to octocorals, their symbionts and metabolites, determining the true origin of a certain compound (soft coral or microbial), as well as its true ecological function is challenging and searching for a single role may be too simplistic.<sup>226,405</sup> Studies by Ne'eman et al. 1974,<sup>412</sup> Tursch 1976,<sup>400</sup> and Kashman & Groweiss 1977,<sup>413</sup> have been the first to confirm the defensive role of terpenoids in predation. They revealed that lobolide (Figure 2.2; **1**, extracted from *Lobophytum* sp.), lobophytolide (**2**, from *L. cristagalli*), crassolide (**3**, from *L. crissum*), africanol (**4**, from *Lemnalia africana*), and sarcophine (**5**, from *Sarcophyton glaucum*) are toxic to fish (*Gambusia affinis* and *Lebistes reticulatus*). Palustrol (**6**, from *Cespitularia* sp. aff. *subviridis*) and sarcophytonone (**7**, from *S. crassocaule*) exhibited toxicity against a variety of marine crustaceans, for example *Artemia salina*.<sup>414,415</sup> Sarcophytoxide (**8**), another cembranoid diterpene extracted from the genus *Sarcophyton*, showed high fish feeding deterrence against *G. affinis*.<sup>228,391,397</sup> Dihydroflexibilide (**9**),

11,12-deoxyflexibilide, and 11b-acetoxypukalide (**10**) were isolated from different species of *Sinularia* (e.g. *S. flexibilis* and *S. maxima*) and displayed feeding deterrent and ichthyotoxic activities against the mosquitofish *G. affinis* and pufferfish *Canthigaster solandri*.<sup>46,392,416,417</sup> Denticulatolide (**11**) and lobophynin C (**12**), both extracted from the genus *Lobophytum*, were ichthyotoxic against the killifish *Oryzias latipedes* and crustaceans of the genus *Artemia*.<sup>228</sup>



**Figure 2.2** MNPs isolated from alcyonacean soft corals, the food source of the genus *Phyllodesmium*, ascertained to have defensive properties, such as feeding deterrence, ichthyotoxicity, or toxicity to crustaceans.

Further tests for defensive properties were conducted using the complete crude extracts of various soft corals, without determining specific compounds responsible for this action. Crude extracts of the xeniid soft corals *Ovabunda crenata* and *Heteroxenia ghardagensis*, were shown to be feeding deterrent against natural populations of Red Sea reef fishes.<sup>418</sup> The crude extracts

of *S. glaucum*, *Lemnalia* sp. and *Sinularia* sp. each inhibited predation by *G. affinis*.<sup>226,419</sup> Though toxicity is expected to be highest in coral reefs, crude extracts of the antarctic alcyonaceans *Alcyonium paessleri* and *Gersemia antarctica* have also been shown to be predator deterrent against the sea star *Odontaster validus*.<sup>228,420,421</sup>

Indeed, tests with crude extracts revealed that more than 60% of soft corals are ichthyotoxic, with the most toxic groups being *Lemnalia* and *Sarcophyton*, and around 75% of soft corals possess feeding deterrent activities.<sup>226,227,399,419</sup> Furthermore, presence of ichthyotoxicity was negatively correlated with the occurrence of physical morphological attributes specifically associated with anti-predator defence, emphasizing the trade-off from physical to a highly effective chemical defence in alcyonacean soft corals.<sup>422</sup>

It is expected that members of *Phyllodesmium* contain some of the previously mentioned metabolites, respectively to the according food source. Chemical investigation of five *Phyllodesmium* species, *P. guamensis*, *P. lizardensis*, *P. briareum*, *P. magnum* and *P. longicirrum* by Coll et al. 1985,<sup>391</sup> Slattery et al. 1998,<sup>392</sup> Affeld et al. 2009,<sup>390</sup> Mao et al. 2011,<sup>393</sup> and Bogdanov et al. 2014,<sup>189</sup> revealed a large variety of different terpenes, sequesterd from their prey. Yet, none of the alcyonacean compounds tested in feeding deterrence assays were retrieved from any *Phyllodesmium* species. Nevertheless, Bogdanov et al. 2014,<sup>189</sup> found at least the molecular mass of 317.2110 Da (M+H), which may indicate the presence of sarcophine (Figure 2.2; **5**). Further studies are necessary to determine the entire secondary metabolome of *Phyllodesmium* species, as well as of their alcyonacean food source.

#### Secondary Metabolites of Phyllodesmium longicirrum

*P. longicirrum* (Figure 2.3) is considered to be one of the most derived species of the genus *Phyllodesmium*.<sup>384</sup> This species can grow to a size of more than 12 cm and is therefore one of the largest species, besides *P. magnum*, with whom it forms a moderately supported clade.<sup>132,151,384</sup> *P. longicirrum* is especially notable, since it is able to retain communities of symbiotic zooxanthellae for more than 5 months, therefore having a most efficient photosynthesis.<sup>132</sup> This is due to its highly ramified digestive gland, housing the symbionts, and huge flattened cerata, which provide a maximum of sunlight, maximising the photosynthetic output.<sup>132,151,384</sup> This unique adaptation has most likely enabled the host to grow to such an exceptional size (Figure 2.3).



**Figure 2.3** *In vivo* habitus of *P. longicirrum* feeding on a *Sarcophyton* soft coral (© B. Rudman, @seaslugforum.com).

Though being large might have advantages, it also increases the risk of being spotted by predators, making alternative defences crucial for survival. *P. longicirrum* is at least protected by crypsis on its respective food coral, but investigations towards additional defence mechanisms have been scarce. This species is often found on soft corals of the genus *Sarcophyton* and *Lobophytum*, but actual feeding has only been observed on *S. trocheliophorum*, supporting that *P. longicirrum* is a specialized feeder on alcyoniidaen species of the genus *Sarcophyton*, one of the most toxic soft coral genera.<sup>151,226,391</sup> Therefore, the assumption that *P. longicirrum* acquires toxic MNPs from *Sarcophyton* and uses them for its own defence is plausible.

So far only one study has been conducted, showing that the cembrane diterpenes thunbergol (Figure 2.4; 1), epoxythunbergol (2), and a diterpene alcohol (3) are dietary derived and incorporated by *P. longicirrum*.<sup>391</sup> However it was not investigated whether these compounds deter feeding. Another study by Bogdanov et al. 2016,<sup>1</sup> revealed that a specimen of *P. longicirrum* from the Great Barrier Reef (Australia) also contained four rare cembrane-based polycyclic diterpenes 4-oxo-chatancin (Figure 2.4; 4), 4-acetoxy-chatancin (5), 1-*O*-methyl-4-oxo-chatancin (6), and 1-oxo-9-hydro-isochatancin (7). Though these compounds have not yet been isolated from any other organism, they share a striking resemblance with chatancin (8) and sarcophytin (9), which were isolated from soft corals of the genus *Sarcophyton*, supporting that *P. longicirrum* acquires these metabolites from its prey. Furthermore, it was shown in a chemical defence assay with the generalist predator *C. solandri*, that 4-oxo-chatancin (4) significantly deters feeding, emphasizing that these molecules might be used as additional chemical defence.<sup>1</sup>



**Figure 2.4** Metabolites isolated from *P. longicirrum* (1-7). Compounds (1-3) were also isolated from *Sarcophyton*. Compounds (4-7) resemble chatancin (8) and sarcophytin (9), which were isolated from *Sarcophyton* as well.

#### Aim of the Study

This study was conducted to investigate the composition of MNPs, especially terpenoids, in the aeolid nudibranch *Phyllodesmium longicirrum*. For this purpose, an ethyl acetate-extract of one *P. longicirrum* specimen was chromatographically separated and its compounds were isolated, analysed and elucidated by means of mass spectrometry, UV/Vis and IR spectroscopy, optical rotation measurements, but primarily by extensive analysis of 1D and 2D NMR spectra (SI). Elucidated metabolites were compared to compounds from alcyonacean soft corals to assign a possible dietary origin and gather further information on the predator-prey relationship between *P. longicirrum* and soft corals of this family. Feeding assays with the pufferfish *Canthigaster solandri* were carried out under laboratory conditions to evaluate defensive properties of the compounds isolated from *P. longicirrum*.

#### Results

In this study nine terpenoids were isolated by successive fractionation of previously obtained fractions, from the ethyl acetate (EtOAc) extract of a single *P. longicirrum* specimen (Table 2.1). All compounds were isolated as colorless oils.

**Table 2.1** Isolated compounds from the respective EtOAc fractions of *P. longicirrum*, their total amount and percentage share of the EtOAc extract.

| Fraction  | Isolated Secondary Metabolite | Total Amount | % of EtOAc Extract |
|-----------|-------------------------------|--------------|--------------------|
| VLC 7.2   | 1                             | 41.0 mg      | 1.9                |
|           | 2                             | 42.0 mg      | 1.9                |
|           | 4                             | 17.8 mg      | 0.8                |
|           | 5                             | 3.7 mg       | 0.2                |
| VLC 6 S 7 | 3                             | 28.0 mg      | 1.3                |
|           | 6                             | 150.0 mg     | 7.0                |
|           | 7                             | 3.4 mg       | 0.2                |
| VLC 6 S 5 | 8                             | 4.4 mg       | 0.2                |
|           | 9                             | 2.3 mg       | 0.1                |

#### Cembranoid Diterpenes

Diterpenoids are a versatile class of compounds with significant biological activities, which can be isolated from various natural sources.<sup>212</sup> The most common diterpenoids reported from alcyoniidaen soft corals, the prey of *P. longicirrum*, are cembranoid diterpenes, which are based on a 14-membered carbocyclic ring.<sup>400,404,423</sup> The isolated metabolites **1**, **2**, **3**, **4**, and **5** belong to this abundant group (Figure 2.5). Their structures are known and they have previously been isolated from different species of the soft coral genus *Sarcophyton* and the closely related genus *Lobophytum*, as in the case of compounds **1** and **2**.<sup>213,400,424–428</sup> Until now, only the planar structure of compound **3** was known. Its relative configuration was determined in this study by extensive analysis of the <sup>1</sup>H-<sup>1</sup>H NOESY correlations.


Figure 2.5 Cembranoid diterpenes (1-5) isolated in this study from *P. longicirrum*.

## Structure Elucidation of Compounds 1 and 2

Mass spectral analysis of **1** and **2** indicated the formula  $C_{20}H_{30}O_2$  (*m/z* 302.2, M<sup>+</sup>) for both compounds. <sup>1</sup>H- and <sup>13</sup>C NMR spectral data are depicted in Figure S1.1 and Figure S1.2 for compound **1**, and in Figure S1.3, and Figure S1.4 for compound **2**.

The <sup>13</sup>C NMR spectra (Figure S1.2, Figure S1.4) showed 20 resonances for four methyl groups, seven  $sp^3$  methylene groups, two  $sp^3$  and two  $sp^2$  methine groups and five quaternary carbon atoms as indicated by the DEPT135 measurement. Three double bonds are indicated by the four singlets and two doublets in the  $sp^2$  region. The presence of a dihydrofuran ring was confirmed by a methine signal at  $\delta$  84.8 and a methylene signal at  $\delta$  79.0 in the <sup>13</sup>C-NMR spectrum. Literature research revealed a striking similarity of 1 and 2 with the monoepoxy dihydrofuran containing cembrane sarcophytoxide and the isomeric isosarcophytoxide. 400,424,426,429 Comparison of the <sup>1</sup>H-NMR spectra with those reported for sarcophytoxide and isosarcophytoxide, revealed that 1 and 2 were indeed isosarcophytoxide, since the major observable difference was in the signal attributed to the epoxy methine proton (H-11: sarcophytoxide:  $\delta$  2.74, triplet, J = 4 Hz; isosarcophytoxide:  $\delta$  2.81, doublet of doublets, J = 9.3 Hz), which resonated at  $\delta 2.88$  (1) and at  $\delta 2.85$  (2) as a doublet of doublets in both cases. Furthermore, the two compounds exhibited large specific rotations, which differed in the sign of rotation, as described by Bowden et al. 1987,<sup>427</sup> identifying compound 1 as (2R,11R,12R)-isosarcophytoxide ( $[\alpha]_D^{20} = -156$ , CHCl<sub>3</sub>) and compound **2** as its epimer (2S,11R,12R)-isosarcophytoxide ( $[\alpha]_D^{20} = +196$ , CHCl<sub>3</sub>).

Though we were able to isolate 12 mg of relatively pure compound **1** and 13 mg of **2**, most of them were combined in an inseparable mixture (58 mg). Simultaneous occurrence of **1** and **2** is consistent with previous findings of Bowden et al. 1987,<sup>427</sup> and Kashman et al. 1974,<sup>424</sup> which stated that the doubly allylic oxygenated position of the dihydrofuran ring may epimerize under certain conditions, leading to co-occurrence of isosarcophytoxides **1** and **2**, which only differ in configuration at the doubly allylic C-2 position. In total compounds **1** and **2** (Figure 2.5) were the second and third major metabolites isolated from *P. longicirrum*. The related sarcophytoxide is known as an allelochemical with cytotoxic and ichthyotoxic properties,<sup>397</sup> and isosarcophytoxides (Figure 2.5; **1** and **2**) are known to be at least cytotoxic.<sup>214</sup> Therefore, we hypothesized that compounds **1** and **2** might be used in chemical defence, and measured their ability to deter feeding by *C. solandri*.

# Structure Elucidation of Compound 3

The molecular formula  $C_{20}H_{30}O_3$  (*m/z* 318.2, M<sup>+</sup>) of metabolite **3** was ascertained by LC-ESI-MS. <sup>1</sup>H- and <sup>13</sup>C NMR spectral data of **3** are depicted in Figure S1.5, Figure S1.6. The compound showed a high spectral similarity to compounds **1** and **2**, indicating that it could be the related bisepoxy dihydrofuran derivative of sarcophytoxide (Figure 2.5; **3**).

The <sup>13</sup>C NMR spectrum (Figure S1.6) displayed 20 resonances for four methyl groups, seven methylene groups, three sp<sup>3</sup> methine groups and one sp<sup>2</sup> methine, and five non-protonated carbons. Only two double bonds are indicated (C-8:  $\delta$  135.8; C-15:  $\delta$  131.8; C-1:  $\delta$  130.9; C-7:  $\delta$  127.1, H-7:  $\delta$  5.26), one trisubstituted (C-7 to C-8) and one tetrasubstituted (C-1 to C-15), with the latter being in a dihydrofuran ring. This was also confirmed by the presence of the methine signal (C-2:  $\delta$  87.9) and the methylene signal (C-16:  $\delta$  79.7), as expected for a dihydrofuran moiety. Furthermore, two trisubstituted epoxides were indicated by <sup>13</sup>C NMR signals at  $\delta$  66.4 (C-3),  $\delta$  63.1 (C-11),  $\delta$  62.6 (C-12), and  $\delta$  62.3 (C-4). The broad doublet centred at  $\delta$  2.80 (H-3, J = 8.2 Hz), the doublet of doublets at  $\delta$  2.88 (H-11, J = 3.3, 9.8 Hz), and the two methyl singlets at  $\delta$  1.30 (H<sub>3</sub>-20) and  $\delta$  1.46 (H<sub>3</sub>-18) support that compound **3** is the (3,4;11,12)-bisepoxide related to sarcophytoxide and the isosarcophytoxides **1** and **2** (Figure 2.5). Optical rotation ([ $\alpha$ ]<sub>D</sub><sup>20</sup> = -44.6, CHCl<sub>3</sub>) also coincides with the optical rotation value of (3,4;11,12)-bisepoxide ([ $\alpha$ ]<sub>D</sub><sup>20</sup> = -46.7, CHCl<sub>3</sub><sup>426</sup>). Compound **3** was first isolated by Bowden et al. 1979,<sup>426</sup> from an unknown species of the soft coral genus *Sarcophyton*.

Though the planar structure of metabolite **3** has been known for more than 35 years, there was no published investigation of its stereochemistry. Hence, a detailed analysis of the  ${}^{1}\text{H}{}^{-1}\text{H}$  NOESY correlations of **3** was conducted to propose the possible relative

configuration (Figure S1.7). An NOE correlation of H-2 to H<sub>3</sub>-18 indicated the relative configuration of C-2 to be  $R^*$ . Since H<sub>3</sub>-18 and H-2 point into the same direction, the relative configuration of C-4 was established as  $S^*$ . Relative configuration of C-3 was determined as  $R^*$ , due to the NOE correlation of H-3 to H-7 and H<sub>3</sub>-20. NOE correlations of H<sub>3</sub>-19 only to H<sub>2</sub>-6 and H<sub>2</sub>-9 emphasize that this methyl group points outwards. The relative configuration of C-11 and C-12 was established as  $R^*$  in both cases, which is the same as described for the related isosarcophytoxides **1** and **2** (Figure 2.5),<sup>427</sup> indicated by NOE correlations of H<sub>3</sub>-20 to H-3 and H-11 (Figure S1.7). Until now, no bioassays or feeding deterrence experiments have been conducted for metabolite **3**. Therefore, it is unknown what impact the second epoxide group might have. Further experiments regarding its biological activities and ecological function are needed.

# Structure Elucidation of Compound 4

The molecular formula of compound **4** was established by HRMS to be  $C_{20}H_{28}O_2$  (*m/z* 301.2160, M+H). <sup>1</sup>H- and <sup>13</sup>C NMR spectral data are shown in Figure S1.8 and Figure S1.9.

The <sup>13</sup>C NMR spectrum (Figure S1.9) exhibited 20 resonances for four methyl groups, six sp<sup>3</sup> methylene groups, one sp<sup>3</sup> and three sp<sup>2</sup> methine groups and six quaternary carbon atoms as suggested by the DEPT135 measurement. The carbon signals indicate the presence of four double bonds (C-1 to C-15; C-3 to C-4, C-7 to C-8, and C-11 to C-12) and a  $\gamma$ -lactone moiety (C-1:  $\delta$  166.1; C-2:  $\delta$  81.1; C-15:  $\delta$  122.9; C-16:  $\delta$  177.5; C-17:  $\delta$  8.8). Comparison of the obtained <sup>1</sup>H- and <sup>13</sup>C NMR data of compound **4** (Figure S1.8 and Figure S1.9) and the optical rotation measurement ([ $\alpha$ ]<sub>D</sub><sup>20</sup> = +158.2, CHCl<sub>3</sub>) with values from the literature showed that they fit to sarcophytonin B (**4**). Compound **4** was first isolated by Kobayashi & Hirase 1990<sup>428</sup> from an unknown species of the soft coral genus *Sarcophyton*. They determined the absolute configuration at C-2 to be *S* from the CD spectrum, which showed a negative Cotton curve (247 nm,  $\Delta \varepsilon$  -3.3) due to the chiral butenolide ring.

#### Structure Elucidation of Compound 5

Mass spectral analysis of compound **5** determined the molecular formula to be  $C_{21}H_{28}O_4$  (*m/z* 344.199, M<sup>+</sup>). <sup>1</sup>H- and <sup>13</sup>C NMR spectral data are represented in Figure S1.10 and Figure S1.11.

The <sup>13</sup>C NMR spectrum (Figure S1.11) showed 21 resonances for four methyl groups, one of them being a methoxy (OCH<sub>3</sub>-21), six methylene groups, three  $sp^2$  and one  $sp^3$  methine groups

and seven non-protonated carbons as indicated by the DEPT135 measurement. A  $\gamma$ -lactone moiety (C-1:  $\delta$  166.0; C-2:  $\delta$  81.1; C-15:  $\delta$  123.0; C-16:  $\delta$  177.5; C-17:  $\delta$  8.8) was present in this metabolite as well. Though the overall NMR spectra showed great similarity to compound **4**, there was one conspicuous difference, being that **5** contained a carboxylate ester (C-19:  $\delta$  169.7 (s), H<sub>3</sub>-21:  $\delta$  3.78). Therefore, metabolite **5** represents an example of rare cembranoids, which are fuctionalized at C-19. Comparison with literature data revealed that the obtained <sup>1</sup>H-, <sup>13</sup>C NMR (Figure S1.10, Figure S1.11) and optical rotation value of **5** ([ $\alpha$ ]<sub>D</sub><sup>20</sup> = + 81.4, CHCl<sub>3</sub>) match those of 13-dehydroxysarcoglaucol-16-one,<sup>213</sup> previously isolated from the soft coral *Sarcophyton cherbonnieri*.

## Polycyclic Diterpenes

Compounds **6** and **7** are two rare cembrane-based polycyclic diterpenes (Figure 2.6). Only 6 members of this group have been described to date, which were isolated from soft corals of the genus *Sinularia* and *Sarcophyton*.<sup>430,431</sup> These complex molecules have been shown to be platelet-activating factor (PAF) antagonists, useful against numerous diseases, including those of the respiratory and cardiovascular system.<sup>432,433</sup>



Figure 2.6 Chemical structures of compounds 6 and 7 isolated from *P. longicirrum*.

## Structure Elucidation of Compounds 6 and 7

The molecular formula of compound **6** was established by HRMS to be  $C_{21}H_{30}O_5$  (*m/z* 385.1977, M+Na). <sup>1</sup>H- and <sup>13</sup>C NMR spectral data of **6** are depicted in Figure S1.12 and Figure S1.13, and summarized in Table S1.1.

Its <sup>13</sup>C NMR spectrum (Figure S1.13) showed 21 resonances for five methyl groups, five sp<sup>3</sup> methine groups, one sp<sup>2</sup> methine group, four methylene groups and six non-protonated carbon atoms as indicated by a DEPT135 measurement. The <sup>1</sup>H-<sup>1</sup>H COSY spectrum enabled the determination of two main fragments. The first reached from proton H-6 to H-10, including the methyl group CH<sub>3</sub>-19, while the second composed an isopentyl moiety with the methyl groups

CH<sub>3</sub>-16 and CH<sub>3</sub>-17, methine groups CH-15 and CH-2 and methylene group CH<sub>2</sub>-3. <sup>1</sup>H-<sup>13</sup>C HMBC correlations from H<sub>2</sub>-3 to carbonyl carbon C-4, from H-2 to C-1, and from H-14 to both C-1 and C-5 indicated the presence of an isopropylcyclohexanone moiety. HMBC correlations from H-6 and H<sub>2</sub>-10 to C-11 identified the second ring as a methylcyclohexane fragment. The formation of a phenanthrene ring, with the double bond  $\Delta^{12,13}$  and the connection between C-6 and C-5 was confirmed by HMBC correlations between H-6 and C-5, H-14 and C-13, as well as between H-12 and C-11 and C-13 both. HMBC correlations between the remaining methyl group CH<sub>3</sub>-18 and C-5 enabled its correct positioning, attached to C-5. The methoxycarbonyl group was attached to C-13, due to HMBC correlations between H-14 and C-20. An additional ring closure was introduced between C-1 and C-11 by an oxygen bridge, supported by the downfield shifts of both C-1 ( $\delta$  98.8) and C-11 ( $\delta$  77.1). Hence, the planar structure of compound **6** is the same as isosarcophytin.<sup>434</sup>

However, the optical rotation of compound **6** was quite different from isosarcophytin  $([\alpha]_D^{20} 6: -14.6; isosarcophytin: -65.0)$ . An exhaustive analysis of the NOESY spectrum showed that the difference between both compounds had to be at C-2. NOE correlation of H-2 to H-14 indicated the relative configuration of C-2 in **6** to be opposite to that of isosarcophytin. The absolute configuration was determined from an ECD spectrum of compound **6**, which showed a small negative Cotton effect  $\Delta \varepsilon$  at 300 nm (- 0.13). This suggests that the absolute configuration is that of chatancin,<sup>435</sup> (Figure 2.4) on the basis of the octant rule using the energy minimized conformation model of compound **6**. Structural elucidation of this compound was mainly conducted by A. Bogdanov and S. Kehraus, and the trivial name 4-oxo-chatancin was proposed for compound **6**.<sup>1</sup>

<sup>1</sup>H- and <sup>13</sup>C NMR spectral data of **7** are depicted in Figure S1.14 and Figure S1.15, and summarized in Table S1.2. Its molecular formula was established by HRMS to be C<sub>22</sub>H<sub>32</sub>O<sub>5</sub> (*m*/*z* 399.2140, M+Na). Analysis of the 1D and 2D NMR spectra showed that compound **7** has the same planar as well as relative configuration as **6**, and differs only by the presence of an additional methoxy group (<sup>1</sup>H-22:  $\delta$  3.16; <sup>13</sup>C-22:  $\delta$  51.5). Its connection to C-1 was evident due to the HMBC correlation of H<sub>3</sub>-22 to C-1. It is assumed that compound **7** has the same absolute configuration as compound **6**, due to comparable optical rotation values ([ $\alpha$ ]p<sup>20</sup> **7**: -10.0; **6**: -14.6). It cannot be excluded, that compound **7** is an artefact, as methanol was used several times in the isolation procedure. For metabolite **7**, 1-*O*-methyl-4-oxo-chatancin was proposed as the trivial name.<sup>1,2</sup>

#### **Biscembranes**

The soft coral genus *Sarcophyton* is also known to be the source of unusual tetraterpenoids (biscembranes), which are formed by coupling two cembranoid units through a Diels-Alder reaction.<sup>436</sup> They are characterized by a 14-6-14-membered tricyclic skeleton, with the structural variation occurring most often in ring C (Figure 2.7), through high oxygenation, and tri-, penta-, and hexaepoxy cyclization.<sup>437</sup>

In this study, two biscembranes were isolated from *P. longicirrum* (Figure 2.7). Compounds **8** and **9** exhibited great similarity to the already known bisglaucumlide B and bisglaucumlide C (Figure 2.7), which were isolated from *S. glaucum*.<sup>438</sup> However, several <sup>1</sup>H- and <sup>13</sup>C NMR shifts were mismatched and optical rotations differed from the reported values.



**Figure 2.7** Relative planar structures of the isolated biscembranes **8** and **9** from *P. longicirrum* in comparison to bisglaucumlide B and C isolated from *S. glaucum*.<sup>438</sup>

Though it is difficult to determine the stereochemistry of biscembranes by 2D NMR analysis alone, an exhaustive analysis of the  ${}^{1}\text{H}{}^{-1}\text{H}$  ROESY spectrum was conducted to propose the possible variations in the C-ring stereochemistry of compounds **8** and **9**, in comparison to the already published bisglaucumlide B and bisglaucumlide C (Figure S1.20).

#### Structure Elucidation of Compounds 8 and 9

Mass spectral analysis of **8** and **9** indicated the molecular formula  $C_{43}H_{62}O_{10}$  (*m/z* 738.4, M<sup>+</sup>) for both compounds. <sup>1</sup>H- and <sup>13</sup>C NMR spectroscopic data are summarized in Table S1.3 (**8**), and Table S1.4 (**9**). They are depicted in Figure S1.16 and Figure S1.17 (**8**), and in Figure S1.18 and Figure S1.19 (**9**).

The NMR spectra of both compounds were very similar. They showed 43 resonances for ten methyl groups, two of them being methoxy groups, one as part of a methyl ester (COOCH<sub>3</sub>-41) and the other one being part of an acetyl (COCH<sub>3</sub>-43), as indicated by the <sup>1</sup>H NMR spectra (C-41:  $\delta$  3.65 (**8**),  $\delta$  3.58 (**9**); C-43:  $\delta$  2.10 (**8** and **9**)). Furthermore, ten methylene groups, seven sp<sup>3</sup> and three sp<sup>2</sup> methine groups, and thirteen quaternary carbons, three of them as ketone groups (C-3, C-10, and C-13) and two being part of the methyl ester (C-20OOCH<sub>3</sub>) and the acetyl (C-42OCH<sub>3</sub>), were found. The spectra indicated the presence of 4 double bonds (C-4 to C-5, C-8 to C-9, C-22 to C-23, and C-34 to C-35) and one oxygen bridge in ring C, between C-26 and C-30. The occurrence of an isopropyl moiety in both compounds was validated by two doublets at  $\delta$  0.86 (d, *J* = 7.0 Hz, H<sub>3</sub>-16) and  $\delta$  0.90 (d, *J* = 6.8 Hz, H<sub>3</sub>-17) for compound **9**. The isopropyl group was placed at C-1, due to HMBC correlations of C-14 to C-20 and C-41. The acetyl group was determined to be positioned at C-32, because of an HMBC correlation of C-43 to C-32.

Despite the remarkable similarity of **8** and **9**, different structural features were evident when comparing the chemical shifts of H-4 ( $\delta$  6.18 (**8**) to  $\delta$  6.29 (**9**)), and H<sub>3</sub>-19 ( $\delta$  2.12 (**8**) to  $\delta$  2.00 (**9**)), which were shifted downfield and upfield by 0.11 and 0.12 ppm, respectively. A more drastically shift upfield by 8.6 ppm was observed for C-6 ( $\delta$  40.3 (**8**) to  $\delta$  31.7 (**9**)), and downfield by 6.3 ppm for C-19 ( $\delta$  18.6 (**8**) to  $\delta$  24.9 (**9**)), suggesting that compound **9** was a geometrical isomer of **8** with regard to the geometry of the C-4 olefin. The bond was assigned the absolute configuration *E* for compound **8** and *Z* for compound **9**.

A comparison of the obtained data to literature values showed, that compound **8** bears a striking resemblance to the known biscembrane bisglaucumlide B, whereas compound **9** shows the highest similarity to bisglaucumlide C (Figure 2.7). Both molecules were previously isolated

from the soft coral *Sarcophyton glaucum* by Iwagawa et al. 2006.<sup>438</sup> They are formed through a Diels-Alder reaction of the geometric isomers of methyl sarcophytoate (left part of the biscembrane) with the unknown  $\Delta^{1,3,15}$ -cembratriene (right part of the biscembrane).

However, optical rotations of **8** ( $[\alpha]_D^{20} = -5.2$ , MeOH) and **9** ( $[\alpha]_D^{20} = -14.4$ , MeOH) did not match the published values (bisglaucumlide B:  $[\alpha]_D^{20} = +126$ , MeOH; bisglaucumlide C:  $[\alpha]_D^{20} = +32$ , MeOH), and several chemical shift deviations were observed, especially in ring C (e.g., C-30:  $\delta$  82.0 (**8**,**9**);  $\delta$  69.2 (bisglaucumlide B and C); C-38:  $\delta$  16.4 and 16.6 (**8**,**9**);  $\delta$  20.0 and 19.7 (bisglaucumlide B and C)). This indicates that compounds **8** and **9** differ in their stereochemistry in ring C. Therefore, <sup>1</sup>H-<sup>1</sup>H ROESY correlations of **8** and **9** were analysed to determine the stereostructural variation (Figure S1.20). The ROESY was used instead of NOESY, since NOE correlations become vanishingly small for mid-sized molecules like biscembranes **8** and **9**, and the ROESY provides an alternative solution in this case.

The ROE correlation of H<sub>3</sub>-38 to H-32 indicated the relative configuration of C-32 to be  $R^*$  instead of  $S^*$ , as in bisglaucumlide B and C. Furthermore, relative configuration of C-31 and C-30 were determined to be  $S^*$  instead of  $R^*$ , due to the ROE correlations of H-32 to H<sub>3</sub>-40 and H-30 (Figure S1.20). Thus, **8** and **9** are stereoisomers of bisglaucumlide B and C, respectively (Figure 2.7). Until now, 11 bisglaucumlides (A-K) have been described.<sup>438,439</sup> Six of them exhibited weak cytotoxic activity against proliferation of human promyelocytic leukemia cells (HL-60), but none of the metabolites were tested for feeding deterrence or other ecological functions. Following the previous naming, the trivial names bisglaucumlide L (**8**) and bisglaucumlide M (**9**) are proposed.

## Chemical Defence

Compounds 1, 2, and 6 were tested for the ability to deter feeding by the fish predator *C. solandri* (Figure 2.8, Figure 2.9). The major metabolite 6 showed a significant deterrent effect (p = 0.015) at a concentration as low as 0.5% in the dry pellet mass, which is an order of magnitude lower than the estimated abundance in *P. longicirrum*. The deterrent effect intensified with increasing concentration of compound 6 (1.0%: p = 0.006; 2.0%: p = 0.0001; Figure 2.8). A similar result was obtained for metabolite 2, which showed a significant deterrence at a concentration of 1.0% (p = 0.023), and 2.0% (p = 0.001). Interestingly, compound 1, which is the enantiomer of compound 2, exhibited no deterrent effect at a concentration of 1.0% (p = 0.37; Figure 2.9). Further experiments are needed to determine whether feeding deterrence of 1 and 2 is truly configuration-dependant, as might be expected from the obtained results.



**Figure 2.8** Feeding deterrence of the isolated compounds **2** and **6** at different concentrations (0.5%, 1.0%, and 2.0% of dry mass). Percentage of food pellets eaten by *C. solandri* was significantly decreased by both compounds at 1.0% and 2.0%. Compound **6** was also significantly deterrent in the lowest concentration of 0.5%. Significance was determined with the *Fisher's exact test* (p < 0.05 = \*; p < 0.005 = \*\*; p < 0.0005 = \*\*\*).



**Figure 2.9** Feeding deterrence of the isolated compound **1** at 1.0% concentration of dry mass. No significant decrease of the percentage of food pellets eaten by *C. solandri* was observed. (p = 0.37).

# Discussion and Conclusion

# Terpenoids Isolated from Phyllodesmium longicirrum

Chemical investigation of a single specimen of *P. longicirrum* led to the isolation of nine terpenoid metabolites, revealing that this aeolid nudibranch contains a larger diversity of chemical entities, than previously known (Figure 2.10). Thunbergol (1), epoxythunbergol (2), and a diterpene alcohol (3), the first cembrane diterpenes isolated from *P. longicirrum* by Coll et al. 1985,<sup>391</sup> could not be retrieved in the current study. Instead, five other cembranoid diterpenes were found, representing the second largest share of the EtOAc-extract (132.5 mg).

These five metabolites were: the co-occurring isomers of sarcophytoxide, (2R,11R,12R)isosarcophytoxide (8) and its epimer (2S,11R,12R)-isosarcophytoxide (9), as well as the related bisepoxy dihydrofuran (3R,4S,11R,12R)-bisepoxide (10); plus, the two  $\gamma$ -lactone bearing cembranes sarcophytonin B (11) and 13-dehydroxysarcoglaucol-16-one (12), a rare cembranoid with a carboxylate ester at C-19.

Two further compounds were elucidated in this study, belonging to the rare group of cembranebased polycyclic diterpenes: 4-oxo-chatancin (4) and 1-O-methyl-4-oxo-chatancin (6). 4-oxo-chatancin (4), 4-acetoxy-chatancin (5) and 1-oxo-9-hydro-isochatancin (7) were previously isolated from different fractions of the same *P. longicirrum* specimen by A. Bogdanov,<sup>1,2</sup> and combined results revealed, that 4-oxo-chatancin (4) was the major compound (150 mg) contained by this specimen.

Furthermore, two unusual biscembranes, bisglaucumlide L and M (**13** and **14**) were isolated, differing in their stereostructure in ring C from the otherwise very similar bisglaucumlide B and C, isolated from *Sarcophyton glaucum* by Iwagawa et al. 2006.<sup>438</sup>

Overall, combined with the results obtained from the same specimen by A. Bogdanov (personal communication),<sup>1,2</sup> it was discovered that *P. longicirrum* contains a broad spectrum of terpenoids, belonging to the class of cembranoid diterpenes, secogorgosterols, unusual tetracyclic and pentacyclic diterpenes, and biscembranes. These foundational results enable to raise and investigate further questions, regarding the origin, biosynthesis, transport, storage, ecological function and relevance of these metabolites, as well as the necessary protective mechanisms applied by *P. longicirrum* to feed upon its toxic prey without having to suffer from self-intoxication.

Additionally, these compounds may have pharmacological activity, offering a chance to find and develop new drugs, e.g. antitumor drugs and compounds with high activity against multiresistant bacteria, which have become an increasing global problem.<sup>397,409</sup> Terpenoids are known to have many important biological, especially antitumor and antibacterial activities; hence they are of major medical, economic and scientific interest.<sup>224,409</sup>



**Figure 2.10** Terpenoids isolated from *P. longicirrum*. Compounds (1-3) were elucidated by Coll et al. 1985,<sup>391</sup> but were not retrieved in this study. Compounds (4-7), (11) and (12) were previously extracted from the same specimen by A. Bogdanov as well.<sup>1,2</sup> Compounds (4), (6) and (8-14) were isolated in the current study.

### Predator-Prey Relationship between P. longicirrum and Alcyoniidaen Soft Corals

Most of the secondary metabolites isolated from *P. longicirrum* belong to the class of cembrane diterpenoids, which are present both in the plant and animal kingdom.<sup>440</sup> The first cembrane structures, e.g. (+)-cembrene from pine oleoresins and two epimeric cembratriene-diols obtained from tobacco were reported in 1962.<sup>440,441</sup> Since then, more than 300 members of this class have been isolated from terrestrial, and especially from marine sources, uncovering that they are the most common and widely distributed of all diterpene families.<sup>397</sup> From the marine habitat, anthozoans, especially of the soft coral genera *Lobophytum*, *Nephthea*, *Sinularia*, and *Sarcophyton* have proven to be a particularly rich source of cembrane natural products, displaying a wide range of biological activities.<sup>397,431</sup>

All of the cembranoid diterpenes isolated so far from *P. longicirrum* (Figure 2.10; **1-3** and **8-12**), were previously found in different species of the alcyoniidaen genus *Sarcophyton*.<sup>213,400,424–428</sup> The polycyclic diterpenes and biscembranes elucidated in the current study have not yet been isolated from any other organism. However, 4-oxo-chatancin and 1-*O*-methyl-4-oxo-chatancin (**4** and **6**) strongly resemble chatancin and sarcophytin (Figure 2.4; **8** and **9**), and bisglaucumlide L and M (Figure 2.10; **13** and **14**) show a striking similarity to bisglaucumlide B and C (Figure 2.7), which have all been isolated from different species of the genus *Sarcophyton* as well, e.g. *S. elegans* and *S. glaucum*.<sup>434,435,438</sup>

These results strongly support the hypotheses that *P. longicirrum* has specialized on feeding upon alcyoniidaen soft corals of the genus *Sarcophyton*,<sup>391</sup> which is one of the most prevalent and most toxic soft coral genera in the Indo-Pacific Ocean,<sup>387,399</sup> and that this aeolid nudibranch derives the secondary metabolites from its prey, rather than by *de novo* biosynthesis.<sup>142</sup>

In 2005, a study by Tanaka et al.,<sup>419</sup> has shown that each *Sarcophyton* species may have a distinct pattern of chemotypes, with the largest diversity of secondary metabolites found for the *S. glaucum/cinereum* species complex, and only a moderate diversity for *S. trocheliophorum*. The specimen investigated by Coll et al. 1985,<sup>391</sup> was found feeding on *S. trocheliophorum* and only three cembrane diterpenoids were extracted, which were not rediscovered in the *P. longicirrum* specimen investigated in the current study. The most likely explanation for this is the varying diversity of chemical contents in the different *Sarcophyton* species. The presence of biscembranes in the analysed specimen is another clue pointing towards this explanation, since biscembranes of this type have, until now, only been isolated from *S. glaucum*, which also showed the largest diversity of compounds in the study by Tanaka et al. 2005.<sup>419</sup> However,

it needs to be considered that the chemical content of soft corals varies not only between species, but also between individuals, due to various reasons, like seasonal changes, reproductive stage, genetic differences, hybridization between species, and induction of certain biosynthetic pathways by environmental factors including surrounding organisms.<sup>419</sup> Furthermore, there has been some debate regarding the contributions of symbionts in terpene biosynthesis, which still remains unresolved,<sup>442–444</sup> but receives growing support, with at least some metabolites being produced by the symbionts.<sup>445</sup> Therefore, genetic differences of symbiotic microorganisms and zooxanthellae might further influence the chemical composition of each soft coral, hence of each *P. longicirrum* specimen feeding upon these corals.

## Dietary Chemicals as Defensive Weapons

The chemical defence assay employed in this study confirmed the hypothesis that *P. longicirrum* is chemically defended by storing alcyoniidaen-derived terpenoids, at least with regard to the generalist fish predator *C. solandri*.

Especially the major metabolite, the polycyclic diterpene 4-oxo-chatancin (Figure 2.10: **4**), exhibited a strongly significant deterrent activity (Figure 2.8), supporting its ecological function as defensive chemical. A similar deterrent effect was evoked by the cembranoid diterpene (2S,11R,12R)-isosarcophytoxide (**9**) (Figure 2.8), indicating that multiple compounds stored by the nudibranch have the ability to act as feeding deterrents.

The mechanisms by which these metabolites discourage predation are still unknown, since many are not very poisonous, but instead seem to be effective as deterrent olfactory or gustatory cues.<sup>46,53,446</sup> However, the low-solubility of terpenoids in water determines that they are used for short-range or contact communication by preventing or strongly limiting the dilution of the signal in the medium. This is plausible, since interactions with predators or conspecifics of sessile or slow-moving marine benthic organisms occur at extremely close range and are therefore often mediated by lipophilic compounds.<sup>53</sup>

Many fish show a conspicuous behaviour when feeding: they repeatedly take food into their oral cavity and reject it, before either swallowing or completely refusing it.<sup>53</sup> This behaviour was also observed and taken into consideration in the conducted feeding deterrence assay of the current study. It shows the crucial need of the fish to detect lipophilic substances via contact, as these MNPs cannot be perceived from a distance. Therefore, a likely explanation for the feeding deterrent activity of non-toxic terpenoids would be that they are able to bind to receptors in the oral cavity of the fish.

(2S, 11R, 12R)-Interestingly, (2R,11R,12R)-isosarcophytoxide (8), the epimer of isosarcophytoxide (9), did not deter feeding (Figure 2.9). This suggests that the ability to bind to certain receptors and promotion of feeding deterrence depends on the configuration of the metabolite at each chiral centre. Experiments regarding structural modifications on antifeedant activity are seldomly conducted and only some reports are known from terrestrial chemical ecology, most often using insects. Some of these studies support the importance of the configuration of chiral centres for feeding deterrent activities,<sup>447,448</sup> while others find no difference in feeding deterrence for enantiomeric compounds.<sup>449</sup> Therefore, studies concerning configuration-dependant feeding deterrence, especially in the marine habitat are needed to understand the underlying mechanisms promoting predation avoidance. Furthermore, it needs to be considered that some metabolites only show the ability to deter feeding, when they act in synergy or additive with other compounds. Hence, MNPs which show no effect when tested as single chemicals could enhance a feeding deterrent effect, when in combination with other metabolites.450

Moreover, even if some of the terpenoids do not show feeding deterrent activities, they might play a role in other important ecological tasks.<sup>404</sup> For example, studies by Tursch et al. 1978,<sup>451</sup> have shown that the cembranoid diterpene sinulariolide from the soft coral *Sinularia flexibilis* is an algicidal molecule, a key chemical responsible for antifouling properties. Other diterpenes have also been shown to be effective in the control of algal overgrowth.<sup>452</sup> The diterpene flexibilide, isolated also from *S. flexibilis*, causes necrotic effects in neighbouring organisms.<sup>404</sup> It is therefore an important allelopathic compound in the inter-specific competition for space, one of the most important factors determining the distribution of species on a coral reef.<sup>404</sup> Furthermore, sinulariolide and flexibilide have also been shown to exhibit marked antimicrobial activity, inhibiting overgrowth of Gram-positive bacteria.<sup>215</sup> To increase our understanding about the way oganic molecules and organisms interact in nature, further studies are needed to improve our knowledge on the functions of NPs.

Concluding, we found that *P. longicirrum* feeds on alcyoniidaen species of the genus *Sarcophyton*, such as *S. glaucum*, incorporates their MNPs and uses at least some of them for defence against potential predatory fish. These defensive metabolites in addition to its highly efficient symbiotic relationship with the photosynthetic *Symbiodinium*, allow this species to grow to an exceptional size, without having to fear intense predation. Furthermore, the exceeding species richness of the genus *Phyllodesmium* can be attributed to the shift from feeding on hydrozoans to feeding on octocorals and the exploitation of this unusual ecological

niche, which most likely enhanced radiation and speciation within this genus. Incorporation of the corals' symbiotic zooxanthellae provides additional nutrition in periods of food shortage, and sequestered defensive MNPs protect these aeolid nudibranchs from predation. These abilities are crucial advantages, which lead to a higher viability.

CHAPTER II: Antibacterial scalarane from *Doriprismatica stellata* nudibranchs (Nudibranchia: Chromodorididae), egg ribbons, and their dietary sponge *Spongia* cf. *agaricina* (Demospongiae: Dictyoceratida)

This chapter has previously been published in a similar form as Hertzer et al. 2020,<sup>3</sup> written by the authoress of this thesis and supervised by Prof. Gabriele M. König and Prof. Heike Wägele.

## Abstract

Investigations on the biochemical relationship between *Doriprismatica stellata* (Nudibranchia: Doridina: Chromodorididae) nudibranchs, their egg ribbons, and the associated dietary sponge *Spongia* cf. *agaricina* (Porifera: Demospongiae: Dictyoceratida) led to the isolation of the structurally new scalarane-type sesterterpene 12-deacetoxy-4-demethyl-11,24-diacetoxy-3,4-methylenedeoxoscalarin, with an unprecedented position of the cyclopropane ring annelated to the ring A. Unlike other scalaranes, which are most often functionalized at C-12 of ring C, it bears two acetoxy groups at C-11 and C-24 instead. The compound was present in all three samples, supporting the dietary relationship between chromodorid nudibranchs of the genus *Doriprismatica* and scalarane-containing dictyoceratid sponges of the Spongiidae family. The results also indicate that *D. stellata* passes the scalarane metabolite on to its egg ribbons, most likely for protective purposes. The scalarane showed antibacterial activity against the Grampositive bacteria *Arthrobacter crystallopoietes* (DSM 20117) and *Bacillus megaterium* (DSM 32).

Keywords: antibacterial; Dictyoceratida; Nudibranchia; scalarane; sesterterpene

#### Introduction

In habitats with intense competition and feeding pressure, such as coral reefs, sessile or slowmoving organisms commonly defend themselves with toxic or deterrent molecules.<sup>44,106,153,251,256,453–455</sup> Sponges (Porifera), for example, represent one of the main sources of marine bioactive natural products, due to their impressive chemical armoury.<sup>44</sup> These MNPs can be produced either by the sponge itself or by associated microbial symbionts.<sup>42,48,456– <sup>461</sup> Their production is assumed to be useful against numerous environmental stress factors, such as predation, pathogens, overgrowth by fouling organisms, or competition for space.<sup>42-44,48</sup></sup> Though defensive metabolites are effective against most predators, some also attract nudibranchs of the family Chromodorididae (Mollusca: Gastropoda). These colorful, shell-less sea slugs are specialized to live and feed on noxious demosponges (Porifera: Demospongiae). They evolved the ability to sequester, accumulate, and store spongian metabolites to their own advantage.<sup>9,45,57,95,101,160,195,202,203,251,256,456,462–468</sup> Besides, specific MNPs can be passed on from the sea slugs to their similarly conspicuous and physically defenceless eggs. This has been shown exemplarily for the egg ribbons of certain nudipleuran taxa, such as *Hexabranchus sanguineus*,<sup>43</sup> *Pleurobranchaea maculata*,<sup>176</sup> *Cadlina luteomarginata*,<sup>469</sup> and the two *Dendrodoris* species *D. grandiflora* and *D. limbata*.<sup>470</sup> The passing on of special metabolites from sea slugs to their egg ribbons suggests an additional biological role in the reproductive cycle or as protection of the eggs against predation or fouling.

Chemotaxonomic approaches have shown that chromodorid nudibranchs of the genera *Chromodoris, Doriprismatica, Felimare, Felimida, Glossodoris/Casella*, and *Goniobranchus* sequester and reuse spongian-type furanoterpenoids, diterpenoids, and sesquiterpenoids, or scalarane-type sesquiterpenoids and sesterterpenoids from their sponge prey.<sup>95,198,205,229–235</sup> However, confusion in the chemotaxonomy of Chromodorididae arose by multiple changes in species names, including splitting and synonymizations, and the inclusion of species that have since been discovered to be members of other genera. Additionally, a splitting of generic groups into several genera and resurrection of old names increased the confusion.<sup>116,117,231,233,471,472</sup> To classify specialized metabolites in the Chromodorididae in a meaningful way, a solid understanding of their taxonomy, biology, and prey is essential.

Members of Glossodoris/Casella and Doriprismatica represent such a case of complex systematic challenges and complicated taxonomic histories.<sup>472</sup> Previous work on Doriprismatica (former Glossodoris) sedna,<sup>231</sup> and Doriprismatica (former Glossodoris or *Casella*) atromarginata,<sup>205,230,234,235,473</sup> reported the isolation of scalaranes, homoscalaranes, norscalaranes, spongian diterpenoids and furanoditerpenoids. A dietary origin of these molecules was inferred and attributed to dictyoceratid sponges of the genera Hyrtios and Carteriospongia (Thorectidae), as well as Hyattella and Spongia (Spongiidae). Geographical variation was described between *D. atromarginata* populations from Sri Lanka and Australia, containing furanoditerpenes, and a D. atromarginata population from India, containing scalarane sesterterpenes as a consequence of sponge prey availability.<sup>205</sup> The isolated metabolites showed various biological activities, such as cytotoxicity, antimicrobial, antiviral and antitumor activities, inhibition of transactivation for the farnesoid X receptor, inhibition of mammalian phospholipase A<sub>2</sub>, and ichthyotoxicity against the mosquitofish

42

*Gambusia affinis*.<sup>216,218,231,467,468,474–477</sup> Furthermore, a Vietnamese collection of *D. atromarginata* was found on the gorgonian *Menella woodin* (Alcyonacea: Plexauridae). Instead of spongian- or scalarane-type metabolites, they contained steroidal compounds, presumably sequestered from *M. woodin*.<sup>478</sup>

Here, we report the first investigation on the biochemical relationship between Doriprismatica (former Glossodoris) stellata (Doridina: Chromodorididae) of the Indo-West Pacific (Figure 3.1), their egg ribbons, and the associated dietary sponge, identified as Spongia cf. agaricina (Demospongiae: Spongiidae). We describe the structure elucidation of 12-deacetoxy-4-demethyl-11,24-diacetoxy-3,4the new scalarane sesterterpene methylenedeoxoscalarin (Figure 3.2), isolated from all our Doriprismatica stellata nudibranch, egg ribbon and Spongia cf. agaricina samples (Figure 3.3). It is the first scalarane sesterterpene reported with a cyclopropane ring bridging the carbons C-3, C-22 and C-4 in ring A, and an acetoxy group at C-11 instead of C-12 in ring C (Figure 3.2). All ethyl acetate extracts, as well as the isolated new scalarane, showed antibacterial activity against the Gram-positive bacteria Arthrobacter crystallopoietes (DSM 20117) and Bacillus megaterium (DSM 32), in a screening approach.



**Figure 3.1** *Doriprismatica stellata* nudibranch, egg ribbon, and *Spongia* cf. *agaricina* specimen, taken from Hertzer et al. 2020.<sup>3</sup>



**Figure 3.2** The structurally new 12-deacetoxy-4-demethyl-11,24-diacetoxy-3,4-methylenedeoxoscalarin (relative stereochemistry depicted), isolated from *Doriprismatica stellata* nudibranchs, their egg ribbons and the dietary sponge *Spongia* cf. *agaricina*, taken from Hertzer et al. 2020.<sup>3</sup>



**Figure 3.3** Superimposed HPLC–MS chromatogram of *Doriprismatica stellata* nudibranch, egg ribbon, and *Spongia* cf. *agaricina* extracts, showing the presence of 12-deacetoxy-4-demethyl-11,24-diacetoxy-3,4-methylenedeoxoscalarin in all three samples, taken from Hertzer et al. 2020.<sup>3</sup>

# Results

Chemical investigation on Doriprismatica stellata nudibranchs, egg ribbons and Spongia cf. agaricina

The new molecule was isolated as a white amorphous solid from *D. stellata* nudibranchs (11 mg, 0.3% wet weight). Specific optical rotation was measured in chloroform (c = 0.6), giving [ $\alpha$ ]<sub>D</sub> +40.5. The molecular formula C<sub>29</sub>H<sub>42</sub>O<sub>6</sub> was established based on <sup>13</sup>C NMR data and HRAPCIMS measurements, yielding m/z 487.3054 [M + H]<sup>+</sup> (SI).<sup>3</sup> The double bond equivalent (DBE) was calculated to be nine and together with the <sup>13</sup>C NMR data, giving evidence for one C–C and two C–O double bonds, thus suggested a structure with six rings. The presence of a hydroxy group and ester functionalities was deduced from characteristic IR absorptions at 3416, 1732 and 1234 cm<sup>-1</sup> (SI).<sup>3,231,232,475</sup>

12-deacetoxy-4-demethyl-11,24-diacetoxy-3,4-The structure of planar methylenedeoxoscalarin was established by extensive 1D and 2D NMR experiments (<sup>1</sup>H, <sup>13</sup>C, <sup>1</sup>H,<sup>1</sup>H-COSY, DEPT, HSQC and HMBC, see Table 3.1, SI). The <sup>13</sup>C NMR spectrum showed 29 resonances attributable to five methyl groups, nine methylene and eight methine moieties (one olefin: C-16 ( $\delta$  117.5), and two oxygen bearing groups: C-11 ( $\delta$  68.4) and C-19 ( $\delta$  98.9)), and seven quaternary carbons, as obvious from a DEPT135 spectrum. The <sup>1</sup>H NMR spectrum showed unusual upfield resonances, diagnostic for a cyclopropyl ring H<sub>2</sub>-22 ( $\delta$  -0.06 brt, J = 4.8 Hz,  $\delta 0.43$  dd, J = 3.9, 9.2 Hz). Furthermore, this spectrum proved the presence of the olefinic proton H-16 ( $\delta$  5.49 brs), the downfield shifted methine proton H-11 ( $\delta$  5.49 brs), and the hemiacetal hydrogen atom H-19 ( $\delta$  5.24 d, J = 4.4 Hz). The <sup>1</sup>H NMR spectrum also featured two downfield shifted methylene systems H<sub>2</sub>-20 ( $\delta$  4.44,  $\delta$  4.15 d, J = 12.2 Hz) and H<sub>2</sub>-24  $(\delta 4.91, \delta 4.81 \text{ d}, J = 12.9 \text{ Hz})$ , as well as two acetoxy groups H<sub>3</sub>-11-OAc ( $\delta 2.06 \text{ s}$ ) and H<sub>3</sub>-24-OAc ( $\delta$  2.08 s), and three methyl groups H<sub>3</sub>-21 ( $\delta$  0.94 s), H<sub>3</sub>-23 ( $\delta$  0.95 s), and H<sub>3</sub>-25 (δ 0.98 s).

| С  | $\delta_{\rm H}$ (mult. <i>J</i> in Hz) | δc                    | COSY                                     | НМВС                                  | NOESY                                         |
|----|-----------------------------------------|-----------------------|------------------------------------------|---------------------------------------|-----------------------------------------------|
| 1β | 1.73, m                                 | 35.3, CH <sub>2</sub> | Η-1α, Η-2α/β                             | C-2, C-3, C-5, C-9, C-10, C-23        | Η-1α, Η-11                                    |
| 1α | 0.53, m                                 |                       | Η-1β, Η-2α/β                             | C-2, C-3, C-5, C-9, C-10, C-23        | H-1β, H-22b                                   |
| 2β | 1.96, m                                 | 19.0, CH <sub>2</sub> | Η-3, Η-1α/β, Η-2α                        | C-1, C-2, C-22                        | H-2α, H-3, H <sub>3</sub> -23                 |
| 2α | 1.70, m                                 |                       | Η-3, Η-1α/β, Η-2β                        | C-1, C-2, C-22                        | Η-2β                                          |
| 3  | 0.55, m                                 | 17.9, CH              | H-22 $\alpha/\beta$ , H-2 $\alpha/\beta$ | C-1, C-2, C-4, C-5, C-10, C-21, C-22  | H <sub>3</sub> -21, H <sub>3</sub> -23, H-22a |
| 4  |                                         | 16.1, C               |                                          |                                       |                                               |
| 5  | 0.92, m                                 | 53.2, CH              | H-6a/b                                   | C-1, C-6, C-7, C-10, C-21, C-22, C-23 | H-9, H-22b                                    |
| 6a | 1.68, m                                 | 22.1, CH <sub>2</sub> | H-5, H-6b, H-7α/β                        | C-5, C-7, C-8, C-10                   | H-6b                                          |
| 6b | 1.49, m                                 |                       | H-5, H-6a, H-7α/β                        | C-5, C-7, C-8, C-10                   | H-6a                                          |
| 7β | 2.42, m                                 | 36.5, CH <sub>2</sub> | H-6a/b, H-7α                             | C-6, C-8, C-9, C-14, C-24             | Η-7β                                          |
| 7α | 0.81, m                                 |                       | H-6a/b, H-7β                             | C-6, C-8, C-9, C-14, C-24             | Η-7α, Η-14                                    |
| 8  |                                         | 41.2, C               |                                          |                                       |                                               |
| 9  | 1.01, s                                 | 57.4, CH              | H-11                                     | C-8, C-10, C-23, C-24                 | H-5, H-11, H-14                               |
| 10 |                                         | 36.5, C               |                                          |                                       |                                               |

Table 3.1 NMR spectroscopic data of 12-deacetoxy-4-demethyl-11,24-diacetoxy-3,4-methylenedeoxoscalarin (CDCl<sub>3</sub>), taken from Hertzer et al. 2020.<sup>3</sup>

| 11    | 5.49, brs           | 68.4, CH              | Η-9, Η-12α/β           | C-8, C-9, C-10, C-11-OAc (21.9, 170.2), C-12, |                    |
|-------|---------------------|-----------------------|------------------------|-----------------------------------------------|--------------------|
|       |                     |                       |                        | C-13                                          | H-1α, H-9, H-12α/β |
| 12β   | 2.19, m             | 44.2, CH <sub>2</sub> | Η-11, Η-12α            | C-11, C-13, C-25                              | Η-12α              |
| 12α   | 1.51, m             |                       | Η-11, Η-12β            | C-11, C-13, C-25                              | Η-12β              |
| 13    |                     | 32.5, C               |                        |                                               |                    |
| 14    | 1.40, brt (8.5)     | 55.0, CH              | Η-15α/β                | C-8, C-9, C-13, C-15, C-18, C-24              | H-9, H-18          |
| 15a/b | 2.27, m             | 24.0, CH <sub>2</sub> | H-14, H-16             |                                               | H-16               |
|       |                     |                       |                        |                                               |                    |
| 16    | 5.49, brs           | 117.5, CH             | Η-20α/β, Η-18, Η-15α/β |                                               | H-20b, H-15a/b     |
| 17    |                     | 135.6, C              |                        |                                               |                    |
| 18    | 2.15, m             | 62.7, CH              | H-16, H-19             | C-13, C-14, C-19, C-25                        | H-12α, H-14        |
| 19    | 5.24, d (4.4)       | 98.9, CH              | H-18                   | C-13, C-17, C-18, C-20                        | Н-12β, Н3-25       |
| 20a   | 4.44, d (12.2)      | 68.8, CH <sub>2</sub> | H-16, H-20b            |                                               | H-20b              |
| 20b   | 4.15, d (12.2)      |                       | H-16, H-20a            | C-16, C-17, C-18, C-19                        | H-16, H-20a        |
| 21    | 0.94, s             | 23.3, CH <sub>3</sub> |                        | C-3, C-4, C-5, C-22                           | H-3, H-22a         |
| 22a   | 0.43, dd (3.9, 9.2) | 22.7, CH <sub>2</sub> | H-3, H-22b             | C-2, C-5, C-21                                | H-3, H-22b         |

| 22b    | -0.06, brt (4.8) |                       | H-3, H-22a | C-2, C-5, C-21                                | H-1α, H-5, H-22a   |
|--------|------------------|-----------------------|------------|-----------------------------------------------|--------------------|
| 23     | 0.95, s          | 14.0, CH <sub>3</sub> |            | C-1, C-5, C-9, C-10                           | H-3, H-24a         |
| 24a    | 4.91, d (12.9)   | 64.2, CH <sub>2</sub> | H-24b      | C-7, C-8, C-9, C-14, 24-OAc (21.3, 170.9)     | H <sub>3</sub> -23 |
| 24b    | 4.81, d (12.9)   |                       | H-24a      | C-7, C-8, C-9, C-14, 24, 24-OAc (21.3, 170.9) | H <sub>3</sub> -25 |
| 25     | 0.98, s          | 16.1, CH <sub>3</sub> |            | C-12, C-13, C-14, C-18                        | H-19, H-24b        |
| 11-OAc | 2.06, s          | 21.9, CH <sub>3</sub> |            | C-11                                          |                    |
|        |                  | 170.2, C              |            |                                               |                    |
| 24-OAc | 2.08, s          | 21.3, CH <sub>3</sub> |            | C-24                                          |                    |
|        |                  | 170.9, C              |            |                                               |                    |
|        |                  |                       |            |                                               |                    |

<sup>*a* 1</sup>H (600 MHz), <sup>13</sup>C NMR (150 MHz), all δ in ppm relative to  $CDCl_3 = 7.26/77.0$ .

<sup>b</sup> Multiplicities determined by DEPT.

The analysis of the 2D NMR data and comparison to literature values <sup>475</sup> suggested that the compound belongs to the family of scalarane sesterterpenoids, with similarities to the deoxoscalarin-like molecule 12,24-diacetoxydeoxoscalarin, previously isolated from a Korean sponge of the genus *Spongia*.<sup>475</sup> The two acetoxy groups were located at the C-11 ( $\delta$  68.4) and the C-24 ( $\delta$  64.2) carbon atoms based on HMBC cross peaks between the methine proton H-11 ( $\delta$  5.49 brs) and the carbon atoms C-11-OAc ( $\delta$  21.9, 170.2), as well as the methylene protons H<sub>2</sub>-24 ( $\delta$  4.91,  $\delta$  4.81 d, J = 12.9 Hz) and the carbon atoms C-24-OAc ( $\delta$  21.3, 170.9). The location of C-24 was apparent from HMBC cross peaks between the methylene protons H<sub>2</sub>-24 ( $\delta$  4.91,  $\delta$  4.81 d, J = 12.9 Hz) and the carbon atoms C-7 ( $\delta$  36.5) and C-14 ( $\delta$  55.0). The cyclopropyl group was assigned to the C-3 ( $\delta$  17.9) and the C-4 ( $\delta$  16.1) carbon atoms, based on a <sup>1</sup>H, <sup>1</sup>H-COSY correlation between the methylene protons H<sub>2</sub>-22 ( $\delta$  -0.06 brt, J = 4.8 Hz,  $\delta$  0.43 dd, J = 3.9, 9.2 Hz), and the methine proton H-3 ( $\delta$  0.55 m), based on HMBC cross peaks between the protons H<sub>2</sub>-22 and the carbon atoms C-2 ( $\delta$  19.0), C-5 ( $\delta$  53.2) and C-21 ( $\delta$  23.3). The entire assignment of all NMR data is given in Table 3.1. The relative configuration was determined from proton coupling constants and NOE data (Table 3.1, Figure 3.4).<sup>3</sup> NOESY cross peaks between H-3 ( $\delta$  0.55 m), and H-22a ( $\delta$  0.43 dd, J = 3.9, 9.2 Hz), H<sub>3</sub>-21 ( $\delta$  0.94 s), and H<sub>3</sub>-23 ( $\delta$  0.95 s), as well as between H<sub>3</sub>-23 and H-24a ( $\delta$  4.91 d, J = 12.9 Hz), H-24b ( $\delta$  4.81 d, J = 12.9 Hz) and H<sub>3</sub>-25 ( $\delta$  0.98 s), and between H<sub>3</sub>-25 and H-19 ( $\delta$  5.24 d, J = 4.4 Hz), indicated that these protons share the same orientation on the molecular plane. The chemical shifts of the angular methyl groups CH<sub>3</sub>-23 ( $\delta$  14.0) and CH<sub>3</sub>-25 ( $\delta$  16.1) suggested that all ring junctions are *trans*.<sup>479–481</sup> This was supported by NOESY cross peaks between H-22b ( $\delta$  –0.06 brt, J = 4.8 Hz) and H-5 ( $\delta$  0.92 m), angular methines H-5 and H-9 ( $\delta$  1.01 s), H-9 and H-14  $(\delta 1.40 \text{ brt}, J = 8.5 \text{ Hz})$ , and between H-14 and H-18 ( $\delta 2.15 \text{ m}$ ), from which a shared  $\alpha$ -orientation can be inferred. Moreover, the cross peak between H-19 ( $\delta$  5.24 d, J = 4.4 Hz) and H<sub>3</sub>-25 ( $\delta$  0.98 s), and a coupling constant of J = 4.4 Hz between H-19 and H-18, further confirm the trans relationship between these protons. Hence, the structure and relative configuration of 12-deacetoxy-4-demethyl-11,24-diacetoxy-3,4-methylenedeoxoscalarin was determined. It needs to be noted that the molecule was unstable over time, especially in ring E, and a variety of degradation products formed by, inter alia, hydrolysis of the hemiacetal and loss of the acetoxy groups.



**Figure 3.4.** Proposed relative configuration of 12-deacetoxy-4-demethyl-11,24-diacetoxy-3,4methylenedeoxoscalarin. Selected NOE correlations are indicated with arrows. The model was obtained using Avogadro, an open-source molecular builder and visualization tool, version 1.2.0. Taken from Hertzer et al. 2020.<sup>3</sup>

The new scalarane was also detected in *Doriprismatica stellata* egg ribbons and *Spongia* cf. *agaricina* (Figure 3.4).<sup>3</sup> It was isolated from both samples (egg ribbons: 1 mg, 0.1% wet weight; sponge: 0.7 mg, 0.02% wet weight) and the identity was validated by comparison of the MS and NMR spectra.

# Antibacterial activity

All ethyl acetate extracts from *Doriprismatica stellata* nudibranchs, egg ribbons and *Spongia* cf. *agaricina* showed antibacterial activity against the Gram-positive *Arthrobacter crystallopoietes* (DSM 20117) in a first screening approach. The pure compound 12-deacetoxy-4-demethyl-11,24-diacetoxy-3,4-methylenedeoxoscalarin, isolated from all three extracts, was active against the Gram-positive *Bacillus megaterium* (DSM 32) (SI).<sup>3</sup>

# Discussion

In this study, the new scalarane-type sesterterpene 12-deacetoxy-4-demethyl-11,24-diacetoxy-3,4-methylenedeoxoscalarin was isolated from *Doriprismatica stellata* nudibranchs (Mollusca: Gastropoda), their egg ribbons, and the associated sponge *Spongia* cf. *agaricina* (Porifera: Demospongiae), collected from Bunaken National Park (BNP, North Sulawesi, Indonesia). Nudibranchs and their egg ribbons revealed higher concentrations of the scalarane in comparison to the sponge, likely due to a continuous accumulation of this compound.

In general, scalarane sesterterpenes are bioactive metabolites, mainly isolated from marine sources, such as Dictyoceratida sponges and the nudibranchs that feed on them.<sup>203,455,465,468,477</sup> Most of them can be attributed into two main groups, according to their sesterterpenoid skeleton: scalaranes either with the characteristic 6/6/6/6-tetracarbocyclic framework, or with a 6/6/6/6/5-pentacyclic fused ring system, containing an additional lactone, acetal, or furan type ring. Usually, they possess a conserved trans-configuration of the A/B/C/D ring junctions.<sup>467</sup> Scalaranes can be nor- or alkylated, commonly at C-19, C-20 and/or C-24, and contain oxygenated functions, like alcohols, ketones, aldehydes and acetates, at different positions, but particularly at C- and D-ring carbons C-12 and C-16. Exceptions are scalaranes, which have a nitrogen atom in the fifth ring, forming a pyrrole or a lactam unit, with an oxocycle, or which differ in their structure by the presence of cyclobutane or cyclopropane rings.<sup>220,468,477</sup> Until now, only six scalaranes containing cyclopropane rings constructed of C-4, C-19 and C-20, have been identified.<sup>220,482</sup> Honu'enone was isolated from an Indonesian Strepsichordaia aliena sponge,<sup>482</sup> and five more scalaranes with a cyclopropane were isolated from a Dysidea granulosa sponge, collected in the South China Sea.<sup>220</sup> The first member of the scalarane family, scalarin, was isolated in 1972 by Fattorusso et al. from *Cacospongia* (= *Scalarispongia*) scalaris.<sup>483</sup> However, they are also commonly found within genera of the Thorectidae family, Carteriospongia, 484–487 Collospongia,<sup>488</sup> Hyrtios,<sup>62-67</sup> Lendenfeldia,494-496 like Phyllospongia,<sup>497-502</sup> Scalarispongia,<sup>503</sup> Smenospongia,<sup>504</sup> and Strepsichordaia.<sup>482,505,506</sup> Furthermore, they occur within the Dysideidae family, in *Dysidea*,<sup>220</sup> and *Lamellodysidea*,<sup>507</sup> and in the Irciniidae genus Ircinia.<sup>508</sup> In addition, scalarane sesterterpenes have been isolated from the Spongiidae genera Coscinoderma,<sup>509</sup> Hyatella,<sup>474,510</sup> and Spongia.<sup>475,511–515</sup> Noteworthy, a new cytotoxic scalarane, Perisomalien A, was isolated from Periploca somaliensis fruits,<sup>516</sup> and two new antiprotozoan scalaranes were discovered in *Pleurotus* ostreatus and Scleroderma areolatum mushrooms,<sup>219</sup> as the first scalaranes from terrestrial sources.

The new 12-deacetoxy-4-demethyl-11,24-diacetoxy-3,4-methylenedeoxoscalarin shared high similarities with 12,24-diacetoxydeoxoscalarin, a farnesoid X-activated receptor antagonist, isolated by Nam et al. from a Korean sponge of the genus *Spongia*.<sup>475</sup> However, differing from the previously reported scalaranes,<sup>203,220,233,465,468,477,482</sup> the new metabolite is functionalized at C-11 instead of C-12 and has a cyclopropane ring bridging C-3, C-22 and C-4 of ring A.

Scalarane sesterterpenes are considered as chemotaxonomic markers for the sponge families Thorectidae, Dysideidae and Spongiidae.<sup>486,517</sup> In Spongiidae, they have been isolated from the genera *Coscinoderma*, <sup>509</sup> *Hyattella*,<sup>474,510</sup> and *Spongia*.<sup>475,511–515</sup> Our results further support this chemotaxonomic classification, by the presence of 12-deacetoxy-4-demethyl-11,24-diacetoxy-3,4-methylenedeoxoscalarin within *Spongia* cf. *agaricina*, (Dictyoceratida: Spongiidae). Primordially, chromodorid nudibranchs feed upon a broad range of sponges, however, more derived genera like *Glossodoris* and *Doriprismatica* have taken to feeding upon a narrow range of sponges.<sup>95,117,466</sup> As the first chemical investigation of *D. stellata* nudibranchs, our results indicate that these sea slugs live and feed upon the dictyoceratid sponge *Spongia* cf. *agaricina*. This, among other investigations on *Doriprismatica atromarginata* <sup>205,230,234,235,473</sup> and *D. sedna*,<sup>231</sup> supports the idea of a stenophagous dietary relationship between nudibranchs of the genus *Doriprismatica* and scalarane-containing dictyoceratid sponges of the families Thorectidae and Spongiidae. This relationship is further reflected by their shared specialized metabolite 12-deacetoxy-4-demethyl-11,24-diacetoxy-3,4-methylenedeoxoscalarin, as proven in this study.

Sesterterpenes are a rare terpene class, accounting for less than 2% of all known terpenoids, with only a few reports on their biosynthesis.<sup>518–522</sup> Their structural and functional diversity is likely built upon a complex biosynthetic network, involving multiple gene clusters.<sup>521</sup> However, their frequent occurrence in marine organisms is striking and sponges are considered as the prime source of these terpenoids.<sup>465</sup> Yet determining the origin and *in vivo* production of these metabolites is anything but trivial. So far, only few experiments have been performed to prove biosynthesis of terpenoids and sterols in sponges, with partly inconclusive results.<sup>523–525</sup> A biosynthesis by the mevalonate-independant pathway, as discovered in bacteria, algae and higher plants, could be implied.<sup>526,527</sup> It has even been suggested that sponges might not be capable of *de novo* sesterterpene synthesis.<sup>479,524</sup> Nevertheless, a study by Silva et al. has shown that sponges are capable of *de novo* sterol biosynthesis, in addition to dealkylation of dietary sterols, and incorporation of dietary sterols from marine plankton.

However, sesterterpene synthesis requires sesterterpene cyclases, which are considered as the next frontier for terpenoid cyclase structural biology and protein engineering.<sup>529</sup> So far, six known bifunctional sesterterpene synthases (STSs), containing prenyltransferase (PT) and terpene synthase (TPS) domains, were discovered in fungi of the order Eurotiales, like *Aspergillus clavatus*,<sup>518</sup> *Neosartorya* (=*Aspergillus*) *fischeri*,<sup>519</sup> *Aspergillus ustus*,<sup>521</sup> *Emericella variecolor*,<sup>520</sup> *Penicillium brasilianum* and *Penicillium verruculosum*.<sup>522</sup> Nonetheless, convergent evolution of plant and fungal STSs has been suggested, based on colocalized PT-TPS gene pairs found in the Brassicaceae *Arabidopsis thaliana*, *Capsella rubella* and *Brassica oleracea*, yielding fungal-type sesterterpenes with tri-, tetra-, and pentacyclic scaffolds.<sup>221</sup>

Sponges are known to host complex symbiont communities, with up to 30–60% as microbial biomass.<sup>459,530</sup> These highly species-specific communities are most probably vertically transmitted,<sup>531</sup> and were shown to share and cover various core functions of sponge metabolism by functionally equivalent symbionts, analogous enzymes, or biosynthetic pathways.<sup>461,532,533</sup> Although terpenes and terpenoids are mostly regarded as of fungal or plant origin, biosynthesis by bacteria is not uncommon and attracting increasing research interest.<sup>534</sup> Another *Spongia* species, *S. officinalis*, was shown to harbour bacteria with terpenoid cyclases/protein prenyltransferases responsible for a wide chemodiversity of terpenoid natural products.<sup>460,529</sup> Besides, the marine fungi *Penicillium* spp. and *Aspergillus* spp. are often associated with sponge hosts and were found to produce various terpenoids as well.<sup>42,535,536</sup> Hence, if sponges are not the original producers of these MNPs, it is tempting to argue that the sesterterpene biosynthesis could be performed or mediated by their microbial symbionts. This further indicates a close association, interconnectedness, and probable coevolution between microorganisms, sponges and nudibranchs.<sup>456</sup>

*D. stellata* was not only found to sequester and accumulate 12-deacetoxy-4-demethyl-11,24diacetoxy-3,4-methylenedeoxoscalarin from *Spongia* cf. *agaricina*, but to pass it on to the egg ribbons as well. This, in addition to its bioactivity, might suggest a biological role, either as protection against predation, fouling, or in the reproductive cycle, as mentioned in previous studies on nudibranch egg ribbons.<sup>43,176,469,470</sup> The antibacterial activity of 12-deacetoxy-4demethyl-11,24-diacetoxy-3,4-methylenedeoxoscalarin could point towards a potential protective role against bacterial biofilm formation. Unfortunately, the metabolite was unstable over time and it was not possible to conduct further assays. Future studies on scalarane sesterterpenes could reveal their full potential and true biological and ecological functions in these complex, co-evolved communities. CHAPTER III: Protection from self-intoxication: A novel actin isoform in *Chromodoris* nudibranchs supports sequestration and storage of the cytotoxin latrunculin A

Parts of the general introduction and CHAPTER III are planned to be published in a manuscript currently in preparation, written by the authoress of this thesis and supervised by Prof. Gabriele M. König and Prof. Heike Wägele.

# Abstract

Marine natural products are important leads in the drug discovery process. Biological and chemical diversity evolve as adaptations to conditions and challenges in a habitat. *Chromodoris*, a genus of colorful nudibranchs (Mollusca: Gastropoda), live and feed on noxious sponges, from which they sequester deterrent and toxic molecules as a chemical defence. Here we investigate sequestration of a cytotoxic marine natural product by five *Chromodoris* species (Doridina: Chromodorididae) from the Central Indo-Pacific Ocean. Comparison of the individual extracts led to HPLC isolation of the highly cytotoxic 2-thiazolidinone macrolide latrunculin A (LatA), identified by HR-ESI-MS, 1D and 2D NMR spectroscopy. LatA was the major metabolite in all examined *Chromodoris* species. Additionally, the macrolide was isolated from the associated sponge *Cacospongia mycofijiensis* (Porifera: Thorectidae), supporting a dietary origin of LatA. Furthermore, LatA was secreted with the mucus trail, where it possibly serves in short-range chemical communication as a semiochemical deterring predators and attracting mating partners.

This study is one of the first to visualize the distribution of LatA within the body of two *Chromodoris* species using MALDI MS-Imaging. LatA was accumulated and stored specifically throughout the mantle tissue, mucus glands, and especially in vacuoles of the mantle dermal formations (MDFs), emphasizing their importance as subcellular toxin repository. Using HEK-293 cells and fluorescence microscopy, we show that the isolated LatA is bioactive and its cytotoxicity results from binding to one of the most essential eukaryotic proteins, G-actin monomers. LatA prohibits polymerization of G-actins and causes severing of the F-actin network, ultimately resulting in the collapse and death of the cell.

To survive and gain an advantage, organisms that produce or acquire toxic natural products must be resistant to the action of these substances. *In vivo* toxicity experiments with direct administration of LatA showed 100% mortality in *Elysia viridis*, but 0% mortality in

*Chromdoris* heterobranchs. These results led us to investigate a possible underlying molecular resistance mechanism to LatA in the genus *Chromodoris*. Examination and comparison of heterobranch actin genes revealed a novel actin isoform in all investigated *Chromodoris* species with two crucial amino acid substitutions, D187G and R206T, at the 'nucleotide binding' cleft, the binding site of LatA.

We propose that these substitutions lead to target-site modifications, interfering with LatA binding and causing insensitivity. The novel, resistant D187G/R206T actin isoform is suggested to be the prerequisite for *Chromodoris* nudibranchs to sequester LatA from sponges. Furthermore, this would allow them to store LatA in the mantle tissue and use it for their defence, without having to suffer from its cytotoxicity.

Keywords: actin, Chromodoris, cytotoxin, latrunculin, Nudibranchia, resistance

# Introduction

### Nudibranchia, the Genus Chromodoris and Their MNPs

Like all members of the monophyletic Nudibranchia (Mollusca: Gastropoda), sea slugs of the family Chromodorididae have completely reduced their shell.<sup>101</sup> At first glance, a loss of the protective shell as a defensive organ may seem like a disadvantage. However, from an evolutionary perspective, it represents several advantages such as less energetic costs of developing and transporting a shell, as well as other respiratory and excretory benefits.<sup>57,160</sup> Yet, little is known about common predators of heterobranch sea slugs and records of their predation are scarce, although it needs to be noted that significant observations and summaries have recently been published in the scientific literature.<sup>155–159</sup> The scarcity of predation on sea slugs has been attributed to the efficiency of their defences. For example, the recently radiated genus *Chromodoris*,<sup>6,117,120,169</sup> has evolved elaborate mechanisms to protect itself from most predators, such as the selective uptake, sequestration and storage of toxic chemicals from their sponge prey,<sup>9,45,57,95,104,202</sup> and the display of aposematic colors and patterns, as part of Müllerian and quasi-Batesian mimicry.<sup>6,120,169,248,537</sup> So far, the only observed predation on *Chromodoris*, <sup>159,538</sup>

Currently, there are 22 described and further putative 18 undescribed *Chromodoris* species distributed throughout the Indo-Pacific Ocean and the Red Sea.<sup>169</sup> However, it must be noted that species delimitation for this genus is subject to ongoing research, due to exceptional challenges, such as extraordinary cryptic diversity, mimicry and recent radiation with described

introgression, mitochondrial capture and hybridization, and could therefore undergo further revisions in the future.<sup>6,117,120,169</sup> Of these putative 40 Chromodoris species, 12 have been chemically investigated and were included in several reviews.<sup>9,57,104,202,203</sup> All of them were found to contain diet-derived, bioactive, often cytotoxic, MNPs with variations in relation to prey availability. Analysis of Japanese C. willani revealed the sesterterpenes deoxymanoalide and deoxysecomanoalide, 539 and Japanese C. aspersa showed a mixture of sesquiterpenoid inorolides and scalaranes.<sup>540</sup> Indonesian C. lochi was found to sequester the polyketides laulimalide and isolaulimalide,<sup>541</sup> whereas *C. lochi* from Vanuatu contained hybrid PKS-NRPS derived mycothiazole.<sup>542</sup> Investigation of a *C. inopinata* specimen from Sri Lanka revealed the terpenoids aplyroseol,  $\gamma$ -lactone 9, and spongian-16-one.<sup>543</sup> Indian C. mandapamensis was found to contain the diterpenoid spongiadiol and a mixture of related spongiane compounds.<sup>255</sup> Extracts of C. hamiltoni from South Africa contained unusual chlorinated homo-diterpenes hamiltonin A-D and the sesterterpene hamiltonin E,<sup>544</sup> and extracts of *C. hamiltoni* specimens from East Africa showed spongian diterpene lactones 7β,11β-diacetoxy-16-oxospongian-17-al and 78.118-diacetoxy-16-oxospongi-12-en-17-al.<sup>545</sup> C. africana, from the Red Sea, contained the furanoterpene kurospongin.<sup>546</sup> Most notably, though, is the selective uptake and storage of the cytotoxins latrunculin A (LatA, Figure 4.1) and latrunculin B (LatB) by closely related Chromodoris species.<sup>248</sup> Until now, the incorporation of latrunculins has been reported for Australian Chromodoris annae, C. elisabethina, C. kuiteri, C. lochi and C. magnifica,<sup>246-248</sup> South and East African C. hamiltoni,<sup>544,545</sup> as well as C. quadricolor <sup>547,548</sup> and C. africana from the Red Sea.546

## Sponges Containing Latrunculins

*Chromodoris* nudibranchs acquire latrunculins from their sponge food sources. In the Red Sea and around Africa sponges that contain latrunculins are *Negombata* (previously *Latrunculia*) *magnifica*, *N. corticata*, <sup>547–552</sup> *Diacarnus erythraeanus* and *D. ardoukobae* (all four species belong to the Porifera: Demospongiae: Poecilosclerida: Podospongiidae),<sup>553</sup> whereas the unrelated *Cacospongia* (previously *Spongia*) *mycofijiensis* (Porifera: Demospongiae: Dictyoceratida: Thorectidae) is a known spongian source of latrunculins in the Indo-Pacific Ocean.<sup>247,552,554</sup> *Dactylospongia* sp., *Hyattella* sp., and *Fasciospongia rimosa* from the Indo-Pacific have also been reported to contain latrunculins, however, it was suggested that these samples were misidentified.<sup>552</sup> Even so, the taxonomically unrelated sponge genera *Negombata* and *Cacospongia* are reliable sources of latrunculins, especially LatA,<sup>552</sup> and serve as food sources for *Chromodoris* nudibranchs.

#### Latrunculin A

In 1980, after observing the ichthyotoxic effect of exudates from the Red Sea sponge *Negombata magnifica*,<sup>549</sup> Kashman and coworkers isolated and elucidated the structures of LatA and LatB for the first time. Latrunculins are cytotoxic 14- and 16-membered macrolides with an attached rare 2-thiazolidinone moiety (Figure 4.1), derived from mixed polyketide synthase/non-ribosomal peptide synthetase (PKS-NRPS) biogenesis and are unique to the marine environment.<sup>552,554</sup>



Figure 4.1 Chemical structure of latrunculin A.

Although there is much evidence indicating that sponge symbionts are the true producers of various MNPs, so far, it was not possible to find the biosynthetic gene cluster of LatA and more extensive studies are needed to solve this question.<sup>48,459,532,555–562</sup> In the following 40 years, latrunculins inspired, and continue to do so, the curiosity of researchers from diverse fields, investigating further marine organisms as sources, their biological activities, biosynthesis, total syntheses, the synthesis of analogues and epimers, and especially their mechanism of action and potential for therapeutic applications.<sup>27,551–553,561,563–603</sup> This substantial interest in latrunculins is primarily based on their actin filament depolymerizing effect and LatA has become the most widely used small molecule to study actin-based processes, microfilament organization, cytoskeleton dynamics, mechanisms of cellular function and the potential of latrunculins as a treatment against cancer, neurological disorders and infectious diseases.<sup>27,573,576,600,603–605</sup> The multiple applications of LatA stem from the myriad of biological functions of actin, which are critical for the maintenance of eukaryotic life.

## Actin

Actin is one of the most abundant proteins on Earth and above all in all eukaryotes, from yeast to plants to humans. This essential and highly conserved protein of around 375 amino acids is ubiquitously expressed in every eukaryotic cell.<sup>606-612</sup> Actin exists as a 'universal pool' of globular monomers (G-actin), which can be tapped into by many processes to dynamically nucleate and polymerize G-actin into helical filaments (F-actin), and to reversibly depolymerize and reorganize F-actin, depending on the interacting partners and required cellular processes. ATP-hydrolysis to ADP-pi, as a source of energy, and binding of Mg<sup>2+</sup> and Ca<sup>2+</sup> ions are essential components of the polymerization-depolymerization process. In short, ATP binds to the central 'nucleotide binding' cleft of G-actin, this ATP-actin is then incorporated into the barbed end of F-actin, the ATP is then hydrolyzed, phosphate is released, the resulting ADPactin is released at the pointed end of F-actin and undergoes nucleotide exchange to generate ATP-actin, which can then be used for another round of polymerization. This process is called actin treadmilling.<sup>606,610,612–623</sup> Actin filaments can be further assembled into a wide variety of at least 15 distinct, higher-order cellular structures in metazoan cells. Each of these structures performs specific functions and actins participate in more protein-protein interactions than any other known protein, with numerous partners, of which more than 60 classes are currently known. Actin-binding proteins modulate actin filament dynamics by sequestration of G-actin monomers, increase of ATP-ADP-pi exchange, and capping and severing of F-actin.<sup>600,606-</sup>  $^{610,612,614,615,620,621,623-625}$  The G-actin monomer folds into two major  $\alpha/\beta$ -domains, similar to all proteins of the structural superfamily of the sugar kinases, hexokinases and Hsp70.<sup>608</sup> Each large domain consists of two subdomains, and a four-subdomain nomenclature has traditionally been adopted (I-IV, Figure 4.2).<sup>614</sup>

## Actin Isoforms: Evolution and Functions

Although often thought of as a single protein, actin consists in most eukaryotes as different isoforms encoded by a multigene family, a set of structurally related genes that descended by duplication and divergence from common ancestral genes.<sup>606,607,609–612,622,626–636</sup> These isoforms (i.e., isoproteins), or isoactins, serve overlapping, but non-redundant functions and their number can vary greatly between different lineages. As cells became more specialized and architecturally complex, the compositional diversity of actin and tropomyosin isoforms provided the opportunity for an extraordinary diversity of functions.<sup>607,612,622,633–636</sup> Expansion and diversification of actin genes, as seen in many plants, or in anticorrelation, the expansion and diversification of actin regulators like tropomyosin, as seen in various animals, allowed for

an enhancement of the functional repertoire in a multicellular environment.<sup>612,622,635</sup> Post-translational modifications, such as arginylation and acetylation, and 'silent' code regulations, by synonymous changes at the gene and mRNA level, add an additional layer of complexity.<sup>612,622,635–638</sup> In Mammalia, 6 actin isoforms are known, 4 related to muscular functions ( $\alpha$ -skeletal,  $\alpha$ -cardiac,  $\alpha$ -smooth, and  $\gamma$ -smooth muscles) and 2 related to the cytoskeleton ( $\beta$ - and  $\gamma$ -actin).<sup>607,612,626,630</sup> Little is known about the diversity, classification, expression and molecular evolution of actin isoforms in marine molluscs and nothing is known for the Nudipleura group. Some studies have described multiple isoforms for molluscs. For example, the planorbid snails Biomphalaria glabrata and Helisoma trivolvis contain at least 5-10 actin isoform genes.<sup>639,640</sup> The presence of several actins was also inferred for scallops like Chlamys farreri,<sup>641</sup> with 12 to 15 actins in the sea scallop *Placopecten magellanicus*,<sup>642</sup> and 8 actins in the great scallop *Pecten maximus*.<sup>643</sup> In the Pacific oyster *Crassostrea gigas* 13 distinct actin genes were annotated.<sup>644</sup> Various coleoid Cephalopoda have at least 3 actin isoforms.<sup>645</sup> Marine sea snails of the genus Haliotis contain 3 to 8 isoforms, 646,647 1 actin gene was described from the marine snail Rapana venosa,<sup>648</sup> and the sea hare Aplysia californica was found to contain at least 3 distinct actin isoforms, but a much larger gene family is suspected.<sup>649–651</sup> Most invertebrate actin isoforms are ubiquitously expressed and have been reported to share the highest similarity to vertebrate cytoplasmic  $\beta$ -actin, even when isolated from the muscle tissue, and it was speculated that cytoplasmic actin might be the ancestral form, or evolutionary archetype, from which muscle actins have evolved.<sup>647,648,652</sup>

The origin and evolution of actin, one of the most conserved gene families, is a subject of ongoing research, examining the origin of the eukaryote branch of life.<sup>609,611,614,622,635,653–661</sup> Nevertheless, it has been suggested, that the high similarity between the structures and functions of actins and actin modulators in eukaryotes, Asgard archaea, and the bacterial actin-like homologs MreB, FtsA, and ParM, derives from an ancestral polymer-forming actin-like protein, presumably already present in an RNA-based 'urkaryote', hence, preceding the divergence of eukaryotes, archaea and bacteria more than two billion years ago.<sup>622,653,654,656–658,661–663</sup> Keeping this in mind, it is not surprising that actin plays such a crucial role in nearly all cellular processes and that it has remained almost unchanged, due to negative selection pressure imposed by the various interactants and large numbers of interactions it must preserve.<sup>612,622,629,653</sup> A partial, but not nearly comprehensive, list of its functions includes a main role in the cytoskeleton formation, providing structural support and shape to the cell, transport of proteins and vesicles within the cell, cell proliferation, junction formation, cell migration, chromatin remodeling, transcriptional regulation and DNA replication.<sup>607,609–612,622,624,664,665</sup>

# Actin Targeting Toxins: Mode of Action, Resistance and Disorders

The vital importance, evolutionary age and high conservation of the actin protein family makes it a perfect target for toxins. Several organisms have evolved the ability to produce or acquire toxins that address actin, thus ensuring effectiveness against a broad spectrum of organisms and often lethality.<sup>27,603,605,666</sup> Some heterobranch sea slugs were found to either produce or acquire actin-binding toxins. For example, the macrolide aplyronine A was isolated from the sea hare *Aplysia kurodai* <sup>27,603,667–670</sup> and the trisoxazole-bearing macrolides kabiramides and ulapualides were isolated from the chromodorid nudibranch *Hexabranchus sanguineus* and its egg ribbons.<sup>27,43,242,243,603,666,671,672</sup> Aplyronine A, as well as the trisoxazole macrolides, are highly cytotoxic due to their binding to G-actin in a molar ratio of 1:1 and they act as small molecule biomimetics of actin-capping proteins like gelsolin, additionally severing F-actin. Until now, it is unknown how heterobranch sea slugs can tolerate the toxicity of actin-binding macrolides like aplyronine A, kabiramides, and latrunculins.

Although trisoxazole macrolides and aplyronine A have a similar mode of action as latrunculins, they interact with actin residues between subdomains I and III (Figure 4.2) and bind to the hydrophobic 'target binding' cleft, mimicking actin-capping proteins. Indeed, most actin-binding proteins and all actin-depolymerizing macrolides bind to the 'target binding' cleft between subdomains I and III, except latrunculins.<sup>27,559,608,671,673</sup> Because of that, latrunculins are unique as they are the only currently known toxins that bind to the 'nucleotide binding' cleft of G-actin, close to the ATP-binding pocket, between subdomains II and IV (Figure 4.2).<sup>27,573,576,581,600,608</sup> However, like aplyronine A and kabiramides, cytotoxicity of LatA is a direct result of its binding to G-actin monomers in a 1:1 molar ratio, impeding polymerization and dissociating phosphate from F-actin,<sup>600</sup> and it was shown that one amino acid mutation of actin can be enough to cause resistance. Several actin amino acid positions were identified, that lead to latrunculin resistance when mutated (Table 4.1).<sup>573,574,576,581,674-680</sup> However, the precise changes and mechanisms leading to a loss of latrunculin binding, as well as how specific mutations of the 'nucleotide binding' cleft affect ATP-binding and actin polymerization as a whole require further investigation. There is evidence suggesting basic physiochemical changes, strengthened G-actin monomer-monomer interactions, altered F-actin dynamics and overall increased F-actin stability.<sup>675,677,679,681,682</sup>

| Amino Acid M | utations S | Subdomain | References      |
|--------------|------------|-----------|-----------------|
| Tyr 69 (Y    | <u>/</u> ) | II        | 576,674         |
| Glu 117 (l   | E)         | III       | 675             |
| Asp 157 (1   | D)         | III       | 574,576,674     |
| Val 159 (V   | V)         | III       | 676             |
| Arg 183 (1   | R)         | IV        | 573,581,674,677 |
| Asp 184 (1   | D)         | IV        | 573,581,674     |
| Thr 186 (7   | Γ)         | IV        | 576,674         |
| Asp 187 (1   | D)         | IV        | 678             |
| Arg 196 (1   | R)         | IV        | 679             |
| Arg 210 (1   | R)         | IV        | 573,576,674     |
| Asp 211 (1   | D)         | IV        | 573             |
| Lys 213 (I   | K)         | IV        | 573             |
| Glu 214 (l   | E)         | IV        | 573,576,674     |
| Lys 215 (I   | K)         | IV        | 573             |
| Arg 335 (1   | R)         | Ι         | 680             |
|              |            |           |                 |

**Table 4.1** Amino acid mutations of actin proteins that inhibit binding of latrunculins.



**Figure 4.2** Surface-model of native G-actin and its subdomains I-IV (green, PDB: 3HBT<sup>683</sup>) with reported sites of amino acid mutations (black), each leading to the inhibition of latrunculin binding (see Table 4.1). The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC. was used to display and color the model.
These changes can have far-reaching consequences, especially in organisms with only a limited number of genes for cytoplasmic actins, like humans. Deregulation of the cytoplasmic  $\beta$ -actin gene is associated with several types of cancer and immunodeficiency, and heterozygous β-actin gain-of-function and loss-of-function mutations were found to cause several diseases and disorders in humans, in particular: developmental disorders and the Baraitser-Winter syndrome,675,677,679,684-695 which is characterized by distinct facial features, structural brain malformation, dystonia, hearing loss, seizures, ocular coloboma, cardiac defects, short stature, developmental delay and intellectual disabilities. In two of these studies, cells of the patients were treated with LatA and found to be resistant, due to increased F-actin content and stability.<sup>675,679</sup> Given the significance of LatA and its effect on actins, our knowledge regarding how Chromodoris nudibranchs, as well as Negombata and Cacospongia sponges, resist their toxic defence is quite limited. Compartmentalization of cytotoxic compounds has frequently been observed in sponges.<sup>551,696–704</sup> Gillor and colleagues investigated the localization of LatB in *N. magnifica* by immunolabeling, which revealed that LatB is produced either by the sponge or by its symbionts in choanocytes, but is stored in high concentrations within membrane-bound, actin-free, vacuoles in archeocytes.<sup>551</sup> This shows that *N. magnifica* uses at least compartmentalization of LatB to prevent autotoxicity. However, other resistance mechanisms have not yet been investigated. Similarly, predators of N. magnifica and C. mycofijiensis, such as Chromodoris nudibranchs, must also be able to prevent the toxic effects of latrunculins and autotoxicity to feed on these sponges and survive.

## Aim of the Study

Here, we investigate the sequestration and distribution of a toxic MNP by five closely related nudibranch species: *Chromodoris annae*, *C. dianae*, *C. lochi*, *C. strigata* and *C. willani* (Figure 4.3). Additionally, we examine a possible underlying molecular resistance mechanism in these nudibranchs, a prerequisite that would allow them to sequester, survive and store the cytotoxin LatA. Our key objectives in this study were to: (1) chemically investigate and characterize the main metabolite in all five *Chromodoris* species, their dissected body and mantle tissue, secreted mucus, and prey sponge *Cacospongia mycofijiensis*; (2) visualize the cross-sectional distribution of the main metabolite LatA in *C. annae* and *C. dianae* nudibranchs by MALDI MSI; (3) examine and compare LatAs toxicity and mode of action in HEK-293 cells, and *in vivo* in *Chromodoris* and *Elysia viridis* heterobranchs; (4) investigate a possible molecular resistance mechanism in *Chromodoris* nudibranchs, by comparison of actin nucleotide and amino acid sequences from *Chromodoris* species, *Elysia viridis*, *Aplysia californica*, *Flabellina affinis*, *Embletonia pulchra* and *Armin tigrina*.

# Results

### Chemical Investigation of Chromodoris Nudibranchs and Cacospongia mycofijiensis.

We investigated extracts from five closely related nudibranch species: Chromodoris annae, C. dianae, C. lochi, C strigata and C willani (Figure 4.3). The nudibranchs were dissected into body and mantle tissue prior to separate extraction. Furthermore, we collected and investigated mucus collected from their notum and trails, and samples of the associated sponge prey Cacospongia mycofijiensis (Porifera: Thorectidae). Comparison of the individual extracts, using HPLC-MS, revealed that all of the Chromodoris nudibranchs, as well as their food source C. mycofijiensis, contained a shared metabolite with protonated ion fragments and adducts typical for the 2-thiazolidinone macrolide latrunculin A (LatA; m/z 386 [M+H-2H<sub>2</sub>O]<sup>+</sup>, 404  $[M+H-H_2O]^+$ , 422  $[M+H]^+$  and 444  $[M+Na]^+$ , SI). The metabolite was isolated by HPLC and conclusively identified as LatA (0.4 mg/specimen, Figure 4.1), by further 1D and 2D NMR spectroscopy (SI), optical rotation measurements, and comparison the to literature.<sup>550(p198),568,569,584,588,705</sup> HPLC-MS analysis revealed especially high concentrations of LatA in the extracts of the dissected mantle tissue, in comparison to the dissected body tissue (SI). LatA was also secreted in small amounts with the mucus trail and mucus collected directly from the notum (SI).



Figure 4.3 Photographs of the investigated *Chromodoris* species.

# MALDI-MS Imaging.

Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) has become a fundamental analytical tool for analysing substances in biological specimens. This method allows the correlation of spatial ion distribution with histological features. Here, it was used to map the distribution of the cytotoxin LatA (LatA; m/z 444.1813 [M+Na]<sup>+</sup>, 10 µm/pixel, green) within cross-sections of *C. annae* and *C. dianae* tissue (Figure 4.4). MALDI MSI revealed that LatA is not randomly distributed in the nudibranch's body. Instead, it is explicitly stored in the mantle tissue, especially in vacuoles of the mantle dermal formations (MDFs) (Figure 4.4 A/B3, SI) and mucus glands. For the first time, these results directly visualize the long-proposed hypothesis that the mantle tissue of dorid nudibranchs, their mucus glands, and especially the vacuoles of MDFs, store large quantities of toxins,<sup>93,101,113(p200),248–250,706–710</sup> in this case, LatA.



**Figure 4.4** Comparison of *Chromodoris* optical and MALDI mass spectrometry images, revealing the distribution of LatA (green). **A1** Dorsal overview of a *C. annae* specimen (top). **A2** Overview of the anterior and middle cross-sections (20 μm, dotted lines) of *C. annae* by light microscopy and MALDI MSI, showing the distribution of LatA (*m*/*z* 444.1813 [M+Na]<sup>+</sup>, 10 μm/pixel) in green. **A3** Close-up view of a *C. annae* MDF histological section (top), optical (middle), and MALDI image (bottom). **B1** Dorsal overview of a *C. dianae* specimen (bottom). **B2** Overview of the posterior cross-section (20 μm, dotted line) of *C. dianae* by light microscopy and MALDI MSI, showing the distribution of LatA (*m*/*z* 444.1813 [M+Na]<sup>+</sup>, 10 μm, dotted line) of *C. dianae* by light microscopy and MALDI MSI, showing the distribution of LatA (*m*/*z* 444.1813 [M+Na]<sup>+</sup>, 10 μm, dotted line) of *C. dianae* by light microscopy and MALDI MSI, showing the distribution of LatA (*m*/*z* 444.1813 [M+Na]<sup>+</sup>, 10 μm/pixel) in green. **B3** Close-up view of a *C. dianae* MDF histological section (top), optical (middle) and MALDI image (bottom).

Abbreviations: **dg**, digestive gland; **ft**, foot; **gc**, gill circle; **go**, gonads; **hd**, head; **LM**, light microscopy; ma, mantle; **MALDI MSI**, matrix-assisted laser desorption/ionization mass spectrometry imaging; **MDF**, mantle dermal formation; **mm**, mantle margin; **ph**, pharynx; **ri**, rhinophore; **v**, vacuole. Scale bars:  $A/B2 = 1000 \ \mu m$ ;  $A/B3 = 200 \ \mu m$ .

## Fluorescence Microscopy.

Bioactivity of LatA, isolated from *Chromodoris* nudibranchs, was examined for its effect on the F-actin cytoskeleton of human embryogenic kidney cells (HEK-293), using fluorescence microscopy. Cytotoxic activity of LatA is a direct result of its binding to globular actin-monomers (G-actin), impeding their polymerization to filamentous actin (F-actin).<sup>576,581</sup> In addition to G-actin sequestration, LatA depolymerizes F-actin, by severing and rapidly dissociating phosphate from its ends, ultimately resulting in the collapse of the cytoskeleton.<sup>600</sup> HEK-293 cells, incubated with 50  $\mu$ M of the *Chromodoris*-LatA, collapsed, deformed and rounded up, due to the destruction of the filamentous actin (Figure 4.5). This indicates, that LatA is stored unaltered and active in the body of *Chromodoris* nudibranchs. Thus, raising the question of how *Chromodoris* specimens survive and store the active LatA, without having to suffer from self-intoxication (i.e., autotoxicity).



**Figure 4.5** Cytoskeletal visualization of HEK-293 cells using fluorescent microscopy (**FM**, left) with Phalloidin staining filamentous actin (green), and Hoechst staining DNA (blue), in comparison to light microscopy images (**LM**, right). Cells were incubated in DMEM medium, either with 50  $\mu$ M LatA, isolated from *Chromodoris* nudibranchs, for 24 h (middle) and 44 h (bottom) or without LatA (control, top). Arrows mark condensed actin. Scale bars: **FM** = 20  $\mu$ m; **LM** = 50  $\mu$ m.

### Comparative Analysis of Heterobranchia Actin Genes.

So far, only nudibranchs of the genus *Chromodoris* are known to store latrunculins,<sup>246–248,544,584,708</sup> indicating an exceptional resistance mechanism within this group. LatA's toxicity is a direct result of G-actin sequestration and F-actin severing,<sup>576,581,600</sup> therefore we isolated DNA from *C. annae* (4 sp.), *C. dianae* (2 sp.), *C. lochi* (2 sp.), *C. strigata* (3 sp.), *C. willani* (2 sp.), and *E. viridis* (1 sp.) and used PCR with primers specifically designed to amplify fragments of the coding region (~ 885 bp) of putative actin genes, including the binding site of LatA. The amplified actin gene fragments were isolated, sequenced and aligned with cladobranch transcriptome sequence data, kindly provided by D. Karmeinski,<sup>118</sup> from *A. tigrina, E. pulchra*, and *F. affinis* and an actin sequence from *A. californica* (GenBank, NCBI). The actin sequences were compared and examined for mutations (Figure 4.6), which have been reported to cause LatA resistance (see Table 4.1 and references cited therein).

The amino acids threonine T186 and arginine R210, which directly bind to latrunculins, are highly conserved in all heterobranchs. However, several differences in the latrunculin-binding region can be detected in *Chromodoris* nudibranchs, of which most are representing substitutions of amino acids with similar chemical properties, such as lysine (pKa 10.79, pI 9.87)  $\rightarrow$  arginine (pKa 12.48, pI 10.76, alkaline, polar), serine (pI 5.68)  $\rightarrow$  asparagine (pI 5.41, neutral, polar), or threonine (pI 5.60)  $\rightarrow$  serine (pI 5.68, neutral, polar). Nonetheless, *Chromodoris* actins show crucial substitutions of aspartic acid D187 (pKa 3.86, pI 2.98, acidic, polar) to glycine (pI 5.97) and arginine R206 (pKa 12.48, pI 10.76) to threonine (pI 5.60). Aspartic acid D187 and arginine R206 usually form a salt-bridge with a strong positive density, essential for the stabilization of the tertiary structure of actin and binding of latrunculins (see Figure 4.7).<sup>576,678,682</sup> Their substitutions to the neutral amino acids glycine D187G and threonine R206T disable the formation of this salt-bridge, possibly altering latrunculin binding, hence, resulting in LatA resistance. However, additional studies regarding heterobranch actins and full characterization of the novel *Chromodoris* actin isoform, as well as the affinity of its binding sites are needed to further investigate this hypothesis.

|                | 186 | Г. |   |   |    |   |   |   |   |   |   |   |   |   |   |   |   |   |   | ٦ |   |   | 2 | 210 |
|----------------|-----|----|---|---|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|-----|
| Species/Abbrv  | *   | ¥  | * | * |    | * | * |   | * | * | * | * |   | * |   |   |   |   | * | ♥ | * | * | * | *   |
| E. viridis     | Т   | D  | Y | L | ΜK |   | L | Т | Е | R | G | Y | S | F | Т | Т | Т | А | Е | R | Е | I | V | R   |
| A. californica | Т   | D  | Y | L | ΜK |   | L | Т | Е | R | G | Y | S | F | Т | Т | Т | А | Е | R | Е | L | V | R   |
| F. affinis     | Т   | D  | Y | L | ΜK | I | L | Т | Е | R | G | Y | S | F | Т | Т | Т | А | Е | R | Е | I | V | R   |
| E. pulchra     | Т   | D  | Y | L | ΜK |   | L | Т | Е | R | G | Y | S | F | Т | Т | Т | А | Е | R | Е | L | V | R   |
| A. tigrina     | Т   | D  | Y | L | ΜK |   | L | Т | Е | R | G | Y | S | F | Т | Т | Т | А | Е | R | Е | L | V | R   |
| C. annae       | Т   | G  | Y | L | ΚR | I | L | Н | Е | R | G | Y | Ν | F | D | S | S | S | E | Т | Е | L | V | R   |
| C. dianae      | Т   | G  | Y | L | ΚR | I | L | Н | Е | R | G | Y | Ν | F | D | S | S | S | E | Т | Е | L | V | R   |
| C. lochi       | Т   | G  | Y | L | ΚR | I | L | Н | Е | R | G | Y | Ν | F | D | S | S | S | E | Т | Е | I | V | R   |
| C. strigata    | Т   | G  | Y | L | ΚR | I | L | Н | Е | R | G | Y | Ν | F | D | S | S | S | E | Т | Е | I | V | R   |
| C. willani     | Т   | G  | Y | L | KR | I | L | Η | Е | R | G | Y | Ν | F | D | S | S | S | E | Т | Е | I | V | R   |

**Figure 4.6** Multiple consensus amino acid sequence alignments of the latrunculin-binding region of heterobranch actins. Threonine T186 and arginine R210, directly interacting with latrunculins, are framed with yellow rectangles. Aspartic acid D187 and arginine R206 forming a salt bridge (indicated by arrows) are highlighted in green. The substitutions D187G and R206T are highlighted in blue. Highly conserved amino acids are marked with an asterisk.



**Figure 4.7** Overall and close-up comparison of a model of native G-actin (green, left, PDB: 3HBT,<sup>683</sup> 375 aa) and an *in silico* hybrid-model of a combination of the amplified and sequenced *Chromodoris* actin (286 aa) and subsequently added parts of an *A. tigrina* actin sequence (89 aa), to approximate missing amino acids (SI, blue, right, 375 aa. The model was created using the Phyre2 web portal for protein modelling, prediction and analysis<sup>711</sup>). Native aspartic acid D187 (ASP) and arginine R206 (ARG), shown in white, form a salt bridge (yellow lines, 3.1 and 2.7 Å), whereas the substitutions glycine G187 (GLY) and threonine T206 (THR), shown in black, present in *Chromodoris* actin, are unpolar and do not interact. Both substitutions are adjacent to the nucleotide binding cleft and are part of the latrunculin-binding region. A mutation of D187 has previously been reported experimentally to inhibit latrunculin binding (see Table 4.1 and Figure 4.2). The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC. was used to display and color the models.

Genetic and BLAST®<sup>711</sup> analyses (Figure 4.8, SI), and percent sequence identity comparison (Table 4.2) of the newly obtained *Chromodoris* sequences showed that they shared  $\geq 68\%$ identity at the DNA level and  $\geq$  75% identity at the amino acid level with other heterobranch actin sequences, while being near-identical to each other with > 98% DNA sequence identity. Cladobranchia actin sequences showed higher similarity to A. californica and E. viridis,  $\geq 82\%$ identity at the DNA level and > 92% identity at the amino acid level than to Chromodoris actin isoform sequences (Figure 4.8, Table 4.2). BLAST® comparison showed, that the newly sequenced *Elysia viridis* actin shared highest similarity,  $\geq$  98%, to the recently published actin amino acid sequences from *Plakobranchus ocellatus* and *Elysia marginata*,<sup>712</sup> whereas its nucleotide sequence was most similar to the published A. californica actin nucleotide sequences (SI). Overall, the A. californica actin sequence, obtained from GenBank (NCBI),<sup>711</sup> showed higher sequence identity to other Gastropoda sequences available in the GenBank database, than to the newly sequenced isoform from Chromodoris sea slugs (SI), which instead matched highest with lancelet actins, *Branchiostoma floridae*  $\leq$  79.5% amino acid identity, and predicted squirrel actins, *Urocitellus parryii*  $\leq$  72.4% DNA sequence identity (SI). Of course, this peculiar bias does not mean that lancelet, squirrel and Chromodoris actins would be more homologous. Instead, it emphasizes a lack in availability for many Gastropoda, Heterobranchia, and especially Nudibranchia actin isoform sequences in current databases. Though actin is encoded by a single gene in yeast, some protozoans and single-celled green algae, <sup>622,627,628,631</sup> in all other eukaryotes actin proteins are encoded by a set of structurally related genes, a multigene family, that descended by duplication and divergence from a common ancestral gene.<sup>622,628</sup> The number of actin isoforms varies highly in different lineages, with 8-44 isoforms in plants, 713-715 > 6actin isoforms in mammals,<sup>716</sup>  $\geq$  9 isoforms in teleost fishes,<sup>717</sup>  $\geq$ 8 isoforms in echinoderms,  $^{718,719} \ge 6$  actins in insects,  $^{720} \ge 8$  isoforms in *Pecten maximus*,  $^{643}$  12-15 isoforms in *Placopecten magellanicus*,<sup>642</sup> and at least 3-5 actin isoforms in *Haliotis* species,<sup>647</sup> coleoid Cephalopods,<sup>645</sup> and Aplysia californica.<sup>649-651</sup> Divergence of the new Chromodoris actin isoform to other heterobranch actins by  $\geq 23\%$  (Figure 4.8, Table 4.2) could be attributable to at least one more duplication event and further speciation in chromodorid nudibranchs due to different levels of selective pressure imposed by its function and interacting partners.<sup>264,622,721</sup> So far, there are no other actin sequences available for the Nudipleura group. Future studies could reveal further actin isoforms, allowing for a more detailed analysis regarding the evolution of actin proteins in this group and their implications for toxin resistance and chemical defence.



**Figure 4.8** Unrooted phylogenetic split network of heterobranch actins, showing two distinct actin groups. The network is based on the core nucleotide coding region (808 bp) of combined genomic gDNA (*Chromodoris* and *Elysia*) and transcriptomic cDNA (*Armina, Embletonia*, and *Flabellina*) actin sequences. The *Aplysia californica* actin sequence was obtained from GenBank (SI). Sequences were aligned using the MUSCLE algorithm in MEGA X version 10.0.5.<sup>723</sup> The split network was generated using SplitsTree4 v4.16.2. and the NeighborNet method.<sup>724</sup> The scale bar indicates 0.01 substitutions/site.

| (1)            | C. annae | C. dianae | C. strigata | C. lochi | C. willani | F. affinis | A. tigrina | E. pulchra | A. californica | E. viridis |
|----------------|----------|-----------|-------------|----------|------------|------------|------------|------------|----------------|------------|
| C. annae       |          | 99        | 99          | 99       | 99         | 70         | 69         | 70         | 69             | 69         |
| C. dianae      | 99       |           | 98          | 99       | 99         | 70         | 69         | 70         | 69             | 69         |
| C. strigata    | 99       | 98        |             | 98       | 99         | 70         | 69         | 70         | 70             | 69         |
| C. lochi       | 99       | 99        | 98          |          | 99         | 69         | 68         | 70         | 69             | 69         |
| C. willani     | 99       | 99        | 99          | 99       |            | 69         | 69         | 70         | 69             | 69         |
| F. affinis     | 70       | 70        | 70          | 69       | 69         |            | 82         | 87         | 85             | 87         |
| A. tigrina     | 69       | 69        | 69          | 68       | 69         | 82         |            | 87         | 87             | 85         |
| E. pulchra     | 70       | 70        | 70          | 70       | 70         | 87         | 87         |            | 88             | 89         |
| A. californica | 69       | 69        | 70          | 69       | 69         | 85         | 87         | 88         |                | 91         |
| E. viridis     | 69       | 69        | 69          | 69       | 69         | 87         | 85         | 89         | 91             |            |

**Table 4.2** Percent identity matrices of heterobranch actin sequences. (1) Identity matrix based on 808 nucleotidepositions. (2) Identity matrix based on 269 amino acid positions. Values > 80% are shown in bold.

| (2)            | C. annae | C. dianae | C. strigata | C. lochi | C. willani | F. affinis | A. tigrina | E. pulchra | A. californica | E. viridis |
|----------------|----------|-----------|-------------|----------|------------|------------|------------|------------|----------------|------------|
| C. annae       |          | 99        | 99          | 99       | 100        | 76         | 77         | 77         | 76             | 77         |
| C. dianae      | 99       |           | 99          | 100      | 100        | 76         | 77         | 76         | 75             | 77         |
| C. strigata    | 99       | 99        |             | 99       | 100        | 76         | 77         | 77         | 76             | 77         |
| C. lochi       | 99       | 100       | 99          |          | 100        | 76         | 77         | 76         | 75             | 77         |
| C. willani     | 100      | 100       | 100         | 100      |            | 76         | 77         | 77         | 76             | 77         |
| F. affinis     | 76       | 76        | 76          | 76       | 76         |            | 92         | 93         | 93             | 93         |
| A. tigrina     | 77       | 77        | 77          | 77       | 77         | 92         |            | 95         | 95             | 96         |
| E. pulchra     | 77       | 76        | 77          | 76       | 77         | 93         | 95         |            | 97             | 97         |
| A. californica | 76       | 75        | 76          | 75       | 76         | 93         | 95         | 97         |                | 96         |
| E. viridis     | 77       | 77        | 77          | 77       | 77         | 93         | 96         | 97         | 96             |            |

# In Vivo Toxicity Assay

Direct toxicity of administered LatA, previously isolated from Chromodoris nudibranchs, and resistance against it, was tested in living heterobranchs. For this purpose, 75 µM LatA solved in isotonic solution (SI) with 5% DMSO, or just the isotonic solution with 5% DMSO as a control, were injected into living C. annae (1 sp.), C. dianae (2 sp.) and E. viridis (12 sp.; 6 sp. with LatA, 6 sp. as control). All Chromodoris specimen injected with LatA, and control group E. viridis heterobranchs survived the injections, showing defensive responses during the insertion of the needle, similar to the behavioural descriptions of Hexabranchus and aeolids <sup>722,723</sup> and other nudibranchs,<sup>724</sup> by mantle flexing, expanding the mantle area, retracting the foot and contracting the rest of the body. This behaviour likely deflects attacks towards the unpalatable, defensive tissue and away from the vulnerable body parts. When an additional light source was switched on, the animals exhibited defence and escape behaviour, by either contracting their body or quickly moving away from the light. No LatA intoxication or further defensive responses were observed for the Chromodoris or control Elysia group after the injection and the heterobranchs returned to 'normal' behaviour in captivity,<sup>725</sup> e.g. all control E. viridis specimens returned to their provided food source Codium fragile and continued feeding. However, all of the six E. viridis specimens injected with the isotonic solution, containing 75 µM LatA died. During the insertion of the needle, they showed the same defensive response as the control group. Yet afterwards, they did not return to 'normal' behaviour. Instead, their movement was highly constrained within minutes, they were not able to return to their food source and showed an impaired response to the light stimulus. The six

72

*E. viridis* specimen were declared dead when no general movement and no response towards touch or light stimuli could be observed. Therefore, injection of LatA caused 100% mortality in *E. viridis* and 0% mortality in *C. annae* and *C. dianae*. These results are in accordance with previous toxicity assays of LatA, also causing 100% mortality in mosquitofish and brine shrimp.<sup>248,549</sup>

# Discussion

In this study, we investigated the sequestration and storage of the highly cytotoxic 2-thiazolidinone macrolide LatA (Figure 4.1) in closely related nudibranch species from Indonesia: *Chromodoris annae*, *C. dianae*, *C. lochi*, *C. strigata* and *C. willani* (Figure 4.3). Furthermore, we explored a possible underlying resistance mechanism in *Chromodoris* nudibranchs that could prevent LatAs toxic effects and self-intoxication.

Every eukaryotic cell depends on the many structures and functions provided by actin, an evolutionary ancient protein, or its variant isoactins.<sup>607,609–612,622,624,634–636,653,660,661,664,665</sup> LatAs toxicity is based on its binding to G-actin monomers, the building blocks of the cytoskeleton, and severing of the F-actin networks, ultimately resulting in a collapsed cytoskeleton and death of the cell.<sup>576,581,600</sup> Therefore, LatA is an immensely effective defence against every possible eukaryotic predator, if the producer or sequestering organism is self-resistant to its cytotoxic activity. All of the *Chromodoris* species, investigated in this study, were found to selectively sequester and store LatA, similar to previous reports on *Chromodoris annae*, *C. elisabethina*, *C. kuiteri*, *C. lochi* and *C. magnifica* from Australia, by Cheney and colleagues.<sup>248</sup>

On site, we observed several *Chromodoris* species feeding on *Cacospongia mycofijiensis* and isolated LatA from the collected nudibranch and sponge samples (SI). This further supports a dietary relationship between *Chromodoris* nudibranchs and *C. mycofijiensis* in the Indo-Pacific Ocean. However, not all specimens were found invariably living and feeding on *C. mycofijiensis* and it has previously been proposed that *Chromodoris* sea slugs might have less specialized alimentary habits than thought.<sup>248,466</sup> Being resistant to LatAs cytotoxic effects would open up *C. mycofijiensis* as a new food source, simultaneously providing a toxic defence. Furthermore, the ability to store LatA in the mantle tissue and MDfs for a longer period would enable *Chromodoris* nudibranchs to additionally seek and use other food sources, while remaining to be chemically defended in the meantime.

For the first time, we were able to visualize the long-proposed hypothesis that MDFs of the mantle tissue act as important storage compartments for toxic compounds and potent defensive toxin packages,<sup>99,101,113,161,229,249–251,253,706,726</sup> by using MALDI-IMS, which shows the

distribution of LatA in cross-sections of *C. annae* and *C. dianae* (Figure 4.4). LatA was not randomly distributed, but stored specifically throughout the mantle tissue, mucus glands, and especially in high concentrations in the vacuoles of MDFs, emphasizing their importance as subcellular toxin repository. Additionally, the bright and contrasting coloration of the mantle tissue can draw the attention of predators to this chemically well defended area.<sup>161,167,206,252,254</sup> These results show that *Chromodoris* nudibranchs compartmentalize LatA, a mechanism that is commonly used to prevent autotoxicity, indicating that the initial role of these vacuoles and accumulation structures might have been that of excretion or autoprotection and evolved later into a defensive organelle.<sup>254</sup> A similar compartmentalization was also described in a prey sponge *N. magnifica* in the Red Sea, storing high concentrations of LatB within membranebound, actin-free vacuoles in archeocytes.<sup>551</sup> Future studies might reveal that compartmentalization and storage of latrunculins in actin-free vacuoles may be a common mechanism to cope with these toxic substances among organisms producing or sequestering them.

Furthermore, we found that LatA is secreted in small amounts with the mucus trail (SI). This could be a remnant kind of excretion of toxic substances from a previous detoxification process, but there is evidence suggesting that small amounts of chemical cues, in this case LatA, are secreted with the mucus trail for additional purposes, such as chemical communication.<sup>18,53,248</sup> For gastropods, the production of mucus is vital but costly and several behavioral adaptations, such as trail following, have evolved to compensate for energy losses.<sup>51,538,727</sup> However, leaving a trail poses a risk, as it reveals the position not only to mating partners, but also to predators. It has been shown, that gastropod conspecifics and predators alike can pick up various cues, allowing them to determine the polarity (i.e., direction) of the trail and follow it to the mucus producing organism.<sup>51,538</sup> LatA has low solubility in water (~ 0.02 mg/mL), allowing for shortrange chemical communication in aqueous environments through taste. Therefore, addition of small amounts of LatA as a semiochemical to the mucus mixture by Chromodoris nudibranchs could simultaneously inform and attract mating partners, while deterring predators trying to follow the trail. Chromodorid sea slugs are known to display bright visual signals, such as aposematic coloration and use mimicry to advertise their toxicity.<sup>6,120,248,252,537</sup> The addition of LatA to the mucus would further deter organisms with poor vision or when visibility is not guaranteed, therefore playing an important role in the enhancement of warning signals.

Biotransformation of dietary substances is a described detoxification mechanism among heterobranchs and has been reported in Chromodorididae, especially for the genera *Felimare* and *Glossodoris*.<sup>57,100,195,203,232,233,251,255,256</sup> However, LatA was not biotransformed by

74

*Chromodoris* nudibranchs, but instead stored actively within the mantle rim, mucus glands and MDFs. LatA, isolated from *Chromodoris* slugs, retained its cytotoxic activity, due to the binding to G-actin monomers and severing of F-actin, resulting in the collapse of the cytoskeleton, as shown by fluorescence microscopy experiments with HEK-293 cells (Figure 4.5). *In vivo* toxicity experiments with direct administration of LatA showed 100% mortality in *Elysia viridis* heterobranchs, but 0% mortality in *Chromdoris* specimen. These results indicate that *Chromodoris* nudibranchs employ additional resistance mechanisms protecting them from LatAs cytotoxicity.

Considering LatAs mode of action,<sup>576,581,600</sup> known established mechanisms for the evolution of toxin resistances, 258, 271, 359-361 and studies reporting individual cases of resistance to LatA,<sup>573,574,576,581,674–680</sup> led us to sequence and compare heterobranch actin genes for a possible molecular resistance mechanism in Chromodoris nudibranchs (Figure 4.6). This is the first time that an underlying resistance mechanism in heterobranch sea slugs toward sequestered toxic molecules was investigated. We identified a novel actin isoform in all examined Chromodoris species containing two crucial amino acid substitutions, of aspartic acid D187 (pKa 3.86, pI 2.98, acidic, polar) to glycine (pI 5.97) and arginine R206 (pKa 12.48, pI 10.76) to threonine (pI 5.60), at the 'nucleotide binding' cleft, the binding site of LatA (Figure 4.7). Usually, aspartic acid D187 and arginine R206 form a salt-bridge with a strong positive density, which is essential for the stabilization of the tertiary structure of actin and binding of latrunculins.<sup>576,678,682</sup> The substitutions to the neutral amino acids glycine D187G and threonine R206T prevent the formation of this salt-bridge, possibly altering latrunculin binding, which could therefore result in LatA resistance. There have been studies suggesting strenghtened G-actin monomer-monomer interactions and overall increased F-actin content and stability by mutations of the actin 'nucleotide binding' cleft, that could be responsible for increased resistance against the depolymerizing activity of LatA.<sup>675,677,679,681,682</sup> Therefore, we propose that the substitutions D187G and R206T of the 'nucleotide binding' cleft lead to target-site modifications, interfering with LatA binding, hence causing insensitivity to LatA. The D187G/R206T isoactin could enable Chromodoris nudibranchs to sequester LatA from C. mycofijiensis and compartmentalize it in their mantle tissue for defence, without having to suffer from its cytotoxicity. Nevertheless, these results are only a first step toward improving our understanding of toxin resistance in chromodorid nudibranchs and they do not rule out other possible resistance mechanisms that may be used in synergy. Additional studies regarding heterobranch actins and their expression, as well as a full characterization of the novel *Chromodoris* actin isoform, its physiochemical properties and the affinity of its binding sites, are needed to further investigate this hypothesis.

Gene duplications are ubiquitous and a major driver of phenotypic diversity, functional innovation and genomic adaptations to changing environmental conditions.<sup>264,622,721,728</sup> Most genes encoding venom protein toxins have arisen from significant gene duplication events and subsequent modification, promoting rapid evolution.<sup>265,729</sup> Furthermore, convergent toxin resistance, by gene duplications and substitutions, is commonly observed among organisms in chemically defended antagonistic predator-prey relationships. For example, duplications and convergent molecular changes to the sodium-potassium pump (Na<sup>+</sup>/K<sup>+</sup>-ATPase) in insects, amphibians, reptiles, and mammals, have been described to affect resistance against toxic cardiac glycosides.<sup>284,291–293</sup> Likewise, widespread convergent substitutions in alpha-1 nicotinic acetylcholine receptors have been shown to cause resistance against  $\alpha$ -neurotoxins of venomous snakes,<sup>259,331–333</sup> and the convergent evolution of resistant voltage-gated sodium channels allows for widespread predator-prey interactions among diverse organisms using neurotoxic TTX and PSTs.<sup>267,334,343,351,356</sup>

Although actin is regularly thought of as a single protein, in most eukaryotes it consists of multiple isoforms with overlapping but non-redundant functions, encoded by structurally related genes that evolved by duplication and divergence from a common ancestral gene.<sup>607,612,622,634–636</sup> These isoforms are among the most essential, abundant and conserved eukaryotic proteins at the level of the amino acid sequence.<sup>612,622,636</sup> Actin gene duplications with followed diversification are common and known from freshwater and marine gastropods.<sup>640,646–651</sup> However, in contrast to vertebrate actins that have specialized into muscle and cytoplasmic isoforms, all gastropod actin genes are expressed across all tissues and are most similar to cytoplasmic actins, <sup>640,646–651</sup> suggesting the cytoplasmic form as an evolutionary archetype. In cells and organisms with only a limited number of genes for cytoplasmic actins, like humans, mutations of these genes can have serious consequences and lead to diseases and disorders, such as the Baraitser-Winter syndrome.<sup>675,677,679,684–695</sup> Further research investigating the exact changes caused by mutations and overall effects on actin expression, ATP-binding and polymerization dynamics could improve our understanding of these mechanisms and their consequences from a cell biological and medical point of view.

Another intriguing question would be whether cells could cope better with these mutations, if they have acquired additional cytoplasmic actin isoforms by gene duplication events. Cytoplasmic isoactins can copolymerize and cooperate in an unknown fashion to endow microfilament networks with diverse features.<sup>607,634,635,730</sup> Complex F-actin properties, such as

polymerization dynamics and stability, vary according to the mixture of isoactins in the filament, their geometrical organization, covalent modifications, and collaborative or competitive binding of multiple actin-binding proteins.<sup>607,634,635,730</sup> Actin, as a building block of the cytoskeleton, can be interpreted as cellular alloy.<sup>607</sup> The ratio of isoactins and their organization determine the properties of the filament network, enabling and adapting the cytoskeleton to a variety of functions. Additionally, a recent study by Vedula et al. revealed, that cytoplasmic actins are not only affected and regulated by changes in the amino acid sequence, but also at the gene and mRNA level, by 'silent' substitutions of the nucleotide sequence, adding even more complexity to these considerations.<sup>636</sup>

So far, we do not know the exact number of actin genes, their isoforms, the compositional diversity, or their substitution rates in Chromodorididae, Nudibranchia, or Heterobranchia. However, with advancing technologies, especially next-generation sequencing and whole genome analyses, these questions could be adressed in the future. Comparison of Cladobranchia, *Elysia* and *Aplysia* actin sequences (Table 4.2) showed, that they shared  $\geq 82\%$ identity at the DNA level and  $\geq$  92% identity at the amino acid level. Chromodoris actin sequences were near-identical to each other, with  $\geq$  98% DNA sequence identity, however, they only shared  $\geq 68\%$  identity at the DNA level and  $\geq 75\%$  identity at the amino acid level to other heterobranch actin sequences. The increased divergence of the newly described Chromodoris actin isoform in comparison to other heterobranch actins by  $\leq 25\%$  at the amino acid level and  $\leq$  32% at the gene level (Table 4.2, Figure 4.8) may be explained by at least one more actin gene duplication event, relaxing purifying (i.e., stabilizing) selection and allowing for faster evolution of the isoactin. This could then be followed by further adaptation and speciation in chromodorid nudibranchs, due to different levels of selective pressure imposed by its functions, interacting partners, and toxic latrunculins in the food sources N. magnifica and C. mycofijiensis.<sup>264,622,721,728</sup> In this case, mutations of the novel isoactin that lead to resistance against latrunculins would provide an inheritable evolutionary advantage to Chromodoris nudibranchs.

The coevolutionary predator-prey relationship between the chemically defended *Chromodoris* nudibranchs and their prey *C. mycofijiensis* and *N. magnifica*, requires tandem origin of toxin acquisition and the development of resistance to prevent self-intoxication. An essential question to investigate would be whether the mutations that led to latrunculin resistance developed before the division of the infraorder Doridoidei into the superfamilies Polyceroidea, Chromodoridoidea, Phyllioidea, Doridoidea, and Onchidoridoidea. If other dorid nudibranchs, like the predatory genus *Gymnodoris* (Nudibranchia: Polyceroidea), whose members have been

observed feeding on *Chromodoris* nudibranchs,<sup>159,538</sup> would already carry a latrunculin resistant isoactin, these carnivorous sea slugs would also be able to prey on the genus *Chromodoris* without having to fear their cytotoxic defence. Another chromodorid nudibranch, *Hexabranchus sanguineus*, is known to sequester and store the cytotoxic, actin-binding kabiramides and ulapualides,<sup>27,43,242,243,603,666,671,672</sup> and the euopisthobranch *Aplysia kurodai* sequesters the toxic macrolide aplyronine A.<sup>27,603,667–670</sup> Kabiramides, ulapualides and aplyronine A have a similar mode of action as latrunculins, however, they bind like all other actin-depolymerizing macrolides, to the hydrophobic 'target binding' cleft between subdomains I and III of G-actin monomers.<sup>27,559,608</sup> Future studies may reveal additional actin isoforms in heterobranch sea slugs, which would allow for more detailed analyses of the evolution of actin proteins in this group of marine molluscs, their implications for toxin resistances, chemical defence and the predator-prey relationships that they might enable.

In conclusion, we found that nudibranchs of the genus *Chromodoris* sequester the highly cytotoxic macrolide LatA from their food source *Cacospongia mycofijiensis*. They accumulate LatA untransformed in their mantle tissue and mucus glands. In particular, LatA was compartmentalized in high amounts in the vacuoles of MDFs, emphasizing their importance as subcellular toxin repository. LatA was secreted with the mucus, possibly as a semiochemical to attract partners and deter predators. Cytotoxicity of LatA is a direct result of its binding to one of the most essential eukaryotic proteins, G-actin monomers, prohibiting their polymerization and severing of the F-actin network, ultimately resulting in the collapse and death of the cell. However, in vivo experiments with direct administration of LatA lead to a mortality of 0% in *Chromodoris* nudibranchs and 100% mortality in *Elysia viridis* sea slugs.

We amplified, sequenced, and described a novel actin isoform from all investigated *Chromodoris* species, carrying crucial amino acid substitutions at the 'nucleotide binding' cleft of actin, the binding site of LatA. Especially the amino acid substitutions D187G and R206T, which usually form an important salt-bridge, have been identified as possible underlying molecular mechanism resulting in LatA resistance. This is the first study investigating a molecular mechanism of resistance in a group of heterobranch sea slugs. The results are a first step to improve our understanding of a possible gene-based resistance mechanism in *Chromodoris* sea slugs against the cytotoxin LatA. The resistance to LatA, caused by a novel D187G/R206T isoactin, would enable *Chromodoris* nudibranchs to sequester the toxin from their prey *C. mycofijiensis*. Furthermore, this would allow them to store LatA for a longer period

78

in the mantle tissue and use it for their own defence, without having to suffer from its cytotoxicity.

We hope our work emphasizes the potential of MNP and resistance research in heterobranch sea slugs, with combined insights from a chemical, molecular, ecological, and cell biological perspective. Many questions remain to be resolved and we hope to inspire future studies to investigate marine gastropod isoactins, their evolution, expression, physiochemical properties and possible implications for cytotoxin resistance.

# GENERAL CONCLUSION AND OUTLOOK

The herein presented studies were part of the interdisciplinary project INDOBIO and aimed to contribute foundational results on marine natural products from the nudibranch *Phyllodesmium longicirrum*, *Doriprismatica stellata* and five *Chromodoris* species of the Central Indo-Pacific Ocean. Each chapter had a respective focus on particular food sources, possible chemoecological roles and relationships, medical potential or an underlying mechanism of resistance for the prevention of autotoxicity.

Nudibranch sea slugs have reduced, internalized or completely lost their protective shell. Instead, various adaptations enabled these gastropods to explore and exploit new niches and food sources, which led to unique survival strategies and increased radiation within these taxa.<sup>101,111,143</sup> The exceptional biodiversity, intense competition and feeding pressure in coral reefs of the Central Indo-Pacific Ocean lead to a vast chemical diversity and variety of bioactive MNPs, especially in exposed, sessile, and slow-moving organisms.<sup>2324</sup> As an overarching conclusion of this thesis, it can be inferred that the herein investigated species of nudibranchs were rich sources of MNPs, especially of terpenoids, like cembranoid and polycyclic diterpenes, biscembranes, a scalarane sesterterpene, and of the cytotoxic macrolide LatA (Figure 5.1). The sea slugs acquired and accumulated all of these compounds in larger quantities by feeding on a specific type of prey that produces or contains these compounds. Therefore, targeting shell-less gastropods may result in the discovery of accumulated unexpected natural products. However, it must be noted that the limiting factor for elucidation of a novel compound, let alone testing its bioactivity, is its quantity when isolated. This has been, and continues to be, one of the longstanding challenges in natural product drug discovery. All of the investigated nudibranchs contained numerous metabolites, as evident from mass spectrometry data, yet isolation of amounts large enough for their elucidation and bioactivity tests proved difficult. New techniques and technologies with increased sensitivity might allow for their elucidation in the future. Currently, this field is developing rapidly and there are several fascinating approaches to make natural product data more accessible by open-access knowledge bases,<sup>731–737</sup> and increase the speed of discovery by computer aided structure elucidation,<sup>738–742</sup> which can help with the flood of data produced in spectrometry and spectroscopy laboratories.



**Figure 5.1** MNPs that were isolated, identified and elucidated in the current thesis. Compounds (1-9) are polycyclic (1-2) and cembranoid (3-7) diterpenes and biscembranes (8-9) isolated from *Phyllodesmium longicirrum*, which were sequestered and accumulated most likely by feeding on an alcyoniidaen soft coral of the genus *Sarcophyton*. Compound (10) is a structurally new scalarane sesterterpene isolated from *Doriprismatica stellata* nudibranchs, which was sequestered from the dictyoceratid sponge *Spongia* cf. *agaricina* and was further passed on to the egg ribbons. Compound (11) was isolated from all five investigated *Chromodoris* species and identified as the highly cytotoxic macrolide LatA, which they sequestered from their thorectid food source *Cacospongia mycofijiensis*.

In this thesis, we found that *Phyllodesmium longicirrum* and *Doriprismatica stellata* are rich sources of terpenoid MNPs, while all of the *Chromodoris* species accumulated especially high amounts of the cytotoxic 2-thiazolidinone macrolide latrunculin A (LatA, Figure 5.1). All of the investigated species sequestered these MNPs from their respective food sources, which suggests specialized alimentary habits. Therefore, we additionally investigated and identified their food sources. However, enrichment and storage of a particular bioactive MNP, such as LatA, could also enable *Chromodoris* nudibranchs to seek and use other food sources in addition, while remaining to be chemically defended in the meantime.

Although aeolid nudibranchs are well known to sequester and store nematocysts from their hydrozoan prey, most members of the genus Phyllodesmium specialized to feed on alcyonacean soft corals and sequester the symbiotic, photosynthetic zooxanthellae. This raised the question, whether these Phyllodesmium species rely on a chemical defence strategy instead. Our investigation has shown that P. longicirrum, one of the largest species (12-15 cm), feeds on alcyoniidaen soft corals of the genus Sarcophyton, from which it sequesters and accumulates terpenoids. Some of these terpenoid compounds showed feeding deterrent activity, as for example tested in this study against the pufferfish Canthigaster solandri (e.g., Figure 5.1: 4-oxo-chatancin (1) and (2S, 11R, 12R)-isosarcophytoxide (4)), which indicates that at least some of the terpenoids are used as chemical defence. Interestingly, (2R,11R,12R)isosarcophytoxide (3), the epimer of (4), did not deter feeding, suggesting that the ability to bind to specific chemoreceptors and induce feeding deterrence may depend on the configuration of the molecule at each chiral center.<sup>1–7</sup>-The highly efficient symbiotic relationship with photosynthetic Symbiodinium, cryptic shape and coloration, and the accumulated defensive terpenoids allow P. longicirrum to grow to an exceptional size, without having to fear intense predation. The shift from feeding on hydrozoans to feeding on toxic octocorals and exploitation of this unusual niche likely enhanced radiation and speciation within the genus *Phyllodesmium*. Incorporation of the corals' symbiotic zooxanthellae provides additional nutrition in periods of food shortage, while stored MNPs protect these aeolid nudibranchs from predators. These crucial advantages can lead to a higher viability.

Dorid nudibranchs live and feed on noxious sponges, from which they sequester deterrent and toxic molecules as a chemical defence.<sup>45,57,95,101,160,195,251,256,456,464–466,468</sup> As the first chemical investigation on *Doriprismatica stellata*, we found that these nudibranchs feed upon the dictyoceratid sponge *Spongia* cf. *agaricina*, from which it sequesters the novel scalarane-type 12-deacetoxy-4-demethyl-11,24-diacetoxy-3,4-methylenedeoxoscalarin (Figure 5.1). This MNP showed promising antibacterial activity against Gram-positive bacteria.

The nudibranchs and their egg ribbons contained higher quantities of this compound than the sponge, most likely due to a continuous accumulation of this sesterterpene. The results indicate that *D. stellata* passes the scalarane metabolite on to its egg ribbons, likely for protective purposes against overgrowth. Our results further support scalarane sesterterpenes as a chemotaxonomic marker for the sponge genus *Spongia* (Spongiidae, Dictyoceratida), among the families Thorectidae, Dysideidae and Spongiidae, which are a major source of this otherwise considered rare class of terpenes, accounting for less than 2% of all known terpenoids.<sup>465</sup>

Similar to other dorid nudibranchs, *Chromodoris* sea slugs have specialized to feed on demosponges. While *Chromodoris* species in the Red Sea have been found to feed on *Negombata* (previously *Latrunculia*) *magnifica* (Porifera: Demospongiae: Poecilosclerida: Podospongiidae), the five investigated species in this study: *C. annae*, *C. dianae*, *C. lochi*, *C. strigata* and *C. willani* from the Central Indo-Pacific Ocean, were found to feed on *Cacospongia* (previously *Spongia*) *mycofijiensis* (Porifera: Demospongiae: Dictyoceratida: Thorectidae). Intestestingly, even though *N. magnifica* and *C. mycofijiensis* are taxonomically unrelated and occur at distant geographic locations, they are both reliable sources of toxic latrunculins, unique 14- or 16-membered macrolides that are attached to a rare 2-thiazolidinone moiety, especially LatA,<sup>552</sup> and serve as food sources for *Chromodoris* nudibranchs. Similar to previous reports by Cheney et al. on *C. annae*, *C. elisabethina*, *C. kuiteri*, *C. lochi* and *C. magnifica* from Queensland, Australia,<sup>248</sup> we found that all five investigated *Chromoris* species (*C. annae*, *C. dianae*, *C. lochi*, *C. strigata* and *C. willani*) from North Sulawesi, Indonesia, also selectively accumulate the cytotoxin LatA.

Diversity and variation of MNPs between Heterobranchia species, populations at different locations or individuals of the same species, may reflect a more varied diet than previously thought, as for example observed in studies on *Doriprismatica* nudibranchs containing either norsesterterpenes, spongian diterpenes, scalarane sesterterpenes or steroids, depending on the location and prey eaten.<sup>3,234,478</sup> Further variation may occur due to detoxification processes, such as biotransformation of dietary compounds into related molecules, as for example described for *Felimare* and *Glossodoris* nudibranchs.<sup>57,100,232,233,251,255,256</sup> However, in the current study investigating *P. longicirrum*, *D. stellata* and *Chromodoris* sea slugs, we did not find any indications for biotransformation of the sequestered molecules.

While *P. longicirrum* accumulates the acquired terpenoids in their exposed cerata, the dorid nudibranchs *D. stellata* and *Chromodoris* species accumulated and stored the sequestered

chemicals along the exposed and often conspicuously colored mantle border and mantle dermal formations (MDFs). Storing diet-derived chemicals in MDFs has three potential advantages: (1) concentrating the MNPs near the surface to facilitate excretion into the mucus; (2) maximizing the defensive effects by concentration of the compounds; and (3) avoiding autotoxicity. These advantages do not have to be mutually exclusive and can work in synergy. We used matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) to provide deeper insight into the storage site of sequestered MNPs, in this case LatA, and the long-proposed hypothesis that the mantle tissue of dorid nudibranchs, their mucus glands, and especially the vacuoles of MDFs, store larger quantities of toxins.<sup>93,101,113,248–250,706–710</sup> To the best of our knowledge, this is the first time MALDI MSI was used to investigate the distribution of a MNP in nudibranchs. We found that *Chromodoris* nudibranchs store large amounts of LatA in the mantle tissue and vacuoles of MDFs. Additionally, LatA was present in the mucus glands and was also secreted along with the mucus trail. Secretion of LatA could be a remnant form of excretion from a previous detoxification process, however, it might also serve as a chemical cue in chemical communication, simultaneously informing and attracting mating partners, while deterring predators that try to follow the mucus trail. Furthermore, using LatA as a semiochemical might play an important role in the enhancement of warning signals, as it could deter organisms with poor vision, or when visibility of the aposematic coloration is not guaranteed.

LatAs toxicity is based on its binding to G-actin monomers, the building blocks of the cytoskeleton, and severing of the F-actin networks. Since every eukaryotic cell depends on the numerous structures and functions provided by actin or its variant isoactins, binding of LatA to these proteins results in a collapsed cytoskeleton and death of the cell.<sup>576,581,600</sup> Therefore, LatA is an immensely effective chemical for defence, if the producer or organism sequestering it is resistant to its cytotoxic activity. Compartmentalization, as for example in the vacuoles of MDFs in *Chromodoris* species, or in membrane-bound, actin-free vacuoles in the archeocytes of *N. magnifica*,<sup>551</sup> might be one common mechanism to prevent autotoxicity. Furthermore, we identified a novel actin isoform in the examined *Chromodoris* species, containing two crucial amino acid substitutions, D187G and R206T, at the 'nucleotide binding' cleft, the binding site of LatA, leading to target-site modifications that may affect latrunculin binding, hence, presumably resulting in LatA resistance. The D187G/R206T isoactin may enable *Chromodoris* nudibranchs to sequester and accumulate LatA from *C. mycofijiensis* and *N. magnifica* sponges and compartmentalize it in the MDFs for defence, without having to suffer from its cytotoxicity.

towards improving our knowledge on toxin resistance in chromodorid nudibranchs. When we investigated and sequenced further heterobranch actins to determine a possible origin of the D187G/R206T isoform, we found that not only the genus *Chromodoris* but also several other chromodorid nudibranchs contain and express this isoactin, as evident from genomic and transcriptomic data (SI). However, nudibranchs that belong to the suborder Cladobranchia were void of this isoactin (SI). Future studies might be able to further delimit the origin, occurrence and evolution of this isoactin, as well as its properties, functions and implications for toxin resistance and predator-prey relationships of heterobranch sea slugs.

# **SUMMARY**

This thesis is part of the interdisciplinary project INDOBIO and focusses on the investigation of marine natural products (MNPs) from nudibranchs and their food sources of the Central Indo-Pacific Ocean, namely *Phyllodesmium longicirrum* from Lizard Island, northern Great Barrier Reef, Australia, *Doriprismatica stellata* and five *Chromodoris* species from North Sulawesi, Indonesia. Furthermore, isolated MNPs were examined for their possible chemoecological role and medical potential and a mechanism for the prevention of autotoxicity was explored.

MNPs are important lead structures in the drug discovery process, as they can provide important chemical scaffolds with advantageous pharmacological properties. Marine gastropods can produce or accumulate such compounds and several drugs have been developed as treatments against cancer and severe pain that use gastropod MNPs as lead structures.<sup>84–92</sup> The exceptional biodiversity, intense competition and feeding pressure in coral reefs of the Central Indo-Pacific Ocean lead to a vast chemical diversity and variety of bioactive MNPs, especially in exposed, sessile, and slow-moving organisms.<sup>23,24</sup> Nudipleuran sea slugs are a clade of charismatic gastropods that have reduced, internalized or completely lost their protective shell. They display some of the most spectacular and diverse body forms, patterns and colors found in nature.<sup>101,109</sup> To protect themselves from predation, several defence mechanisms have evolved, including cryptic or aposematic coloration and mimicry,<sup>120,165–169</sup> acid secretions,<sup>172</sup> subepidermal spicules,<sup>113,162–164</sup> and the ability to steal, incorporate and use the defence system of their prey, as for example stinging nematocysts or MNPs, which can be used for chemical defence.<sup>95,153,160,170,171</sup>

Aeolid nudibranchs are well known to sequester and store nematocysts (kleptocnides) from their hydrozoan prey, however, most members of the species-rich genus *Phyllodesmium* have specialized to feed on alcyonacean soft corals and sequester their symbiotic, photosynthetic zooxanthellae. Here we show that one of the largest species, *Phyllodesmium longicirrum* (Nudibranchia: Aeolidioidea: Myrrhinidae), acquires and accumulates terpenoid compounds from their prey, especially cembranoid diterpenes. Investigation of the lipophilic extract of a single *P. longicirrum* specimen led to the isolation of nine terpenoid metabolites: the cembranoid diterpene (2*R*,11*R*,12*R*)-isosarcophytoxide (**1**), its epimer (2*S*,11*R*,12*R*)-isosarcophytoxide (**3**), and the  $\gamma$ -lactone bearing cembranes sarcophytonin B (**4**) and 13-dehydroxysarcoglaucol-16-one (**5**); the two polycyclic

diterpenes 4-oxo-chatancin (6) and 1-O-methyl-4-oxo-chatancin (7); and the two biscembranes bisglaucumlide L (8) and bisglaucumlide M (9). *P. longicirrum* sequestered these metabolites from its prey, most likely alcyonacean soft corals of the genus *Sarcophyton*. Metabolites (6) and (2) significantly deterred feeding by the generalist pufferfish *Canthigaster solandri*, emphasizing an ecological role in defence for at least some of these terpenoids. Interestingly, compound (1), the epimer of compound (2), showed no significant deterrent activity, which suggests that feeding deterrence might be conformation-dependant. The shift from hydrozoan to alcyonacean food sources and the successful scavenging of this prey likely enhanced radiation and speciation in the genus *Phyllodesmium*. Sequestration of photosynthetic zooxanthellae and defensive metabolites provides additional nutrition and a metabolically cheap and effective protection, which can lead to a higher viability.

The structurally new scalarane-type sesterterpene 12-deacetoxy-4-demethyl-11,24-diacetoxy-3,4-methylenedeoxoscalarin was isolated from *Doriprismatica stellata* (Nudibranchia: Doridina: Chromodorididae) nudibranchs, their egg ribbons, and the associated dietary sponge *Spongia* cf. *agaricina* (Porifera: Demospongiae: Dictyoceratida). The scalarane showed antibacterial activity against the Gram-positive bacteria *Arthrobacter crystallopoietes* (DSM 20117) and *Bacillus megaterium* (DSM 32). Structural elucidation revealed that the cyclopropane ring had an unprecedented position annelated to ring A and, unlike previously reported scalaranes,<sup>203,220,233,465,468,477,482</sup> it bears two acetoxy groups at C-11 and C-24 of ring C, instead of being functionalized at C-12. The occurrence of this scalarane in all three samples further supports the dietary relationship between chromodorid nudibranchs of the genus *Doriprismatica* and scalarane-containing dictyoceratid sponges of the Spongiidae family. Furthermore, the presence of this molecule in the egg ribbons of *D. stellata* suggests that the nudibranch passes the scalarane on to its offspring, most likely for protective purposes.

*Chromodoris* sea slugs, a genus of aposematically colorful nudibranchs (Nudibranchia: Doridina: Chromodorididae), live and feed on noxious sponges, from which they sequester deterrent and toxic molecules. Here we show that five closely related species of *Chromodoris* sea slugs (*C. annae*, *C. dianae*, *C. lochi*, *C. strigata* and *C. willani*) from North Sulawesi, Indonesia, selectively accumulate the cytotoxin LatA from their food source *Cacospongia mycofijiensis* (Porifera: Demospongiae: Dictyoceratida). The distribution of LatA was visualized for the first time within the body of two *Chromodoris* species using MALDI MS-Imaging (Figure 4.4), showing that LatA was accumulated and stored specifically throughout the mantle tissue, mucus glands, and especially in vacuoles of the mantle dermal formations (MDFs). These results emphasize the importance of MDFs as repository for the

storage of highly concentrated amounts of toxic molecules, in this case LatA. Furthermore, LatA was secreted along with the mucus and mucus trail, where it possibly serves as a semiochemical in short-range chemical communication, deterring predators and attracting mating partners. Using HEK-293 cells and fluorescence microscopy, we show that the isolated LatA is bioactive. Its cytotoxicity results from binding to G-actin monomers, one of the most essential eukaryotic proteins, which prohibits their polymerization to F-actin and additionally severs the F-actin network, which leads to the collapse of the cytoskeleton and death of the cell. In vivo toxicity experiments with direct administration of LatA showed 100% mortality in E. viridis, but 0% mortality in Chromodoris heterobranchs. Investigation of an underlying molecular resistance mechanism against the cytotoxic activity of LatA led us to amplify, sequence, examine and compare heterobranch actin genes, revealing a novel actin isoform in all investigated Chromodoris species. This isoactin carries two crucial amino acid substitutions, D187G and R206T, at the the 'nucleotide binding' cleft, the binding site of LatA. These substitutions likely lead to target-site modifications, interfering with LatA binding, hence, causing LatA insensitivity. Isoactin D187G/R206T is suggested to be a prerequisite for Chromodoris nudibranchs to sequester latrunculins from Negombata magnifica and Cacospongia mycofijiensis sponges. It would allow Chromodoris sea slugs to store and utilize LatA for their own defence, without having to suffer from its cytotoxicity.

# MATERIAL AND METHODS

## General Experimental Procedures

Mass spectra were either recorded by E. Egereva (Institute of Pharmaceutical Biology, Bonn) on an Agilent 1100 system, including a DAD (205 nm) and an API 2000 Triple Quadrupole LC/MS/MS with ESI source (Applied Biosystems/MDS Sciex), a C<sub>18</sub> column (Macherey-Nagel Nucleodur 100, 125 x 2mm, 5 µm) and a gradient elution (from MeOH:H<sub>2</sub>O 10:90 to MeOH:H<sub>2</sub>O 100:0 in 20 min, MeOH 100% for 10 min, with added NH<sub>4</sub>Ac, 2 mM) or by M. Crüsemann (Institute of Pharmaceutical Biology, Bonn) on a micrOTOF-Q mass spectrometer (Bruker) with ESI-source coupled with an HPLC Dionex Ultimate 3000 (Thermo Scientific) using an Agilent Zorbax Eclipse Plus  $C_{18}$  column (2.1 x 50 mm, 1.8  $\mu$ m) at a temperature of 45 °C. MS data were acquired over a range from 100-3000 m/z in positive mode. Auto MS/MS fragmentation was achieved with rising collision energy (35-50 keV over a gradient from 500 - 2000 m/z) with a frequency of 4 Hz for all ions over a threshold of 100. UHPLC started with 90% H<sub>2</sub>O containing 0.1% acetic acid. The gradient began after 0.5 min to 100% acetonitrile (0.1% acetic acid) in 4 min. 2 µL of a 1 mg/mL sample solution was injected to a flow of 0.8 mL/min. Further HR-ESI-MS and UPLC-HR-MS measurements were conducted by M. Sylvester (Institute of Biochemistry and Molecular Biology, Bonn) on a LTQ Orbitrap mass spectrometer or on a Thermo Scientific Qexactive with HESI source (Phenomenex Kinetex C<sub>18</sub> column, 150 mm x 4.6 mm, 2.6 µm, 100 Å). Mass spectra were evaluated using Analyst ® software 1.5 (© 2010-2015 AB Sciex). HPLC was carried out on a Waters Breeze HPLC system equipped with a 1525µ dual pump, a 2998 DAD detector, and a Rheodyne 7725i injection system and with a Waters Alliance HPLC system equipped with a Waters 2695 separation module and a Waters 996 DAD detector. A Macherey-Nagel Nucleodur C<sub>18</sub> Pyramid column (250 mm x 10 mm; 5 µm) and a Phenomenex Kinetex C<sub>18</sub> column (250 mm x 4.6 mm, 5  $\mu$ m) were used for separation.

# **Biological Material**

In CHAPTER I extractions were conducted using a single specimen of *Phyllodesmium longicirrum* Bergh, 1905 (Mollusca: Gastropoda: Nudibranchia: Aeolidioidea). The sample was collected in 2008 by H. Wägele, during a field trip to Lizard Island (Great Barrier Reef, Australia) and stored in ethanol (96%) until further processing.

In CHAPTER II samples of Doriprismatica stellata Rudman, 1986 nudibranchs (Mollusca: Gastropoda: Nudibranchia: Chromodorididae), their egg ribbons and pieces of the sponge, on which they were found (1.2 g, 0.7 g, and 3.5 g wet weight, respectively) were collected via scuba diving in August 2015 during a field trip to Bunaken National Park (BNP, North Sulawesi, Indonesia, 1° 37' 51" N, 124° 45' 05" E) at the coral reef drop off. Four additional D. stellata sea slugs (2.5 g wet weight) were collected in October 2016 during another field trip to BNP. The nudibranchs and associated egg ribbons were identified as D. stellata by H. Wägele and N. Undap at the Zoological Research Museum Alexander Koenig, Bonn, Germany.<sup>4,5</sup> The sponge displayed a foliose habit with brownish - violett pigmentation and was identified as Spongia cf. agaricina Pallas, 1766 (Porifera: Demospongiae: Dictyoceratida) using methods as described in Ackers et al. 2007,<sup>743</sup> see also Erpenbeck et al. 2020,<sup>744</sup> (SI). Specimens were stored in ethanol (96%) at -20 °C until further extraction and processing in the laboratories at the University of Bonn. Part of the collected sea slug- and substrate material will be finally stored at the Sam Ratulangi University, Manado, Indonesia, in the Reference Collection under the numbers SRU2015/01 und SRU2016/02. A fraction of the sponge material is stored the Bavarian State Collection for Paleontology and Geology under collection number SNSB-BSPG.GW41291.

In CHAPTER III the following specimens (sp.) were collected via scuba diving in August 2015 and October 2016 during field trips to Bunaken National Park (BNP, North Sulawesi, Indonesia, 1° 37' 51" N, 124° 45' 05" E), at the coral reef drop off, dissected and extracted for chemical analyses: Chromodoris annae Bergh, 1877 (58 sp.), C. dianae Gosliner & Behrens, 1998 (56 sp.), C. lochi Rudman, 1982 (31 sp.), C. willani Rudman, 1982 (32 sp.) (Mollusca: Gastropoda: Nudibranchia: Chromodorididae), and pieces of the sponges, on which they were found.<sup>4,5</sup> Additional C. annae (8 sp.) and C. dianae (5 sp.) were collected in August 2016 at Sangihe Island,<sup>6</sup> for chemical comparison of the dissected mantle and body tissues. Specimens and separated tissues were stored in ethanol (96%) at -20 °C until further extraction and processing in the laboratories at the University of Bonn. Part of the material will be finally stored at the Sam Ratulangi University in the Reference Collection under the numbers SRU2015/01, SRU2016/02, SRU2017/1. The nudibranchs were identified by H. Wägele and N. Undap at the Zoological Research Museum Alexander Koenig, Bonn, Germany.<sup>4,5</sup> The sponge was identified as Cacospongia mycofijiensis Kakou, Crews & Bakus, 1987 (Porifera: Demospongiae: Dictyoceratida) using methods as described in Ackers et al. 2007,<sup>743</sup> see also Erpenbeck et al. 2020.744 Furthermore, C. annae (2 sp.), collected at BNP in May 2017, were kindly provided by F. Kaligis. These samples were frozen in seawater and stored at -80°C until further processing. Additionally, ethanolic storage solutions of *C. strigata* Rudman, 1982 (2 sp., collected in 2017, at Banka Island, Indonesia, 1° 44' 09.88" N, 125° 09' 06.33" E), and mucus collected from the notum and foot of alive *C. annae* specimen (collected in 2019 by A. Papu), were examined using mass spectrometry. Also, living *C. annae* (1 sp.) and *C. dianae* (3 sp.), were kindly provided by A. Papu and kept in aerated aquaria matching the temperature, salinity and density of the Indo-Pacific Ocean, until further conduction of experiments. One of the living *C. dianae* specimens was snap-frozen with liquid nitrogen and stored at -80°C. The snap-frozen *C. dianae* and two of the *C. annae* specimens, frozen in seawater, were used for further MALDI-MS imaging experiments at the Institute of Inorganic and Analytical Chemistry, Justus-Liebig-University, Giessen, Germany. Furthermore, living *Elysia viridis* Montagu, 1804 (Mollusca: Gastropoda: Sacoglossa: Plakobranchoidea; 12 sp., collected in Figueira da Foz, Portugal, in November 2018), were kindly provided by C. Greve and kept in aerated aquaria matching the temperature, salinity and density of the Mediterranean Sea until further conduction of experiments. Living *C. annae* (1 sp.), *C. dianae* (2 sp.) and *E. viridis* (12 sp.) were used in the *in vivo* toxicity assay.

### Extraction and Isolation

In CHAPTER I, an extract of P. longicirrum was produced by crushing and washing of the specimen three times in 100 mL MeOH each, and once in 100 mL DCM. The extracts were combined with the ethanol storage solution and the solvents were evaporated at 40 °C, using a rotary evaporator (Heidolph Laborota 4000). The resulting crude extract (4.52 g) was separated three times in a separation funnel between 100 mL H<sub>2</sub>O and EtOAc each. The lipophilic phase yielded 2.16 g and was fractionated by vacuum liquid chromatography (VLC) over Polygoprep 60-50 C<sub>18</sub> stationary phase (Macherey-Nagel). A gradient elution from 20:80 (MeOH:H<sub>2</sub>O) to 100% MeOH was used, resulting in 11 fractions (VLC 1-11). VLC fraction 6 (763.3 mg) and 7 (695.8 mg) were further separated on Sephadex LH-20 material (MeOH). Separation of VLC 6 resulted in 11 fractions (S 1-11), and 7 fractions were obtained from VLC 7 (VLC 7.1 - 7.7). VLC 7.2 (530 mg), being the largest fraction, was further divided into 5 subfractions (VLC 7.2.1-7.2.5) by a repeated separation on Sephadex LH-20 material (MeOH). Subsequent separation and isolation were either conducted on a Grace Reveleris X<sub>2</sub> flash chromatography system, on a Merck Hitachi HPLC system equipped with a L-6200A pump, a L-4500A photodiode array detector, a D-6000A interface with D-7000A HSM software, a Rheodyne 7725i injection system or on a Waters Breeze HPLC system equipped with a 1525µ dual pump, a 2998 DAD detector, and a Rheodyne 7725i injection system, Macherey-Nagel Nucleoshell C<sub>18</sub> column (250 mm x 4.6 mm, 5 µm) or Knauer Eurospher C<sub>18</sub> column (250 mm x 8 mm, 5  $\mu$ m). Fractions with a sufficient amount ( $\geq 1.0$  mg) were analysed as described in the following sections. A large part of the previously obtained fractions was further separated and analysed by A. Bogdanov.<sup>189</sup> However, this chapter focuses on the isolation of compounds from the fractions VLC 6 S 5 (60.3 mg), S 7 (412.9 mg) and from subfractions VLC 7.2.2 (180 mg), 7.2.3 (100 mg), and 7.2.4 (65 mg). The results were combined and reported in Bogdanov et al. 2016, 2017.<sup>1,2</sup> Fraction VLC 6 S 5 (60.3 mg) was separated with RP-HPLC (MeOH:H<sub>2</sub>O 70:30, Macherey-Nagel Nucleoshell column, 1 mL/min), resulting in 4 compounds (VLC 6 S 5.1-5.4). Of these, S 5.2 (4.4 mg) and S 5.4 (2.3 mg) were subsequently analysed. Fraction VLC 6 S 7 (412.9 mg) was further fractionated with RP flash chromatography (MeOH:H<sub>2</sub>O 60:40, 30mL/min; Reveleris C<sub>18</sub> column, 12 g) to yield 21 fractions (VLC 6 S 7 Fl 1-21). Fractions Fl 11, 12 and 13 were combined (54.1 mg), since they contained the same compounds, confirmed by <sup>1</sup>H-NMR analysis, and were submitted to RP-HPLC (MeOH:H<sub>2</sub>O 72:28, Macherey-Nagel Nucleoshell column, 1 mL/min), resulting in 6 compounds (Fl 11-13.1 - 11-13.6), which were analysed in the following. Fraction VLC 7.2.3 (100 mg) was divided into 8 compounds (VLC 7.2.3.1-7.2.3.8) by RP-HPLC (MeOH:H<sub>2</sub>O 75:25, Macherey-Nagel Nucleoshell column, 0.9 mL/min), of which 4 fractions (7.2.3.3, 7.2.3.4, 7.2.3.6 and 7.2.3.7) yielded a sufficient amount for further analysis. Fractions VLC 7.2.2 (180 mg) and 7.2.4 (65 mg) were submitted to RP flash chromatography (MeOH:H<sub>2</sub>O 80:20, 30 mL/min; Reveleris C<sub>18</sub> column, 12 g) to yield 4 semi-pure compounds (VLC 7.2.2.3, 7.2.2.4, 7.2.2.6 and 7.2.4.5), which were subsequently analysed.

(2R,11R,12R)-isosarcophytoxide (1): colorless oil (41.0 mg);  $[\alpha]_D{}^{20} = -156$  (*c* 0.2, CHCl<sub>3</sub>); <sup>13</sup>C NMR (75 MHz, MeOH-*d*<sub>4</sub>)  $\delta$  141.4 (s), 134.4 (s), 133.5 (s), 129.5 (s), 127.6 (d), 126.8 (d), 84.8 (d), 79.0 (t), 64.0 (d), 63.1 (s), 39.9 (t), 38.5 (t), 37.5 (t), 25.2 (t), 24.7 (t), 23.3 (t), 15.8 (q), 14.9 (q), 14.8 (q), 9.8 (q); <sup>1</sup>H NMR (300 MHz, MeOH-*d*<sub>4</sub>)  $\delta$  5.46 (m, H-2), 5.08 (m, H-3), 5.04 (m, H-7), 4.48 (m, H<sub>2</sub>-16), 2.88 (dd, *J* = 3.3, 9.1 Hz, H-11), 2.35 (m, H<sub>2</sub>-6), 1.81 (m, H<sub>2</sub>-10), 1.73 (s, H<sub>3</sub>-17), 1.69 (s, H<sub>3</sub>-19), 1.67 (s, H<sub>3</sub>-18), 1.27 (s, H<sub>3</sub>-20)]; LC-ESI-MS *m*/*z* 302.2 [M<sup>+</sup>] (calcd for C<sub>20</sub>H<sub>30</sub>O<sub>2</sub>, 302.22).

(2*S*,11*R*,12*R*)-isosarcophytoxide (2): colorless oil (42.0 mg);  $[\alpha]_D^{20} = +196$  (*c* 0.2, CHCl<sub>3</sub>); <sup>13</sup>C NMR (75 MHz, MeOH-*d*<sub>4</sub>)  $\delta$  141.4 (s), 134.4 (s), 133.5 (s), 129.5 (s), 127.6 (d), 126.8 (d), 84.8 (d), 79.0 (t), 64.0 (d), 63.1 (s), 39.9 (t), 38.5 (t), 37.5 (t), 25.2 (t), 24.7 (t), 23.3 (t), 15.8 (q), 14.9 (q), 14.8 (q), 9.8 (q); <sup>1</sup>H NMR (300 MHz, MeOH- $d_4$ )  $\delta$  5.43 (m, H-2), 5.08 (m, H-3), 5.02 (m, H-7), 4.48 (m, H<sub>2</sub>-16), 2.85 (dd, J = 3.5, 9.2 Hz, H-11), 2.33 (m, H<sub>2</sub>-6), 1.82 (m, H<sub>2</sub>-10), 1.71 (2s, H<sub>3</sub>-17 and H<sub>3</sub>-19), 1.64 (s, H<sub>3</sub>-18), 1.31 (s, H<sub>3</sub>-20); LC-ESI-MS *m*/*z* 302.2 [M<sup>+</sup>] (calcd for C<sub>20</sub>H<sub>30</sub>O<sub>2</sub>, 302.22).

(3R,4S;11R,12R)-bisepoxide (3): colorless oil (28.0 mg);  $[\alpha]_D^{20} = -44.6$  (*c* 3.3, CHCl<sub>3</sub>); <sup>13</sup>C NMR (75 MHz, MeOH-*d*<sub>4</sub>)  $\delta$  135.8 (s), 131.8 (s), 130.9 (s), 127.1 (d), 87.9 (d), 79.7 (t), 66.4 (d), 63.1 (d), 62.6 (s), 62.3 (s), 38.4 (t), 37.5 (t), 35.4 (t), 25.4 (t), 24.8 (t), 22.0 (t), 18.8 (q), 18.5 (q), 15.8 (q), 10.0 (q); <sup>1</sup>H NMR (300 MHz, MeOH-*d*<sub>4</sub>)  $\delta$  5.26 (m, H-7), 4.58 (m<sup>b</sup>, H-2), 4.52 (m<sup>b</sup>, H-16), 2.88 (dd, *J* = 3.3, 9.8 Hz, H-11), 2.80 (brd, *J* = 8.2 Hz, H-3), 2.28 (m<sup>b</sup>, H<sub>2</sub>-9), 2.27 (m<sup>b</sup>, H<sub>2</sub>-6), 2.12 (m<sup>b</sup>, H<sub>2</sub>-14), 1.72 (s, H<sub>3</sub>-17), 1.69 (s, H<sub>3</sub>-19), 1.46 (s, H<sub>3</sub>-18), 1.30 (s, H<sub>3</sub>-20); LC-ESI-MS *m*/*z* 318.2 [M<sup>+</sup>] (calcd for C<sub>20</sub>H<sub>30</sub>O<sub>3</sub>, 318.22).

**Sarcophytonin B** (4): colorless oil (17.8 mg);  $[\alpha]_D^{20} = +158.2$  (*c* 0.7, CHCl<sub>3</sub>); <sup>13</sup>C NMR (75 MHz, MeOH-*d*<sub>4</sub>)  $\delta$  177.5 (s), 166.1 (s), 146.5 (s), 135.3 (s), 134.8 (s), 126.3 (s), 125.5 (d), 122.9 (d), 120.8 (d), 81.1 (d), 40.9 (t), 39.7 (t), 37.3 (t), 28.0 (t), 25.6 (t), 24.5 (t), 16.0 (q), 15.9 (q), 15.4 (q), 8.8 (q); <sup>1</sup>H NMR (300 MHz, MeOH-*d*<sub>4</sub>)  $\delta$  5.52 (dd, *J* = 1.5, 10.0 Hz, H-2), 5.16 (brdd, *J* = 6.3, 7.4 Hz, H-7), 4.92 (brd, *J* = 10.3 Hz, H-3), 1.86 (s, H<sub>3</sub>-17), 1.85 (s, H<sub>3</sub>-18), 1.69 (s, H<sub>3</sub>-19), 1.65 (s, H<sub>3</sub>-20); HRMS *m*/*z* 301.2160 [M+H] (calcd for C<sub>20</sub>H<sub>28</sub>O<sub>2</sub>, 300.21).

**13-Dehydroxysarcoglaucol-16-one (5)**: colorless oil (3.7 mg);  $[\alpha]_D^{20} = +81.4$ , *c* 0.4, CHCl<sub>3</sub>); <sup>13</sup>C NMR (75 MHz, MeOH-*d*<sub>4</sub>)  $\delta$  177.5 (s), 169.7 (s), 166.0 (s), 146.2 (s), 144.0 (d), 136.4 (s), 132.0 (s), 124.7 (d), 123.0 (s), 121.1 (d), 81.1 (d), 51.7 (q), 39.6 (t), 37.2 (t), 36.2 (t), 27.7 (t), 27.2 (t), 25.7 (t), 16.1 (q), 16.0 (q), 8.8 (q); <sup>1</sup>H NMR (300 MHz, MeOH-*d*<sub>4</sub>)  $\delta$  5.75 (m, H-2), 5.75 (m, H-7), 5.12 (t, *J* = 6.6 Hz, H-11), 4.98 (d, *J* = 9.5 Hz, H-3), 3.78 (s, H<sub>3</sub>-21), 2.96 (m, H<sub>2</sub>-6), 2.51 (m, H<sub>2</sub>-9), 1.89 (s, H<sub>3</sub>-18), 1.85 (t, *J* = 1.5 Hz, H<sub>3</sub>-17), 1.66 (s, H<sub>3</sub>-20); LC-ESI-MS *m*/*z* 344.2 [M<sup>+</sup>] (calcd for C<sub>21</sub>H<sub>28</sub>O<sub>4</sub>, 344.20).

**4-Oxo-chatancin** (6): colorless oil (150.0 mg);  $[\alpha]_D{}^{20} = -14.6$  (*c* 1.0, CHCl<sub>3</sub>); UV (CH<sub>3</sub>CN)  $\lambda_{max}$  (log  $\varepsilon$ ) 214sh (3.79) nm; ECD (CH<sub>3</sub>CN):  $\lambda_{max}$  ( $\Delta \varepsilon$ ) 209 (+1.45), 300 (-0.13) nm; IR (ATR)  $v_{max}$  3418, 2953, 2870, 1705, 1437, 1365, 1265, 1151, 1076, 992 cm<sup>-1</sup>; <sup>1</sup>H and <sup>13</sup>C NMR (SI); HR-ESI-MS *m/z* 385.1977 [M+Na]<sup>+</sup> (calcd for C<sub>22</sub>H<sub>31</sub>O<sub>5</sub>Na, 385.1985). **1-O-methyl-4-oxo-chatancin** (**7**): colorless oil (3.4 mg);  $[\alpha]_D{}^{20} = -10.0$  (*c* 0.3, CHCl<sub>3</sub>); UV (CH<sub>3</sub>CN)  $\lambda_{max}$  (log  $\varepsilon$ ) 216sh (3.77) nm; ECD (CH<sub>3</sub>CN):  $\lambda_{max}$  ( $\Delta \varepsilon$ ) 214 (+1.56), 296 (-0.12) nm; IR (ATR)  $v_{max}$  3431, 2925, 2854, 1711, 1457, 1378, 1267, 1247, 1205, 1142, 995 cm<sup>-1</sup>; <sup>1</sup>H and <sup>13</sup>C NMR (SI); HR-ESI-MS *m/z* 399.2140 [M+Na]<sup>+</sup> (calcd for C<sub>22</sub>H<sub>32</sub>O<sub>5</sub>Na, 399.2142).

**Bisglaucumlide L (8)**: colorless oil (4.4 mg);  $[\alpha]_D^{20} = -5.2$  (c 0.3, MeOH); <sup>1</sup>H and <sup>13</sup>C NMR (SI); LC-ESI-MS *m*/*z* 738.4 [M<sup>+</sup>] (calcd for C<sub>43</sub>H<sub>62</sub>O<sub>10</sub>, 738.43).

**Bisglaucumlide M (9)**: colorless oil (2.3 mg);  $[\alpha]_D^{20} = -14.4$  (c 0.2, MeOH); <sup>1</sup>H and <sup>13</sup>C NMR (SI); LC-ESI-MS *m*/*z* 738.4 [M<sup>+</sup>] (calcd for C<sub>43</sub>H<sub>62</sub>O<sub>10</sub>, 738.43).

In CHAPTER II, six *D. stellata* nudibranchs (3.7 g wet weight), their egg ribbons (0.7 g wet weight) and pieces of the associated sponge (3.5 g wet weight) were separately frozen, crushed and ultrasonicated for a total of 3 minutes (30 sec. intervals) on ice, while submerged in a minimum of first acetone (Ac) and consecutively methanol (MeOH). The ethanolic storage solutions of *D. stellata* nudibranch-, egg ribbon- and *S.* cf. *agaricina* samples were each combined with the respective Ac/MeOH extracts of the samples and dried under vacuum to give the crude extracts. After liquid-liquid separation of the three crude extracts (0.9 g, 0.3 g, and 0.2 g, respectively) between 50 mL water (H<sub>2</sub>O) and three times 50 mL ethyl acetate (EtOAc), EtOAc solubles (223 mg, 35 mg, and 81 mg) were separated by RP-HPLC. A Macherey-Nagel Nucleodur C<sub>18</sub> Pyramid column (250 mm x 10 mm; 5  $\mu$ m) and a Phenomenex Kinetex C<sub>18</sub> column (250 mm x 4.6 mm, 5  $\mu$ m), with a linear gradient elution from 70:30 (MeOH:H<sub>2</sub>O) to 100% MeOH in 25 min, and a flow of 1.5 mL/min were used for separation. The isolated metabolite had a retention time around 13 minutes.

**12-deacetoxy-4-demethyl-11,24-diacetoxy-3,4-methylenedeoxoscalarin**: white amorphous solid (12.4 mg);  $[\alpha]^{20}_{D}$  +40.5 (*c* 0.6, CHCl<sub>3</sub>; IR (ATR)  $v_{max}$  3416, 2922, 2861, 1732, 1234 cm<sup>-1</sup>; <sup>1</sup>H and <sup>13</sup>C NMR (SI); HRAPCIMS *m/z* 487.3054 [M+H]<sup>+</sup> (calcd. for C<sub>29</sub>H<sub>43</sub>O<sub>6</sub>, 487.3060).

In CHAPTER III, preserved C. annae, C. dianae, C. lochi and C. willani specimens were separated into species and location groups. They were separately frozen, crushed and ultrasonicated (30 sec. intervals) on ice, while submerged in a minimum of first acetone (AC) and consecutively methanol (MeOH). Ethanolic storage solutions were each combined with the respective AC/MeOH extracts and dried under vacuum to give the crude extracts. Crude extracts were analysed using HR-ESI-LCMS. Afterwards, crude extracts were separated, using liquid-liquid separation, between water (H<sub>2</sub>O) and three times ethyl acetate (EtOAc). EtOAcsolubles were again analysed by HR-ESI-LCMS. Location groups, of the same species, with a similar MS-profile, were combined and further separated by RP-HPLC. A Macherey-Nagel Nucleodur C<sub>18</sub> Pyramid column (250 mm x 10 mm; 5 µm), with isocratic gradient elution, 82:18 (MeOH:H<sub>2</sub>O), and a flow of 1.0 mL/min were used for separation. The isolated main metabolite (LatA) had a retention time of around 41 minutes. Furthermore, eight of the C. annae and five of the C. dianae specimens, collected at Sangihe Island, August 2016, were carefully dissected in the laboratory of Politeknik Nusa Utara, Sangihe, Indonesia, to separate the mantle tissue with the mantle rim, incorporating mantle dermal formations (MDFs), from the body with viscera (internal organs). Dissected tissues were separately extracted as described above. Crude- and EtOAc-extracts of the mantle and body tissues were analysed using HR-ESI-LCMS. Additionally, ethanolic storage solutions of C. strigata, and mucus collected with cellulose from the notum and foot of living C. annae specimen, were examined using HR-ESI-LCMS.

**Latrunculin A**: white amorphous solid (22.4 mg, ~ 0.4 mg/specimen);  $[\alpha]^{20}_{D}$  +273.5 (*c* 0.1, CHCl<sub>3</sub>); <sup>1</sup>H and <sup>13</sup>C NMR (SI); HR-ESI-MS *m*/*z* 444.0638 [M+Na]<sup>+</sup> (calcd. for C<sub>22</sub>H<sub>31</sub>NO<sub>5</sub>S + Na, 444.1821).

## UV/Vis and IR Spectroscopy

A Perkin-Elmer FT-IR Spectrum BX spectrometer with Spectrum software (v3.01, ©1998-2015 PerkinElmer Inc) was used for the recording of IR spectra. UV spectra of the compounds were recorded in MeOH on a Perkin-Elmer Labda 40 with a 1.0 cm quartz cell, using the UV WinLab software (v2.80.03, ©1998-2015 PerkinElmer Inc). The molar attenuation coefficient  $\varepsilon$  was determined in accordance with the Lambert-Beer law:

$$A = \varepsilon x c x b \Leftrightarrow \varepsilon \left[\frac{L}{mol x cm}\right] = \frac{A}{c \left[\frac{mol}{L}\right] x b [cm]}$$

- A: Absorption at peak maximum
- ε: Molar attenuation coefficient
- c: Concentration
- b: Layer thickness of solution

#### **Optical Rotation**

Optical rotations were measured with a Jasco DIP 140 polarimeter (1 dm, 1 cm<sup>3</sup> cell). Samples were dissolved either in 1.2 mL MeOH or CHCl<sub>3</sub> and measured at  $\lambda = 589$  nm, corresponding to the sodium D line, at room temperature. At least 10 measurements were recorded for each compound. The average was calculated and assigned as  $\alpha$ .

Specific optical rotation  $[\alpha]_D^{20}$  was calculated as:

$$[\alpha]_D^T = \frac{100 \ x \ \alpha}{c \ x \ l}$$

- $\alpha$ : Optical rotation
- *T*: Temperature [°C]
- *D*: Sodium D line  $[\lambda = 589]$
- *c*: Concentration [g/mL]
- *l*: Cell length [dm]

### NMR Spectroscopy

Structures were elucidated by extensive spectroscopic analyses, especially 1D (<sup>1</sup>H, <sup>13</sup>C, DEPT-135) and 2D (<sup>1</sup>H-<sup>1</sup>H COSY, <sup>1</sup>H-<sup>13</sup>C HSQC, <sup>1</sup>H-<sup>13</sup>C HMBC, <sup>1</sup>H-<sup>1</sup>H NOESY and <sup>1</sup>H-<sup>1</sup>H ROESY) NMR techniques. NMR spectra were either recorded in MeOH- $d_4$  or in CDCl<sub>3</sub> on a Bruker Avance 300 DPX operating at 300 MHz (<sup>1</sup>H) and 75 MHz (<sup>13</sup>C). To obtain a higher sensitivity and better resolution, certain compounds were additionally recorded by S. Kehraus (Institute of Pharmaceutical Biology, Bonn) on a Bruker Ascend 600 spectrometer, equipped with a CryoProbe<sup>TM</sup> Prodigy, operating at 600 MHz (<sup>1</sup>H) and 150 MHz (<sup>13</sup>C). External calibration was attained by referencing the spectra to residual solvent signals with resonances at  $\delta_{H/C}$  3.35/49.0 for MeOH-d<sub>4</sub> and  $\delta_{H/C}$  7.26/77.0 for CDCl<sub>3</sub>. NMR spectra were analysed using Topspin v3.1.3 (©2004 BRUKER Biospin) and MestReNova v14.2.0-26256 (©2020 Mestrelab Research S.L.) software. Obtained results from the spectroscopic analyses were compared to published data, whenever possible. For this purpose searches for published structures and substructures were carried out using the databases SciFinder® (©2015 American Chemical Society), AntiBase (©2015 Wiley-VCH Verlag GmbH & Co.), and MarinLit<sup>TM</sup>(©Royal Society of Chemistry 2015). Structures were drawn with ChemBioDraw Ultra v12.0 (©1986-2009 CambridgeSoft.)

## MALDI-MS-Imaging

*Chemicals.* Trifluoroacetic acid (TFA), water (HPLC grade), and 2,5-dihydroxybenzoic acid (DHB) were purchased from Fluka (Neu Ulm, Germany), tragacanth from Sigma-Aldrich (Steinheim, Germany), and acetone from Merck (Darmstadt, Germany).

Sample Preparation, Instrumentation, and Data Processing. Specimens Chromodoris annae (2 sp.) and Chromodoris dianae (1 sp.) were embedded in 5% (w/v) gelatin aqueous solution and frozen at  $-80^{\circ}$ C for 60 min to form solid blocks. Afterwards, tissue sections of 20 µm thickness were cut using a cryomicrotome (HM 525 cryostat, Thermo Scientific, Dreieich, Germany) at  $-20^{\circ}$ C. The embedding material was removed carefully with a painting brush to prevent tissue distortion. Sections were thaw mounted on microscope glass slides (ground edges frosted, VWR International GmbH, Darmstadt, Germany) and stored at  $-80^{\circ}$ C before analysis. The samples were brought to room temperature, using a desiccator to avoid condensation of humidity. Optical microscopic images of the sections were captured before matrix application (Olympus BX-41, Olympus Europa GmbH, Hamburg, Germany).
High spatial resolution MALDI-MS imaging requires a uniform coating of tissue sections with a microcrystalline matrix material. For this purpose, a dedicated matrix preparation system (SMALDIPrep, TransMIT GmbH, Giessen, Germany) was used to spray 100  $\mu$ l (10  $\mu$ l/min) of the matrix solution, 30 mg/mL of 2,5-dihydroxybenzoic acid in 50:50 ( $\nu/\nu$ ) acetone:H<sub>2</sub>O (0.1% TFA) for low molecular weight compounds in positive ion mode, on top of the tissue sections.<sup>745</sup> Homogeneity and crystal sizes were controlled after matrix application by microscopy before fixing the sample on the sample holder of the imaging source.

MALDI-MS imaging experiments were performed with a high spatial-resolution MS imaging ion source (AP-SMALDI10®, TransMIT GmbH, Giessen, Germany) operating at atmospheric pressure.<sup>746</sup> The minimum laser beam focus results in an ablation spot diameter of 5 µm.<sup>747–749</sup> However, for the experiment described here, the laser focus size was set to 10 µm. The samples were scanned by the movement of the x-, y-, and z-stages placed in front of the transfer capillary of the mass spectrometer. For desorption/ionisation, a diode-pumped solid-state laser at 343nm wavelength, operating at 100 Hz was used. Generated ions were co-axially transferred to a high mass-resolution mass spectrometer (Q Exactive<sup>TM</sup>, Thermo Fisher Scientific GmbH, Bremen, Germany, mass resolution, R = 140,000 at m/z 200). Mass spectra in the mass range of m/z 250–850 were generated and the analyzer was operated in positive ion mode. For internal calibration of mass spectra, a ubiquitous signal of the MALDI matrix was used as a lock mass, providing a mass accuracy better than 2 ppm root mean square error. High-quality MS ion images were generated using the Mirion software package.<sup>750</sup> A narrow image bin width of  $\Delta m/z = \pm 5$  ppm was used for image generation. MS images were normalized to the highest signal intensity per image for each imaged analyte ion species. No additional data processing steps, such as smoothing, interpolation, or normalization to matrix signals, were employed. RGB (Red-green-blue) overlay images were generated for the selected analyte ion signals to demonstrate the distribution of LatA in Chromodoris cross-sections. The red ion signals were later edited to grey for better accessibility.

#### Fluorescence Microscopy

*Cell culture.* To investigate and visualize the activity of latrunculin A, isolated from *Chromodoris* sea slugs, we conducted fluorescence microscopy experiments with human embryogenic kidney cells (HEK293, obtained from Leibniz Institute, DSMZ GmBH, Braunschweig, Germany, reference number ACC 305). The HEK293 cells were cultivated in Dulbecco's modified Eagle's medium (DMEM), low glucose, pyruvate (Life Technologies Ltd.; Paisley, UK) supplemented with 100 units/mL penicillin, 100  $\mu$ g/mL streptomycin and 10% fetal calf serum. HEK293 cells and all generated clones were maintained by ten-fold dilutions with fresh medium every 3-4 days in 10 cm dishes. All cells were cultured at 37° C and 5% CO<sub>2</sub>.

*Experimental setup.* Fluorescence imaging was conducted with an Axiovert® 200 M microscope, equipped with a Colibri.2® LED system including a 365 nm LED, LD Achroplan 40x, NA 0.60 Korr. objective, AxioCamMR3® camera, and filter set 49 (Excitation: G 365, Beam Splitter: FT 395 Emission: BP 445/50). The system was operated with Axiovision® Rev. 4.8. All parts mentioned were from Carl Zeiss Microscopy GmbH, Jena, Germany.

*Cell measurements.* HEK293 cells were seeded in a density of 12500 cells per cm<sup>2</sup> on 18 mm glass coverslips in DMEM (Life Technologies Ltd.; Paisley, UK), supplemented with 100 units/mL penicillin, 100 µg/mL streptomycin and 10% fetal calf serum, two days before the experiment. Glass coverslips were coated using 50 µl of 0.1 mg/mL PDL solution for 30 min at 37 °C and were afterwards washed three times with 50  $\mu$ l PBS. After the cells attached to the coverslips, either only DMSO as control or 50 µM latrunculin A (LatA) solved in DMSO, was added to the medium. Pictures of the stained cells were taken 24h and 44h after the addition of DMSO/LatA. On the day of the experiment, cells of the control group reached a density of 75-90%. The medium was exchanged with 1 mL methanol free 4% paraformaldehyde/10% sucrose solution in PBS buffer and kept for 10 min at room temperature. This solution was exchanged with 1 mL 0.1% Triton in PBS buffer and was kept for 2 min at room temperature. Afterwards, the cells were washed two times with PBS buffer. Coverslips were incubated on parafilm, each with 50 µL Phalloidin-Atto 488-solution (1:500 in PBS/1% BSA) and Hoechst stain (500 ng/mL), in darkness, for 45 min at room temperature. Subsequently, coverslips were washed two times with PBS, one time with water and were then mounted on a slide using Mowiol as a mounting medium.

## PCR Amplification, Sequencing and Alignment

Comparative Analysis of Heterobranchia Actin Genes. Genomic DNA was extracted from the foot, notum, or whole body of the specimens, depending on the size of the nudibranch, with the Qiagen DNeasy Blood & Tissue Kit, following the manufacturer's instructions. Degenerated and subsequently, specific primers were designed based on available mollusc actin gene data from GenBank, NCBI (SI).<sup>711</sup> Putative actin gene fragments of the coding region (~ 885 bp) of *Chromodoris* specimens were amplified by polymerase chain reaction (PCR) using the specific forward primer "Act1F": 5'-CAG GGT GTT GGA GAA GAT CTG GCA TC-3', and the reverse primer "Act1R": 5'-TAG AAG CAC TTC CTG TGG ACA ATG GA-3' (Table M1.1). A putative actin gene fragment of the coding region (~ 827 bp) of Elysia viridis was amplified by PCR using the specific forward primer "F19 1": 5'-GGA GAA GAT CTG GCA TC-3', and the reverse primer "R19 1": 5'-GAT CCA CAT CTG CTG G -3' (Table M1.1). PCR products were separated using gel electrophoresis (1% agarose, 110 V, 45 min.) and stained with ethidium bromide. The fragments were isolated from the gel and purified using either the Zymoclean TM Large Fragment DNA Recovery Kit (Zymo Research Europe GmbH, Freiburg, Germany) or the FastGene® Gel/PCR Extraction Kit (NIPPON Genetics Europe, Düren, Germany), according to the manufacturer's instructions. Purified PCR products were sent to Eurofins Genomics and sequenced by Sanger sequencing (Eurofins Genomics Germany GmbH, Ebersberg, Germany). All obtained gDNA sequences for each species were compared to each other and consensus sequences were created for further analyses. Furthermore, these sequences were compared to available nucleotide sequences of the NCBI GenBank database using BLAST® (SI), and to transcriptomic cDNA sequences of Cladobranchia species, kindly provided by D. Karmeinski.<sup>118</sup> Obtained heterobranchia sequences were aligned using the MUSCLE algorithm and compared using MEGA X version 10.0.5,<sup>751</sup> SplitsTree4 v4.16.2.,<sup>752</sup> and ClustalX2.1.<sup>753</sup> Sequence identity was calculated based on 808 nucleotide and 269 amino acid positions, using ClustalX2.1.753 The six new actin isoform sequences reported in this study, five from Chromodoris species and one from Elysia viridis, were deposited at the NCBI GenBank database under accession numbers: OK074000, OK074001, OK074002, OK074003, OK074004 and OK074005.

| Species (specimen number)               | Primer                                                                                                                            | PCR Conditions |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------|
| Chromodoris annae                       | Forward Act1F: 5'-CAG GGT GTT2GGA GAA GAT CTG GCA TC-3'989898Reverse Act1R: 5'-TAG AAG CAC61TTC CTG TGG ACA ATG GA-3'72~ 885 bp72 | 24. 32 cycles  |
| (Chan16Sa-9, Chan16Sa-3,                |                                                                                                                                   | 98°C, 30 sec.  |
| Chan16Bu-6, Chel16Sa-1)                 |                                                                                                                                   | 98°C, 10 sec.  |
| Chromodoris dianae                      |                                                                                                                                   | 61°C, 30 sec.  |
| (Chdi16Sa-6, Chdi16Bu-6)                |                                                                                                                                   | 72°C, 30 sec.  |
| Chromodoris lochi                       |                                                                                                                                   | 72°C 2min      |
| (Chlo16Bu-1, Chlo16Bu-2)                |                                                                                                                                   | ,2 €, 2mm.     |
| Chromodoris strigata                    |                                                                                                                                   | 4 €, ω         |
| (Chmi16Bu-1, Chst16Sa-1,                |                                                                                                                                   |                |
| Chst17Ba-1)                             |                                                                                                                                   |                |
| Chromodoris willani                     |                                                                                                                                   |                |
| (Chwi16Bu-1, Chwi16Bu-2)                |                                                                                                                                   |                |
| Elysia viridis                          | <b>Forward</b> F19_1: 5'-GGA GAA GAT<br>CTG GCA TC-3'                                                                             | 24. 32 cycles  |
| (gDNA kindly provided by<br>G. Christa) |                                                                                                                                   | 98°C, 30 sec.  |
|                                         |                                                                                                                                   | 98°C, 10 sec.  |
|                                         | <b>Reverse</b> R19_1: 5'-GAT CCA CAT<br>CTG CTG G -3'                                                                             | 58°C, 30 sec.  |
|                                         |                                                                                                                                   | 72°C, 30 sec.  |
|                                         | 927 h.                                                                                                                            | 72°C, 2min.    |
|                                         | ~ 827 pp                                                                                                                          | 4°C, ∞         |

**Table M1.1** Specimens, primer sequences and PCR conditions used for the amplification of putative actin gene

 fragments within the coding region.

### Antibacterial Activity

In CHAPTER I, compound **6** and **3** were tested for antibacterial activity against *Arthrobacter crystallopoietes* (DSM 20117). The assay was conducted by H. Harms (Institute of Pharmaceutical Biology, Bonn). Antibacterial activity of the compounds was measured as growth-inhibition of *Arthrobacter crystallopoietes* (DSM 20117), which was previously cultivated on a Corynebacterium Agar Medium with pH 7.2-7.4 (SI). The bacterial culture was diluted until OD600 = 0.1. Of the bacterial suspension, 200 µL were inserted in all vials, except in row 8 (control). Additional 200 µL of the bacterial suspension were added to column A. Antibiotics (0.4 µL of the stock solution, SI) were added to column A row 2-7, as additional positive control. Compound **6** (0.5 mg) and compound **3** (0.1 mg) were dissolved in 20 µL DMSO each. Of these, 0.4 µL were inserted into a vial containing 200 µL of the bacterial solution, respectively. Compound **6** was added to row 10 and compound **3** to row 12.

A serial dilution was conducted in four steps, using 200 µL of the previous vial in each step:

| Compound 6 |      | Compound 6             | Compound <b>3</b>      |
|------------|------|------------------------|------------------------|
|            |      | (Row 10)               | (Row 12)               |
| 1.         | Vial | 0.500 μg/μL            | 0.100 μg/μL            |
| 2.         | Vial | $0.250 \ \mu g/\mu L$  | $0.050 \ \mu g/\mu L$  |
| 3.         | Vial | 0.125 μg/μL            | 0.025 μg/μL            |
| 4.         | Vial | $0.0625 \ \mu g/\mu L$ | $0.0125 \ \mu g/\mu L$ |

Vials were closed with a lid, sealed with parafilm and kept overnight at room temperature on an orbital shaker at low speed (140 - 350 rpm). Measurements were performed two days after insertion of the compounds and extract, using a Tecan plate reader (SUNRISE; Serial number: 605000077; Firmware: V 3.31 25/08/05; XFLUOR4 Version: V 4.51). Absorbance was measured at 560 nm (SI).

For CHAPTER II, all ethyl acetate extracts of *D. stellata* nudibranchs, egg ribbons and *S. cf. agaricina* were tested as described above, in a first screening approach for antibacterial activity against the Gram-positive *Arthrobacter crystallopoietes* (DSM 20117). The pure compound 12-deacetoxy-4-demethyl-11,24-diacetoxy-3,4-methylenedeoxoscalarin, isolated from all three extracts, was tested for antibacterial activity against the Gram-positive *Bacillus megaterium* (DSM 32) (SI).

### Chemical Defence Assay

Feeding deterrence of compound 1, 2 and 6, isolated from *P. longicirrum*, was measured in order to investigate, whether they act as a chemical defence against fish predators. For this purpose, laboratory feeding assays with the pufferfish *Canthigaster solandri* Richardson, 1845 were conducted. C. solandri is a very common predator, known to feed on various invertebrates and benthic algae.<sup>754,755</sup> Sharing the same habitat with *P. longicirrum*, the tropical sublitoral coral reefs of the Indo-Pacific, makes C. solandri a useful model predator, which has previously been used in several studies concerning chemical feeding deterrence.<sup>41,754</sup> 11 individuals were kept separately in 70 L flow-through tanks. They were regularly fed a day prior to the feeding assays to avoid changing the feeding preference patterns. Compound 1, 2, and 6 were individually incorporated into the artificial diet, at concentrations below estimated natural occurrence (6 and 2: 0.5%, 1.0% and 2.0%; 1: 1.0% of dry mass). To create the artificial diet, 0.3 g alginate and 0.5 g squid powder were filled up with purified water to 10 g. The mixture was vigorously stirred and heated in a microwave oven. Compounds were each dissolved in a drop of EtOH in an Eppendorf tube and homogenized with 1 mL of the artificial diet. A drop of EtOH was added to the artificial diet to produce a comparable control. Since control and treated pellets showed the same coloration, additional coloring was not used. The semi-liquid diet was poured into 0.25 M CaCl<sub>2</sub> solution to solidify, using a disposable syringe, which gave the artificial diet a vermiform appearance. After solidification, it was cut into suitable pieces. Each day, two test series were conducted with two of the three compounds. The first test series with one of the compounds was conducted in the morning, while the second series with one of the other compounds was performed in the late afternoon. In each test series, one control and one treated food pellet were offered sequentially to C. solandri. A second control pellet was offered if the treated pellet was rejected completely or spit out at least three times, to ensure that the refusal was due to the incorporated compound and not because the fish generally ceased to feed. A rejection was only counted as such, if both controls were eaten. The results were analysed using Fisher's exact test to statistically confirm the reduced palatability of treated pellets compared to control pellets. Significance was determined as following: p < 0.05 =significant (\*), p < 0.005 = very significant (\*\*) and p < 0.0005 = strongly significant (\*\*\*).

#### In Vivo Toxicity Assay

Living Chromodoris annae (1 sp.) and C. dianae (2 sp.) were kept in glass aquaria with artificial seawater (Instant Ocean®, synthetic sea salt, added according to instructions), salinity around 33 - 34.5 PSU, relative density ~ 1.025 - 1.026, at 26 - 28 °C, aerated via an oxygenation pump and air stone bubblers. Also, living *Elysia viridis* (12 sp.) were kept in glass aquaria, with artificial seawater (Instant Ocean®, synthetic sea salt, added according to instructions), salinity around 36 - 37.5 PSU, relative density ~ 1.0275 - 1.0286, at 17 - 19 °C, aerated via an oxygenation pump and air stone bubblers. The 12 E. viridis specimen were separated into two groups. As a control, 6 E. viridis were injected into the muscular foot with an isotonic solution (0.01 mL, 5% DMSO, SI), the other 6 E. viridis, 1 C. annae and 2 C. dianae were injected with an isotonic solution containing 75 µM LatA (0.01 mL, 5% DMSO). Since only 3 Chromodoris specimens were kept, all of them were injected with LatA and there was no additional control Chromodoris group. Each injection was carried out with a 3-piece singleuse, fine dosage syringe (Omnifix®-F Luer Duo, Braun, 1 mL, 0.01 mL graduation, DIN EN ISO-Norm 7886-1) and a sterile, hypodermic Sterican®needle (25 G/0.5 x 26 mm, DIN EN ISO-Norm 7864). After injection, all animals were kept in separate groups and were observed over several hours. Symptoms, behavioural changes and deaths, if occurring, were noted.

# REFERENCES

- 1. Bogdanov A, Hertzer C, Kehraus S, Nietzer S, Rohde S, Schupp PJ, Wägele H, König GM. Defensive Diterpene from the Aeolidoidean Phyllodesmium longicirrum. *J Nat Prod.* 2016;79(3):611-615. doi:10.1021/acs.jnatprod.5b00860
- 2. Bogdanov A, Hertzer C, Kehraus S, Nietzer S, Rohde S, Schupp PJ, Wägele H, König GM. Secondary metabolome and its defensive role in the aeolidoidean Phyllodesmium longicirrum, (Gastropoda, Heterobranchia, Nudibranchia). *Beilstein J Org Chem.* 2017;13:502-519. doi:10.3762/bjoc.13.50
- 3. Hertzer C, Kehraus S, Böhringer N, Kaligis F, Bara R, Erpenbeck D, Wörheide G, Schäberle TF, Wägele H, König GM. Antibacterial scalarane from Doriprismatica stellata nudibranchs (Gastropoda, Nudibranchia), egg ribbons, and their dietary sponge Spongia cf. agaricina (Demospongiae, Dictyoceratida). *Beilstein J Org Chem.* 2020;16(1):1596-1605. doi:10.3762/bjoc.16.132
- 4. Eisenbarth JH, Undap N, Papu A, Schillo D, Dialao J, Reumschüssel S, Kaligis F, Bara R, Schäberle TF, König GM, et al. Marine Heterobranchia (Gastropoda, Mollusca) in Bunaken National Park, North Sulawesi, Indonesia—A Follow-Up Diversity Study. *Diversity*. 2018;10(4):127. doi:10.3390/d10040127
- 5. Kaligis F, Eisenbarth JH, Schillo D, Dialao J, Schäberle TF, Böhringer N, Bara R, Reumschüssel S, König GM, Wägele H. Second survey of heterobranch sea slugs (Mollusca, Gastropoda, Heterobranchia) from Bunaken National Park, North Sulawesi, Indonesia how much do we know after 12 years? *Mar Biodivers Rec.* 2018;11(1):2. doi:10.1186/s41200-018-0136-3
- 6. Undap N, Papu A, Schillo D, Ijong FG, Kaligis F, Lepar M, Hertzer C, Böhringer N, König GM, Schäberle TF, et al. First Survey of Heterobranch Sea Slugs (Mollusca, Gastropoda) from the Island Sangihe, North Sulawesi, Indonesia. *Diversity*. 2019;11(9):170. doi:10.3390/d11090170
- Papu A, Undap N, Martinez NA, Segre MR, Datang IG, Kuada RR, Perin M, Yonow N, Wägele H. First Study on Marine Heterobranchia (Gastropoda, Mollusca) in Bangka Archipelago, North Sulawesi, Indonesia. *Diversity*. 2020;12(2):52. doi:10.3390/d12020052
- Böhringer N, Fisch KM, Schillo D, Bara R, Hertzer C, Grein F, Eisenbarth JH, Kaligis F, Schneider T, Wägele H, et al. Antimicrobial Potential of Bacteria Associated with Marine Sea Slugs from North Sulawesi, Indonesia. *Front Microbiol.* 2017;8. doi:10.3389/fmicb.2017.01092
- Fisch KM, Hertzer C, Böhringer N, Wuisan ZG, Schillo D, Bara R, Kaligis F, Wägele H, König GM, Schäberle TF. The Potential of Indonesian Heterobranchs Found around Bunaken Island for the Production of Bioactive Compounds. *Mar Drugs*. 2017;15(12). doi:10.3390/md15120384
- Bogdanov A, Papu A, Kehraus S, Cruesemann M, Wägele H, König GM. Metabolome of the Phyllidiella pustulosa Species Complex (Nudibranchia, Heterobranchia, Gastropoda) Reveals Rare Dichloroimidic Sesquiterpene Derivatives from a Phylogenetically Distinct and Undescribed Clade. *J Nat Prod.* 2020;83(9):2785-2796. doi:10.1021/acs.jnatprod.0c00783
- Daily GC, Söderqvist T, Aniyar S, Arrow K, Dasgupta P, Ehrlich PR, Folke C, Jansson A, Jansson BO, Kautsky N, et al. The Value of Nature and the Nature of Value. *Science*. 2000;289(5478):395-396. doi:10.1126/science.289.5478.395
- 12. Geange S, Townsend M, Clark D, Ellis JI, Lohrer AM. Communicating the value of marine conservation using an ecosystem service matrix approach. *Ecosyst Serv.* 2019;35:150-163. doi:10.1016/j.ecoser.2018.12.004

- 13. Townsend M, Lohrer AM. Empirical Validation of an Ecosystem Service Map Developed From Ecological Principles and Biophysical Parameters. *Front Mar Sci.* 2019;6. doi:10.3389/fmars.2019.00021
- Macreadie PI, Anton A, Raven JA, Beaumont N, Connolly RM, Friess DA, Kelleway JJ, Kennedy H, Kuwae T, Lavery PS, et al. The future of Blue Carbon science. *Nat Commun.* 2019;10(1):3998. doi:10.1038/s41467-019-11693-w
- 15. Vieira H, Leal MC, Calado R. Fifty Shades of Blue: How Blue Biotechnology is Shaping the Bioeconomy. *Trends Biotechnol*. 2020;38(9):940-943. doi:10.1016/j.tibtech.2020.03.011
- 16. Carté BK. Biomedical Potential of Marine Natural Products. *BioScience*. 1996;46(4):271-286. doi:10.2307/1312834
- 17. Allsopp M, Pambuccian SE, Johnston P, Santillo D. *State of the World's Oceans*. Springer Science & Business Media; 2008.
- Sotka EE, Forbey J, Horn M, Poore AGB, Raubenheimer D, Whalen KE. The emerging role of pharmacology in understanding consumer–prey interactions in marine and freshwater systems. *Integr Comp Biol.* 2009;49(3):291-313. doi:10.1093/icb/icp049
- Calado R, Costa Leal M, Gaspar H, Santos S, Marques A, Nunes M, Vieira H. How to Succeed in Marketing Marine Natural Products for Nutraceutical, Pharmaceutical and Cosmeceutical Markets. In: ; 2018:317-403. doi:10.1007/978-3-319-69075-9\_9
- Leal MC, Anaya-Rojas JM, Munro MHG, Blunt JW, Melian CJ, Calado R, Lürig MD. Fifty years of capacity building in the search for new marine natural products. *Proc Natl Acad Sci*. 2020;117(39):24165-24172. doi:10.1073/pnas.2007610117
- 21. R. Carroll A, R. Copp B, A. Davis R, A. Keyzers R, R. Prinsep M. Marine natural products. *Nat Prod Rep.* 2021;38(2):362-413. doi:10.1039/D0NP00089B
- 22. Esteban M, Thompson F, Rotter A, Am B, MI C, Mf C, Ar DM, Ot E, Rj F, Lm G, et al. The Essentials of Marine Biotechnology. *Front Mar Sci.* 2021;8:629629. doi:10.3389/fmars.2021.629629
- 23. Edie SM, Jablonski D, Valentine JW. Contrasting responses of functional diversity to major losses in taxonomic diversity. *Proc Natl Acad Sci.* 2018;115(4):732-737. doi:10.1073/pnas.1717636115
- Avila C. Chemical War in Marine Animal Forests: Natural Products and Chemical Interactions. In: Rossi S, Bramanti L, eds. *Perspectives on the Marine Animal Forests of the World*. Springer International Publishing; 2020:239-307. doi:10.1007/978-3-030-57054-5\_9
- 25. König GM, Wright AD. Marine Natural Products Research: Current Directions and Future Potential. *Planta Med.* 1996;62(3):193-211. doi:10.1055/s-2006-957861
- 26. Proksch P, Edrada-Ebel R, Ebel R. Drugs from the Sea Opportunities and Obstacles. *Mar Drugs*. 2003;1(1):5-17. doi:10.3390/md101005
- Saito S ya. Toxins Affecting Actin Filaments and Microtubules. In: Fusetani N, Kem W, eds. Marine Toxins as Research Tools. Vol 46. Progress in Molecular and Subcellular Biology. Springer Berlin Heidelberg; 2009:187-219. doi:10.1007/978-3-540-87895-7\_7
- 28. Hughes CC, Fenical W. Antibacterials from the Sea. *Chem Weinh Bergstr Ger*. 2010;16(42):12512-12525. doi:10.1002/chem.201001279

- 29. Benkendorff K. Molluscan biological and chemical diversity: secondary metabolites and medicinal resources produced by marine molluscs. *Biol Rev.* 2010;85(4):757-775. doi:10.1111/j.1469-185X.2010.00124.x
- 30. Montaser R, Luesch H. Marine natural products: a new wave of drugs? *Future Med Chem*. 2011;3(12):1475-1489. doi:10.4155/fmc.11.118
- 31. Tohme R, Darwiche N, Gali-Muhtasib H. A Journey Under the Sea: The Quest for Marine Anti-Cancer Alkaloids. *Mol Basel Switz*. 2011;16:9665-9696. doi:10.3390/molecules16119665
- 32. Gogineni V, Hamann MT. Marine natural product peptides with therapeutic potential: Chemistry, biosynthesis, and pharmacology. *Biochim Biophys Acta BBA Gen Subj.* 2018;1862(1):81-196. doi:10.1016/j.bbagen.2017.08.014
- Raimundo I, Silva SG, Costa R, Keller-Costa T. Bioactive Secondary Metabolites from Octocoral-Associated Microbes—New Chances for Blue Growth. *Mar Drugs*. 2018;16(12):485. doi:10.3390/md16120485
- Nathani N, Mootapally CS, Gadhvi IR, Maitreya B, Joshi CG, eds. Marine Niche: Applications in Pharmaceutical Sciences: Translational Research. Springer Singapore; 2020. doi:10.1007/978-981-15-5017-1
- 35. Patra S, Praharaj PP, Panigrahi DP, Panda B, Bhol CS, Mahapatra KK, Mishra SR, Behera BP, Jena M, Sethi G, et al. Bioactive compounds from marine invertebrates as potent anticancer drugs: the possible pharmacophores modulating cell death pathways. *Mol Biol Rep.* 2020;47(9):7209-7228. doi:10.1007/s11033-020-05709-8
- 36. Conte M, Fontana E, Nebbioso A, Altucci L. Marine-Derived Secondary Metabolites as Promising Epigenetic Bio-Compounds for Anticancer Therapy. *Mar Drugs.* 2021;19(1):15. doi:10.3390/md19010015
- 37. Wang C, Tang S, Cao S. Antimicrobial compounds from marine fungi. *Phytochem Rev.* 2021;20(1):85-117. doi:10.1007/s11101-020-09705-5
- Dinarvand M, Spain M. Identification of Bioactive Compounds from Marine Natural Products and Exploration of Structure—Activity Relationships (SAR). *Antibiotics*. 2021;10:337. doi:10.3390/antibiotics10030337
- 39. D. Sigwart J, Blasiak R, Jaspars M, Jouffray JB, Tasdemir D. Unlocking the potential of marine biodiscovery. *Nat Prod Rep.* Published online 2021. doi:10.1039/D0NP00067A
- Zhang H, Zou J, Yan X, Chen J, Cao X, Wu J, Liu Y, Wang T. Marine-Derived Macrolides 1990– 2020: An Overview of Chemical and Biological Diversity. *Mar Drugs*. 2021;19(4):180. doi:10.3390/md19040180
- 41. Rohde S, Gochfeld DJ, Ankisetty S, Avula B, Schupp PJ, Slattery M. Spatial Variability in Secondary Metabolites of the Indo-Pacific Sponge Stylissa massa. *J Chem Ecol.* 2012;38(5):463-475. doi:10.1007/s10886-012-0124-8
- 42. Petersen LE, Kellermann MY, Schupp PJ. Secondary Metabolites of Marine Microbes: From Natural Products Chemistry to Chemical Ecology. In: Jungblut S, Liebich V, Bode-Dalby M, eds. YOUMARES 9 - The Oceans: Our Research, Our Future: Proceedings of the 2018 Conference for YOUng MArine RESearcher in Oldenburg, Germany. Springer International Publishing; 2020:159-180. doi:10.1007/978-3-030-20389-4\_8

- 43. Pawlik JR, Kernan MR, Molinski TF, Harper MK, Faulkner DJ. Defensive chemicals of the Spanisch dancer nudibranch Hexabranchus sanguineus and its egg ribbons: macrolides derived from a sponge diet. *J Exp Mar Biol Ecol.* 1988;119(2):99-109. doi:10.1016/0022-0981(88)90225-0
- 44. Proksch P. Defensive roles for secondary metabolites from marine sponges and sponge-feeding nudibranchs. *Toxicon*. 1994;32(6):639-655. doi:10.1016/0041-0101(94)90334-4
- 45. Avila C. Natural products of opisthobranch molluscs: A biological review. In: Ansell AD, Gibson RN, Barnes M, eds. *Oceanography and Marine Biology an Annual Review, Vol 33*. Vol 33. U C L Press Ltd; 1995:487-559.
- 46. McClintock JB, Baker BJ. Marine Chemical Ecology. CRC Press; 2001.
- 47. Mebs D. Toxicity in animals. Trends in evolution? *Toxicon*. 2001;39(1):87-96. doi:10.1016/S0041-0101(00)00155-0
- 48. Taylor MW, Radax R, Steger D, Wagner M. Sponge-Associated Microorganisms: Evolution, Ecology, and Biotechnological Potential. *Microbiol Mol Biol Rev.* 2007;71(2):295-347. doi:10.1128/MMBR.00040-06
- 49. Taylor MW, Hill RT, Piel J, Thacker RW, Hentschel U. Soaking it up: the complex lives of marine sponges and their microbial associates. *ISME J*. 2007;1(3):187-190. doi:10.1038/ismej.2007.32
- 50. Williams BL. Behavioral and Chemical Ecology of Marine Organisms with Respect to Tetrodotoxin. *Mar Drugs*. 2010;8(3):381-398. doi:10.3390/md8030381
- 51. Ng TPT, Saltin SH, Davies MS, Johannesson K, Stafford R, Williams GA. Snails and their trails: the multiple functions of trail-following in gastropods. *Biol Rev.* 2013;88(3):683-700. doi:10.1111/brv.12023
- 52. Puglisi MP, Sneed JM, Sharp KH, Ritson-Williams R, Paul VJ. Marine chemical ecology in benthic environments. *Nat Prod Rep.* 2014;31(11):1510-1553. doi:10.1039/C4NP00017J
- 53. Mollo E, Fontana A, Roussis V, Polese G, Amodeo P, Ghiselin MT. Sensing marine biomolecules: smell, taste, and the evolutionary transition from aquatic to terrestrial life. *Chem Biol.* 2014;2:92. doi:10.3389/fchem.2014.00092
- 54. Rohde S, Nietzer S, Schupp PJ. Prevalence and Mechanisms of Dynamic Chemical Defenses in Tropical Sponges. *PLOS ONE*. 2015;10(7):e0132236. doi:10.1371/journal.pone.0132236
- 55. Venuleo M, Raven JA, Giordano M. Intraspecific chemical communication in microalgae. *New Phytol.* 2017;215(2):516-530. doi:https://doi.org/10.1111/nph.14524
- 56. Putz A, Proksch P. Chemical Defence in Marine Ecosystems (From APR Volume 39). In: *Annual Plant Reviews Online*. American Cancer Society; 2018:162-213. doi:10.1002/9781119312994.apr0419
- Avila C, Núñez-Pons L, Moles J, Núñez-Pons L, Moles J. From the Tropics to the Poles : Chemical Defense Strategies in Sea Slugs (Mollusca: Heterobranchia). Chemical Ecology. doi:10.1201/9780429453465-3
- 58. Puglisi MP, Becerro MA, eds. *Chemical Ecology*. 1st edition. CRC Press; 2020.
- 59. Müller C, Caspers BA, Gadau J, Kaiser S. The Power of Infochemicals in Mediating Individualized Niches. *Trends Ecol Evol*. 2020;35(11):981-989. doi:10.1016/j.tree.2020.07.001

- 60. Ziltener A, Kreicker S, Gross S. Selective self-rubbing behaviour in Indo-Pacific bottlenose dolphins off Hurghada, Northern Red Sea, Egypt. In: 21st Biennial Conference on the Biology of Marine Mammals.; 2015.
- 61. Chang YC, Chiang CC, Chang YS, Chen JJ, Wang WH, Fang LS, Chung HM, Hwang TL, Sung PJ. Novel Caryophyllane-Related Sesquiterpenoids with Anti-Inflammatory Activity from Rumphella antipathes (Linnaeus, 1758). *Mar Drugs*. 2020;18(11):554. doi:10.3390/md18110554
- 62. Sung PJ, Chuang LF, Kuo J, Fan TY, Hu WP. Rumphellatin A, the first chloride-containing caryophyllane-type norsesquiterpenoid from Rumphella antipathies. *Tetrahedron Lett.* 2007;48(23):3987-3989. doi:10.1016/j.tetlet.2007.04.040
- Li G, Li P, Tang X. Natural Products from Corals. In: Li Z, ed. Symbiotic Microbiomes of Coral Reefs Sponges and Corals. Springer Netherlands; 2019:465-504. doi:10.1007/978-94-024-1612-1\_16
- 64. Dash S, Das SK, Samal J, Thatoi HN. Epidermal mucus, a major determinant in fish health: a review. *Iran J Vet Res.* 2018;19(2):72-81.
- 65. Bansil R, Turner BS. The biology of mucus: Composition, synthesis and organization. *Adv Drug Deliv Rev.* 2018;124:3-15. doi:10.1016/j.addr.2017.09.023
- 66. Cilia G, Fratini F. Antimicrobial properties of terrestrial snail and slug mucus. *J Complement Integr Med.* 2018;15(3). doi:10.1515/jcim-2017-0168
- 67. Hayashida PY, da Silva Junior PI. Insights into Antimicrobial Peptides from Limacus flavus Mucus. *Curr Microbiol*. 2021;78(8):2970-2979. doi:10.1007/s00284-021-02552-3
- 68. Onzo A, Pascale R, Acquavia MA, Cosma P, Gubitosa J, Gaeta C, Iannece P, Tsybin Y, Rizzi V, Guerrieri A, et al. Untargeted analysis of pure snail slime and snail slime-induced Au nanoparticles metabolome with MALDI FT-ICR MS. *J Mass Spectrom*. 2021;56(5):e4722. doi:10.1002/jms.4722
- Tachapuripunya V, Roytrakul S, Chumnanpuen P, E-kobon T. Unveiling Putative Functions of Mucus Proteins and Their Tryptic Peptides in Seven Gastropod Species Using Comparative Proteomics and Machine Learning-Based Bioinformatics Predictions. *Molecules*. 2021;26(11):3475. doi:10.3390/molecules26113475
- Zhong T, Min L, Wang Z, Zhang F, Zuo B. Controlled self-assembly of glycoprotein complex in snail mucus from lubricating liquid to elastic fiber. *RSC Adv.* 2018;8(25):13806-13812. doi:10.1039/C8RA01439F
- 71. Newar J, Verma S, Ghatak A. Effect of Metals on Underwater Adhesion of Gastropod Adhesive Mucus. *ACS Omega*. 2021;6(24):15580-15589. doi:10.1021/acsomega.0c06132
- 72. Landauer MR, Chapnick SD. Responses of Terrestrial Slugs to Secretions of Stressed Conspecifics. *Psychol Rep.* 1981;49(2):617-618. doi:10.2466/pr0.1981.49.2.617
- 73. Denny M. 10 Molecular Biomechanics of Molluscan Mucous Secretions. In: Hochachka PW, ed. *Metabolic Biochemistry and Molecular Biomechanics*. Academic Press; 1983:431-465. doi:10.1016/B978-0-12-751401-7.50017-X
- 74. Deyrup-Olsen I, Luchtel DL, Martin AW. Components of mucus of terrestrial slugs (Gastropoda). *Am J Physiol-Regul Integr Comp Physiol.* 1983;245(3):R448-R452. doi:10.1152/ajpregu.1983.245.3.R448
- 75. Bretz DD, Dimock RV. Behaviorally important characteristics of the mucous trail of the marine gastropod Ilyanassa Obsoleta (Say). *J Exp Mar Biol Ecol.* 1983;71(2):181-191. doi:10.1016/0022-0981(93)90072-V

- 76. Bonnemain B. Helix and Drugs: Snails for Western Health Care From Antiquity to the Present. *Evid Based Complement Alternat Med.* 2005;2(1):25-28. doi:10.1093/ecam/neh057
- 77. Meyer-Rochow VB. Therapeutic arthropods and other, largely terrestrial, folk-medicinally important invertebrates: a comparative survey and review. *J Ethnobiol Ethnomedicine*. 2017;13(1):9. doi:10.1186/s13002-017-0136-0
- 78. Dhiman V, Pant D. Human health and snails. *J Immunoassay Immunochem*. 2021;42(3):211-235. doi:10.1080/15321819.2020.1844751
- 79. Liu L, Sood A, Steinweg S. Snails and Skin Care—An Uncovered Combination. *JAMA Dermatol.* 2017;153(7):650-650. doi:10.1001/jamadermatol.2017.1383
- Vassilev NG, Simova SD, Dangalov M, Velkova L, Atanasov V, Dolashki A, Dolashka P. An 1H NMR- and MS-Based Study of Metabolites Profiling of Garden Snail Helix aspersa Mucus. *Metabolites*. 2020;10(9):360. doi:10.3390/metabo10090360
- 81. Li J, Celiz AD, Yang J, Yang Q, Wamala I, Whyte W, Seo BR, Vasilyev NV, Vlassak JJ, Suo Z, et al. Tough adhesives for diverse wet surfaces. *Science*. 2017;357(6349):378-381. doi:10.1126/science.aah6362
- Cerullo AR, Lai TY, Allam B, Baer A, Barnes WJP, Barrientos Z, Deheyn DD, Fudge DS, Gould J, Harrington MJ, et al. Comparative Animal Mucomics: Inspiration for Functional Materials from Ubiquitous and Understudied Biopolymers. ACS Biomater Sci Eng. 2020;6(10):5377-5398. doi:10.1021/acsbiomaterials.0c00713
- 83. Voultsiadou E. Therapeutic properties and uses of marine invertebrates in the ancient Greek world and early Byzantium. *J Ethnopharmacol*. 2010;130(2):237-247. doi:10.1016/j.jep.2010.04.041
- 84. Olivera BM, Cruz LJ. Conotoxins, in retrospect. *Toxicon*. 2001;39(1):7-14. doi:10.1016/S0041-0101(00)00157-4
- 85. Hannon HE, Atchison WD. Omega-Conotoxins as Experimental Tools and Therapeutics in Pain Management. *Mar Drugs*. 2013;11(3):680-699. doi:10.3390/md11030680
- Senter PD, Sievers EL. The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma. *Nat Biotechnol*. 2012;30(7):631-637. doi:10.1038/nbt.2289
- 87. Newman DJ, Cragg GM. Current Status of Marine-Derived Compounds as Warheads in Anti-Tumor Drug Candidates. *Mar Drugs*. 2017;15(4). doi:10.3390/md15040099
- Pettit GR, Kamano Y, Herald CL, Tuinman AA, Boettner FE, Kizu H, Schmidt JM, Baczynskyj L, Tomer KB, Bontems RJ. The isolation and structure of a remarkable marine animal antineoplastic constituent: dolastatin 10. J Am Chem Soc. 1987;109(22):6883-6885. doi:10.1021/ja00256a070
- Hamann MT, Otto CS, Scheuer PJ, Dunbar DC. Kahalalides: Bioactive Peptides from a Marine Mollusk Elysia rufescens and Its Algal Diet Bryopsis sp.1. J Org Chem. 1996;61(19):6594-6600. doi:10.1021/jo960877+
- Martín-Algarra S, Espinosa E, Rubió J, López JJL, Manzano JL, Carrión LA, Plazaola A, Tanovic A, Paz-Ares L. Phase II study of weekly Kahalalide F in patients with advanced malignant melanoma. *Eur J Cancer*. 2009;45(5):732-735. doi:10.1016/j.ejca.2008.12.005
- 91. Salazar R, Cortes-Funes H, Casado E, Pardo B, Lopez-Martin A, Cuadra C, Tabernero J, Coronado C, Garcia M, Matos-Pita AS, et al. Phase I study of weekly kahalalide F as prolonged infusion in patients with advanced solid tumors. *Cancer Chemother Pharmacol*. Published online 2013:9.

- 92. Tilvi S, Devi P, Majik MS. Quick elucidation of cyclodepsipeptide sequence from sacoglossan Elysia grandifolia using electrospray ionisation-tandem mass spectrometry. *Eur J Mass Spectrom*. 2017;23(3):92-97. doi:10.1177/1469066717699218
- 93. Cimino G, Rosa SD, Stefano SD, Sodano G, Villani G. Dorid Nudibranch Elaborates Its Own Chemical Defense. *Science*. 1983;219(4589):1237-1238. doi:10.1126/science.219.4589.1237
- 94. Faulkner DJ, Molinski TF, Andersen RJ, Dumdei EJ, De Silva ED. Geographical variation in defensive chemicals from pacific coast dorid nudibranchs and some related marine molluscs. *Comp Biochem Physiol Part C Comp Pharmacol.* 1990;97(2):233-240. doi:10.1016/0742-8413(90)90133-T
- Cimino G, Ghiselin MT. Chemical defense and evolutionary trends in biosynthetic capacity among dorid nudibranchs (Mollusca: Gastropoda: Opisthobranchia). *CHEMOECOLOGY*. 1999;9(4):187-207. doi:10.1007/s000490050052
- 96. Barsby T, Linington RG, Andersen RJ. De Novo terpenoid biosynthesis by the dendronotid nudibranch Melibe leonina. *CHEMOECOLOGY*. 2002;12(4):199-202. doi:10.1007/PL00012669
- 97. Putz A, Kehraus S, Diaz-Agras G, Waegele H, Koenig GM. Dotofide, a Guanidine-Interrupted Terpenoid from the Marine Slug Doto pinnatifida (Gastropoda, Nudibranchia). *Eur J Org Chem*. 2011;(20-21):3733-3737. doi:10.1002/ejoc.201100347
- 98. Pawlik JR. Antipredatory Defensive Roles of Natural Products from Marine Invertebrates. In: Fattorusso E, Gerwick WH, Taglialatela-Scafati O, eds. *Handbook of Marine Natural Products*. Springer Netherlands; 2012:677-710. doi:10.1007/978-90-481-3834-0\_12
- Avila C, Cimino G, Fontana A, Gavagnin M, Ortea J, Trivellone E. Defensive strategy of twoHypselodoris nudibranchs from Italian and Spanish coasts. *J Chem Ecol.* 1991;17(3):625-636. doi:10.1007/BF00982131
- Cimino G, Fontana A, Giménez F, Marin A, Mollo E, Trivellone E, Zubía E. Biotransformation of a dietary sesterterpenoid in the Mediterranean nudibranchHypselodoris orsini. *Experientia*. 1993;49(6):582-586. doi:10.1007/BF01955168
- Wägele H, Klussmann-Kolb A. Opisthobranchia (Mollusca, Gastropoda) more than just slimy slugs. Shell reduction and its implications on defence and foraging. *Front Zool.* 2005;2:3. doi:10.1186/1742-9994-2-3
- 102. Bhushan A, Peters EE, Piel J. Entotheonella Bacteria as Source of Sponge-Derived Natural Products: Opportunities for Biotechnological Production. In: Müller WEG, Schröder HC, Wang X, eds. *Blue Biotechnology: From Gene to Bioactive Product.* Progress in Molecular and Subcellular Biology. Springer International Publishing; 2017:291-314. doi:10.1007/978-3-319-51284-6\_9
- 103. Uria AR, Piel J, Wakimoto T. Biosynthetic Insights of Calyculin- and Misakinolide-Type Compounds in "Candidatus Entotheonella sp." In: *Methods in Enzymology*. Vol 604. Elsevier; 2018:287-330. doi:10.1016/bs.mie.2018.02.017
- 104. Avila C, Angulo-Preckler C. Bioactive Compounds from Marine Heterobranchs. *Mar Drugs*. 2020;2020:657. doi:10.3390/md18120657
- 105. Luesch H, Harrigan GG, Goetz G, Horgen FD. The cyanobacterial origin of potent anticancer agents originally isolated from sea hares. *Curr Med Chem.* 2002;9(20):1791-1806. doi:10.2174/0929867023369051
- 106. Zan J, Li Z, Tianero MD, Davis J, Hill RT, Donia MS. A microbial factory for defensive kahalalides in a tripartite marine symbiosis. *Science*. 2019;364(6445). doi:10.1126/science.aaw6732

- 107. Wong NLWS, Sigwart JD. Natural history clues to the evolution of bivalved gastropods (Mollusca: Gastropoda: Sacoglossa: Juliidae). *Mar Biodivers*. 2019;49(4):1997-2007. doi:10.1007/s12526-019-00960-0
- 108. Ponder WF, Lindberg DR, Ponder JM. Gastropoda III The Heterobranchia. In: *Biology and Evolution of the Mollusca*. CRC Press; 2020.
- 109. Klussmann-Kolb A, Dinapoli A, Kuhn K, Streit B, Albrecht C. From sea to land and beyond New insights into the evolution of euthyneuran Gastropoda (Mollusca). *BMC Evol Biol.* 2008;8(1):57. doi:10.1186/1471-2148-8-57
- 110. Wägele H, Klussmann-Kolb A, Vonnemann V, Medina M. Heterobranchia I: The Opisthobranchia. Published online January 1, 2008:385-408.
- 111. Wägele H, Klussmann-Kolb A, Verbeek E, Schrödl M. Flashback and foreshadowing—a review of the taxon Opisthobranchia. Org Divers Evol. 2013;14(1):133-149. doi:10.1007/s13127-013-0151-5
- 112. Haszprunar G. The Heterobranchia –a new concept of the phylogeny of the higher Gastropoda. J Zool Syst Evol Res. 1985;23(1):15-37. doi:10.1111/j.1439-0469.1985.tb00567.x
- 113. Wägele H, Willan RC. Phylogeny of the Nudibranchia. *Zool J Linn Soc.* 2000;130(1):83-181. doi:10.1111/j.1096-3642.2000.tb02196.x
- 114. Wollscheid E, Wägele H. Initial Results on the Molecular Phylogeny of the Nudibranchia (Gastropoda, Opisthobranchia) Based on 18S rDNA Data. *Mol Phylogenet Evol*. 1999;13(2):215-226. doi:10.1006/mpev.1999.0664
- 115. Wollscheid-Lengeling E, Boore J, Brown W, Wägele H. The phylogeny of Nudibranchia (Opisthobranchia, Gastropoda, Mollusca) reconstructed by three molecular markers. *Org Divers Evol*. 2001;1(4):241-256. doi:10.1078/1439-6092-00022
- 116. Turner LM, Wilson NG. Polyphyly across oceans: a molecular phylogeny of the Chromodorididae (Mollusca, Nudibranchia). *Zool Scr.* 2008;37(1):23-42. doi:10.1111/j.1463-6409.2007.00310.x
- 117. Johnson RF, Gosliner TM. Traditional Taxonomic Groupings Mask Evolutionary History: A Molecular Phylogeny and New Classification of the Chromodorid Nudibranchs. *PLOS ONE*. 2012;7(4):e33479. doi:10.1371/journal.pone.0033479
- 118. Karmeinski D, Meusemann K, Goodheart JA, Schroedl M, Martynov A, Korshunova T, Wägele H, Donath A. Transcriptomics provides a robust framework for the relationships of the major clades of cladobranch sea slugs (Mollusca, Gastropoda, Heterobranchia), but fails to resolve the position of the enigmatic genus Embletonia. *bioRxiv*. Published online September 23, 2020:2020.09.22.307728. doi:10.1101/2020.09.22.307728
- 119. Korshunova T, Fletcher K, Picton B, Lundin K, Kashio S, Sanamyan N, Sanamyan K, Padula V, Schroedl M, Martynov A. The Emperor's Cadlina, hidden diversity and gill cavity evolution: new insights for the taxonomy and phylogeny of dorid nudibranchs (Mollusca: Gastropoda). *Zool J Linn Soc.* Published online February 20, 2020. doi:10.1093/zoolinnean/zlz126
- 120. Layton K, Carvajal J, Wilson N. Mimicry and mitonuclear discordance in nudibranchs: New insights from exon capture phylogenomics. *Ecol Evol*. 2020;10. doi:10.1002/ece3.6727
- 121. Jensen KR. Phylogenetic systematics and classification of the Sacoglossa (Mollusca, Gastropoda, Opisthobranchia). *Philos Trans R Soc Lond B Biol Sci.* 1996;351(1335):91-122. doi:10.1098/rstb.1996.0006

- 122. Mikkelsen P. The evolutionary relationships of Cephalaspidea S.L. (Gastropoda: Opisthobranchia): A phylogenetic analysis. *Malacologia*. 1996;37:375-442.
- 123. Klussmann-Kolb A. Phylogeny of the Aplysiidae (Gastropoda, Opisthobranchia) with new aspects of the evolution of seahares. *Zool Scr.* 2004;33(5):439-462. doi:10.1111/j.0300-3256.2004.00158.x
- 124. Wade CM, Mordan PB, Clarke B. A phylogeny of the land snails (Gastropoda: Pulmonata). *Proc R Soc Lond B Biol Sci.* 2001;268(1465):413-422. doi:10.1098/rspb.2000.1372
- 125. Klussmann-Kolb A, Dinapoli A. Systematic position of the pelagic Thecosomata and Gymnosomata within Opisthobranchia (Mollusca, Gastropoda) revival of the Pteropoda. *J Zool Syst Evol Res.* 2006;44(2):118-129. doi:10.1111/j.1439-0469.2006.00351.x
- 126. Araujo AK, Pola M, Malaquias MAE, Ballesteros M, Vitale F, Cervera JL. Molecular phylogeny of European Runcinida (Gastropoda, Heterobranchia): the discover of an unexpected pool of complex species, with special reference to the case of Runcina coronata. *Zool J Linn Soc*. 2021;(zlab041). doi:10.1093/zoolinnean/zlab041
- Carmona L, Pola M, Gosliner TM, Cervera JL. A Tale That Morphology Fails to Tell: A Molecular Phylogeny of Aeolidiidae (Aeolidida, Nudibranchia, Gastropoda). *PLoS ONE*. 2013;8(5):e63000. doi:10.1371/journal.pone.0063000
- 128. Goodheart JA, Bazinet AL, Collins AG, Cummings MP. Relationships within Cladobranchia (Gastropoda: Nudibranchia) based on RNA-Seq data: an initial investigation. *R Soc Open Sci*. 2015;2(9):150196. doi:10.1098/rsos.150196
- 129. Moles J, Giribet G. A polyvalent and universal tool for genomic studies in gastropod molluscs (Heterobranchia). *Mol Phylogenet Evol*. 2021;155:106996. doi:10.1016/j.ympev.2020.106996
- 130. Pabst E, Kocot K. Phylogenomics confirms monophyly of Nudipleura (Gastropoda: Heterobranchia). *J Molluscan Stud.* 2018;84:259-265. doi:10.1093/mollus/eyy013
- Varney RM, Brenzinger B, Malaquias MAE, Meyer CP, Schrödl M, Kocot KM. Assessment of mitochondrial genomes for heterobranch gastropod phylogenetics. *BMC Ecol Evol*. 2021;21(1):6. doi:10.1186/s12862-020-01728-y
- 132. Heike Wägele MJR. Solar powered seaslugs (Opisthobranchia, Gastropoda, Mollusca): incorporation of photosynthetic units: a key character enhancing radiation? In: Glaubrecht M (ed) Evolution in action. Springer, Berlin. *Evol Action Case Stud Adapt Radiat Speciat Orig Biodivers*. 2010;263-283:263-282. doi:10.1007/978-3-642-12425-9
- 133. Laetz EMJ, Wägele H. Chloroplast digestion and the development of functional kleptoplasty in juvenile Elysia timida (Risso, 1818) as compared to short-term and non-chloroplast-retaining sacoglossan slugs. *PLOS ONE*. 2017;12(10):e0182910. doi:10.1371/journal.pone.0182910
- 134. Melo Clavijo J, Frankenbach S, Fidalgo C, Serôdio J, Donath A, Preisfeld A, Christa G. Identification of scavenger receptors and thrombospondin-type-1 repeat proteins potentially relevant for plastid recognition in Sacoglossa. *Ecol Evol.* 2020;10(21):12348-12363. doi:10.1002/ece3.6865
- 135. Frankenbach S, Luppa Q, Serôdio J, Greve C, Bleidissel S, Melo Clavijo J, Laetz EMJ, Preisfeld A, Christa G. Kleptoplasts are continuously digested during feeding in the plastid-bearing sea slug Elysia viridis. *J Molluscan Stud.* 2021;87(3). doi:10.1093/mollus/eyab022
- 136. KANDEL ER. Behavioral biology of Aplysia. *Contrib Comp Study Opisthobranch Molluscs*. 1979;463. https://ci.nii.ac.jp/naid/10004770212/en/

- 137. Gillette R, Brown JW. The Sea Slug, Pleurobranchaea californica: A Signpost Species in the Evolution of Complex Nervous Systems and Behavior. *Integr Comp Biol.* 2015;55(6):1058-1069. doi:10.1093/icb/icv081
- 138. Amorim J, Abreu I, Rodrigues P, Peixoto D, Pinheiro C, Saraiva A, Carvalho AP, Guimarães L, Oliva-Teles L. Lymnaea stagnalis as a freshwater model invertebrate for ecotoxicological studies. *Sci Total Environ*. 2019;669:11-28. doi:10.1016/j.scitotenv.2019.03.035
- 139. Keul N, Peijnenburg KTCA, Andersen N, Kitidis V, Goetze E, Schneider RR. Pteropods are excellent recorders of surface temperature and carbonate ion concentration. *Sci Rep.* 2017;7(1):12645. doi:10.1038/s41598-017-11708-w
- Nelwan M. Intermediate Host and Host-Parasite Interactions. Social Science Research Network; 2020. doi:10.2139/ssrn.3697037
- 141. Kijjoa A, Sawangwong P. Drugs and Cosmetics from the Sea. *Mar Drugs*. 2004;2(2):73-82. doi:10.3390/md202073
- 142. Putz A, König GM, Wägele H. Defensive strategies of Cladobranchia (Gastropoda, Opisthobranchia). *Nat Prod Rep.* 2010;27(10):1386-1402. doi:10.1039/B923849M
- 143. Wägele H. Potential key characters in Opisthobranchia (Gastropoda, Mollusca) enhancing adaptive radiation. *Org Divers Evol*. 2004;4(3):175-188. doi:10.1016/j.ode.2004.03.002
- 144. Händeler K, Grzymbowski YP, Krug PJ, Wägele H. Functional chloroplasts in metazoan cells a unique evolutionary strategy in animal life. *Front Zool*. 2009;6(1):28. doi:10.1186/1742-9994-6-28
- 145. Wägele H, Raupach MJ, Burghardt I, Grzymbowski Y, Händeler K. Solar Powered Seaslugs (Opisthobranchia, Gastropoda, Mollusca): Incorporation of Photosynthetic Units: A Key Character Enhancing Radiation? In: Glaubrecht M, ed. *Evolution in Action*. Springer Berlin Heidelberg; 2010:263-282. doi:10.1007/978-3-642-12425-9\_13
- 146. de Vries J, Christa G, Gould SB. Plastid survival in the cytosol of animal cells. *Trends Plant Sci.* 2014;19(6):347-350. doi:10.1016/j.tplants.2014.03.010
- 147. Gould S, Rauch C, Jahns P, Tielens A, Martin W. MINI REVIEW On Being the Right Size as an Animal with Plastids. *Front Plant Sci.* 2017;1. doi:10.3389/fpls.2017.01402
- 148. Marin A, Ros J. Presence of Intracellular Zooxanthellae in Mediterranean Nudibranchs. J Molluscan Stud. 1991;57:87-101.
- 149. Burghardt I, Stemmer K, Wägele H. Symbiosis between Symbiodinium (Dinophyceae) and various taxa of Nudibranchia (Mollusca: Gastropoda), with analyses of long-term retention. *Org Divers Evol*. 2008;8(1):66-76. doi:10.1016/j.ode.2007.01.001
- 150. Moore E, Gosliner T. Additions to the Genus Phyllodesmium, with a Phylogenetic Analysis and its Implications to the Evolution of Symbiosis. *Veliger*. 2014;51(4):237-251. doi:10.5281/zenodo.20947
- 151. Rudman W. Further-Studies on the Taxonomy and Biology of the Octocoral-Feeding Genus Phyllodesmium Ehrenberg, 1831 (nudibranchia, Aeolidoidea). *J Molluscan Stud.* 1991;57:167-203. doi:10.1093/mollus/57.2.167
- 152. Burghardt I, Wägele H. A new solar powered species of the genus Phyllodesmium Ehrenberg, 1831 (Mollusca : Nudibranchia : Aeolidoidea) from Indonesia with analysis of its photosynthetic activity and notes on biology. *Zootaxa*. 2004;(596):1-18.

- 153. Karuso P. Chemical Ecology of the Nudibranchs. In: Scheuer PPJ, ed. *Bioorganic Marine Chemistry*. Bioorganic Marine Chemistry. Springer Berlin Heidelberg; 1987:31-60. doi:10.1007/978-3-642-72726-9\_2
- 154. Valdes A, Blanchard L, Marti W. Caught naked: First report a nudibranch sea slug attacked by a cone snail. *Am Malacol Bull*. 2013;31(2):337-338.
- 155. Dietz L, Dömel JS, Leese F, Lehmann T, Melzer RR. Feeding ecology in sea spiders (Arthropoda: Pycnogonida): what do we know? *Front Zool*. 2018;15(1):7. doi:10.1186/s12983-018-0250-4
- 156. Mehrotra R, Monchanin C, Scott CM, Phongsuwan N, Gutierrez MC, Chavanich S, Hoeksema BW. Selective consumption of sacoglossan sea slugs (Mollusca: Gastropoda) by scleractinian corals (Cnidaria: Anthozoa). *PLOS ONE*. 2019;14(4):e0215063. doi:10.1371/journal.pone.0215063
- 157. Anker A, Ivanov Y. First record of the predation upon sea slugs (Cephalaspidea and Nudibranchia) by the peculiar elbow crab Lambrachaeus ramifer Alcock, 1895 (Decapoda: Parthenopidae). *Mar Biodivers*. 2020;50(2):24. doi:10.1007/s12526-020-01047-x
- 158. Battini N, Bravo G. Unexpected meal: first record of predation upon a potentially neurotoxic sea slug by the European green crab Carcinus maenas. *N Z J Zool*. Published online December 2, 2020. doi:10.1080/03014223.2020.1848889
- 159. Battini N, Giachetti C, Castro K, Bortolus A, Schwindt E. Predator-prey interactions as key drivers for the invasion success of a potentially neurotoxic sea slug. *Biol Invasions*. 2021;23:1-23. doi:10.1007/s10530-020-02431-1
- Faulkner D, Ghiselin M. Chemical Defense and Evolutionary Ecology of Dorid Nudibranchs and Some Other Opisthobranch Gastropods. *Mar Ecol Prog Ser.* 1983;13(2-3):295-301. doi:10.3354/meps013295
- 161. Haber M, Cerfeda S, Carbone M, Calado G, Gaspar H, Neves R, Maharajan V, Cimino G, Gavagnin M, Ghiselin MT, et al. Coloration and Defense in the Nudibranch Gastropod Hypselodoris fontandraui. *Biol Bull*. 2010;218(2):181-188. doi:10.1086/BBLv218n2p181
- 162. Ehrlich H. Spicular Structures in Molluscs. In: Ehrlich H, ed. Marine Biological Materials of Invertebrate Origin. Biologically-Inspired Systems. Springer International Publishing; 2019:133-157. doi:10.1007/978-3-319-92483-0\_10
- 163. Penney BK, Ehresmann KR, Jordan KJ, Rufo G. Micro-computed tomography of spicule networks in three genera of dorid sea-slugs (Gastropoda: Nudipleura: Doridina) shows patterns of phylogenetic significance. *Acta Zool.* 2020;101(1):5-23. doi:10.1111/azo.12266
- 164. Nikitenko E, Ereskovsky A, Vortsepneva E. Ontogenetic dynamics of the subepidermal spicule complex in Nudibranchia (Gastropoda): the case of Onchidoris muricata. Zool Jena Ger. 2021;144:125886. doi:10.1016/j.zool.2020.125886
- 165. Edmunds M. Color in Opisthobranchs. Am Malacol Bull. 1987;5(2):185-196.
- 166. Cortesi F, Cheney KL. Conspicuousness is correlated with toxicity in marine opisthobranchs. *J Evol Biol.* 2010;23(7):1509-1518. doi:10.1111/j.1420-9101.2010.02018.x
- 167. Winters AE, Green NF, Wilson NG, How MJ, Garson MJ, Marshall NJ, Cheney KL. Stabilizing selection on individual pattern elements of aposematic signals. *Proc R Soc B*. 2017;284(1861):20170926. doi:10.1098/rspb.2017.0926
- 168. Aguado, F. M A. Warning coloration associated with ne matocyst-based defences in Aeolidiodean nudibranchs. *J Molluscan Stud.* 2007;73(1). doi:10.1093/mollus/eyl026

- Layton KKS, Gosliner TM, Wilson NG. Flexible colour patterns obscure identification and mimicry in Indo-Pacific Chromodoris nudibranchs (Gastropoda: Chromodorididae). *Mol Phylogenet Evol*. 2018;124:27-36. doi:10.1016/j.ympev.2018.02.008
- 170. Cimino G, De Rosa S, De Stefano S, Morrone R, Sodano G. The chemical defense of nudibranch molluscs: Structure, biosynthetic origin and defensive properties of terpenoids from the dorid nudibranch dendrodoris grandiflora. *Tetrahedron*. 1985;41(6):1093-1100. doi:10.1016/S0040-4020(01)96477-4
- 171. Paul VJ, Van Alstyne KL. Use of ingested algal diterpenoids by Elysia halimedae Macnae (Opisthobranchia : Ascoglossa) as antipredator defenses. *J Exp Mar Biol Ecol*. 1988;119(1):15-29. doi:10.1016/0022-0981(88)90149-9
- 172. Wägele H, Knezevic K, Moustafa AY. Distribution and morphology of defensive acid-secreting glands in Nudipleura (Gastropoda: Heterobranchia), with an emphasis on Pleurobranchomorpha. J Molluscan Stud. 2017;83(4):422-433. doi:10.1093/mollus/eyx030
- 173. Wakimoto T, Tan KC, Abe I. Ergot alkaloid from the sea slug Pleurobranchus forskalii. *Toxicon*. 2013;72:1-4. doi:10.1016/j.toxicon.2013.05.021
- 174. McNabb P, Selwood AI, Munday R, Wood SA, Taylor DI, MacKenzie LA, van Ginkel R, Rhodes LL, Cornelisen C, Heasman K, et al. Detection of tetrodotoxin from the grey side-gilled sea slug Pleurobranchaea maculata, and associated dog neurotoxicosis on beaches adjacent to the Hauraki Gulf, Auckland, New Zealand. *Toxicon*. 2010;56(3):466-473. doi:10.1016/j.toxicon.2010.04.017
- 175. Wood SA, Casas M, Taylor DI, McNabb P, Salvitti L, Ogilvie S, Cary SC. Depuration of Tetrodotoxin and Changes in Bacterial Communities in Pleurobranchea maculata Adults and Egg Masses Maintained in Captivity. J Chem Ecol. 2012;38(11):1342-1350. doi:10.1007/s10886-012-0212-9
- 176. Salvitti LR, Wood SA, Winsor L, Cary SC. Intracellular Immunohistochemical Detection of Tetrodotoxin in Pleurobranchaea maculata (Gastropoda) and Stylochoplana sp. (Turbellaria). *Mar Drugs*. 2015;13(2):756-769. doi:10.3390/md13020756
- 177. Farias NE, Goya AB, Schwindt E, Obenat S, Dhanji-Rapkova M, Turner AD. The invasive sea slug Pleurobranchaea maculata is a vector of two potent neurotoxins in coasts of Argentina. *Mar Biol.* 2019;166(7):82. doi:10.1007/s00227-019-3529-x
- 178. WoRMS World Register of Marine Species. Accessed October 20, 2021. http://www.marinespecies.org/index.php
- 179. Cimino G, De Rosa S, De Stefano S, Sodano G. The chemical defense of four Mediterranean nudibranchs. *Comp Biochem Physiol Part B Comp Biochem*. 1982;73(3):471-474. doi:10.1016/0305-0491(82)90061-X
- 180. Goodheart JA, Bazinet AL, Valdés Á, Collins AG, Cummings MP. Prey preference follows phylogeny: evolutionary dietary patterns within the marine gastropod group Cladobranchia (Gastropoda: Heterobranchia: Nudibranchia). BMC Evol Biol. 2017;17(1):221. doi:10.1186/s12862-017-1066-0
- Bouchet P, Rocroi JP, Hausdorf B, Kaim A, Kano Y, Nützel A, Parkhaev P, Schroedl M, Strong E. Revised Classification, Nomenclator and Typification of Gastropod and Monoplacophoran Families. *Malacologia*. 2017;61:1-526. doi:10.4002/040.061.0201
- 182. Goodheart JA, Bleidißel S, Schillo D, Strong EE, Ayres DL, Preisfeld A, Collins AG, Cummings MP, Wägele H. Comparative morphology and evolution of the cnidosac in Cladobranchia (Gastropoda: Heterobranchia: Nudibranchia). *Front Zool.* 2018;15:43. doi:10.1186/s12983-018-0289-2

- 183. Kälker H, Schmekel L. Bau und Funktion des Cnidosacks der Aeolidoidea (Gastropoda Nudibranchia). Zoomorphologie. 1976;86(1):41-60. doi:10.1007/BF01006712
- 184. Greenwood PG. Acquisition and use of nematocysts by cnidarian predators. *Toxicon*. 2009;54(8):1065-1070. doi:10.1016/j.toxicon.2009.02.029
- 185. Obermann D, Bickmeyer U, Wägele H. Incorporated nematocysts in Aeolidiella stephanieae (Gastropoda, Opisthobranchia, Aeolidoidea) mature by acidification shown by the pH sensitive fluorescing alkaloid Ageladine A. *Toxicon*. 2012;60(6):1108-1116. doi:10.1016/j.toxicon.2012.08.003
- 186. Miller JA, Byrne M. Ceratal autotomy and regeneration in the aeolid nudibranch Phidiana crassicornis and the role of predators. *Invertebr Biol.* 2000;119(2):167-176. doi:10.1111/j.1744-7410.2000.tb00005.x
- 187. Martin R. Management of nematocysts in the alimentary tract and in cnidosacs of the aeolid nudibranch gastropod Cratena peregrina. *Mar Biol.* 2003;143(3):533-541. doi:10.1007/s00227-003-1078-8
- 188. Frick KE. Nematocyst complements of nudibranchs in the genus Flabellina in the Gulf of Maine and the effect of diet manipulations on the cnidom of Flabellina verrucosa. *Mar Biol*. 2005;147(6):1313-1321. doi:10.1007/s00227-005-0034-1
- 189. Bogdanov A, Kehraus S, Bleidissel S, Preisfeld G, Schillo D, Piel J, Brachmann AO, Wägele H, König GM. Defense in the Aeolidoidean Genus Phyllodesmium (Gastropoda). J Chem Ecol. 2014;40(9):1013-1024. doi:10.1007/s10886-014-0496-z
- 190. Daniel Wagner SEK. Observations on the life history and feeding ecology of a specialized nudibranch predator (Phyllodesmium poindimiei), with implications for biocontrol of an invasive octocoral (Carijoa riisei) in Hawaii. *J Exp Mar Biol Ecol.* 2009;372(1-2):64-74. doi:10.1016/j.jembe.2009.02.007
- 191. Thompson TE. Defensive adaptations in opisthobranchs. *J Mar Biol Assoc U K*. 1960;39(1):123-134. doi:10.1017/S0025315400013163
- 192. Iken K, Avila C, Ciavatta ML, Fontana A, Cimino G. Hodgsonal, a new drimane sesquiterpene from the mantle of the Antarctic nudibranch Bathydoris hodgsoni. *Tetrahedron Lett.* 1998;39(31):5635-5638. doi:10.1016/S0040-4039(98)01095-8
- 193. Avila C, Iken K, Fontana A, Cimino G. Chemical ecology of the Antarctic nudibranch Bathydoris hodgsoni Eliot, 1907: defensive role and origin of its natural products. *J Exp Mar Biol Ecol*. 2000;252(1):27-44. doi:10.1016/S0022-0981(00)00227-6
- 194. Rauschert M, Arntz W. Antarctic Macrobenthos: A Field Guide of the Invertebrates Living at the Antarctic Seafloor. Arntz & Rauschert Selbstverlag; 2015.
- 195. Wahidullah S, Guo YW, Fakhr IMI, Mollo E. Chemical Diversity in Opisthobranch Molluscs from Scarcely Investigated Indo-Pacific Areas. In: Cimino G, Gavagnin M, eds. *Molluscs: From Chemo-Ecological Study to Biotechnological Application*. Progress in Molecular and Subcellular Biology. Springer Berlin Heidelberg; 2006:175-198. doi:10.1007/978-3-540-30880-5\_8
- 196. Avila C. Molluscan Natural Products as Biological Models: Chemical Ecology, Histology, and Laboratory Culture. In: Cimino PDG, Gavagnin PDM, eds. *Molluscs*. Progress in Molecular and Subcellular Biology. Springer Berlin Heidelberg; 2006:1-23. doi:10.1007/978-3-540-30880-5\_1
- 197. Cimino G, Gavagnin M, eds. *Molluscs: From Chemo-Ecological Study to Biotechnological Application.* Springer-Verlag; 2006. doi:10.1007/978-3-540-30880-5

- 198. Mudianta IW, White AM, Suciati, Katavic PL, Krishnaraj RR, Winters AE, Mollo E, Cheney KL, Garson MJ. Chemoecological studies on marine natural products: terpene chemistry from marine mollusks. *Pure Appl Chem.* 2014;86(6):995-1002. doi:10.1515/pac-2013-1111
- Zhukova NV. Lipid Classes and Fatty Acid Composition of the Tropical Nudibranch Mollusks Chromodoris sp. and Phyllidia coelestis. *Lipids*. 2007;42(12):1169-1175. doi:10.1007/s11745-007-3123-8
- 200. Dang VT, Benkendorff K, Green T, Speck P. Marine Snails and Slugs: a Great Place To Look for Antiviral Drugs. *J Virol.* 89(16):8114-8118. doi:10.1128/JVI.00287-15
- Bornancin L, Bonnard I, Mills SC, Banaigs B. Chemical mediation as a structuring element in marine gastropod predator-prey interactions. *Nat Prod Rep.* 2017;34(6):644-676. doi:10.1039/C6NP00097E
- 202. J. Dean L, R. Prinsep M. The chemistry and chemical ecology of nudibranchs. *Nat Prod Rep.* 2017;34(12):1359-1390. doi:10.1039/C7NP00041C
- 203. Avila C. Terpenoids in Marine Heterobranch Molluscs. *Mar Drugs*. 2020;18(3):162. doi:10.3390/md18030162
- 204. Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. *Nat Prod Rep.* 2020;37(2):175-223. doi:10.1039/C9NP00069K
- 205. Somerville MJ, Mollo E, Cimino G, Rungprom W, Garson MJ. Spongian Diterpenes from Australian Nudibranchs: An Anatomically Guided Chemical Study of Glossodoris atromarginata. *J Nat Prod.* 2006;69(7):1086-1088. doi:10.1021/np060002i
- 206. Winters AE, White AM, Cheney KL, Garson MJ. Geographic variation in diterpene-based secondary metabolites and level of defence in an aposematic nudibranch, Goniobranchus splendidus. *J Molluscan Stud.* 2019;85(1):133-142. doi:10.1093/mollus/eyy057
- 207. Eisenreich W, Schwarz M, Cartayrade A, Arigoni D, Zenk MH, Bacher A. The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms. *Chem Biol.* 1998;5(9):R221-R233. doi:10.1016/S1074-5521(98)90002-3
- 208. Perveen S, Al-Taweel A. Terpenes and Terpenoids.; 2018. doi:10.5772/intechopen.71175
- 209. Rudolf JD, Alsup TA, Xu B, Li Z. Bacterial terpenome. *Nat Prod Rep.* 2021;38(5):905-980. doi:10.1039/D0NP00066C
- 210. Beytia ED, Porter JW. Biochemistry of Polyisoprenoid Biosynthesis. *Annu Rev Biochem*. 1976;45(1):113-142. doi:10.1146/annurev.bi.45.070176.000553
- 211. Dewick PM. The biosynthesis of C 5 –C 25 terpenoid compounds. *Nat Prod Rep.* 1999;16(1):97-130. doi:10.1039/A708935J
- 212. Perveen S. Introductory Chapter. IntechOpen; 2018. doi:10.5772/intechopen.79683
- 213. Gross H, Kehraus S, Nett M, König GM, Beil W, Wright AD. New cytotoxic cembrane based diterpenes from the soft corals Sarcophyton cherbonnieri and Nephthea sp. *Org Biomol Chem*. 2003;1(6):944-949.
- Wu YC, Hsieh PW, Duh CY, Wang SK, Soong K, Fang LS. Studies on the Formosan Soft Corals I-Cytotoxic Cembrane Diterpenes from Sarcophyton Trocheliophorum. J Chin Chem Soc. 1992;39(4):355-357. doi:10.1002/jccs.199200062

- 215. Aceret TL, Coll JC, Uchio Y, Sammarco PW. Antimicrobial activity of the diterpenes flexibilide and sinulariolide derived from Sinularia flexibilis Quoy and Gaimard 1833 (Coelenterata: Alcyonacea, Octocorallia). *Comp Biochem Physiol C Pharmacol Toxicol Endocrinol*. 1998;120(1):121-126.
- 216. Betancur-Galvis L, Zuluaga C, Arnó M, González MA, Zaragozá RJ. Cytotoxic Effect (on Tumor Cells) and in Vitro Antiviral Activity against Herpes Simplex Virus of Synthetic Spongiane Diterpenes. J Nat Prod. 2002;65(2):189-192. doi:10.1021/np010206t
- 217. Youssef DTA, Shaala LA, Emara S. Antimycobacterial Scalarane-Based Sesterterpenes from the Red Sea Sponge Hyrtios erecta. *J Nat Prod.* 2005;68(12):1782-1784. doi:10.1021/np0502645
- 218. Evidente A, Kornienko A, Lefranc F, Cimmino A, Dasari R, Evidente M, Mathieu V, Kiss R. Sesterterpenoids with Anticancer Activity. *Curr Med Chem.* 2015;22(30):3502-3522.
- 219. Annang F, Pérez-Victoria I, Appiah T, Pérez-Moreno G, Domingo E, Martín J, Mackenzie T, Ruiz-Pérez L, González-Pacanowska D, Genilloud O, et al. Antiprotozoan sesterterpenes and triterpenes isolated from two Ghanaian mushrooms. *Fitoterapia*. 2018;127:341-348. doi:10.1016/j.fitote.2018.03.016
- 220. Wang Q, Sun Y, Yang L, Luo X, de Voogd NJ, Tang X, Li P, Li G. Bishomoscalarane Sesterterpenoids from the Sponge Dysidea granulosa Collected in the South China Sea. *J Nat Prod.* 2020;83(2):516-523. doi:10.1021/acs.jnatprod.9b01202
- 221. Huang AC, Kautsar SA, Hong YJ, Medema MH, Bond AD, Tantillo DJ, Osbourn A. Unearthing a sesterterpene biosynthetic repertoire in the Brassicaceae through genome mining reveals convergent evolution. *Proc Natl Acad Sci.* 2017;114(29):E6005-E6014. doi:10.1073/pnas.1705567114
- 222. Paruch E, Ciunik Z, Nawrot J, Wawrzeńczyk C. Lactones. 9. Synthesis of Terpenoid LactonesActive Insect Antifeedants. J Agric Food Chem. 2000;48(10):4973-4977. doi:10.1021/jf9913070
- 223. Wonganuchitmeta S ngam, Yuenyongsawad S, Keawpradub N, Plubrukarn A. Antitubercular Sesterterpenes from the Thai Sponge Brachiaster sp. *J Nat Prod.* 2004;67(10):1767-1770. doi:10.1021/np0498354
- 224. Yang B, Liu J, Wang J, Liao S, Liu Y. Cytotoxic Cembrane Diterpenoids. In: Kim SK, ed. Handbook of Anticancer Drugs from Marine Origin. Springer International Publishing; 2015:649-672. doi:10.1007/978-3-319-07145-9\_30
- 225. Bernstein J, Shmeuli U, Zadock E, Kashman Y, Neeman I. Sarcophine, a New Epoxy Cembranolide from Marine Origin. *Tetrahedron*. 1974;30(16):2817-2824. doi:10.1016/S0040-4020(01)97451-4
- 226. Sammarco PW, Coll JC. Lack of predictability in terpenoid function Multiple roles and integration with related adaptations in soft corals. *J Chem Ecol*. 1990;16(1):273-289. doi:10.1007/BF01021284
- 227. PW Sammarco JC. Chemical adaptations in the Octocorallia: evolutionary considerations. Mar Ecol Prog Ser. Mar Ecol-Prog Ser - MAR ECOL-PROGR SER. 1992;88(1):93-104. doi:10.3354/meps088093
- 228. Maia LF, Fleury BG, Lages BG, Creed JC, de Oliveira LFC. Chapter 10 New Strategies for Identifying Natural Products of Ecological Significance from Corals: Nondestructive Raman Spectroscopy Analysis. In: Atta-ur-Rahman, ed. *Studies in Natural Products Chemistry*. Vol 43. Elsevier; 2014:313-349. doi:10.1016/B978-0-444-63430-6.00010-2
- 229. Fontana A, Mollo E, Ricciardi D, Fakhr I, Cimino G. Chemical Studies of Egyptian Opisthobranchs: Spongian Diterpenoids from Glossodoris atromarginata. *J Nat Prod.* 1997;60(5):444-448. doi:10.1021/np960690d

- Fontana A, Cavaliere P, Ungur N, D'Souza L, Parameswaram PS, Cimino G. New Scalaranes from the Nudibranch Glossodoris atromarginata and Its Sponge Prey. J Nat Prod. 1999;62(10):1367-1370. doi:10.1021/np9900932
- 231. Fontana A, Mollo E, Ortea J, Gavagnin M, Cimino G. Scalarane and Homoscalarane Compounds from the Nudibranchs Glossodoris sedna and Glossodoris dalli: Chemical and Biological Properties. J Nat Prod. 2000;63(4):527-530. doi:10.1021/np990506z
- 232. Gavagnin M, Mollo E, Docimo T, Guo YW, Cimino G. Scalarane Metabolites of the Nudibranch Glossodoris rufomarginata and Its Dietary Sponge from the South China Sea. *J Nat Prod.* 2004;67(12):2104-2107. doi:10.1021/np040087s
- 233. Manzo E, Gavagnin M, Somerville MJ, Mao SC, Ciavatta ML, Mollo E, Schupp PJ, Garson MJ, Guo YW, Cimino G. Chemistry of Glossodoris nudibranchs: specific occurrence of 12-keto scalaranes. *J Chem Ecol*. 2007;33(12):2325-2336. doi:10.1007/s10886-007-9387-x
- 234. Yong KWL, Mudianta IW, Cheney KL, Mollo E, Blanchfield JT, Garson MJ. Isolation of Norsesterterpenes and Spongian Diterpenes from Dorisprismatica (= Glossodoris) atromarginata. J Nat Prod. 2015;78(3):421-430. doi:10.1021/np500797b
- 235. Li XL, Li SW, Yao LG, Mollo E, Gavagnin M, Guo YW. The chemical and chemo-ecological studies on Weizhou nudibranch Glossodoris atromarginata. *Magn Reson Chem.* 2019;n/a(n/a). doi:10.1002/mrc.4949
- 236. Meinwald J, Thompson JE, Walker RP, Wratten SJ, Faulkner DJ. The Organic Chemistry of Animal Defense MechanismsA chemical defense mechanism for the nudibranch cadlina luteomarginata. *Tetrahedron.* 1982;38(13):1865-1873. doi:10.1016/0040-4020(82)80035-5
- 237. Sim DCM, Wayan Mudianta I, White AM, Martiningsih NW, Loh JJM, Cheney KL, Garson MJ. New sesquiterpenoid isonitriles from three species of phyllidid nudibranchs. *Fitoterapia*. doi:10.1016/j.fitote.2017.10.003
- Fontana A, Cavaliere P, Wahidullah S, Naik C, Cimino G. A New Antitumor Isoquinoline Alkaloid from the Marine Nudibranch Jorunna funebris. *Tetrahedron*. 2000;56. doi:10.1016/S0040-4020(00)00629-3
- 239. He WF, Li Y, Feng MT, Gavagnin M, Mollo E, Mao SC, Guo YW. New isoquinolinequinone alkaloids from the South China Sea nudibranch Jorunna funebris and its possible sponge-prey Xestospongia sp. *Fitoterapia*. 2014;96:109-114. doi:10.1016/j.fitote.2014.04.011
- 240. Petek BJ, Jones RL. PM00104 (Zalypsis®): A Marine Derived Alkylating Agent. *Molecules*. 2014;19(8):12328-12335. doi:10.3390/molecules190812328
- 241. Wang YJ, Li YY, Liu XY, Lu XL, Cao X, Jiao BH. Marine Antibody–Drug Conjugates: Design Strategies and Research Progress. *Mar Drugs*. 2017;15(1):18. doi:10.3390/md15010018
- 242. Matsunaga S, Fusetani N, Hashimoto K, Koseki K, Noma M, Noguchi H, Sankawa U. Bioactive marine metabolites. 25. Further kabiramides and halichondramides, cytotoxic macrolides embracing trisoxazole, from the Hexabranchus egg masses. *J Org Chem.* 1989;54(6):1360-1363. doi:10.1021/j000267a024
- 243. Parrish SM, Yoshida W, Yang B, Williams PG. Ulapualides C–E Isolated from a Hawaiian Hexabranchus sanguineus Egg Mass. *J Nat Prod.* 2017;80(3):726-730. doi:10.1021/acs.jnatprod.6b00896
- 244. Wu L, Ye K, Jiang S, Zhou G. Marine Power on Cancer: Drugs, Lead Compounds, and Mechanisms. *Mar Drugs*. 2021;19(9):488. doi:10.3390/md19090488

- 245. Guella G, Mancini I, Chiasera G, Pietra F. Sphinxolide, a 26-Membered Antitumoral Macrolide Isolated from an Unidentified Pacific Nudibranch. *Helv Chim Acta*. 1989;72(2):237-246. doi:10.1002/hlca.19890720207
- 246. Okuda RK, Scheuer PJ. Latrunculin-A, ichthyotoxic constituent of the nudibranchChromodoris elisabethina. *Experientia*. 1985;41(10):1355-1356. doi:10.1007/BF01952094
- 247. Kakou Y, Crews P, Bakus GJ. Dendrolasin and Latrunculin A from the Fijian Sponge Spongia mycofijiensis and an Associated Nudibranch Chromodoris lochi. *J Nat Prod.* 1987;50(3):482-484. doi:10.1021/np50051a023
- 248. Cheney KL, White A, Mudianta IW, Winters AE, Quezada M, Capon RJ, Mollo E, Garson MJ. Choose Your Weaponry: Selective Storage of a Single Toxic Compound, Latrunculin A, by Closely Related Nudibranch Molluscs. *PLOS ONE*. 2016;11(1):e0145134. doi:10.1371/journal.pone.0145134
- 249. García-Gómez JC, Cimino G, Medina A. Studies on the defensive behaviour of Hypselodoris species (Gastropoda: Nudibranchia): Ultrastructure and chemical analysis of mantle dermal formations (MDFs). *Mar Biol.* 1990;106(2):245-250. doi:10.1007/BF01314807
- 250. Fontana A, Giménez F, Marin A, Mollo E, Cimino G. Transfer of secondary metabolites from the spongesDysidea fragilis andPleraplysilla spinifera to the mantle dermal formations (MDFs) of the mudibranchHypserlodoris webbi. *Experientia*. 1994;50(5):510-516. doi:10.1007/BF01920760
- 251. Avila C, Paul VJ. Chemical ecology of the nudibranch Glossodoris pallida: is the location of dietderived metabolites important for defense? *Mar Ecol Prog Ser*. 1997;150(1/3):171-180.
- 252. Winters AE, White AM, Dewi AS, Mudianta IW, Wilson NG, Forster LC, Garson MJ, Cheney KL. Distribution of Defensive Metabolites in Nudibranch Molluscs. *J Chem Ecol.* Published online March 19, 2018:1-13. doi:10.1007/s10886-018-0941-5
- 253. Carbone M, Gavagnin M, Haber M, Guo YW, Fontana A, Manzo E, Genta-Jouve G, Tsoukatou M, Rudman WB, Cimino G, et al. Packaging and Delivery of Chemical Weapons: A Defensive Trojan Horse Stratagem in Chromodorid Nudibranchs. *PLoS ONE*. 2013;8(4):e62075. doi:10.1371/journal.pone.0062075
- 254. Wägele H, Ballesteros M, Avila C. Defensive Glandular Structures In Opisthobranch Molluscs From Histology To Ecology. *Oceanogr Mar Biol Annu Rev.* 2006;44:197-276. doi:10.1201/9781420006391.ch5
- 255. Fontana A, Ciavatta ML, DeSouza L, Mollo E, Naik CG, Parameswaran PS, Wahidullah S, Cimino G. Selected chemo-ecological studies of marine opisthobranchs from Indian coasts. Published online 2001. Accessed November 1, 2021. https://drs.nio.org/xmlui/handle/2264/398
- 256. Rogers SD, Paul VJ. Chemical defenses of three Glossodoris nudibranchs and their dietary Hyrtios sponges. *Mar Ecol Prog Ser*. 1991;77(2/3):221-232.
- 257. Arbuckle K, Speed MP. Antipredator defenses predict diversification rates. *Proc Natl Acad Sci.* 2015;112(44):13597-13602. doi:10.1073/pnas.1509811112
- 258. Arbuckle K, Rodríguez de la Vega RC, Casewell NR. Coevolution takes the sting out of it: Evolutionary biology and mechanisms of toxin resistance in animals. *Toxicon*. 2017;140:118-131. doi:10.1016/j.toxicon.2017.10.026
- 259. Jones L, Harris RJ, Fry BG. Not Goanna Get Me: Mutations in the Savannah Monitor Lizard (Varanus exanthematicus) Nicotinic Acetylcholine Receptor Confer Reduced Susceptibility to Sympatric Cobra Venoms. *Neurotox Res.* Published online March 20, 2021. doi:10.1007/s12640-021-00351-z

- 260. Arbuckle K. Special Issue: Evolutionary Ecology of Venom. *Toxins*. 2021;13(5):310. doi:10.3390/toxins13050310
- 261. Jacob F. Evolution and Tinkering. Science. 1977;196(4295):1161-1166.
- 262. Price GR. The nature of selection. J Theor Biol. 1995;175(3):389-396. doi:10.1006/jtbi.1995.0149
- 263. Jiang X, Lonsdale DJ, Gobler CJ. Rapid gain and loss of evolutionary resistance to the harmful dinoflagellate Cochlodinium polykrikoides in the copepod Acartia tonsa. *Limnol Oceanogr*. 2011;56(3):947-954. doi:https://doi.org/10.4319/lo.2011.56.3.0947
- 264. Kondrashov FA. Gene duplication as a mechanism of genomic adaptation to a changing environment. *Proc R Soc B Biol Sci.* 2012;279(1749):5048-5057. doi:10.1098/rspb.2012.1108
- 265. Nelsen DR, Nisani Z, Cooper AM, Fox GA, Gren ECK, Corbit AG, Hayes WK. Poisons, toxungens, and venoms: redefining and classifying toxic biological secretions and the organisms that employ them. *Biol Rev.* 2014;89(2):450-465. doi:https://doi.org/10.1111/brv.12062
- 266. Sunagar K, Moran Y. The Rise and Fall of an Evolutionary Innovation: Contrasting Strategies of Venom Evolution in Ancient and Young Animals. *PLOS Genet*. 2015;11(10):e1005596. doi:10.1371/journal.pgen.1005596
- 267. McGlothlin JW, Kobiela ME, Feldman CR, Castoe TA, Geffeney SL, Hanifin CT, Toledo G, Vonk FJ, Richardson MK, Brodie ED, et al. Historical Contingency in a Multigene Family Facilitates Adaptive Evolution of Toxin Resistance. *Curr Biol.* 2016;26(12):1616-1621. doi:10.1016/j.cub.2016.04.056
- 268. Jiang X, Gao H, Zhang L, Liang H, Zhu X. Rapid evolution of tolerance to toxic Microcystis in two cladoceran grazers. *Sci Rep.* 2016;6(1):25319. doi:10.1038/srep25319
- 269. Tarvin RD, Santos JC, O'Connell LA, Zakon HH, Cannatella DC. Convergent Substitutions in a Sodium Channel Suggest Multiple Origins of Toxin Resistance in Poison Frogs. *Mol Biol Evol*. 2016;33(4):1068-1080. doi:10.1093/molbev/msv350
- 270. Tarvin RD, Borghese CM, Sachs W, Santos JC, Lu Y, O'Connell LA, Cannatella DC, Harris RA, Zakon HH. Interacting amino acid replacements allow poison frogs to evolve epibatidine resistance. *Science*. 2017;357(6357):1261-1266. doi:10.1126/science.aan5061
- 271. Ogawara H. Comparison of Strategies to Overcome Drug Resistance: Learning from Various Kingdoms. *Mol J Synth Chem Nat Prod Chem*. 2018;23(6):1476. doi:10.3390/molecules23061476
- 272. Wilson TG. Resistance of Drosophila to Toxins. Annu Rev Entomol. 2001;46(1):545-571. doi:10.1146/annurev.ento.46.1.545
- 273. Després L, David JP, Gallet C. The evolutionary ecology of insect resistance to plant chemicals. *Trends Ecol Evol.* 2007;22(6):298-307. doi:10.1016/j.tree.2007.02.010
- 274. Agrawal AA, Petschenka G, Bingham RA, Weber MG, Rasmann S. Toxic cardenolides: chemical ecology and coevolution of specialized plant–herbivore interactions. *New Phytol.* 2012;194(1):28-45. doi:10.1111/j.1469-8137.2011.04049.x
- 275. Leimu R, Muola A, Laukkanen L, Kalske A, Prill N, Mutikainen P. Plant-herbivore coevolution in a changing world. *Entomol Exp Appl*. 2012;144(1):3-13. doi:10.1111/j.1570-7458.2012.01267.x
- 276. Moore BD, Andrew RL, Külheim C, Foley WJ. Explaining intraspecific diversity in plant secondary metabolites in an ecological context. *New Phytol.* 2014;201(3):733-750. doi:10.1111/nph.12526

- 277. Speed MP, Fenton A, Jones MG, Ruxton GD, Brockhurst MA. Coevolution can explain defensive secondary metabolite diversity in plants. *New Phytol.* 2015;208(4):1251-1263. doi:10.1111/nph.13560
- 278. Bramer C, Dobler S, Deckert J, Stemmer M, Petschenka G. Na+/K+-ATPase resistance and cardenolide sequestration: basal adaptations to host plant toxins in the milkweed bugs (Hemiptera: Lygaeidae: Lygaeinae). *Proc R Soc B Biol Sci.* 2015;282(1805):20142346. doi:10.1098/rspb.2014.2346
- 279. Heidel-Fischer HM, Vogel H. Molecular mechanisms of insect adaptation to plant secondary compounds. *Curr Opin Insect Sci.* 2015;8:8-14. doi:10.1016/j.cois.2015.02.004
- 280. Schuman MC, Baldwin IT. The Layers of Plant Responses to Insect Herbivores. *Annu Rev Entomol.* 2016;61(1):373-394. doi:10.1146/annurev-ento-010715-023851
- 281. Bramer C, Friedrich F, Dobler S. Defence by plant toxins in milkweed bugs (Heteroptera: Lygaeinae) through the evolution of a sophisticated storage compartment. *Syst Entomol*. 2017;42(1):15-30. doi:10.1111/syen.12189
- 282. Jander G. Revisiting Plant-Herbivore Co-Evolution in the Molecular Biology Era. In: *Annual Plant Reviews Online*. American Cancer Society; 2018:361-384. doi:10.1002/9781119312994.apr0515
- 283. Zhang X, van Doan C, Arce CCM, Hu L, Gruenig S, Parisod C, Hibbard BE, Hervé MR, Nielson C, Robert CAM, et al. Plant defense resistance in natural enemies of a specialist insect herbivore. Proc Natl Acad Sci. 2019;116(46):23174-23181. doi:10.1073/pnas.1912599116
- 284. Yang L. THE DYNAMICS OF EVOLUTION OF TOXIN RESISTANCE IN INSECTS AND VERTEBRATES. Published online 2020. Accessed April 13, 2021. https://dataspace.princeton.edu/handle/88435/dsp01nc580q72n
- 285. Xia J, Guo Z, Yang Z, Han H, Wang S, Xu H, Yang X, Yang F, Wu Q, Xie W, et al. Whitefly hijacks a plant detoxification gene that neutralizes plant toxins. *Cell*. 2021;184(7):1693-1705.e17. doi:10.1016/j.cell.2021.02.014
- 286. Pokharel P, Steppuhn A, Petschenka G. Dietary cardenolides enhance growth and change the direction of the fecundity-longevity trade-off in milkweed bugs (Heteroptera: Lygaeinae). *bioRxiv*. Published online March 30, 2021:2021.03.29.437508. doi:10.1101/2021.03.29.437508
- 287. Aardema ML, Zhen Y, Andolfatto P. The evolution of cardenolide-resistant forms of Na<sup>+</sup>, K<sup>+</sup> ATPase in Danainae butterflies: EVOLUTION OF CARDENOLIDE-RESISTANT FORMS. *Mol Ecol*. 2012;21(2):340-349. doi:10.1111/j.1365-294X.2011.05379.x
- 288. Petschenka G, Fandrich S, Sander N, Wagschal V, Boppré M, Dobler S. Stepwise Evolution of Resistance to Toxic Cardenolides Via Genetic Substitutions in the Na+/K+-Atpase of Milkweed Butterflies (lepidoptera: Danaini). *Evolution*. 2013;67(9):2753-2761. doi:10.1111/evo.12152
- 289. Petschenka G, Pick C, Wagschal V, Dobler S. Functional evidence for physiological mechanisms to circumvent neurotoxicity of cardenolides in an adapted and a non-adapted hawk-moth species. *Proc R Soc B Biol Sci.* 2013;280(1759):20123089. doi:10.1098/rspb.2012.3089
- 290. Petschenka G, Agrawal AA. Milkweed butterfly resistance to plant toxins is linked to sequestration, not coping with a toxic diet. *Proc R Soc B Biol Sci.* 2015;282(1818):20151865. doi:10.1098/rspb.2015.1865
- 291. Ujvari B, Casewell NR, Sunagar K, Arbuckle K, Wüster W, Lo N, O'Meally D, Beckmann C, King GF, Deplazes E, et al. Widespread convergence in toxin resistance by predictable molecular evolution. *Proc Natl Acad Sci U S A*. 2015;112(38):11911-11916. doi:10.1073/pnas.1511706112

- 292. Dalla S, Dobler S. Gene duplications circumvent trade-offs in enzyme function: Insect adaptation to toxic host plants. *Evolution*. 2016;70(12):2767-2777. doi:10.1111/evo.13077
- 293. Karageorgi M, Groen SC, Sumbul F, Pelaez JN, Verster KI, Aguilar JM, Hastings AP, Bernstein SL, Matsunaga T, Astourian M, et al. Genome editing retraces the evolution of toxin resistance in the monarch butterfly. *Nature*. 2019;574(7778):409-412. doi:10.1038/s41586-019-1610-8
- 294. Yoshida T, Ujiie R, Savitzky AH, Jono T, Inoue T, Yoshinaga N, Aburaya S, Aoki W, Takeuchi H, Ding L, et al. Dramatic dietary shift maintains sequestered toxins in chemically defended snakes. *Proc Natl Acad Sci.* 2020;117(11):5964-5969.
- 295. Medina-Ortiz K, Lopez-Alvarez D, Navia F, Hansen T, Fierro L, Castaño S. Identification of Na+/K + -ATPase α/β isoforms in Rhinella marina tissues by RNAseq and a molecular docking approach at the protein level to evaluate α isoform affinities for bufadienolides. *Comp Biochem Physiol A Mol Integr Physiol.* 2021;254:110906. doi:10.1016/j.cbpa.2021.110906
- 296. Abraham EP, Chain E. An Enzyme from Bacteria able to Destroy Penicillin. *Nature*. 1940;146(3713):837-837. doi:10.1038/146837a0
- 297. Georghiou GP, Wirth MC. Influence of Exposure to Single versus Multiple Toxins of Bacillus thuringiensis subsp. israelensis on Development of Resistance in the Mosquito Culex quinquefasciatus (Diptera: Culicidae). *Appl Environ Microbiol*. 1997;63(3):1095-1101. doi:10.1128/aem.63.3.1095-1101.1997
- 298. Tabashnik BE, Liu YB, Finson N, Masson L, Heckel DG. One gene in diamondback moth confers resistance to four Bacillus thuringiensis toxins. *Proc Natl Acad Sci.* 1997;94(5):1640-1644.
- 299. REBOUD X, MAJERUS N, GASQUEZ J, POWLES S. Chlamydomonas reinhardtii as a model system for pro-active herbicide resistance evolution research. *Biol J Linn Soc*. 2007;91(2):257-266. doi:10.1111/j.1095-8312.2007.00787.x
- 300. Collins S, Gardner A. Integrating physiological, ecological and evolutionary change: a Price equation approach. *Ecol Lett.* 2009;12(8):744-757. doi:10.1111/j.1461-0248.2009.01340.x
- 301. Baxter SW, Badenes-Pérez FR, Morrison A, Vogel H, Crickmore N, Kain W, Wang P, Heckel DG, Jiggins CD. Parallel Evolution of Bacillus thuringiensis Toxin Resistance in Lepidoptera. *Genetics*. 2011;189(2):675-679. doi:10.1534/genetics.111.130971
- 302. Zakon HH. Adaptive evolution of voltage-gated sodium channels: The first 800 million years. *Proc Natl Acad Sci.* 2012;109(Supplement 1):10619-10625.
- 303. Jochumsen N, Marvig RL, Damkiær S, Jensen RL, Paulander W, Molin S, Jelsbak L, Folkesson A. The evolution of antimicrobial peptide resistance in Pseudomonas aeruginosa is shaped by strong epistatic interactions. *Nat Commun.* 2016;7(1):13002. doi:10.1038/ncomms13002
- 304. Alyokhin A, Chen YH. Adaptation to toxic hosts as a factor in the evolution of insecticide resistance. *Curr Opin Insect Sci.* 2017;21:33-38. doi:10.1016/j.cois.2017.04.006
- 305. Peyser RD, Lanno SM, Shimshak SJ, Coolon JD. Analysis of cytochrome P450 contribution to evolved plant toxin resistance in Drosophila sechellia. *Insect Mol Biol.* 2017;26(6):715-720. doi:10.1111/imb.12329
- MacLean RC, Millan AS. The evolution of antibiotic resistance. Science. 2019;365(6458):1082-1083. doi:10.1126/science.aax3879
- 307. Kairigo P, Ngumba E, Sundberg LR, Gachanja A, Tuhkanen T. Occurrence of antibiotics and risk of antibiotic resistance evolution in selected Kenyan wastewaters, surface waters and sediments. *Sci Total Environ*. 2020;720:137580. doi:10.1016/j.scitotenv.2020.137580

- 308. Christaki E, Marcou M, Tofarides A. Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. *J Mol Evol*. 2020;88(1):26-40. doi:10.1007/s00239-019-09914-3
- 309. Papkou A, Hedge J, Kapel N, Young B, MacLean RC. Efflux pump activity potentiates the evolution of antibiotic resistance across S. aureus isolates. *Nat Commun.* 2020;11(1):3970. doi:10.1038/s41467-020-17735-y
- 310. Stanton IC, Murray AK, Zhang L, Snape J, Gaze WH. Evolution of antibiotic resistance at low antibiotic concentrations including selection below the minimal selective concentration. *Commun Biol.* 2020;3(1):1-11. doi:10.1038/s42003-020-01176-w
- 311. Gurney J, Pradier L, Griffin JS, Gougat-Barbera C, Chan BK, Turner PE, Kaltz O, Hochberg ME. Phage steering of antibiotic-resistance evolution in the bacterial pathogen, Pseudomonas aeruginosa. *Evol Med Public Health*. 2020;2020(1):148-157. doi:10.1093/emph/eoaa026
- 312. Bottery MJ, Pitchford JW, Friman VP. Ecology and evolution of antimicrobial resistance in bacterial communities. *ISME J*. 2021;15(4):939-948. doi:10.1038/s41396-020-00832-7
- 313. Yan Y, Liu N, Tang Y. Recent developments in self-resistance gene directed natural product discovery. *Nat Prod Rep.* Published online January 8, 2020. doi:10.1039/C9NP00050J
- 314. Jiang X, Zhang L, Liang H, Li Q, Zhao Y, Chen L, Yang W, Zhao S. Resistance variation within a Daphnia pulex population against toxic cyanobacteria. J Plankton Res. 2013;35(5):1177-1181. doi:10.1093/plankt/fbt062
- 315. Prince EK, Poulson-Ellestad KL. Predator–Prey Interactions in the Marine Plankton: The Role of Signals, Cues, and Defensive Compounds. In: *Chemical Ecology*. CRC Press; 2018.
- 316. Matthews B, Jokela J, Narwani A, Räsänen K, Pomati F, Altermatt F, Spaak P, Robinson CT, Vorburger C. On biological evolution and environmental solutions. *Sci Total Environ*. 2020;724:138194. doi:10.1016/j.scitotenv.2020.138194
- 317. Isanta-Navarro J, Hairston NG, Beninde J, Meyer A, Straile D, Möst M, Martin-Creuzburg D. Reversed evolution of grazer resistance to cyanobacteria. *Nat Commun.* 2021;12(1):1945. doi:10.1038/s41467-021-22226-9
- Turner AD, Lewis AM, Bradley K, Maskrey BH. Marine invertebrate interactions with Harmful Algal Blooms – Implications for One Health. J Invertebr Pathol. Published online February 16, 2021:107555. doi:10.1016/j.jip.2021.107555
- 319. Dumbacher JP, Spande TF, Daly JW. Batrachotoxin alkaloids from passerine birds: A second toxic bird genus (Ifrita kowaldi) from New Guinea. *Proc Natl Acad Sci.* 2000;97(24):12970-12975.
- 320. Jønsson KA, Bowie RCK, Norman JA, Christidis L, Fjeldså J. Polyphyletic origin of toxic Pitohui birds suggests widespread occurrence of toxicity in corvoid birds. *Biol Lett.* 2008;4(1):71-74. doi:10.1098/rsbl.2007.0464
- 321. Dumbacher JP, Deiner K, Thompson L, Fleischer RC. Phylogeny of the avian genus Pitohui and the evolution of toxicity in birds. *Mol Phylogenet Evol.* 2008;49(3):774-781. doi:10.1016/j.ympev.2008.09.018
- 322. A. Saporito R, F. Spande T, Martin Garraffo H, A. Donnelly M. Arthropod Alkaloids in Poison Frogs: A Review of the 'Dietary Hypothesis.' *HETEROCYCLES*. 2009;79(1):277. doi:10.3987/REV-08-SR(D)11
- 323. Menon GK, Dumbacher JP. A 'toxin mantle' as defensive barrier in a tropical bird: evolutionary exploitation of the basic permeability barrier forming organelles. *Exp Dermatol.* 2014;23(4):288-290. doi:10.1111/exd.12367

- 324. Ligabue-Braun R, Carlini CR. Poisonous birds: A timely review. *Toxicon*. 2015;99:102-108. doi:10.1016/j.toxicon.2015.03.020
- 325. Santos JC, Tarvin RD, O'Connell LA. A Review of Chemical Defense in Poison Frogs (Dendrobatidae): Ecology, Pharmacokinetics, and Autoresistance. In: Schulte BA, Goodwin TE, Ferkin MH, eds. *Chemical Signals in Vertebrates 13*. Springer International Publishing; 2016:305-337. doi:10.1007/978-3-319-22026-0\_21
- 326. Abderemane-Ali F, Rossen ND, Kobiela ME, Craig RA, Garrison CE, O'Connell LA, Bois JD, Dumbacher JP, Minor DL. Sodium channel toxin-resistance mutations do not govern batrachotoxin (BTX) autoresistance in poison birds and frogs. *bioRxiv*. Published online October 29, 2020:2020.10.29.361212. doi:10.1101/2020.10.29.361212
- 327. Rowe AH, Xiao Y, Rowe MP, Cummins TR, Zakon HH. Voltage-Gated Sodium Channel in Grasshopper Mice Defends Against Bark Scorpion Toxin. *Science*. 2013;342(6157):441-446. doi:10.1126/science.1236451
- 328. Jansa SA, Voss RS. Adaptive Evolution of the Venom-Targeted vWF Protein in Opossums that Eat Pitvipers. *PLoS ONE*. 2011;6(6). doi:10.1371/journal.pone.0020997
- 329. Drabeck DH, Rucavado A, Hingst-Zaher E, Cruz YP, Dean AM, Jansa SA. Resistance of South American opossums to vWF-binding venom C-type lectins. *Toxicon*. 2020;178:92-99. doi:10.1016/j.toxicon.2020.02.024
- 330. Drabeck DH, Dean AM, Jansa SA. Why the honey badger don't care: Convergent evolution of venom-targeted nicotinic acetylcholine receptors in mammals that survive venomous snake bites. *Toxicon.* 2015;99:68-72. doi:10.1016/j.toxicon.2015.03.007
- 331. Khan MA, Dashevsky D, Kerkkamp H, Kordiš D, de Bakker MAG, Wouters R, van Thiel J, op den Brouw B, Vonk FJ, Kini RM, et al. Widespread Evolution of Molecular Resistance to Snake Venom α-Neurotoxins in Vertebrates. *Toxins*. 2020;12(10):638. doi:10.3390/toxins12100638
- 332. Harris RJ, Nekaris KAI, Fry BG. Coevolution between primates and venomous snakes revealed by α-neurotoxin susceptibility. *bioRxiv*. Published online January 29, 2021:2021.01.28.428735. doi:10.1101/2021.01.28.428735
- 333. Harris R. Electrostatic resistance to alpha- neurotoxins conferred by charge reversal mutations in nicotinic acetylcholine receptors. *Proc R Soc B Biol Sci.* 2021;288. doi:10.1098/rspb.2020.2703
- 334. Daly JW, Gusovsky F, Myers CW, Yotsu-Yamashita M, Yasumoto T. First occurrence of tetrodotoxin in a dendrobatid frog (Colostethus inguinalis), with further reports for the bufonid genus Atelopus. *Toxicon*. 1994;32(3):279-285. doi:10.1016/0041-0101(94)90081-7
- 335. Jeziorski MC, Greenberg RM, Anderson PA. Cloning of a putative voltage-gated sodium channel from the turbellarian flatworm Bdelloura candida. *Parasitology*. 1997;115 (Pt 3):289-296. doi:10.1017/s0031182097001388
- 336. Geffeney S, Brodie ED, Ruben PC, Brodie ED. Mechanisms of Adaptation in a Predator-Prey Arms Race: TTX-Resistant Sodium Channels. *Science*. 2002;297(5585):1336-1339. doi:10.1126/science.1074310
- 337. Williams BL, Brodie ED Jr, Brodie ED III. COEVOLUTION OF DEADLY TOXINS AND PREDATOR RESISTANCE: SELF-ASSESSMENT OF RESISTANCE BY GARTER SNAKES LEADS TO BEHAVIORAL REJECTION OF TOXIC NEWT PREY. *Herpetologica*. 2003;59(2):155-163. doi:10.1655/0018-0831(2003)059[0155:CODTAP]2.0.CO;2

- 338. Bricelj VM, Connell L, Konoki K, MacQuarrie SP, Scheuer T, Catterall WA, Trainer VL. Sodium channel mutation leading to saxitoxin resistance in clams increases risk of PSP. *Nature*. 2005;434(7034):763-767. doi:10.1038/nature03415
- 339. Geffeney SL, Fujimoto E, Brodie ED, Brodie ED, Ruben PC. Evolutionary diversification of TTXresistant sodium channels in a predator–prey interaction. *Nature*. 2005;434(7034):759-763. doi:10.1038/nature03444
- 340. Soong TW, Venkatesh B. Adaptive evolution of tetrodotoxin resistance in animals. *Trends Genet*. 2006;22(11):621-626. doi:10.1016/j.tig.2006.08.010
- 341. Jost MC, Hillis DM, Lu Y, Kyle JW, Fozzard HA, Zakon HH. Toxin-Resistant Sodium Channels: Parallel Adaptive Evolution across a Complete Gene Family. *Mol Biol Evol*. 2008;25(6):1016-1024. doi:10.1093/molbev/msn025
- 342. Lee CH, Jones DK, Ahern C, Sarhan MF, Ruben PC. Biophysical costs associated with tetrodotoxin resistance in the sodium channel pore of the garter snake, Thamnophis sirtalis. *J Comp Physiol A*. 2011;197(1):33-43. doi:10.1007/s00359-010-0582-9
- 343. Hanifin CT, Gilly WF. Evolutionary history of a complex adaptation: Tetrodotoxin resistance in salamanders. *Evol Int J Org Evol*. 2015;69(1):232-244. doi:10.1111/evo.12552
- 344. Jal S, Khora SS. An overview on the origin and production of tetrodotoxin, a potent neurotoxin. J Appl Microbiol. 2015;119(4):907-916. doi:10.1111/jam.12896
- 345. Feldman CR, Durso AM, Hanifin CT, Pfrender ME, Ducey PK, Stokes AN, Barnett KE, Brodie Iii ED, Brodie Jr ED. Is there more than one way to skin a newt? Convergent toxin resistance in snakes is not due to a common genetic mechanism. *Heredity*. 2016;116(1):84-91. doi:10.1038/hdy.2015.73
- 346. Li Y, Sun X, Hu X, Xun X, Zhang J, Guo X, Jiao W, Zhang L, Liu W, Wang J, et al. Scallop genome reveals molecular adaptations to semi-sessile life and neurotoxins. *Nat Commun.* 2017;8(1):1-11. doi:10.1038/s41467-017-01927-0
- 347. Magarlamov TYu, Melnikova DI, Chernyshev AV. Tetrodotoxin-Producing Bacteria: Detection, Distribution and Migration of the Toxin in Aquatic Systems. *Toxins*. 2017;9(5):166. doi:10.3390/toxins9050166
- 348. Shen H, Li Z, Jiang Y, Pan X, Wu J, Cristofori-Armstrong B, Smith JJ, Chin YKY, Lei J, Zhou Q, et al. Structural basis for the modulation of voltage-gated sodium channels by animal toxins. *Science*. 2018;362(6412). doi:10.1126/science.aau2596
- 349. Turner AD, Fenwick D, Powell A, Dhanji-Rapkova M, Ford C, Hatfield RG, Santos A, Martinez-Urtaza J, Bean TP, Baker-Austin C, et al. New Invasive Nemertean Species (Cephalothrix Simula) in England with High Levels of Tetrodotoxin and a Microbiome Linked to Toxin Metabolism. *Mar Drugs*. 2018;16(11):452. doi:10.3390/md16110452
- 350. Dell'Aversano C, Tartaglione L, Polito G, Dean K, Giacobbe M, Casabianca S, Capellacci S, Penna A, Turner AD. First detection of tetrodotoxin and high levels of paralytic shellfish poisoning toxins in shellfish from Sicily (Italy) by three different analytical methods. *Chemosphere*. 2019;215:881-892. doi:10.1016/j.chemosphere.2018.10.081
- 351. Geffeney SL, Williams BL, Rosenthal JJC, Birk MA, Felkins J, Wisell CM, Curry ER, Hanifin CT. Convergent and parallel evolution in a voltage-gated sodium channel underlies TTX-resistance in the Greater Blue-ringed Octopus: Hapalochlaena lunulata. *Toxicon*. 2019;170:77-84. doi:10.1016/j.toxicon.2019.09.013

- 352. Hague MTJ, Stokes AN, Feldman CR, Brodie ED, Brodie ED. The geographic mosaic of arms race coevolution is closely matched to prey population structure. *Evol Lett.* 2020;4(4):317-332. doi:https://doi.org/10.1002/evl3.184
- 353. Reimche JS, Brodie ED, Stokes AN, Ely EJ, Moniz HA, Thill VL, Hallas JM, Pfrender ME, Brodie ED, Feldman CR. The geographic mosaic in parallel: Matching patterns of newt tetrodotoxin levels and snake resistance in multiple predator–prey pairs. *J Anim Ecol.* 2020;89(7):1645-1657. doi:10.1111/1365-2656.13212
- 354. Vaelli PM, Theis KR, Williams JE, O'Connell LA, Foster JA, Eisthen HL. The skin microbiome facilitates adaptive tetrodotoxin production in poisonous newts. Baldwin IT, Robert CA, Robert CA, González Montoya MC, eds. *eLife*. 2020;9:e53898. doi:10.7554/eLife.53898
- 355. Whitelaw BL, Cooke IR, Finn J, Zenger K, Strugnell JM. The evolution and origin of tetrodotoxin acquisition in the blue-ringed octopus (genus Hapalochlaena). *Aquat Toxicol*. 2019;206:114-122. doi:10.1016/j.aquatox.2018.10.012
- 356. Whitelaw BL, Cooke IR, Finn J, da Fonseca RR, Ritschard EA, Gilbert MTP, Simakov O, Strugnell JM. Adaptive venom evolution and toxicity in octopods is driven by extensive novel gene formation, expansion, and loss. *GigaScience*. 2020;9(giaa120). doi:10.1093/gigascience/giaa120
- 357. Gendreau K, Hornsby A, Hague M, McGlothlin J. Gene Conversion Facilitates the Adaptive Evolution of Self-Resistance in Highly Toxic Newts.; 2021. doi:10.1101/2021.03.25.437018
- 358. Singh HP, Batish DR, Kohli RK. Autotoxicity: Concept, Organisms, and Ecological Significance. *Crit Rev Plant Sci.* 1999;18(6):757-772. doi:10.1080/07352689991309478
- 359. Almabruk KH, Dinh LK, Philmus B. Self-Resistance of Natural Product Producers: Past, Present, and Future Focusing on Self-Resistant Protein Variants. *ACS Chem Biol*. 2018;13(6):1426-1437. doi:10.1021/acschembio.8b00173
- 360. Kistler HC, Broz K. Cellular compartmentalization of secondary metabolism. *Front Microbiol*. 2015;6. doi:10.3389/fmicb.2015.00068
- 361. Blanco J. Accumulation of Dinophysis Toxins in Bivalve Molluscs. *Toxins*. 2018;10(11):453. doi:10.3390/toxins10110453
- 362. Briggs JC. Extinction and replacement in the Indo-West Pacific Ocean. J Biogeogr. 1999;26(4):777-783. doi:10.1046/j.1365-2699.1999.00322.x
- 363. Veron JEN, Devantier LM, Turak E, Green AL, Kininmonth S, Stafford-Smith M, Peterson N. Delineating the Coral Triangle. *Galaxea J Coral Reef Stud.* 2009;11(2):91-100.
- 364. Hoeksema BW. In search of the Asian-Pacific Centre of Maximum Marine Biodiversity: Explanations from the past and present. *Galaxea J Coral Reef Stud.* 2013;15(Supplement):1-8. doi:10.3755/galaxea.15.1
- 365. Sanciangco JC, Carpenter KE, Etnoyer PJ, Moretzsohn F. Habitat Availability and Heterogeneity and the Indo-Pacific Warm Pool as Predictors of Marine Species Richness in the Tropical Indo-Pacific. *PLoS ONE*. 2013;8(2):e56245.
- 366. Förderer M, Rödder D, Langer MR. Patterns of species richness and the center of diversity in modern Indo-Pacific larger foraminifera. *Sci Rep.* 2018;8(1):8189. doi:10.1038/s41598-018-26598-9
- 367. Sprintall J, Gordon AL, Koch-Larrouy A, Lee T, Potemra JT, Pujiana K, Wijffels SE. The Indonesian seas and their role in the coupled ocean–climate system. *Nat Geosci.* 2014;7(7):487-492. doi:10.1038/ngeo2188

- Lee T, Fournier S, Gordon AL, Sprintall J. Maritime Continent water cycle regulates low-latitude chokepoint of global ocean circulation. *Nat Commun.* 2019;10(1):2103. doi:10.1038/s41467-019-10109-z
- 369. Hoeksema BW. Delineation of the Indo-Malayan Centre of Maximum Marine Biodiversity: The Coral Triangle. *Top Geobiol*. Published online 2007:117-178.
- 370. Watanabe A, Nakamura T. Carbon Dynamics in Coral Reefs. In: Kuwae T, Hori M, eds. Blue Carbon in Shallow Coastal Ecosystems: Carbon Dynamics, Policy, and Implementation. Springer; 2019:273-293. doi:10.1007/978-981-13-1295-3\_10
- 371. Kasim M. Measuring Vulnerability of Coastal Ecosystem and Identifying Adaptation Options of Indonesia's Coastal Communities to Climate Change: Case Study of Southeast Sulawesi, Indonesia. In: Djalante R, Jupesta J, Aldrian E, eds. *Climate Change Research, Policy and Actions in Indonesia: Science, Adaptation and Mitigation*. Springer Climate. Springer International Publishing; 2021:149-172. doi:10.1007/978-3-030-55536-8\_8
- 372. Garçon V, Laffoley D, Baxter J. Ocean deoxygenation: everyone's problem. Causes, impacts, consequences and solutions. In: ; 2019. doi:10.2305/iucn.ch.2019.13.en
- 373. Hughes DJ, Alderdice R, Cooney C, Kühl M, Pernice M, Voolstra CR, Suggett DJ. Coral reef survival under accelerating ocean deoxygenation. *Nat Clim Change*. 2020;10(4):296-307. doi:10.1038/s41558-020-0737-9
- 374. Laffoley D, Baxter JM, Amon DJ, Claudet J, Hall-Spencer JM, Grorud-Colvert K, Levin LA, Reid PC, Rogers AD, Taylor ML, et al. Evolving the narrative for protecting a rapidly changing ocean, post-COVID-19. *Aquat Conserv.* Published online November 25, 2020:10.1002/aqc.3512. doi:10.1002/aqc.3512
- 375. Jennerjahn TC, Rixen T, Irianto HE, Samiaji J. 1 Introduction—Science for the Protection of Indonesian Coastal Ecosystems (SPICE). In: Jennerjahn TC, Rixen T, Irianto HE, Samiaji J, eds. Science for the Protection of Indonesian Coastal Ecosystems (SPICE). Elsevier; 2022:1-11. doi:10.1016/B978-0-12-815050-4.00013-4
- 376. Wang G, Percival IG, Zhen YY. The youngest Ordovician (latest Katian) coral fauna from eastern Australia, in the uppermost Malachis Hill Formation of central New South Wales. *Alcheringa Australas J Palaeontol*. 2020;44(3):356-378. doi:10.1080/03115518.2020.1747540
- 377. Rudman WB, Willan RC. *Opisthobranchia. The Southern Synthesis. Fauna of Australia.* CSIRO, Melbourne; 1998.
- 378. Nimbs MJ, Larkin M, Davis TR, Harasti D, Willan RC, Smith SDA. Southern range extensions for twelve heterobranch sea slugs (Gastropoda: Heterobranchia) on the eastern coast of Australia. *Mar Biodivers Rec.* 2016;9(1):27. doi:10.1186/s41200-016-0027-4
- 379. Nimbs MJ, Smith SDA. Welcome strangers: Southern range extensions for seven heterobranch sea slugs (Mollusca: Gastropoda) on the subtropical east Australian coast, a climate change hot spot. *Reg Stud Mar Sci.* 2016;8:27-32. doi:10.1016/j.rsma.2016.08.008
- 380. Nimbs MJ, Smith SDA. Beyond Capricornia: Tropical Sea Slugs (Gastropoda, Heterobranchia) Extend Their Distributions into the Tasman Sea. *Diversity*. 2018;10(3):99. doi:10.3390/d10030099
- 381. Gervais CR, Champion C, Pecl GT. Species on the move around the Australian coastline: A continental-scale review of climate-driven species redistribution in marine systems. *Glob Change Biol.* 2021;27(14):3200-3217. doi:10.1111/gcb.15634

- 382. Larkin MF, Smith SDA, Willan RC, Davis TR. Diel and seasonal variation in heterobranch sea slug assemblages within an embayment in temperate eastern Australia. *Mar Biodivers*. 2018;48(3):1541-1550. doi:10.1007/s12526-017-0700-9
- 383. Smith SDA, Davis TomR. Slugging it out for science: volunteers provide valuable data on the diversity and distribution of heterobranch sea slugs. *Molluscan Res.* 2019;39(3):214-223. doi:10.1080/13235818.2019.1594600
- 384. Elizabeth Moore TMG. Additions to the genus Phyllodesmium, with a phylogenetic analysis and its implications to the evolution of symbiosis. *Veliger -Berkeley-*. 2014;51(4):237-251.
- 385. Burghardt I, Gosliner TM. Phyllodesmium rudmani (Mollusca : Nudibranchia : Aeolidoidea), a new solar powered species from the Indo-West Pacific with data on its symbiosis with zooxanthellae. *Zootaxa*. 2006;(1308):31-47.
- 386. Sammarco PW, Coll JC. The Chemical Ecology of Alcyonarian Corals. In: Scheuer PPJ, ed. Bioorganic Marine Chemistry. Bioorganic Marine Chemistry. Springer Berlin Heidelberg; 1988:87-116. doi:10.1007/978-3-642-48346-2\_3
- 387. Fabricius K, Alderslade P. Soft Corals and Sea Fans. Australian Institute of Marine Science; 2001.
- 388. Fautin DG. Structural diversity, systematics, and evolution of cnidae. *Toxicon Off J Int Soc Toxinology*. 2009;54(8):1054-1064. doi:10.1016/j.toxicon.2009.02.024
- 389. Yoffe C, Lotan T, Benayhau Y. A Modified View on Octocorals: Heteroxenia fuscescens Nematocysts Are Diverse, Featuring Both an Ancestral and a Novel Type. *PLoS ONE*. 2012;7(2):e31902. doi:10.1371/journal.pone.0031902
- 390. Affeld S, Kehraus S, Wägele H, König GM. Dietary derived sesquiterpenes from Phyllodesmium lizardensis. *J Nat Prod*. 2009;72(2):298-300. doi:10.1021/np800583e
- 391. Coll JC, Bowden BF, Tapiolas DM, Willis RH, Djura P, Streamer M, Trott L. Studies of australian soft corals—XXXV. *Tetrahedron*. 1985;41(6):1085-1092. doi:10.1016/S0040-4020(01)96476-2
- 392. Slattery M, Avila C, Starmer J, Paul VJ. A sequestered soft coral diterpene in the aeolid nudibranch Phyllodesmium guamensis Avila, Ballesteros, Slattery, Starmer and Paul. *J Exp Mar Biol Ecol.* 1998;226(1):33-49. doi:10.1016/S0022-0981(97)00240-2
- 393. Mao SC, Gavagnin M, Mollo E, Guo YW. A new rare asteriscane sesquiterpene and other related derivatives from the Hainan aeolid nudibranch Phyllodesmium magnum. *Biochem Syst Ecol.* 2011;39(4-6):408-411. doi:10.1016/j.bse.2011.05.018
- 394. Stanley GD, Schootbrugge B van de. The Evolution of the Coral–Algal Symbiosis. In: Oppen MJH van, Lough JM, eds. *Coral Bleaching*. Ecological Studies. Springer Berlin Heidelberg; 2009:7-19. doi:10.1007/978-3-540-69775-6\_2
- 395. Sammarco PW, Strychar KB. Responses to High Seawater Temperatures in Zooxanthellate Octocorals. *Plos One*. 2013;8(2):e54989. doi:10.1371/journal.pone.0054989
- 396. Dinesen ZD. Patterns in the distribution of soft corals across the central Great Barrier Reef. *Coral Reefs*. 1983;1(4):229-236. doi:10.1007/BF00304420
- 397. Liang XT, Fang WS. *Medicinal Chemistry of Bioactive Natural Products*. John Wiley & Sons; 2006.
- 398. Jeng MS, Huang HD, Dai CF, Hsiao YC, Benayahu Y. Sclerite calcification and reef-building in the fleshy octocoral genus Sinularia (Octocorallia: Alcyonacea). *Coral Reefs*. 2011;30(4):925-933. doi:10.1007/s00338-011-0765-z

- 399. Coll J, Labarre S, Sammarco P, Williams W, Bakus G. Chemical Defenses in Soft Corals (coelenterata, Octocorallia) of the Great Barrier-Reef - a Study of Comparative Toxicities. *Mar Ecol Prog Ser.* 1982;8(3):271-278. doi:10.3354/meps008271
- 400. Tursch B. Some Recent Developments in the Chemistry of Alcyonaceans. *Pure Appl Chem.* 1976;48(1):1-6. doi:10.1351/pac197648010001
- 401. Faulkner DJ. Marine natural products. Nat Prod Rep. 2001;18(1):1R-49R. doi:10.1039/B006897G
- 402. Berrue F, Kerr RG. Diterpenes from gorgonian corals. *Nat Prod Rep.* 2009;26(5):681-710. doi:10.1039/b821918b
- 403. Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR. Marine natural products. *Nat Prod Rep.* 2015;32(2):116-211. doi:10.1039/C4NP00144C
- 404. Coll JC. The chemistry and chemical ecology of octocorals (Coelenterata, Anthozoa, Octocorallia). *Chem Rev.* 1992;92(4):613-631. doi:10.1021/cr00012a006
- 405. Jr JFW, Torres MS. Defensive Mutualism in Microbial Symbiosis. CRC Press; 2009.
- 406. Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR. Marine natural products. *Nat Prod Rep.* 2004;21(1):1-49. doi:10.1039/b305250h
- 407. Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR. Marine natural products. *Nat Prod Rep.* 2011;28(2):196-268. doi:10.1039/C005001F
- 408. Correa H, Aristizabal F, Duque C, Kerr R. Cytotoxic and antimicrobial activity of pseudopterosins and seco-pseudopterosins isolated from the octocoral Pseudopterogorgia elisabethae of San Andrés and Providencia Islands (Southwest Caribbean Sea). *Mar Drugs*. 2011;9(3):334-343. doi:10.3390/md9030334
- 409. Rocha J, Peixe L, Gomes NCM, Calado R. Cnidarians as a Source of New Marine Bioactive Compounds—An Overview of the Last Decade and Future Steps for Bioprospecting. *Mar Drugs*. 2011;9(10):1860-1886. doi:10.3390/md9101860
- 410. Wang SK, Duh CY. New Cytotoxic Cembranolides from the Soft Coral Lobophytum michaelae. *Mar Drugs*. 2012;10(2):306-318. doi:10.3390/md10020306
- 411. Li C, Jiang M, La MP, Li TJ, Tang H, Sun P, Liu BS, Yi YH, Liu Z, Zhang W. Chemistry and Tumor Cell Growth Inhibitory Activity of 11,20-Epoxy-3Z, 5(6)E-diene Briaranes from the South China Sea Gorgonian Dichotella gemmacea. *Mar Drugs.* 2013;11(5):1565-1582. doi:10.3390/md11051565
- 412. Neeman I, Fishelso.l, Kashman Y. Sarcophine New Toxin from Soft Coral Sarcophyton-Glaucum (alcyonaria). *Toxicon*. 1974;12(6):593-. doi:10.1016/0041-0101(74)90192-5
- 413. Kashman Y, Groweiss A. Lobolide: A new epoxy cembranolide from marine origin. *Tetrahedron Lett.* 1977;18(13):1159-1160. doi:10.1016/S0040-4039(01)92858-8
- 414. Li L, Wang CY, Shao CL, Han L, Sun XP, Zhao J, Guo YW, Huang H, Guan HS. Two new metabolites from the Hainan soft coral Sarcophyton crassocaule. J Asian Nat Prod Res. 2009;11(10):851-855. doi:10.1080/10286020902867060
- 415. Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR. Marine natural products. *Nat Prod Rep.* 2010;27(2):165. doi:10.1039/b906091j

- 416. Aceret TL, Sammarco PW, Coll JC, Uchio Y. Discrimination between several diterpenoid compounds in feeding by Gambusia affinis. *Comp Biochem Physiol Part C Toxicol Pharmacol*. 2001;128(1):55-63. doi:10.1016/S1532-0456(00)00182-4
- 417. Kim SK. Springer Handbook of Marine Biotechnology. Springer; 2015.
- 418. Hoang BX, Sawall Y, Al-Sofyani A, Wahl M. Chemical versus structural defense against fish predation in two dominant soft coral species (Xeniidae) in the Red Sea. *Aquat Biol.* 2015;23(2):129-137. doi:10.3354/ab00614
- 419. Tanaka J, Yoshida T, Benayahu Y. Chemical diversity of Sarcophyton soft corals in Okinawa. J Jpn Coral Reef Soc. 2005;2005(7):1-9. doi:10.3755/jcrs.2005.1
- 420. Slattery M, McClintock JB, Heine JN. Chemical defenses in Antarctic soft corals: evidence for antifouling compounds. *J Exp Mar Biol Ecol.* 1995;190(1):61-77. doi:10.1016/0022-0981(95)00032-M
- 421. Slattery M, McClintock JB, Bowser SS. Deposit feeding: a novel mode of nutrition in the Antarctic colonial soft coral Gersemia antarctica. *Oceanogr Lit Rev.* 1997;9(44):996.
- 422. Sammarco P, Labarre S, Coll J. Defensive Strategies of Soft Corals (coelenterata, Octocorallia) of the Great-Barrier-Reef .3. the Relationship Between Ichthyotoxicity and Morphology. *Oecologia*. 1987;74(1):93-101. doi:10.1007/BF00377351
- 423. Krebs HChr. Recent Developments in the Field of Marine Natural Products with Emphasis on Biologically Active Compounds. In: Hill RA, Krebs HChr, Verpoorte R, Wijnsma R, Herz W, Grisebach H, Kirby GW, Tamm Ch, eds. Fortschritte Der Chemie Organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products. Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products. Springer; 1986:151-363. doi:10.1007/978-3-7091-8846-0\_3
- 424. Kashman Y, Zadock E, Neeman I. Some New Cembrane Derivatives of Marine Origin. *Tetrahedron.* 1974;30(19):3615-3620. doi:10.1016/S0040-4020(01)97044-9
- 425. Bowden B, Coll J, Hicks W, Kazlauskas R, Mitchell S. Studies of Australian Soft Corals .10. Isolation of Epoxyisoneocembrene-a from Sinularia-Grayi and Isoneocembrene-a from Sarcophyton-Ehrenbergi. *Aust J Chem.* 1978;31(12):2707-2712.
- 426. Bowden B, Coll J, Mitchell S, Stokie G. Studies of Australian Soft Corals .11. 2 New Cembranoid Diterpenes from a Sarcophyton-Species. *Aust J Chem.* 1979;32(3):653-659.
- 427. Bowden BF, Coll JC, Heaton A, König G, Bruck MA, Cramer RE, Klein DM, Scheuer PJ. The Structures of Four Isomeric Dihydrofuran-Containing Cembranoid Diterpenes from Several Species of Soft Coral. *J Nat Prod.* 1987;50(4):650-659. doi:10.1021/np50052a013
- 428. Kobayashi M, Hirase T. Marine Terpenes and Terpenoids. XI.: Structures of New Dihydrofuranocembranoids Isolated from a Sarcophyton sp. Soft Coral of Okinawa. *Chem Pharm Bull (Tokyo)*. 1990;38(9):2442-2445. doi:10.1248/cpb.38.2442
- 429. Coll J, Bowden B, Alino P, Heaton A, Konig G, Denys R, Willis R, Sammarco P, Clayton M. Chemically Mediated Interactions Between Marine Organisms. *Chem Scr.* 1989;29(4):383-388.
- 430. Li Y, Pattenden G. Perspectives on the structural and biosynthetic interrelationships between oxygenated furanocembranoids and their polycyclic congeners found in corals. *Nat Prod Rep.* 2011;28(7):1269-1310. doi:10.1039/C1NP00023C
- 431. Liang LF, Guo YW. Terpenes from the Soft Corals of the Genus Sarcophyton: Chemistry and Biological Activities. *Chem Biodivers*. 2013;10(12):2161-2196. doi:10.1002/cbdv.201200122

- 432. Singh P, Singh IN, Mondal SC, Singh L, Garg VK. Platelet-activating factor (PAF)-antagonists of natural origin. *Fitoterapia*. 2013;84:180-201. doi:10.1016/j.fitote.2012.11.002
- 433. Zhao YM, Maimone TJ. Short, Enantioselective Total Synthesis of Chatancin. *Angew Chem Int Ed.* 2015;54(4):1223-1226. doi:10.1002/anie.201410443
- 434. Anjaneyulu ASR, Venugopal MJRV, Sarada P, Rao GV, Clardy J, Lobkovsky E. Sarcophytin, A Novel Tetracyclic Diterpenoid From The Indian Ocean Soft Coral Sarcophyton elegans. *Tetrahedron Lett.* 1998;39(1–2):135-138. doi:10.1016/S0040-4039(97)10469-5
- 435. Sugano M, Shindo T, Sato A, Iijima Y, Oshima T, Kuwano H, Hata T. Chatancin, a PAF antagonist from a soft coral, Sarcophyton sp. *J Org Chem.* 1990;55(23):5803-5805. doi:10.1021/jo00310a001
- 436. Zhou Z fang, Guo Y wei. Bioactive natural products from Chinese marine flora and fauna. *Acta Pharmacol Sin*. 2012;33(9):1159-1169. doi:10.1038/aps.2012.110
- 437. Nam NH, Tung PT, Ngoc NT, Hanh TTH, Thao NP, Thanh NV, Cuong NX, Thao DT, Huong TT, Thung DC, et al. Cytotoxic Biscembranoids from the Soft Coral Sarcophyton pauciplicatum. *Chem Pharm Bull (Tokyo)*. 2015;63(8):636-640.
- 438. Iwagawa T, Hashimoto K, Okamura H, Kurawaki J ichi, Nakatani M, Hou DX, Fujii M, Doe M, Morimoto Y, Takemura K. Biscembranes from the Soft Coral Sarcophyton glaucum. *J Nat Prod*. 2006;69(8):1130-1133. doi:10.1021/np058115+
- 439. Iwagawa T, Hashimoto K, Yokogawa Y, Okamura H, Nakatani M, Doe M, Morimoto Y, Takemura K. Cytotoxic biscembranes from the soft coral Sarcophyton glaucum. *J Nat Prod.* 2009;72(5):946-949. doi:10.1021/np8003485
- 440. Weinheimer AJ, Chang CWJ, Matson JA. Naturally Occurring Cembranes. In: Herz W, Grisebach H, Kirby GW, eds. Fortschritte Der Chemie Organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products. Fortschritte der Chemie Organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products. Springer Vienna; 1979:285-387. doi:10.1007/978-3-7091-3265-4\_3
- 441. Wahlberg I, Eklund AM. Cembranoids, Pseudopteranoids, and Cubitanoids of Natural Occurrence. In: Herz PW, Kirby PGW, Moore PRE, Steglich PDW, Tamm PDC, eds. Fortschritte Der Chemie Organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products. Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products. Springer Vienna; 1992:141-294. doi:10.1007/978-3-7091-9150-7\_2
- 442. Kokke WC, Epstein S, Look SA, Rau GH, Fenical W, Djerassi C. On the origin of terpenes in symbiotic associations between marine invertebrates and algae (zooxanthellae). Culture studies and an application of 13C/12C isotope ratio mass spectrometry. *J Biol Chem.* 1984;259(13):8168-8173.
- 443. Ciereszko LS. Sterol and Diterpenoid Production by Zooxanthellae in Coral Reefs: A Review. *Biol Oceanogr.* 1989;6(3-4):363-374. doi:10.1080/01965581.1988.10749538
- 444. Michalek-Wagner K, Bourne DJ, Bowden BF. The effects of different strains of zooxanthellae on the secondary-metabolite chemistry and development of the soft-coral host Lobophytum compactum. *Mar Biol*. 2001;138(4):753-760. doi:10.1007/s002270000505
- 445. Mydlarz LD, Jacobs RS, Boehnlein J, Kerr RG. Pseudopterosin biosynthesis in Symbiodinium sp., the dinoflagellate symbiont of Pseudopterogiorgia elisabethae. *Chem Biol*. 2003;10(11):1051-1056. doi:10.1016/j.chembiol.2003.10.012
- 446. Núñez-Pons L, Avila C. Deterrent activities in the crude lipophilic fractions of Antarctic benthic organisms: chemical defences against keystone predators. *Polar Res.* 2014;33(0). doi:10.3402/polar.v33.21624
- 447. Paruch E, Nawrot J, Wawrzeńczyk C. Lactones: Part 11. Feeding-deterrent activity of some bi- and tricyclic terpenoid lactones. *Pest Manag Sci.* 2001;57(9):776-780. doi:10.1002/ps.353
- 448. Dancewicz K, Gabrys B, Dams I, Wawrzenczyk C. Enantiospecific effect of pulegone and pulegone-derived lactones on Myzus persicae (Sulz.) settling and feeding. *J Chem Ecol.* 2008;34(4):530-538. doi:10.1007/s10886-008-9448-9
- 449. Streibl M, Nawrot J, Herout V. Feeding deterrent activity of enantiomeric isoalantones. *Biochem Syst Ecol.* 1983;11(4):381-382. doi:10.1016/0305-1978(83)90041-8
- 450. Calcagno MP, Coll J, Lloria J, Faini F, Alonso-Amelot ME. Evaluation of Synergism in the Feeding Deterrence of Some Furanocoumarins on Spodoptera littoralis. *J Chem Ecol.* 2002;28(1):175-191. doi:10.1023/A:1013575121691
- 451. Scheuer PJ. Marine Natural Products: Chemical and Biological Perspectives. Academic Press; 2013.
- 452. Coll JC, Price IR, König GM, Bowden BF. Algal overgrowth of alcyonacean soft corals. *Mar Biol*. 1987;96(1):129-135. doi:10.1007/BF00394846
- 453. Pawlik JR. Marine invertebrate chemical defenses. *Chem Rev.* 1993;93:1911-1922. doi:10.1021/cr00021a012
- 454. Lindquist N. Tridentatols D–H, Nematocyst Metabolites and Precursors of the Activated Chemical Defense in the Marine Hydroid Tridentata marginata (Kirchenpauer 1864). *J Nat Prod.* 2002;65(5):681-684. doi:10.1021/np010339e
- 455. Gershenzon J, Dudareva N. The function of terpene natural products in the natural world. *Nat Chem Biol.* 2007;3(7):408-414. doi:10.1038/nchembio.2007.5
- 456. Guyot M. Intricate aspects of sponge chemistry. *Zoosystema*. 2000;22(2):419-431.
- 457. Wilson MC, Mori T, Rückert C, Uria AR, Helf MJ, Takada K, Gernert C, Steffens UAE, Heycke N, Schmitt S, et al. An environmental bacterial taxon with a large and distinct metabolic repertoire. *Nature*. 2014;506(7486):58-62. doi:10.1038/nature12959
- 458. Kiran GS, Sekar S, Ramasamy P, Thinesh T, Hassan S, Lipton AN, Ninawe AS, Selvin J. Marine sponge microbial association: Towards disclosing unique symbiotic interactions. *Mar Environ Res.* Published online April 27, 2018. doi:10.1016/j.marenvres.2018.04.017
- 459. Thomas T, Moitinho-Silva L, Lurgi M, Björk JR, Easson C, Astudillo-García C, Olson JB, Erwin PM, López-Legentil S, Luter H, et al. Diversity, structure and convergent evolution of the global sponge microbiome. *Nat Commun.* 2016;7(1):1-12. doi:10.1038/ncomms11870
- 460. Karimi E, Ramos M, Gonçalves JMS, Xavier JR, Reis MP, Costa R. Comparative Metagenomics Reveals the Distinctive Adaptive Features of the Spongia officinalis Endosymbiotic Consortium. *Front Microbiol.* 2017;8. doi:10.3389/fmicb.2017.02499
- 461. Freeman CJ, Easson CG, Matterson KO, Thacker RW, Baker DM, Paul VJ. Microbial symbionts and ecological divergence of Caribbean sponges: A new perspective on an ancient association. *ISME J*. Published online March 20, 2020:1-13. doi:10.1038/s41396-020-0625-3
- 462. Faulkner DJ. Marine natural products: metabolites of marine invertebrates. *Nat Prod Rep.* 1984;1(6):551-598. doi:10.1039/NP9840100551
- 463. Faulkner DJ. Marine natural products. *Nat Prod Rep.* 1988;5(6):613-663. doi:10.1039/NP9880500613

- 464. Faulkner DJ. Marine natural products. *Nat Prod Rep.* 1992;9(4):323-364. doi:10.1039/NP9920900323
- 465. Gross H, König GM. Terpenoids from Marine Organisms: Unique Structures and their Pharmacological Potential. *Phytochem Rev.* 2006;5(1):115-141. doi:10.1007/s11101-005-5464-3
- 466. Rudman, W.B., Bergquist, P.R. A review of feeding specificity in the sponge-feeding Chromodorididae (Nudibranchia: Mollusca). *Molluscan Research*. Published 2007. https://www.mapress.com/mr/content/v27/2007f/n2p088.htm
- 467. Kamel HN, Kim YB, Rimoldi JM, Fronczek FR, Ferreira D, Slattery M. Scalarane Sesterterpenoids: Semisynthesis and Biological Activity. *J Nat Prod.* 2009;72(8):1492-1496. doi:10.1021/np900326a
- 468. A. Gonzalez M. Scalarane Sesterterpenoids. *Curr Bioact Compd.* 2010;6(3):178-206. doi:10.2174/157340710793237362
- 469. Dumdei EJ, Kubanek J, Coleman JE, Pika J, Andersen RJ, Steiner JR, Clardy J. New terpenoid metabolites from the skin extracts, an egg mass, and dietary sponges of the Northeastern Pacific dorid nudibranch Cadlinaluteomarginata. *Can J Chem.* 1997;75(6):773-789. doi:10.1139/v97-094
- 470. Avila C, Cimino G, Crispino A, Spinella A. Drimane sesquiterpenoids in MediterraneanDendrodoris nudibranchs: Anatomical distribution and biological role. *Experientia*. 1991;47(3):306-310. doi:10.1007/BF01958169
- 471. Matsuda SB, Gosliner TM. Molecular phylogeny of Glossodoris (Ehrenberg, 1831) nudibranchs and related genera reveals cryptic and pseudocryptic species complexes. *Cladistics*. Published online February 1, 2017:n/a-n/a. doi:10.1111/cla.12194
- 472. Matsuda SB, Gosliner TM. Glossing over cryptic species: Descriptions of four new species of Glossodoris and three new species of Doriprismatica (Nudibranchia: Chromodorididae). *Zootaxa*. 2018;4444(5):501-529. doi:10.11646/zootaxa.4444.5.1
- 473. Dilip de Silva E, J. Scheuer P. Furanoditerpenoids from the Dorid Nudibranch Casella atromarginata. *HETEROCYCLES*. 1982;17(1):167. doi:10.3987/S-1982-01-0167
- 474. Somerville MJ, Hooper JNA, Garson MJ. Mooloolabenes A–E, Norsesterterpenes from the Australian Sponge Hyattella intestinalis. *J Nat Prod.* 2006;69(11):1587-1590. doi:10.1021/np060244i
- 475. Nam SJ, Ko H, Shin M, Ham J, Chin J, Kim Y, Kim H, Shin K, Choi H, Kang H. Farnesoid Xactivated receptor antagonists from a marine sponge Spongia sp. *Bioorg Med Chem Lett*. 2006;16(20):5398-5402. doi:10.1016/j.bmcl.2006.07.079
- 476. Wu SY, Sung PJ, Chang YL, Pan SL, Teng CM. Heteronemin, a Spongean Sesterterpene, Induces Cell Apoptosis and Autophagy in Human Renal Carcinoma Cells. *BioMed Res Int.* 2015;2015:e738241. doi:10.1155/2015/738241
- 477. Máximo P, Lourenço A. Marine sesterterpenes: an overview. *Curr Org Chem*. 2018;22(24):2381-2393. doi:10.2174/1385272822666181029101212
- 478. Kolesnikova SA, Lyakhova EG, Diep CN, Tu VA, Huong PT, Kalinovskii AI, Dmitrenok PS, Nam NH, Stonik VA. Steroidal Metabolites from the Vietnamese Nudibranch Mollusk Doriprismatica atromarginata. *Chem Nat Compd.* 2017;1(53):194-195. doi:10.1007/s10600-017-1948-9
- 479. Crews P, Naylor S. Sesterterpenes: An Emerging Group of Metabolites from Marine and Terrestrial Organisms. In: Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products. Springer, Vienna; 1985:203-269. doi:10.1007/978-3-7091-8815-6\_3

- 480. Crews P, Bescansa P. Sesterterpenes from a Common Marine Sponge, Hyrtios erecta. *J Nat Prod.* 1986;49(6):1041-1052. doi:10.1021/np50048a012
- 481. Roy MC, Tanaka J, de Voogd N, Higa T. New Scalarane Class Sesterterpenes from an Indonesian Sponge, Phyllospongia sp. *J Nat Prod.* 2002;65(12):1838-1842. doi:10.1021/np020311i
- 482. Jiménez JI, Yoshida WY, Scheuer PJ, Kelly M. Scalarane-Based Sesterterpenes from an Indonesian Sponge Strepsichordaia aliena. *J Nat Prod*. 2000;63(10):1388-1392. doi:10.1021/np0000771
- 483. Fattorusso E, Magno S, Santacroce C, Sica D. Scalarin, a new pentacyclic C-25 terpenoid from the sponge Cacospongia scalaris. *Tetrahedron*. 1972;28(24):5993-5997. doi:10.1016/0040-4020(72)88132-8
- 484. Baekman JC, Daloze D, Kaisin M, Moussiaux B. Ichthyotoxic sesterterpenoids from the neo guinean sponge carteriospongia foliascens. *Tetrahedron*. 1985;41(20):4603-4614. doi:10.1016/S0040-4020(01)82355-3
- 485. Barron PF, Quinn RJ, Tucker DJ. Structural Elucidation of a Novel Scalarane Derivative by Using High-Field (14.1T) N.M.R. Spectroscopy. Aust J Chem. 1991;44(7):995-999. doi:10.1071/ch9910995
- 486. Jaspars M, Jackson E, Lobkovsky E, Clardy J, Diaz MC, Crews P. Using Scalarane Sesterterpenes To Examine a Sponge Taxonomic Anomaly. J Nat Prod. 1997;60(6):556-561. doi:10.1021/np960147x
- 487. Cao F, Wu ZH, Shao CL, Pang S, Liang XY, Voogd NJ de, Wang CY. Cytotoxic scalarane sesterterpenoids from the South China Sea sponge Carteriospongia foliascens. Org Biomol Chem. 2015;13(13):4016-4024. doi:10.1039/C4OB02532F
- 488. Bergquist PR, Cambie RC, Kernan MR. Scalarane sesterterpenes from Collospongia auris, a new thorectid sponge. *Biochem Syst Ecol.* 1990;18(5):349-357. doi:10.1016/0305-1978(90)90008-4
- 489. Tsuchiya N, Sato A, Hata T, Sato N, Sasagawa K, Kobayashi T. Cytotoxic Scalarane Sesterterpenes from a Sponge, Hyrtios erecta. *J Nat Prod.* 1998;61(4):468-473. doi:10.1021/np970462z
- 490. Elhady SS, El-Halawany AM, Alahdal AM, Hassanean HA, Ahmed SA. A New Bioactive Metabolite Isolated from the Red Sea Marine Sponge Hyrtios erectus. *Molecules*. 2016;21(1):82. doi:10.3390/molecules21010082
- 491. Alahdal AM, Asfour HZ, Ahmed SA, Noor AO, Al-Abd AM, Elfaky MA, Elhady SS. Anti-Helicobacter, Antitubercular and Cytotoxic Activities of Scalaranes from the Red Sea Sponge Hyrtios erectus. *Mol Basel Switz*. 2018;23(4). doi:10.3390/molecules23040978
- 492. Pettit GR, Tan R, Cichacz ZA. Antineoplastic Agents. 542. Isolation and Structure of Sesterstatin 6 from the Indian Ocean Sponge Hyrtios erecta. *J Nat Prod.* 2005;68(8):1253-1255. doi:10.1021/np0402221
- 493. Yu ZG, Bi KS, Guo YW. Hyrtiosins A–E, Five New Scalarane Sesterterpenes from the South China Sea Sponge Hyrtios erecta. *Helv Chim Acta*. 2005;88(5):1004-1009. doi:10.1002/hlca.200590070
- 494. Rao ChB, Kalidindi RSHSN, Trimurtulu G, Rao DV. Metabolites of Porifera, Part III. New 24-Methylscalaranes from Phyllospongia dendyi of the Indian Ocean. *J Nat Prod.* 1991;54(2):364-371. doi:10.1021/np50074a002
- 495. Alvi KA, Crews P. Homoscalarane Sesterterpenes from Lendenfeldia frondosa. *J Nat Prod.* 1992;55(7):859-865. doi:10.1021/np50085a004

- 496. Chill L, Rudi A, Aknin M, Loya S, Hizi A, Kashman Y. New sesterterpenes from Madagascan Lendenfeldia sponges. *Tetrahedron*. 2004;60(47):10619-10626. doi:10.1016/j.tet.2004.09.022
- 497. Chee Chang L, Otero-Quintero S, Nicholas GM, Bewley CA. Phyllolactones A–E: new bishomoscalarane sesterterpenes from the marine sponge Phyllospongia lamellosa. *Tetrahedron*. 2001;57(27):5731-5738. doi:10.1016/S0040-4020(01)00515-4
- 498. Ponomarenko LP, Kalinovsky AI, Stonik VA. New Scalarane-Based Sesterterpenes from the Sponge Phyllospongia madagascarensis. J Nat Prod. 2004;67(9):1507-1510. doi:10.1021/np040073m
- 499. Li HJ, Amagata T, Tenney K, Crews P. Additional Scalarane Sesterterpenes from the Sponge Phyllospongia papyracea. *J Nat Prod.* 2007;70(5):802-807. doi:10.1021/np070020f
- 500. Zhang HJ, Yi YH, Yang F, Chen WS, Lin HW. Sesterterpenes and a New Sterol from the Marine Sponge Phyllospongia foliascens. *Molecules*. 2010;15(2):834-841. doi:10.3390/molecules15020834
- 501. Hassan MHA, Rateb ME, Hetta M, Abdelaziz TA, Sleim MA, Jaspars M, Mohammed R. Scalarane sesterterpenes from the Egyptian Red Sea sponge Phyllospongia lamellosa. *Tetrahedron*. 2015;71(4):577-583. doi:10.1016/j.tet.2014.12.035
- 502. Zhang H, Dong M, Wang H, Crews P. Secondary Metabolites from the Marine Sponge Genus Phyllospongia. *Mar Drugs*. 2017;15(1):12. doi:10.3390/md15010012
- 503. Lee YJ, Kim SH, Choi H, Lee HS, Lee JS, Shin HJ, Lee J. Cytotoxic Furan- and Pyrrole-Containing Scalarane Sesterterpenoids Isolated from the Sponge Scalarispongia sp. *Molecules*. 2019;24(5):840. doi:10.3390/molecules24050840
- 504. Rho JR, Lee HS, Shin HJ, Ahn JW, Kim JY, Sim CJ, Shin J. New Sesterterpenes from the Sponge Smenospongia sp. *J Nat Prod.* 2004;67(10):1748-1751. doi:10.1021/np0401031
- 505. Bowden BF, Coll JC, Li H, Cambie RC, Kernan MR, Bergquist PR. New Cytotoxic Scalarane Sesterterpenes from the Dictyoceratid Sponge Strepsichordaia lendenfeldi. J Nat Prod. 1992;55(9):1234-1240. doi:10.1021/np50087a009
- 506. Jahn T, König GM, Wright AD. Three New Scalarane-Based Sesterterpenes from the Tropical Marine Sponge Strepsichordaia lendenfeldi. *J Nat Prod.* 1999;62(2):375-377. doi:10.1021/np980389s
- 507. Kashman Y, Zviely M. New alkylated scalarins from the sponge dysidea herbacea. *Tetrahedron Lett.* 1979;20(40):3879-3882. doi:10.1016/S0040-4039(01)95551-0
- 508. Lai YY, Lu MC, Wang LH, Chen JJ, Fang LS, Wu YC, Sung PJ. New Scalarane Sesterterpenoids from the Formosan Sponge Ircinia felix. *Mar Drugs*. 2015;13(7):4296-4309. doi:10.3390/md13074296
- 509. Kimura J, Hyosu M. Two New Sesterterpenes from the Marine Sponge, Coscinoderma mathewsi. *Chem Lett.* 1999;28(1):61-62. doi:10.1246/cl.1999.61
- 510. Hernández-Guerrero CJ, Zubía E, Ortega MJ, Carballo JL. Sesterterpene metabolites from the sponge Hyatella intestinalis. *Tetrahedron*. 62(23):5392-5400.
- 511. Terem B, Scheuer PJ. Scalaradial derivatives from the nudibranch chromodoris youngbleuthi and the sponge spongia oceania. *Tetrahedron*. 1986;42(16):4409-4412. doi:10.1016/S0040-4020(01)87279-3

- 512. Davis R, Capon RJ. Two New Scalarane Sesterterpenes: Isoscalarafuran-A and -B, Epimeric Alcohols From a Southern Australian Marine Sponge, Spongia hispida. *Aust J Chem.* 1993;46(8):1295-1299. doi:10.1071/ch9931295
- 513. Tsukamoto S, Miura S, van Soest RWM, Ohta T. Three New Cytotoxic Sesterterpenes from a Marine Sponge Spongia sp. *J Nat Prod*. 2003;66(3):438-440. doi:10.1021/np0204971
- 514. Phan CS, Kamada T, Hamada T, Vairappan CS. Cytotoxic Sesterterpenoids from Bornean Sponge Spongia sp. *Rec Nat Prod.* 2018;12(6):643-647. doi:10.25135/rnp.69.18.01.209
- 515. Yang I, Lee J, Lee J, Hahn D, Chin J, Won DH, Ko J, Choi H, Hong A, Nam SJ, et al. Scalalactams A–D, Scalarane Sesterterpenes with a γ-Lactam Moiety from a Korean Spongia Sp. Marine Sponge. *Molecules*. 2018;23(12). doi:10.3390/molecules23123187
- 516. Jabal KA, Abdallah HM, Mohamed GA, Shehata IA, Alfaifi MY, Elbehairi SEI, Koshak AA, Ibrahim SRM. Perisomalien A, a new cytotoxic scalarane sesterterpene from the fruits of Periploca somaliensis. *Nat Prod Res.* 2019;0(0):1-6. doi:10.1080/14786419.2019.1577842
- 517. Erpenbeck D, Soest RWM van. Status and Perspective of Sponge Chemosystematics. *Mar Biotechnol*. 2007;9(1):2. doi:10.1007/s10126-005-6109-7
- 518. Chiba R, Minami A, Gomi K, Oikawa H. Identification of Ophiobolin F Synthase by a Genome Mining Approach: A Sesterterpene Synthase from Aspergillus clavatus. Org Lett. 2013;15(3):594-597. doi:10.1021/ol303408a
- 519. Ye Y, Minami A, Mandi A, Liu C, Taniguchi T, Kuzuyama T, Monde K, Gomi K, Oikawa H. Genome Mining for Sesterterpenes Using Bifunctional Terpene Synthases Reveals a Unified Intermediate of Di/Sesterterpenes. J Am Chem Soc. 2015;137(36):11846-11853. doi:10.1021/jacs.5b08319
- 520. Matsuda Y, Mitsuhashi T, Quan Z, Abe I. Molecular Basis for Stellatic Acid Biosynthesis: A Genome Mining Approach for Discovery of Sesterterpene Synthases. *Org Lett.* 2015;17(18):4644-4647. doi:10.1021/acs.orglett.5b02404
- 521. Chai H, Yin R, Liu Y, Meng H, Zhou X, Zhou G, Bi X, Yang X, Zhu T, Zhu W, et al. Sesterterpene ophiobolin biosynthesis involving multiple gene clusters in Aspergillus ustus. *Sci Rep*. 2016;6(1):1-11. doi:10.1038/srep27181
- 522. Mitsuhashi T, Rinkel J, Okada M, Abe I, Dickschat JS. Mechanistic Characterization of Two Chimeric Sesterterpene Synthases from Penicillium. *Chem – Eur J.* 2017;23(42):10053-10057. doi:10.1002/chem.201702766
- 523. Garson MJ. Biosynthesis of the novel diterpene isonitrile diisocyanoadociane by a marine sponge of the amphimedon genus: incorporation studies with sodium [14C]cyanide and sodium [2-14C]acetate. J Chem Soc Chem Commun. 1986;(1):35-36. doi:10.1039/C39860000035
- 524. Garson MJ, Partali V, Liaaen-Jensen S, Stoilov IL. Isoprenoid biosynthesis in a marine sponge of the Amphimedon genus: Incorporation studies with [1-14C] acetate, [4-14C] cholesterol and [2-14C] mevalonate. *Comp Biochem Physiol Part B Comp Biochem*. 1988;91(2):293-300. doi:10.1016/0305-0491(88)90145-9
- 525. Kerr RG, Stoilov IL, Thompson JE, Djerassi C. Biosynthetic studies of marine lipids 16. De novo sterol biosynthesis in sponges. Incorporation and transformation of cycloartenol and lanosterol into unconventional sterols of marine and freshwater sponges. *Tetrahedron*. 1989;45(7):1893-1904. doi:10.1016/S0040-4020(01)80054-5

- 526. Rohmer M. The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants<sup>†</sup>. *Nat Prod Rep.* 1999;16(5):565-574. doi:10.1039/A709175C
- 527. Genta-Jouve G, Thomas OP. Chapter four Sponge Chemical Diversity: From Biosynthetic Pathways to Ecological Roles. In: Becerro MA, Uriz MJ, Maldonado M, Turon X, eds. Advances in Marine Biology. Vol 62. Advances in Sponge Science: Physiology, Chemical and Microbial Diversity, Biotechnology. Academic Press; 2012:183-230. doi:10.1016/B978-0-12-394283-8.00004-7
- 528. Silva CJ, Wünsche L, Djerassi C. Biosynthetic studies of marine lipid 35. The demonstration of de novo sterol biosynthesis in sponges using radiolabeled isoprenoid precursors. *Comp Biochem Physiol Part B Comp Biochem*. 1991;99(4):763-773. doi:10.1016/0305-0491(91)90140-9
- 529. Christianson DW. Structural and Chemical Biology of Terpenoid Cyclases. *Chem Rev.* 2017;117(17):11570-11648. doi:10.1021/acs.chemrev.7b00287
- 530. Mehbub MF, Lei J, Franco C, Zhang W. Marine Sponge Derived Natural Products between 2001 and 2010: Trends and Opportunities for Discovery of Bioactives. *Mar Drugs*. 2014;12(8):4539-4577. doi:10.3390/md12084539
- 531. Schmitt S, Tsai P, Bell J, Fromont J, Ilan M, Lindquist N, Perez T, Rodrigo A, Schupp PJ, Vacelet J, et al. Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. *ISME J*. 2012;6(3):564-576. doi:10.1038/ismej.2011.116
- 532. Thomas TRA, Kavlekar DP, LokaBharathi PA. Marine Drugs from Sponge-Microbe Association— A Review. *Mar Drugs*. 2010;8(4):1417-1468. doi:10.3390/md8041417
- 533. Fan L, Reynolds D, Liu M, Stark M, Kjelleberg S, Webster NS, Thomas T. Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts. *Proc Natl Acad Sci.* 2012;109(27):E1878-E1887. doi:10.1073/pnas.1203287109
- 534. Yamada Y, Kuzuyama T, Komatsu M, Shin-ya K, Omura S, Cane DE, Ikeda H. Terpene synthases are widely distributed in bacteria. *Proc Natl Acad Sci.* 2015;112(3):857-862. doi:10.1073/pnas.1422108112
- 535. Wiese J, Ohlendorf B, Blümel M, Schmaljohann R, Imhoff JF. Phylogenetic Identification of Fungi Isolated from the Marine Sponge Tethya aurantium and Identification of Their Secondary Metabolites. *Mar Drugs*. 2011;9(4):561-585. doi:10.3390/md9040561
- 536. E. Rateb M, Ebel R. Secondary metabolites of fungi from marine habitats. *Nat Prod Rep.* 2011;28(2):290-344. doi:10.1039/C0NP00061B
- 537. Padula V, Bahia J, Stöger I, Camacho-García Y, Malaquias MAE, Cervera JL, Schrödl M. A test of color-based taxonomy in nudibranchs: Molecular phylogeny and species delimitation of the Felimida clenchi (Mollusca: Chromodorididae) species complex. *Mol Phylogenet Evol*. 2016;103:215-229. doi:10.1016/j.ympev.2016.07.019
- 538. Nakano R, Hirose E. Field Experiments on the Feeding of the Nudibranch Gymnodoris spp. (Nudibranchia: Doridina: Gymnodorididae) in Japan. *Veliger*. 2011;51(2):66-75.
- 539. Uddin MH, Otsuka M, Muroi T, Ono A, Hanif N, Matsuda S, Higa T, Tanaka J. Deoxymanoalides from the Nudibranch *Chromodoris willani*. *Chem Pharm Bull (Tokyo)*. 2009;57(8):885-887. doi:10.1248/cpb.57.885
- 540. Miyamoto T, Sakamoto K, Amano H, Arakawa Y, Nagarekawa Y, Komori T, Higuchi R, Sasaki T. New cytotoxic sesterterpenoids from the nudibranch Chromodoris inornata. *Tetrahedron*. 1999;55(30):9133-9142. doi:10.1016/S0040-4020(99)00477-9

- 541. Corley DG, Herb R, Moore RE, Scheuer PJ, Paul VJ. Laulimalides. New potent cytotoxic macrolides from a marine sponge and a nudibranch predator. *J Org Chem.* 1988;53(15):3644-3646. doi:10.1021/jo00250a053
- 542. Crews Phillip, Kakou Yao, Quinoa Emilio. Mycothiazole, a polyketide heterocycle from a marine sponge. *J Am Chem Soc.* 1988;110(13):4365-4368. doi:10.1021/ja00221a042
- 543. de Silva ED, Morris SA, Miao S, Dumdei E, Andersen RJ. Terpenoid Metabolites from Skin Extracts of Four Sri Lankan Nudibranchs in the Genus Chromodoris. J Nat Prod. 1991;54(4):993-997. doi:10.1021/np50076a011
- 544. Pika J, John Faulkner D. Unusual chlorinated homo-diterpenes from the South African nudibranch Chromodoris hamiltoni. *Tetrahedron*. 1995;51(30):8189-8198. doi:10.1016/0040-4020(95)00440-J
- 545. McPhail K, Davies-Coleman MT. New spongiane diterpenes from the East African nudibranch Chromodoris hamiltoni. *Tetrahedron*. 1997;53(13):4655-4660. doi:10.1016/S0040-4020(97)00198-1
- 546. Guo Y. Chemical studies of the novel bioactive secondary metabolites from the benthic invertebrates: isolation and structure characterization. Published online 1997.
- 547. Mebs D. Chemical defense of a dorid nudibranch, Glossodoris quadricolor, from the red sea. *J Chem Ecol.* 1985;11(6):713-716. doi:10.1007/BF00988300
- 548. Ilan M. Reproductive Biology, Taxonomy, and Aspects of Chemical Ecology of Latrunculiidae (Porifera). *Biol Bull*. 1995;188(3):306-312. doi:10.2307/1542307
- 549. Nèeman I, Fishelson L, Kashman Y. Isolation of a new toxin from the sponge Latrunculia magnifica in the Gulf of Aquaba (Red Sea). *Mar Biol.* 1975;30(4):293-296. doi:10.1007/BF00390634
- 550. Kashman Y, Groweiss A, Shmueli U. Latrunculin, a new 2-thiazolidinone macrolide from the marine sponge latrunculia magnifica. *Tetrahedron Lett.* 1980;21(37):3629-3632. doi:10.1016/0040-4039(80)80255-3
- 551. Gillor O, Carmeli S, Rahamim Y, Fishelson Z, Ilan M. Immunolocalization of the Toxin Latrunculin B within the Red Sea Sponge Negombata magnifica (Demospongiae, Latrunculiidae). *Mar Biotechnol*. 2000;2(3):213-223. doi:10.1007/s101260000026
- 552. Amagata T, Johnson TA, Cichewicz RH, Tenney K, Mooberry SL, Media J, Edelstein M, Valeriote FA, Crews P. Interrogating the Bioactive Pharmacophore of the Latrunculin Chemotype by Investigating the Metabolites of Two Taxonomically Unrelated Sponges. *J Med Chem.* 2008;51(22):7234-7242. doi:10.1021/jm8008585
- 553. Al-Tarabeen M, El-Neketi M, Albohy A, Müller WEG, Rasheed M, Ebrahim W, Proksch P, Ebada SS. Isolation and Molecular Docking of Cytotoxic Secondary Metabolites from Two Red Sea Sponges of the Genus Diacarnus. *ChemistrySelect*. 2021;6(2):217-220. doi:https://doi.org/10.1002/slct.202003114
- 554. Sonnenschein RN, Johnson TA, Tenney K, Valeriote FA, Crews P. A Reassignment of (–)-Mycothiazole and the Isolation of a Related Diol. *J Nat Prod.* 2006;69(1):145-147. doi:10.1021/np0503597
- 555. Fenical William. Chemical studies of marine bacteria: developing a new resource. *Chem Rev.* 1993;93(5):1673-1683. doi:10.1021/cr00021a001
- 556. Kobayashi Junichi, Ishibashi Masami. Bioactive metabolites of symbiotic marine microorganisms. *Chem Rev.* 1993;93(5):1753-1769. doi:10.1021/cr00021a005

- 557. Bewley CA, Holland ND, Faulkner DJ. Two classes of metabolites fromTheonella swinhoei are localized in distinct populations of bacterial symbionts. *Experientia*. 1996;52(7):716-722. doi:10.1007/BF01925581
- 558. Piel J. Metabolites from symbiotic bacteria. *Nat Prod Rep.* 2009;26(3):338-362. doi:10.1039/B703499G
- 559. Ueoka R, Uria AR, Reiter S, Mori T, Karbaum P, Peters EE, Helfrich EJN, Morinaka BI, Gugger M, Takeyama H, et al. Metabolic and evolutionary origin of actin-binding polyketides from diverse organisms. *Nat Chem Biol.* 2015;11(9):705-712. doi:10.1038/nchembio.1870
- 560. Wakimoto T, Egami Y, Abe I. Calyculin: Nature's way of making the sponge-derived cytotoxin. *Nat Prod Rep.* 2016;33(6):751-760. doi:10.1039/C5NP00123D
- 561. Silva SCGP da. Multi-approach analysis of the metagenome of a marine sponge containing latrunculin A. Published online November 30, 2017. Accessed May 3, 2021. https://repositorio.ul.pt/handle/10451/36088
- 562. McCauley EP, Piña IC, Thompson AD, Bashir K, Weinberg M, Kurz SL, Crews P. Highlights of marine natural products having parallel scaffolds found from marine-derived bacteria, sponges, and tunicates. *J Antibiot (Tokyo)*. 2020;73(8):504-525. doi:10.1038/s41429-020-0330-5
- 563. Spector I, Shochet NR, Kashman Y, Groweiss A. Latrunculins: novel marine toxins that disrupt microfilament organization in cultured cells. *Science*. 1983;219(4584):493-495. doi:10.1126/science.6681676
- 564. Kashman Y, Groweiss A, Lidor R, Blasberger D, Carmely S. Latrunculins: NMR study, two new toxins and a synthetic approach. *Tetrahedron*. 1985;41(10):1905-1914. doi:10.1016/S0040-4020(01)96553-6
- 565. de Oliveira CA, Mantovani B. Latrunculin A is a potent inhibitor of phagocytosis by macrophages. *Life Sci.* 1988;43(22):1825-1830. doi:10.1016/0024-3205(88)90282-2
- 566. Spector I, Shochet NR, Blasberger D, Kashman Y. Latrunculins—novel marine macrolides that disrupt microfilament organization and affect cell growth: I. Comparison with cytochalasin D. *Cell Motil.* 1989;13(3):127-144. doi:10.1002/cm.970130302
- 567. Gulavita NK, Gunasekera SP, Pomponi SA. Isolation of Latrunculin A, 6,7-Epoxylatrunculin A, Fijianolide A, and Euryfuran from a New Genus of the Family Thorectidae. *J Nat Prod.* 1992;55(4):506-508. doi:10.1021/np50082a019
- 568. Smith AB, Leahy JW, Noda I, Remiszewski SW, Liverton NJ, Zibuck R. Total synthesis of the latrunculins. *J Am Chem Soc.* 1992;114(8):2995-3007. doi:10.1021/ja00034a036
- 569. White JD, Kawasaki M. Total synthesis of (+)-latrunculin A, an ichthyotoxic metabolite of the sponge Latrunculia magnifica and its C-15 epimer. *J Org Chem.* 1992;57(20):5292-5300. doi:10.1021/j000046a008
- 570. Braet F, De Zanger R, Jans D, Spector I, Wisse E. Microfilament-disrupting agent latrunculin A induces and increased number of fenestrae in rat liver sinusoidal endothelial cells: Comparison with cytochalasin B. *Hepatology*. 1996;24(3):627-635. doi:10.1053/jhep.1996.v24.pm0008781335
- 571. Tanaka J ichi, Higa T, Bernardinelli G, Jefford CW. New Cytotoxic Macrolides from the Sponge Fasciospongia rimosa. *Chem Lett.* 1996;25(4):255-256. doi:10.1246/cl.1996.255
- 572. Oliveira CA, Kashman Y, Mantovani B. Effects of latrunculin A on immunological phagocytosis and macrophage spreading-associated changes in the F-actin/G-actin content of the cells. *Chem Biol Interact.* 1996;100(2):141-153. doi:10.1016/0009-2797(96)03695-2

- 573. Ayscough KR, Stryker J, Pokala N, Sanders M, Crews P, Drubin DG. High Rates of Actin Filament Turnover in Budding Yeast and Roles for Actin in Establishment and Maintenance of Cell Polarity Revealed Using the Actin Inhibitor Latrunculin-A. J Cell Biol. 1997;137(2):399-416. doi:10.1083/jcb.137.2.399
- 574. Belmont LD, Patterson GM, Drubin DG. New actin mutants allow further characterization of the nucleotide binding cleft and drug binding sites. *J Cell Sci*. 1999;112 (Pt 9):1325-1336.
- 575. Cai S, Liu X, Glasser A, Volberg T, Filla M, Geiger B, Polansky JR, Kaufman PL. Effect of latrunculin-A on morphology and actin-associated adhesions of cultured human trabecular meshwork cells. *Mol Vis.* 2000;6:132-143.
- 576. Morton WM, Ayscough KR, McLaughlin PJ. Latrunculin alters the actin-monomer subunit interface to prevent polymerization. *Nat Cell Biol*. 2000;2(6):376-378. doi:10.1038/35014075
- 577. Yarmola EG, Somasundaram T, Boring TA, Spector I, Bubb MR. Actin-latrunculin A structure and function. Differential modulation of actin-binding protein function by latrunculin A. J Biol Chem. 2000;275(36):28120-28127. doi:10.1074/jbc.M004253200
- 578. Baluška F, Jasik J, Edelmann HG, Salajová T, Volkmann D. Latrunculin B-Induced Plant Dwarfism: Plant Cell Elongation Is F-Actin-Dependent. *Dev Biol.* 2001;231(1):113-124. doi:10.1006/dbio.2000.0115
- 579. Wakatsuki T, Schwab B, Thompson NC, Elson EL. Effects of cytochalasin D and latrunculin B on mechanical properties of cells. *J Cell Sci*. 2001;114(5):1025-1036.
- 580. Pring M, Cassimeris L, Zigmond SH. An unexplained sequestration of latrunculin A is required in neutrophils for inhibition of actin polymerization. *Cell Motil Cytoskeleton*. 2002;52(2):122-130. doi:10.1002/cm.10039
- 581. Fujita M, Ichinose S, Kiyono T, Tsurumi T, Omori A. Establishment of latrunculin-A resistance in HeLa cells by expression of R183A D184A mutant beta-actin. *Oncogene*. 2003;22(4):627-631. doi:10.1038/sj.onc.1206173
- 582. Vilozny B, Amagata T, Mooberry SL, Crews P. A New Dimension to the Biosynthetic Products Isolated from the Sponge Negombata magnifica. *J Nat Prod.* 2004;67(6):1055-1057. doi:10.1021/np0340753
- 583. Ethier CR, Read AT, Chan DWH. Effects of latrunculin-B on outflow facility and trabecular meshwork structure in human eyes. *Invest Ophthalmol Vis Sci.* 2006;47(5):1991-1998. doi:10.1167/iovs.05-0327
- 584. Houssen WE, Jaspars M, Wease KN, Scott RH. Acute actions of marine toxin latrunculin A on the electrophysiological properties of cultured dorsal root ganglion neurones. *Comp Biochem Physiol Toxicol Pharmacol CBP*. 2006;142(1-2):19-29. doi:10.1016/j.cbpc.2005.09.006
- 585. Khalifa S, Ahmed S, Mesbah M, Youssef D, Hamann M. Quantitative determination of latrunculins A and B in the Red Sea sponge Negombata magnifica by high performance liquid chromatography. *J Chromatogr B*. 2006;832(1):47-51. doi:10.1016/j.jchromb.2005.12.028
- 586. El Sayed KA, Youssef DTA, Marchetti D. Bioactive Natural and Semisynthetic Latrunculins. *J Nat Prod.* 2006;69(2):219-223. doi:10.1021/np050372r
- 587. Sierra-Paredes G, Oreiro-García T, Núñez-Rodriguez A, Vázquez-López A, Sierra-Marcuño G. Seizures induced by in vivo latrunculin A and jasplakinolide microperfusion in the rat hippocampus. J Mol Neurosci. 2006;28(2):151-160. doi:10.1385/JMN:28:2:151

- 588. Fürstner A, De Souza D, Turet L, Fenster MDB, Parra-Rapado L, Wirtz C, Mynott R, Lehmann CW. Total syntheses of the actin-binding macrolides latrunculin A, B, C, M, S and 16-epilatrunculin B. *Chem Weinh Bergstr Ger*. 2007;13(1):115-134. doi:10.1002/chem.200601135
- 589. Fürstner A, Kirk D, Fenster MDB, Aïssa C, De Souza D, Nevado C, Tuttle T, Thiel W, Müller O. Latrunculin Analogues with Improved Biological Profiles by "Diverted Total Synthesis": Preparation, Evaluation, and Computational Analysis. *Chem – Eur J.* 2007;13(1):135-149. doi:10.1002/chem.200601136
- 590. Meadows JC, Millar J, Solomon M. Latrunculin A Delays Anaphase Onset in Fission Yeast by Disrupting an Ase1-independent Pathway Controlling Mitotic Spindle Stability. *Mol Biol Cell*. 2008;19(9):3713-3723. doi:10.1091/mbc.e08-02-0164
- 591. Konishi H, Kikuchi S, Ochiai T, Ikoma H, Kubota T, Ichikawa D, Fujiwara H, Okamoto K, Sakakura C, Sonoyama T, et al. Latrunculin A Has a Strong Anticancer Effect in a Peritoneal Dissemination Model of Human Gastric Cancer in Mice. *Anticancer Res.* 2009;29(6):2091-2097.
- 592. Kudrimoti S, Ahmed SA, Daga PR, Wahba AE, Khalifa SI, Doerksen RJ, Hamann MT. Semisynthetic Latrunculin B Analogs: Studies of Actin Docking Support a Proposed Mechanism for Latrunculin Bioactivity. *Bioorg Med Chem.* 2009;17(21):7517-7522. doi:10.1016/j.bmc.2009.09.012
- 593. Ketelaar T, Meijer HJG, Spiekerman M, Weide R, Govers F. Effects of latrunculin B on the actin cytoskeleton and hyphal growth in Phytophthora infestans. *Fungal Genet Biol*. 2012;49(12):1014-1022. doi:10.1016/j.fgb.2012.09.008
- 594. Moscatelli A, Idilli AI, Rodighiero S, Caccianiga M. Inhibition of actin polymerisation by low concentration Latrunculin B affects endocytosis and alters exocytosis in shank and tip of tobacco pollen tubes. *Plant Biol.* 2012;14(5):770-782. doi:10.1111/j.1438-8677.2011.00547.x
- 595. Terashita Y, Yamagata K, Tokoro M, Itoi F, Wakayama S, Li C, Sato E, Tanemura K, Wakayama T. Latrunculin A Treatment Prevents Abnormal Chromosome Segregation for Successful Development of Cloned Embryos. *PLOS ONE*. 2013;8(10):e78380. doi:10.1371/journal.pone.0078380
- 596. Mallol A, Santaló J, Ibáñez E. Improved Development of Somatic Cell Cloned Mouse Embryos by Vitamin C and Latrunculin A. PLOS ONE. 2015;10(3):e0120033. doi:10.1371/journal.pone.0120033
- 597. Kopecká M, Yamaguchi M, Kawamoto S. Effects of the F-actin inhibitor latrunculin A on the budding yeast Saccharomyces cerevisiae. *Microbiol Read Engl.* 2015;161(7):1348-1355. doi:10.1099/mic.0.000091
- 598. Ebrahim HY, El Sayed KA. Discovery of Novel Antiangiogenic Marine Natural Product Scaffolds. *Mar Drugs.* 2016;14(3):57. doi:10.3390/md14030057
- 599. Varghese S, Rahmani R, Drew D, Williams M, Huang J, Wilkinson M, Tan YH, Tonkin C, Beeson J, Baum J, et al. Truncated Latrunculins as Actin Inhibitors Targeting Plasmodium falciparum Motility and Host-Cell Invasion. *J Med Chem.* 2016;59. doi:10.1021/acs.jmedchem.6b01109
- 600. Fujiwara I, Zweifel ME, Courtemanche N, Pollard TD. Latrunculin A accelerates actin filament depolymerization in addition to sequestering actin monomers. *Curr Biol CB*. 2018;28(19):3183-3192.e2. doi:10.1016/j.cub.2018.07.082
- 601. Würtemberger J, Tchessalova D, Regina C, Bauer C, Schneider M, Wagers AJ, Hettmer S. Growth inhibition associated with disruption of the actin cytoskeleton by Latrunculin A in rhabdomyosarcoma cells. *PLOS ONE*. 2020;15(9):e0238572. doi:10.1371/journal.pone.0238572

- 602. Varghese S, Rahmani R, Drew DR, Beeson JG, Baum J, Smith BJ, Baell JB. Structure-Activity Studies of Truncated Latrunculin Analogues with Antimalarial Activity. *ChemMedChem*. 2021;16(4):679-693. doi:https://doi.org/10.1002/cmdc.202000399
- 603. Lenz KD, Klosterman KE, Mukundan H, Kubicek-Sutherland JZ. Macrolides: From Toxins to Therapeutics. *Toxins*. 2021;13(5):347. doi:10.3390/toxins13050347
- 604. Foissner I, Wasteneys GO. Wide-Ranging Effects of Eight Cytochalasins and Latrunculin A and B on Intracellular Motility and Actin Filament Reorganization in Characean Internodal Cells. *Plant Cell Physiol.* 2007;48(4):585-597. doi:10.1093/pcp/pcm030
- 605. Risinger AL, Du L. Targeting and extending the eukaryotic druggable genome with natural products: cytoskeletal targets of natural products. *Nat Prod Rep.* Published online November 25, 2019. doi:10.1039/C9NP00053D
- 606. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J. The Actin Cytoskeleton. *Mol Cell Biol 4th Ed.* Published online 2000. Accessed June 14, 2021. https://www.ncbi.nlm.nih.gov/books/NBK21493/
- 607. Perrin BJ, Ervasti JM. The Actin Gene Family: Function Follows Isoform. *Cytoskelet Hoboken Nj.* 2010;67(10):630-634. doi:10.1002/cm.20475
- 608. Dominguez R, Holmes KC. Actin Structure and Function. *Annu Rev Biophys.* 2011;40(1):169-186. doi:10.1146/annurev-biophys-042910-155359
- 609. Pollard TD. Actin and Actin-Binding Proteins. *Cold Spring Harb Perspect Biol.* 2016;8(8). doi:10.1101/cshperspect.a018226
- 610. Pollard TD. What We Know and Do Not Know About Actin. *Handb Exp Pharmacol*. 2017;235:331-347. doi:10.1007/164\_2016\_44
- 611. Stoddard PR, Williams TA, Garner E, Baum B. Evolution of polymer formation within the actin superfamily. *Mol Biol Cell*. 2017;28(19):2461-2469. doi:10.1091/mbc.e15-11-0778
- 612. Vedula P, Kashina A. The makings of the 'actin code': regulation of actin's biological function at the amino acid and nucleotide level. *J Cell Sci.* 2018;131(9). doi:10.1242/jcs.215509
- 613. Oosawa F, Asakura S, Hotta K, Imai N, Ooi T. G-F transformation of actin as a fibrous condensation. *J Polym Sci.* 1959;37(132):323-336. doi:10.1002/pol.1959.1203713202
- 614. Kabsch W, Mannherz HG, Suck D, Pai EF, Holmes KC. Atomic structure of the actin: DNase I complex. *Nature*. 1990;347(6288):37-44. doi:10.1038/347037a0
- 615. Kabsch W, Vandekerckhove J. Structure and Function of Actin. *Annu Rev Biophys Biomol Struct*. 1992;21(1):49-76. doi:10.1146/annurev.bb.21.060192.000405
- 616. Selden LA, Estes JE, Gershman LC. The tightly bound divalent cation regulates actin polymerization. *Biochem Biophys Res Commun.* 1983;116(2):478-485. doi:10.1016/0006-291x(83)90548-x
- 617. Gershman LC, Selden LA, Kinosian HJ, Estes JE. Actin-Bound Nucleotide/Divalent Cation Interactions. In: Estes JE, Higgins PJ, eds. Actin: Biophysics, Biochemistry, and Cell Biology. Advances in Experimental Medicine and Biology. Springer US; 1994:35-49. doi:10.1007/978-1-4615-2578-3\_4
- 618. Zigmond SH. Beginning and ending an actin filament: control at the barbed end. *Curr Top Dev Biol.* 2004;63:145-188. doi:10.1016/S0070-2153(04)63005-5

- 619. Winder SJ, Ayscough KR. Actin-binding proteins. J Cell Sci. 2005;118(4):651-654. doi:10.1242/jcs.01670
- 620. Holmes KC. Actin in a twist. Nature. 2009;457(7228):389-390. doi:10.1038/457389a
- 621. Lee SH, Dominguez R. Regulation of actin cytoskeleton dynamics in cells. *Mol Cells*. 2010;29(4):311-325. doi:10.1007/s10059-010-0053-8
- 622. Gunning PW, Ghoshdastider U, Whitaker S, Popp D, Robinson RC. The evolution of compositionally and functionally distinct actin filaments. *J Cell Sci.* 2015;128(11):2009-2019. doi:10.1242/jcs.165563
- 623. Chou SZ, Pollard TD. Mechanism of actin polymerization revealed by cryo-EM structures of actin filaments with three different bound nucleotides. *Proc Natl Acad Sci.* 2019;116(10):4265-4274. doi:10.1073/pnas.1807028115
- 624. Chhabra ES, Higgs HN. The many faces of actin: matching assembly factors with cellular structures. *Nat Cell Biol*. 2007;9(10):1110-1121. doi:10.1038/ncb1007-1110
- 625. Erickson HP. Evolution of the cytoskeleton. *BioEssays*. 2007;29(7):668-677. doi:10.1002/bies.20601
- 626. Vandekerckhove J, Weber K. Chordate muscle actins differ distinctly from invertebrate muscle actins: The evolution of the different vertebrate muscle actins. *J Mol Biol*. 1984;179(3):391-413. doi:10.1016/0022-2836(84)90072-X
- 627. Cupples CG, Pearlman RE. Isolation and characterization of the actin gene from Tetrahymena thermophila. *Proc Natl Acad Sci U S A*. 1986;83(14):5160-5164. doi:10.1073/pnas.83.14.5160
- 628. Hightower RC, Meagher RB. The Molecular Evolution of Actin. *Genetics*. 1986;114(1):315-332.
- 629. Rubenstein PA. The functional importance of multiple actin isoforms. *BioEssays*. 1990;12(7):309-315. doi:10.1002/bies.950120702
- 630. Herman IM. Actin isoforms. Curr Opin Cell Biol. 1993;5(1):48-55. doi:10.1016/S0955-0674(05)80007-9
- 631. Reece KS, Siddall ME, Burreson EM, Graves JE. Phylogenetic Analysis of Perkinsus Based on Actin Gene Sequences. *J Parasitol*. 1997;83(3):417-423. doi:10.2307/3284403
- 632. Wahlberg MH, Johnson MS. Isolation and Characterization of Five Actin cDNAs from the Cestode Diphyllobothrium dendriticum: A Phylogenetic Study of the Multigene Family. *J Mol Evol*. 1997;44(2):159-168. doi:10.1007/PL00006132
- 633. Vedula P, Kurosaka S, Leu NA, Wolf YI, Shabalina SA, Wang J, Sterling S, Dong DW, Kashina A. Diverse functions of homologous actin isoforms are defined by their nucleotide, rather than their amino acid sequence. *eLife*. 2017;6. doi:10.7554/eLife.31661
- 634. Skruber K, Read TA, Vitriol EA. Reconsidering an active role for G-actin in cytoskeletal regulation. *J Cell Sci.* 2018;131(jcs203760). doi:10.1242/jcs.203760
- 635. Boiero Sanders M, Antkowiak A, Michelot A. Diversity from similarity: cellular strategies for assigning particular identities to actin filaments and networks. *Open Biol.* 10(9):200157. doi:10.1098/rsob.200157
- 636. Vedula P, Kurosaka S, MacTaggart B, Ni Q, Papoian G, Jiang Y, Dong DW, Kashina A. Different translation dynamics of β- and γ-actin regulates cell migration. Singer RH, Akhmanova A, Mullins RD, Gunning PW, eds. *eLife*. 2021;10:e68712. doi:10.7554/eLife.68712

- 637. Terman JR, Kashina A. Post-translational modification and regulation of actin. *Curr Opin Cell Biol.* 2013;25(1):30-38. doi:10.1016/j.ceb.2012.10.009
- 638. Varland S, Vandekerckhove J, Drazic A. Actin Post-translational Modifications: The Cinderella of Cytoskeletal Control. *Trends Biochem Sci.* 2019;44(6):502-516. doi:10.1016/j.tibs.2018.11.010
- 639. Adema CM. COMPARATIVE STUDY OF CYTOPLASMIC ACTIN DNA SEQUENCES FROM SIX SPECIES OF PLANORBIDAE (GASTROPODA: BASOMMATOPHORA). J Molluscan Stud. 2002;68(1):17-23. doi:10.1093/mollus/68.1.17
- 640. Adema CM, Hillier LW, Jones CS, Loker ES, Knight M, Minx P, Oliveira G, Raghavan N, Shedlock A, do Amaral LR, et al. Whole genome analysis of a schistosomiasis-transmitting freshwater snail. *Nat Commun.* 2017;8(1):15451. doi:10.1038/ncomms15451
- 641. Ma H, Mai K, Liufu Z, Xu W. Cloning and characterization of an actin gene of Chlamys farreri and the phylogenetic analysis of mollusk actins. *Chin J Oceanol Limnol*. 2007;25(3):304-309. doi:10.1007/s00343-007-0304-5
- 642. Patwary MU, Reith M, Kenchington E. Isolation and characterization of a cDNA encoding an actin gene from sea scallop (Placopecten magellanicus). *J Shellfish Res.* 1996;15:265-270.
- 643. Artigaud S, Lavaud R, Thébault J, Jean F, Strand Ø, Strohmeier T, Milan M, Pichereau V. Proteomic-based comparison between populations of the Great Scallop, Pecten maximus. J Proteomics. 2014;105:164-173. doi:10.1016/j.jprot.2014.03.026
- 644. Zhang G, Wang X, Song X, Li L. An Improved Method of DNA Extraction from the Shell of the Pacific Oyster, Crassostrea gigas. *Israeli Journal of Aquaculture*. 2012;64:20608. doi:10.46989/001c.20608
- 645. Carlini DB, Reece KS, Graves JE. Actin Gene Family Evolution and the Phylogeny of Coleoid Cephalopods (Mollusca: Cephalopoda). *Mol Biol Evol*. 2000;17(9):1353-1370. doi:10.1093/oxfordjournals.molbev.a026419
- 646. Bryant MJ, Flint HJ, Sin FYT. Isolation, characterization, and expression analysis of three actin genes in the New Zealand black-footed abalone, Haliotis iris. *Mar Biotechnol N Y N*. 2006;8(2):110-119. doi:10.1007/s10126-005-5139-5
- 647. Sin FYT, Bryant MJ, Johnstone A. Molecular Evolution and Phylogeny of Actin Genes in Haliotis Species (Mollusca: Gastropoda). *Zool Stud*. Published online 2007:12.
- 648. Ivanov M, Todorovska E, Radkova M, Georgiev O, Dolashki A, Dolashka P. Molecular cloning, characterization and phylogenetic analysis of an actin gene from the marine mollusk Rapana venosa (class Gastropoda). Published online 2015:14.
- 649. DesGroseillers L, Auclair D, Wickham L. Nucleotide sequence of an actin cDNA gene from Aplysia californica. *Nucleic Acids Res.* 1990;18(12):3654.
- 650. DesGroseillers L, Auclair D, Wickham L, Maalouf M. A novel actin cDNA is expressed in the neurons of Aplysia californica. *Biochim Biophys Acta*. 1994;1217(3):322-324. doi:10.1016/0167-4781(94)90293-3
- 651. Zappulla JP, Angers A, Barbas D, Castellucci VF, DesGroseillers L. A novel actin isoform is expressed in the ovotestis of Aplysia californica. *Comp Biochem Physiol B Biochem Mol Biol*. 2005;140(3):403-409. doi:10.1016/j.cbpc.2004.11.005
- 652. Mounier N, Gouy M, Mouchiroud D, Prudhomme JC. Insect muscle actins differ distinctly from invertebrate and vertebrate cytoplasmic actins. *J Mol Evol*. 1992;34(5):406-415. doi:10.1007/BF00162997

- 653. Doolittle RF, Gerhart J, Hunt RT, Kirschner MW, Wolpert L. The origins and evolution of eukaryotic proteins. *Philos Trans R Soc Lond B Biol Sci.* 1995;349(1329):235-240. doi:10.1098/rstb.1995.0107
- 654. Ent F van den, Amos LA, Löwe J. Prokaryotic origin of the actin cytoskeleton. *Nature*. 2001;413(6851):39-44. doi:10.1038/35092500
- 655. Ayscough KR, Winder SJ. Two billion years of actin. *EMBO Rep.* 2004;5(10):947-952. doi:10.1038/sj.embor.7400252
- 656. Koonin EV. The origin and early evolution of eukaryotes in the light of phylogenomics. *Genome Biol.* 2010;11(5):209. doi:10.1186/gb-2010-11-5-209
- 657. Eme L, Spang A, Lombard J, Stairs CW, Ettema TJG. Archaea and the origin of eukaryotes. *Nat Rev Microbiol*. 2017;15(12):711-723. doi:10.1038/nrmicro.2017.133
- 658. Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Bäckström D, Juzokaite L, Vancaester E, Seitz KW, Anantharaman K, Starnawski P, Kjeldsen KU, et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. *Nature*. 2017;541(7637):353-358. doi:10.1038/nature21031
- 659. Akıl C, Robinson RC. Genomes of Asgard archaea encode profilins that regulate actin. *Nature*. 2018;562(7727):439-443. doi:10.1038/s41586-018-0548-6
- 660. Akıl C, Tran LT, Orhant-Prioux M, Baskaran Y, Manser E, Blanchoin L, Robinson RC. Insights into the evolution of regulated actin dynamics via characterization of primitive gelsolin/cofilin proteins from Asgard archaea. *Proc Natl Acad Sci.* 2020;117(33):19904-19913. doi:10.1073/pnas.2009167117
- 661. Akıl C, Kitaoku Y, Tran LT, Liebl D, Choe H, Muengsaen D, Suginta W, Schulte A, Robinson RC. Mythical origins of the actin cytoskeleton. *Curr Opin Cell Biol.* 2021;68:55-63. doi:10.1016/j.ceb.2020.08.011
- 662. Erickson HP. Evolution in bacteria. *Nature*. 2001;413(6851):30-30. doi:10.1038/35092655
- 663. Hartman H, Fedorov A. The origin of the eukaryotic cell: A genomic investigation. *Proc Natl Acad Sci U S A*. 2002;99(3):1420-1425. doi:10.1073/pnas.032658599
- 664. Skau CT, Waterman CM. Specification of Architecture and Function of Actin Structures by Actin Nucleation Factors. *Annu Rev Biophys.* 2015;44(1):285-310. doi:10.1146/annurev-biophys-060414-034308
- 665. Parisis N, Krasinska L, Harker B, Urbach S, Rossignol M, Camasses A, Dewar J, Morin N, Fisher D. Initiation of DNA replication requires actin dynamics and formin activity. *EMBO J*. 2017;36(21):3212-3231. doi:10.15252/embj.201796585
- 666. Wada S ichi, Matsunaga S, Saito S ya, Fusetani N, Watabe S. Actin-Binding Specificity of Marine Macrolide Toxins, Mycalolide B and Kabiramide D. J Biochem (Tokyo). 1998;123(5):946-952. doi:10.1093/oxfordjournals.jbchem.a022029
- 667. Yamada K, Ojika M, Ishigaki T, Yoshida Y, Ekimoto H, Arakawa M. Aplyronine A, a potent antitumor substance and the congeners aplyronines B and C isolated from the sea hare Aplysia kurodai. *J Am Chem Soc.* 1993;115(23):11020-11021. doi:10.1021/ja00076a082
- 668. Saito S ya, Watabe S, Ozaki H, Kigoshi H, Yamada K, Fusetani N, Karaki H. Novel Actin Depolymerizing Macrolide Aplyronine A1. *J Biochem (Tokyo)*. 1996;120(3):552-555. doi:10.1093/oxfordjournals.jbchem.a021449

- 669. Ojika M, Kigoshi H, Yoshida Y, Ishigaki T, Nisiwaki M, Tsukada I, Arakawa M, Ekimoto H, Yamada K. Aplyronine A, a potent antitumor macrolide of marine origin, and the congeners aplyronines B and C: isolation, structures, and bioactivities. *Tetrahedron*. 2007;63(15):3138-3167. doi:10.1016/j.tet.2007.02.011
- 670. Kigoshi H, Kita M. Antitumor Effects of Sea Hare-Derived Compounds in Cancer. In: Kim SK, ed. Handbook of Anticancer Drugs from Marine Origin. Springer International Publishing; 2015:701-739. doi:10.1007/978-3-319-07145-9\_33
- 671. Klenchin VA, Allingham JS, King R, Tanaka J, Marriott G, Rayment I. Trisoxazole macrolide toxins mimic the binding of actin-capping proteins to actin. *Nat Struct Biol*. 2003;10(12):1058-1063. doi:10.1038/nsb1006
- 672. Tanaka J, Yan Y, Choi J, Bai J, Klenchin VA, Rayment I, Marriott G. Biomolecular mimicry in the actin cytoskeleton: Mechanisms underlying the cytotoxicity of kabiramide C and related macrolides. *Proc Natl Acad Sci.* 2003;100(24):13851-13856. doi:10.1073/pnas.2233339100
- 673. Dominguez R. Actin-binding proteins a unifying hypothesis. *Trends Biochem Sci.* 2004;29(11):572-578. doi:10.1016/j.tibs.2004.09.004
- 674. Roopa L, Pravin KR, M. MSM. Molecular Dynamics Simulation Reveal the Mechanism of Resistance of Mutant Actins to Latrunculin A Insight into Specific Modifications to Design Novel Drugs to Overcome Resistance. *Curr Comput Aided Drug Des.* 2016;12(2):107-118.
- 675. Johnston JJ, Wen KK, Keppler-Noreuil K, McKane M, Maiers JL, Greiner A, Sapp JC, NIH Intramural Sequencing Center, Demali KA, Rubenstein PA, et al. Functional analysis of a de novo ACTB mutation in a patient with atypical Baraitser-Winter syndrome. *Hum Mutat*. 2013;34(9):1242-1249. doi:10.1002/humu.22350
- 676. Belmont LD, Drubin DG. The Yeast V159N Actin Mutant Reveals Roles for Actin Dynamics In Vivo. *J Cell Biol*. 1998;142(5):1289-1299.
- 677. Procaccio V, Salazar G, Ono S, Styers ML, Gearing M, Davila A, Jimenez R, Juncos J, Gutekunst CA, Meroni G, et al. A Mutation of β-Actin That Alters Depolymerization Dynamics Is Associated with Autosomal Dominant Developmental Malformations, Deafness, and Dystonia. Am J Hum Genet. 2006;78(6):947-960. doi:10.1086/504271
- 678. Schwarzerová K, Vondráková Z, Fischer L, Boříková P, Bellinvia E, Eliášová K, Havelková L, Fišerová J, Vágner M, Opatrný Z. The role of actin isoforms in somatic embryogenesis in Norway spruce. *BMC Plant Biol.* 2010;10:89. doi:10.1186/1471-2229-10-89
- 679. Rivière JB, van Bon BWM, Hoischen A, Kholmanskikh SS, O'Roak BJ, Gilissen C, Gijsen S, Sullivan CT, Christian SL, Abdul-Rahman OA, et al. De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome. *Nat Genet*. 2012;44(4):440-S2. doi:10.1038/ng.1091
- 680. Filipuzzi I, Thomas JR, Pries V, Estoppey D, Salcius M, Studer C, Schirle M, Hoepfner D. Direct Interaction of Chivosazole F with Actin Elicits Cell Responses Similar to Latrunculin A but Distinct from Chondramide. *ACS Chem Biol.* 2017;12(9):2264-2269. doi:10.1021/acschembio.7b00385
- 681. Johannes F j., Gallwitz D. Site-directed mutagenesis of the yeast actin gene: a test for actin function in vivo. *EMBO J.* 1991;10(12):3951-3958. doi:10.1002/j.1460-2075.1991.tb04965.x
- 682. Wertman KF, Drubin DG, Botstein D. Systematic mutational analysis of the yeast ACT1 gene. *Genetics*. 1992;132(2):337-350.
- 683. Wang H, Robinson RC, Burtnick LD. The structure of native G-actin. *Cytoskeleton*. 67(7):456-465. doi:10.1002/cm.20458

- 684. Di Donato N, Rump A, Koenig R, Der Kaloustian VM, Halal F, Sonntag K, Krause C, Hackmann K, Hahn G, Schrock E, et al. Severe forms of Baraitser-Winter syndrome are caused by ACTB mutations rather than ACTG1 mutations. *Eur J Hum Genet EJHG*. 2014;22(2):179-183. doi:10.1038/ejhg.2013.130
- 685. Hundt N, Preller M, Swolski O, Ang AM, Mannherz HG, Manstein DJ, Müller M. Molecular mechanisms of disease-related human β-actin mutations p.R183W and p.E364K. FEBS J. 2014;281(23):5279-5291. doi:10.1111/febs.13068
- 686. Verloes A, Di Donato N, Masliah-Planchon J, Jongmans M, Abdul-Raman OA, Albrecht B, Allanson J, Brunner H, Bertola D, Chassaing N, et al. Baraitser–Winter cerebrofrontofacial syndrome: delineation of the spectrum in 42 cases. *Eur J Hum Genet*. 2015;23(3):292-301. doi:10.1038/ejhg.2014.95
- 687. Verloes A, Drunat S, Pilz D, Donato ND. *Baraitser-Winter Cerebrofrontofacial Syndrome*. University of Washington, Seattle; 2015. Accessed June 14, 2021. https://www.ncbi.nlm.nih.gov/sites/books/NBK327153/
- 688. Conboy E, Vairo F, Waggoner D, Ober C, Das S, Dhamija R, Klee EW, Pichurin P. Pathogenic Variant in ACTB, p.Arg183Trp, Causes Juvenile-Onset Dystonia, Hearing Loss, and Developmental Delay without Midline Malformation. *Case Rep Genet*. 2017;2017:9184265. doi:10.1155/2017/9184265
- 689. Cuvertino S, Stuart HM, Chandler KE, Roberts NA, Armstrong R, Bernardini L, Bhaskar S, Callewaert B, Clayton-Smith J, Davalillo CH, et al. ACTB Loss-of-Function Mutations Result in a Pleiotropic Developmental Disorder. Am J Hum Genet. 2017;101(6):1021-1033. doi:10.1016/j.ajhg.2017.11.006
- 690. Freitas JL, Vale TC, Barsottini OGP, Pedroso JL. Expanding the Phenotype of Dystonia-Deafness Syndrome Caused by ACTB Gene Mutation. *Mov Disord Clin Pract*. 2019;7(1):86-87. doi:10.1002/mdc3.12854
- 691. Choi GJ, Kim MS, Park H, Kim JY, Choi JM, Lee SM, Jang JH, Cho SY, Jin DK. The First Korean Case of Baraitser-Winter Cerebro-Fronto-Facial Syndrome with a Novel Mutation in ACTB Diagnosed Via Targeted Gene Panel Sequencing and Literature Review. *Ann Clin Lab Sci.* 2020;50(6):818-824.
- 692. Parker F, Baboolal TG, Peckham M. Actin Mutations and Their Role in Disease. *International Journal of Molecular Sciences*. 2020;21(9):3371. doi:10.3390/ijms21093371
- 693. Baumann M, Beaver EM, Palomares-Bralo M, Santos-Simarro F, Holzer P, Povysil G, Müller T, Valovka T, Janecke AR. Further delineation of putative ACTB loss-of-function variants: A 4-patient series. *Hum Mutat*. 2020;41(4):753-758. doi:10.1002/humu.23970
- 694. Hampshire K, Martin PM, Carlston C, Slavotinek A. Baraitser–Winter cerebrofrontofacial syndrome: Report of two adult siblings. *Am J Med Genet A*. 2020;182(8):1923-1932. doi:10.1002/ajmg.a.61637
- 695. Sprenkeler EGG, Webbers SDS, Kuijpers TW. When Actin is Not Actin' Like It Should: A New Category of Distinct Primary Immunodeficiency Disorders. *J Innate Immun.* 2021;13(1):3-25. doi:10.1159/000509717
- 696. Thompson JE, Barrow KD, Faulkner DJ. Localization of Two Brominated Metabolites, Aerothionin and Homoaerothionin, in Spherulous Cells of the Marine Sponge Aplysina fistularis (=Verongia thiona). *Acta Zool*. 1983;64(4):199-210. doi:10.1111/j.1463-6395.1983.tb00801.x

- 697. Müller WE, Diehl-Seifert B, Sobel C, Bechtold A, Kljajić Z, Dorn A. Sponge secondary metabolites: biochemical and ultrastructural localization of the antimitotic agent avarol in Dysidea avara. *J Histochem Cytochem*. 1986;34(12):1687-1690. doi:10.1177/34.12.3782777
- 698. Uriz MJ, Becerro MA, Tur JM, Turon X. Location of toxicity within the Mediterranean sponge Crambe crambe (Demospongiae: Poecilosclerida). *Mar Biol.* 1996;124(4):583-590. doi:10.1007/BF00351039
- 699. Uriz MJ, Turon X, Galera J, Tur JM. New light on the cell location of avarol within the sponge Dysidea avara (Dendroceratida). *Cell Tissue Res.* 1996;285(3):519-527. doi:10.1007/s004410050668
- 700. Garson MJ, Thompson JE, Larsen RM, Battershill CN, Murphy PT, Bergquist PR. Terpenes in sponge cell membranes: Cell separation and membrane fractionation studies with the tropical marine spongeAmphimedon sp. *Lipids*. 1992;27(5):378-388. doi:10.1007/BF02536153
- 701. Garson MJ, Flowers AE, Webb RI, Charan RD, McCaffrey EJ. A sponge/dinoflagellate association in the haplosclerid sponge Haliclona sp.: cellular origin of cytotoxic alkaloids by Percoll density gradient fractionation. *Cell Tissue Res.* 1998;293(2):365-373. doi:10.1007/s004410051128
- 702. Turon X, Becerro MA, Uriz MJ. Distribution of brominated compounds within the sponge Aplysina aerophoba: coupling of X-ray microanalysis with cryofixation techniques. *Cell Tissue Res.* 2000;301(2):311-322. doi:10.1007/s004410000233
- 703. Gerçe B, Schwartz T, Voigt M, Rühle S, Kirchen S, Putz A, Proksch P, Obst U, Syldatk C, Hausmann R. Morphological, Bacterial, and Secondary Metabolite Changes of Aplysina aerophoba upon Long-Term Maintenance Under Artificial Conditions. *Microb Ecol*. 2009;58(4):865-878.
- 704. Tianero MD, Balaich JN, Donia MS. Localized production of defence chemicals by intracellular symbionts of Haliclona sponges. *Nat Microbiol*. 2019;4(7):1149-1159. doi:10.1038/s41564-019-0415-8
- 705. Groweiss A, Shmueli U, Kashman Y. Marine toxins of Latrunculia magnifica. J Org Chem. 1983;48(20):3512-3516. doi:10.1021/jo00168a028
- 706. Crozier WJ, Crozier WJ. The nature of the conical bodies on the mantle of certain nudibranchs. *The Nautilus*. 1917;30:103-106.
- 707. Joandomènec 1946-Ros. Sistemas de defensa en los Opistobranquios. *Oecologia Aquat.* 1976;(2):41-77.
- 708. Okuda RK. Chemical ecology of some opisthobranch mollusks. Published online 1983. Accessed December 6, 2020. http://scholarspace.manoa.hawaii.edu/handle/10125/9493
- 709. García J, Medina A, Coveñas R. Study of the anatomy and histology of the mantle dermal formations (MDFs) of Chromodoris and Hypselodoris (Opisthobranchia: Chromodorididae). *Malacologia*. 1991;32:233-240.
- 710. Fontana A, Avila C, Martinez E, Ortea J, Trivellone E, Cimino G. Defensive allomones in three species of Hypselodoris (gastropoda: Nudibranchia) from the Cantabrian sea. J Chem Ecol. 1993;19(2):339-356. doi:10.1007/BF00993700
- 711. Database resources of the National Center for Biotechnology Information. *Nucleic Acids Res.* 2018;46(Database issue):D8-D13. doi:10.1093/nar/gkx1095
- 712. Maeda T, Takahashi S, Yoshida T, Shimamura S, Takaki Y, Nagai Y, Toyoda A, Suzuki Y, Arimoto A, Ishii H, et al. Chloroplast acquisition without the gene transfer in kleptoplastic sea slugs, Plakobranchus ocellatus. *eLife*. 10:e60176. doi:10.7554/eLife.60176

- 713. McLean BG, Huang S, McKinney EC, Meagher RB. Plants contain highly divergent actin isovariants. *Cell Motil*. 1990;17(4):276-290. doi:10.1002/cm.970170403
- 714. Reece KS, McElroy D, Wu R. Function and Evolution of Actins. In: Hecht MK, Wallace B, Macintyre RJ, eds. *Evolutionary Biology: Volume 26*. Evolutionary Biology. Springer US; 1992:1-34. doi:10.1007/978-1-4615-3336-8\_1
- 715. Šlajcherová K, Fišerová J, Fischer L, Schwarzerová K. Multiple Actin Isotypes in Plants: Diverse Genes for Diverse Roles? *Front Plant Sci.* 2012;3. doi:10.3389/fpls.2012.00226
- 716. Vandekerckhove J, Weber K. At least six different actins are expressed in a higher mammal: An analysis based on the amino acid sequence of the amino-terminal tryptic peptide. *J Mol Biol*. 1978;126(4):783-802. doi:10.1016/0022-2836(78)90020-7
- 717. Venkatesh B, Tay BH, Elgar G, Brenner S. Isolation, Characterization and Evolution of Nine Pufferfish (Fugu rubripes) Actin Genes. J Mol Biol. 1996;259(4):655-665. doi:10.1006/jmbi.1996.0347
- 718. Lee JJ, Shott RJ, Rose SJ, Thomas TL, Britten RJ, Davidson EH. Sea urchin actin gene subtypes: Gene number, linkage and evolution. J Mol Biol. 1984;172(2):149-176. doi:10.1016/S0022-2836(84)80035-2
- 719. Fang H, Brandhorst BP. Evolution of actin gene families of sea urchins. J Mol Evol. 1994;39(4):347-356. doi:10.1007/BF00160267
- 720. Fyrberg EA, Kindle KL, Davidson N, Sodja A. The actin genes of drosophila: a dispersed multigene family. *Cell*. 1980;19(2):365-378. doi:10.1016/0092-8674(80)90511-5
- 721. Kondrashov FA, Rogozin IB, Wolf YI, Koonin EV. Selection in the evolution of gene duplications. *Genome Biol.* 2002;3(2):research0008.1. doi:10.1186/gb-2002-3-2-research0008
- 722. Edmunds M. Protective mechanisms in the Eolidacea (Mollusca Nudibranchia). *Zool J Linn Soc*. 1966;46(308):27-71. doi:10.1111/j.1096-3642.1966.tb00082.x
- 723. Edmunds M. On the swimming and defensive response of Hexabranchus marginatus (Mollusca, Nudibranchia). *Zool J Linn Soc*. 1968;47(313):425-429. doi:10.1111/j.1096-3642.1968.tb00550a.x
- 724. Ghazali SR. Displays of Defense : Behavioral Differences in Antagonist Avoidance in Four Opisthobranch Mollusks. Published online December 1, 2006. Accessed April 5, 2018. https://escholarship.org/uc/item/9s6740fr
- 725. Alqudah A, Saad S, Susanti D, Hadry F, Fikri M, Khodzori FA, Yusof M, Rani H. Jurnal Teknolgi Full Paper OBSERVATIONS ON NUDIBRANCH BEHAVIOUR PATTERNS UNDER LABORATORY CONDITIONS. *J Teknol.* 2016;78:11-2016. doi:10.11113/.v78.6639
- 726. Avila C, Durfort M. Histology of epithelia and mantle glands of selected species of Doridacean molluscs with chemical defensive strategies. *Veliger -Berkeley-*. 1996;39:148-163.
- 727. Davies MS, Blackwell J. Energy saving through trail following in a marine snail. *Proc R Soc Lond B Biol Sci.* 2007;274(1614):1233-1236. doi:10.1098/rspb.2007.0046
- 728. David KT, Oaks JR, Halanych KM. Patterns of gene evolution following duplications and speciations in vertebrates. *PeerJ*. 2020;8:e8813. doi:10.7717/peerj.8813
- 729. Casewell NR, Wüster W, Vonk FJ, Harrison RA, Fry BG. Complex cocktails: the evolutionary novelty of venoms. *Trends Ecol Evol*. 2013;28(4):219-229. doi:10.1016/j.tree.2012.10.020

- 730. Bergeron SE, Zhu M, Thiem SM, Friderici KH, Rubenstein PA. Ion-dependent Polymerization Differences between Mammalian β- and γ-Nonmuscle Actin Isoforms. J Biol Chem. 2010;285(21):16087-16095. doi:10.1074/jbc.M110.110130
- 731. Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, Nguyen DD, Watrous J, Kapono CA, Luzzatto-Knaan T, et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. *Nat Biotechnol.* 2016;34(8):828-837. doi:10.1038/nbt.3597
- 732. Aron AT, Gentry EC, McPhail KL, Nothias LF, Nothias-Esposito M, Bouslimani A, Petras D, Gauglitz JM, Sikora N, Vargas F, et al. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. *Nat Protoc*. 2020;15(6):1954-1991. doi:10.1038/s41596-020-0317-5
- 733. Nothias LF, Petras D, Schmid R, Dührkop K, Rainer J, Sarvepalli A, Protsyuk I, Ernst M, Tsugawa H, Fleischauer M, et al. Feature-based molecular networking in the GNPS analysis environment. *Nat Methods*. 2020;17(9):905-908. doi:10.1038/s41592-020-0933-6
- 734. Schmid R, Petras D, Nothias LF, Wang M, Aron AT, Jagels A, Tsugawa H, Rainer J, Garcia-Aloy M, Dührkop K, et al. Ion identity molecular networking for mass spectrometry-based metabolomics in the GNPS environment. *Nat Commun*. 2021;12(1):3832. doi:10.1038/s41467-021-23953-9
- 735. van Santen JA, Poynton EF, Iskakova D, McMann E, Alsup TA, Clark TN, Fergusson CH, Fewer DP, Hughes AH, McCadden CA, et al. The Natural Products Atlas 2.0: a database of microbiallyderived natural products. *Nucleic Acids Res.* Published online October 28, 2021:gkab941. doi:10.1093/nar/gkab941
- 736. Sorokina M, Merseburger P, Rajan K, Yirik MA, Steinbeck C. COCONUT online: Collection of Open Natural Products database. J Cheminformatics. 2021;13(1):2. doi:10.1186/s13321-020-00478-9
- 737. Rutz A, Sorokina M, Galgonek J, Mietchen D, Willighagen E, Gaudry A, Graham J, Stephan R, Page R, Vondrasek J, et al. *The LOTUS Initiative for Open Natural Products Research: Knowledge Management through Wikidata*.; 2021. doi:10.1101/2021.02.28.433265
- 738. Bremser W. Structure Elucidation and Artificial Intelligence. *Angew Chem Int Ed Engl.* 1988;27(2):247-260. doi:10.1002/anie.198802471
- 739. Howarth A, Ermanis K, Goodman JM. DP4-AI automated NMR data analysis: straight from spectrometer to structure. *Chem Sci.* 2020;11(17):4351-4359. doi:10.1039/D0SC00442A
- 740. Reher R, Kim HW, Zhang C, Mao HH, Wang M, Nothias LF, Caraballo-Rodriguez AM, Glukhov E, Teke B, Leao T, et al. A Convolutional Neural Network-Based Approach for the Rapid Annotation of Molecularly Diverse Natural Products. *J Am Chem Soc.* 2020;142(9):4114-4120. doi:10.1021/jacs.9b13786
- 741. Pesek M, Juvan A, Jakoš J, Košmrlj J, Marolt M, Gazvoda M. Database Independent Automated Structure Elucidation of Organic Molecules Based on IR, 1H NMR, 13C NMR, and MS Data. J Chem Inf Model. 2021;61(2):756-763. doi:10.1021/acs.jcim.0c01332
- 742. Skinnider MA, Wang F, Pasin D, Greiner R, Foster LJ, Dalsgaard PW, Wishart DS. A deep generative model enables automated structure elucidation of novel psychoactive substances. *Nat Mach Intell.* 2021;3(11):973-984. doi:10.1038/s42256-021-00407-x
- 743. Ackers RG, Moss D, Picton BE, Bt B, Stone SMK, Morrow CC. Sponges of the British Isles A colour guide and working document, 1992 Edition. *Mar Conserv Soc*. Published online 2007:165.

- 744. Erpenbeck D, Galitz A, Ekins M, Cook S de C, Soest RWM van, Hooper JNA, Wörheide G. Soft sponges with tricky tree: On the phylogeny of dictyoceratid sponges. J Zool Syst Evol Res. 2020;58(1):27-40. doi:10.1111/jzs.12351
- 745. Bouschen W, Schulz O, Eikel D, Spengler B. Matrix vapor deposition/recrystallization and dedicated spray preparation for high-resolution scanning microprobe matrix-assisted laser desorption/ionization imaging mass spectrometry (SMALDI-MS) of tissue and single cells. *Rapid Commun Mass Spectrom.* 2010;24(3):355-364. doi:10.1002/rcm.4401
- 746. Koestler M, Kirsch D, Hester A, Leisner A, Guenther S, Spengler B. A high-resolution scanning microprobe matrix-assisted laser desorption/ionization ion source for imaging analysis on an ion trap/Fourier transform ion cyclotron resonance mass spectrometer. *Rapid Commun Mass Spectrom RCM*. 2008;22(20):3275-3285. doi:10.1002/rcm.3733
- 747. Römpp A, Guenther S, Schober Y, Schulz O, Takats Z, Kummer W, Spengler B. Histology by Mass Spectrometry: Label-Free Tissue Characterization Obtained from High-Accuracy Bioanalytical Imaging. *Angew Chem Int Ed.* 2010;49(22):3834-3838. doi:10.1002/anie.200905559
- 748. Römpp A, Spengler B. Mass spectrometry imaging with high resolution in mass and space. *Histochem Cell Biol.* 2013;139(6):759-783. doi:10.1007/s00418-013-1097-6
- 749. Guenther S, Koestler M, Schulz O, Spengler B. Laser spot size and laser power dependence of ion formation in high resolution MALDI imaging. *Int J Mass Spectrom*. 2010;294(1):7-15. doi:10.1016/j.ijms.2010.03.014
- 750. Paschke C, Leisner A, Hester A, Maass K, Guenther S, Bouschen W, Spengler B. Mirion—A Software Package for Automatic Processing of Mass Spectrometric Images. J Am Soc Mass Spectrom. 2013;24(8):1296-1306. doi:10.1021/jasms.8b04589
- 751. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. *Mol Biol Evol.* 2018;35(6):1547-1549. doi:10.1093/molbev/msy096
- 752. Huson DH, Bryant D. Application of Phylogenetic Networks in Evolutionary Studies. *Mol Biol Evol*. 2006;23(2):254-267. doi:10.1093/molbev/msj030
- 753. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al. Clustal W and Clustal X version 2.0. *Bioinformatics*. 2007;23(21):2947-2948. doi:10.1093/bioinformatics/btm404
- 754. Rohde S, Schupp PJ. Allocation of chemical and structural defenses in the sponge Melophlus sarasinorum. *J Exp Mar Biol Ecol*. 2011;399(1):76-83. doi:10.1016/j.jembe.2011.01.012
- 755. Amesbury S, Myers R. The Fishes. A Guide to the Coastal Resources of Guam. Vol. 1. *Guam Univ Guam Press P*. 1982;141.

## APPENDIX

## SUPPLEMENTARY INFORMATION FOR CHAPTER I

SI for CHAPTER I was partly also provided in Bogdanov et al. 2016, 2017.<sup>1,2</sup>

## Table of contents

| Figure S1.1 <sup>1</sup> H-NMR spectrum of compound 1 in MeOH-d <sub>4</sub>            | 155         |
|-----------------------------------------------------------------------------------------|-------------|
| Figure S1.2 <sup>13</sup> C-NMR spectrum of compound 1 in MeOH-d4                       | 155         |
| Figure S1.3 <sup>1</sup> H-NMR spectrum of compound 2 in MeOH-d <sub>4</sub>            | 156         |
| Figure S1.4 <sup>13</sup> C-NMR spectrum of compound 2 in MeOH- <i>d</i> <sub>4</sub>   | 156         |
| Figure S1.5 <sup>1</sup> H-NMR spectrum of compound 3 in MeOH-d <sub>4</sub>            | 157         |
| Figure S1.6 <sup>13</sup> C-NMR spectrum of compound 3 in MeOH-d <sub>4</sub>           | 157         |
| Figure S1.7 Proposed stereostructure of compound 3 with selected key NOESYco            | orrelations |
|                                                                                         | 158         |
| Figure S1.8 <sup>1</sup> H-NMR spectrum of compound 4 in MeOH- <i>d</i> <sub>4</sub>    | 158         |
| Figure S1.9 <sup>13</sup> C-NMR spectrum of compound 4 in MeOH-d <sub>4</sub>           | 159         |
| Figure S1.10 <sup>1</sup> H-NMR spectrum of compound 5 in MeOH- <i>d</i> <sub>4</sub> . | 159         |
| Figure S1.11 <sup>13</sup> C-NMR spectrum of compound 5 in MeOH-d <sub>4</sub>          |             |
| Figure S1.12 <sup>1</sup> H-NMR spectrum of compound 6 in MeOH-d <sub>4</sub>           | 160         |
| Figure S1.13 <sup>13</sup> C-NMR spectrum of compound 6 in MeOH-d4                      | 161         |
| Figure S1.14 <sup>1</sup> H-NMR spectrum of compound 7 in MeOH-d <sub>4</sub> .         |             |
| Figure S1.15 <sup>13</sup> C-NMR spectrum of compound 7 in MeOH-d <sub>4</sub>          |             |
| Figure S1.16 <sup>1</sup> H-NMR spectrum of compound 8 in MeOH- <i>d</i> <sub>4</sub>   |             |
| Figure S1.17 <sup>13</sup> C-NMR spectrum of compound 8 in MeOH-d <sub>4</sub>          | 166         |
| Figure S1.18 <sup>1</sup> H-NMR spectrum of compound 9 in MeOH-d <sub>4</sub>           | 169         |
| Figure S1.19 <sup>13</sup> C-NMR spectrum of compound 9 in MeOH-d4                      |             |
| Figure S1.20 Proposed stereostructural variation in ring C of the biscembranes 8 a      | und 9 with  |
| selected key ROESY correlations.                                                        | 172         |
|                                                                                         |             |

| Table S1.1 NMR spectroscopic data of compound 6 in MeOH- $d_4$        |  |
|-----------------------------------------------------------------------|--|
| Table S1.2 NMR spectroscopic data of compound 7 in MeOH- $d_4$        |  |
| Table S1.3 NMR spectroscopic data of compound 8 in MeOH- $d_4$        |  |
| Table S1.4 NMR spectroscopic data of compound <b>9</b> in MeOH- $d_4$ |  |



Figure S1.1 <sup>1</sup>H-NMR spectrum of compound **1** in MeOH-*d*<sub>4</sub>.

Figure S1.2 <sup>13</sup>C-NMR spectrum of compound **1** in MeOH-*d*<sub>4</sub>.





Figure S1.3 <sup>1</sup>H-NMR spectrum of compound 2 in MeOH-*d*<sub>4</sub>.

Figure S1.4 <sup>13</sup>C-NMR spectrum of compound **2** in MeOH-*d*<sub>4</sub>.





Figure S1.5 <sup>1</sup>H-NMR spectrum of compound **3** in MeOH- $d_4$ .

Figure S1.6 <sup>13</sup>C-NMR spectrum of compound **3** in MeOH-*d*<sub>4</sub>.





Figure S1.7 Proposed stereostructure of compound **3** with selected key NOESY correlations.

Figure S1.8 <sup>1</sup>H-NMR spectrum of compound **4** in MeOH-*d*<sub>4</sub>.





Figure S1.9 <sup>13</sup>C-NMR spectrum of compound **4** in MeOH-*d*<sub>4</sub>.

Figure S1.10 <sup>1</sup>H-NMR spectrum of compound **5** in MeOH-*d*<sub>4</sub>.





Figure S1.11 <sup>13</sup>C-NMR spectrum of compound **5** in MeOH-*d*<sub>4</sub>.

Figure S1.12 <sup>1</sup>H-NMR spectrum of compound **6** in MeOH-*d*<sub>4</sub>.





Figure S1.13 <sup>13</sup>C-NMR spectrum of compound **6** in MeOH-*d*<sub>4</sub>.

Table S1.1 NMR spectroscopic data of compound 6 in MeOH-d4.

| С | $\delta_{\rm H}$ (mult, <i>J</i> in Hz) | δ <sub>C</sub>        | COSY                    | НМВС                                     |
|---|-----------------------------------------|-----------------------|-------------------------|------------------------------------------|
| 1 |                                         | 98.8, C               |                         |                                          |
| 2 | 1.95, ddd (2.6, 5.1, 13.9)              | 49.9, CH              | H <sub>2</sub> -3, H-15 | C-1, C-3, C-4, C-15, C-16, C-17          |
| 3 | a 2.23, dd (5.1, 13.9)                  |                       | H-2                     |                                          |
|   | b 3.00, t (13.9)                        | 35.0, CH <sub>2</sub> | H-2                     | C-1, C-2, C-4, C-15                      |
| 4 |                                         | 214.6, C              |                         |                                          |
| 5 |                                         | 50.3, C               |                         |                                          |
| 6 | 1.78, dd (4.0, 13.2)                    | 50.5, CH              | H <sub>2</sub> -7       | C-4, C-5, C-7, C-8, C-10, C-11, C-<br>14 |
| 7 | a 0.75, m                               |                       | H-6, H <sub>2</sub> -8  |                                          |
|   | b 1.51, dq (13.2, 3.7)                  | $28.2, CH_2$          | H-6, H <sub>2</sub> -8  | U-5, U-6, U-8, U-9, U-11                 |
| 8 | a 1.00, m                               | 35.5, CH <sub>2</sub> | H-7b, H-9               | C-7, C-9                                 |

|    | b 1.74, m        |                                | H-7a, H-9                                                 |                                                |
|----|------------------|--------------------------------|-----------------------------------------------------------|------------------------------------------------|
| 9  | 1.76, m          | 30.8, CH                       | H <sub>2</sub> -8, H <sub>2</sub> -10, H <sub>3</sub> -19 |                                                |
| 10 | a 1.35, t (12.4) | 42.5 CU                        | 11.0                                                      |                                                |
|    | b 2.20, m        | 45. <i>3</i> , Сп <sub>2</sub> | п-9                                                       | C-0, C-8, C-9, C-11, C-12, C-15                |
| 11 |                  | 77.1, C                        |                                                           |                                                |
| 12 | 7.34, d (1.8)    | 144.0, CH                      | H-14                                                      | C-10, C-11, C-13, C-14, C-20,                  |
| 13 |                  | 135.7, C                       |                                                           |                                                |
| 14 | 3.15, d (1.5)    | 52.8, CH                       | H-12                                                      | C-1, C-5, C-6, C-11, C-12, C-13,<br>C-18, C-20 |
| 15 | 2.47, m          | 26.6, CH                       | H-2, H <sub>3</sub> -16, H <sub>3</sub> -17               | C-1, C-2, C-3, C-16, C-17                      |
| 16 | 1.02, d (7.0)    | 17.9, CH <sub>3</sub>          | H-15                                                      | C-2, C-15, C-17                                |
| 17 | 0.96, d (7.0)    | 22.8, CH <sub>3</sub>          | H-15                                                      | C-2, C-15, C-16                                |
| 18 | 0.79, s          | 16.8, CH <sub>3</sub>          |                                                           | C-1, C-4, C-5, C-6, C-14                       |
| 19 | 1.07, d (6.2)    | 22.5, CH <sub>3</sub>          | H-9                                                       | C-8, C-9, C-10, C-11                           |
| 20 |                  | 166.5, C                       |                                                           |                                                |
| 21 | 3.83, s          | 52.5, CH <sub>3</sub>          |                                                           | C-20                                           |

<sup>*a*</sup> All assignments are based on extensive 1D and 2D NMR measurements (COSY, HSQC, HMBC). <sup>*b*</sup> Multiplicities determined by DEPT.



Figure S1.14 <sup>1</sup>H-NMR spectrum of compound **7** in MeOH-*d*<sub>4</sub>.

Figure S1.15 <sup>13</sup>C-NMR spectrum of compound 7 in MeOH-*d*<sub>4</sub>.



| С  | $\delta_{\rm H}$ (mult, J in Hz) | δ <sub>C</sub>        | COSY                                                          | НМВС                                        |
|----|----------------------------------|-----------------------|---------------------------------------------------------------|---------------------------------------------|
| 1  |                                  | 102.9, C              |                                                               |                                             |
| 2  | 2.22, m                          | 46.1, CH              | H <sub>2</sub> -3, H-15                                       | C-1, C-3, C-4, C-15, C-16, C-17             |
| 3  | a 2.26, m                        |                       | H-2                                                           |                                             |
|    | b 3.03, m                        | 34.7, CH <sub>2</sub> | H-2                                                           | C-1, C-2, C-4, C-15                         |
| 4  |                                  | 213.7, C              |                                                               |                                             |
| 5  |                                  | 50.1, C               |                                                               |                                             |
| 6  | 1.84, dd (4.0, 13.2)             | 50.7, CH              | H <sub>2</sub> -7                                             | C-4, C-5, C-7, C-8, C-10, C-11, C-14        |
| 7  | a 0.76, m                        |                       | H-6                                                           |                                             |
|    | b 1.52, dq (13.2,<br>3.7)        | 28.1, CH <sub>2</sub> | H-6                                                           | C-5, C-6, C-8, C-9, C-11                    |
| 8  | a 1.02, m                        | 25.4 011              | H-7b, H-9                                                     |                                             |
|    | b 1.75, m                        | 35.4, CH <sub>2</sub> | H-7a, H-9                                                     | C-7, C-9                                    |
| 9  | 1.78, m                          | 30.8, CH              | H <sub>2</sub> -8, H <sub>2</sub> -10, H <sub>3</sub> -<br>19 |                                             |
| 10 | a 1.39, m                        | 12.0 CH               | W.O.                                                          |                                             |
|    | b 2.25, m                        | 43.0, CH <sub>2</sub> | H-9                                                           | C-6, C-8, C-9, C-11, C-12, C-13             |
| 11 |                                  | 77.9, C               |                                                               |                                             |
| 12 | 7.32, d (1.8)                    | 143.3,<br>CH          | H-14                                                          | C-10, C-11, C-13, C-14, C-20,               |
| 13 |                                  | 135.1, C              |                                                               |                                             |
| 14 | 3.44, d (1.8)                    | 48.9, CH              | H-12                                                          | C-1, C-5, C-6, C-11, C-12, C-13, C-18, C-20 |
| 15 | 2.25, m                          | 26.5, CH              | H-2, H <sub>3</sub> -16, H <sub>3</sub> -17                   | C-1, C-2, C-3, C-16, C-17                   |
| 16 | 1.03, d (7.0)                    | 17.8, CH <sub>3</sub> | H-15                                                          | C-2, C-15, C-17                             |
| 17 | 0.97, d (7.0)                    | 22.6, CH <sub>3</sub> | H-15                                                          | C-2, C-15, C-16                             |
| 18 | 0.82, s                          | 16.8, CH <sub>3</sub> |                                                               | C-1, C-4, C-5, C-6, C-14                    |
| 19 | 1.08, d (6.2)                    | 22.5, CH <sub>3</sub> | H-9                                                           | C-8, C-9, C-10, C-11                        |

Table S1.2 NMR spectroscopic data of compound 7 in MeOH-d<sub>4</sub>.

| 20 |         | 166.1, C              |      |
|----|---------|-----------------------|------|
| 21 | 3.85, s | 52.6, CH <sub>3</sub> | C-20 |
| 22 | 3.16, s | 51.5, CH <sub>3</sub> | C-1  |

<sup>*a*</sup> All assignments are based on extensive 1D and 2D NMR measurements (COSY, HSQC, HMBC). <sup>*b*</sup> Multiplicities determined by DEPT.

Figure S1.16 <sup>1</sup>H-NMR spectrum of compound **8** in MeOH-*d*<sub>4</sub>.





Figure S1.17 <sup>13</sup>C-NMR spectrum of compound 8 in MeOH-*d*<sub>4</sub>.

Table S1.3 NMR spectroscopic data of compound 8 in MeOH-d<sub>4</sub>.

| С | $\delta_{\rm H}$ (mult, <i>J</i> in Hz) | δ <sub>C</sub>        | COSY                      | HMBC           |
|---|-----------------------------------------|-----------------------|---------------------------|----------------|
| 1 |                                         | 50.2, C               |                           |                |
| 2 | 3.50 m                                  | 52.4, CH              | H-36 a                    | C-4            |
| 3 |                                         | 203.5, C              |                           |                |
| 4 | 6.18 s                                  | 126.3, CH             | H <sub>3</sub> -19        | C-6            |
| 5 |                                         | 162.3, C              |                           |                |
| 6 | a 2.48 <sup>b</sup>                     | 40.3, CH <sub>2</sub> |                           | C-4, C-8, C-19 |
|   | b 2.42 m <sup>b</sup>                   |                       |                           | C-4, C-8, C-19 |
| 7 | a 2.64 <sup>b</sup>                     | 25.9, CH <sub>2</sub> | H-8                       |                |
|   | b 2.49 <sup>b</sup>                     |                       |                           | C-5            |
| 8 | 6.36 br dd (7.0, 13.0)                  | 142.4, CH             | H-7 a, H <sub>3</sub> -18 |                |

| 9  |                        | 138.0, C              |                                                      |                                |
|----|------------------------|-----------------------|------------------------------------------------------|--------------------------------|
| 10 |                        | 206.9, C              |                                                      |                                |
| 11 | a 3.35 dd (7.5, 20.0)  | 35.5, CH <sub>2</sub> | H-12                                                 | C-9, C-13, C-15                |
|    | b 2.24 m <sup>b</sup>  |                       |                                                      | C-9, C-13, C-15                |
| 12 | 2.60 br dd (6.9, 18.0) | 59.7, CH              | H <sub>2</sub> -11, H-14 a                           | C-10, C-15, C-16, C-17         |
| 13 |                        | 211.6, C              |                                                      |                                |
| 14 | a 2.94 d (18.0)        | 43.9, CH <sub>2</sub> | H-12                                                 | C-20, C-21, C-41               |
|    | b 2.59 dd (7.0, 18.0)  |                       |                                                      | C-2, C-15, C-20, C-21,<br>C-41 |
| 15 | 2.26 m <sup>b</sup>    | 30.0, CH              | H-11 a, H-12, H <sub>3</sub> -16, H <sub>3</sub> -17 | C-11, C-16, C-17               |
| 16 | 0.86 d (7.0)           | 18.0, CH <sub>3</sub> |                                                      | C-12, C-15, C-17               |
| 17 | 0.90 d (7.0)           | 21.3, CH <sub>3</sub> |                                                      | C-12, C-15, C-17               |
| 18 | 1.74 s                 | 12.1, CH <sub>3</sub> |                                                      | C-8, C-10                      |
| 19 | 2.12 s                 | 18.6, CH <sub>3</sub> |                                                      | C-4, C-6                       |
| 20 |                        | 175.7, C              |                                                      |                                |
| 21 | 4.16 d (11.4)          | 42.7, CH              | H-22, H <sub>3</sub> -37                             |                                |
| 22 | 4.65 d (11.4)          | 123.2, CH             | H-21, H-24 a, H <sub>3</sub> -38                     | C-24, C-34, C-38               |
| 23 |                        | 142.9, C              |                                                      |                                |
| 24 | a 2.35 <sup>b</sup>    | 41.9, CH <sub>2</sub> |                                                      | C-22                           |
|    | b 2.07 <sup>b</sup>    |                       |                                                      |                                |
| 25 | a 1.81 m               | 25.8, CH <sub>2</sub> | H-24 a                                               | C-27, C-30, C-39               |
|    | b 1.62 <sup>b</sup>    |                       |                                                      |                                |
| 26 | 3.02 d (9.9)           | 88.5, CH              | H-25 b, H <sub>2</sub> -28 b                         | C-24, C-30, C-39               |
| 27 |                        | 70.1, C               |                                                      |                                |
| 28 | a 1.85 <sup>b</sup>    | 40.7, CH <sub>2</sub> |                                                      | C-30                           |
|    | b 1.60 <sup>b</sup>    |                       | H-26                                                 | C-26, C-30                     |
| 29 | a 1.72 m               | 24.6, CH <sub>2</sub> |                                                      |                                |

|    | b 1.55 <sup>b</sup>   |                       | H-30               |                  |
|----|-----------------------|-----------------------|--------------------|------------------|
| 30 | 3.24 dd (2.0, 13.9)   | 82.1, CH              | H-29 b             | C-31             |
| 31 |                       | 75.4, C               |                    |                  |
| 32 | 4.97 dd (2.0, 13.9)   | 76.9, CH              | H <sub>2</sub> -33 | C-34, C-42       |
| 33 | a 2.72 m <sup>b</sup> | 30.2, CH <sub>2</sub> | H-32               | C-21, C-31, C-35 |
|    | b 2.16 <sup>b</sup>   |                       | H-32               |                  |
| 34 |                       | 127.4, C              |                    |                  |
| 35 |                       | 129.9, C              |                    |                  |
| 36 | a 2.37 m <sup>b</sup> | 35.1, CH <sub>2</sub> | H-2                | C-1, C-34, C-37  |
|    | b 2.21 m <sup>b</sup> |                       | H-2                | C-34             |
| 37 | 1.76 s                | 20.3, CH <sub>3</sub> |                    | C-34, C-36       |
| 38 | 1.71 s                | 16.6, CH <sub>3</sub> |                    | C-22, C-24       |
| 39 | 1.13 s                | 20.0, CH <sub>3</sub> |                    | C-25, C-26       |
| 40 | 1.04 s                | 19.3, CH <sub>3</sub> |                    | C-30, C-32       |
| 41 | 3.65 s                | 51.8, CH <sub>3</sub> |                    | C-20             |
| 42 |                       | 172.5, C              |                    |                  |
| 43 | 2.10 s                | 20.9, CH <sub>3</sub> |                    | C-32, C-42       |

<sup>*a*</sup> All assignments are based on extensive 1D and 2D NMR measurements (COSY, HSQC, HMBC). <sup>*b*</sup> Multiplicities determined by DEPT.



Figure S1.18 <sup>1</sup>H-NMR spectrum of compound **9** in MeOH-*d*<sub>4</sub>.

Figure S1.19 <sup>13</sup>C-NMR spectrum of compound **9** in MeOH- $d_4$ .


| С  | $\delta_{\rm H}$ (mult, J in Hz) | δ <sub>C</sub>        | COSY               | HMBC                                        |
|----|----------------------------------|-----------------------|--------------------|---------------------------------------------|
| 1  |                                  | 49.5, C               |                    |                                             |
| 2  | 3.62 dd (8.1, 10.8)              | 52.8, CH              | H <sub>2</sub> -36 | C-1, C-3, C-14 (w), C-20, C-21<br>(w), C-36 |
| 3  |                                  | 202.0, C              |                    |                                             |
| 4  | 6.29 s                           | 125.6, CH             | H <sub>3</sub> -19 | C-3, C-5, C-6, C-19                         |
| 5  |                                  | 159.9, C              |                    |                                             |
| 6  | a 3.79 m                         | 31.7, CH <sub>2</sub> |                    |                                             |
|    | b 2.14 m <sup>b</sup>            |                       | H-7a               | C-4, C-5                                    |
| 7  | a 2.65 m                         | 27.1, CH <sub>2</sub> |                    | C-6, C-8, C-9                               |
|    | b 2.41 m                         |                       | Н-8, Н-ба          |                                             |
| 8  | 6.54 m                           | 143.8, CH             | H-7a               |                                             |
| 9  |                                  | 138.5, C              |                    |                                             |
| 10 |                                  | 204.5, C              |                    |                                             |
| 11 | a 3.04 m <sup>b</sup>            | 35.3, CH <sub>2</sub> | H-12               | C-10, C-12, C-13, C-15                      |
|    | b 2.19 m <sup>b</sup>            |                       | H-12               | C-10, C-12, C-13, C-15                      |
| 12 | 2.87 dd (6.4, 10.5)              | 57.6, CH              | H <sub>2</sub> -11 | C-11, C-13, C-15, C-16, C-17                |
| 13 |                                  | 213.0, C              |                    |                                             |
| 14 | a 3.09 brd (18.0)                | 46.9, CH <sub>2</sub> |                    | C-1, C-2, C-13, C-20, C-21                  |
|    | b 2.50 brd (18.0)                |                       |                    | C-1, C-2, C-13, C-20, C-21                  |
| 15 | 2.13 m <sup>b</sup>              | 30.2, CH              |                    |                                             |
| 16 | 0.90 d (6.8)                     | 19.2, CH <sub>3</sub> | H-15               | C-12, C-15, C-17                            |
| 17 | 0.96 d (6.8)                     | 21.7, CH <sub>3</sub> | H-15               | C-12, C-15, C-16                            |
| 18 | 1.78 s                           | 11.5, CH <sub>3</sub> | H-8                | C-8, C-9, C-10,                             |
| 19 | 2.00 s                           | 24.9, CH <sub>3</sub> | H-4                | C-4, C-5, C-6                               |
| 20 |                                  | 175.5, C              |                    |                                             |

Table S1.4 NMR spectroscopic data of compound 9 in MeOH-d<sub>4</sub>.

| 21 | 3.75 m                | 44.5, CH              | H-22, H <sub>3</sub> -37 (w)             |                                        |
|----|-----------------------|-----------------------|------------------------------------------|----------------------------------------|
| 22 | 4.72 d (11.7)         | 123.7, CH             | H-21, H <sub>3</sub> -38                 | C-24, C-38                             |
| 23 |                       | 142.0, C              |                                          |                                        |
| 24 | a 2.39 m              | 41.8, CH <sub>2</sub> | H-25a                                    |                                        |
|    | b 2.09 m <sup>b</sup> |                       | H-25b                                    | C-22 (w), C-23, C-26 (w), C-38<br>(w)  |
| 25 | a 1.81 m <sup>b</sup> | 25.8, CH <sub>2</sub> | H-24a                                    | C-23, C-24, C-26, C-27, C-30           |
|    | b 1.61 m <sup>b</sup> |                       | H-26                                     |                                        |
| 26 | 3.03 m <sup>b</sup>   | 88.4, CH              | H-25b, H-28b                             | C-24, C-25, C-27, C-28, C-30, C-<br>39 |
| 27 |                       | 70.1, C               |                                          |                                        |
| 28 | a 1.85 m              | 40.6, CH <sub>2</sub> | H <sub>2</sub> -29                       | C-26, C-27, C-30, C-39                 |
|    | b 1.60 m              |                       | H-26                                     | C-27, C-29                             |
| 29 | a 1.72 m              | 24.6, CH <sub>2</sub> |                                          |                                        |
|    | b 1.54 m              |                       | H-30, H-28a                              |                                        |
| 30 | 3.23 m                | 82.0, CH              | H-33a (w), H-29b, H <sub>3</sub> -<br>38 | C-26 (w), C-28 (w), C-31, C-40         |
| 31 |                       | 75.3, C               |                                          |                                        |
| 32 | 4.91 m                | 77.0, CH              | H <sub>2</sub> -33                       | C-33 (w), C-34, C-40 (w), C-42         |
| 33 | a 2.69 m              | 30.0, CH <sub>2</sub> | H-32                                     | C-21, C-31, C-32, C-34, C-35           |
|    | b 2.25 m              |                       |                                          | C-34                                   |
| 34 |                       | 127.0, C              |                                          |                                        |
| 35 |                       | 130.2, C              |                                          |                                        |
| 36 | a 2.36 m              | 35.1, CH <sub>2</sub> | H-2                                      |                                        |
|    | b 2.36 m              |                       | H-2                                      |                                        |
| 37 | 1.75 s                | 20.2, CH <sub>3</sub> | H-21                                     | C-34, C-35, C-36                       |
| 38 | 1.70 s                | 16.4, CH <sub>3</sub> | H-22                                     | C-22, C-23, C-24                       |
| 20 | 1 13 s                | 20.0 CH₂              |                                          | C-26, C-27, C-28                       |

| 40 | 1.03 s | 19.2, CH <sub>3</sub> | C-30, C-31, C-32 |
|----|--------|-----------------------|------------------|
| 41 | 3.58 s | 51.6, CH <sub>3</sub> | C-20             |
| 42 |        | 172.5, C              |                  |
| 43 | 2.10 s | 20.9, CH <sub>3</sub> | C-32, C-42       |

<sup>*a*</sup> All assignments are based on extensive 1D and 2D NMR measurements (COSY, HSQC, HMBC). <sup>*b*</sup> Multiplicities determined by DEPT.

Figure S1.20 Proposed stereostructural variation in ring C of the biscembranes **8** and **9** with selected key ROESY correlations.



# SUPPLEMENTARY INFORMATION FOR CHAPTER II

SI for CHAPTER II was also provided in Hertzer et al. 2020.<sup>3</sup>

# Table of contents

| Figure   | S2.1     | $^{1}\mathrm{H}$                | NMR       | spectrum                  | of      | 12-deacetoxy-4-demethyl-11,24-diacetoxy-3,4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------|----------|---------------------------------|-----------|---------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| meth     | ylenede  | OXOS                            | caların   | ın CDCl <sub>3</sub>      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Figure   | S2.2     | $^{13}\mathrm{C}$               | NMR       | spectrum                  | of      | 12-deacetoxy-4-demethyl-11,24-diacetoxy-3,4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| meth     | ylenede  | oxos                            | calarin   | in CDCl <sub>3</sub>      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Figure   | S2.3     | DI                              | EPT       | spectrum                  | of      | 12-deacetoxy-4-demethyl-11,24-diacetoxy-3,4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| meth     | ylenede  | oxos                            | calarin   | in CDCl3                  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Figure   | S2.4     | HS                              | SQC       | spectrum                  | of      | 12-deacetoxy-4-demethyl-11,24-diacetoxy-3,4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| meth     | ylenede  | oxos                            | calarin   | in CDCl3                  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Figure   | S2.5     | HN                              | ИВС       | spectrum                  | of      | 12-deacetoxy-4-demethyl-11,24-diacetoxy-3,4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| meth     | ylenede  | oxos                            | calarin   | in CDCl <sub>3</sub>      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Figure   | S2.6     | CC                              | DSY       | spectrum                  | of      | 12-deacetoxy-4-demethyl-11,24-diacetoxy-3,4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| meth     | ylenede  | oxos                            | calarin   | in CDCl <sub>3</sub>      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Figure   | S2.7     | NC                              | DESY      | spectrum                  | of      | 12-deacetoxy-4-demethyl-11,24-diacetoxy-3,4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| meth     | ylenede  | oxos                            | calarin   | in CDCl <sub>3</sub>      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Figure S | 52.8 Kev | y COS                           | SY and    | HMBC corre                | elatior | ns of 12-deacetoxy-4-demethyl-11,24-diacetoxy-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3,4-r    | nethylei | nedeo                           | xoscala   |                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Figure   | S2.9     | Key                             | NOE       | correlations              | s of    | 12-deacetoxy-4-demethyl-11,24-diacetoxy-3,4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| meth     | vlenede  | oxos                            | calarin.  |                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Figure   | S2.10    | ) 1                             | UV        | spectrum                  | of      | 12-deacetoxy-4-demethyl-11.24-diacetoxy-3.4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| meth     | vlenede  | oxos                            | calarin   | in ACN                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Figure   | S2.11    | IR                              | (ATR      | ) spectrum                | of      | 12-deacetoxy-4-demethyl-11.24-diacetoxy-3.4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| meth     | vlenede  | eoxos                           | calarin   | , -F                      |         | 179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Figure   | S2.12    | HRAI                            | PCIMS     | measureme                 | nt of   | 12-deacetoxy-4-demethyl-11 24-diacetoxy-3 4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| meth     | vlenede  |                                 | calarin   | vielding <i>m/</i>        | 7 487 3 | 12  dedectorly +  dedectorly + 12  d |
| Figure 9 | S2 13 R  | eticul                          | ate sno   | ngin fibre sk             | eletal  | arrangement of S cf <i>agaricima</i> 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Figure   | 52.13 K  | ntiha                           | cterial 4 | activity assa             | v of e  | stracts and the pure compound 12-deacetoxy-1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| dem      |          | $\Delta \Lambda_{-}\Lambda_{-}$ | iacetov   | $x_3 \Lambda_{\rm mothy}$ | Jonada  | avoccalarin against Gram-nositive bacteria 182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| uemo     | July1-11 | ,∠ <del>+</del> -u              | action    | y=3, <b>+</b> =methy      | icheut  | oxoscalarin against Orani-positive datiena 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| Table S2.1 Recipe for 53. Corynebacterium Liquid Medium              | 180 |
|----------------------------------------------------------------------|-----|
| Table S2.2 Raw data OD measurements of antibacterial activity assays | 180 |

Figure S2.1 <sup>1</sup>H NMR spectrum of 12-deacetoxy-4-demethyl-11,24-diacetoxy-3,4-methylenedeoxoscalarin in CDCl<sub>3</sub>.



Figure S2.2 <sup>13</sup>C NMR spectrum of 12-deacetoxy-4-demethyl-11,24-diacetoxy-3,4-methylenedeoxoscalarin in CDCl<sub>3</sub>.



174

Figure S2.3 DEPT spectrum of 12-deacetoxy-4-demethyl-11,24-diacetoxy-3,4-methylenedeoxoscalarin in CDCl<sub>3</sub>.



**Figure S2.4** HSQC spectrum of 12-deacetoxy-4-demethyl-11,24-diacetoxy-3,4-methylenedeoxoscalarin in CDCl<sub>3</sub>.





Figure S2.5 HMBC spectrum of 12-deacetoxy-4-demethyl-11,24-diacetoxy-3,4-methylenedeoxoscalarin in CDCl<sub>3</sub>.

Figure S2.6 COSY spectrum of 12-deacetoxy-4-demethyl-11,24-diacetoxy-3,4-methylenedeoxoscalarin in CDCl<sub>3</sub>.



176



Figure S2.7 NOESY spectrum of 12-deacetoxy-4-demethyl-11,24-diacetoxy-3,4-methylenedeoxoscalarin in CDCl<sub>3</sub>.

**Figure S2.8** Key COSY and HMBC correlations of 12-deacetoxy-4-demethyl-11,24-diacetoxy-3,4methylenedeoxoscalarin.



Figure S2.9 Key NOE correlations of 12-deacetoxy-4-demethyl-11,24-diacetoxy-3,4-methylenedeoxoscalarin.



Figure S2.10 UV spectrum of 12-deacetoxy-4-demethyl-11,24-diacetoxy-3,4-methylenedeoxoscalarin in ACN.





Figure S2.11 IR (ATR) spectrum of 12-deacetoxy-4-demethyl-11,24-diacetoxy-3,4-methylenedeoxoscalarin.

**Figure S2.12** HRAPCIMS measurement of 12-deacetoxy-4-demethyl-11,24-diacetoxy-3,4methylenedeoxoscalarin, yielding *m/z* 487.3054 [M+H]<sup>+</sup>, calcd. 487.3060.





Figure S2.13 Reticulate spongin fibre skeletal arrangement of S. cf. agaricima

Table S2.1 Recipe for 53. Corynebacterium Liquid Medium

| Casein peptone, tryptic digest | 10 g    |
|--------------------------------|---------|
| Yeast extract                  | 5 g     |
| Glucose                        | 5 g     |
| NaCl                           | 5 g     |
| Distilled water                | 1000 mL |

Adjust pH to 7.2 - 7.4

 Table S2.2 Raw data OD measurements of antibacterial activity assays.

EtOAc-fractions of *D. stellata* nudibranchs, egg ribbons and the dietary sponge *Spongia* cf. *agaricina* tested against *Arthrobacter crystallopoietes* (DSM 20117). Concentrations of 50, 100 and 200 µg/mL per well, respectively, were used. Antibacterial activity was measured as bacterial growth inhibition in liquid media. Mean OD values ( $\lambda$  560 nm) of negative DMSO controls were set as 100% (maximal bacteria growth and OD). Percentages for individual sample wells were calculated as individual sample OD\*100/mean OD negative DMSO controls. Sample values marked in bold.

SUNRISE; Serial number: 605000077; Firmware: V 3.31 25/08/05; XFLUOR4 Version: V 4.51

| Date:                   | 25.1.16    |
|-------------------------|------------|
| Time:                   | 15:38      |
| Measurement mode:       | Absorbance |
| Measurement wavelength: | 560 nm     |
| Read mode:              | Center     |

#### Rawdata

| $\langle \rangle$ |        |        |        |        |        |        |        |        |        |        |        |        |
|-------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| А                 | 1,0980 | 0,9630 | 0,1780 | 0,1070 | 0,1090 | 0,1100 | 0,1330 | 0,1890 | 0,1800 | 1,0970 | 1,2330 | 1,1000 |
| В                 | 1,1370 | 0,9620 | 0,9870 | 0,1360 | 1,3260 | 1,4470 | 0,3050 | 0,1420 | 0,1380 | 1,2430 | 1,1960 | 1,2100 |
| С                 | 0,8790 | 0,9660 | 1,0300 | 0,9270 | 1,1040 | 1,1640 | 0,3620 | 0,2880 | 0,2180 | 1,2630 | 1,1710 | 1,0580 |
| D                 | 0,9750 | 1,0450 | 1,0330 | 0,1280 | 0,2420 | 0,2980 | 0,2854 | 0,2000 | 0,1930 | 1,2180 | 1,2680 | 1,1360 |
| Е                 | 0,1380 | 0,9210 | 0,8040 | 0,2070 | 1,2720 | 1,1440 | 1,3250 | 1,2970 | 0,9140 | 1,2780 | 1,2620 | 1,2680 |
| F                 | 0,9490 | 0,9830 | 1,0000 | 0,2160 | 1,1080 | 1,1380 | 0,9910 | 1,0190 | 0,9070 | 1,2760 | 1,1750 | 1,1450 |
| G                 | 0,1840 | 0,2110 | 0,3920 | 1,1270 | 0,9280 | 1,0510 | 0,9750 | 1,0780 | 1,2420 | 0,1500 | 0,1650 | 0,1390 |
| Н                 | 0,1170 | 0,1240 | 0,1200 | 0,1680 | 1,1360 | 1,1940 | 1,2770 | 1,2920 | 1,2800 | 1,0570 | 0,8860 | 1,3270 |
|                   |        |        |        |        |        |        |        |        |        |        |        |        |

Calculated percentages of *Arthrobacter crystallopoietes* (DSM 20117) bacterial growth in comparison to the negative DMSO controls:

|                           | 50 μg/mL | 100 µg/mL | 200 μg/mL |
|---------------------------|----------|-----------|-----------|
| D. stellata nudibranchs   | 28,0%    | 13,0%     | 12,7%     |
| D. stellata egg ribbons   | 33,2%    | 26,4%     | 20,0%     |
| S. cf. agaricina          | 26,2%    | 18,3%     | 17,7%     |
| (+) Control Carbenicillin | 15,1%    | 13,8%     | 12,8%     |

After complete structure elucidation the isolated new scalarane 3 cyclopropyl-12-deacetoxy-11,24-diacetoxy-deoxoscalarin was tested against *Bacillus megaterium* (DSM 32). Concentrations of 100  $\mu$ g/mL (205  $\mu$ M), 50  $\mu$ g/mL (103  $\mu$ M) and 25  $\mu$ g/mL (51  $\mu$ M) per well, respectively, were used. Sample values marked in bold.

| Date:             |           |           | 12.5.17    |        |        |        |        |        |        |        |        |        |  |
|-------------------|-----------|-----------|------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--|
| Time:             |           |           | 10:39      |        |        |        |        |        |        |        |        |        |  |
| Measu             | rement mo | ode:      | Absorbance |        |        |        |        |        |        |        |        |        |  |
| Measu             | rement wa | velength: | 560 nm     |        |        |        |        |        |        |        |        |        |  |
| Read n            | node:     |           | Center     |        |        |        |        |        |        |        |        |        |  |
| Rawda             | ta        |           |            |        |        |        |        |        |        |        |        |        |  |
| $\Leftrightarrow$ |           |           |            |        |        |        |        |        |        |        |        |        |  |
| А                 | 0,9180    | 0,7280    | 0,7790     | 1,1300 | 0,5990 | 0,7090 | 0,8250 | 0,6990 | 0,7560 | 0,7370 | 0,8910 | 0,8870 |  |
| В                 | 0,6060    | 0,7630    | 0,8890     | 0,8690 | 0,6480 | 0,7100 | 1,0170 | 0,6910 | 0,7520 | 0,7330 | 0,6500 | 0,9720 |  |
| С                 | 1,0320    | 0,6760    | 0,7790     | 0,7090 | 0,5460 | 0,5600 | 0,7590 | 0,7360 | 0,6200 | 0,5920 | 0,7860 | 1,0220 |  |
| D                 | 0,6220    | 0,8480    | 0,5930     | 0,6950 | 1,4880 | 1,0860 | 0,9800 | 0,7400 | 0,6990 | 0,7230 | 0,6230 | 0,9240 |  |
| Е                 | 1,0280    | 0,9770    | 0,7980     | 0,7550 | 0,7930 | 0,9210 | 0,8050 | 0,7770 | 0,6840 | 0,7660 | 1,1460 | 0,8380 |  |
| F                 | 0,6140    | 0,5580    | 0,5580     | 0,6640 | 1,0300 | 1,3960 | 1,5200 | 1,2160 | 0,0610 | 0,0030 | 0,1040 | 0,1650 |  |
| G                 | 0,6940    | 0,8100    | 0,9600     | 1,1440 | 0,9830 | 1,0780 | 1,3600 | 1,0600 | 1,1430 | 1,0820 | 1,2730 | 1,1320 |  |
| Н                 | 0,1470    | 0,1450    | 0,1520     | 0,0960 | 0,1400 | 0,2160 | 0,6570 | 1,0870 | 1,3260 | 1,1350 | 1,0830 | 1,1520 |  |
| MW                | 0,7663    | 0,7707    | 0,9477     | 1,1803 | 0,7663 | 0,7707 | 0,9477 | 1,1803 | 0,7663 | 0,7707 | 0,9477 | 1,1803 |  |
|                   |           |           |            |        |        |        |        |        |        |        |        |        |  |
| А                 | 119,79    | 94,46     | 82,20      | 95,74  | 78,16  | 92,00  | 87,06  | 59,22  | 98,65  | 95,63  | 94,02  | 75,15  |  |
| В                 | 79,08     | 99,01     | 93,81      | 73,62  | 84,56  | 92,13  | 107,32 | 58,54  | 98,13  | 95,11  | 68,59  | 82,35  |  |
| С                 | 134,67    | 87,72     | 82,20      | 60,07  | 71,25  | 72,66  | 80,09  | 62,36  | 80,90  | 76,82  | 82,94  | 86,59  |  |
| D                 | 81,17     | 110,03    | 62,57      | 58,88  | 194,17 | 140,92 | 103,41 | 62,69  | 91,21  | 93,81  | 65,74  | 78,28  |  |
| Е                 | 134,15    | 126,77    | 84,21      | 63,96  | 103,48 | 119,51 | 84,95  | 65,83  | 89,26  | 99,39  | 120,93 | 71,00  |  |
| F                 | 80,12     | 72,40     | 58,88      | 56,26  | 134,41 | 181,14 | 160,39 | 103,02 | 7,96   | 0,39   | 10,97  | 13,98  |  |
| G                 | 90,56     | 105,10    | 101,30     | 96,92  | 128,27 | 139,88 | 143,51 | 89,81  | 149,15 | 140,40 | 134,33 | 95,91  |  |
| Н                 | 5,48      | 7,14      | 8,13       | 9,60   | 18,27  | 28,03  | 69,33  | 92,09  | 173,03 | 147,28 | 114,28 | 97,60  |  |
|                   |           |           |            |        |        |        |        |        |        |        |        |        |  |

SUNRISE; Serial number: 605000077; Firmware: V 3.31 25/08/05; XFLUOR4 Version: V 4.51

Calculated percentages of Bacillus megaterium (DSM 32) bacterial growth in comparison to the negative DMSO controls:

|                          | 25 μg/mL | 50 μg/mL | 100 μg/mL |
|--------------------------|----------|----------|-----------|
| Pure new Scalarane       | 14,0%    | 11,0%    | 0,4%      |
| (+) Control Carbeicillin | 9,6%     | 8,1%     | 7,1%      |



Figure S2.14 Antibacterial activity assay of extracts and the pure compound 12-deacetoxy-4-demethyl-11,24diacetoxy-3,4-methylenedeoxoscalarin against Gram-positive bacteria

EtOAc-fractions of *D. stellata* nudibranchs, egg ribbons and the dietary sponge *Spongia* cf. *agaricina* tested against *Arthrobacter crystallopoietes* (DSM 20117). The bacterial growth was inhibited and reduced to 28.0% (nudibranchs), 33.2% (eggs) and 26.2% (sponge) at 50  $\mu$ g/mL, to 13.0% (nudibranchs), 26.4% (eggs), and 18.3% (sponge) at 100  $\mu$ g/mL, and to 12.7% (nudibranchs), 20.0% (eggs), and 17.7% (sponge) at 200  $\mu$ g/mL, in comparison to the negative control (DMSO).



Isolated new scalarane 12-deacetoxy-4-demethyl-11,24-diacetoxy-3,4-methylenedeoxoscalarin tested against *Bacillus megaterium* (DSM 32). The pure scalarane reduced bacterial growth to 0.4% at 100  $\mu$ g/mL (205  $\mu$ M), 11.0% at 50  $\mu$ g/mL (103  $\mu$ M), and 14.0% at 25  $\mu$ g/mL (51  $\mu$ M) in comparison to the negative control (DMSO). Antibacterial activity measured as bacterial growth inhibition in a liquid medium. Mean OD values ( $\lambda$  560 nm) of negative DMSO controls set as 100% (maximal bacteria growth and OD). Percentages for individual sample wells calculated as individual sample OD\*100/mean OD negative DMSO controls.

# SUPPLEMENTARY INFORMATION FOR CHAPTER III

## **Table of contents**

| Figure S3.1 <sup>1</sup> H-NMR spectrum of latrunculin A in CDCl <sub>3</sub>                                                                |               |
|----------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Figure S3.2 <sup>13</sup> C-NMR spectrum of latrunculin A in CDCl <sub>3</sub>                                                               |               |
| Figure S3.3 Comparison of HPLC-MS chromatograms of the investigated (                                                                        | Chromodoris   |
| species, mucus collected from the back (notum) and the trail of C. annae, and the                                                            | he associated |
| sponge Cacospongia mycofijiensis, showing the presence of LatA (1) in all san                                                                | nples 190     |
| Figure S3.4 Comparison of superimposed HPLC-MS chromatograms of C. annae a                                                                   | ind C. dianae |
| mantle and body extracts, showing a higher presence of LatA (1) in the mantle                                                                | tissues191    |
| Figure S3.5 Exemplary mass spectrum from the chromatographic peaks marked as                                                                 | (1) in Figure |
| S3.3 and Figure S3.4., showing characteristic protonated ion fragments and                                                                   | adducts for   |
| latrunculin A ( <i>m/z</i> 386 [M+H-2H <sub>2</sub> O] <sup>+</sup> , 404 [M+H-H <sub>2</sub> O] <sup>+</sup> and 444 [M+Na] <sup>+</sup> ). | Spectra were  |
| obtained in the positive ion mode                                                                                                            |               |
| Figure S3.6 Single-pixel (10 µm) mass spectrum of the MALDI MSI from                                                                         | one of the    |
| Chromodoris MDF-vacuoles, showing protonated ion fragments and adduct                                                                        | s typical for |
| LatA ( $m/z$ 386 [M+H-2H2O] <sup>+</sup> and 444 [M+Na] <sup>+</sup> ) as main signals                                                       |               |
| Figure S3.7 Exemplary gel-electrophoresis image of Chromodoris putative                                                                      | actin gene    |
| fragments (~ 885 bp), amplified by polymerase chain reaction (PCR) and                                                                       | stained with  |
| ethidium bromide                                                                                                                             |               |
| Figure S3.8 Phyre2 prediction of secondary structure and disorder of the                                                                     | he in silico  |
| Chromodoris/Armina-actinybrid-model                                                                                                          |               |
|                                                                                                                                              |               |
| Table S3.1 A comparison of the <sup>1</sup> H-NMR Data reported for latrunculin A                                                            | 186           |
| Table S3 2 A comparison of the ${}^{13}C$ -NMR Data reported for latrunculin A                                                               | 188           |
| Table S3.3 Recipe for 10 mL isotonic solution (~ 1000 mOsmoles).                                                                             |               |
| Table S3.4 NCBI BLAST result for <i>Chromodoris annae</i> actin isoform nucleoti                                                             | ide sequence  |
|                                                                                                                                              | 194           |
| Table S3.5 NCBI BLAST result for <i>Chromodoris annae</i> actin isoform amino ac                                                             | id sequence.  |
|                                                                                                                                              |               |
| Table S3.6 NCBI BLAST result for <i>Elvsia viridis</i> actin isoform nucleotide sequen                                                       | nce 200       |
| Table S3.7 NCBI BLAST result for <i>Elvsia viridis</i> actin isoform amino acid sequen                                                       | nce 203       |
| Table S3.8 NCBI BLAST result for Aplysia californica actin nucleotide sequence                                                               |               |
| Table S3.9 NCBI BLAST results for <i>Aplyisa californica</i> actin amino acid sequence                                                       | ce            |
| Table S3.10 List of Heterobranchia actin sequences analysed and discussed in CHA                                                             | APTER III and |
| their NCBI Genbank accession numbers. Transcriptomic data for Cladobranchi                                                                   | a was kindly  |
| provided by D. Karmeinski.                                                                                                                   |               |
| Table S3.11 List of further Heterobranchia actin sequences obtained during                                                                   | this thesis.  |
| Transcriptomic data for Hypselodoris emma was kindly provided by A. Donath                                                                   | n 230         |



Figure S3.1 <sup>1</sup>H-NMR spectrum of latrunculin A in CDCl<sub>3</sub>.

Figure S3.2  $^{\rm 13}\text{C-NMR}$  spectrum of latrunculin A in CDCl\_3  $\quad$  .



| С      | Experimental<br>Data<br>(MeOD) δ <sub>H</sub> | Experimental<br>Data<br>(CDCl3) δ <sub>H</sub> | Kashman et al.<br>1980, <sup>550</sup><br>(CDCl <sub>3</sub> ) δ <sub>H</sub> | Groweiss et al.,<br>1983, <sup>705</sup><br>(CDCl <sub>3</sub> ) δ <sub>H</sub> | Smith et al.<br>1992, <sup>568</sup><br>(CDCl <sub>3</sub> ) δ <sub>H</sub> | White et al.<br>1992, <sup>569</sup><br>(CDCl <sub>3</sub> ) δ <sub>H</sub> | Houssen et al.<br>2006, <sup>584</sup><br>(DMSO- <i>d</i> <sub>6</sub> ) δ <sub>H</sub> | Fürstner et al.<br>2007, <sup>588</sup><br>(CDCl <sub>3</sub> ) δ <sub>H</sub> |
|--------|-----------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 1      | 5 (2)                                         | 5 (0)                                          | 5 (0.1                                                                        | 5 (0, 1                                                                         | 5 (2)                                                                       | 5 (2)                                                                       | 5 5 4 1                                                                                 | 5 (5 5 (0))                                                                    |
| 2<br>3 | 5.62 DIS                                      | 5.08 drs                                       | 5.09 d                                                                        | 5.69 d                                                                          | 5.62 \$                                                                     | 5.02 \$                                                                     | 5.54 d                                                                                  | 5.05-5.09 m                                                                    |
| 4α     | 3.43 - 3.35 m                                 | 3.48 - 3.39 m                                  |                                                                               | 3.00 dt                                                                         | 3.39-3.43 m                                                                 |                                                                             | 3.18 dt                                                                                 |                                                                                |
| 4β     | 2.52 - 2.34  m                                | 2.72 m                                         | 2.60 m                                                                        | 2.60 dt                                                                         | 2.64-2.74 m                                                                 | 2.74-2.63 m                                                                 | 2.30 dt                                                                                 | 2.62-2.77 m                                                                    |
| 5 a    | 2.32 m                                        | 2.66 m                                         | 2.26 m                                                                        | 2.26 m                                                                          | 2.23-2.28 m                                                                 | 2.30-2.26 m                                                                 | 2.20 m                                                                                  | 2.23-2.34 m                                                                    |
| 5β     | 2.24 m                                        | 2.26 m                                         |                                                                               | 2.26 m                                                                          |                                                                             |                                                                             | 2.12 m                                                                                  |                                                                                |
| 6      | 5.76 ddd                                      | 5.73 dt                                        | 5.74 dt                                                                       | 5.74 dt                                                                         | 5.74 dt                                                                     | 5.73 dt                                                                     | 5.69 ddd                                                                                | 5.74 s                                                                         |
| 7      | 6.56 dd                                       | 6.41 dd                                        | 6.41 dd                                                                       | 6.41 dd                                                                         | 6.40 dd                                                                     | 6.40 dd                                                                     | 6.46 dd                                                                                 | 6.40 dt                                                                        |
| 8      | 6.01 t                                        | 5.97 t                                         | 5.98 t                                                                        | 5.98 t                                                                          | 5.97 dd                                                                     | 5.97 t                                                                      | 5.93                                                                                    | 5.97 dd                                                                        |
| 9      | 4.98 m                                        | 5.00 t                                         | 5.02 t                                                                        | 5.02 t                                                                          | 5.01 dd                                                                     | 5.01 t                                                                      | 4.91                                                                                    | 5.01 dd                                                                        |
| 10     | 2.91 m                                        | 2.92 m                                         | 2.83 m                                                                        | 2.83 m                                                                          | 2.86-2.92 m                                                                 | 2.91-2.85 m                                                                 | 2.80                                                                                    | 2.86-2.95 m                                                                    |
| 11 α   | 2.10 dt                                       | 2.08 dt                                        |                                                                               |                                                                                 | 2.04-2.07 m                                                                 | 2.06 dt                                                                     | 1.69                                                                                    | 2.04 - 2.07 m                                                                  |

Table S3.1 A comparison of the <sup>1</sup>H-NMR Data reported for latrunculin A

| 11 β | 1.79 dd       | 1.75 m        |                    |         |             |                    | 0.91               |             |
|------|---------------|---------------|--------------------|---------|-------------|--------------------|--------------------|-------------|
| 12   | 1.08 - 1.02 m | 1.12 - 1.01 m |                    |         | 1.06-1.11 m | 1.12-1.03 m        | 1.22               | 1.01-1.14 m |
| 13   | 3.83 t        | 3.85 t        | 4.29 m             | 4.29 m  | 4.22-4.26 m | 4.25 m             | 4.28               | 4.2-4.3 m   |
| 14 α | 1.65 dd       | 1.68 m        |                    |         |             | 1.71 m             | 1.42 bs            |             |
| 14 β | 1.48 m        | 1.48 d        |                    |         |             | 1.49-1.39 m        | 1.32 ddd           |             |
| 15   | 5.17 brt      | 5.40 p        | 5.43 bt            | 5.43 bt | 5.43 m      | 5.43 p             | 4.99 bs            | 5.42 m      |
| 16   | 1.41 dq       | 1.42 m        |                    |         | 1.25-1.96 m | 1.82 d             | 1.97 bd            | 1.24-1.98 m |
| 17   |               |               |                    |         |             | 1.79 d             | 1.53 dd            |             |
| 18   | 4.46 dt       | 4.26 dt       | 3.87 dd            | 3.87 dd | 3.83-3.86 m | 3.89 s<br>3.85 dd  | 3.63 dd            | 3.82-3.93 m |
| 19   | 3.47 m        | 3.45 m        | 3.51 dd<br>3.48 dd | 3.51 dd | 3.46-3.51 m | 3.46 dd<br>3.44 dd | 3.48 dd<br>3.32 dd | 3.37-3.52 m |
| 20   |               |               |                    |         |             |                    |                    |             |
| 21   | 1.94 s        | 1.92 s        | 1.92 d             | 1.92 d  | 1.93 s      | 1.92 dd            | 1.83 d             | 1.93 s      |
| 22   | 0.99 d        | 0.98 d        | 0.98 d             | 0.98 d  | 0.99 d      | 0.98 d             | 0.87 d             | 0.98 d      |
| NH   |               |               | 6.3                |         |             |                    | 7.99               |             |
| ОН   |               |               | 5.8                | 5.80 bs | 5.69 s      | 5.69 s             | 5.66               | 5.69 brs    |
|      |               |               |                    |         |             |                    |                    |             |

 $\overline{^{a \ 1}\text{H}}$  (600 MHz), all  $\delta$  in ppm relative to MeOD = 3.35/49.0, or CDCl<sub>3</sub> = 7.26/77.0.

| С  | Experimental<br>Data<br>(MeOD) δ <sub>C</sub> | Experimental<br>Data<br>(CDCl <sub>3</sub> ) δ <sub>C</sub> | Kashman et al.<br>1980, <sup>550</sup><br>(CDCl <sub>3</sub> ) δ <sub>C</sub> | Groweiss et al.,<br>1983, <sup>705</sup><br>(CDCl <sub>3</sub> ) δ <sub>C</sub> | Smith et al.<br>1992, <sup>568</sup><br>(CDCl <sub>3</sub> ) δ <sub>C</sub> | White et al.<br>1992, <sup>569</sup><br>(CDCl <sub>3</sub> ) δ <sub>C</sub> | Houssen et al.<br>2006, <sup>584</sup><br>(DMSO- <i>d</i> <sub>6</sub> ) δ <sub>C</sub> | Fürstner et al.<br>2007, <sup>588</sup><br>(CDCl <sub>3</sub> ) δ <sub>C</sub> |                 |
|----|-----------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------|
| 1  | 168.5                                         | 165.6                                                       | 166.0                                                                         | 166.0                                                                           | 165.3                                                                       | 165.3                                                                       | 166.3                                                                                   | 165.4                                                                          | qC              |
| 2  | 118.9                                         | 117.4                                                       | 117.6                                                                         | 117.6                                                                           | 117.3                                                                       | 117.3                                                                       | 118.7                                                                                   | 117.3                                                                          | СН              |
| 3  | 160.1                                         | 158.4                                                       | 158.3                                                                         | 158.3                                                                           | 158.5                                                                       | 158.4                                                                       | 157.8                                                                                   | 158.3                                                                          | qC              |
| 4  | 33.5                                          | 32.6                                                        | 32.7                                                                          | 32.7                                                                            | 32.7                                                                        | 32.7                                                                        | 32.7                                                                                    | 32.7                                                                           | CH <sub>2</sub> |
| 5  | 31.8                                          | 30.4                                                        | 30.6                                                                          | 30.6                                                                            | 30.4                                                                        | 30.4                                                                        | 30.8                                                                                    | 30.5                                                                           | CH <sub>2</sub> |
| 6  | 133.0                                         | 131.7                                                       | 131.8                                                                         | 131.8                                                                           | 131.8                                                                       | 131.8                                                                       | 132.6                                                                                   | 131.8                                                                          | СН              |
| 7  | 127.6                                         | 126.0                                                       | 126.3                                                                         | 126.3                                                                           | 126.0                                                                       | 126.0                                                                       | 126.8                                                                                   | 126.0                                                                          | СН              |
| 8  | 128.8                                         | 127.2                                                       | 127.3                                                                         | 127.3                                                                           | 127.1                                                                       | 127.2                                                                       | 128.1                                                                                   | 127.2                                                                          | СН              |
| 9  | 137.1                                         | 136.4                                                       | 136.5                                                                         | 136.5                                                                           | 136.5                                                                       | 136.5                                                                       | 136.5                                                                                   | 136.5                                                                          | СН              |
| 10 | 30.3                                          | 29.1                                                        | 29.2                                                                          | 29.2                                                                            | 29.2                                                                        | 29.2                                                                        | 29.2                                                                                    | 29.2                                                                           | СН              |
| 11 | 32.1                                          | 31.7                                                        | 31.2                                                                          | 31.2                                                                            | 31.0                                                                        | 31.0                                                                        | 31.6                                                                                    | 31.0                                                                           | $\mathrm{CH}_2$ |
| 12 | 32.4                                          | 31.0                                                        | 31.8                                                                          | 31.8                                                                            | 31.4                                                                        | 31.4                                                                        | 32.1                                                                                    | 31.5                                                                           | CH <sub>2</sub> |
| 13 | 64.5                                          | 62.2                                                        | 62.3                                                                          | 62.3                                                                            | 62.3                                                                        | 62.3                                                                        | 61.6                                                                                    | 62.3                                                                           | СН              |

Table S3.2 A comparison of the <sup>13</sup>C-NMR Data reported for latrunculin A

|    |       |       |       |       |       |       | Supplementary Infor | mation for CHAI | pter III        |
|----|-------|-------|-------|-------|-------|-------|---------------------|-----------------|-----------------|
|    |       |       |       |       |       |       |                     |                 |                 |
| 14 | 36.4  | 34.9  | 35.1  | 35.1  | 34.9  | 34.9  | 35.7                | 34.9            | CH <sub>2</sub> |
| 15 | 69.3  | 68.1  | 68.1  | 68.1  | 68.2  | 68.2  | 67.6                | 68.2            | СН              |
| 16 | 33.0  | 31.7  | 32.1  | 32.1  | 31.7  | 31.8  | 32.7                | 31.8            | $CH_2$          |
| 17 | 97.9  | 97.0  | 96.9  | 96.9  | 97.3  | 97.3  | 96.4                | 97.3            | qC              |
| 18 | 63.2  | 61.6  | 62.1  | 62.1  | 62.3  | 62.3  | 62.9                | 62.4            | СН              |
| 19 | 29.6  | 28.6  | 28.7  | 28.7  | 28.7  | 28.7  | 28.5                | 28.7            | $\mathrm{CH}_2$ |
| 20 | 177.8 | 175.1 | 175.5 | 175.5 | 174.6 | 174.6 | 173.9               | 174.8           | qC              |
| 21 | 25.0  | 24.5  | 24.7  | 24.7  | 24.5  | 24.5  | 25.0                | 24.5            | CH <sub>3</sub> |
| 22 | 22.3  | 21.6  | 21.8  | 21.8  | 21.6  | 21.6  | 22.6                | 21.6            | CH <sub>3</sub> |

 $\overline{a^{13}}$ C NMR (150 MHz), all  $\delta$  in ppm relative to MeOD = 3.35/49.0, or CDCl<sub>3</sub> = 7.26/77.0.

<sup>b</sup> Multiplicities determined by DEPT

•

Figure S3.3 Comparison of HPLC-MS chromatograms of the investigated *Chromodoris* species, mucus collected from the back (notum) and the trail of *C. annae*, and the associated sponge *Cacospongia mycofijiensis*, showing the presence of LatA (1) in all samples.







Figure S3.5 Exemplary mass spectrum from the chromatographic peaks marked as (1) in Figure S3.3 and Figure S3.4., showing characteristic protonated ion fragments and adducts for latrunculin A (m/z 386 [M+H-2H<sub>2</sub>O]<sup>+</sup>, 404 [M+H-H<sub>2</sub>O]<sup>+</sup> and 444 [M+Na]<sup>+</sup>). Spectra were obtained in the positive ion mode.



Figure S3.6 Single-pixel (10  $\mu$ m) mass spectrum of the MALDI MSI from one of the *Chromodoris* MDF-vacuoles, showing protonated ion fragments and adducts typical for LatA (m/z 386 [M+H-2H2O]<sup>+</sup> and 444

[M+Na]<sup>+</sup>) as main signals.



Figure S3.7 Exemplary gel-electrophoresis image of *Chromodoris* putative actin gene fragments (~ 885 bp), amplified by polymerase chain reaction (PCR) and stained with ethidium bromide.

| DNA-Ladder | C. annae | C. annae | C. dianae    | C. dianae | C. lochi | C. lochi | C. strigata | C. willani | C. willani | DNA-Ladder                                                 |
|------------|----------|----------|--------------|-----------|----------|----------|-------------|------------|------------|------------------------------------------------------------|
|            |          |          | يناعي وعدي ا | 10        |          |          |             |            |            | 1500 bp<br>1200 bp<br>900 bp<br>900 bp<br>800 bp<br>700 bp |
| -          |          |          |              |           |          |          |             |            |            | -                                                          |

Table S3.3 Recipe for 10 mL isotonic solution (~ 1000 mOsmoles).

| H <sub>2</sub> Odest                 | 10 mL    |
|--------------------------------------|----------|
| NaCl                                 | 125.0 mg |
| Glucose                              | 62.4 mg  |
| MgSO <sub>4</sub> *7H <sub>2</sub> O | 62.4 mg  |
| KCl                                  | 3.44 mg  |
| NaHCO <sub>3</sub>                   | 1.92 mg  |
| MgCl <sub>2</sub> *6H <sub>2</sub> O | 57.0 mg  |
| CaCl <sub>2</sub>                    | 14.88 mg |

| Description                                                                                                | Scientific Name Q        | uery Cover | Per. Ident | Accession      |
|------------------------------------------------------------------------------------------------------------|--------------------------|------------|------------|----------------|
| PREDICTED: Urocitellus parryii actin, alpha 1, skeletal muscle (Acta1), transcript variant X2, mRNA        | Urocitellus parryii      | 99%        | 72.4%      | XM_026412460.1 |
| PREDICTED: Urocitellus parryii actin, alpha 1, skeletal muscle (Acta1), transcript variant X1, mRNA        | Urocitellus parryii      | 99%        | 72.4%      | XM_026412451.1 |
| PREDICTED: Ictidomys tridecemlineatus actin, alpha 1, skeletal muscle (Acta1), transcript variant X2, mRNA | Ictidomys tridecemlineat | tus 99%    | 72.1%      | XM_005320387.2 |
| PREDICTED: Ictidomys tridecemlineatus actin, alpha 1, skeletal muscle (Acta1), transcript variant X1, mRNA | Ictidomys tridecemlineat | tus 99%    | 72.1%      | XM_005320386.2 |
| PREDICTED: Pantherophis guttatus actin, gamma-enteric smooth muscle (LOC117673363), mRNA                   | Pantherophis guttatus    | 99%        | 71.9%      | XM_034430717.1 |
| Artemia franciscana mRNA for actin (actin 302 gene), clone RT-PCR-16                                       | Artemia franciscana      | 99%        | 71.7%      | AJ269582.1     |
| Dictyocaulus viviparus actin variant 2 mRNA, complete cds                                                  | Dictyocaulus viviparus   | 99%        | 71.6%      | EU169822.1     |
| Artemia franciscana mRNA for actin (actin 302 gene), clone RT-PCR-14                                       | Artemia franciscana      | 99%        | 71.5%      | AJ269586.1     |
| Artemia franciscana mRNA for actin (actin 302 gene), clone RT-PCR-3                                        | Artemia franciscana      | 99%        | 71.5%      | AJ269583.1     |
| Artemia franciscana mRNA for actin (actin 302 gene), clone RT-PCR-13                                       | Artemia franciscana      | 99%        | 71.5%      | AJ269580.1     |
| Artemia franciscana mRNA for actin (actin 302 gene), clone RT-PCR-9                                        | Artemia franciscana      | 99%        | 71.5%      | AJ269579.1     |
| Artemia franciscana mRNA for actin (actin 302 gene), clone RT-PCR-11                                       | Artemia franciscana      | 99%        | 71.5%      | AJ269578.1     |
| Artemia franciscana mRNA for actin (actin 302 gene), clone RT-PCR-18                                       | Artemia franciscana      | 99%        | 71.5%      | AJ269581.1     |
| Artemia franciscana mRNA for actin (actin 302 gene), clone RT-PCR-19                                       | Artemia franciscana      | 99%        | 71.4%      | AJ269577.1     |
| Artemia franciscana mRNA for actin (actin 302 gene), clone RT-PCR-15                                       | Artemia franciscana      | 99%        | 71.4%      | AJ269575.1     |
| Artemia franciscana mRNA for actin (actin 302 gene), clone RT-PCR-17                                       | Artemia franciscana      | 99%        | 71.4%      | AJ269574.1     |
| Artemia franciscana mRNA for actin (actin 302 gene), clone RT-PCR-1                                        | Artemia franciscana      | 99%        | 71.4%      | AJ269567.1     |
| Artemia mRNA for actin (clone pArAct302)                                                                   | Artemia sp.              | 99%        | 71.4%      | X52604.1       |

Table S3.4 NCBI BLAST result for Chromodoris annae actin isoform nucleotide sequence

# Supplementary Information for CHAPTER III

| PREDICTED: Drosophila suzukii actin-87E (LOC118877550), mRNA                                                         | Drosophila suzukii                 | 99% | 71.4% | XM_036816658.1 |
|----------------------------------------------------------------------------------------------------------------------|------------------------------------|-----|-------|----------------|
| PREDICTED: Lepidothrix coronata actin, alpha 2, smooth muscle, aorta (ACTA2), mRNA                                   | Lepidothrix coronata               | 99% | 71.4% | XM_017803871.1 |
| PREDICTED: Chiroxiphia lanceolata actin alpha 2, smooth muscle (ACTA2), mRNA                                         | Chiroxiphia lanceolata             | 99% | 71.4% | XM_032695678.1 |
| PREDICTED: Corapipo altera actin, alpha 2, smooth muscle, aorta (ACTA2), mRNA                                        | Corapipo altera                    | 99% | 71.2% | XM_027648332.1 |
| PREDICTED: Denticeps clupeoides actin, alpha skeletal muscle 2 (LOC114795339), mRNA                                  | Denticeps clupeoides               | 99% | 71.2% | XM_028988485.1 |
| PREDICTED: Erinaceus europaeus actin, alpha skeletal muscle (LOC103127961), transcript variant X2, mRNA              | Erinaceus europaeus                | 99% | 71.1% | XM_007538841.2 |
| PREDICTED: Erinaceus europaeus actin, alpha skeletal muscle (LOC103127961), transcript variant X1, mRNA              | Erinaceus europaeus                | 99% | 71.1% | XM_007538840.1 |
| PREDICTED: Chinchilla lanigera actin, alpha 1, skeletal muscle (Acta1), mRNA                                         | Chinchilla lanigera                | 99% | 71.1% | XM_005405008.1 |
| PREDICTED: Opisthocomus hoazin actin, alpha 2, smooth muscle, aorta (ACTA2), transcript variant X2, mRNA             | Opisthocomus hoazin                | 99% | 71.0% | XM_009935662.1 |
| PREDICTED: Opisthocomus hoazin actin, alpha 2, smooth muscle, aorta (ACTA2), transcript variant X1, mRNA             | Opisthocomus hoazin                | 99% | 71.0% | XM_009935660.1 |
| PREDICTED: Pan troglodytes actin, alpha 1, skeletal muscle (ACTA1), mRNA                                             | Pan troglodytes                    | 99% | 71.0% | XM_016940594.1 |
| PREDICTED: Pterocles gutturalis actin, alpha 2, smooth muscle, aorta (ACTA2), transcript variant X2, mRNA            | Pterocles gutturalis               | 99% | 70.9% | XM_010082746.1 |
| PREDICTED: Pterocles gutturalis actin, alpha 2, smooth muscle, aorta (ACTA2), transcript variant X1, mRNA            | Pterocles gutturalis               | 99% | 70.9% | XM_010082745.1 |
| PREDICTED: Catharus ustulatus actin alpha 2, smooth muscle (ACTA2), mRNA                                             | Catharus ustulatus                 | 99% | 70.9% | XM_033065747.1 |
| PREDICTED: Aptenodytes forsteri actin, alpha 2, smooth muscle, aorta (ACTA2), mRNA                                   | Aptenodytes forsteri               | 99% | 70.9% | XM_009277749.2 |
| PREDICTED: Pygoscelis adeliae actin, alpha 2, smooth muscle, aorta (ACTA2), mRNA                                     | Pygoscelis adeliae                 | 99% | 70.8% | XM_009320191.1 |
| PREDICTED: Balearica regulorum gibbericeps actin, alpha 2, smooth muscle, aorta (ACTA2), transcript variant X2, mRNA | Balearica regulorum<br>gibbericeps | 99% | 70.7% | XM_010305821.1 |
| PREDICTED: Balearica regulorum gibbericeps actin, alpha 2, smooth muscle, aorta (ACTA2), transcript variant X1, mRNA | Balearica regulorum<br>gibbericeps | 99% | 70.7% | XM_010305820.1 |
| PREDICTED: Egretta garzetta actin alpha 2, smooth muscle (ACTA2), transcript variant X3, mRNA                        | Egretta garzetta                   | 99% | 70.7% | XM_035897268.1 |

#### PREDICTED: Egretta garzetta actin alpha 2, smooth muscle (ACTA2), transcript variant X2, mRNA 99% 70.7% XM\_035897267.1 Egretta garzetta PREDICTED: Egretta garzetta actin alpha 2, smooth muscle (ACTA2), transcript variant X1, mRNA Egretta garzetta 99% 70.7% XM 035897266.1 PREDICTED: Perca fluviatilis actin, alpha cardiac muscle 1 (LOC120549587), mRNA Perca fluviatilis 99% 70.7% XM\_039786604.1 PREDICTED: Orbicella faveolata actin, cytoplasmic 1 (LOC110065202), mRNA Orbicella faveolata 99% 70.6% XM\_020772311.1 PREDICTED: Fulmarus glacialis actin, alpha 2, smooth muscle, aorta (ACTA2), transcript variant X2, mRNA Fulmarus glacialis 99% 70.6% XM 009576330.1 PREDICTED: Fulmarus glacialis actin, alpha 2, smooth muscle, aorta (ACTA2), transcript variant X1, mRNA Fulmarus glacialis 99% 70.6% XM 009576329.1 PREDICTED: Gymnodraco acuticeps actin, alpha skeletal muscle (LOC117544084), mRNA Gymnodraco acuticeps 99% 70.5% XM\_034213253.1 PREDICTED: Hipposideros armiger actin, alpha 1, skeletal muscle (ACTA1), transcript variant X2, mRNA Hipposideros armiger 99% 70.5% XM\_019626360.1 PREDICTED: Hipposideros armiger actin, alpha 1, skeletal muscle (ACTA1), transcript variant X1, mRNA *Hipposideros armiger* 99% 70.5% XM 019626358.1 PREDICTED: Sturnus vulgaris actin, alpha 2, smooth muscle, aorta (ACTA2), mRNA Sturnus vulgaris 99% 70.4% XM\_014875386.1 *Pseudochaenichthys* PREDICTED: Pseudochaenichthys georgianus actin, alpha skeletal muscle (LOC117468060), mRNA 99% XM\_034112020.1 70.4% georgianus PREDICTED: Trematomus bernacchii actin, alpha skeletal muscle (LOC117478450), mRNA Trematomus bernacchii 99% 70.4% XM 034125513.1 Vombatus ursinus 99% PREDICTED: Vombatus ursinus actin, alpha skeletal muscle (LOC114049606), mRNA 70.4% XM\_027870867.1 PREDICTED: Vombatus ursinus actin, alpha skeletal muscle (LOC114049602), mRNA Vombatus ursinus 99% 70.4% XM 027870861.1 Phascolarctos cinereus 99% PREDICTED: Phascolarctos cinereus actin, alpha 1, skeletal muscle (ACTA1), mRNA 70.3% XM 021000483.1 PREDICTED: Charadrius vociferus actin, alpha 2, smooth muscle, aorta (ACTA2), transcript variant X2, mRNA Charadrius vociferus 99% 70.3% XM\_009888704.1 99% XM 009888702.1 PREDICTED: Charadrius vociferus actin, alpha 2, smooth muscle, aorta (ACTA2), transcript variant X1, mRNA Charadrius vociferus 70.3% Clupea harengus 99% 70.3% NM\_001309834.1 Clupea harengus actin alpha 1, skeletal muscle a (acta1a), mRNA

Supplementary Information for CHAPTER III

| Description                                                 | Scientific Name           | Query Cover | Per. Ident | Accession      |
|-------------------------------------------------------------|---------------------------|-------------|------------|----------------|
| actin, cytoplasmic-like [Branchiostoma floridae]            | Branchiostoma floridae    | 99%         | 79.5%      | XP_035697441.1 |
| unnamed protein product [Dimorphilus gyrociliatus]          | Dimorphilus gyrociliatus  | 99%         | 79.1%      | CAD5124374.1   |
| actin-2-like [Amblyraja radiata]                            | Amblyraja radiata         | 99%         | 79.1%      | XP_032876180.1 |
| ACTB_G1 [Mytilus coruscus]                                  | Mytilus coruscus          | 99%         | 79.1%      | CAC5391235.1   |
| actin A3 [Haliotis iris]                                    | Haliotis iris             | 99%         | 78.7%      | AAX19288.1     |
| actin isoform X2 [Salvelinus namaycush]                     | Salvelinus namaycush      | 99%         | 78.7%      | XP_038842271.1 |
| hypothetical protein HELRODRAFT_96235 [Helobdella robusta]  | Helobdella robusta        | 99%         | 78.7%      | XP_009030330.1 |
| actin [Crotalaria spectabilis]                              | Crotalaria spectabilis    | 99%         | 78.7%      | CEO86982.1     |
| actin, non-muscle 6.2-like [Salvelinus alpinus]             | Salvelinus alpinus        | 99%         | 78.7%      | XP_023997352.1 |
| cytoplasmic actin [Hirudo medicinalis]                      | Hirudo medicinalis        | 99%         | 78.7%      | ABC60434.1     |
| hypothetical protein HELRODRAFT_185075 [Helobdella robusta] | Helobdella robusta        | 99%         | 78.7%      | XP_009025437.1 |
| cytoplasmic actin [Hirudo medicinalis]                      | Hirudo medicinalis        | 99%         | 78.7%      | ABC60436.1     |
| actin, non-muscle 6.2 isoform X1 [Salvelinus namaycush]     | Salvelinus namaycush      | 99%         | 78.7%      | XP_038842264.1 |
| non-muscle actin II [Hydractinia echinata]                  | Hydractinia echinata      | 99%         | 78.7%      | ADR10434.1     |
| actin, cytoplasmic 2 [Pseudoalteromonas sp. BMB]            | Pseudoalteromonas sp. BMB | 99%         | 78.7%      | WP_069019001.1 |
| actin, cytoplasmic-like [Branchiostoma floridae]            | Branchiostoma floridae    | 99%         | 78.7%      | XP_035695124.1 |

Table S3.5 NCBI BLAST result for Chromodoris annae actin isoform amino acid sequence.

| hypothetical protein FO519_010338 [Halicephalobus sp. NKZ332] | Halicephalobus sp. NKZ332      | 99% | 78.4% | KAE9546450.1   |
|---------------------------------------------------------------|--------------------------------|-----|-------|----------------|
| actin A2 [Haliotis iris]                                      | Haliotis iris                  | 99% | 78.4% | AAX19287.1     |
| actin-2-like isoform X1 [Mizuhopecten yessoensis]             | Mizuhopecten yessoensis        | 99% | 78.4% | XP_021356756.1 |
| predicted protein [Hordeum vulgare subsp. vulgare]            | Hordeum vulgare subsp. vulgare | 99% | 78.4% | BAJ97607.1     |
| Actin protein [Sycon ciliatum]                                | Sycon ciliatum                 | 99% | 78.4% | CCQ18644.1     |
| actin A1 [Haliotis iris]                                      | Haliotis iris                  | 99% | 78.4% | AAX19286.1     |
| ACTB_G1 [Mytilus coruscus]                                    | Mytilus coruscus               | 99% | 78.4% | CAC5420182.1   |
| actin [Euagrus chisoseus]                                     | Euagrus chisoseus              | 99% | 78.4% | ABZ91664.1     |
| Actin-4 [Caenorhabditis elegans]                              | Caenorhabditis elegans         | 99% | 78.4% | NP_001368079.1 |
| unnamed protein product [Spirometra erinaceieuropaei]         | Spirometra erinaceieuropaei    | 99% | 78.4% | VZI50703.1     |
| actin, non-muscle 6.2 [Thalassophryne amazonica]              | Thalassophryne amazonica       | 99% | 78.4% | XP_034027240.1 |
| PREDICTED: actin, non-muscle 6.2 [Hydra vulgaris]             | Hydra vulgaris                 | 99% | 78.4% | XP_002154462.1 |
| hypothetical protein LOTGIDRAFT_193218 [Lottia gigantea]      | Lottia gigantea                | 99% | 78.4% | XP_009060604.1 |
| actin [Thecamoeba similis]                                    | Thecamoeba similis             | 99% | 78.4% | AAQ55801.1     |
| actin [Euagrus chisoseus]                                     | Euagrus chisoseus              | 99% | 78.4% | ABZ91662.1     |
| PREDICTED: actin, adductor muscle [Octopus bimaculoides]      | Octopus bimaculoides           | 99% | 78.4% | XP_014771927.1 |
| Bm9237, isoform b [Brugia malayi]                             | Brugia malayi                  | 99% | 78.4% | CDP93363.1     |
| non-muscle actin 6.2 [Malo kingi]                             | Malo kingi                     | 99% | 78.4% | ACY74447.1     |

| actin, cytoplasmic 2 [Escherichia coli]                                                                                                                                                                                                                                                                                                       | Escherichia coli                                                                                                                                                   | 99%                             | 78.4%                                                                                                                              | WP_126755788.1                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| unnamed protein product [Onchocerca ochengi]                                                                                                                                                                                                                                                                                                  | Onchocerca ochengi                                                                                                                                                 | 99%                             | 78.4%                                                                                                                              | VDM97777.1                                                                                                                                                |
| Actin [Oesophagostomum dentatum]                                                                                                                                                                                                                                                                                                              | Oesophagostomum dentatum                                                                                                                                           | 99%                             | 78.4%                                                                                                                              | KHJ95400.1                                                                                                                                                |
| hypothetical protein LOTGIDRAFT_208208 [Lottia gigantea]                                                                                                                                                                                                                                                                                      | Lottia gigantea                                                                                                                                                    | 99%                             | 78.4%                                                                                                                              | XP_009043796.1                                                                                                                                            |
| actin [Bursaphelenchus xylophilus]                                                                                                                                                                                                                                                                                                            | Bursaphelenchus xylophilus                                                                                                                                         | 99%                             | 78.4%                                                                                                                              | BAI52958.1                                                                                                                                                |
| PREDICTED: actin, non-muscle 6.2-like [Hydra vulgaris]                                                                                                                                                                                                                                                                                        | Hydra vulgaris                                                                                                                                                     | 99%                             | 78.4%                                                                                                                              | XP_002154696.1                                                                                                                                            |
| actin [Stemonaria longa]                                                                                                                                                                                                                                                                                                                      | Stemonaria longa                                                                                                                                                   | 99%                             | 78.0%                                                                                                                              | AFY23984.1                                                                                                                                                |
| beta-actin [Cepaea nemoralis]                                                                                                                                                                                                                                                                                                                 | Cepaea nemoralis                                                                                                                                                   | 99%                             | 78.0%                                                                                                                              | AXI69344.1                                                                                                                                                |
| beta-actin 2 [Haliotis diversicolor]                                                                                                                                                                                                                                                                                                          | Haliotis diversicolor                                                                                                                                              | 99%                             | 78.0%                                                                                                                              | ABY87412.1                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                    |                                 |                                                                                                                                    |                                                                                                                                                           |
| actin [Haliotis diversicolor]                                                                                                                                                                                                                                                                                                                 | Haliotis diversicolor                                                                                                                                              | 99%                             | 78.0%                                                                                                                              | ABU86741.1                                                                                                                                                |
| actin [ <b>Haliotis diversicolor</b> ]<br>actin-2 isoform X1 [Pecten maximus]                                                                                                                                                                                                                                                                 | Haliotis diversicolor<br>Pecten maximus                                                                                                                            | 99%<br>99%                      | <b>78.0%</b><br>78.0%                                                                                                              | ABU86741.1<br>XP_033737032.1                                                                                                                              |
| actin [ <b>Haliotis diversicolor</b> ]<br>actin-2 isoform X1 [Pecten maximus]<br>actin-3-like [Mizuhopecten yessoensis]                                                                                                                                                                                                                       | Haliotis diversicolor<br>Pecten maximus<br>Mizuhopecten yessoensis                                                                                                 | 99%<br>99%<br>99%               | <b>78.0%</b><br>78.0%<br>78.0%                                                                                                     | ABU86741.1<br>XP_033737032.1<br>XP_021356754.1                                                                                                            |
| actin [ <b>Haliotis diversicolor</b> ]<br>actin-2 isoform X1 [Pecten maximus]<br>actin-3-like [Mizuhopecten yessoensis]<br>actin [Mesenchytraeus solifugus]                                                                                                                                                                                   | Haliotis diversicolor<br>Pecten maximus<br>Mizuhopecten yessoensis<br>Mesenchytraeus solifugus                                                                     | 99%<br>99%<br>99%               | <b>78.0%</b><br>78.0%<br>78.0%<br>78.0%                                                                                            | ABU86741.1<br>XP_033737032.1<br>XP_021356754.1<br>AOR07101.1                                                                                              |
| actin [ <b>Haliotis diversicolor</b> ]<br>actin-2 isoform X1 [Pecten maximus]<br>actin-3-like [Mizuhopecten yessoensis]<br>actin [Mesenchytraeus solifugus]<br>actin [ <b>Haliotis tuberculata</b> ]                                                                                                                                          | Haliotis diversicolor<br>Pecten maximus<br>Mizuhopecten yessoensis<br>Mesenchytraeus solifugus<br>Haliotis tuberculata                                             | 99%<br>99%<br>99%<br>99%        | <ul> <li>78.0%</li> <li>78.0%</li> <li>78.0%</li> <li>78.0%</li> <li>78.0%</li> </ul>                                              | ABU86741.1<br>XP_033737032.1<br>XP_021356754.1<br>AOR07101.1<br>CAJ85786.1                                                                                |
| actin [Haliotis diversicolor]<br>actin-2 isoform X1 [Pecten maximus]<br>actin-3-like [Mizuhopecten yessoensis]<br>actin [Mesenchytraeus solifugus]<br>actin [Haliotis tuberculata]<br>actin [Eisenia fetida]                                                                                                                                  | Haliotis diversicolorPecten maximusMizuhopecten yessoensisMesenchytraeus solifugusHaliotis tuberculataEisenia fetida                                               | 99%<br>99%<br>99%<br>99%        | <ul> <li>78.0%</li> <li>78.0%</li> <li>78.0%</li> <li>78.0%</li> <li>78.0%</li> </ul>                                              | ABU86741.1         XP_033737032.1         XP_021356754.1         AOR07101.1         CAJ85786.1         AUS83928.1                                         |
| actin [Haliotis diversicolor]<br>actin-2 isoform X1 [Pecten maximus]<br>actin-3-like [Mizuhopecten yessoensis]<br>actin [Mesenchytraeus solifugus]<br>actin [Haliotis tuberculata]<br>actin [Eisenia fetida]<br>Actin actin domain containing protein [Meloidogyne graminicola]                                                               | Haliotis diversicolorPecten maximusMizuhopecten yessoensisMesenchytraeus solifugusHaliotis tuberculataEisenia fetidaMeloidogyne graminicola                        | 99%<br>99%<br>99%<br>99%<br>99% | <ul> <li>78.0%</li> <li>78.0%</li> <li>78.0%</li> <li>78.0%</li> <li>78.0%</li> <li>78.0%</li> </ul>                               | ABU86741.1         XP_033737032.1         XP_021356754.1         AOR07101.1         CAJ85786.1         AUS83928.1         KAF7632952.1                    |
| actin [Haliotis diversicolor]<br>actin-2 isoform X1 [Pecten maximus]<br>actin-3-like [Mizuhopecten yessoensis]<br>actin [Mesenchytraeus solifugus]<br>actin [Haliotis tuberculata]<br>actin [Eisenia fetida]<br>Actin actin domain containing protein [Meloidogyne graminicola]<br>hypothetical protein L596_016279 [Steinernema carpocapsae] | Haliotis diversicolorPecten maximusMizuhopecten yessoensisMesenchytraeus solifugusHaliotis tuberculataEisenia fetidaMeloidogyne graminicolaSteinernema carpocapsae | 99%<br>99%<br>99%<br>99%<br>99% | <ul> <li>78.0%</li> <li>78.0%</li> <li>78.0%</li> <li>78.0%</li> <li>78.0%</li> <li>78.0%</li> <li>78.0%</li> <li>78.0%</li> </ul> | ABU86741.1         XP_033737032.1         XP_021356754.1         AOR07101.1         CAJ85786.1         AUS83928.1         KAF7632952.1         TKR82582.1 |

| ACTB_G1 [Mytilus coruscus]                                          | Mytilus coruscus         | 99% | 78.0% | CAC5419237.1   |
|---------------------------------------------------------------------|--------------------------|-----|-------|----------------|
| hypothetical protein EGW08_007646 [Elysia chlorotica]               | Elysia chlorotica        | 99% | 78.0% | RUS84619.1     |
| uncharacterized protein MONBRDRAFT_37852 [Monosiga brevicollis MX1] | Monosiga brevicollis MX1 | 99% | 78.0% | XP_001747496.1 |
|                                                                     |                          |     |       |                |

<sup>a</sup> Gastropoda shown in bold

Table S3.6 NCBI BLAST result for *Elysia viridis* actin isoform nucleotide sequence.

| Description                                                                   | Scientific Name         | Query Cover | Per. Ident | Accession      |
|-------------------------------------------------------------------------------|-------------------------|-------------|------------|----------------|
| Aplysia californica actin (LOC100533345), mRNA                                | Aplysia californica     | 100%        | 89.69%     | NM_001204640.1 |
| PREDICTED: Aplysia californica actin, cytoplasmic (LOC106013368), mRNA        | Aplysia californica     | 100%        | 88.70%     | XM_013088898.1 |
| PREDICTED: Acipenser ruthenus actin, beta 1 (actb1), mRNA                     | Acipenser ruthenus      | 100%        | 88.34%     | XM_034052523.2 |
| PREDICTED: Epinephelus lanceolatus actin, beta 2 (actb2), mRNA                | Epinephelus lanceolatus | 100%        | 87.98%     | XM_033645256.1 |
| PREDICTED: Manis pentadactyla actin, cytoplasmic 1 (LOC118933670), mRNA       | Manis pentadactyla      | 100%        | 87.98%     | XM_036928225.1 |
| Danio rerio bactin2, mRNA (cDNA clone MGC:85665 IMAGE:6960309), complete cds  | Danio rerio             | 100%        | 87.98%     | BC067566.1     |
| Danio rerio actin, beta 2 (actb2), mRNA                                       | Danio rerio             | 100%        | 87.85%     | NM_181601.5    |
| Epinephelus lanceolatus beta-actin mRNA, complete cds                         | Epinephelus lanceolatus | 100%        | 87.85%     | KU200949.2     |
| Epinephelus akaara beta-actin mRNA, complete cds                              | Epinephelus akaara      | 100%        | 87.85%     | HQ007251.1     |
| Danio rerio bactin2, mRNA (cDNA clone MGC:172104 IMAGE:7912932), complete cds | Danio rerio             | 100%        | 87.85%     | BC154531.1     |
| Danio rerio beta actin mRNA, complete cds                                     | Danio rerio             | 100%        | 87.85%     | AF025305.1     |

| PREDICTED: Astatotilapia calliptera actin beta (actb), mRNA                     | Astatotilapia calliptera | 100% | 87.73% | XM_026165516.1 |
|---------------------------------------------------------------------------------|--------------------------|------|--------|----------------|
| PREDICTED: Oreochromis niloticus actin beta (actb), mRNA                        | Oreochromis niloticus    | 100% | 87.73% | XM_003443127.5 |
| PREDICTED: Pundamilia nyererei actin, beta (actb), mRNA                         | Pundamilia nyererei      | 100% | 87.73% | XM_005743477.1 |
| PREDICTED: Simochromis diagramma actin, beta 2 (actb2), mRNA                    | Simochromis diagramma    | 100% | 87.73% | XM_040006209.1 |
| PREDICTED: Neolamprologus brichardi actin, beta 2 (actb2), mRNA                 | Neolamprologus brichardi | 100% | 87.73% | XM_006797985.2 |
| Danio rerio bactin2, mRNA (cDNA clone MGC:192911 IMAGE:100061397), complete cds | Danio rerio              | 100% | 87.73% | BC165823.1     |
| Danio rerio bactin2, mRNA (cDNA clone MGC:56040 IMAGE:3820122), complete cds    | Danio rerio              | 100% | 87.73% | BC045879.1     |
| Epinephelus merra beta-actin mRNA, partial cds                                  | Epinephelus merra        | 98%  | 87.70% | EU555181.1     |
| Argyrosomus regius beta-actin (B-Act) mRNA, partial cds                         | Argyrosomus regius       | 99%  | 87.64% | KM402038.1     |
| PREDICTED: Alosa sapidissima actin, beta 2 (actb2), mRNA                        | Alosa sapidissima        | 100% | 87.62% | XM_042085004.1 |
| Oreochromis mossambicus partial mRNA for beta-actin (actb gene)                 | Oreochromis mossambicus  | 100% | 87.61% | FN673689.1     |
| Squaliobarbus curriculus beta-actin mRNA, complete cds                          | Squaliobarbus curriculus | 100% | 87.61% | MT119965.1     |
| PREDICTED: Notolabrus celidotus actin, beta 2 (actb2), mRNA                     | Notolabrus celidotus     | 100% | 87.61% | XM_034711156.1 |
| PREDICTED: Maylandia zebra actin beta (actb), mRNA                              | Maylandia zebra          | 100% | 87.61% | XM_004560737.3 |
| PREDICTED: Haplochromis burtoni actin, beta 2 (actb2), mRNA                     | Haplochromis burtoni     | 100% | 87.61% | XM_005946208.3 |
| Epinephelus awoara beta-actin mRNA, complete cds                                | Epinephelus awoara       | 100% | 87.61% | JX110447.1     |
| Epinephelus coioides beta actin mRNA, complete cds                              | Epinephelus coioides     | 100% | 87.61% | AY510710.2     |
| PREDICTED: Biomphalaria glabrata actin, adductor muscle (LOC106058166), mRNA    | Biomphalaria glabrata    | 98%  | 87.55% | XM_013215543.1 |

| Larimichthys polyactis beta-actin mRNA, complete cds                           | Larimichthys polyactis      | 99%  | 87.52% | MT330378.1      |
|--------------------------------------------------------------------------------|-----------------------------|------|--------|-----------------|
| Morulius calbasu beta-actin mRNA, complete cds                                 | Labeo calbasu               | 100% | 87.50% | AF393832.1      |
| PREDICTED: Acipenser ruthenus actin, cytoplasmic 2 (LOC117418240), mRNA        | Acipenser ruthenus          | 100% | 87.48% | XM_034031052.2  |
| PREDICTED: Pangasianodon hypophthalmus actin, beta 2 (actb2), mRNA             | Pangasianodon hypophthalmus | 100% | 87.48% | XM_026929614.2  |
| PREDICTED: Esox lucius actin, beta 2 (actb2), mRNA                             | Esox lucius                 | 100% | 87.48% | XM_010905274.4  |
| PREDICTED: Cottoperca gobio actin beta (actb), mRNA                            | Cottoperca gobio            | 100% | 87.48% | XM_029438524.1  |
| Mylopharyngodon piceus beta-actin mRNA, complete cds                           | Mylopharyngodon piceus      | 100% | 87.48% | KP185128.1      |
| PREDICTED: Colius striatus actin, cytoplasmic 2-like (LOC104553370), mRNA      | Colius striatus             | 100% | 87.48% | XM_010195987.1  |
| PREDICTED: Plectropomus leopardus actin, beta 2 (actb2), mRNA                  | Plectropomus leopardus      | 100% | 87.48% | XM_042505881.1  |
| PREDICTED: Thunnus maccoyii actin, beta 2 (actb2), mRNA                        | Thunnus maccoyii            | 100% | 87.48% | XM_042393876.1  |
| PREDICTED: Polyodon spathula actin, cytoplasmic 2 (LOC121300962), mRNA         | Polyodon spathula           | 100% | 87.48% | XM_0412299999.1 |
| PREDICTED: Polyodon spathula actin, cytoplasmic 2 (LOC121294181), mRNA         | Polyodon spathula           | 100% | 87.48% | XM_041217804.1  |
| Thunnus maccoyii beta actin mRNA, partial cds                                  | Thunnus maccoyii            | 100% | 87.48% | JX157141.1      |
| PREDICTED: Oreochromis aureus actin, beta 2 (actb2), mRNA                      | Oreochromis aureus          | 100% | 87.48% | XM_031749543.2  |
| Spinibarbus denticulatus beta-actin mRNA, complete cds                         | Spinibarbus denticulatus    | 100% | 87.48% | DQ656598.1      |
| Tilapia mossambica mRNA for beta-actin, complete cds                           | Oreochromis mossambicus     | 100% | 87.48% | AB037865.1      |
| PREDICTED: Gymnodraco acuticeps actin, cytoplasmic 1-like (LOC117534622), mRNA | Gymnodraco acuticeps        | 100% | 87.39% | XM_034198869.1  |
| PREDICTED: Gymnodraco acuticeps actin, cytoplasmic 1-like (LOC117534613), mRNA | Gymnodraco acuticeps        | 100% | 87.39% | XM_034198865.1  |

| XM_034198858.1 |
|----------------|
| XM_027284923.1 |
| XM_028454717.1 |
| XM_029158727.2 |
| BT074966.1     |
| XM_034652793.1 |
| XM_034593147.1 |
| XM_030406939.1 |
|                |

<sup>a</sup> Gastropoda shown in bold

### Table S3.7 NCBI BLAST result for *Elysia viridis* actin isoform amino acid sequence.

| Description                                                                   | Scientific Name         | Query Cover | Per. Ident | Accession  |
|-------------------------------------------------------------------------------|-------------------------|-------------|------------|------------|
| actin [Plakobranchus ocellatus]                                               | Plakobranchus ocellatus | 100%        | 98.52%     | GFN80144.1 |
| actin [Elysia marginata]                                                      | Elysia marginata        | 100%        | 98.52%     | GFS25392.1 |
| RecName: Full=Actin, cytoplasmic, intermediate form; [Biomphalaria pfeifferi] | Biomphalaria pfeifferi  | 100%        | 97.79%     | Q964E2.1   |
| actin [Elysia marginata]                                                      | Elysia marginata        | 100%        | 97.79%     | GFR57762.1 |
| actin 1 [Halisarca dujardinii]                                                | Halisarca dujardinii    | 100%        | 97.79%     | QSX72278.1 |
| actin [Elysia marginata]                                                      | Elysia marginata        | 100%        | 97.79%     | GFR57757.1 |

| hypothetical protein EGW08_006629 [Elysia chlorotica]                                                                                                                                                                                                                                                                                                                                                                     | Elysia chlorotica                                                                                                                                           | 100%                                         | 97.79%                                                                                                                     | RUS85617.1                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| act protein isoform X1 [Ciona intestinalis]                                                                                                                                                                                                                                                                                                                                                                               | Ciona intestinalis                                                                                                                                          | 100%                                         | 97.42%                                                                                                                     | XP_009861333.1                                                                                                               |
| actin, cytoplasmic [Asterias rubens]                                                                                                                                                                                                                                                                                                                                                                                      | Asterias rubens                                                                                                                                             | 100%                                         | 97.42%                                                                                                                     | XP_033640031.1                                                                                                               |
| actin, cytoplasmic [Orbicella faveolata]                                                                                                                                                                                                                                                                                                                                                                                  | Orbicella faveolata                                                                                                                                         | 100%                                         | 97.42%                                                                                                                     | XP_020600429.1                                                                                                               |
| hypothetical protein LDENG_00240370 [Lucifuga dentata]                                                                                                                                                                                                                                                                                                                                                                    | Lucifuga dentata                                                                                                                                            | 100%                                         | 97.42%                                                                                                                     | KAF7643397.1                                                                                                                 |
| actin 4 [Halisarca dujardinii]                                                                                                                                                                                                                                                                                                                                                                                            | Halisarca dujardinii                                                                                                                                        | 100%                                         | 97.42%                                                                                                                     | QSX72281.1                                                                                                                   |
| beta-actin isotype 2 [Lymnaea stagnalis]                                                                                                                                                                                                                                                                                                                                                                                  | Lymnaea stagnalis                                                                                                                                           | 100%                                         | 97.42%                                                                                                                     | AOV18887.1                                                                                                                   |
| beta actin [Doryteuthis pealeii]                                                                                                                                                                                                                                                                                                                                                                                          | Doryteuthis pealeii                                                                                                                                         | 100%                                         | 97.42%                                                                                                                     | AAU11523.1                                                                                                                   |
| cytoplasmic actin [Dreissena polymorpha]                                                                                                                                                                                                                                                                                                                                                                                  | Dreissena polymorpha                                                                                                                                        | 100%                                         | 97.42%                                                                                                                     | AAC32224.1                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                             |                                              |                                                                                                                            |                                                                                                                              |
| actin [Rapana venosa]                                                                                                                                                                                                                                                                                                                                                                                                     | Rapana venosa                                                                                                                                               | 100%                                         | 97.42%                                                                                                                     | AGZ87937.1                                                                                                                   |
| actin [ <b>Rapana venosa</b> ]<br>unnamed protein product [ <b>Candidula unifasciata</b> ]                                                                                                                                                                                                                                                                                                                                | Rapana venosa<br>Candidula unifasciata                                                                                                                      | 100%<br>100%                                 | 97.42%<br>97.42%                                                                                                           | AGZ87937.1<br>CAG5123311.1                                                                                                   |
| actin [ <b>Rapana venosa</b> ]<br>unnamed protein product [ <b>Candidula unifasciata</b> ]<br>actin, cytoplasmic-like [Actinia tenebrosa]                                                                                                                                                                                                                                                                                 | Rapana venosa<br>Candidula unifasciata<br>Actinia tenebrosa                                                                                                 | 100%<br>100%<br>100%                         | <b>97.42%</b><br><b>97.42%</b><br>97.05%                                                                                   | AGZ87937.1<br>CAG5123311.1<br>XP_031571867.1                                                                                 |
| actin [ <b>Rapana venosa</b> ]<br>unnamed protein product [ <b>Candidula unifasciata</b> ]<br>actin, cytoplasmic-like [Actinia tenebrosa]<br>Actin, cytoplasmic, intermediate form; [ <b>Biomphalaria tenagophila</b> ]                                                                                                                                                                                                   | Rapana venosa<br>Candidula unifasciata<br>Actinia tenebrosa<br>Biomphalaria tenagophila                                                                     | 100%<br>100%<br>100%                         | <ul> <li>97.42%</li> <li>97.42%</li> <li>97.05%</li> <li>97.05%</li> </ul>                                                 | AGZ87937.1<br>CAG5123311.1<br>XP_031571867.1<br>Q964E0.1                                                                     |
| actin [ <b>Rapana venosa</b> ]<br>unnamed protein product [ <b>Candidula unifasciata</b> ]<br>actin, cytoplasmic-like [Actinia tenebrosa]<br>Actin, cytoplasmic, intermediate form; [ <b>Biomphalaria tenagophila</b> ]<br>PREDICTED: actin, cytoplasmic [Pundamilia nyererei]                                                                                                                                            | Rapana venosa<br>Candidula unifasciata<br>Actinia tenebrosa<br>Biomphalaria tenagophila<br>Pundamilia nyererei                                              | 100%<br>100%<br>100%<br>100%                 | <ul> <li>97.42%</li> <li>97.42%</li> <li>97.05%</li> <li>97.05%</li> <li>97.05%</li> </ul>                                 | AGZ87937.1<br>CAG5123311.1<br>XP_031571867.1<br>Q964E0.1<br>XP_005754021.1                                                   |
| actin [ <b>Rapana venosa</b> ]<br>unnamed protein product [ <b>Candidula unifasciata</b> ]<br>actin, cytoplasmic-like [Actinia tenebrosa]<br>Actin, cytoplasmic, intermediate form; [ <b>Biomphalaria tenagophila</b> ]<br>PREDICTED: actin, cytoplasmic [Pundamilia nyererei]<br>cytoplasmic actin 1 [Botryllus schlosseri]                                                                                              | Rapana venosaCandidula unifasciataActinia tenebrosaBiomphalaria tenagophilaPundamilia nyerereiBotryllus schlosseri                                          | 100%<br>100%<br>100%<br>100%<br>100%         | <ul> <li>97.42%</li> <li>97.42%</li> <li>97.05%</li> <li>97.05%</li> <li>97.05%</li> </ul>                                 | AGZ87937.1<br>CAG5123311.1<br>XP_031571867.1<br>Q964E0.1<br>XP_005754021.1<br>CAX48981.1                                     |
| actin [Rapana venosa] unnamed protein product [Candidula unifasciata] actin, cytoplasmic-like [Actinia tenebrosa] Actin, cytoplasmic, intermediate form; [Biomphalaria tenagophila] PREDICTED: actin, cytoplasmic [Pundamilia nyererei] cytoplasmic actin 1 [Botryllus schlosseri] actin, cytoplasmic 1 [Nematostella vectensis]                                                                                          | Rapana venosaCandidula unifasciataActinia tenebrosaBiomphalaria tenagophilaPundamilia nyerereiBotryllus schlosseriNematostella vectensis                    | 100%<br>100%<br>100%<br>100%<br>100%         | <ul> <li>97.42%</li> <li>97.42%</li> <li>97.05%</li> <li>97.05%</li> <li>97.05%</li> <li>97.05%</li> </ul>                 | AGZ87937.1<br>CAG5123311.1<br>XP_031571867.1<br>Q964E0.1<br>XP_005754021.1<br>CAX48981.1<br>XP_001637076.1                   |
| actin [ <b>Rapana venosa</b> ]<br>unnamed protein product [ <b>Candidula unifasciata</b> ]<br>actin, cytoplasmic-like [Actinia tenebrosa]<br>Actin, cytoplasmic, intermediate form; [ <b>Biomphalaria tenagophila</b> ]<br>PREDICTED: actin, cytoplasmic [Pundamilia nyererei]<br>cytoplasmic actin 1 [Botryllus schlosseri]<br>actin, cytoplasmic 1 [Nematostella vectensis]<br>actin, cytoplasmic [Exaiptasia diaphana] | Rapana venosaCandidula unifasciataActinia tenebrosaBiomphalaria tenagophilaPundamilia nyerereiBotryllus schlosseriNematostella vectensisExaiptasia diaphana | 100%<br>100%<br>100%<br>100%<br>100%<br>100% | <ul> <li>97.42%</li> <li>97.42%</li> <li>97.05%</li> <li>97.05%</li> <li>97.05%</li> <li>97.05%</li> <li>97.05%</li> </ul> | AGZ87937.1<br>CAG5123311.1<br>XP_031571867.1<br>Q964E0.1<br>XP_005754021.1<br>CAX48981.1<br>XP_001637076.1<br>XP_020916414.1 |

| actin, cytoplasmic [Nematostella vectensis]                   | Nematostella vectensis   | 100% | 97.05% | XP_001621292.2 |
|---------------------------------------------------------------|--------------------------|------|--------|----------------|
| actin, cytoplasmic 1-like [Sphaeramia orbicularis]            | Sphaeramia orbicularis   | 100% | 97.05% | XP_029985695.1 |
| actin, cytoplasmic [Cheilinus undulatus]                      | Cheilinus undulatus      | 100% | 97.05% | XP_041642816.1 |
| PREDICTED: actin, cytoplasmic 1-like [Poecilia reticulata]    | Poecilia reticulata      | 100% | 97.05% | XP_008417682.1 |
| beta-actin [Meretrix meretrix]                                | Meretrix meretrix        | 100% | 97.05% | AEK81538.1     |
| hypothetical protein BaRGS_009048 [Batillaria attramentaria]  | Batillaria attramentaria | 100% | 97.05% | KAG5710332.1   |
| beta actin [Exaiptasia diaphana]                              | Exaiptasia diaphana      | 100% | 97.05% | AAQ62633.1     |
| actin-like protein [Stylophora pistillata]                    | Stylophora pistillata    | 100% | 97.05% | AGG36337.1     |
| actin, cytoplasmic [Patiria miniata]                          | Patiria miniata          | 100% | 97.05% | XP_038044475.1 |
| actin, cytoplasmic isoform X1 [Stylophora pistillata]         | Stylophora pistillata    | 100% | 97.05% | XP_022795459.1 |
| Actin, cytoplasmic [Stylophora pistillata]                    | Stylophora pistillata    | 100% | 97.05% | PFX22595.1     |
| actin, cytoplasmic [Sebastes umbrosus]                        | Sebastes umbrosus        | 100% | 97.05% | XP_037633840.1 |
| actin, non-muscle 6.2 [Salarias fasciatus]                    | Salarias fasciatus       | 100% | 97.05% | XP_029961458.1 |
| unnamed protein product [Darwinula stevensoni]                | Darwinula stevensoni     | 100% | 97.05% | CAD7248021.1   |
| beta-actin [Cepaea nemoralis]                                 | Cepaea nemoralis         | 100% | 97.05% | AXI69344.1     |
| Oidioi.mRNA.OKI2018_I69.PAR.g11455.t1.cds [Oikopleura dioica] | Oikopleura dioica        | 100% | 97.05% | CAG5087094.1   |
| unnamed protein product [Oikopleura dioica]                   | Oikopleura dioica        | 100% | 97.05% | CBY24839.1     |
| actin [Plakobranchus ocellatus]                               | Plakobranchus ocellatus  | 100% | 97.05% | GFN80142.1     |
| Actin, cytoplasmic, intermediate form; [Biomphalaria alexandrina]               | Biomphalaria alexandrina | 100% | 96.68% | Q964E3.1       |
|---------------------------------------------------------------------------------|--------------------------|------|--------|----------------|
| beta-actin [Nothobranchius furzeri]                                             | Nothobranchius furzeri   | 100% | 96.68% | ABR86936.1     |
| actin, cytoplasmic 1 [Oreochromis niloticus]                                    | Oreochromis niloticus    | 100% | 96.68% | XP_003444532.1 |
| actin, cytoplasmic [Oryzias latipes]                                            | Oryzias latipes          | 100% | 96.68% | XP_011477986.1 |
| actin [Cerebratulus lacteus]                                                    | Cerebratulus lacteus     | 100% | 96.68% | ANC90245.1     |
| non-muscle actin 6.2 [Malo kingi]                                               | Malo kingi               | 100% | 96.68% | ACY74447.1     |
| PREDICTED: actin, cytoplasmic 1-like [Nothobranchius furzeri]                   | Nothobranchius furzeri   | 100% | 96.68% | XP_015815812.1 |
| Actin, cytoplasmic, intermediate form; Flags: Precursor [Planorbella trivolvis] | Planorbella trivolvis    | 100% | 96.68% | Q964D9.1       |
| beta-actin isotype 1 [Lymnaea stagnalis]                                        | Lymnaea stagnalis        | 100% | 96.68% | AOV18885.1     |
| Actin, cytoplasmic, intermediate form; Flags: Precursor [Biomphalaria glabrata] | Biomphalaria glabrata    | 100% | 96.68% | P92179.2       |
| hypothetical protein LOTGIDRAFT_205506 [Lottia gigantea]                        | Lottia gigantea          | 100% | 96.68% | XP_009065998.1 |
| hypothetical protein CCH79_00016215 [Gambusia affinis]                          | Gambusia affinis         | 100% | 96.68% | PWA24173.1     |
| hypothetical protein OJAV_G00095600 [Oryzias javanicus]                         | Oryzias javanicus        | 100% | 96.68% | RVE68811.1     |

<sup>a</sup> Gastropoda shown in bold

Table S3.8 NCBI BLAST result for *Aplysia californica* actin nucleotide sequence

| Description                                                                   | Scientific Name             |      | Per. Ident | Accession      |
|-------------------------------------------------------------------------------|-----------------------------|------|------------|----------------|
| Aplysia californica actin (LOC100533345), mRNA                                | Aplysia californica         | 100% | 100.0%     | NM_001204640.1 |
| PREDICTED: Aplysia californica actin, cytoplasmic (LOC106013368), mRNA        | Aplysia californica         | 100% | 96.4%      | XM_013088898.1 |
| Littorina littorea actin (Act1) mRNA, complete cds                            | Littorina littorea          | 100% | 88.9%      | KM892438.1     |
| PREDICTED: Megalops cyprinoides actin, beta 2 (actb2), mRNA                   | Megalops cyprinoides        | 100% | 88.3%      | XM_036552203.1 |
| PREDICTED: Acipenser ruthenus actin, beta 1 (actb1), mRNA                     | Acipenser ruthenus          | 100% | 88.3%      | XM_034052523.2 |
| Rapana venosa actin (Act1) mRNA, complete cds                                 | Rapana venosa               | 100% | 88.3%      | KF410817.1     |
| Acipenser dabryanus beta actin mRNA, partial cds                              | Acipenser dabryanus         | 100% | 88.0%      | MF536662.1     |
| Haliotis midae clone Hdd.c148 microsatellite sequence                         | Haliotis midae              | 100% | 88.0%      | GU263794.1     |
| Haliotis diversicolor clone HDr4CJ470 beta-actin 2 mRNA, complete cds         | Haliotis diversicolor       | 100% | 88.0%      | EU244396.1     |
| PREDICTED: Acipenser ruthenus actin, cytoplasmic 2 (LOC117418240), mRNA       | Acipenser ruthenus          | 100% | 87.9%      | XM_034031052.2 |
| PREDICTED: Pangasianodon hypophthalmus actin, beta 2 (actb2), mRNA            | Pangasianodon hypophthalmus | 100% | 87.9%      | XM_026929614.2 |
| Danio rerio actin, beta 2 (actb2), mRNA                                       | Danio rerio                 | 100% | 87.9%      | NM_181601.5    |
| Danio rerio bactin2, mRNA (cDNA clone MGC:172104 IMAGE:7912932), complete cds | Danio rerio                 | 100% | 87.9%      | BC154531.1     |
| PREDICTED: Esox lucius actin, beta 2 (actb2), mRNA                            | Esox lucius                 | 100% | 87.8%      | XM_010905274.4 |
| PREDICTED: Cyprinus carpio actin, cytoplasmic 1 (LOC109051881), mRNA          | Cyprinus carpio             | 100% | 87.8%      | XM_019069375.1 |
| Spinibarbus denticulatus beta-actin mRNA, complete cds                        | Spinibarbus denticulatus    | 100% | 87.8%      | DQ656598.1     |
| Danio rerio bactin2, mRNA (cDNA clone MGC:85665 IMAGE:6960309), complete cds  | Danio rerio                 | 100% | 87.8%      | BC067566.1     |
| Danio rerio beta actin mRNA, complete cds                                     | Danio rerio                 | 100% | 87.8%      | AF025305.1     |

| Haliotis diversicolor actin mRNA, complete cds                                                     | Haliotis diversicolor        | 100% | 87.8% | EF587284.1     |
|----------------------------------------------------------------------------------------------------|------------------------------|------|-------|----------------|
| PREDICTED: Biomphalaria glabrata actin, adductor muscle (LOC106058166), mRNA                       | Biomphalaria glabrata        | 99%  | 87.7% | XM_013215543.1 |
| Haliotis tuberculata mRNA for actin (actin gene) from haemocyte cells                              | Haliotis tuberculata         | 100% | 87.6% | AM236595.1     |
| Urechis unicinctus beta-actin mRNA, complete cds                                                   | Urechis unicinctus           | 100% | 87.6% | GU592178.1     |
| PREDICTED: Esox lucius actin, beta 1 (actb1), mRNA                                                 | Esox lucius                  | 100% | 87.5% | XM_010903121.4 |
| Acipenser dabryanus beta-actin mRNA, complete cds                                                  | Acipenser dabryanus          | 100% | 87.5% | MH790260.1     |
| Carassius auratus B-actin mRNA for beta-actin, complete cds                                        | Carassius auratus            | 100% | 87.5% | LC382464.1     |
| Danio rerio bactin2, mRNA (cDNA clone MGC:192911 IMAGE:100061397), complete cds                    | Danio rerio                  | 100% | 87.5% | BC165823.1     |
| Danio rerio bactin2, mRNA (cDNA clone MGC:56040 IMAGE:3820122), complete cds                       | Danio rerio                  | 100% | 87.5% | BC045879.1     |
| Danio rerio beta-actin mRNA, complete cds                                                          | Danio rerio                  | 100% | 87.5% | AF057040.1     |
| Morulius calbasu beta-actin mRNA, complete cds                                                     | Labeo calbasu                | 100% | 87.4% | AF393832.1     |
| Danio rerio actin, beta 1 (actb1), mRNA                                                            | Danio rerio                  | 100% | 87.4% | NM_131031.2    |
| PREDICTED: Cyprinus carpio actin, cytoplasmic 1 (LOC109073280), transcript variant X2, mRNA        | Cyprinus carpio              | 100% | 87.4% | XM_019089433.1 |
| PREDICTED: Cyprinus carpio actin, cytoplasmic 1 (LOC109073280), transcript variant X1, mRNA        | Cyprinus carpio              | 100% | 87.4% | XM_019089432.1 |
| Sinocyclocheilus anshuiensis actin, cytoplasmic 1 (LOC107692666), mRNA                             | Sinocyclocheilus anshuiensis | 100% | 87.4% | XM_016491832.1 |
| Sinocyclocheilus anshuiensis actin, cytoplasmic 1-like (LOC107702535), transcript variant X2, mRNA | Sinocyclocheilus anshuiensis | 100% | 87.4% | XM_016504885.1 |
| Sinocyclocheilus anshuiensis actin, cytoplasmic 1-like (LOC107702535), transcript variant X1, mRNA | Sinocyclocheilus anshuiensis | 100% | 87.4% | XM_016504884.1 |
| Danio rerio bactin1, mRNA (cDNA clone MGC:77623 IMAGE:6996683), complete cds                       | Danio rerio                  | 100% | 87.4% | BC063950.1     |
| Aplysia californica actin, muscle (LOC100533357), mRNA                                             | Aplysia californica          | 100% | 87.4% | NM_001204651.1 |
| Placopecten magellanicus actin mRNA, complete cds                                                  | Placopecten magellanicus     | 100% | 87.3% | U55046.1       |
| PREDICTED: Anguilla anguilla actin, cytoplasmic 2 (LOC118216518), mRNA                             | Anguilla anguilla            | 100% | 87.2% | XM_035397752.1 |

| PREDICTED: Sinocyclocheilus anshuiensis actin, cytoplasmic 1 (LOC107703420), mRNA          | Sinocyclocheilus anshuiensis | 100% | 87.2% | XM_016506040.1 |
|--------------------------------------------------------------------------------------------|------------------------------|------|-------|----------------|
| Crassostrea gigas genome assembly, linkage group: LG7                                      | Crassostrea gigas            | 99%  | 87.2% | LR761640.1     |
| PREDICTED: Carassius auratus actin, cytoplasmic 1 (LOC113044540), mRNA                     | Carassius auratus            | 100% | 87.1% | XM_026204620.1 |
| PREDICTED: Sinocyclocheilus rhinocerous actin, cytoplasmic 1 (LOC107725373), mRNA          | Sinocyclocheilus rhinocerous | 100% | 87.1% | XM_016534610.1 |
| PREDICTED: Sinocyclocheilus rhinocerous actin, cytoplasmic 1 (LOC107722944), mRNA          | Sinocyclocheilus rhinocerous | 100% | 87.1% | XM_016531442.1 |
| PREDICTED: Cyprinodon variegatus actin, beta (actb), mRNA                                  | Cyprinodon variegatus        | 100% | 87.1% | XM_015378596.1 |
| Rhodeus uyekii beta-actin mRNA, complete cds                                               | Rhodeus uyekii               | 100% | 87.1% | KJ867513.1     |
| Onychostoma macrolepis beta-actin mRNA, complete cds                                       | Onychostoma macrolepis       | 100% | 87.1% | JN254630.1     |
| PREDICTED: Colossoma macropomum actin, beta 1 (actb1), mRNA                                | Colossoma macropomum         | 100% | 87.1% | XM_036557681.1 |
| Danio rerio bactin1, mRNA (cDNA clone MGC:192419 IMAGE:100060865), complete cds            | Danio rerio                  | 100% | 87.1% | BC165331.1     |
| Danio rerio bactin1, mRNA (cDNA clone MGC:55989 IMAGE:3819668), complete cds               | Danio rerio                  | 100% | 87.1% | BC045846.1     |
| PREDICTED: Pangasianodon hypophthalmus actin, beta 1 (actb1), transcript variant X2, mRNA  | Pangasianodon hypophthalmus  | 100% | 87.1% | XM_026928833.2 |
| PREDICTED: Pangasianodon hypophthalmus actin, beta 1 (actb1), transcript variant X1, mRNA  | Pangasianodon hypophthalmus  | 100% | 87.1% | XM_026928832.2 |
| PREDICTED: Pomacea canaliculata actin, adductor muscle (LOC112575079), mRNA                | Pomacea canaliculata         | 99%  | 87.1% | XM_025256639.1 |
| PREDICTED: Merops nubicus actin, cytoplasmic 1 (LOC103775609), transcript variant X5, mRNA | Merops nubicus               | 99%  | 87.1% | XM_008943076.1 |
| PREDICTED: Merops nubicus actin, cytoplasmic 1 (LOC103775609), transcript variant X1, mRNA | Merops nubicus               | 99%  | 87.1% | XM_008943072.1 |

<sup>a</sup> Gastropoda shown in bold.

## Table S3.9 NCBI BLAST results for Aplyisa californica actin amino acid sequence

| Description                                                      | Scientific Name          | Query Cover | Per.<br>Ident | Accession      |
|------------------------------------------------------------------|--------------------------|-------------|---------------|----------------|
| actin [Aplysia californica]                                      | Aplysia californica      | 100%        | 100.0%        | NP_001191569.1 |
| actin, cytoplasmic [Aplysia californica]                         | Aplysia californica      | 100%        | 98.1%         | XP_012944352.1 |
| actin [Littorina littorea]                                       | Littorina littorea       | 100%        | 97.8%         | AJA37852.1     |
| actin, cytoplasmic [Pomacea canaliculata]                        | Pomacea canaliculata     | 100%        | 97.8%         | XP_025110090.1 |
| actin, cytoplasmic [Octopus sinensis]                            | Octopus sinensis         | 100%        | 97.8%         | XP_029639042.1 |
| Actin, cytoplasmic, intermediate form [Biomphalaria tenagophila] | Biomphalaria tenagophila | 100%        | 97.4%         | Q964E0.1       |
| Actin, cytoplasmic, intermediate form [Biomphalaria obstructa]   | Biomphalaria obstructa   | 100%        | 97.4%         | Q964E1.1       |
| actin [Rapana venosa]                                            | Rapana venosa            | 100%        | 97.4%         | AGZ87937.1     |
| Actin, cytoplasmic, intermediate form [Biomphalaria pfeifferi]   | Biomphalaria pfeifferi   | 100%        | 97.4%         | Q964E2.1       |
| beta-actin isotype 2 [Lymnaea stagnalis]                         | Lymnaea stagnalis        | 100%        | 97.4%         | AOV18887.1     |
| hypothetical protein LOTGIDRAFT_227913 [Lottia gigantea]         | Lottia gigantea          | 100%        | 97.4%         | XP_009043798.1 |
| actin, cytoplasmic isoform X1 [Lingula anatina]                  | Lingula anatina          | 100%        | 97.4%         | XP_013402367.1 |
| Actin, cytoplasmic, intermediate form [Biomphalaria alexandrina] | Biomphalaria alexandrina | 100%        | 97.0%         | Q964E3.1       |
| actin, cytoplasmic-like [Actinia tenebrosa]                      | Actinia tenebrosa        | 100%        | 97.0%         | XP_031571867.1 |
| Actin, cytoplasmic, intermediate form [Planorbella trivolvis]    | Planorbella trivolvis    | 100%        | 97.0%         | Q964D9.1       |

| actin, cytoplasmic [Orbicella faveolata]                      | Orbicella faveolata    | 100% | 97.0% | XP_020600429.1 |
|---------------------------------------------------------------|------------------------|------|-------|----------------|
| cytoplasmic actin [Dreissena polymorpha]                      | Dreissena polymorpha   | 100% | 97.0% | AAC32224.1     |
| actin [Diplodon chilensis]                                    | Diplodon chilensis     | 100% | 97.0% | AVN67034.1     |
| PREDICTED: actin, cytoplasmic [Octopus bimaculoides]          | Octopus bimaculoides   | 100% | 97.0% | XP_014780347.1 |
| cytoplasmic actin [Pinctada fucata]                           | Pinctada fucata        | 100% | 97.0% | BAE80701.1     |
| beta-actin [Cepaea nemoralis]                                 | Cepaea nemoralis       | 100% | 97.0% | AXI69344.1     |
| actin, cytoplasmic 1 [Nematostella vectensis]                 | Nematostella vectensis | 100% | 96.7% | XP_001637076.1 |
| actin, cytoplasmic [Asterias rubens]                          | Asterias rubens        | 100% | 96.7% | XP_033640031.1 |
| act protein isoform X1 [Ciona intestinalis]                   | Ciona intestinalis     | 100% | 96.7% | XP_009861333.1 |
| hypothetical protein LOTGIDRAFT_205506 [Lottia gigantea]      | Lottia gigantea        | 100% | 96.7% | XP_009065998.1 |
| actin, cytoplasmic [Nematostella vectensis]                   | Nematostella vectensis | 100% | 96.7% | XP_001621292.2 |
| actin, cytoplasmic 1 [Nematostella vectensis]                 | Nematostella vectensis | 100% | 96.7% | XP_032239984.1 |
| beta-actin isotype 1 [Lymnaea stagnalis]                      | Lymnaea stagnalis      | 100% | 96.7% | AOV18885.1     |
| Actin, cytoplasmic, intermediate form [Biomphalaria glabrata] | Biomphalaria glabrata  | 100% | 96.7% | P92179.2       |
| beta-actin [Sinanodonta woodiana]                             | Sinanodonta woodiana   | 100% | 96.7% | AMR60408.1     |
| beta-actin [Meretrix meretrix]                                | Meretrix meretrix      | 100% | 96.7% | AEK81538.1     |
| actin-2 [Nematostella vectensis]                              | Nematostella vectensis | 100% | 96.7% | XP_001630583.1 |
| actin beta/gamma 1 [Paragonimus westermani]                   | Paragonimus westermani | 100% | 96.7% | KAA3669848.1   |

| Actin, cytoplasmic [Stylophora pistillata]                    | Stylophora pistillata  | 100% | 96.7% | PFX22595.1     |
|---------------------------------------------------------------|------------------------|------|-------|----------------|
| actin-like protein [Stylophora pistillata]                    | Stylophora pistillata  | 100% | 96.7% | AGG36337.1     |
| actin, cytoplasmic isoform X1 [Stylophora pistillata]         | Stylophora pistillata  | 100% | 96.7% | XP_022795459.1 |
| beta actin [Doryteuthis pealeii]                              | Doryteuthis pealeii    | 100% | 96.7% | AAU11523.1     |
| Actin-2 isoform 1 [Schistosoma japonicum]                     | Schistosoma japonicum  | 100% | 96.7% | TNN13940.1     |
| PREDICTED: actin, cytoplasmic [Pundamilia nyererei]           | Pundamilia nyererei    | 100% | 96.3% | XP_005754021.1 |
| actin, cytoplasmic 2-like [Petromyzon marinus]                | Petromyzon marinus     | 100% | 96.3% | XP_032817105.1 |
| actin, cytoplasmic 1-like [Sphaeramia orbicularis]            | Sphaeramia orbicularis | 100% | 96.3% | XP_029985695.1 |
| hypothetical protein LDENG_00240370 [Lucifuga dentata]        | Lucifuga dentata       | 100% | 96.3% | KAF7643397.1   |
| hypothetical protein LOTGIDRAFT_202971 [Lottia gigantea]      | Lottia gigantea        | 100% | 96.3% | XP_009043797.1 |
| predicted protein [Nematostella vectensis]                    | Nematostella vectensis | 100% | 96.3% | EDO42646.1     |
| PREDICTED: actin, cytoplasmic [Acropora digitifera]           | Acropora digitifera    | 100% | 96.3% | XP_015753791.1 |
| PREDICTED: actin, cytoplasmic 1-like [Poecilia formosa]       | Poecilia formosa       | 100% | 96.3% | XP_007573219.1 |
| actin, cytoplasmic-like [Monopterus albus]                    | Monopterus albus       | 100% | 96.3% | XP_020450872.1 |
| actin [Galaxea fascicularis]                                  | Galaxea fascicularis   | 100% | 96.3% | BAC44866.1     |
| actin, cytoplasmic 1 [Oreochromis niloticus]                  | Oreochromis niloticus  | 100% | 95.9% | XP_003444532.1 |
| actin, cytoplasmic [Oryzias latipes]                          | Oryzias latipes        | 100% | 95.9% | XP_011477986.1 |
| PREDICTED: actin, cytoplasmic 1-like [Nothobranchius furzeri] | Nothobranchius furzeri | 100% | 95.9% | XP_015815812.1 |

| beta-actin [Nothobranchius furzeri]                        | Nothobranchius furzeri | 100% | 95.9% | ABR86936.1     |
|------------------------------------------------------------|------------------------|------|-------|----------------|
| actin, cytoplasmic 2 [Oryzias melastigma]                  | Oryzias melastigma     | 100% | 95.9% | XP_024116512.1 |
| actin [Cerebratulus lacteus]                               | Cerebratulus lacteus   | 100% | 95.9% | ANC90245.1     |
| PREDICTED: actin, cytoplasmic 1-like [Poecilia reticulata] | Poecilia reticulata    | 100% | 95.9% | XP_008417682.1 |

<sup>a</sup> Gastropoda shown in bold

Table S3.10 List of Heterobranchia actin sequences analysed and discussed in CHAPTER III and their NCBI Genbank accession numbers. Transcriptomic data for Cladobranchia was kindly provided by D. Karmeinski.

LOCUS OK074000 803 bp DNA linear INV 05-SEP-2021 DEFINITION Chromodoris annae actin isoform, partial CDS. ACCESSION OK074000 SOURCE Chromodoris annae ORGANISM Chromodoris annae Eukaryota; Metazoa; Spiralia; Lophotrochozoa; Mollusca; Gastropoda; Heterobranchia; Euthyneura; Nudipleura; Nudibranchia; Doridina; Eudoridoidea; Chromodorididae; Chromodoris. REFERENCE 1 (bases 1 to 803) Hertzer, C., Undap, N., Bhandari, D.R., Spengler, B., Aatz, S., AUTHORS Franken, S., Haeberlein, H., Kehraus, S., Kaligis, F., Bara, R., Ijong, F.G., Schaeberle, T.F., Waegele, H. and Koenig, G.M. Protection From Self-Intoxication: A Novel Actin Isoform in TITLE Chromodoris Nudibranchs Supports Sequestration and Storage of the Cytotoxin Latrunculin A JOURNAL Unpublished (bases 1 to 803) REFERENCE 2 AUTHORS Hertzer, C. and Undap, N. Direct Submission TITLE Submitted (05-SEP-2021) Institute of Pharmaceutical Biology, JOURNAL University of Bonn, Nussallee 6, Bonn, NRW 53115, Germany FEATURES Location/Qualifiers 1..803 source /organism="Chromodoris annae" /mol type="genomic DNA" /db xref="taxon:508118" <1..>803 CDS /codon start=1

/product="actin"

/translation="VAPEEHPVLLTEAPLNPKANREKMTQIMFETFNSPAFYVSIQAV LALYASGRTTGVVLDAGDGVTHIIPIYEGYALPHAIEKMNLAGRDLTGYLKRILHERG YNFDSSSETEIVRDVKEKLAYVALDFEQEMDASAKSSTVERSYELPDGQVITLGSERF RCPEVLFQPSFIGMETVGIHEMIYNSVTKCDIDLRRELYYNIVLSGGTTMFPGIADRL HKELESVAPASNKIKIIAPPERKYSVWIGGSILGSLSTFQQMWITKQEY" BASE COUNT 219 a 200 c 196 g 188 t

ORIGIN

1 gtggcacccg aagagcaccc cgtattattg acagaagctc cactaaaccc caaggccaac 61 cgtgagaaaa tgacccagat tatgttcgag actttcaact caccagcttt ttacgtcagt 121 atccaggcgg tacttgctct gtacgcatca gggaggacaa cgggcgtggt gctggacgcg 181 ggagacgggg ttactcatat cattccaata tacgagggct acgccctgcc ccacgctatt 241 gaaaagatga acctggccgg ccgcgaccta actggctatc tgaagcgaat tctccatgag 301 cgaggctaca actttgattc gtcctcggag accgaaatag tgcgagatgt gaaggaaaag 361 ctggcttacg tcgctctgga ctttgaacag gagatggacg catcggccaa gtcgtcaact 421 gtcgagagat cttacgaact acccgatggt caagtgatta ctttgggctc cgaacgattc 481 aggtgccccg aggttttatt tcagccgtct ttcataggaa tggaaaccgt ggggatccac 541 gaaatgatct acaactctgt taccaaatgt gacattgatc tcagaagaga attgtactac 601 aacatcgtcc tttctggcgg aacaacaatg ttcccaggta tagctgatcg gttacataaa 661 gagctggaat ccgttgctc agccagtaac aagatcaaaa tcattgcccc tcccgaacgc 721 aaatactctg tttggattgg aggatctatc ctgggatctt tgtcaacctt ccagcagatg 781 tggatcacca aacaagagta tga

11

| LOCUS        | OK074001         | 803 bp    | DNA       | linear     | INV 05-SEP-2021   |
|--------------|------------------|-----------|-----------|------------|-------------------|
| DEFINITION   | Chromodoris dia  | nae actin | isoform,  | partial    | CDS.              |
| ACCESSION (  | 0K074001         |           |           |            |                   |
| SOURCE       | Chromodoris dia  | nae       |           |            |                   |
| ORGANISM Ch  | nromodoris diana | е         |           |            |                   |
| Eukaryota; N | Metazoa; Spirali | a; Lophot | rochozoa; | Mollusca   | a; Gastropoda;    |
| Heterobranch | nia; Euthyneura; | Nudipleu  | ra; Nudib | oranchia;  | Doridina;         |
| Eudoridoidea | a; Chromodoridid | ae; Chrom | odoris.   |            |                   |
| REFERENCE    | 1 (bases 1 to    | 803)      |           |            |                   |
| AUTHORS He   | ertzer,C., Undap | ,N., Bhan | dari,D.R. | , Spengle  | er,B., Aatz,S.,   |
| Franken,S.,  | Haeberlein,H.,   | Kehraus,S | ., Kaligi | s,F., Bai  | ca,R.,            |
| Ijong,F.G.,  | Schaeberle, T.F. | , Waegele | ,H. and K | Koenig,G.N | 1.                |
| TITLE Pi     | rotection From S | elf-Intox | ication:  | A Novel A  | Actin Isoform in  |
| Chromodoris  | Nudibranchs Sup  | ports Seq | uestratic | on and Sto | orage of the      |
| Cytotoxin La | atrunculin A     |           |           |            |                   |
| JOURNAL Ur   | npublished       |           |           |            |                   |
| REFERENCE    | 2 (bases 1 to    | 803)      |           |            |                   |
| AUTHORS He   | ertzer,C. and Un | dap,N.    |           |            |                   |
| TITLE D      | rect Submission  |           |           |            |                   |
| JOURNAL SI   | ubmitted (05-SEP | -2021) In | stitute c | of Pharmad | ceutical Biology, |
| University o | of Bonn, Nussall | ee 6, Bon | n, NRW 53 | 3115, Gerr | nany              |
| FEATURES     | Locati           | on/Qualif | iers      |            |                   |
| source       | 1803             |           |           |            |                   |
| /organism="( | Chromodoris dian | ae"       |           |            |                   |
| /mol_type="c | genomic DNA"     |           |           |            |                   |
| /db_xref="ta | axon:508128"     |           |           |            |                   |
| CDS          | <1>803           |           |           |            |                   |
| /codon_start | =1               |           |           |            |                   |
| /product="ad | ctin"            |           |           |            |                   |
| /translation | n="VAPEEHPVLLTEA | PLNPKANRE | KMTQIMFEI | FNSPAFYVS  | SIQAV             |
| LALYASGRTTG  | VVLDAGDGVTHIIPIY | EGYALPHAI | EKMNLAGRI | DLTGYLKRII | LHERG             |

YNFDSSSETEIVRDVKEKLAYVALDFEQEMDASAKSSTVERSYELPDGQVITLGSERF RCPEVLFQPSFIGMETVGIHEMIYNSVTKCDIDLRRELYHNIVLSGGTTMFPGIADRL HKELESVAPASNKMKIIAPPERKYSVWIGGSILGSLSTFQQMWITKQEY"

BASE COUNT 215 a 200 c 199 g 189 t

ORIGIN

1 gtggcacccg aagagcaccc cgtattattg acagaagctc cactgaaccc caaggccaac 61 cgtgagaaaa tgacccagat tatgttcgag actttcaact cgccagcttt ttacgtcagt 121 atccaggcgg tacttgctct gtacgcttca gggaggacaa cgggggtggt gctggacgcg 181 ggagacgggg ttactcatat cattccaata tacgagggct acgccctgcc ccacgctatt 241 gaaaagatga acctggccgg ccgcgacctc actggctatc tgaagcgaat tctccatgag 301 cgaggctaca actttgattc gtcctcggag accgaaatag tgcgagatgt gaaggaaaag 361 ctggcttacg tcgctctgga ctttgaacag gagatggacg catcggccaa gtcgtcaact 421 gtcgaaagat cttacgaact acccgatggt caagtgatta ctttgggctc cgaacgcttc 481 aggtgccccg aggttttatt tcagccgtct ttcataggaa tggaaactgt ggggatccac 541 gaaatgatct acaactctgt taccaaatgt gacattgatc tcagaagaga attgtaccac 601 aacattgtcc tttctggcgg aacaacaatg ttcccaggta tagctgatcg gttacataaa 661 gagctggaat ccgttgctcc agccagcaac aagatgaaaa tcattgcccc tcccgaacgc 721 aaatactctg tttggattgg aggatctatc ctgggatctt tgtcaacctt ccagcagatg 781 tggatcacca aacaagagta tga

//

| LOCUS         | OK074002          | 803 bp     | DNA       | linear      | INV 05-SEP-2021  |
|---------------|-------------------|------------|-----------|-------------|------------------|
| DEFINITION    | Chromodoris loch  | ni actin : | isoform,  | partial C   | DS.              |
| ACCESSION (   | DK074002          |            |           |             |                  |
| SOURCE        | Chromodoris loch  | ni         |           |             |                  |
| ORGANISM Ch   | nromodoris lochi  |            |           |             |                  |
| Eukaryota; N  | Metazoa; Spiralia | a; Lophot: | rochozoa; | Mollusca    | ; Gastropoda;    |
| Heterobranch  | nia; Euthyneura;  | Nudipleu:  | ra; Nudik | oranchia;   | Doridina;        |
| Eudoridoidea  | a; Chromodoridida | ae; Chromo | odoris.   |             |                  |
| REFERENCE     | 1 (bases 1 to 8   | 303)       |           |             |                  |
| AUTHORS He    | ertzer,C., Undap, | N., Bhand  | dari,D.R. | , Spengle:  | r,B., Aatz,S.,   |
| Franken,S.,   | Haeberlein,H., H  | Kehraus,S  | ., Kaligi | s,F., Bara  | a,R.,            |
| Ijong,F.G.,   | Schaeberle, T.F., | Waegele    | ,H. and M | Koenig,G.M  |                  |
| TITLE PI      | rotection From Se | elf-Intox: | ication:  | A Novel A   | ctin Isoform in  |
| Chromodoris   | Nudibranchs Supp  | ports Sequ | uestratio | on and Sto  | rage of the      |
| Cytotoxin La  | atrunculin A      |            |           |             |                  |
| JOURNAL U     | npublished        |            |           |             |                  |
| REFERENCE     | 2 (bases 1 to 8   | 303)       |           |             |                  |
| AUTHORS He    | ertzer,C. and Und | dap,N.     |           |             |                  |
| TITLE D:      | irect Submission  |            |           |             |                  |
| JOURNAL St    | ubmitted (05-SEP- | -2021) In: | stitute c | of Pharmace | eutical Biology, |
| University of | of Bonn, Nussalle | ee 6, Boni | n, NRW 53 | 8115, Germa | any              |
| FEATURES      | Locatio           | on/Qualif: | iers      |             |                  |
| source        | 1803              |            |           |             |                  |
| /organism="(  | Chromodoris loch  |            |           |             |                  |
| /mol_type="g  | genomic DNA"      |            |           |             |                  |
| /db_xref="ta  | axon:262607"      |            |           |             |                  |
| CDS           | <1>803            |            |           |             |                  |
| /codon_start  | t=1               |            |           |             |                  |
| /product="ad  | ctin"             |            |           |             |                  |
| /translation  | n="VAPEEHPVLLTEAN | PLNPKANREI | KMTQIMFEI | FNSPAFYVS   | IQAV             |
| LALYASGRTTG   | VVLDAGDGVTHIIPIYH | EGYALPHAII | EKMNLAGRI | DLTGYLKRIL  | HERG             |

YNFDSSSETEIVRDVKEKLAYVALDFEQEMDASAKSSTVERSYELPDGQVITLGSERF RCPEVLFQPSFIGMETVGIHEMIYNSVTKCDIDLRRELYHNIVLSGGTTMFPGIADRL HKELESVAPASNKMKIIAPPERKYSVWIGGSILGSLSTFQQMWITKQEY"

BASE COUNT 214 a 203 c 199 g 187 t

ORIGIN

1 gtggcacccg aagagcaccc cgtattattg acagaagctc cactgaaccc caaggccaac 61 cgtgagaaaa tgacccagat tatgttcgag actttcaact cgccagcttt ttacgtcagt 121 atccaggcgg tacttgctct gtacgcttca gggaggacaa cgggcgtggt gctggacgcg 181 ggagacgggg ttactcatat cattccaata tacgagggct acgccctgcc ccacgctatt 241 gaaaagatga acctggccgg ccgcgacctc actggctatc tgaagcgaat tctccatgag 301 cgaggctaca actttgattc gtcctcggag accgaaatag tgcgagatgt gaaggaaaag 361 ctggcttacg tcgctctgga ttttgaacag gagatggacg catcggccaa gtcgtcaact 421 gtcgagagat cttacgaact acccgatgc caagtgatta ctttgggctc cgaacgcttc 481 aggtgccccg aggttttatt tcagccgtct ttcataggaa tggaaaccgt ggggatccac 541 gaaatgatct acaactctgt taccaaatgt gacattgatc tcagaagaga attgtaccac 601 aacatcgtcc tttctggcgg aacaacaatg ttcccaggta tagctgatcg gttacataaa 661 gagctggaat ccgttgctcc agccagcaac aagatgaaaa tcattgcccc tcccgaacgc 721 aaatactctg tttggattgg aggatctatc ctgggatct tgcaacctt ccagcagatg 781 tggatcacca aacaagagta tga

//

| LOCUS        | OK074003      | 803 bp     | DNA       | linear     | INV 05-SEP   | -2021    |
|--------------|---------------|------------|-----------|------------|--------------|----------|
| DEFINITION   | Chromodoris   | strigata   | actin iso | oform, par | tial CDS.    |          |
| ACCESSION (  | DK074003      |            |           |            |              |          |
| SOURCE       | Chromodoris   | strigata   |           |            |              |          |
| ORGANISM Ch  | nromodoris st | trigata    |           |            |              |          |
| Eukaryota; N | Metazoa; Spii | ralia; Lop | hotrochoz | zoa; Mollu | usca; Gastro | opoda;   |
| Heterobranch | nia; Euthyneu | ıra; Nudip | leura; Nu | ıdibranchi | a; Doridina  | a;       |
| Eudoridoidea | a; Chromodori | ididae; Ch | romodoris | 3.         |              |          |
| REFERENCE    | 1 (bases 1    | to 803)    |           |            |              |          |
| AUTHORS He   | ertzer,C., Ur | ndap,N., B | handari,I | ).R., Spen | ngler,B., Aa | atz,S.,  |
| Franken,S.,  | Haeberlein,H  | H., Kehrau | s,S., Kal | ligis,F.,  | Bara,R.,     |          |
| Ijong,F.G.,  | Schaeberle,   | I.F., Waeg | ele,H. ar | nd Koenig, | G.M.         |          |
| TITLE PI     | rotection Fro | om Self-In | toxicatio | on: A Nove | el Actin Iso | oform in |
| Chromodoris  | Nudibranchs   | Supports   | Sequestra | ation and  | Storage of   | the      |
| Cytotoxin La | atrunculin A  |            |           |            |              |          |
| JOURNAL Ur   | npublished    |            |           |            |              |          |
| REFERENCE    | 2 (bases 1    | to 803)    |           |            |              |          |
| AUTHORS He   | ertzer,C. and | d Undap,N. |           |            |              |          |
| TITLE D:     | irect Submiss | sion       |           |            |              |          |
| JOURNAL SI   | ubmitted (05- | -SEP-2021) | Institut  | e of Phar  | rmaceutical  | Biology, |
| University o | of Bonn, Nuss | sallee 6,  | Bonn, NRV | v 53115, G | Germany      |          |
| FEATURES     | Loc           | cation/Qua | lifiers   |            |              |          |
| source       | 1803          |            |           |            |              |          |
| /organism="( | Chromodoris s | strigata"  |           |            |              |          |
| /mol_type="g | genomic DNA"  |            |           |            |              |          |
| /db_xref="ta | axon:262613"  |            |           |            |              |          |
| CDS          | <1>803        | 3          |           |            |              |          |
| /codon_start | c=1           |            |           |            |              |          |
| /product="ad | ctin"         |            |           |            |              |          |
| /translation | n="VAPEEHPVLI | LTEAPLNPKA | NREKMTQIN | 1FETFNSPAF | YVSIQAV      |          |
| LALYASGRTTG  | VVLDAGDGVTHI  | IPIYEGYALP | HAIEKMNLA | \GRDLTGYLK | KRILHERG     |          |

YNFDSSSETEIVRDVKEKLAYVALDFEQEMDASAKSSTVERSYELPDGQVITLGSERF RCPEVLFQPSFMGMETVGIHEMIYNSVTKCDIDLRRELYHNIVLSGGTTMFPGIADRL HKELESVAPASNKIKIIAPPERKYSVWIGGSILGSLSTFQQMWITKQEY"

BASE COUNT 217 a 201 c 197 g 188 t

ORIGIN

1 gtggcacccg aagagcaccc cgtattattg acagaagctc cactgaaccc caaggctaac 61 cgtgagaaaa tgacccagat tatgttcgag actttcaact caccagcttt ttacgtcagt 121 atccaggcgg tacttgctct gtacgcttca gggaggacaa cgggcgtggt gctggacgcg 181 ggagacgggg tcactcatat cattccaata tacgagggct acgccctgcc ccacgctatt 241 gaaaagatga acctggccgg ccgcgaccta actggctatc tgaagcgaat tcttcatgag 301 cgaggctaca actttgattc gtcctcggag accgaaatag tgcgagatgt gaaggaaaag 361 ctggcttacg tcgctctgga ctttgaacag gagatggacg catcggccaa gtcgtcaact 421 gtcgagagat cttacgaact acccgatggt caagtgatta ctttgggctc cgaacgattc 481 aggtgccccg aggtcttatt tcagccgtct ttcatgggaa tggaaaccgt gggaatccac 541 gaaatgatct acaactctgt taccaaatgt gacattgatc tcagaagag attgtaccac 601 aacatcgtcc tttctggcgg aacaacaatg ttcccaggta tagctgatcg gttacataaa 661 gagctggaat ccgttgctcc agccagtaac aagatcaaaa tcattgcccc tcccgaacgc 721 aaatactctg tttggattgg aggatctatc ctgggatct tgtcaacctt ccagcagatg 781 tggatcacca aacaagagta tga

//

LOCUS OK074004 803 bp linear INV 05-SEP-2021 DNA DEFINITION Chromodoris willani actin isoform, partial CDS. ACCESSION OK074004 SOURCE Chromodoris willani ORGANISM Chromodoris willani Eukaryota; Metazoa; Spiralia; Lophotrochozoa; Mollusca; Gastropoda; Heterobranchia; Euthyneura; Nudipleura; Nudibranchia; Doridina; Eudoridoidea; Chromodorididae; Chromodoris. REFERENCE 1 (bases 1 to 803) AUTHORS Hertzer, C., Undap, N., Bhandari, D.R., Spengler, B., Aatz, S., Franken, S., Haeberlein, H., Kehraus, S., Kaligis, F., Bara, R., Ijong, F.G., Schaeberle, T.F., Waegele, H. and Koenig, G.M. TITLE Protection From Self-Intoxication: A Novel Actin Isoform in Chromodoris Nudibranchs Supports Sequestration and Storage of the Cytotoxin Latrunculin A JOURNAL Unpublished REFERENCE 2 (bases 1 to 803) AUTHORS Hertzer, C. and Undap, N. TITLE Direct Submission JOURNAL Submitted (05-SEP-2021) Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, Bonn, NRW 53115, Germany Location/Qualifiers FEATURES 1..803 source /organism="Chromodoris willani" /mol type="genomic DNA" /db xref="taxon:508140" <1..>803 CDS /codon start=1 /product="actin" /translation="VAPEEHPVLLTEAPLNPKANREKMTQIMFETFNSPAFYVSIQAV LALYASGRTTGVVLDAGDGVTHIIPIYEGYALPHAIEKMNLAGRDLTGYLKRILHERG

YNFDSSSETEIVRDVKEKLAYVALDFEQEMDASAKSSTVERSYELPDGQVITLGSERF RCPEVLFQPSFIGMETVGIHEMIYNSVTKCDIDLRRELYHNIVLSGGTTMFPGIADRL HKELESVAPASNKIKIIAPPERKYSVWIGGSILGSLSTFQQMWITKQEY"

BASE COUNT 215 a 202 c 198 g 188 t

ORIGIN

1 gtggcacccg aagagcaccc cgtattattg acagaagctc cactgaaccc caaggccaac 61 cgtgagaaaa tgacccagat tatgttcgag actttcaact cgccagcttt ttacgtcagt 121 atccaggcgg tacttgctct gtacgcttca gggaggacaa cgggcgtggt gctggacgcg 181 ggagacgggg ttactcatat cattccaata tacgagggct acgccctgcc ccatgctatt 241 gaaaagatga acctggccgg ccgcgaccta actggctatc tgaagcgaat tctccatgag 301 cgaggctaca actttgattc gtcctcggag accgaaatag tgcgagatgt gaaggaaaag 361 ctggcttacg tcgctctgga ctttgaacag gagatggacg catcggccaa gtcgtcaact 421 gtcgagagat cttacgaact acccgatggc caagtgatta ctttgggctc cgaacgcttc 481 aggtgccccg aggttttatt tcagccgtct ttcataggaa tggaaaccgt ggggatccac 541 gaaatgatct acaactctgt taccaaatgt gacattgatc tcagaagaga attgtaccac 601 aacatcgtcc tttctggcgg aacaacaatg ttcccaggta tagctgatcg gttacataaa 661 gagctggaat ccgttgctcc agccagtaac aagatcaaaa tcattgcccc tcccgaacgc 721 aaatactctg tttggattgg aggatctatc ctgggatct tgcaacctt ccagcagatg 781 tggatcacca aacaagagta tga

//

LOCUS OK074005 803 bp DNA linear INV 05-SEP-2021 DEFINITION Elysia viridis actin isoform, partial CDS. ACCESSION OK074005 SOURCE Elysia viridis ORGANISM Elysia viridis Eukaryota; Metazoa; Spiralia; Lophotrochozoa; Mollusca; Gastropoda; Heterobranchia; Euthyneura; Panpulmonata; Sacoglossa; Placobranchoidea; Plakobranchidae; Elysia. REFERENCE 1 (bases 1 to 803) AUTHORS Hertzer, C., Undap, N., Bhandari, D.R., Spengler, B., Aatz, S., Franken, S., Haeberlein, H., Kehraus, S., Kaligis, F., Bara, R., Ijong, F.G., Schaeberle, T.F., Waegele, H. and Koenig, G.M. TITLE Protection From Self-Intoxication: A Novel Actin Isoform in Chromodoris Nudibranchs Supports Sequestration and Storage of the Cytotoxin Latrunculin A JOURNAL Unpublished REFERENCE 2 (bases 1 to 803) AUTHORS Hertzer, C. and Undap, N. TITLE Direct Submission JOURNAL Submitted (05-SEP-2021) Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, Bonn, NRW 53115, Germany Location/Qualifiers FEATURES 1..803 source /organism="Elysia viridis" /mol type="genomic DNA" /db xref="taxon:71494" <1..>803 CDS /codon start=1 /product="actin" /translation="VAPEEHPVLLTEAPLNPKANREKMTQIMFETFNTPAMYVAIQAV LSLYASGRTTGIVLDSGDGVSHTVPIYEGYALPHAILRLDLAGRDLTDYLMKILTERG

YSFTTTAEREIVRDIKEKLCYVALDFEQEMQTAATSSSLEKSYELPDGQVITIGNERF RCPEAVFQPSFLGMESAGIHETTYNSIMKCDVDIRKDLYANTVVSGGSTMFPGIADRM QKEISSLAPPTMKIKIIAPPERKYSVWIGGSILASLSTFQQMWISKQEY"

BASE COUNT 185 a 254 c 190 g 174 t

ORIGIN

1 gtggccccg aggagcaccc agtcttgctc acagaggctc ccctcaaccc caaagccaac 61 agagagaaga tgacacagat catgttcgaa accttcaaca cacccgccat gtacgtcgcc 121 atccaggetg tgetgteeet gtacgeetet ggtegtacca etggtattgt getegaetet 181 ggtgatggtg ttteceacae tgteeceate taegagggat atgeeettee ecaegeaga 241 etgaggttgg acttggeegg eegtgaeete acagattaee teatgaagat eeteacagag 301 aggggetaet eetteacaae eacagetgag agggagattg teegtgaeat eaaggagaag 361 etgtgetaeg tegeeetega ettegageag gagatgeaga eagetgeeae ateeteete 421 etgaggaaga getaegaget teeegaegg eaggteatea ecateggeaa egagegttte 481 aggtgeeetg aageagtgtt eeageeatee tteetgggta tggaatetge tggeateeae 541 gagaeeaeet acaaeteeat eatgaagtg gatgtggaea teegtaagga teeteaege 601 aacaeggttg tgtetggtgg etceaceatg ttteeaggea tegetaeeg tatgeagaaa 661 gaaateteat eettggeaee teeeaetg aagateaaga teategetee eeetgaegg 721 aaataetetg tetggategg aggeteaate ettgeeteee tgteeaeett ecaaeagatg 781 tggateteea ageaagagta ega

//

803 bp linear LOCUS Armina tigrina mRNA DEFINITION Armina tigrina actin isoform, partial CDS. ACCESSION not yet submitted to GenBank SOURCE Armina tigrina ORGANISM Armina tigrina Eukaryota; Metazoa; Spiralia; Lophotrochozoa; Mollusca; Gastropoda; Heterobranchia; Euthyneura; Nudipleura; Nudibranchia; Cladobranchia; Arminoidea; Arminidae; Armina FEATURES Location/Qualifiers source 1..803 /organism="Armina tigrina" /mol type="mRNA" CDS <1..>803 /codon start=1 /product="actin" /translation="VAPEEHPVLLTEAPLNPKANREKMTQIMFETFNAPAMYVAIQAV LSLYASGRTTGIVLDSGDGVTHTVPIYEGYALPHAILRLDLAGRDLTDYLMKILTERG YSFTTTAEREIVRDIKEKLCYVALDFEQEMATAASSSSLEKSYELPDGQVITIGNERF RCPESLFQPSFLGMESAGIHETTYNSIMKCDVDIRKDLYANTVLSGGTTMFPGIADRM QKEITSLAPSTMKIKIIAPPERKYSVWIGGSILASLSTFQQMWISKQEY" BASE COUNT 185 a 254 t 190 g 174 c ORIGIN 1 gttgcacccg aggagcaccc cgtcctcctg acagaggccc cccttaaccc caaagccaac 61 agagaaaaga tgacccagat catgttcgag accttcaacg cccccgccat gtacgtcgcc 121 atccaageeg tgeteteeet gtatgettee ggtegtacea eaggtategt eetegaetee 181 ggtgacggtg tcacccacac tgtccccatc tacgagggtt acgetetece ccatgccatc 241 ctccgtcttg acttggccgg cagagatctt actgattacc tcatgaagat cctgactgag 301 agaggttact cattcaccac caccgccgag agagagattg tccgtgacat caaggagaag

361 ctctgctacg tcgccttgga cttcgagcag gagatggcca ccgccgcctc ctcctccc 421 ctggagaaga gctacgagct tcccgacgga caggtcatca ccatcggaaa cgaaagattc 481 aggtgccccg agtctctctt ccagccatcc ttcttgggta tggaatctgc cggtatccat

541 gaaaccacat acaactecat catgaagtge gaegtegaca teegtaagga tetgtaegee 601 aacaetgtet tgteeggagg taecaacatg tteeetggta ttgeegateg tatgeagaag 661 gaaateaeet eeetggeeee aageaeeatg aagateaaga teattgetee teeegagagg 721 aaataeteeg tatggategg tggeteeate ttggeetete tgteeaeett eeaacagatg 781 tggateteea aacaggaata ega //

Embletonia pulchra 803 bp mRNA LOCUS linear DEFINITION Embletonia pulchra actin isoform, partial CDS. ACCESSION not yet submitted to GenBank SOURCE Embletonia pulchra ORGANISM Ebletonia pulchra Eukaryota; Metazoa; Spiralia; Lophotrochozoa; Mollusca; Gastropoda; Heterobranchia; Euthyneura; Nudipleura; Nudibranchia; Cladobranchia; Fionoidea; Embletoniidae; Embletonia FEATURES Location/Qualifiers source 1..803 /organism="Embletonia pulchra" /mol type="mRNA" <1..>803 CDS /codon start=1 /product="actin" /translation="VAPEEHPVLLTEAPLNPKANREKMTQIMFETFNTPAMYVAIQAV LSLYASGRTTGIVLDSGDGVTHTVPIYEGYALPHAIIRLDLAGRDLTDYLMKILTERG YSFTTTAEREIVRDIKEKLCYVALDFEQEMQTAATSSSLEKSYELPDGQVITIGNERF RTPEAMFQPSFLGMESSGVHETTYNSIMKCDVDIRKDLYANTVLSGGTTMFPGIADRM QKEISALAPPTMKIKIIAPPERKYSVWIGGSILASLSTFQQMWISKQEY" BASE COUNT 185 a 254 t 190 g 174 c

## ORIGIN

1 gttgccccg aagagcaccc cgtccttct acagaggct ccctcaaccc caaagccaac 61 agggaaaaga tgacccagat catgttcgaa accttcaaca ccccagccat gtacgtcgcc 121 atccaggctg tgctctctt gtacgcctct ggacgtacca ccggaattgt cctcgattcc 181 ggagatggtg tcacccacac cgtccccatc tacgagggat atgcccttcc ccacgccatc 241 atccgtcttg atcttgctgg ccgtgacctc acagactacc tcatgaagat cctcactgag 301 agaggttact ctttcaccac caccgctgag agagaaatcg tccgtgacat caaggagaag 361 ctctgctacg ttgccctcga cttcgacgga caagtcatca ccatcggaaa cgagcgcttc 481 aggacccccg aggccatgtt ccagccatc ttcctcggaa tggaatcctc tggcgtccac 541 gagaccacct acaactccat catgaagtg gacgtcgaa tccgtaaaga cttgtacgcc 601 aacactgtct tgtccggagg caccaccatg ttcccggaa ttgctgaccg tatgcagaaa 661 gaaatctccg ccctcgccc accaaccatg aagatcaaga tcattgccc accagagcgt 721 aaatactccg tatggatcg aggctccatc ttggcttcc tcccacctt ccaacagatg 781 tggatctcca aacaagaata cga

//

LOCUS 803 bp Flabellina affinis mRNA linear DEFINITION Flabellina affinis actin isoform, partial CDS. ACCESSION not yet submitted to GenBank Flabellina affinis SOURCE ORGANISM Flabellina affinis Eukaryota; Metazoa; Spiralia; Lophotrochozoa; Mollusca; Gastropoda; Heterobranchia; Euthyneura; Nudipleura; Nudibranchia; Cladobranchia; Flabellinoidea; Flabellinidae; Flabellina Location/Qualifiers FEATURES source 1..803 /organism="Flabellina affinis" /mol type="mRNA" CDS <1..>803

/codon start=1

/product="actin"

/translation=" VAPEEHPVLLTEAPLNPKANREKMTQIMFETFNTPAMYVAIQAV LSLYASGRTTGIVLDSGDGVSHTVPIYEGYALPHAIMRLDLAGRDLTDYLMKILTERG YSFTTTAEREIVRDIKEKLSYVALDFEQEMQTAASSSSLEKSYELPDGQVITIGNERF RCPETMFQPSFIGMESSGIHETTYNSIMKCDVDIRKDLYANTVLSGGSTMFPGIADRM QKEISALAPPTMKIKIIAPPERKYSVWIGGSILASLSTFQQMWISKQEY"

BASE COUNT 185 a 254 t 190 g 174 t

ORIGIN

1 gttgccccg aagagcaccc cgtccttctc acagaggctc ccctcaaccc caaagccaac 61 agagaaaaga tgacccagat catgtttgaa accttcaaca ccccagccat gtacgtcgcc 121 atccaggctg tgctttccct gtacgcctct ggacgtacca ccggaatcgt tcttgactct 181 ggtgatggtg tctcccacac tgtccccatc tacgagggtt atgcccttcc ccacgccatc 241 atgaggttag acttggccgg ccgtgacctt accgattacc tcatgaagat cctcactgag 301 agaggctact cattcaccac caccgccgag agagaaatcg tccgtgacat caaggaaaag 361 ctcagctacg tcgcccttga cttcgaacag gaaatgcaga ctgctgcttc ttcatcctcc 421 atgaaggtag gctacgaatt gcctgacaga caggtcatca ccatcggaaa cgagcgtttc 481 agatgccccg agaccatgtt ccagccatce ttcattggaa tggaatcttc tggtatccac 541 gaaaccacct acaactccat catgaagtgt gacgttgaca tccgtaagga cttgtacgcc 601 aacaccgtct tgtccggtgg atctaccatg ttccccggta ttgctgacag 661 gaaatcagtg cccttgccc accaaccatg agatcaaga tcattgcccc accagagcgt 721 aaatactccg tatggatcgg tggctccatc ctcgcctct tgtccacctt ccaacagatg 781 tggatctcga aacaggaata cga

//

Table S3.11 List of further Heterobranchia actin sequences obtained during this thesis. Transcriptomic data for *Hypselodoris emma* was kindly provided by A. Donath.

| LOCUS      | Caloria_elegans_iso1 803 bp mRNA                                  |
|------------|-------------------------------------------------------------------|
| DEFINITION | Caloria elegans actin isoform 1, partial CDS.                     |
| ACCESSION  | not yet submitted to GenBank                                      |
| SOURCE     | Caloria elegans                                                   |
| ORGANISM   | Caloria elegans                                                   |
|            | Eukaryota; Metazoa; Spiralia; Lophotrochozoa; Mollusca;           |
|            | Gastropoda; Heterobranchia; Euthyneura; Nudipleura; Nudibranchia; |
|            | Cladobranchia; Aeolidioidea; Facelinidae; Caloria                 |
| FEATURES   | Location/Qualifiers                                               |
| source     | 1803                                                              |
|            | /organism="Caloria elegans"                                       |
|            | /mol_type="mRNA"                                                  |
| CDS        | <1>803                                                            |
|            | /codon_start=1                                                    |
|            | /product="actin"                                                  |
|            |                                                                   |

/translation="VAPEEHPVLLTEAPLNPKANREKMTQIMFETFNTPAMYVAIQAVLSLYAS GRTTGIVLDSGDGVTHTVPIYEGYALPHAIMRLDLAGRDLTDYLMKILTE RGYSFTTTAEREIVRDIKEKLCYVALDFEQEMATAATSSSLEKSYELPDG QVITIGNERFRCPESLFQPSFLGMESAGIHETTYNSIMKCDVDIRKDLYA NTVLSGGSTMYPGIADRMQKEITALAPPTMKIKIIAPPERKYSVWIGGSI LASLSTFQQMWISKQEY"

## ORIGIN

1GTTGCCCCCGAAGAGCACCCCGTCCTTCTCACAGAGGCTCCCCTCAACCCCAAAGCCAAC61AGAGAAAAGATGACCCAGATCATGTTGAAACCTTCAACACCCCAGCTATGTACGTCGCC121ATCCAGGCTGTGCTTTCTCTGTACGCCTCTGGTCGTACCACCGGTATTGTCCTCGACTCT181GGTGATGGTGTCACCCACACTGTCCCCACCTACGAAGGTTATGCCCTCCCCCACGCCATC241ATGAGGTTGGATTTGGCTGGTCGAGATCCACAGATTACCTCATGAAGATCCTCACTGAG301AGAGGATACTCTTTCACCACCACAGCTGAGAGAGAAATCGTCCGTGACATCAAGGAGAAAA361CTCTGCTACGTCGCCCCGACCTTCGAACAGGAAATGGCCACCATCGGAAACGAGAGATTC421CTGGAGAAGAGCTACGAGCTTCCCGACGGTCAAGTCATCACCATCGGAAACGAGAGATTC481CGTTGCCCCGAGTCTCTCTCCAGCCATCTTCTTGGGTATCGGTAAGGACTTGTACGCC541GAAACCACCTACAACTCCATCATGAAGTGGACGTCGACATCCGTAAGACTTGTACGCC

601 AACACCGTCC TGTCTGGTGG CTCCACCATG TACCCGGTA TTGCTGACCG TATGCAGAAG
661 GAAATCACCG CCCTTGCCCC ACCCACCATG AAGATCAAGA TCATTGCTCC ACCAGAGCGT
721 AAATACTCCG TATGGATCGG AGGCTCCATC CTTGCATCCC TCTCCACCTT CCAACAGATG
781 TGGATCTCCA AGCAAGAGTA CGA

//

```
Caloria_elegans_iso2 803 bp
LOCUS
                                           mRNA
DEFINITION Caloria elegans actin isoform 2, partial CDS.
ACCESSION not yet submitted to GenBank
SOURCE
          Caloria elegans
  ORGANISM Caloria elegans
            Eukaryota; Metazoa; Spiralia; Lophotrochozoa; Mollusca;
             Gastropoda; Heterobranchia; Euthyneura; Nudipleura; Nudibranchia;
             Cladobranchia; Aeolidioidea; Facelinidae; Caloria
                    Location/Qualifiers
FEATURES
                    1..803
     source
                    /organism="Caloria elegans"
                     /mol_type="mRNA"
     CDS
                    <1..>803
                     /codon start=1
                     /product="actin"
              /translation="VAPEEHPVLLTEAPLNPKANREKMTQIMFETFNTPAMYVAIQAVLSLYAS
                   GRTTGIVLDSGDGVTHTVPIYEGYALPHAIMRLDLAGRDLTDYLMKILTE
                   RGYSFTTSAEREIVRDIKEKLCYVALDFENEMQTAASSSSLEKSYELPDG
```

QVITIGNERFRCPEALFQPNFLGMETVGVHETTYNSIMKCDVDIRKDLYA NTVLSGGSTMYPGIADRMQKEITALAPPTMKIKIIAPPERKYSVWIGGSI LASLSTFQQMWISKQEY"

ORIGIN

| 1   | GTTGCCCCCG | AAGAGCACCC | CGTCCTTCTC | ACAGAGGCTC | CCCTCAACCC | CAAAGCCAAC |
|-----|------------|------------|------------|------------|------------|------------|
| 61  | AGAGAAAAGA | TGACCCAGAT | CATGTTTGAA | ACCTTCAACA | CCCCAGCTAT | GTACGTCGCC |
| 121 | ATCCAGGCTG | TGCTTTCTCT | GTACGCCTCT | GGTCGTACCA | CCGGTATTGT | CCTCGACTCT |
| 181 | GGTGATGGTG | TCACCCACAC | TGTCCCCATC | TACGAAGGTT | ATGCCCTCCC | CCACGCCATC |
| 241 | ATGAGGTTGG | ATTTGGCTGG | TCGAGATCTC | ACAGATTACC | TCATGAAGAT | CCTCACTGAG |
| 301 | AGAGGATACT | CTTTCACCAC | CTCAGCTGAG | AGAGAAATCG | TCCGTGACAT | CAAGGAGAAA |
| 361 | CTCTGCTACG | TCGCTCTTGA | CTTTGAAAAC | GAAATGCAGA | CAGCTGCATC | ATCATCCTCT |
| 421 | CTGGAGAAGA | GCTACGAATT | GCCTGATGGA | CAGGTCATCA | CCATTGGAAA | CGAGCGTTTC |
| 481 | AGGTGCCCCG | AGGCTCTCTT | CCAGCCCAAC | TTCTTGGGAA | TGGAAACTGT | TGGAGTCCAC |
| 541 | GAGACCACAT | ACAACTCTAT | CATGAAGTGT | GACGTCGACA | TCCGTAAAGA | CTTGTACGCC |
| 601 | AACACCGTCC | TGTCTGGTGG | CTCCACCATG | TACCCCGGTA | TTGCTGACCG | TATGCAGAAG |
| 661 | GAAATCACCG | CCCTTGCCCC | ACCCACCATG | AAGATCAAGA | TCATTGCTCC | ACCAGAGCGT |
| 721 | AAATACTCCG | TATGGATCGG | AGGCTCCATC | CTTGCATCCC | TCTCCACCTT | CCAACAGATG |
| 781 | TGGATCTCCA | AACAAGAATA | CGA        |            |            |            |

| LOCUS      | Caloria_indica_(ZFMKDNAFD02298395) 803 bp DNA                     |   |  |  |  |  |  |  |  |  |  |  |
|------------|-------------------------------------------------------------------|---|--|--|--|--|--|--|--|--|--|--|
| DEFINITION | Caloria_indica_(ZFMKDNAFD02298395) actin, partial CDS             |   |  |  |  |  |  |  |  |  |  |  |
| ACCESSION  | not yet submitted to GenBank                                      |   |  |  |  |  |  |  |  |  |  |  |
| SOURCE     | Caloria indica                                                    |   |  |  |  |  |  |  |  |  |  |  |
| ORGANISM   | Caloria indica                                                    |   |  |  |  |  |  |  |  |  |  |  |
|            | Eukaryota; Metazoa; Spiralia; Lophotrochozoa; Mollusca;           |   |  |  |  |  |  |  |  |  |  |  |
|            | Gastropoda; Heterobranchia; Euthyneura; Nudipleura; Nudibranchia; |   |  |  |  |  |  |  |  |  |  |  |
|            | Cladobranchia; Aeolidioidea; Facelinidae; Caloria                 |   |  |  |  |  |  |  |  |  |  |  |
| FEATURES   | Location/Qualifiers                                               |   |  |  |  |  |  |  |  |  |  |  |
| sourc      | 1803                                                              |   |  |  |  |  |  |  |  |  |  |  |
|            | /organism="Caloria indica"                                        |   |  |  |  |  |  |  |  |  |  |  |
|            | /mol_type="genomic DNA"                                           |   |  |  |  |  |  |  |  |  |  |  |
| CDS        | <1>803                                                            |   |  |  |  |  |  |  |  |  |  |  |
|            | /codon_start=1                                                    |   |  |  |  |  |  |  |  |  |  |  |
|            | /product="actin"                                                  |   |  |  |  |  |  |  |  |  |  |  |
|            | /translation="VAHEQHPVLLTEAPLNPKANREKMTQIMFESFNAPAFYVGIQAVLALYAS  | ; |  |  |  |  |  |  |  |  |  |  |
|            | GRTTGIVMDSGDGVTHAVPIYEGYALPHAIMRLDLAGRDLTDYLMKILTE                |   |  |  |  |  |  |  |  |  |  |  |
|            | RGYSFATTAEREIVRDIKENLCYTALDFESEMDTAATSSALEKCYELPDG                |   |  |  |  |  |  |  |  |  |  |  |
|            | QIITIGNESFRRPEALFQPSFLGMEIPGVHEMLYNSIMKCDMDIRKDMYA                |   |  |  |  |  |  |  |  |  |  |  |
|            | ATVLSGGTTLFSGMADRLQKEMSALAPPSNKVKVIAPPERKYSVWIGRSI                |   |  |  |  |  |  |  |  |  |  |  |
|            | LASLSTFQQMWISKQEY"                                                |   |  |  |  |  |  |  |  |  |  |  |
| ORIGIN     |                                                                   |   |  |  |  |  |  |  |  |  |  |  |
| 1          | TGGCCCATG AGCAGCACCC TGTTCTTCTA ACGGAAGCTC CTCTGAACCC GAAAGCAAAC  |   |  |  |  |  |  |  |  |  |  |  |
| 61         | GCGAGAAGA TGACCCAAAT CATGTTCGAA TCTTTCAACG CCCCGGCTTT CTACGTGGGG  |   |  |  |  |  |  |  |  |  |  |  |
| 121        | TTCAGGCAG TTCTGGCTCT GTATGCATCT GGTCGTACGA CAGGAATCGT CATGGACTCT  |   |  |  |  |  |  |  |  |  |  |  |
| 181        | GAGACGGAG TGACGCACGC CGTGCCCATC TACGAAGGTT ACGCCCTCCC CCACGCCATC  |   |  |  |  |  |  |  |  |  |  |  |
| 241        | TGAGGTTGG ATCTGGCTGG CCGTGATCTC ACCGATTACC TTATGAAAAT CCTCACTGAG  |   |  |  |  |  |  |  |  |  |  |  |
| 301        | GAGGATACT CTTTCGCCAC CACCGCCGAG CGCGAGATTG TGCGAGACAT CAAAGAGAAC  |   |  |  |  |  |  |  |  |  |  |  |
| 361        | TCTGCTACA CCGCGCTTGA TTTTGAGTCG GAAATGGACA CTGCCGCCAC CTCATCCGCC  |   |  |  |  |  |  |  |  |  |  |  |
| 421        | TCGAAAAAT GTTACGAGCT GCCGGACGGC CAGATTATCA CCATTGGAAA CGAGAGTTTC  |   |  |  |  |  |  |  |  |  |  |  |
| 481        | GACGCCCCG AGGCTCTGTT CCAGCCGTCT TTCTTGGGAA TGGAGATTCC AGGGGTCCAT  |   |  |  |  |  |  |  |  |  |  |  |
| 541        | AAATGCTGT ACAACTCCAT CATGAAGTGT GACATGGATA TAAGGAAGGA TATGTATGCC  |   |  |  |  |  |  |  |  |  |  |  |
| 601        | CCACTGTTC TTTCAGGGGG CACCACTCTC TTCTCTGGCA TGGCTGACAG GTTGCAAAAA  |   |  |  |  |  |  |  |  |  |  |  |
| 661        | AGATGTCTG CCTTGGCACC TCCTTCTAAC AAGGTCAAGG TCATTGCCCC ACCGGAGAGG  |   |  |  |  |  |  |  |  |  |  |  |
| 721        | AATACTCGG TGTGGATCGG CCGGTCCATC CTTGCATCCC TCTCCACCTT CCAACAGATG  |   |  |  |  |  |  |  |  |  |  |  |

781 TGGATCTCCA AGCAAGAGTA CGA

LOCUS Ceratosoma sp 1 (Cesp1 17Bu1/NU344) 755 bp DNA DEFINITION Ceratosoma sp. 1 (Cesp1 17Bu1/NU344) actin, partial CDS ACCESSION not yet submitted to GenBank SOURCE Ceratosoma sp.1 ORGANISM Ceratosoma sp.1 Eukaryota; Metazoa; Spiralia; Lophotrochozoa; Mollusca; Gastropoda; Heterobranchia; Euthyneura; Nudipleura; Nudibranchia; Doridina; Chromodoridoidea; Chromodorididae; Ceratosoma FEATURES Location/Qualifiers source 1..755 /organism="Ceratosoma sp.1" /mol type="genomic DNA" CDS <1..>755 /codon\_start=1 /product="actin" /translation="VAPEEHPVLLTEAPLNPKANREKMTQIMFETFNSPAMYVAIQAVLSLYAS GRTTGIVLDSGDGVTHTVPIYEGYALPHAIMRLDLAGRDLTDYLMKILTE RGYSFTTTAEREIVRDIKEKLCYIALDFEQEMQTAATSSSLEKSYELPDG QVITIGNERFRAAEAMLQPSFIGMESAGVHETTYNSIMKCDVDIRKDLYA NTVLSGGSTMYSGIADRMQKEITALAPQTMKIKIIAPPERKYSVWIGGSPL" ORIGIN 1 GTCGCCCCAG AGGAACACCC AGTCCTTCTT ACAGAAGCTC CCCTTAACCC TAAGGCCAAC 61 AGAGAAAAGA TGACTCAAAT TATGTTTGAA ACTTTTAACT CACCGGCTAT GTACGTTGCT 121 ATTCAAGCTG TGCTCTCTCT CTATGCTTCG GGTCGCACAA CGGGTATCGT GCTTGATTCT 181 GGAGATGGTG TTACTCATAC TGTTCCCATC TACGAAGGAT ACGCCCTTCC CCACGCCATC 241 ATGAGACTGG ACTTGGCAGG ACGTGACCTT ACGGATTACC TTATGAAGAT CCTCACGGAG 301 AGAGGCTACA GTTTTACAAC GACAGCTGAG AGGGAAATTG TCCGTGATAT TAAAGAAAAG 361 CTTTGCTATA TTGCTTTGGA CTTCGAGCAA GAAATGCAAA CGGCCGCCAC TTCCTCATCC 421 CTTGAGAAAA GTTACGAACT GCCTGATGGA CAAGTAATCA CCATTGGAAA TGAACGTTTC 481 AGGGCAGCTG AAGCCATGCT GCAACCGTCT TTCATTGGTA TGGAATCTGC TGGTGTTCAT 541 GAAACCACCT ACAACTCTAT CATGAAGTGT GATGTTGATA TCCGTAAAGA CTTGTATGCT 601 AACACTGTCT TGTCTGGAGG TTCCACAATG TACTCTGGTA TTGCTGACCG CATGCAAAAG 661 GAGATAACAG CTTTAGCTCC TCAGACCATG AAGATCAAAA TCATTGCGCC TCCAGAACGT 721 AAGTATTCTG TATGGATCGG AGGTTCTCCG CTCCC //

| LOCUS      | Doriprisma                                                          | atica_atron | marginata_1_ | _(Doat17Ba1, | /NU379) 8    | 803 bp     | DNA   |  |  |  |
|------------|---------------------------------------------------------------------|-------------|--------------|--------------|--------------|------------|-------|--|--|--|
| DEFINITION | Doriprismatica atromarginata_1_(Doat17Ba1/NU379) actin, partial CDS |             |              |              |              |            |       |  |  |  |
| ACCESSION  | ACCESSION not yet submitted to GenBank                              |             |              |              |              |            |       |  |  |  |
| SOURCE     | DURCE Doriprismatica atromarginata                                  |             |              |              |              |            |       |  |  |  |
| ORGANISN   | ISM Doriprismatica atromarginata                                    |             |              |              |              |            |       |  |  |  |
|            | Eukaryota; Metazoa; Spiralia; Lophotrochozoa; Mollusca;             |             |              |              |              |            |       |  |  |  |
|            | Gastropo                                                            | da; Heterok | oranchia; Eu | uthyneura; 1 | Nudipleura;  | Nudibran   | chia; |  |  |  |
|            | Doridina                                                            | ; Chromodo  | ridoidea; Ch | hromodoridio | dae; Doripr  | ismatica   |       |  |  |  |
| FEATURES   | 1                                                                   | Location/Qu | alifiers     |              |              |            |       |  |  |  |
| sourc      | ce :                                                                | 1803        |              |              |              |            |       |  |  |  |
|            | ,                                                                   | /organism=' | 'Doriprismat | tica atroman | rginata"     |            |       |  |  |  |
|            | ,                                                                   | /mol_type=' | 'genomic DNA | <i>7</i>     |              |            |       |  |  |  |
| CDS        |                                                                     | <1>803      |              |              |              |            |       |  |  |  |
|            | ,                                                                   | /codon_star | rt=1         |              |              |            |       |  |  |  |
|            | ,                                                                   | /product="a | actin"       |              |              |            |       |  |  |  |
|            | /transl                                                             | ation="VAPH | EEHPILLTEAPI | LNPKSNREKMT  | QILFETFNAPA  | FYVSIQAVLA | ALYAS |  |  |  |
|            | GF                                                                  | RTTGVVLDAGD | GVTHIIPIYEG  | GYALPHAIEKMN | ILAGRDLTGYLK | KRILHE     |       |  |  |  |
|            | RG                                                                  | GYNFDSSSETE | IVRDVKEKLAY  | VALDFEQEIDV  | AAKSSTIEKSY  | ELPDG      |       |  |  |  |
|            | QV                                                                  | /ITVGSERFRC | PEVLFQPSFTG  | METVGIHEMIY  | NSITKCDIDLF  | RKELYY     |       |  |  |  |
|            | NI                                                                  | IVLSGGTTMFP | GIADRLHKELE  | SLAPASNKIKI  | IAPPERKYSVW  | IIGGSI     |       |  |  |  |
|            | LG                                                                  | GSLTTFQQMWI | NKQEY"       |              |              |            |       |  |  |  |
| ORIGIN     |                                                                     |             |              |              |              |            |       |  |  |  |
| 1          | GTGGCACCCG                                                          | AAGAACACCC  | CATCTTATTG   | ACAGAAGCTC   | CCTTAAACCC   | GAAGTCCAA  | 7C    |  |  |  |
| 61         | CGTGAGAAAA                                                          | TGACCCAAAT  | TTTGTTCGAG   | ACATTCAATG   | CACCAGCTTT   | TTATGTCAG  | ЭС    |  |  |  |
| 121        | ATCCAGGCCG                                                          | TACTTGCTTT  | GTACGCTTCA   | GGGAGGACGA   | CAGGTGTCGT   | GTTGGACG   | CA    |  |  |  |
| 181        | GGAGACGGGG                                                          | TCACTCATAT  | CATTCCAATA   | TATGAGGGTT   | ATGCTCTTCC   | CCATGCTA   | ГТ    |  |  |  |
| 241        | GAAAAATGA                                                           | ACCTGGCTGG  | ACGGGACCTA   | ACTGGTTATC   | TGAAGCGAAT   | CCTCCATG   | λA    |  |  |  |
| 301        | CGAGGCTATA                                                          | ATTTTGATTC  | TTCTTCGGAG   | ACTGAAATAG   | TGCGAGATGT   | AAAAGAAAA  | ٩G    |  |  |  |
| 361        | TTGGCTTATG                                                          | TTGCTCTTGA  | CTTTGAACAG   | GAGATAGACG   | TAGCAGCCAA   | GTCTTCAAG  | CC    |  |  |  |

781 TGGATCAACA AACAGGAGTA TGA

235

421 ATCGAAAAAT CTTATGAGCT ACCAGATGGT CAAGTGATTA CTGTGGGTTC CGAACGATTC
481 AGGTGTCCTG AGGTTCTATT TCAGCCGTCT TTCACAGGAA TGGAAACCGT GGGCATCCAC
541 GAAATGATCT ACAACTCCAT TACCAAATGT GACATTGATC TCAGAAAAGA ACTCTACTAC
601 AACATTGTCC TATCTGGTGG AACCACCATG TTCCCAGGTA TAGCCGATAG GTTACATAAA
661 GAGCTGGAAT CCTTAGCCCC AGCTAGCAAC AAGATCAAGA TCATTGCCCC TCCCGAACGT
721 AAATACTCAG TTTGGATTGG AGGATCCATC TTGGGGTCTT TGACAACCTT CCAGCAGATG

| LOCUS      | Doriprism                                                           | natica atror | marginata_2_ | _(Doat17Ba2, | /NU380)      | 803 bp I    | ONA  |  |  |
|------------|---------------------------------------------------------------------|--------------|--------------|--------------|--------------|-------------|------|--|--|
| DEFINITION | Doriprismatica atromarginata_2_(Doat17Ba2/NU380) actin, partial CDS |              |              |              |              |             |      |  |  |
| ACCESSION  | CCESSION not yet submitted to GenBank                               |              |              |              |              |             |      |  |  |
| SOURCE     | Doriprismatica atromarginata                                        |              |              |              |              |             |      |  |  |
| ORGANISM   | 1 Doriprism                                                         | natica atror | marginata    |              |              |             |      |  |  |
|            | Eukaryota                                                           | a; Metazoa;  | Spiralia; I  | Cophotrocho  | zoa; Mollus  | ca;         |      |  |  |
|            | Gastropo                                                            | oda; Heterol | oranchia; Eu | uthyneura; 1 | Nudipleura;  | Nudibrancl  | nia; |  |  |
|            | Doridina                                                            | a; Chromodo: | ridoidea; Cl | nromodoridio | dae; Doripr  | ismatica    |      |  |  |
| FEATURES   |                                                                     | Location/Qu  | ualifiers    |              |              |             |      |  |  |
| sourc      | ce                                                                  | 1803         |              |              |              |             |      |  |  |
|            |                                                                     | /organism='  | 'Doriprismat | cica atroma  | rginata"     |             |      |  |  |
|            |                                                                     | /mol_type='  | 'genomic DNA | <i>7</i>     |              |             |      |  |  |
| CDS        |                                                                     | <1>803       |              |              |              |             |      |  |  |
|            |                                                                     | /codon_star  | rt=1         |              |              |             |      |  |  |
|            |                                                                     | /product="a  | actin"       |              |              |             |      |  |  |
|            | /trans]                                                             | lation="VAP  | EEHPILLTEAP  | LNPKSNREKMT  | QILFETFNAPA  | FYVSIQAVLAI | LYAS |  |  |
|            | G                                                                   | RTTGVVLDAGE  | GVTHIIPIYEG  | YALPHAIEKMN  | ILAGRDLTGYLF | KRILHE      |      |  |  |
|            | R                                                                   | GYNFDSSSETE. | IVRDVKEKLAY  | VALDFEQEIDV  | AAKSSTIEKSY  | ELPDG       |      |  |  |
|            | Q                                                                   | VITLGSERFRC  | PEVLFQPSFTG  | METVGIHEMIY  | NSITKCDIDLF  | RKELYY      |      |  |  |
|            | N                                                                   | IVLSGGTTMFF  | GIADRLHKELE  | SLAPASNKIKI  | IAPPERKYSVW  | IIGGSI      |      |  |  |
|            | L                                                                   | GSLSTFQQMWI  | NKQEY"       |              |              |             |      |  |  |
| ORIGIN     |                                                                     |              |              |              |              |             |      |  |  |
| 1          | GTGGCACCCG                                                          | AAGAACACCC   | CATCTTATTG   | ACAGAAGCTC   | CCTTAAACCC   | GAAGTCCAAG  | 2    |  |  |
| 61         | CGTGAGAAAA                                                          | TGACCCAAAT   | TTTGTTCGAG   | ACATTCAATG   | CACCAGCTTT   | TTATGTCAG   | 2    |  |  |
| 121        | ATCCAGGCCG                                                          | TACTTGCTTT   | GTACGCTTCA   | GGGAGGACGA   | CAGGTGTCGT   | GTTGGACGC   | Ŧ    |  |  |
| 181        | GGAGACGGGG                                                          | TCACTCATAT   | CATTCCAATA   | TATGAGGGTT   | ATGCTCTTCC   | CCATGCTAT   | С    |  |  |
| 241        | GAAAAAATGA                                                          | ACCTGGCTGG   | ACGGGACCTA   | ACTGGTTATC   | TGAAGCGAAT   | CCTCCATGA   | 7    |  |  |
| 301        | CGAGGCTATA                                                          | ATTTTGATTC   | TTCTTCGGAG   | ACTGAAATAG   | TGCGAGATGT   | AAAAGAAAAG  | Ĵ    |  |  |
| 361        | TTGGCTTATG                                                          | TTGCTCTTGA   | CTTTGAACAG   | GAGATAGACG   | TAGCAGCCAA   | GTCTTCAACO  | 2    |  |  |

781 TGGATCAACA AACAGGAGTA TGA

421 ATCGAAAAAT CTTATGAGCT ACCAGATGGT CAAGTGATTA CTCTGGGTTC CGAACGATTC
481 AGGTGTCCCG AGGTTCTATT TCAGCCGTCT TTCACAGGAA TGGAAACCGT GGGCATCCAC
541 GAAATGATCT ACAACTCCAT TACCAAATGT GACATTGATC TCAGAAAAGA ACTCTACTAC
601 AACATTGTCC TATCTGGTGG AACCACCATG TTCCCAGGTA TAGCCGATAG GTTACATAAA
661 GAGCTGGAAT CCTTAGCCCC AGCTAGCAAC AAGATCAAGA TCATTGCCCC TCCCGAACGT
721 AAATACTCAG TTTGGATTGG AGGATCCATC TTGGGGTCTT TGTCAACCTT CCAGCAGATG

| LOCUS      | Doriprismatica_sibogae_(Dosi17Ba1/NU381) 803 bp DNA               |  |  |  |  |  |  |  |  |  |
|------------|-------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| DEFINITION | Doriprismatica_sibogae_(Dosi17Ba1/NU381) actin, partial CDS       |  |  |  |  |  |  |  |  |  |
| ACCESSION  | ACCESSION not yet submitted to GenBank                            |  |  |  |  |  |  |  |  |  |
| SOURCE     | RCE Doriprismatica sibogae                                        |  |  |  |  |  |  |  |  |  |
| ORGANISM   | Doriprismatica sibogae                                            |  |  |  |  |  |  |  |  |  |
|            | Eukaryota; Metazoa; Spiralia; Lophotrochozoa; Mollusca;           |  |  |  |  |  |  |  |  |  |
|            | Gastropoda; Heterobranchia; Euthyneura; Nudipleura; Nudibranchia; |  |  |  |  |  |  |  |  |  |
|            | Doridina; Chromodoridoidea; Chromodorididae; Doriprismatica       |  |  |  |  |  |  |  |  |  |
| FEATURES   | Location/Qualifiers                                               |  |  |  |  |  |  |  |  |  |
| sourc      | e 1803                                                            |  |  |  |  |  |  |  |  |  |
|            | /organism="Doriprismatica sibogae"                                |  |  |  |  |  |  |  |  |  |
|            | /mol_type="genomic DNA"                                           |  |  |  |  |  |  |  |  |  |
| CDS        | <1>803                                                            |  |  |  |  |  |  |  |  |  |
|            | /codon_start=1                                                    |  |  |  |  |  |  |  |  |  |
|            | /product="actin"                                                  |  |  |  |  |  |  |  |  |  |
|            | /translation="VAPEEHPILLTEAPLNPKSNREKMTQIFFETFNAPAFYVSIQAVLALYAS  |  |  |  |  |  |  |  |  |  |
|            | GRTTGVVLDAGDGVTHIIPIYEGYALPHAIEKMNLAGRDLTGYLKRILHE                |  |  |  |  |  |  |  |  |  |
|            | RGYNFDSSSETEIVRDVKEKLAYVALDFEQEIDVAAKSSTIEKSYELPDG                |  |  |  |  |  |  |  |  |  |
|            | QVITVGSERFRCPEVLFQPSFTGMETVGIHEMIYNSITKCDIDLRKELYY                |  |  |  |  |  |  |  |  |  |
|            | NIVLSGGTTMFPGIADRLHKELESLAPASNKIKIIAPPERKYSVWIGGSI                |  |  |  |  |  |  |  |  |  |
|            | LGSLSTFQQMWINKQEY"                                                |  |  |  |  |  |  |  |  |  |
| ORIGIN     |                                                                   |  |  |  |  |  |  |  |  |  |
| 1          | GTGGCACCCG AAGAACACCC CATCTTATTG ACAGAAGCTC CCTTAAACCC GAAGTCCAAC |  |  |  |  |  |  |  |  |  |
| 61         | CGTGAGAAAA TGACCCAAAT TTTTTTCGAG ACATTCAATG CACCAGCTTT TTATGTCAGC |  |  |  |  |  |  |  |  |  |
| 121        | ATCCAGGCCG TACTTGCTTT GTACGCTTCA GGGAGGACGA CAGGTGTCGT GTTGGACGCA |  |  |  |  |  |  |  |  |  |
| 181        | GGAGACGGGG TCACTCATAT CATTCCAATA TATGAGGGTT ATGCTCTTCC CCATGCTATT |  |  |  |  |  |  |  |  |  |
| 241        | GAAAAAATGA ACCTGGCTGG ACGGGACCTA ACTGGTTATC TGAAGCGAAT CCTCCATGAA |  |  |  |  |  |  |  |  |  |
| 301        | CGAGGCTATA ATTTTGATTC TTCTTCGGAG ACTGAAATAG TGCGAGATGT AAAAGAAAAG |  |  |  |  |  |  |  |  |  |
| 361        | TTGGCTTATG TTGCTCTTGA CTTTGAACAG GAGATAGACG TAGCAGCCAA GTCTTCAACC |  |  |  |  |  |  |  |  |  |

| 237 |  |
|-----|--|

781 TGGATCAACA AACAGGAGTA TGA

//

421 ATCGAAAAAT CTTATGAGCT ACCAGATGGT CAAGTGATTA CTGTGGGTTC CGAACGATTC
481 AGGTGTCCTG AGGTTCTATT TCAGCCGTCT TTCACAGGAA TGGAAACCGT GGGCATCCAC
541 GAAATGATCT ACAACTCCAT TACCAAATGT GACATTGATC TCAGAAAAGA ACTCTACTAC
601 AACATTGTCC TATCTGGTGG AACCACCATG TTCCCAGGTA TAGCCGATAG GTTACATAAA
661 GAGCTGGAAT CCTTAGCCCC AGCTAGCAAC AAGATCAAGA TCATTGCCCC TCCCGAACGT
721 AAATACTCAG TTTGGATTGG AGGATCCATC TTGGGGTCTT TGTCAACCTT CCAGCAGATG

| LOCUS      | Doriprismatica_stellata_(Dost17Bu3/NU346) 803 bp DNA              |  |  |  |  |  |  |  |  |  |
|------------|-------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| DEFINITION | Doriprismatica_stellata_(Dost17Bu3/NU346) actin, partial CDS      |  |  |  |  |  |  |  |  |  |
| ACCESSION  | ACCESSION not yet submitted to GenBank                            |  |  |  |  |  |  |  |  |  |
| SOURCE     | URCE Doriprismatica stellata                                      |  |  |  |  |  |  |  |  |  |
| ORGANISM   | Doriprismatica stellata                                           |  |  |  |  |  |  |  |  |  |
|            | Eukaryota; Metazoa; Spiralia; Lophotrochozoa; Mollusca;           |  |  |  |  |  |  |  |  |  |
|            | Gastropoda; Heterobranchia; Euthyneura; Nudipleura; Nudibranchia; |  |  |  |  |  |  |  |  |  |
|            | Doridina; Chromodoridoidea; Chromodorididae; Doriprismatica       |  |  |  |  |  |  |  |  |  |
| FEATURES   | Location/Qualifiers                                               |  |  |  |  |  |  |  |  |  |
| sourc      | e 1803                                                            |  |  |  |  |  |  |  |  |  |
|            | /organism="Doriprismatica stellata"                               |  |  |  |  |  |  |  |  |  |
|            | /mol_type="genomic DNA"                                           |  |  |  |  |  |  |  |  |  |
| CDS        | <1>803                                                            |  |  |  |  |  |  |  |  |  |
|            | /codon_start=1                                                    |  |  |  |  |  |  |  |  |  |
|            | /product="actin"                                                  |  |  |  |  |  |  |  |  |  |
|            | /translation="VAPEEHPILLTEAPLNPKSNREKMTQIIFETFNAPAFYVSIQAVLALYAS  |  |  |  |  |  |  |  |  |  |
|            | GRTTGVVLDAGDGVTHIIPIYEGYALPHAIEKMNLAGRDLTGYLKRILHE                |  |  |  |  |  |  |  |  |  |
|            | RGYNFDSSSETEIVRDVKEKLAYVALDFEQEIDVAAKSSTIEKSYELPDG                |  |  |  |  |  |  |  |  |  |
|            | QVITLGSERFRCPEVLFQPSFTGMETVGIHEMIYNSITKCDIDLRKELYY                |  |  |  |  |  |  |  |  |  |
|            | NIVLSGGTTMFPGIADRLHKELESLAPASNKIKIIAPPERKYSVWIGGSI                |  |  |  |  |  |  |  |  |  |
|            | LGSLSTFQQMWINKQEY"                                                |  |  |  |  |  |  |  |  |  |
| ORIGIN     |                                                                   |  |  |  |  |  |  |  |  |  |
| 1          | GTGGCACCCG AAGAACACCC CATCTTATTG ACAGAAGCTC CCTTAAACCC GAAGTCCAAC |  |  |  |  |  |  |  |  |  |
| 61         | CGTGAGAAAA TGACCCAAAT TATTTTCGAG ACATTCAATG CACCAGCTTT TTATGTTAGC |  |  |  |  |  |  |  |  |  |
| 121        | ATTCAGGCCG TACTTGCTTT GTACGCTTCA GGGAGGACGA CAGGTGTCGT GTTGGACGCA |  |  |  |  |  |  |  |  |  |
| 181        | GGAGACGGGG TCACTCATAT CATTCCAATA TATGAGGGTT ATGCTCTTCC CCATGCTATT |  |  |  |  |  |  |  |  |  |
| 241        | GAAAAAATGA ACCTGGCAGG ACGGGACCTA ACTGGTTATC TGAAGCGAAT CCTCCATGAA |  |  |  |  |  |  |  |  |  |
| 301        | CGAGGCTATA ATTTTGATTC TTCTTCGGAG ACTGAAATAG TGCGAGATGT AAAAGAAAAG |  |  |  |  |  |  |  |  |  |

781 TGGATCAACA AACAGGAGTA TGA

| LOCUS                                  | Felimare_tricolor_(F3_provided by C. Greve) 747 bp DNA            |    |  |  |  |  |  |  |  |  |  |
|----------------------------------------|-------------------------------------------------------------------|----|--|--|--|--|--|--|--|--|--|
| DEFINITION                             | N Felimare_tricolor_(F3_provided by C. Greve) actin, partial CDS  |    |  |  |  |  |  |  |  |  |  |
| ACCESSION not yet submitted to GenBank |                                                                   |    |  |  |  |  |  |  |  |  |  |
| SOURCE                                 | Felimare tricolor                                                 |    |  |  |  |  |  |  |  |  |  |
| ORGANISM                               | Felimare tricolor                                                 |    |  |  |  |  |  |  |  |  |  |
|                                        | Eukaryota; Metazoa; Spiralia; Lophotrochozoa; Mollusca;           |    |  |  |  |  |  |  |  |  |  |
|                                        | Gastropoda; Heterobranchia; Euthyneura; Nudipleura; Nudibranchia; |    |  |  |  |  |  |  |  |  |  |
|                                        | Doridina; Chromodoridoidea; Chromodorididae; Felimare             |    |  |  |  |  |  |  |  |  |  |
| FEATURES                               | Location/Qualifiers                                               |    |  |  |  |  |  |  |  |  |  |
| sourc                                  | e 1747                                                            |    |  |  |  |  |  |  |  |  |  |
|                                        | /organism="Felimare tricolor"                                     |    |  |  |  |  |  |  |  |  |  |
|                                        | /mol_type="genomic DNA"                                           |    |  |  |  |  |  |  |  |  |  |
| CDS                                    | <1>747                                                            |    |  |  |  |  |  |  |  |  |  |
|                                        | /codon_start=1                                                    |    |  |  |  |  |  |  |  |  |  |
|                                        | /product="actin"                                                  |    |  |  |  |  |  |  |  |  |  |
|                                        | /translation="VAPEEHPVLLTEAPLNPKANREKMTQIMFETFNSPAMYVAIQAVLSLYA   | .S |  |  |  |  |  |  |  |  |  |
|                                        | GRTTGIVLDSGDGVTHTVPIYEGYALPHAIMRLDLAGRDLTDYLMKILTE                |    |  |  |  |  |  |  |  |  |  |
|                                        | RGYSFTTTAEREIVRDIKEKLCYVALDFEQEMGTAASSSTLEKSYELPDG                |    |  |  |  |  |  |  |  |  |  |
|                                        | QVITIGNERFRTPEAMFQPSFLGMESAGVHETTYNSIMKCDVDIRKDLYA                |    |  |  |  |  |  |  |  |  |  |
|                                        | NTVLSGGSTMYPGIADRMQKEITALAPSTMKIKIIAPPERKYSVWIGGS"                |    |  |  |  |  |  |  |  |  |  |
| ORIGIN                                 |                                                                   |    |  |  |  |  |  |  |  |  |  |
| 1                                      | STTGCCCCAG AGGAACATCC AGTCCTCCTC ACAGAGGCTC CTCTCAACCC TAAAGCCAAT |    |  |  |  |  |  |  |  |  |  |
| 61                                     | AGGGAAAAGA TGACTCAGAT CATGTTTGAA ACCTTCAACT CACCGGCCAT GTACGTGGCT |    |  |  |  |  |  |  |  |  |  |
| 121                                    | ATCCAAGCCG TGCTTTCTCT CTACGCTTCA GGCCGCACCA CGGGTATCGT GCTCGATTCC |    |  |  |  |  |  |  |  |  |  |
| 181                                    | GGGGACGGTG TCACGCACAC AGTCCCCATC TACGAAGGGT ACGCCCTTCC CCACGCAATC |    |  |  |  |  |  |  |  |  |  |
| 241                                    | ATGAGACTGG ATCTGGCGGG ACGCGACCTC ACCGACTACC TCATGAAAAT CCTGACCGAG |    |  |  |  |  |  |  |  |  |  |
| 301                                    | AGAGGTTACA GTTTCACCAC CACCGCGGAG CGAGAGATCG TCCGCGACAT CAAAGAAAAG |    |  |  |  |  |  |  |  |  |  |
| 361                                    | CTCTGCTACG TCGCGCTGGA CTTCGAGCAA GAGATGGGCA CCGCGGCGTC CTCCTCTACC |    |  |  |  |  |  |  |  |  |  |
| 421                                    | TCGAGAAAA GCTACGAGCT TCCGGACGGC CAGGTCATCA CCATCGGCAA CGAGCGTTTC  |    |  |  |  |  |  |  |  |  |  |
| 481                                    | AGAACTCCCG AGGCGATGTT CCAGCCCTCG TTCTTGGGCA TGGAATCGGC GGGCGTCCAC |    |  |  |  |  |  |  |  |  |  |
| 541                                    | GAGACGACGT ACAACTCCAT CATGAAATGC GACGTCGACA TCCGGAAAGA TCTTTACGCC |    |  |  |  |  |  |  |  |  |  |
| 601                                    | AACACGGTTC TCTCCGGCGG ATCCACTATG TATCCGGGCA TCGCGGACCG CATGCAGAAG |    |  |  |  |  |  |  |  |  |  |
| 661                                    | GAGATAACGG CCCTCGCACC CAGTACGATG AAAATCAAGA TCATCGCGCC TCCGGAGCGG |    |  |  |  |  |  |  |  |  |  |
| 721                                    | AAGTACTCGG TCTGGATCGG AGGCTCC                                     |    |  |  |  |  |  |  |  |  |  |

| LOCUS                                  | Felimare_                                                         | _orsinii_1_  | (F1_provided | d by C. Gr | eve)      | 747 k  | p DN    | IA      |  |  |  |
|----------------------------------------|-------------------------------------------------------------------|--------------|--------------|------------|-----------|--------|---------|---------|--|--|--|
| DEFINITION                             | Felimare_                                                         | _orsinii_1_  | (F1_provided | d by C. Gr | eve) act  | in, p  | partial | CDS     |  |  |  |
| ACCESSION not yet submitted to GenBank |                                                                   |              |              |            |           |        |         |         |  |  |  |
| SOURCE                                 | Felimare                                                          | orsinii      |              |            |           |        |         |         |  |  |  |
| ORGANISM                               | I Felimare                                                        | orsinii      |              |            |           |        |         |         |  |  |  |
|                                        | Eukaryota; Metazoa; Spiralia; Lophotrochozoa; Mollusca;           |              |              |            |           |        |         |         |  |  |  |
|                                        | Gastropoda; Heterobranchia; Euthyneura; Nudipleura; Nudibranchia; |              |              |            |           |        |         |         |  |  |  |
|                                        | Doridina                                                          | a; Chromodo  | ridoidea; Ch | nromodorid | lidae; Fe | limar  | ce      |         |  |  |  |
| FEATURES                               |                                                                   | Location/Qu  | alifiers     |            |           |        |         |         |  |  |  |
| sourc                                  | e                                                                 | 1747         |              |            |           |        |         |         |  |  |  |
|                                        |                                                                   | /organism='  | 'Felimare or | rsinii"    |           |        |         |         |  |  |  |
|                                        |                                                                   | /mol_type='  | 'genomic DNA | 7          |           |        |         |         |  |  |  |
| CDS                                    |                                                                   | <1>747       |              |            |           |        |         |         |  |  |  |
|                                        |                                                                   | /codon_star  | rt=1         |            |           |        |         |         |  |  |  |
|                                        |                                                                   | /product="a  | actin"       |            |           |        |         |         |  |  |  |
|                                        | /trans                                                            | lation="VAPH | CEHPVLLTEAPI | LNPKANREKM | ITQIMFETF | 'NSPAN | YVAIQAV | /LSLYAS |  |  |  |
|                                        | G                                                                 | RTTGIVLDSGD  | GVTHTVPIYEG  | YALPHAIMR  | LDLAGRDL  | TDYLM  | KILTE   |         |  |  |  |
|                                        | R                                                                 | GYSFTTTAERE  | IVRDIKEKLCY  | VALDFEQEM  | GTAASSST  | LEKSY  | ELPDG   |         |  |  |  |
|                                        | Q                                                                 | VITIGNERFRI  | PEAMFQPSFLG  | MESAGVHET' | TYNSIMKC  | DVDIR  | KDLYA   |         |  |  |  |
|                                        | N                                                                 | TVLSGGSTMYP  | GIADRMQKEIT  | ALAPSTMKI  | KIIAPPER  | KYSVW  | IGGS"   |         |  |  |  |
| ORIGIN                                 |                                                                   |              |              |            |           |        |         |         |  |  |  |
| 1                                      | GTTGCCCCAG                                                        | AGGAACATCC   | AGTCCTCCTC   | ACAGAGGCT  | C CTCTTA  | ACCC   | TAAAGCC | CAAT    |  |  |  |
| 61                                     | AGGGAAAAGA                                                        | TGACTCAGAT   | CATGTTTGAA   | ACCTTCAAC  | T CACCGG  | CCAT   | GTACGTO | GCT     |  |  |  |
| 121                                    | ATCCAAGCCG                                                        | TGCTTTCTCT   | CTACGCTTCA   | GGCCGCACC  | A CGGGTA  | TCGT   | GCTCGAI | TCC     |  |  |  |
| 181                                    | GGGGACGGTG                                                        | TCACGCACAC   | AGTCCCCATC   | TACGAAGGA  | T ACGCCC  | TTCC   | CCACGCA | ATC     |  |  |  |
| 241                                    | ATGAGACTGG                                                        | ATCTGGCGGG   | ACGCGACCTT   | ACCGACTAC  | C TGATGA  | TAAA.  | CCTGACO | GAG     |  |  |  |
| 301                                    | AGGGGTTACA                                                        | GCTTCACCAC   | CACCGCGGAG   | CGAGAAATC  | G TCCGCG  | ACAT   | CAAAGAA | AAG     |  |  |  |
| 361                                    | CTCTGCTACG                                                        | TTGCGCTGGA   | TTTTGAACAA   | GAGATGGGC  | A CCGCGG  | CGTC   | СТССТСТ | 'ACC    |  |  |  |
| 421                                    | CTCGAGAAAA                                                        | GCTACGAGCT   | TCCCGACGGT   | CAGGTCATC  | A CCATCG  | GCAA   | CGAGCGI | TTC     |  |  |  |
| 481                                    | AGAACTCCCG                                                        | AGGCGATGTT   | CCAGCCCTCG   | TTCTTGGGC  | A TGGAAT  | CGGC   | GGGCGTC | CAC     |  |  |  |
| 541                                    | GAGACGACGT                                                        | ACAACTCCAT   | CATGAAATGC   | GACGTCGAC  | A TCCGGA  | AAGA   | TCTTTAC | GCC     |  |  |  |
| 601                                    | AACACGGTTC                                                        | TCTCCGGCGG   | ATCCACTATG   | TATCCGGGC  | A TCGCGG  | ACCG   | CATGCAG | GAAG    |  |  |  |
| 661                                    | GAGATAACGG                                                        | CCCTCGCACC   | CAGTACGATG   | AAAATCAAG  | A TCATCG  | CGCC   | TCCGGAG | CGG     |  |  |  |
| 721                                    | AAGTACTCGG                                                        | TCTGGATCGG   | AGGCTCA      |            |           |        |         |         |  |  |  |

| LOCUS                                  | Felimare_                                               | _orsinii_2_  | (F2_provided | d by C. Gr | eve) 747      | bp DNA          |  |  |  |  |  |
|----------------------------------------|---------------------------------------------------------|--------------|--------------|------------|---------------|-----------------|--|--|--|--|--|
| DEFINITION                             | Felimare_                                               | _orsinii_2_  | (F2_provided | d by C. Gr | eve) actin,   | partial CDS     |  |  |  |  |  |
| ACCESSION not yet submitted to GenBank |                                                         |              |              |            |               |                 |  |  |  |  |  |
| SOURCE                                 | Felimare                                                | orsinii      |              |            |               |                 |  |  |  |  |  |
| ORGANISM                               | I Felimare                                              | orsinii      |              |            |               |                 |  |  |  |  |  |
|                                        | Eukaryota; Metazoa; Spiralia; Lophotrochozoa; Mollusca; |              |              |            |               |                 |  |  |  |  |  |
|                                        | Gastropo                                                | oda; Heterol | oranchia; Eu | uthyneura; | Nudipleura;   | Nudibranchia;   |  |  |  |  |  |
|                                        | Doridina                                                | a; Chromodo  | ridoidea; Ch | nromodorid | lidae; Felima | are             |  |  |  |  |  |
| FEATURES                               |                                                         | Location/Qu  | alifiers     |            |               |                 |  |  |  |  |  |
| sourc                                  | e                                                       | 1747         |              |            |               |                 |  |  |  |  |  |
|                                        |                                                         | /organism='  | 'Felimare or | rsinii"    |               |                 |  |  |  |  |  |
|                                        |                                                         | /mol_type='  | 'genomic DNA | 7          |               |                 |  |  |  |  |  |
| CDS                                    |                                                         | <1>747       |              |            |               |                 |  |  |  |  |  |
|                                        |                                                         | /codon_star  | rt=1         |            |               |                 |  |  |  |  |  |
|                                        |                                                         | /product="a  | actin"       |            |               |                 |  |  |  |  |  |
|                                        | /trans                                                  | lation="VAPH | CEHPVLLTEAPI | LNPKANREKM | TQIMFETFNSPA  | AMYVAIQAVLSLYAS |  |  |  |  |  |
|                                        | G                                                       | RTTGIVLDSGD  | GVTHTVPIYEG  | YALPHAIMR  | LDLAGRDLTDYL  | MKILTE          |  |  |  |  |  |
|                                        | R                                                       | GYSFTTTAERE  | IVRDIKEKLCY  | VALDFEQEM  | GTAASSSTLEKS  | YELPDG          |  |  |  |  |  |
|                                        | Q                                                       | VITIGNERFRI  | PEAMFQPSFLG  | MESAGVHET  | TYNSIMKCDVDI  | RKDLYA          |  |  |  |  |  |
|                                        | N                                                       | TVLSGGSTMYP  | CISDRMQKEIT  | ALAPSTMKII | KIIAPPERKYSV  | WIGGS"          |  |  |  |  |  |
| ORIGIN                                 |                                                         |              |              |            |               |                 |  |  |  |  |  |
| 1                                      | GTTGCCCCAG                                              | AGGAACATCC   | AGTCCTCCTC   | ACAGAGGCT  | С СТСТТААССС  | C TAAAGCCAAT    |  |  |  |  |  |
| 61                                     | AGGGAAAAGA                                              | TGACTCAGAT   | CATGTTTGAA   | ACCTTCAAC  | T CACCGGCCAT  | GTACGTGGCT      |  |  |  |  |  |
| 121                                    | ATCCAAGCCG                                              | TGCTTTCTCT   | CTACGCTTCA   | GGCCGCACC  | A CGGGTATCGI  | GCTCGATTCC      |  |  |  |  |  |
| 181                                    | GGGGACGGTG                                              | TCACGCACAC   | AGTCCCCATC   | TACGAAGGA  | T ACGCCCTTCC  | CCACGCAATC      |  |  |  |  |  |
| 241                                    | ATGAGACTGG                                              | ATCTGGCGGG   | ACGCGACCTT   | ACCGACTAC  | C TGATGAAAA   | CCTGACGGAG      |  |  |  |  |  |
| 301                                    | AGGGGTTACA                                              | GCTTCACCAC   | CACCGCGGAG   | CGAGAAATC  | G TCCGCGACAI  | CAAAGAAAAG      |  |  |  |  |  |
| 361                                    | CTCTGCTACG                                              | TTGCGCTGGA   | TTTTGAACAA   | GAGATGGGC  | A CCGCGGCGTC  | C CTCCTCTACC    |  |  |  |  |  |
| 421                                    | CTCGAGAAAA                                              | GCTACGAGCT   | TCCCGACGGT   | CAGGTCATC  | A CCATCGGCA   | A CGAGCGTTTC    |  |  |  |  |  |
| 481                                    | AGAACTCCCG                                              | AGGCGATGTT   | CCAGCCCTCG   | TTCTTGGGC  | A TGGAATCGGC  | GGGCGTCCAC      |  |  |  |  |  |
| 541                                    | GAGACGACGT                                              | ACAACTCCAT   | CATGAAATGC   | GACGTCGAC  | A TCCGGAAAGA  | A TCTTTACGCC    |  |  |  |  |  |
| 601                                    | AACACGGTTC                                              | TCTCCGGCGG   | ATCCACTATG   | TATCCGTGC  | A TCTCGGACCO  | G CATGCAGAAG    |  |  |  |  |  |
| 661                                    | GAGATAACGG                                              | CCCTCGCACC   | CAGTACGATG   | AAAATCAAG  | A TCATCGCGCC  | C TCCGGAGCGG    |  |  |  |  |  |
| 721                                    | AAGTACTCGG                                              | TCTGGATCGG   | AGGCTCA      |            |               |                 |  |  |  |  |  |
| LOCUS      | Felimida_                                          | krohni_(F5_ | _provided by | / C. Greve)  | 783 bp       | DNA            |
|------------|----------------------------------------------------|-------------|--------------|--------------|--------------|----------------|
| DEFINITION | N Felimida_                                        | krohni_(F5_ | _provided by | / C. Greve)  | actin, part  | cial CDS       |
| ACCESSION  | not yet sul                                        | bmitted to  | GenBank      |              |              |                |
| SOURCE     | Felimida i                                         | krohni      |              |              |              |                |
| ORGANISM   | 1 Felimida                                         | krohni      |              |              |              |                |
|            | Eukaryota                                          | ; Metazoa;  | Spiralia; I  | Cophotrochoz | zoa; Molluso | ca;            |
|            | Gastropo                                           | da; Heterok | oranchia; Eu | uthyneura; 1 | Nudipleura;  | Nudibranchia;  |
|            | Doridina                                           | ; Chromodo: | cidoidea; Cł | nromodoridio | dae; Felimio | da             |
| FEATURES   | :                                                  | Location/Qu | alifiers     |              |              |                |
| sourc      | ce :                                               | 1783        |              |              |              |                |
|            |                                                    | /organism=" | 'Felimida kr | cohni"       |              |                |
|            |                                                    | /mol_type=" | 'genomic DNA | <i>Y</i>     |              |                |
| CDS        |                                                    | <1>783      |              |              |              |                |
|            |                                                    | /codon_star | rt=1         |              |              |                |
|            |                                                    | /product="a | actin"       |              |              |                |
|            | /transl                                            | ation="VAPE | EEHPVLLTEAPI | LNPKANREKMT  | QIMFETFNTPAN | MYVAIQAVLSLYAS |
|            | GF                                                 | RTTGIVLDSGD | GVSHTVPIYEG  | YALPHAILRLD  | LAGRDLTDYLM  | IKILTE         |
|            | RC                                                 | GYSFTTTAERE | IVRDIKEKLNY  | VALDFEQEMQT  | AATSSSLEKSY  | ELPDG          |
|            | QV                                                 | /ITIGNERFRC | PEAFFQPSFLG  | MEAAGIHETTY  | NSIMKCDVDIR  | KDLYS          |
|            | NTVLSGGSTMFPGIADRMQKEITALAPPTMKIKIIAPPERKYSVWIGGSI |             |              |              |              |                |
|            | LA                                                 | ASLSTFQQMW" |              |              |              |                |
| ORIGIN     |                                                    |             |              |              |              |                |
| 1          | GTGGCCCCAG                                         | AGGAGCACCC  | AGTCCTGCTC   | ACAGAGGCTC   | CCCTCAACCC   | CAAGGCCAAC     |
| 61         | AGAGAGAAGA                                         | TGACACAGAT  | CATGTTCGAG   | ACCTTCAACA   | CACCCGCCAT   | GTACGTCGCT     |
| 121        | ATCCAGGCTG                                         | TGTTGTCCCT  | GTACGCCTCT   | GGTCGTACCA   | CCGGTATTGT   | TCTCGACTCC     |
| 181        | GGAGACGGTG                                         | TTTCCCACAC  | TGTCCCCATC   | TACGAGGGAT   | ACGCCCTCCC   | CCACGCCATC     |
| 241        | CTCCGTCTTG                                         | ACCTGGCCGG  | CCGTGACCTC   | ACAGACTACC   | TCATGAAGAT   | CCTCACCGAG     |
| 301        | AGGGGGTACT (                                       | CCTTCACCAC  | CACCGCCGAG   | AGGGAGATCG   | TCCGCGACAT   | CAAGGAGAAG     |
| 361        | CTCAACTACG                                         | TCGCCCTGGA  | CTTCGAGCAG   | GAGATGCAGA   | CAGCCGCCAC   | GTCGTCATCC     |
| 421        | CTGGAGAAGA                                         | GCTACGAGCT  | GCCCGACGGT   | CAGGTCATCA   | CCATTGGCAA   | CGAGCGGTTC     |
| 481        | AGGTGCCCTG                                         | AAGCATTCTT  | CCAGCCATCC   | TTCCTGGGTA   | TGGAGGCTGC   | TGGCATCCAC     |
| 541        | GAGACCACGT                                         | ACAACTCCAT  | TATGAAGTGT   | GATGTGGACA   | TCCGTAAGGA   | CCTGTACTCC     |
| 601        | AACACCGTGT                                         | TGTCTGGCGG  | CTCCACCATG   | TTCCCAGGCA   | TCGCTGACCG   | TATGCAGAAG     |
| 661        | GAGATCACAG                                         | CCCTGGCACC  | TCCCACGATG   | AAGATCAAGA   | TCATCGCTCC   | CCCCGAGAGG     |
| 721        | AAATACTCTG                                         | TCTGGATCGG  | AGGCTCCATC   | TTGGCTTCCC   | TGTCCACCTT   | CCAGCAGATG     |

781 TGG

| LOCUS                                                             | Glossodor                                               | is_cincta_/ | _hikuriensi  | is_(Glci17Bu | 13/NU349)   | 803    | bp 1     | DNA   |
|-------------------------------------------------------------------|---------------------------------------------------------|-------------|--------------|--------------|-------------|--------|----------|-------|
| DEFINITION                                                        | N Glossodor:                                            | is_cincta_/ | _hikuriensi  | is_(Glci17Bu | 13/NU349) a | ctin,  | partia   | l CDS |
| ACCESSION                                                         | not yet sul                                             | bmitted to  | GenBank      |              |             |        |          |       |
| SOURCE                                                            | Glossodor                                               | is cincta/ł | nikuriensis  |              |             |        |          |       |
| ORGANISM                                                          | DRGANISM Glossodoris cincta/hikuriensis                 |             |              |              |             |        |          |       |
|                                                                   | Eukaryota; Metazoa; Spiralia; Lophotrochozoa; Mollusca; |             |              |              |             |        |          |       |
| Gastropoda; Heterobranchia; Euthyneura; Nudipleura; Nudibranchia; |                                                         |             |              |              |             |        |          |       |
|                                                                   | Doridina                                                | ; Chromodo  | ridoidea; Cł | nromodoridio | dae; Glosso | doris  |          |       |
| FEATURES                                                          | :                                                       | Location/Qu | alifiers     |              |             |        |          |       |
| sourc                                                             | ce                                                      | 1803        |              |              |             |        |          |       |
|                                                                   |                                                         | /organism=' | 'Glossodoris | s cincta/hi} | kuriensis"  |        |          |       |
|                                                                   |                                                         | /mol_type=' | 'genomic DNA | <i>Y</i>     |             |        |          |       |
| CDS                                                               |                                                         | <1>803      |              |              |             |        |          |       |
|                                                                   |                                                         | /codon_star | ct=1         |              |             |        |          |       |
|                                                                   |                                                         | /product="a | actin"       |              |             |        |          |       |
|                                                                   | /transl                                                 | ation="VAPH | EEHPILLTEAPI | LNPKSNREKMT  | QIMFETFNTPA | FYVSI  | QAVLALY. | AS    |
|                                                                   | GF                                                      | RTTGVVLDAGD | GVTHIIPIYEG  | YALPHAIEKMN  | LAGRDLTGYLI | KRILHE |          |       |
| RGYNFDSSSETEIVRDVKEKLAYVALDFEQEIDASAKSSTIEKSYELPDG                |                                                         |             |              |              |             |        |          |       |
|                                                                   | QVITLGSERFRCPEVLFQPSFTGMETVGIHEMIYNSITKCDIDLRKELYY      |             |              |              |             |        |          |       |
|                                                                   | NI                                                      | IVLSGGTTMFP | GIADRLHKELE  | SLAPASNKIKI  | IAPPERKYSV  | NIGGSI |          |       |
|                                                                   | LC                                                      | GSLSTFQQMWI | TKQEY"       |              |             |        |          |       |
| ORIGIN                                                            |                                                         |             |              |              |             |        |          |       |
| 1                                                                 | GTGGCACCCG                                              | AAGAACACCC  | CATCTTATTG   | ACAGAAGCTC   | CCTTAAACCC  | GAAG   | FCCAAC   |       |
| 61                                                                | CGTGAGAAAA                                              | TGACCCAGAT  | TATGTTTGAG   | ACTTTCAACA   | CACCAGCTTT  | TTATO  | GTCAGT   |       |
| 121                                                               | ATCCAGGCGG                                              | TACTTGCTTT  | GTACGCTTCA   | GGGAGGACGA   | CAGGAGTGGT  | GTTAC  | GACGCA   |       |
| 181                                                               | GGAGATGGAG                                              | TTACACACAT  | CATTCCAATA   | TATGAGGGTT   | ACGCTCTGCC  | CCAT   | GCTATT   |       |
| 241                                                               | GAAAAGATGA                                              | ACCTGGCTGG  | ACGGGACCTC   | ACAGGTTATT   | TGAAGCGAAT  | TCTC   | CATGAG   |       |
| 301                                                               | CGAGGCTACA                                              | ATTTCGATTC  | GTCTTCAGAG   | ACAGAAATAG   | TGCGAGACGT  | GAAG   | GAAAAG   |       |
| 361                                                               | TTGGCTTACG                                              | TAGCATTAGA  | CTTTGAACAG   | GAGATAGACG   | CATCAGCCAA  | GTCT   | ICAACT   |       |

781 TGGATCACCA AACAGGAGTA TGA

421 ATCGAAAAAT CTTATGAACT GCCTGATGGT CAAGTGATTA CTCTGGGCTC TGAACGATTC
481 AGGTGTCCCG AGGTTTTGTT TCAACCGTCT TTCACAGGAA TGGAAACTGT GGGCATCCAC
541 GAAATGATCT ACAACTCCAT TACCAAATGT GACATTGATC TCAGAAAAGA GCTGTACTAT
601 AACATTGTCC TTTCTGGTGG AACCACAATG TTCCCAGGTA TAGCTGATCG CTTACATAAA
661 GAACTGGAAT CCTTAGCTCC AGCCAGTAAC AAGATCAAGA TCATTGCCCC TCCTGAACGC
721 AAATACTCTG TTTGGATTGG AGGGTCTATC CTGGGTTCTT TGTCAACTTT CCAGCAGATG

| LOCUS                                              | Glossodoris_cincta_1_(Glci16Sa2/NU23) 803 bp DNA                  |  |  |  |  |  |  |
|----------------------------------------------------|-------------------------------------------------------------------|--|--|--|--|--|--|
| DEFINITION                                         | Glossodoris_cincta_1_(Glci16Sa2/NU23) actin, partial CDS          |  |  |  |  |  |  |
| ACCESSION                                          | ACCESSION not yet submitted to GenBank                            |  |  |  |  |  |  |
| SOURCE                                             | Glossodoris cincta                                                |  |  |  |  |  |  |
| ORGANISM                                           | Glossodoris cincta                                                |  |  |  |  |  |  |
|                                                    | Eukaryota; Metazoa; Spiralia; Lophotrochozoa; Mollusca;           |  |  |  |  |  |  |
|                                                    | Gastropoda; Heterobranchia; Euthyneura; Nudipleura; Nudibranchia; |  |  |  |  |  |  |
|                                                    | Doridina; Chromodoridoidea; Chromodorididae; Glossodoris          |  |  |  |  |  |  |
| FEATURES                                           | Location/Qualifiers                                               |  |  |  |  |  |  |
| sourc                                              | e 1803                                                            |  |  |  |  |  |  |
|                                                    | /organism="Glossodoris cincta"                                    |  |  |  |  |  |  |
|                                                    | /mol_type="genomic DNA"                                           |  |  |  |  |  |  |
| CDS                                                | <1>803                                                            |  |  |  |  |  |  |
|                                                    | /codon_start=1                                                    |  |  |  |  |  |  |
|                                                    | /product="actin"                                                  |  |  |  |  |  |  |
|                                                    | /translation="VAPEEHPILLTEAPLNPKSNREKMTQIMFETFNTPAFYVSIQAVLALYAS  |  |  |  |  |  |  |
| GRTTGVVLDAGDGVTHIIPIYEGYALPHAIEKMNLAGRDLTGYLKRILHE |                                                                   |  |  |  |  |  |  |
| RGYNFDSSSETEIVRDVKEKLAYVALDFEQEIDASAKSSTIEKSYELPDG |                                                                   |  |  |  |  |  |  |
| QVITLGSERFRCPEVLFQPSFTGMETVGIHEMIYNSITKCDIDLRKELYY |                                                                   |  |  |  |  |  |  |
|                                                    | NIVLSGGTTMFPGIADRLHKELESLAPASNKIKIIAPPERKYSVWIGGSI                |  |  |  |  |  |  |
|                                                    | LGSLSTFQQMWITKQEY"                                                |  |  |  |  |  |  |
| ORIGIN                                             |                                                                   |  |  |  |  |  |  |
| 1                                                  | STGGCACCCG AAGAACACCC CATCTTACTG ACAGAAGCTC CCCTAAACCC GAAGTCCAAC |  |  |  |  |  |  |
| 61                                                 | CGTGAGAAAA TGACCCAGAT TATGTTTGAG ACTTTCAACA CACCAGCTTT TTATGTCAGT |  |  |  |  |  |  |
| 121                                                | ATCCAGGCGG TACTTGCTTT GTACGCTTCA GGGAGGACGA CAGGAGTGGT GTTAGACGCA |  |  |  |  |  |  |
| 181                                                | GGAGATGGAG TTACACACAT CATTCCAATA TATGAGGGTT ACGCTCTGCC CCATGCTATT |  |  |  |  |  |  |
| 241                                                | GAAAAGATGA ACCTGGCTGG ACGGGACCTC ACCGGTTATC TGAAGCGAAT TCTCCATGAG |  |  |  |  |  |  |
| 301                                                | CGAGGCTACA ATTTCGATTC GTCTTCAGAG ACAGAAATAG TGCGAGACGT GAAGGAAAAG |  |  |  |  |  |  |
| 361                                                | TTGGCTTACG TCGCCTTAGA CTTTGAACAG GAGATAGACG CATCAGCCAA GTCTTCAACT |  |  |  |  |  |  |

781 TGGATCACCA AACAGGAGTA TGA

421 ATCGAAAAGT CTTATGAACT GCCTGATGGT CAAGTGATTA CTCTGGGCTC TGAACGATTC
481 AGGTGTCCTG AGGTTTTGTT TCAACCGTCT TTCACAGGAA TGGAAACTGT GGGCATCCAT
541 GAAATGATCT ACAACTCCAT TACCAAATGT GACATTGATC TCAGAAAAGA GCTGTACTAT
601 AACATTGTCC TTTCTGGTGG AACCACAATG TTCCCAGGTA TAGCTGATCG CTTACATAAA
661 GAACTGGAAT CCTTAGCTCC GGCCAGTAAC AAGATCAAGA TCATTGCCCC TCCTGAACGC
721 AAATACTCTG TTTGGATTGG AGGGTCTATT CTGGGTTCTT TGTCAACTTT CCAGCAGATG

| DEFINITION Glossodoris_cincta_2_(Glci17Bu2/NU348) actin, partial CDS<br>ACCESSION not yet submitted to GenBank<br>SOURCE Glossodoris cincta<br>ORGANISM Glossodoris cincta<br>Eukaryota; Metazoa; Spiralia; Lophotrochozoa; Mollusca;<br>Gastropoda; Heterobranchia; Euthyneura; Nudipleura; Nudibranchia;<br>Doridina; Chromodoridoidea; Chromodorididae; Glossodoris<br>FEATURES Location/Qualifiers<br>source 1803<br>/organism="Glossodoris cincta"<br>/mol_type="genomic DNA"<br>CDS <1>803<br>/codon_start=1<br>/product="actin"<br>/translation="VAPEEHPILITEAPINPESNREEKMTQIMFETFNTPAFYVSIQAVLALYAS<br>GRTTGVVLDAGDGVTHIIPIYEGYALPHAIEKMNLAGRDLTGYLKRILHE<br>RGYNFDSSSETEIVRDVKEKLAYVALDFEQEIDASAKSSTIEKSYELPDG<br>QVITLGSERFRCPEVLFQPSFTGMETVGIHEMIYNSITKCDIDLRKELYY<br>NIVLSGGTTMFPGIADRLHKELESLAPASNKIKIIAPPERKYSVWIGGSI<br>LGSLSTFQQMWITKQEY"     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ACCESSION not yet submitted to GenBank SOURCE Glossodoris cincta ORGANISM Glossodoris cincta Eukaryota; Metazoa; Spiralia; Lophotrochozoa; Mollusca; Gastropoda; Heterobranchia; Euthyneura; Nudipleura; Nudibranchia; Doridina; Chromodoridoidea; Chromodorididae; Glossodoris Doridina; Chromodoridoidea; Chromodorididae; Glossodoris FEATURES Location/Qualifiers source 1803 /organism="Glossodoris cincta" /mol_type="genomic DNA" CDS <1>803 /codon_start=1 /product="actin" /translation="VAPEEHPILITEAPINPKSNREKMTQIMFETFNTPAFYVSIQAVLALYAS GRTTGVVLDAGDGVTHIIPIYEGYALPHAIEKMNLAGRDLTGYLKRILHE RGYNFDSSSETEIVRDVKEKLAYVALDFEQEIDASAKSSTIEKSYELPDG QVITLGSERFRCPEVLFQPSFTGMETVGIHEMIYNSITKCDIDLRKELYY NIVLSGGTTMFPGIADRLHKELESLAPASNKIKIIAPPERKYSWIGGSI LGSLSTFQQMWITKQEY" ORIGIN 1 GTGGCACCCG AAGAACACCC CATCTTACTG ACAGAAGCTC CCCTAAACCC GAAGTCCAAC |
| SURCE Glossodoris cincta ORGANISM Glossodoris cincta URGANISM Glossodoris cincta Eukaryota; Metazoa; Spiralia; Lophotrochozoa; Mollusca; Gastropoda; Heterobranchia; Euthyneura; Nudipleura; Nudibranchia; Doridina; Chromodoridoidea; Chromodorididae; Glossodoris Doridina; Chromodoridoidea; Chromodorididae; Glossodoris Source 1803 /organism="Glossodoris cincta" /mol_type="genomic DNA" CDS <1>803 /codon_start=1 /product="actin" /translation="VAPEEHPILLTEAPLNPKSNREKMTQIMFETFNTPAFYVSIQAVLALYAS GRTTGVVLDAGDGVTHIIPIYEGYALPHAIEKMNLAGRDLTGYLKRILHE RGYNFDSSETEIVRDVKEKLAYVALDFEQEIDASAKSSTIEKSYELPDG QVITLGSERFRCPEVLFQFSFTGMETVGIHEMIYNSITKCDIDLRKELYY NIVLSGGTTMFPGIADRLHKELESLAPASNKIKIIAPPERKYSVWIGGSI LGSLSTFQQMWITKQEY" OKIEM                                                                                                               |
| ORGANISM Glossodoris cincta<br>Eukaryota; Metazoa; Spiralia; Lophotrochozoa; Mollusca;<br>Gastropoda; Heterobranchia; Euthyneura; Nudipleura; Nudibranchia;<br>Doridina; Chromodoridoidea; Chromodorididae; Glossodoris<br>Doridina; Chromodoridoidea; Chromodorididae; Glossodoris<br>FEATURES Location/Qualifiers<br>source 1803<br>/organism="Glossodoris cincta"<br>/mol_type="genomic DNA"<br>CDS <1>803<br>/codon_start=1<br>/product="actin"<br>/translation="VAPEEHPILITEAPLNPKSNREKMTQIMFETFNTPAFYVSIQAVLALYAS<br>GRTTGVVLDAGDGVTHIIPIYEGYALPHAIEKMNLAGRDLTGYLKRILHE<br>RGYNFDSSSETEIVRDVKEKLAYVALDFEQEIDASAKSSTIEKSYELPDG<br>QVITLGSERFRCPEVLFQPSFTGMETVGIHEMIYNSITKCDIDLRKELYY<br>NIVLSGGTTMFPGIADRLHKELESLAPASNKIKIIAPPERKYSVWIGGSI<br>LGSLSTFQQMWITKQEY"                                                                                         |
| Eukaryota; Metazoa; Spiralia; Lophotrochozoa; Mollusca;         Gastropoda; Heterobranchia; Euthyneura; Nudipleura; Nudibranchia;         Doridina; Chromodorididea; Chromodorididae; Glossodoris         FEATURES       Location/Qualifiers         source       1803         /organism="Glossodoris cincta"         /mol_type="genomic DNA"         CDs       <1803                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Gastropoda; Heterobranchia; Euthyneura; Nudipleura; Nudibranchia;<br>Doridina; Chromodoridoidea; Chromodorididae; Glossodoris<br>FEATURES Location/Qualifiers<br>source 1803<br>/organism="Glossodoris cincta"<br>/mol_type="genomic DNA"<br>CDS <1>803<br>/codon_start=1<br>/product="actin"<br>/translation="VAPEEHPILLTEAPLNPKSNREKMTQIMFETFNTPAFYVSIQAVLALYAS<br>GRTTGVVLDAGDGVTHIIPIYEGYALPHAIEKMNLAGRDLTGYLKRILHE<br>RGYNFDSSSETEIVRDVKEKLAYVALDFEQEIDASAKSSTIEKSYELPDG<br>QVITLGSERFRCPEVLFQPSFTGMETVGIHEMIYNSITKCDIDLRKELYY<br>NIVLSGGTTMFPGIADRLHKELESLAPASNKIKIIAPPERKYSVWIGGSI<br>LGSLSTFQQMWITKQEY"                                                                                                                                                                                                                                               |
| Doridina; Chromodoridida; Chromodorididae; Glossodoris         FEATURES       Location/Qualifiers         source       1803         /organism="Glossodoris cincta"         /mol_type="genomic DNA"         CDS       <1>803         /codon_start=1         /product="actin"         /translation="VAPEEHPILITEAPLNPKSNREKMTQIMFETFNTPAFYVSIQAVLALYAS         GRTTGVVLDAGDGVTHIIPIYEGYALPHAIEKMNLAGRDLTGYLKRILHE         RGYNFDSSSETEIVRDVKEKLAYVALDFEQEIDASAKSSTIEKSYELPDG         QVITLGSERFRCPEVLFQPSFTGMETVGIHEMIYNSITKCDIDLRKELYY         NIVLSGGTTMFPGIADRLHKELESLAPASNKIKIIAPPERKYSVWIGGSI         LGSLSTFQQMWITKQEY"         ORIGIN         1 STGGCACCCC AAGAACACCC CATCTTACTG ACAGAAGCTC CCCTAAACCC GAAGTCCAAC                                                                                                                                        |
| FEATURES       Location/Qualifiers         source       1803         /organism="Glossodoris cincta"         /mol_type="genomic DNA"         CDS       <1>803         /codon_start=1         /product="actin"         /translation="VAPEEHPILITEAPLNPKSNREKMTQIMFETFNTPAFYVSIQAVLALYAS         GRTTGVVLDAGDGVTHIIPIYEGYALPHAIEKMNLAGRDLTGYLKRILHE         RGYNFDSSSETEIVRDVKEKLAYVALDFEQEIDASAKSSTIEKSYELPDG         QVITLGSERFRCPEVLFQPSFTGMETVGIHEMIYNSITKCDIDLRKELYY         NIVLSGGTTMFPGIADRLHKELESLAPASNKIKIIAPPERKYSVWIGGSI         LGSLSTFQQMWITKQEY"                                                                                                                                                                                                                                                                                                  |
| source 1803 /organism="Glossodoris cincta" /mol_type="genomic DNA" CDS <1>803 /codon_start=1 /product="actin" /translation="VAPEEHPILLTEAPLNPKSNREKMTQIMFETFNTPAFYVSIQAVLALYAS GRTTGVVLDAGDGVTHIIPIYEGYALPHAIEKMNLAGRDLTGYLKRILHE RGYNFDSSSETEIVRDVKEKLAYVALDFEQEIDASAKSSTIEKSYELPDG QVITLGSERFRCPEVLFQPSFTGMETVGIHEMIYNSITKCDIDLRKELYY NIVLSGGTTMFPGIADRLHKELESLAPASNKIKIIAPPERKYSVWIGGSI LGSLSTFQQMWITKQEY" ORIGIN 1 GTGGCACCCG AAGAACACCC CATCTTACTG ACAGAAGGCTC CCCTAAACCC GAAGTCCAAC                                                                                                                                                                                                                                                                                                                                                                     |
| <pre>/organism="Glossodoris cincta" /mol_type="genomic DNA" CDS &lt;1&gt;803 /codon_start=1 /product="actin" /translation="VAPEEHPILLTEAPLNPKSNREKMTQIMFETFNTPAFYVSIQAVLALYAS GRTTGVVLDAGDGVTHIIPIYEGYALPHAIEKMNLAGRDLTGYLKRILHE RGYNFDSSSETEIVRDVKEKLAYVALDFEQEIDASAKSSTIEKSYELPDG QVITLGSERFRCPEVLFQPSFTGMETVGIHEMIYNSITKCDIDLRKELYY NIVLSGGTTMFPGIADRLHKELESLAPASNKIKIIAPPERKYSVWIGGSI LGSLSTFQQMWITKQEY" ORIGIN 1 GTGGCACCCG AAGAACACCC CATCTTACTG ACAGAAGCTC CCCTAAACCC GAAGTCCAAC</pre>                                                                                                                                                                                                                                                                                                                                                                 |
| /mol_type="genomic DNA"         CDS       <1>803         /codon_start=1       /product="actin"         /translation="VAPEEHPILLTEAPLNPKSNREKMTQIMFETFNTPAFYVSIQAVLALYAS       GRTTGVVLDAGDGVTHIIPIYEGYALPHAIEKMNLAGRDLTGYLKRILHE         GRTTGVVLDAGDGVTHIIPIYEGYALPHAIEKMNLAGRDLTGYLKRILHE       GUITLGSERFRCPEVLFQPSFTGMETVGIHEMIYNSITKCDIDLRKELYY         NIVLSGGTTMFPGIADRLHKELESLAPASNKIKIIAPPERKYSVWIGGSI       LGSLSTFQQMWITKQEY"         ORIGIN       1 GTGGCACCCC AAGAACACCC CATCTTACTG ACAGAAGCTC CCCTAAACCC GAAGTCCAAC                                                                                                                                                                                                                                                                                                                             |
| CDS <1>803<br>/codon_start=1<br>/product="actin"<br>/translation="VAPEEHPILLTEAPLNPKSNREKMTQIMFETFNTPAFYVSIQAVLALYAS<br>GRTTGVVLDAGDGVTHIIPIYEGYALPHAIEKMNLAGRDLTGYLKRILHE<br>RGYNFDSSSETEIVRDVKEKLAYVALDFEQEIDASAKSSTIEKSYELPDG<br>QVITLGSERFRCPEVLFQPSFTGMETVGIHEMIYNSITKCDIDLRKELYY<br>NIVLSGGTTMFPGIADRLHKELESLAPASNKIKIIAPPERKYSVWIGGSI<br>LGSLSTFQQMWITKQEY"<br>ORIGIN<br>1 GTGGCACCCG AAGAACACCC CATCTTACTG ACAGAAGCTC CCCTAAACCC GAAGTCCAAC                                                                                                                                                                                                                                                                                                                                                                                                           |
| <pre>/codon_start=1 /product="actin" /translation="VAPEEHPILLTEAPLNPKSNREKMTQIMFETFNTPAFYVSIQAVLALYAS GRTTGVVLDAGDGVTHIIPIYEGYALPHAIEKMNLAGRDLTGYLKRILHE RGYNFDSSSETEIVRDVKEKLAYVALDFEQEIDASAKSSTIEKSYELPDG QVITLGSERFRCPEVLFQPSFTGMETVGIHEMIYNSITKCDIDLRKELYY NIVLSGGTTMFPGIADRLHKELESLAPASNKIKIIAPPERKYSVWIGGSI LGSLSTFQQMWITKQEY" ORIGIN 1 GTGGCACCCG AAGAACACCC CATCTTACTG ACAGAAGCTC CCCTAAACCC GAAGTCCAAC</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <pre>/product="actin" /translation="VAPEEHPILLTEAPLNPKSNREKMTQIMFETFNTPAFYVSIQAVLALYAS GRTTGVVLDAGDGVTHIIPIYEGYALPHAIEKMNLAGRDLTGYLKRILHE RGYNFDSSSETEIVRDVKEKLAYVALDFEQEIDASAKSSTIEKSYELPDG QVITLGSERFRCPEVLFQPSFTGMETVGIHEMIYNSITKCDIDLRKELYY NIVLSGGTTMFPGIADRLHKELESLAPASNKIKIIAPPERKYSVWIGGSI LGSLSTFQQMWITKQEY" ORIGIN 1 GTGGCACCCG AAGAACACCC CATCTTACTG ACAGAAGCTC CCCTAAACCC GAAGTCCAAC</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <pre>/translation="VAPEEHPILLTEAPLNPKSNREKMTQIMFETFNTPAFYVSIQAVLALYAS<br/>GRTTGVVLDAGDGVTHIIPIYEGYALPHAIEKMNLAGRDLTGYLKRILHE<br/>RGYNFDSSSETEIVRDVKEKLAYVALDFEQEIDASAKSSTIEKSYELPDG<br/>QVITLGSERFRCPEVLFQPSFTGMETVGIHEMIYNSITKCDIDLRKELYY<br/>NIVLSGGTTMFPGIADRLHKELESLAPASNKIKIIAPPERKYSVWIGGSI<br/>LGSLSTFQQMWITKQEY"<br/>ORIGIN<br/>1 GTGGCACCCG AAGAACACCC CATCTTACTG ACAGAAGCTC CCCTAAACCC GAAGTCCAAC</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| GRTTGVVLDAGDGVTHIIPIYEGYALPHAIEKMNLAGRDLTGYLKRILHE<br>RGYNFDSSSETEIVRDVKEKLAYVALDFEQEIDASAKSSTIEKSYELPDG<br>QVITLGSERFRCPEVLFQPSFTGMETVGIHEMIYNSITKCDIDLRKELYY<br>NIVLSGGTTMFPGIADRLHKELESLAPASNKIKIIAPPERKYSVWIGGSI<br>LGSLSTFQQMWITKQEY"<br>ORIGIN<br>1 GTGGCACCCG AAGAACACCC CATCTTACTG ACAGAAGCTC CCCTAAACCC GAAGTCCAAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| RGYNFDSSSETEIVRDVKEKLAYVALDFEQEIDASAKSSTIEKSYELPDG QVITLGSERFRCPEVLFQPSFTGMETVGIHEMIYNSITKCDIDLRKELYY NIVLSGGTTMFPGIADRLHKELESLAPASNKIKIIAPPERKYSVWIGGSI LGSLSTFQQMWITKQEY" ORIGIN 1 GTGGCACCCG AAGAACACCC CATCTTACTG ACAGAAGCTC CCCTAAACCC GAAGTCCAAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| QVITLGSERFRCPEVLFQPSFTGMETVGIHEMIYNSITKCDIDLRKELYY<br>NIVLSGGTTMFPGIADRLHKELESLAPASNKIKIIAPPERKYSVWIGGSI<br>LGSLSTFQQMWITKQEY"<br>ORIGIN<br>1 GTGGCACCCG AAGAACACCC CATCTTACTG ACAGAAGCTC CCCTAAACCC GAAGTCCAAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| NIVLSGGTTMFPGIADRLHKELESLAPASNKIKIIAPPERKYSVWIGGSI<br>LGSLSTFQQMWITKQEY"<br>ORIGIN<br>1 GTGGCACCCG AAGAACACCC CATCTTACTG ACAGAAGCTC CCCTAAACCC GAAGTCCAAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| LGSLSTFQQMWITKQEY"<br>ORIGIN<br>1 GTGGCACCCG AAGAACACCC CATCTTACTG ACAGAAGCTC CCCTAAACCC GAAGTCCAAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ORIGIN 1 GTGGCACCCG AAGAACACCC CATCTTACTG ACAGAAGCTC CCCTAAACCC GAAGTCCAAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1 GTGGCACCCG AAGAACACCC CATCTTACTG ACAGAAGCTC CCCTAAACCC GAAGTCCAAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 61 CGTGAGAAAA TGACCCAGAT TATGTTTGAG ACTTTCAACA CACCAGCTTT TTATGTCAGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 121 ATCCAGGCGG TACTTGCTTT GTACGCTTCA GGGAGGACGA CAGGAGTGGT GTTAGACGCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 181 GGAGATGGAG TTACACACAT CATTCCAATA TATGAGGGTT ACGCTCTGCC CCATGCTATT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 241 GAAAAGATGA ACCTGGCTGG ACGGGACCTC ACCGGTTATC TGAAGCGAAT TCTCCATGAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 301 CGAGGCTACA ATTTCGATTC GTCTTCAGAG ACAGAAATAG TGCGAGACGT GAAGGAAAAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

361 TTGGCTTACG TCGCCTTAGA CTTTGAACAG GAGATAGACG CATCAGCCAA GTCTTCAACT
421 ATCGAAAAGT CTTATGAACT GCCTGATGGT CAAGTGATTA CTCTGGGCTC TGAACGATTC
481 AGGTGTCCTG AGGTTTTGTT TCAACGTCT TTCACAGGAA TGGAAACTGT GGGCATCCAT
541 GAAATGATCT ACAACTCCAT TACCAAATGT GACATTGATC TCAGAAAAGA GCTGTACTAT
601 AACATTGTCC TTTCTGGTGG AACCACAATG TTCCCAGGTA TAGCTGATCG CTTACATAAA
661 GAACTGGAAT CCTTAGCTCC GGCCAGTAAC AAGAATCAAGA TCATTGCCCC TCCTGAACGC
721 AAATACTCTG TTTGGATTG AGA

| LOCUS      | Goniobrar                             | nchus_cavae_ | _(Goca16S2/1 | NU25) 803    | B bp DNA     |                |  |
|------------|---------------------------------------|--------------|--------------|--------------|--------------|----------------|--|
| DEFINITION | N Goniobrar                           | nchus_cavae_ | _(Goca16S2/1 | NU25) actin, | partial CI   | DS             |  |
| ACCESSION  | CCESSION not yet submitted to GenBank |              |              |              |              |                |  |
| SOURCE     | DURCE Goniobranchus cavae             |              |              |              |              |                |  |
| ORGANIS    | ORGANISM Goniobranchus cavae          |              |              |              |              |                |  |
|            | Eukaryota                             | a; Metazoa;  | Spiralia; 1  | Lophotrochoz | zoa; Mollus  | ca;            |  |
|            | Gastropo                              | oda; Heterol | oranchia; E  | uthyneura; 1 | Nudipleura;  | Nudibranchia;  |  |
|            | Doridina                              | a; Chromodo: | ridoidea; Cl | hromodoridio | dae; Goniob: | ranchus        |  |
| FEATURES   |                                       | Location/Qu  | ualifiers    |              |              |                |  |
| sour       | ce                                    | 1803         |              |              |              |                |  |
|            |                                       | /organism='  | 'Goniobranch | nus cavae"   |              |                |  |
|            |                                       | /mol_type='  | 'genomic DNA | <i>A</i>     |              |                |  |
| CDS        |                                       | <1>803       |              |              |              |                |  |
|            |                                       | /codon_star  | ct=1         |              |              |                |  |
|            |                                       | /product="a  | actin"       |              |              |                |  |
|            | /trans]                               | lation="VAPH | EEHPILLTEAP  | LNPKSNREKMT  | QIMFETFNAPA  | FYVSIQAVLALYAS |  |
|            | G                                     | RTTGVVLDAGD  | GVTHIIPIYEG  | YALPHAIEKMN  | LAGRDLTGYLK  | KRILHE         |  |
|            | R                                     | GYNFESSSETE  | IVRDVKEKLAY  | VALDFEQEMDA  | AAKSSTIERSY  | YELPDG         |  |
|            | Q                                     | VITLGSERFRC  | PEVLFQPSFMG  | GVETAGIHEMIY | NSITKCDIDLF  | RELYH          |  |
|            | N                                     | IVLSGGTTMFF  | GIADRLHRELE  | SIAPASNKIKI  | IAPSERKYSVW  | IIGGSI         |  |
|            | L                                     | GSLSTFQQMWI  | TKQEY"       |              |              |                |  |
| ORIGIN     |                                       |              |              |              |              |                |  |
| 1          | GTGGCACCAG                            | AAGAACATCC   | CATCTTGTTG   | ACAGAAGCTC   | CACTAAATCC   | CAAATCCAAC     |  |
| 61         | CGTGAGAAAA                            | TGACCCAGAT   | CATGTTCGAA   | ACTTTCAACG   | CGCCAGCTTT   | TTATGTCAGT     |  |
| 121        | ATCCAGGCGG                            | TCTTAGCTCT   | GTACGCTTCA   | GGCAGGACGA   | CAGGCGTGGT   | GTTAGACGCA     |  |
| 181        | GGAGACGGCG                            | TCACTCATAT   | CATTCCAATA   | TACGAGGGCT   | ATGCTCTGCC   | CCACGCTATT     |  |
| 241        | GAAAAGATGA                            | ATTTGGCCGG   | TCGGGACCTC   | ACTGGCTATC   | TCAAGCGAAT   | CCTTCACGAA     |  |
| 301        | CGAGGTTACA                            | ATTTTGAATC   | GTCTTCCGAG   | ACGGAAATAG   | TCCGAGACGT   | GAAGGAAAAG     |  |
| 361        | CTGGCCTACG                            | TCGCTCTGGA   | TTTTGAACAG   | GAGATGGACG   | CAGCAGCCAA   | GTCGTCTACC     |  |
| 421        | ATCGAAAGAT                            | CTTACGAACT   | TCCCGATGGT   | CAAGTGATTA   | CTCTGGGCTC   | CGAACGATTT     |  |

421 ATCGAAAGAT CTTACGAACT TEECGATGGT CAAGTGATTA CTETGGGETE CGAACGATTT
481 AGGTGTEEG AAGTTTTGTT CEAACCGTET TTEATGGGAG TGGAAACTGE CGGCATTEAC
541 GAAATGATET ACAACTECAT AACCAAGTGT GACATTGATE TEEGAAGAGA ATTGTAECAT
601 AACATEGTEE TGTEEGGGGG AACCAEAATG TEECCAGGTA TEEGEGATEG GTTAEACAGA
661 GAGTTGGAAT CEATTGEECE AGETAGTAE AAGATEAAGA TEATTGETEE TTEEGAGEGE
721 AAATAETEGG TTTGGATTGG TGGATEAATE TTGGGTTETT TGTEAACTTT CEAGCAGATG
781 TGGATEACEA AACAGGAGTA TGA

| LOCUS      | Goniobran                                               | nchus_coi_(                                             | Gocho17Ba2/1 | NU384) 78    | 34 bp DNA    | Ą              |  |  |
|------------|---------------------------------------------------------|---------------------------------------------------------|--------------|--------------|--------------|----------------|--|--|
| DEFINITION | I Goniobran                                             | Goniobranchus_coi_(Gocho17Ba2/NU384) actin, partial CDS |              |              |              |                |  |  |
| ACCESSION  | CCESSION not yet submitted to GenBank                   |                                                         |              |              |              |                |  |  |
| SOURCE     | Goniobran                                               | Goniobranchus coi                                       |              |              |              |                |  |  |
| ORGANISM   | 1 Goniobran                                             | nchus coi                                               |              |              |              |                |  |  |
|            | Eukaryota; Metazoa; Spiralia; Lophotrochozoa; Mollusca; |                                                         |              |              |              |                |  |  |
|            | Gastropo                                                | oda; Heterol                                            | branchia; E  | uthyneura; 1 | Nudipleura;  | Nudibranchia;  |  |  |
|            | Doridina                                                | a; Chromodo:                                            | ridoidea; Cl | hromodoridio | dae; Goniob: | ranchus        |  |  |
| FEATURES   |                                                         | Location/Qu                                             | ualifiers    |              |              |                |  |  |
| sourc      | ce                                                      | 1784                                                    |              |              |              |                |  |  |
|            |                                                         | /organism='                                             | "Goniobranch | nus coi"     |              |                |  |  |
|            |                                                         | /mol_type='                                             | "genomic DNA | A            |              |                |  |  |
| CDS        |                                                         | <1>784                                                  |              |              |              |                |  |  |
|            |                                                         | /codon_star                                             | rt=1         |              |              |                |  |  |
|            |                                                         | /product="a                                             | actin"       |              |              |                |  |  |
|            | /trans                                                  | lation="VAP                                             | EEHPVLLTEAP: | LNPKANREKMT  | QIMFETFNVPA  | MYVAFQAVLSLYAS |  |  |
|            | G                                                       | RTTGFVMDSGD                                             | GVSHTVPIYKG  | GYALPHAILRLD | LAGRDLTDWMV  | /KLLTE         |  |  |
|            | RGYSFTTTAEREIVRDIKEKLAYVALDFDQEMQTAASSSALEKSYELPDG      |                                                         |              |              |              |                |  |  |
|            | QIITIGNERFRCPEALFQPSFLGMESPGVHETTYNSIMKCDVDIRKDLYA      |                                                         |              |              |              |                |  |  |
|            | N                                                       | IVVLSGGTTMYA                                            | GIADRMSKEII  | ALAPASMKVKI  | IAPPERKYSVW  | VIGGSI         |  |  |
|            | LSSLSTFQQMW"                                            |                                                         |              |              |              |                |  |  |
| ORIGIN     |                                                         |                                                         |              |              |              |                |  |  |
| 1          | GTGGCGCCTG                                              | AAGAGCATCC                                              | CGTCTTGCTC   | ACCGAGGCCC   | CGCTCAACCC   | GAAGGCCAAT     |  |  |
| 61         | CGCGAGAAGA                                              | TGACCCAGAT                                              | CATGTTCGAG   | ACTTTCAATG   | TCCCCGCCAT   | GTATGTCGCC     |  |  |
| 121        | TTCCAGGCCG                                              | TACTTTCGCT                                              | CTACGCTTCG   | GGCCGTACCA   | CAGGCTTTGT   | CATGGACTCT     |  |  |
| 181        | GGCGACGGGG                                              | TCTCGCACAC                                              | CGTCCCGATC   | TACAAGGGCT   | ACGCGCTGCC   | GCACGCCATC     |  |  |
| 241        | CTCCGCCTCG                                              | ACCTGGCCGG                                              | CCGCGACCTC   | ACCGACTGGA   | TGGTCAAGCT   | GCTCACCGAG     |  |  |
| 301        | CGCGGCTACT                                              | CCTTCACCAC                                              | CACCGCCGAG   | CGCGAGATTG   | TGCGCGACAT   | CAAAGAGAAG     |  |  |
| 361        | CTCGCCTACG                                              | TCGCGCTTGA                                              | CTTTGACCAG   | GAGATGCAGA   | CCGCCGCCTC   | CTCGTCGGCC     |  |  |
| 421        | CTCGAGAAGT                                              | CGTACGAGCT                                              | GCCGGACGGC   | CAGATCATCA   | CCATTGGCAA   | CGAGCGCTTC     |  |  |
| 481        | CGCTGCCCCG                                              | AGGCCCTCTT                                              | CCAGCCGTCC   | TTCCTCGGCA   | TGGAGTCGCC   | GGGCGTGCAC     |  |  |
| 541        | GAAACGACGT                                              | ACAACTCGAT                                              | CATGAAGTGC   | GACGTCGACA   | TCAGGAAGGA   | CCTGTACGCG     |  |  |

661 GAGATCACTG CCCTCGCGCC CGCCTCGATG AAGGTCAAGA TCATCGCGCC GCCCGAGCGC
721 AAGTACTCGG TCTGGATCGG CGGCTCCATC CTCTCGTCGC TCTCCACCTT TCAGCAGATG
781 TGGA

601 AACGTCGTGC TGTCAGGCGG CACCACAATG TACGCCGGCA TTGCCGACCG CATGTCCAAG

| LOCUS      | Goniobranc                                                       | chus_fideli                                                | .s_(Gofi15Ba | a1/NU385)    | 803 bp      | DNA           |  |
|------------|------------------------------------------------------------------|------------------------------------------------------------|--------------|--------------|-------------|---------------|--|
| DEFINITION | N Goniobranc                                                     | Goniobranchus_fidelis_(Gofi15Ba1/NU385) actin, partial CDS |              |              |             |               |  |
| ACCESSION  | ACCESSION not yet submitted to GenBank                           |                                                            |              |              |             |               |  |
| SOURCE     | Goniobranc                                                       | chus fideli                                                | S            |              |             |               |  |
| ORGANISM   | M Goniobranc                                                     | chus fideli                                                | S            |              |             |               |  |
|            | Eukaryota;                                                       | Metazoa;                                                   | Spiralia; I  | Lophotrochoz | zoa; Mollus | ca;           |  |
|            | Gastropoc                                                        | da; Heterob                                                | oranchia; Eu | uthyneura; 1 | Nudipleura; | Nudibranchia; |  |
|            | Doridina;                                                        | Chromodor                                                  | ridoidea; Cl | hromodoridio | dae; Goniob | ranchus       |  |
| FEATURES   | I                                                                | Location/Qu                                                | alifiers     |              |             |               |  |
| sourc      | ce 1                                                             | 803                                                        |              |              |             |               |  |
|            | /                                                                | 'organism="                                                | Goniobranch  | nus fidelis' | •           |               |  |
|            | /                                                                | 'mol_type="                                                | genomic DNA  | <i>7</i>     |             |               |  |
| CDS        | <                                                                | <1>803                                                     |              |              |             |               |  |
|            | /                                                                | 'codon_star                                                | rt=1         |              |             |               |  |
|            | /                                                                | /product="a                                                | actin"       |              |             |               |  |
|            | /translation="VAPEKHPILSTEPPLNPKANREKMTQIMFETFNTPAFYVGIQAVLALYAF |                                                            |              |              |             |               |  |
|            | GR                                                               | TTGVVLDAGD                                                 | GVTHVVPIYQG  | GYVLPHAIEKMD | LAGRDLTGYM  | KRILPE        |  |
|            | RG                                                               | YSFDTSSETE                                                 | IVRDIKEKLAY  | VALDFDQEMHI  | AASSSSLERS  | YELPDG        |  |
|            | QM                                                               | ITMGSERFRC                                                 | PEALFQPSFIG  | GMESVGIHKMIF | NSIMKCDVDII | RKDLYA        |  |
|            | NI                                                               | VLSGGTTMFP                                                 | GIADRMHKEIS  | SLAPPTMKIKI  | IAAPERKHLV  | NICSSI        |  |
|            | FV                                                               | SFPNFYRSWI                                                 | TKQEY"       |              |             |               |  |
| ORIGIN     |                                                                  |                                                            |              |              |             |               |  |
| 1          | GTGGCACCAG A                                                     | AGAAGCATCC                                                 | CATCTTGTCG   | ACAGAACCTC   | CACTGAACCC  | GAAGGCCAAC    |  |
| 61         | CGTGAGAAAA I                                                     | GACCCAGAT                                                  | TATGTTCGAA   | ACTTTTAACA   | CGCCAGCTTT  | TTACGTCGGA    |  |
| 121        | ATTCAGGCGG I                                                     | GCTTGCTTT                                                  | GTACGCTTTT   | GGGAGGACCA   | CTGGCGTGGT  | GCTGGACGCC    |  |
| 181        | GGGGACGGTG I                                                     | TACCCATGT                                                  | CGTTCCAATC   | TACCAAGGCT   | ATGTTCTGCC  | CCATGCTATC    |  |
| 241        | GAAAAGATGG A                                                     | ACTTGGCCGG                                                 | ACGGGACCTC   | ACTGGCTATA   | TGAAGCGAAT  | CCTCCCTGAG    |  |
| 301        | AGAGGATACA G                                                     | GTTTTGACAC                                                 | CTCCTCCGAG   | ACGGAAATTG   | TGCGAGACAT  | CAAGGAAAAG    |  |
| 361        | CTCGCCTACG I                                                     | CGCTCTTGA                                                  | TTTCGACCAG   | GAGATGCACA   | CTGCCGCCTC  | GTCGTCCTCT    |  |
| 421        | CTCGAGAGAT C                                                     | CTTACGAACT                                                 | GCCCGATGGT   | CAGATGATCA   | CCATGGGATC  | TGAGCGATTC    |  |

361 CTCGCCTACG TCGCTCTTGA TTTCGACCAG GAGATGCACA CTGCCGCCTC GTCGTCCTCT
421 CTCGAGAGAT CTTACGAACT GCCCGATGGT CAGATGATCA CCATGGGATC TGAGCGATTC
481 AGGTGTCCCG AGGCTTTGTT TCAACCGTCT TTCATCGGTA TGGAATCCGT GGGCATCCAC
541 AAGATGATCT TCAATTCTAT CATGAAGTGT GATGTGGATA TCCGTAAAGA CTTGTACGCC
601 AACATCGTCC TCTCTGGCGG AACCACAATG TTCCCAGGTA TCGCCGACCG CATGCATAAG
661 GAAATCTCGT CTCTTGCTCC ACCCACCATG AAGATCAAGA TCATTGCTGC TCCGGAACGC
721 AAACACTTGG TTTGGATTTG CAGTTCAATC TTTGTTTCTT TTCCCAATTT CTACCGAAGT
781 TGGATCACCA AACAGGAGTA TGA

| LOCUS Goniobranchus_geometricus_(Goge16S4/NU29) 765 bp DNA              |                                                                   |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|--|--|--|--|
| DEFINITION Goniobranchus_geometricus_(Goge16S4/NU29) actin, partial CDS |                                                                   |  |  |  |  |  |  |  |
| ACCESSION                                                               | ACCESSION not yet submitted to GenBank                            |  |  |  |  |  |  |  |
| SOURCE                                                                  | Goniobranchus geometricus                                         |  |  |  |  |  |  |  |
| ORGANISM                                                                | Goniobranchus geometricus                                         |  |  |  |  |  |  |  |
|                                                                         | Eukaryota; Metazoa; Spiralia; Lophotrochozoa; Mollusca;           |  |  |  |  |  |  |  |
|                                                                         | Gastropoda; Heterobranchia; Euthyneura; Nudipleura; Nudibranchia; |  |  |  |  |  |  |  |
|                                                                         | Doridina; Chromodoridoidea; Chromodorididae; Goniobranchus        |  |  |  |  |  |  |  |
| FEATURES                                                                | Location/Qualifiers                                               |  |  |  |  |  |  |  |
| source                                                                  | 1765                                                              |  |  |  |  |  |  |  |
|                                                                         | /organism="Goniobranchus geometricus"                             |  |  |  |  |  |  |  |
|                                                                         | /mol_type="genomic DNA"                                           |  |  |  |  |  |  |  |
| CDS                                                                     | <1>765                                                            |  |  |  |  |  |  |  |
| /codon_start=1                                                          |                                                                   |  |  |  |  |  |  |  |
|                                                                         | /product="actin"                                                  |  |  |  |  |  |  |  |
| /translation="VAPEEHPVLLTEAPLNPKANREKMTQIMFETFNAPAMYVAIQAVLSLYAS        |                                                                   |  |  |  |  |  |  |  |
| GRTTGIVLDSGDGVTHTVPIYEGYALPHAILRLDLAGRDLTDYLMKILTE                      |                                                                   |  |  |  |  |  |  |  |
| RGYSFTTTAEREIVRDIKEKLCYVALDFEQEMHTAASSSSLEKSYEVPDG                      |                                                                   |  |  |  |  |  |  |  |
| QVITIGNERFRCPEALFQPSFLGMESAGIHETTYNSIMKCDVDIRKDLYA                      |                                                                   |  |  |  |  |  |  |  |
| NTVLSGGTTMYPGIADRMQKEITALAPSTMKIKIIAPPERKYSVWIGGSI                      |                                                                   |  |  |  |  |  |  |  |
|                                                                         | LASLS"                                                            |  |  |  |  |  |  |  |
| ORIGIN                                                                  |                                                                   |  |  |  |  |  |  |  |
| 1 G                                                                     | TTGCGCCCG AGGAGCACCC AGTCCTGCTC ACAGAGGCCC CCCTCAACCC TAAGGCCAAC  |  |  |  |  |  |  |  |

| 61  | AGGGAGAAGA | TGACCCAGAT | CATGTTCGAG | ACCTTCAACG | CCCCCGCCAT | GTATGTCGCC |
|-----|------------|------------|------------|------------|------------|------------|
| 121 | ATCCAGGCTG | TGCTGTCCCT | GTACGCTTCT | GGTCGTACCA | CCGGTATTGT | GCTGGACTCC |
| 181 | GGAGACGGCG | TCACCCACAC | CGTCCCCATC | TATGAAGGTT | ATGCCCTGCC | CCACGCCATC |
| 241 | CTGCGTCTGG | ACTTGGCTGG | CCGTGATCTC | ACTGACTACC | TGATGAAGAT | CCTTACTGAG |
| 301 | CGAGGCTACA | GCTTCACCAC | CACTGCCGAG | CGAGAGATTG | TTCGTGACAT | CAAGGAAAAA |
| 361 | CTCTGCTACG | TGGCCCTGGA | CTTTGAACAA | GAAATGCACA | CCGCCGCCTC | СТССТССТСС |
| 421 | CTGGAGAAGA | GCTACGAAGT | GCCCGATGGA | CAAGTCATCA | CCATTGGAAA | CGAGCGTTTC |
| 481 | AGGTGTCCCG | AGGCTCTGTT | CCAGCCATCC | TTCCTGGGTA | TGGAATCTGC | TGGTATCCAT |
| 541 | GAAACCACCT | ACAACTCCAT | CATGAAGTGT | GATGTTGACA | TCCGTAAAGA | CTTGTACGCC |
| 601 | AACACAGTAT | TGTCTGGTGG | CACCACCATG | TACCCCGGTA | TCGCTGACCG | CATGCAGAAG |
| 661 | GAGATCACTG | CCCTGGCTCC | TAGCACCATG | AAGATCAAGA | TCATTGCTCC | TCCAGAGCGC |
| 721 | AAGTACTCCG | TATGGATCGG | TGGCTCCATC | TTGGCTTCTC | TCTCC      |            |

| LOCUS      | Goniobranchus_kuniei_(Goku16Sa1/NU30) 803 bp DNA                  |  |  |  |  |  |  |  |
|------------|-------------------------------------------------------------------|--|--|--|--|--|--|--|
| DEFINITION | N Goniobranchus_kuniei_(Goku16Sa1/NU30) actin, partial CDS        |  |  |  |  |  |  |  |
| ACCESSION  | ACCESSION not yet submitted to GenBank                            |  |  |  |  |  |  |  |
| SOURCE     | DURCE Goniobranchus kuniei                                        |  |  |  |  |  |  |  |
| ORGANISI   | 4 Goniobranchus kuniei                                            |  |  |  |  |  |  |  |
|            | Eukaryota; Metazoa; Spiralia; Lophotrochozoa; Mollusca;           |  |  |  |  |  |  |  |
|            | Gastropoda; Heterobranchia; Euthyneura; Nudipleura; Nudibranchia; |  |  |  |  |  |  |  |
|            | Doridina; Chromodoridoidea; Chromodorididae; Goniobranchus        |  |  |  |  |  |  |  |
| FEATURES   | Location/Qualifiers                                               |  |  |  |  |  |  |  |
| sour       | ce 1803                                                           |  |  |  |  |  |  |  |
|            | /organism="Goniobranchus kuniei"                                  |  |  |  |  |  |  |  |
|            | /mol_type="genomic DNA"                                           |  |  |  |  |  |  |  |
| CDS        | <1>803                                                            |  |  |  |  |  |  |  |
|            | /codon_start=1                                                    |  |  |  |  |  |  |  |
|            | /product="actin"                                                  |  |  |  |  |  |  |  |
|            | /translation="VAPEEHPVLLTEAPLNPKANREKMTQIMFETFNSPAFYVAIQAVLSLYAF  |  |  |  |  |  |  |  |
|            | GRTTGIVLDSGDGVTHTVPIYEGYALPHAIMKLDLAGRDLTDYLMKILTE                |  |  |  |  |  |  |  |
|            | RGYSFTTTAEREIVRDIKEKLCYVALDFEQEMETASTSSSLEKSYEFPDG                |  |  |  |  |  |  |  |
|            | QVITLGNERFRCPEVLFQPSFLGMETAGIHETIYNSIMKCDVEFGKDLYA                |  |  |  |  |  |  |  |
|            | NTVLSGGSTMFPAIGDRMQKEITALAPPTMKIKIIAPPERKYSVWICSSI                |  |  |  |  |  |  |  |
|            | FVSFPNFYRSWITKQEY"                                                |  |  |  |  |  |  |  |
| ORIGIN     |                                                                   |  |  |  |  |  |  |  |
| 1          | GTTGCGCCCG AGGAGCACCC AGTCCTGCTC ACAGAGGCCC CCCTCAACCC TAAGGCCAAC |  |  |  |  |  |  |  |
| 61         | AGGGAGAAGA TGACCCAAAT CATGTTTGAA ACTTTCAACT CCCCAGCTTT TTATGTCGCT |  |  |  |  |  |  |  |
| 121        | ATCCAGGCTG TACTTTCTCT GTATGCTTTC GGTCGTACCA CAGGTATTGT GCTGGACTCC |  |  |  |  |  |  |  |
| 181        | GGAGACGGCG TCACCCACAC CGTTCCTATC TATGAAGGAT ACGCCCTTCC CCATGCTATC |  |  |  |  |  |  |  |
| 241        | ATGAAACTGG ACTTGGCCGG ACGTGACCTC ACTGACTACC TCATGAAAAT CCTTACAGAA |  |  |  |  |  |  |  |
| 301        | AGAGGTTACA GTTTTACAAC AACTGCTGAG AGAGAAATTG TCCGAGACAT CAAAGAAAAG |  |  |  |  |  |  |  |
| 361        | CTGTGCTACG TTGCTCTTGA TTTTGAACAA GAAATGGAAA CTGCTTCCAC GTCCTCATCC |  |  |  |  |  |  |  |

421 CTTGAAAAAT CTTATGAATT TCCCGATGGT CAAGTGATTA CTCTTGGAAA CGAACGATTT
481 AGGTGTCCTG AAGTTTTGTT TCAACCGTCT TTCTTGGGAA TGGAAACGCC TGGTATCCAC
541 GAAACCATCT ACAATTCCAT TATGAAATGT GATGTGGAAT TCGGAAAAGA CTTGTACGCC
601 AACACAGTTC TTTCTGGTGG TTCCACTATG TTCCCTGCTA TGGCGACCG CATGCAGAAA
661 GAAATAACAG CCCTTGCTCC ACCCACATG AAGATCAAAA TCATTGCCCC TCCGGAACGG
721 AAATACTCGG TTTGGATTG CAGTTCAATC TTTGTTTCTT TTCCCAATT CTACCGAAGT
781 TGGATCACCA AACAGGAGTA TGA

| LOCUS                                              | Goniobranchus_reticulatus_(Gore16Sa1/NU31) 803 bp DNA             |  |  |  |  |  |  |
|----------------------------------------------------|-------------------------------------------------------------------|--|--|--|--|--|--|
| DEFINITION                                         | Goniobranchus_reticulatus_(Gore16Sa1/NU31) actin, partial CDS     |  |  |  |  |  |  |
| ACCESSION                                          | ACCESSION not yet submitted to GenBank                            |  |  |  |  |  |  |
| SOURCE                                             | URCE Goniobranchus reticulatus                                    |  |  |  |  |  |  |
| ORGANISM                                           | 1 Goniobranchus reticulatus                                       |  |  |  |  |  |  |
|                                                    | Eukaryota; Metazoa; Spiralia; Lophotrochozoa; Mollusca;           |  |  |  |  |  |  |
|                                                    | Gastropoda; Heterobranchia; Euthyneura; Nudipleura; Nudibranchia; |  |  |  |  |  |  |
|                                                    | Doridina; Chromodoridoidea; Chromodorididae; Goniobranchus        |  |  |  |  |  |  |
| FEATURES                                           | Location/Qualifiers                                               |  |  |  |  |  |  |
| sourc                                              | ze 1803                                                           |  |  |  |  |  |  |
|                                                    | /organism="Goniobranchus reticulatus"                             |  |  |  |  |  |  |
|                                                    | /mol_type="genomic DNA"                                           |  |  |  |  |  |  |
| CDS                                                | <1>803                                                            |  |  |  |  |  |  |
|                                                    | /codon_start=1                                                    |  |  |  |  |  |  |
|                                                    | /product="actin"                                                  |  |  |  |  |  |  |
|                                                    | /translation="VAPEEHPVLLTEAPLNPKANREKMTQIMFETFNSPAMYVAIQAVLSLYAS  |  |  |  |  |  |  |
| GRTTGIVLDSGDGVTHTVPIYEGYALPHAIMKMDLAGRDLTDYLMKILTE |                                                                   |  |  |  |  |  |  |
| RGYSFTTTAEREIVRDIKEKLSYVALDFEQEMETAANSSSLEKTYEFPDG |                                                                   |  |  |  |  |  |  |
| QVITFGNERFRCPEALFQPSFLGMGTAGVHETTYNSIMKCDVDIRKELYA |                                                                   |  |  |  |  |  |  |
| NTVLSGGSTMFPGIADRMQKEITSLAPPTMKIKIIAPPEGKYSVWICSSI |                                                                   |  |  |  |  |  |  |
|                                                    | FVSFPNFYRSWITKQEY"                                                |  |  |  |  |  |  |
| ORIGIN                                             |                                                                   |  |  |  |  |  |  |
| 1                                                  | GTTGCGCCCG AGGAGCACCC AGTCCTGCTC ACAGAGGCCC CCCTCAACCC TAAGGCCAAC |  |  |  |  |  |  |
| 61                                                 | AGGGAGAAGA TGACTCAAAT CATGTTTGAA ACCTTCAACT CTCCGGCCAT GTATGTCGCT |  |  |  |  |  |  |
| 121                                                | ATTCAGGCTG TGCTTTCCCT CTATGCTTCA GGTCGTACCA CAGGTATTGT GCTGGACTCT |  |  |  |  |  |  |
| 181                                                | GGAGATGGTG TTACCCACAC CGTTCCAATC TACGAAGGTT ACGCTCTGCC CCATGCTATC |  |  |  |  |  |  |
| 241                                                | ATGAAGATGG ATTTGGCCGG GCGTGACCTC ACTGATTATC TTATGAAAAT CCTTACTGAG |  |  |  |  |  |  |
| 301                                                | AGAGGTTACA GTTTTACCAC AACTGCTGAG AGAGAAATTG TCCGTGACAT CAAAGAAAAG |  |  |  |  |  |  |
| 361                                                | CTCTCCTACG TCGCTCTTGA TTTTGAGCAG GAAATGGAAA CTGCTGCCAA TTCTTCATCC |  |  |  |  |  |  |

781 TGGATCACCA AACAGGAGTA TGA

251

421 CTGGAAAAAA CTTACGAATT TCCCGATGGC CAGGTTATTA CATTTGGAAA CGAACGTTTC
481 AGATGCCCTG AGGCTTTGTT TCAGCCCTCT TTCTTGGGAA TGGGAACGGC GGGCGTCCAT
541 GAAACCACCT ACAATTCTAT TATGAAATGT GATGTGGATA TCCGTAAAGA ATTGTACGCC
601 AACACTGTCC TGTCTGGGGG ATCAACAATG TTTCCAGGCA TTGCTGACCG CATGCAGAAA
661 GAAATTACAT CTCTTGCCCC ACCCACCATG AAGATCAAGA TCATTGCCCC TCCGGAAGGG
721 AAATACTCGG TTTGGATTTG CAGTTCAATC TTTGTTTCTT TTCCCAATTT CTACCGAAGT

| LOCUS      | Hypselodoris_emma_BINPACKER_14_10 isoform 1 803 bp mRNA           |  |  |  |  |  |
|------------|-------------------------------------------------------------------|--|--|--|--|--|
| DEFINITION | Hypselodoris_emma_BINPACKER_14_10 isoform 1 actin, partial CDS    |  |  |  |  |  |
| ACCESSION  | not yet submitted to GenBank                                      |  |  |  |  |  |
| SOURCE     | Hypselodoris emma                                                 |  |  |  |  |  |
| ORGANISM   | Hypselodoris emma                                                 |  |  |  |  |  |
|            | Eukaryota; Metazoa; Spiralia; Lophotrochozoa; Mollusca;           |  |  |  |  |  |
|            | Gastropoda; Heterobranchia; Euthyneura; Nudipleura; Nudibranchia; |  |  |  |  |  |
|            | Doridina; Chromodoridoidea; Chromodorididae; Hypselodoris         |  |  |  |  |  |
| FEATURES   | Location/Qualifiers                                               |  |  |  |  |  |
| sourc      | 1803                                                              |  |  |  |  |  |
|            | /organism="Hypselodoris emma"                                     |  |  |  |  |  |
|            | /mol_type="mRNA"                                                  |  |  |  |  |  |
| CDS        | <1>803                                                            |  |  |  |  |  |
|            | /codon_start=1                                                    |  |  |  |  |  |
|            | /product="actin"                                                  |  |  |  |  |  |
|            | /translation="VAPEEHPVLLTEAPLNPKANREKMTQIMFETFNSPAMYVAIQAVLSLYAS  |  |  |  |  |  |
|            | GRTTGIVLDSGDGVSHTVPIYEGYALPHAIIRLDLAGRDLTDYLMKILTE                |  |  |  |  |  |
|            | RGYSFTTTAEREIVRDIKEKLDYVALDFEQEMQTASSSSSLEKSYELPDG                |  |  |  |  |  |
|            | QVITIGNERFRCPEAMFQPSFLGMESAGIHETTYNSIMKCDVDIRKDLYA                |  |  |  |  |  |
|            | NTVLSGGSTMFPGIADRMQKEISALAPPTMKIKIIAPPERKYSVWIGGSI                |  |  |  |  |  |
|            | LASLSTFQQMWISKQEY"                                                |  |  |  |  |  |
| ORIGIN     |                                                                   |  |  |  |  |  |
| 1          | TTGCCCCAG AAGAACATCC TGTCCTTCTC ACAGAAGCTC CACTCAACCC TAAAGCTAAT  |  |  |  |  |  |
| 61         | GAGAAAAAA TGACCCAAAT CATGTTTGAA ACCTTCAACT CCCCAGCCAT GTATGTTGCT  |  |  |  |  |  |
| 121        | TTCAAGCCG TGCTTTCTCT CTATGCTTCA GGTCGTACCA CAGGTATTGT GCTTGATTCT  |  |  |  |  |  |
| 181        | GAGATGGTG TCAGCCACAC AGTTCCAATT TATGAGGGCT ATGCTCTTCC TCATGCTATC  |  |  |  |  |  |
| 241        | TCAGATTGG ATTTGGCTGG AAGGGACCTT ACAGATTACC TTATGAAGAT CCTTACCGAG  |  |  |  |  |  |
| 301        | GAGGTTACA GCTTCACCAC AACTGCTGAA AGAGAAATTG TTCGTGATAT CAAAGAAAAA  |  |  |  |  |  |
| 361        | TAGACTACG TTGCACTTGA CTTTGAGCAA GAAATGCAGA CTGCATCCTC ATCCTCATCT  |  |  |  |  |  |
| 421        | TGGAAAAGA GCTACGAATT GCCAGATGGT CAGGTTATTA CTATTGGAAA TGAACGATTT  |  |  |  |  |  |
| 481        | GGTGCCCGG AGGCCATGTT CCAGCCATCT TTCTTGGGTA TGGAATCAGC TGGTATTCAC  |  |  |  |  |  |
| 541        | AAACTACCT ACAACTCCAT CATGAAATGT GATGTTGATA TCCGTAAAGA CTTGTATGCT  |  |  |  |  |  |
| 601        | ACACCGTCC TCTCTGGTGG CTCCACCATG TTCCCTGGTA TCGCTGATCG TATGCAGAAA  |  |  |  |  |  |
| 661        | AAATTTCAG CACTTGCCCC ACCCACAATG AAGATCAAGA TCATTGCACC TCCTGAGCGT  |  |  |  |  |  |
| 721        | AATACTCTG TATGGATTGG AGGTTCTATT TTGGCATCTT TGTCTACATT TCAACAGATG  |  |  |  |  |  |

781 TGGATCTCCA AACAAGAATA TGA

| LOCUS                                  | H_emma_BINPACKER_187_31 isoform 2 803 bp mRNA                     |  |  |  |  |  |  |  |  |
|----------------------------------------|-------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| DEFINITION                             | ION H_emma_BINPACKER_187_31 isoform 2 actin, partial CDS          |  |  |  |  |  |  |  |  |
| ACCESSION not yet submitted to GenBank |                                                                   |  |  |  |  |  |  |  |  |
| SOURCE                                 | Hypselodoris emma                                                 |  |  |  |  |  |  |  |  |
| ORGANISM                               | NISM Hypselodoris emma                                            |  |  |  |  |  |  |  |  |
|                                        | Eukaryota; Metazoa; Spiralia; Lophotrochozoa; Mollusca;           |  |  |  |  |  |  |  |  |
|                                        | Gastropoda; Heterobranchia; Euthyneura; Nudipleura; Nudibranchia; |  |  |  |  |  |  |  |  |
|                                        | Doridina; Chromodoridoidea; Chromodorididae; Hypselodoris         |  |  |  |  |  |  |  |  |
| TEATURES Location/Qualifiers           |                                                                   |  |  |  |  |  |  |  |  |
| sourc                                  | ce 1803                                                           |  |  |  |  |  |  |  |  |
|                                        | /organism="Hypselodoris emma"                                     |  |  |  |  |  |  |  |  |
|                                        | /mol_type="mRNA"                                                  |  |  |  |  |  |  |  |  |
| CDS                                    | <1>803                                                            |  |  |  |  |  |  |  |  |
|                                        | /codon_start=1                                                    |  |  |  |  |  |  |  |  |
|                                        | /product="actin"                                                  |  |  |  |  |  |  |  |  |
|                                        | /translation="VAPEEHPVLLTEAPLNPKANREKMTQIMFETFNTPAMYVAIQAVLSLYAS  |  |  |  |  |  |  |  |  |
|                                        | GRTTGIVFDSGDGVSHTVPIYEGYALPHAILRLDLAGRDLTDYLMKILTE                |  |  |  |  |  |  |  |  |
|                                        | RGYSFTTTAEREIVRDIKEKLCYVALDFEQEMQTAASSSSMEKSYELPDG                |  |  |  |  |  |  |  |  |
|                                        | QVITIGNERFRCPEALFQPSFLGMESAGIHETCYNSIMKCDVDIRKDLYA                |  |  |  |  |  |  |  |  |
|                                        | NTVLSGGSTMYPGIADRMQKEITALAPPTMKIKIIAPPERKYSVWIGGSI                |  |  |  |  |  |  |  |  |
|                                        | LASLSTFQQMWISKQEY"                                                |  |  |  |  |  |  |  |  |
| ORIGIN                                 |                                                                   |  |  |  |  |  |  |  |  |
| 1                                      | GTTGCACCAG AAGAGCACCC AGTATTGCTG ACAGAGGCTC CCCTCAACCC CAAGGCCAAC |  |  |  |  |  |  |  |  |
| 61                                     | AGAGAAAAGA TGACCCAGAT CATGTTTGAG ACCTTCAACA CACCAGCCAT GTATGTTGCC |  |  |  |  |  |  |  |  |
| 121                                    | ATCCAGGCTG TGTTGTCATT GTATGCATCT GGTCGTACCA CTGGAATCGT GTTCGACTCT |  |  |  |  |  |  |  |  |
| 181                                    | GGAGATGGAG TGTCCCACAC TGTTCCCATC TATGAAGGTT ATGCCCTCCC TCACGCCATC |  |  |  |  |  |  |  |  |
| 241                                    | CTCCGTTTGG ATTTGGCAGG ACGTGATCTA ACTGACTACC TGATGAAGAT CTTGACCGAG |  |  |  |  |  |  |  |  |
| 301                                    | AGAGGTTACT CTTTCACCAC CACTGCTGAA CGTGAAATTG TCCGTGACAT CAAGGAGAAG |  |  |  |  |  |  |  |  |
| 361                                    | TTGTGCTACG TTGCATTGGA CTTTGAACAA GAGATGCAGA CTGCTGCTAG CAGCTCAAGC |  |  |  |  |  |  |  |  |
| 421                                    | ATGGAGAAGA GCTATGAGCT TCCTGATGGT CAAGTGATCA CCATTGGCAA CGAGCGATTC |  |  |  |  |  |  |  |  |
| 481                                    | CGATGCCCTG AGGCTCTCTT CCAACCATCC TTCTTGGGAA TGGAATCAGC TGGTATCCAC |  |  |  |  |  |  |  |  |
| 541                                    | GAGACCTGCT ACAACTCCAT CATGAAGTGT GACGTAGACA TCCGTAAAGA TCTGTATGCC |  |  |  |  |  |  |  |  |
| 601                                    | AACACTGTGT TGTCTGGAGG CAGCACCATG TACCCAGGAA TTGCTGACAG AATGCAGAAG |  |  |  |  |  |  |  |  |
| 661                                    | GAGATCACAG CTTTGGCACC ACCCACAATG AAGATTAAGA TCATTGCTCC ACCAGAGAGG |  |  |  |  |  |  |  |  |
| 721                                    | AAATACTCTG TATGGATTGG TGGCTCCATC TTGGCTTCCC TGTCAACCTT CCAACAGATG |  |  |  |  |  |  |  |  |

781 TGGATCTCCA AACAGGAGTA CGA

| LOCUS      | H_emma_Si   | ingle_97563  | isoform 3    | 803 bp       | mRNA         |                |
|------------|-------------|--------------|--------------|--------------|--------------|----------------|
| DEFINITION | N H_emma_Si | ingle_97563  | isoform 3 a  | actin, parti | ial CDS      |                |
| ACCESSION  | not yet sı  | ubmitted to  | GenBank      |              |              |                |
| SOURCE     | Hypselodd   | oris emma    |              |              |              |                |
| ORGANISM   | A Hypselodd | oris emma    |              |              |              |                |
|            | Eukaryota   | a; Metazoa;  | Spiralia; I  | Lophotrochoz | zoa; Molluso | ca;            |
|            | Gastropo    | oda; Heterol | oranchia; Eu | uthyneura; 1 | Nudipleura;  | Nudibranchia;  |
|            | Doridina    | a; Chromodo: | ridoidea; Cl | nromodoridio | dae; Hypseld | odoris         |
| FEATURES   |             | Location/Qu  | alifiers     |              |              |                |
| sourc      | ce          | 1803         |              |              |              |                |
|            |             | /organism='  | 'Hypselodor  | ls emma"     |              |                |
|            |             | /mol_type='  | 'mRNA"       |              |              |                |
| CDS        |             | <1>803       |              |              |              |                |
|            |             | /codon_star  | rt=1         |              |              |                |
|            |             | /product="a  | actin"       |              |              |                |
|            | /trans      | lation="VAPH | EEHPVLLTEAP  | LNPKSNREKMT  | QIMFETFNAPA  | FYVSIQAVLALYAS |
|            | G           | RTTGVVLDAGD  | GVTHIIPIYEG  | YALPHAIEKMN  | LAGRDLTGYLK  | RILHE          |
|            | R           | GYNFESSSETE  | IVRDVKEKLAY  | IALDFEQEMDA  | AAKSSTIERSY  | ELPDG          |
|            | Q           | MITLGSERFRC  | PEVLFQPSFVG  | VETAGIQEMIY  | NSITKCDIDLR  | RELYN          |
|            | N           | IVLSGGTTMFP  | GIADRLHKELE  | SIAPASNKIKI  | IAPPERKYSVW  | IGGSI          |
|            | L           | GSLSTFQQMWI  | TKQEY"       |              |              |                |
| ORIGIN     |             |              |              |              |              |                |
| 1          | GTGGCACCTG  | AAGAACATCC   | CGTCTTGTTG   | ACAGAAGCTC   | CACTAAACCC   | CAAGTCCAAT     |
| 61         | CGTGAGAAAA  | TGACCCAGAT   | AATGTTCGAA   | ACTTTCAACG   | CGCCAGCTTT   | TTACGTCAGT     |
| 121        | ATTCAGGCGG  | TCCTAGCTCT   | GTACGCTTCA   | GGCAGGACGA   | CAGGCGTGGT   | GTTAGACGCA     |
| 181        | GGAGACGGCG  | TCACCCATAT   | CATTCCAATA   | TACGAAGGCT   | ATGCTCTTCC   | CCACGCTATT     |
| 241        | GAAAAGATGA  | ACTTGGCCGG   | TCGGGACCTC   | ACTGGCTATC   | TCAAGCGAAT   | CCTTCACGAA     |
| 301        | CGAGGTTACA  | ATTTTGAATC   | GTCTTCGGAG   | ACCGAAATAG   | TCCGAGACGT   | AAAGGAAAAG     |
| 361        | CTCGCCTACA  | TCGCTCTGGA   | TTTTGAACAG   | GAGATGGACG   | CAGCAGCCAA   | GTCGTCAACC     |
| 421        | ATCGAAAGAT  | CATACGAACT   | TCCCGATGGT   | CAAATGATTA   | CTCTAGGCTC   | CGAACGATTC     |
| 481        | AGGTGCCCTG  | AAGTTTTGTT   | CCAACCGTCT   | TTCGTGGGAG   | TAGAAACTGC   | CGGCATTCAA     |
| 541        | GAAATGATCT  | ACAACTCCAT   | AACCAAGTGT   | GACATTGATC   | TCCGAAGAGA   | ATTATACAAT     |
| 601        | AACATTGTCC  | TCTCTGGGGG   | AACCACAATG   | TTCCCAGGTA   | TCGCCGATCG   | GTTACACAAA     |
| 661        | GAGTTGGAAT  | CCATTGCCCC   | AGCGAGTAAC   | AAAATCAAGA   | TCATTGCTCC   | TCCCGAACGC     |

- 721 AAATACTCGG TTTGGATTGG TGGATCAATT TTGGGATCTT TGTCAACTTT CCAACAGATG
- 781 TGGATCACTA AACAAGAGTA TGA

| LOCUS             | Hexabranchus_sanguineus/Hypselodoris_(Hysp16Bu1/NU88) 803 bp DNA     |
|-------------------|----------------------------------------------------------------------|
| DEFINITION<br>CDS | Hexabranchus_sanguineus/Hypselodoris_(Hysp16Bu1/NU88) actin, partial |
| ACCESSION         | not yet submitted to GenBank                                         |
| SOURCE            | Hexabranchus sanguineus                                              |
| ORGANISM          | 1 Hexabranchus sanguineus                                            |
|                   | Eukaryota; Metazoa; Spiralia; Lophotrochozoa; Mollusca;              |
|                   | Gastropoda; Heterobranchia; Euthyneura; Nudipleura; Nudibranchia;    |
|                   | Doridina; Chromodoridoidea; Hexabranchidae; Hexabranchus             |
| FEATURES          | Location/Qualifiers                                                  |
| sourc             | e 1803                                                               |
|                   | /organism="Hexabranchus sanguineus"                                  |
|                   | /mol_type="genomic DNA"                                              |
| CDS               | <1>803                                                               |
|                   | /codon_start=1                                                       |
|                   | /product="actin"                                                     |
|                   | /translation="VAPEEHPVLLTEAPLNPKANREKMTQIMFETFNAPAFYVGIQAVLALYSS     |
|                   | GRTTGVVLDAGDGVSHVIPIYKGYALPHAIEKMNLAGRDLTGYLKRILHE                   |
|                   | RGYNFETSSETEIVRDVKEKLAYVAFDFEKEMDTASQSSAVEKSYELPDG                   |
|                   | QMVTLGSERFRCPEVLFQPSFIGMESVGIHEMIYNSVMKCDIDLRRDLYN                   |
|                   | NIVLSGGTTMFPGISNRLHREIEAIAPSGNKIKIVAPHERKYSVWIGGSI                   |
|                   | MGSLSTFQQMWISKQEY"                                                   |
| ORIGIN            |                                                                      |
| 1                 | GTGGCACCTG AAGAGCACCC AGTCTTGCTG ACCGAGGCAC CCCTGAACCC CAAAGCCAAT    |
| 61                | CGAGAGAAAA TGACACAAAT CATGTTTGAA ACATTCAATG CGCCAGCCTT TTACGTCGGT    |
| 121               | ATTCAGGCAG TCCTGGCTTT GTATTCATCT GGGAGGACAA CTGGCGTTGT GTTGGATGCG    |
| 181               | GGAGATGGCG TCAGCCACGT CATTCCAATC TACAAAGGCT ACGCCCTTCC CCATGCCATA    |
| 241               | GAAAAGATGA ATCTAGCCGG CCGAGACCTT ACGGGTTATT TGAAACGCAT CCTTCATGAA    |
| 301               | CGAGGCTACA ACTTTGAAAC GTCGTCTGAG ACAGAGATTG TGCGTGATGT CAAGGAAAAG    |
| 361               | TTGGCATATG TCGCTTTTGA CTTTGAAAAG GAGATGGACA CTGCCAGTCA GTCATCAGCT    |
| 421               | GTCGAAAAAT CTTATGAGTT GCCTGATGGT CAAATGGTTA CCTTGGGCTC TGAACGATTC    |
| 481               | AGGTGTCCAG AGGTTTTGTT CCAGCCATCT TTCATTGGGA TGGAGTCCGT GGGAATCCAT    |
| 541               | GAAATGATCT ATAATTCTGT TATGAAATGT GACATTGATC TGCGGCGGGA CTTGTACAAC    |
| 601               | AACATTGTCT TGTCGGGAGG AACGACCATG TTTCCAGGCA TCTCCAATCG TTTGCATAGG    |

- 661 GAAATTGAAG CCATTGCCCC ATCTGGCAAT AAGATTAAAA TCGTTGCACC TCATGAACGC 721 AAATATTCCG TATGGATTGG AGGATCTATT ATGGGATCTT TGTCAACGTT CCAGCAGATG
- 781 TGGATCAGCA AACAGGAATA TGA

| LOCUS      | Hexabranchus_sanguineus_(Glsp1_17Ba1/NU382) 803 bp DNA            |  |  |  |  |  |  |  |
|------------|-------------------------------------------------------------------|--|--|--|--|--|--|--|
| DEFINITION | Hexabranchus_sanguineus_(Glsp1_17Ba1/NU382) actin, partial CDS    |  |  |  |  |  |  |  |
| ACCESSION  | not yet submitted to GenBank                                      |  |  |  |  |  |  |  |
| SOURCE     | Hexabranchus sanguineus                                           |  |  |  |  |  |  |  |
| ORGANIS    | 1 Hexabranchus sanguineus                                         |  |  |  |  |  |  |  |
|            | Eukaryota; Metazoa; Spiralia; Lophotrochozoa; Mollusca;           |  |  |  |  |  |  |  |
|            | Gastropoda; Heterobranchia; Euthyneura; Nudipleura; Nudibranchia; |  |  |  |  |  |  |  |
|            | Doridina; Chromodoridoidea; Hexabranchidae; Hexabranchus          |  |  |  |  |  |  |  |
| FEATURES   | Location/Qualifiers                                               |  |  |  |  |  |  |  |
| sour       | ce 1803                                                           |  |  |  |  |  |  |  |
|            | /organism="Hexabranchus sanguineus"                               |  |  |  |  |  |  |  |
|            | /mol_type="genomic DNA"                                           |  |  |  |  |  |  |  |
| CDS        | <1>803                                                            |  |  |  |  |  |  |  |
|            | /codon_start=1                                                    |  |  |  |  |  |  |  |
|            | /product="actin"                                                  |  |  |  |  |  |  |  |
|            | /translation="VAPEEHPVLLTEAPLNPKANREKMIQIMFETFNAPAFYVGIQAVLALYSS  |  |  |  |  |  |  |  |
|            | GRTTGVVLDAGDGVSHVIPIYEGYALPHAIEKMNLAGRDLTGYLKRILHE                |  |  |  |  |  |  |  |
|            | RGYNFETSSETEIVRDVKEKLAYVALDFEKEMDTASQSSAVEKSYELPDG                |  |  |  |  |  |  |  |
|            | QMVTLGSERFRCPEVLFQPSFIGMESVGIHEMIYNSVMKCDIDLRRDLYN                |  |  |  |  |  |  |  |
|            | NIVLSGGTTMFPGISNRLHREIEAIAPSGNKIKIVAPHERKYSVWIGGSI                |  |  |  |  |  |  |  |
|            | MGSLSTFQQMWISKQEY"                                                |  |  |  |  |  |  |  |
| ORIGIN     |                                                                   |  |  |  |  |  |  |  |
| 1          | GTGGCACCTG AAGAGCACCC AGTCTTGCTG ACCGAGGCAC CCCTGAACCC CAAAGCCAAT |  |  |  |  |  |  |  |
| 61         | CGAGAGAAAA TGATACAAAT CATGTTTGAA ACATTCAATG CGCCAGCCTT TTACGTCGGT |  |  |  |  |  |  |  |
| 121        | ATTCAGGCAG TCCTGGCTTT GTATTCATCT GGGAGGACAA CTGGCGTTGT GTTGGATGCG |  |  |  |  |  |  |  |
| 181        | GGAGATGGCG TCAGCCATGT CATTCCAATC TACGAAGGCT ACGCCCTTCC CCATGCCATA |  |  |  |  |  |  |  |
| 241        | GAAAAGATGA ATCTAGCCGG CCGAGACCTT ACGGGTTATT TGAAACGCAT CCTTCATGAA |  |  |  |  |  |  |  |

361 TTGGCATATG TCGCTCTTGA CTTTGAAAAG GAGATGGACA CTGCCAGTCA GTCATCAGCT
421 GTCGAAAAAT CCTATGAGCT GCCCGATGGT CAAATGGTTA CCTTGGGCTC TGAACGATTC
481 AGGTGTCCAG AGGTTTTGTT CCAGCCATCT TTCATTGGGA TGGAGTCCGT GGGAATCCAT
541 GAAATGATCT ATAATTCTGT TATGAAATGT GACATTGATC TGCGGCGGGA CTTGTACAAC
601 AACATTGTCT TGTCGGGAGG AACGACCATG TTTCCAGGCA TCTCCAATCG TTTGCATAGG
661 GAAATTGAAG CCATTGCCCC ATCTGGCAAT AAGATTAAAA TCGTTGCACC TCATGAACGC
721 AAATATTCCG TATGGATTGG AGGATCTATT ATGGGATCTT TGTCAACGTT CCAGCAGATG
781 TGGATCAGCA AACAGGAATA TGA

301 CGAGGCTACA ACTTTGAAAC GTCGTCTGAG ACAGAGATTG TGCGTGATGT CAAGGAAAAG

| LOCUS     | Hypselodoris_apolegma_(Hyap17Ba1/NU387) 787 bp DNA                |  |  |  |  |  |  |  |
|-----------|-------------------------------------------------------------------|--|--|--|--|--|--|--|
| DEFINITIO | Hypselodoris_apolegma_(Hyap17Ba1/NU387) actin, partial CDS        |  |  |  |  |  |  |  |
| ACCESSION | not yet submitted to GenBank                                      |  |  |  |  |  |  |  |
| SOURCE    | OURCE Hypselodoris apolegma                                       |  |  |  |  |  |  |  |
| ORGANISI  | Hypselodoris apolegma                                             |  |  |  |  |  |  |  |
|           | Eukaryota; Metazoa; Spiralia; Lophotrochozoa; Mollusca;           |  |  |  |  |  |  |  |
|           | Gastropoda; Heterobranchia; Euthyneura; Nudipleura; Nudibranchia; |  |  |  |  |  |  |  |
|           | Doridina; Chromodoridoidea; Chromodorididae; Hypselodoris         |  |  |  |  |  |  |  |
| FEATURES  | Location/Qualifiers                                               |  |  |  |  |  |  |  |
| sour      | e 1787                                                            |  |  |  |  |  |  |  |
|           | /organism="Hypselodoris apolegma"                                 |  |  |  |  |  |  |  |
|           | /mol_type="genomic DNA"                                           |  |  |  |  |  |  |  |
| CDS       | <1>787                                                            |  |  |  |  |  |  |  |
|           | /codon_start=1                                                    |  |  |  |  |  |  |  |
|           | /product="actin"                                                  |  |  |  |  |  |  |  |
|           | /translation="VAPEEHPVLLTEAPLNPKANREKMTQNMFETFNAPAFYVSIQAVLALYAS  |  |  |  |  |  |  |  |
|           | GRTTGVVLDAGDGVTHIIPIYEGYALPHAIEKMNLAGRDLTGYLKRILHE                |  |  |  |  |  |  |  |
|           | RGYNFDTSSETEIVRDVKEKLAYVALDFEQEMDTAVKSSTVERSYELPDG                |  |  |  |  |  |  |  |
|           | QVITLGSERFRCPEVLFQPSFTGVETAGIHEMIYNSVTKCDIDLRRELYH                |  |  |  |  |  |  |  |
|           | NVVLSGGTTMFPGIADRLHKELESIAPASNKIKIIAPPERKYSVWIGGSI                |  |  |  |  |  |  |  |
|           | LVSLSTFQQMWI"                                                     |  |  |  |  |  |  |  |
| ORIGIN    |                                                                   |  |  |  |  |  |  |  |
| 1         | GTTGCTCCAG AAGAACACCC AGTGCTCCTT ACGGAAGCTC CCCTTAACCC TAAAGCCAAC |  |  |  |  |  |  |  |
| 61        | CGTGAGAAAA TGACCCAGAA TATGTTCGAA ACTTTCAACG CGCCAGCTTT TTACGTCAGT |  |  |  |  |  |  |  |
| 121       | ATTCAGGCGG TGCTAGCTCT GTACGCTTCA GGCAGGACGA CGGGCGTGGT GTTAGACGCA |  |  |  |  |  |  |  |
| 181       | GGCGACGGTG TCACTCATAT CATTCCAATA TATGAGGGCT ATGCTCTGCC TCATGCTATT |  |  |  |  |  |  |  |
| 241       | GAAAAGATGA ACTTGGCCGG CCGGGATCTT ACTGGCTACC TCAAGCGAAT CCTTCACGAG |  |  |  |  |  |  |  |

| 181 | GGCGACGGTG | TCACTCATAT | CATTCCAATA | TATGAGGGCT | ATGCTCTGCC | TCATGCTATT |
|-----|------------|------------|------------|------------|------------|------------|
| 241 | GAAAAGATGA | ACTTGGCCGG | CCGGGATCTT | ACTGGCTACC | TCAAGCGAAT | CCTTCACGAG |
| 301 | CGAGGTTACA | ATTTTGATAC | GTCTTCGGAG | ACCGAAATAG | TTCGAGACGT | GAAGGAAAAG |
| 361 | CTGGCCTACG | TCGCTCTGGA | TTTTGAGCAG | GAGATGGACA | CAGCCGTCAA | GTCGTCAACA |
| 421 | GTCGAAAGGT | CTTACGAACT | TCCCGATGGT | CAAGTGATTA | CTCTGGGCTC | CGAACGATTT |
| 481 | AGGTGCCCCG | AAGTTCTCTT | CCAACCCTCT | TTCACAGGAG | TGGAAACTGC | CGGCATCCAC |
| 541 | GAAATGATCT | ACAACTCTGT | AACCAAGTGT | GACATTGATC | TACGAAGAGA | ATTGTACCAT |
| 601 | AACGTTGTCC | TGTCTGGGGG | AACCACAATG | TTCCCAGGTA | TAGCCGATCG | GTTACACAAA |
| 661 | GAGTTGGAAT | CCATTGCCCC | AGCCAGTAAC | ААААТСАААА | TCATTGCCCC | TCCCGAGCGC |
| 721 | AAATACTCTG | TTTGGATTGG | AGGATCCATC | TTGGTGTCTT | TGTCAACCTT | CCAGCAGATG |
| 781 | TGGATCA    |            |            |            |            |            |

257

| LOCUS      | Hypselodo                    | oris_bulloc                                                | cii_(Hybu16B | Bul/NU86)   | 786 bp      | DNA             |  |  |  |
|------------|------------------------------|------------------------------------------------------------|--------------|-------------|-------------|-----------------|--|--|--|
| DEFINITION | N Hypselodo                  | Hypselodoris_bullockii_(Hybu16Bu1/NU86) actin, partial CDS |              |             |             |                 |  |  |  |
| ACCESSION  | not yet su                   | abmitted to                                                | GenBank      |             |             |                 |  |  |  |
| SOURCE     | OURCE Hypselodoris bullockii |                                                            |              |             |             |                 |  |  |  |
| ORGANISI   | M Hypselodo                  | oris bullocł                                               | xii          |             |             |                 |  |  |  |
|            | Eukaryota                    | ; Metazoa;                                                 | Spiralia; 1  | Lophotrocho | zoa; Mollu  | sca;            |  |  |  |
|            | Gastropo                     | oda; Heterok                                               | oranchia; Eu | uthyneura;  | Nudipleura  | ; Nudibranchia; |  |  |  |
|            | Doridina                     | a; Chromodoi                                               | ridoidea; Cl | hromodoridi | dae; Hypse  | lodoris         |  |  |  |
| FEATURES   |                              | Location/Qu                                                | alifiers     |             |             |                 |  |  |  |
| sour       | ce                           | 1786                                                       |              |             |             |                 |  |  |  |
|            |                              | /organism='                                                | 'Hypselodori | is bullocki | i"          |                 |  |  |  |
|            |                              | /mol_type='                                                | 'genomic DNA | A. <b></b>  |             |                 |  |  |  |
| CDS        |                              | <1>786                                                     |              |             |             |                 |  |  |  |
|            |                              | /codon_star                                                | rt=1         |             |             |                 |  |  |  |
|            |                              | /product="a                                                | actin"       |             |             |                 |  |  |  |
|            | /trans]                      | lation="VAPH                                               | EEHPVLLTEAP  | LNPKANREKMT | QIMFETFNSP  | AMYVAIQAVLSLYAS |  |  |  |
|            | G                            | RTTGIVLDSGD                                                | GVSHTVPIYEG  | YALPHAILRLI | DLAGRDLTDYI | LMKILTE         |  |  |  |
|            | R                            | GYSFTTTAERE                                                | IVRDIKEKLSY  | VALDFEQEMK  | TAAESSSLEKS | SYELPDG         |  |  |  |
|            | Q                            | VITIGNERFRC                                                | PEAMLQPSFLG  | MESAGIHETT  | YNSIMKCDVD  | IRKDLYA         |  |  |  |
|            | N                            | TVLSGGSTMFP                                                | GIADRMQKEIT  | ALAPPTMKIK  | IIAPPEREYS  | WIGGSIL         |  |  |  |
|            | ASLSTFQQMWI"                 |                                                            |              |             |             |                 |  |  |  |
| ORIGIN     |                              |                                                            |              |             |             |                 |  |  |  |
| 1          | GTTGCTCCAG                   | AAGAACACCC                                                 | AGTGCTCCTT   | ACGGAAGCTC  | CCCTTAACC   | C TAAAGCCAAC    |  |  |  |
| 61         | AGAGAAAAGA                   | TGACTCAAAT                                                 | CATGTTTGAA   | ACCTTCAACT  | CACCGGCTA   | T GTACGTCGCT    |  |  |  |
| 121        | ATCCAAGCTG                   | TGCTTTCTCT                                                 | TTATGCTTCA   | GGTCGTACCA  | CAGGTATCG   | T GCTTGACTCT    |  |  |  |
| 181        | GGAGATGGCG                   | TCAGCCATAC                                                 | GGTTCCAATC   | TATGAAGGTT  | ACGCACTTC   | C TCATGCCATC    |  |  |  |
| 241        | CTAAGATTGG                   | ATCTGGCGGG                                                 | ACGTGATCTC   | ACAGACTATT  | TGATGAAAA   | T CCTAACAGAG    |  |  |  |

241 CTARGATTGG ATCTGGCGGG ACGTGATCTC ACAGACTATT TGATGAAAAT CCTAACAGAG
301 AGAGGTTACA GTTTCACTAC AACTGCTGAA AGAGAAATTG TCAGAGACAT TAAAGAAAAA
361 TTATCCTACG TCGCTCTTGA TTTTGAACAG GAAATGAAAA CCGCAGCCGA ATCTTCCTCC
421 CTGGAAAAGA GTTACGAATT ACCCGACGGG CAGGTGATCA CAATTGGCAA CGAGCGGTTC
481 AGATGTCCAG AAGCCATGCT CCAGCCCTCT TTCTTGGGTA TGGAATCAGC TGGTATCCAT
541 GAAACCACGT ACAATTCTAT TATGAAGTGT GATGTGGATA TCCGTAAGGA CTTGTATGCA
601 AACACTGTCC TGTCTGGAGG CTCCACTATG TTCCCTGGCA TCGCTGATCG TATGCAGAGG
661 GAAATAACTG CGCTTGCTCC ACCTACCATG AAGATCAAAA TCATTGCACC TCCCGAGCGT
721 GAATACTCTG TATGGATTGG AGGATCTATC CTGGCATCTT TGTCAACATT CCAACAGATG
781 TGGATC

| LOCUS      | Hypselodo  | oris_maculos                                                 | sa_1_(Hyma17 | /Ba1/NU388)  | 787 bp      | DNA            |  |  |
|------------|------------|--------------------------------------------------------------|--------------|--------------|-------------|----------------|--|--|
| DEFINITION | Hypselodo  | Hypselodoris_maculosa_1_(Hyma17Ba1/NU388) actin, partial CDS |              |              |             |                |  |  |
| ACCESSION  | not yet sı | abmitted to                                                  | GenBank      |              |             |                |  |  |
| SOURCE     | Hypselodo  | oris maculos                                                 | sa           |              |             |                |  |  |
| ORGANISM   | Hypselodo  | oris maculos                                                 | sa           |              |             |                |  |  |
|            | Eukaryota  | ; Metazoa;                                                   | Spiralia; I  | Cophotrochoz | zoa; Mollus | ca;            |  |  |
|            | Gastropo   | oda; Heterol                                                 | oranchia; Eu | uthyneura; N | Nudipleura; | Nudibranchia;  |  |  |
|            | Doridina   | a; Chromodo                                                  | ridoidea; Cl | nromodoridio | dae; Hypsel | odoris         |  |  |
| FEATURES   |            | Location/Qu                                                  | alifiers     |              |             |                |  |  |
| sourc      | е          | 1787                                                         |              |              |             |                |  |  |
|            |            | /organism='                                                  | 'Hypselodori | is maculosa' | ,           |                |  |  |
|            |            | /mol_type='                                                  | 'genomic DNA | 7            |             |                |  |  |
| CDS        |            | <1>787                                                       |              |              |             |                |  |  |
|            |            | /codon_star                                                  | rt=1         |              |             |                |  |  |
|            |            | /product="a                                                  | actin"       |              |             |                |  |  |
|            | /trans]    | lation="VAPH                                                 | EEHPVLLTEAPI | LNPKANREKMT( | QIMFETFNAPA | FYVSIQAVLALYAS |  |  |
|            | G          | RTTGVVLDAGD                                                  | GVTHIIPIYEG  | YALPHAIEKMN  | LAGRDLTGYLF | KRILHE         |  |  |
|            | R          | GYNFESSSETE                                                  | IVRDVKEKLAY  | VALDFEQEMDA  | AAKSSTIERSY | YELPDG         |  |  |
|            | Q          | VITLGSERFRC                                                  | PEVLFQPSFVG  | VETAGIHEMIY  | NSITKCDIDLF | RRELYN         |  |  |
|            | N          | IVLSGGTTMFP                                                  | GIADRLHKELE  | SIAPASNKIKI  | IAPPERKYSVV | IIGGSI         |  |  |
|            | L          | GSLSTFQQMWI                                                  |              |              |             |                |  |  |
| ORIGIN     |            |                                                              |              |              |             |                |  |  |
| 1          | GTTGCTCCAG | AAGAACACCC                                                   | AGTGCTCCTT   | ACGGAAGCTC   | CCCTTAACCC  | TAAAGCCAAC     |  |  |
| 61         | CGTGAGAAAA | TGACCCAGAT                                                   | AATGTTCGAA   | ACTTTCAACG   | CGCCAGCTTT  | TTACGTCAGT     |  |  |
| 121        | ATCCAGGCGG | TCCTAGCTCT                                                   | GTACGCTTCA   | GGCAGGACGA   | CAGGCGTGGT  | GTTAGACGCA     |  |  |
| 181        | GGAGACGGCG | TCACCCATAT                                                   | CATTCCAATA   | TACGAGGGCT   | ATGCTCTGCC  | CCACGCTATT     |  |  |
| 241        | GAAAAGATGA | ACTTGGCCGG                                                   | TCGGGATCTC   | ACTGGCTATC   | TCAAGCGAAT  | CCTTCACGAA     |  |  |

781 TGGATCA

259

301 CGAGGTTACA ATTTTGAATC GTCTTCCGAG ACCGAAATAG TCCGAGACGT GAAGGAAAAG
361 CTGGCCTACG TCGCTCTGGA TTTTGAACAG GAGATGGACG CAGCAGCCAA GTCGTCAACC
421 ATCGAAAGAT CTTACGAACT TCCCGATGGT CAAGTGATTA CTCTGGGCTC CGAACGATTT
481 AGGTGCCCTG AAGTTTTGTT TCAACCGTCT TTCGTGGGAG TGGAAACTGC CGGCATTCAC
541 GAAATGATCT ACAACTCCAT AACCAAGTGT GACATTGATC TCCGAAGAGA ATTGTACAAT
601 AACATTGTCT TGTCTGGAGG AACCACAATG TTCCCAGGTA TCGCCGATCG GTTACACAAA
661 GAGTTGGAAT CCATTGCCCC AGCCAGTAAC AAAATCAAGA TCATTGCTCC TCCCGAACGC
721 AAATACTCGG TTTGGATTGG TGGATCAATC TTGGGATCTT TGTCAACCTT CCAGCAGTG

| LOCUS      | Hypselodoris_maculosa_2_(Hyma17Ba2/NU389) 787 bp DNA              |  |  |  |  |  |  |  |
|------------|-------------------------------------------------------------------|--|--|--|--|--|--|--|
| DEFINITION | Hypselodoris_maculosa_2_(Hyma17Ba2/NU389) actin, partial CDS      |  |  |  |  |  |  |  |
| ACCESSION  | ACCESSION not yet submitted to GenBank                            |  |  |  |  |  |  |  |
| SOURCE     | Hypselodoris maculosa                                             |  |  |  |  |  |  |  |
| ORGANISM   | Hypselodoris maculosa                                             |  |  |  |  |  |  |  |
|            | Eukaryota; Metazoa; Spiralia; Lophotrochozoa; Mollusca;           |  |  |  |  |  |  |  |
|            | Gastropoda; Heterobranchia; Euthyneura; Nudipleura; Nudibranchia; |  |  |  |  |  |  |  |
|            | Doridina; Chromodoridoidea; Chromodorididae; Hypselodoris         |  |  |  |  |  |  |  |
| FEATURES   | Location/Qualifiers                                               |  |  |  |  |  |  |  |
| sourc      | e 1787                                                            |  |  |  |  |  |  |  |
|            | /organism="Hypselodoris maculosa"                                 |  |  |  |  |  |  |  |
|            | /mol_type="genomic DNA"                                           |  |  |  |  |  |  |  |
| CDS        | <1>787                                                            |  |  |  |  |  |  |  |
|            | /codon_start=1                                                    |  |  |  |  |  |  |  |
|            | /product="actin"                                                  |  |  |  |  |  |  |  |
|            | /translation="VAPEEHPVLLTEAPLNPKANREKMTQIMFETFNAPAFYVSIQAVLALYAS  |  |  |  |  |  |  |  |
|            | GRTTGVVLDAGDGVTHIIPIYEGYALPHAVEKMNLAGRDLTGYLKRILHE                |  |  |  |  |  |  |  |
|            | RGYNFESSSETEIVRDVKEKLAYVALDFEQEMDAAAKSSTIERSYELPDG                |  |  |  |  |  |  |  |
|            | QMITLGSERFRCPEVLFQPSFIGVETAGIHEMIYNSITKCDIDIRRELYN                |  |  |  |  |  |  |  |
|            | NIVLSGGTTMFPGIADRLHKELESVAPASNKIKIIAPPERKFSVWIGGSI                |  |  |  |  |  |  |  |
|            | LGSLSTFQQMWI"                                                     |  |  |  |  |  |  |  |
| ORIGIN     |                                                                   |  |  |  |  |  |  |  |
| 1          | GTTGCTCCAG AAGAACACCC AGTGCTCCTT ACGGAAGCTC CCCTTAACCC TAAAGCCAAC |  |  |  |  |  |  |  |
| 61         | CGTGAGAAAA TGACCCAGAT AATGTTCGAA ACTTTCAACG CGCCAGCTTT TTACGTCAGT |  |  |  |  |  |  |  |
| 121        | ATCCAGGCGG TCCTAGCTCT GTACGCTTCA GGCAGGACGA CAGGCGTGGT GTTAGACGCA |  |  |  |  |  |  |  |
| 181        | GGAGACGGCG TCACCCATAT CATTCCAATA TACGAGGGCT ATGCTCTGCC CCACGCTGTT |  |  |  |  |  |  |  |
| 241        | GAAAAGATGA ACTTGGCCGG TCGGGACCTC ACTGGCTATC TCAAGCGGAT CCTTCACGAA |  |  |  |  |  |  |  |
| 301        | CGAGGTTACA ATTTTGAATC GTCTTCGGAG ACCGAAATAG TCCGAGACGT GAAGGAAAAG |  |  |  |  |  |  |  |

781 TGGATCA

//

361 CTGGCCTACG TCGCTCTGGA TTTTGAACAG GAGATGGACG CAGCAGCCAA GTCGTCAACC
421 ATCGAAAGAT CTTACGAACT TCCCGATGGT CAAATGATTA CTCTGGGCTC CGAACGATTT
481 AGGTGCCCTG AAGTTTTGTT CCAACCGTCT TTCATTGGAG TGGAAACTGC CGGCATTCAC
541 GAAATGATCT ACAACTCCAT AACCAAGTGT GACATTGATA TCCGAAGAGA ACTGTACAAT
601 AACATTGTCC TGTCTGGGGG AACCACAATG TTCCCAGGTA TCGCCGATCG GTTACACAAA
661 GAGTTGGAAT CCGTCGCCCC AGCCAGTAAC AAAATCAAGA TCATTGCTCC TCCCGAGCGC
721 AAATTCTCGG TTTGGATTGG TGGATCAATC TTGGGATCTT TGTCAACCTT CCAGCAGATG

| LOCUS      | Hypselodo                              | oris_maridad                                                    | dilus_(Hyma) | ci17Ba1/NU39 | 90) 784     | bp Dì     | JA      |  |  |
|------------|----------------------------------------|-----------------------------------------------------------------|--------------|--------------|-------------|-----------|---------|--|--|
| DEFINITION | Hypselodd                              | Hypselodoris_maridadilus_(Hymari17Ba1/NU390) actin, partial CDS |              |              |             |           |         |  |  |
| ACCESSION  | ACCESSION not yet submitted to GenBank |                                                                 |              |              |             |           |         |  |  |
| SOURCE     | Hypselodo                              | oris maridad                                                    | dilus        |              |             |           |         |  |  |
| ORGANISM   | 1 Hypselodd                            | oris maridad                                                    | dilus        |              |             |           |         |  |  |
|            | Eukaryota                              | a; Metazoa;                                                     | Spiralia; I  | Cophotrochoz | zoa; Mollus | ca;       |         |  |  |
|            | Gastropo                               | oda; Heterol                                                    | oranchia; Eu | uthyneura; N | Nudipleura; | Nudibra   | anchia; |  |  |
|            | Doridina                               | a; Chromodo:                                                    | ridoidea; Cl | nromodoridio | dae; Hypsel | odoris    |         |  |  |
| FEATURES   |                                        | Location/Qu                                                     | alifiers     |              |             |           |         |  |  |
| sourc      | ce                                     | 1784                                                            |              |              |             |           |         |  |  |
|            |                                        | /organism='                                                     | 'Hypselodori | is maridadil | lus"        |           |         |  |  |
|            |                                        | /mol_type='                                                     | 'genomic DNA | 7            |             |           |         |  |  |
| CDS        |                                        | <1>784                                                          |              |              |             |           |         |  |  |
|            |                                        | /codon_star                                                     | rt=1         |              |             |           |         |  |  |
|            |                                        | /product="a                                                     | actin"       |              |             |           |         |  |  |
|            | /trans]                                | lation="VAPH                                                    | EEHPVLLTEAPI | LNPKANREKMTÇ | QIMFETFNSPA | MYVAIQA   | VLSLYAS |  |  |
|            | G                                      | RTTGIVLDSGD                                                     | GVTHTVPIYEG  | YALPHAIMRLD  | LAGRDLTDYL  | MKILTE    |         |  |  |
|            | R                                      | GYSFTTTAERE                                                     | IVRDIKEKLCY  | VALDFEQEMGT  | AASSSTLEKS  | YELPDG    |         |  |  |
|            | Q                                      | VITIGNERFRI                                                     | PEAMFQPSFLG  | MESAGVHETTY  | NSIMKCDVDI  | RKDLYA    |         |  |  |
|            | N                                      | TVLSGGSTMYP                                                     | GIADRMQKEIT  | ALAPSTMKIKI  | IAPPEREYSV  | WIGGSI    |         |  |  |
|            | L                                      | ASLSTFQQMW"                                                     |              |              |             |           |         |  |  |
| ORIGIN     |                                        |                                                                 |              |              |             |           |         |  |  |
| 1          | GTTGCTCCAG                             | AAGAACACCC                                                      | AGTGCTCCTT   | ACGGAAGCTC   | CCCTTAACCC  | TAAAGCO   | CAAC    |  |  |
| 61         | AGAGAAAAGA                             | TGACCCAAAT                                                      | CATGTTTGAA   | ACCTTCAACT   | CACCGGCTAT  | GTATGT    | GGCT    |  |  |
| 121        | ATTCAAGCTG                             | TGCTTTCTCT                                                      | CTATGCCTCA   | GGCCGTACCA   | CAGGTATCGT  | GCTTGAG   | CTCC    |  |  |
| 181        | GGAGACGGTG                             | TTACCCATAC                                                      | GGTCCCAATC   | TATGAAGGAT   | ACGCCCTTCC  | CCATGCA   | AATC    |  |  |
| 241        | ATGAGACTGG                             | ATTTGGCGGG                                                      | ACGTGACCTC   | ACGGACTACC   | TTATGAAAAT  | CCTGAC    | AGAG    |  |  |
| 301        | AGAGGTTACA                             | GTTTCACCAC                                                      | CACCGCGGAG   | AGAGAAATTG   | TCCGTGACAT  | ' TAAAGAA | AAG     |  |  |

781 TGGA

261

361 CTCTGCTACG TCGCTCTTGA TTTTGAACAA GAAATGGGCA CTGCGGCATC TTCCTCTACC
421 CTTGAGAAAA GCTACGAGCT TCCCGACGGG CAAGTCATCA CCATTGGAAA CGAGCGATTC
481 AGAACTCCGG AAGCGATGTT CCAGCCATCG TTTTTGGGAA TGGAATCGGC AGGCGTCCAT
541 GAGACTACGT ACAATTCCAT CATGAAATGT GATGTTGACA TCCGGAAAGA TCTGTACGCC
601 AATACCGTTC TCTCTGGTGG TTCTACCATG TACCCAGGCA TTGCTGACCG TATGCAAAAA
661 GAGATAACGG CCCTTGCTCC AAGCACCATG AAGATCAAGA TCATTGCACC TCCCGAGCGT
721 GAATACTCTG TATGGATTGG AGGATCTATC CTGGCATCTT TGTCAACATT CCAACAGATG

| LOCUS      | Hypselodoris_tryoni_(Hytr17Ba1/NU90) 747 bp DNA                   |  |  |  |  |  |  |  |  |
|------------|-------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| DEFINITION | Hypselodoris_tryoni_(Hytr17Ba1/NU90) actin, partial CDS           |  |  |  |  |  |  |  |  |
| ACCESSION  | not yet submitted to GenBank                                      |  |  |  |  |  |  |  |  |
| SOURCE     | Hypselodoris tryoni                                               |  |  |  |  |  |  |  |  |
| ORGANISM   | Hypselodoris tryoni                                               |  |  |  |  |  |  |  |  |
|            | Eukaryota; Metazoa; Spiralia; Lophotrochozoa; Mollusca;           |  |  |  |  |  |  |  |  |
|            | Gastropoda; Heterobranchia; Euthyneura; Nudipleura; Nudibranchia; |  |  |  |  |  |  |  |  |
|            | Doridina; Chromodoridoidea; Chromodorididae; Hypselodoris         |  |  |  |  |  |  |  |  |
| FEATURES   | Location/Qualifiers                                               |  |  |  |  |  |  |  |  |
| sourc      | source 1747                                                       |  |  |  |  |  |  |  |  |
|            | /organism="Hypselodoris tryoni"                                   |  |  |  |  |  |  |  |  |
|            | /mol_type="genomic DNA"                                           |  |  |  |  |  |  |  |  |
| CDS        | <1>747                                                            |  |  |  |  |  |  |  |  |
|            | /codon_start=1                                                    |  |  |  |  |  |  |  |  |
|            | /product="actin"                                                  |  |  |  |  |  |  |  |  |
|            | /translation="VAPEEHPVLLTEAPLNPKANREKMTQIMFETFNTPAMYVAIQAVLSLYAS  |  |  |  |  |  |  |  |  |
|            | GRTTGIVMDSGDGVSHTVPIYEGYALPHAIMRLDLAGRDLTDYLMKIMTE                |  |  |  |  |  |  |  |  |
|            | RGYSFTTTAEREIVRDIKEKLCYVALDFEQEMQTASSSSSLEKTYELPDG                |  |  |  |  |  |  |  |  |
|            | QVITIGNERFRCPEAMFQPSFLGMESAGVHETTYNSIMKCDVDIRKDLYA                |  |  |  |  |  |  |  |  |
|            | NTVLSGGSTMFPGIADRMQKEITALAPPTMKIKIIAPPERKYSVWIGGS"                |  |  |  |  |  |  |  |  |
| ORIGIN     |                                                                   |  |  |  |  |  |  |  |  |
| 1          | GTTGCCCCAG AAGAACATCC AGTTCTTCTC ACAGAAGCTC CTCTCAACCC TAAAGCCAAC |  |  |  |  |  |  |  |  |
| 61         | AGAGAAAAGA TGACTCAAAT CATGTTTGAA ACCTTCAACA CACCAGCAAT GTATGTAGCC |  |  |  |  |  |  |  |  |
| 121        | ATTCAAGCGG TACTTTCTCT TTATGCTTCG GGTCGTACCA CAGGTATTGT GATGGACTCT |  |  |  |  |  |  |  |  |
| 181        | GGAGATGGTG TTTCTCACAC AGTCCCTATC TATGAAGGAT ACGCTCTTCC TCATGCAATA |  |  |  |  |  |  |  |  |
| 241        | ATGAGACTGG ATTTAGCTGG ACGTGACCTT ACCGATTACC TCATGAAAAT CATGACAGAG |  |  |  |  |  |  |  |  |
| 301        | AGAGGCTATA GCTTTACAAC CACTGCTGAG AGAGAAATTG TACGTGATAT AAAAGAAAAA |  |  |  |  |  |  |  |  |
| 361        | CTATGCTATG TTGCTCTTGA TTTTGAACAA GAGATGCAAA CGGCTTCATC GTCCTCATCT |  |  |  |  |  |  |  |  |
| 421        | CTTGAAAAGA CCTATGAATT GCCCGATGGA CAAGTTATCA CCATTGGAAA CGAGCGATTC |  |  |  |  |  |  |  |  |
| 481        | AGGTGTCCAG AAGCTATGTT TCAGCCATCT TTCTTGGGCA TGGAAAGTGC TGGTGTCCAT |  |  |  |  |  |  |  |  |
| 541        | GAAACCACGT ACAATTCTAT AATGAAATGT GACGTAGACA TCCGTAAAGA CCTGTACGCA |  |  |  |  |  |  |  |  |
| 601        | AACACTGTTT TGTCTGGAGG TTCCACAATG TTTCCTGGCA TTGCTGACCG CATGCAGAAG |  |  |  |  |  |  |  |  |
| 661        | GAAATTACAG CTCTTGCTCC TCCCACCATG AAAATCAAAA TCATTGCACC TCCAGAGCGT |  |  |  |  |  |  |  |  |

721 AAGTACTCTG TATGGATTGG AGGCTCT //

| LOCUS      | Miamira_s                              | spec_(Misp17                                                 | 7Ba_1/NU395) | isoform 1    | 756 bp       | DNA            |  |  |
|------------|----------------------------------------|--------------------------------------------------------------|--------------|--------------|--------------|----------------|--|--|
| DEFINITION | N Miamira_s                            | Miamira_spec.(Misp17Ba_1/NU395) isoform 1 actin, partial CDS |              |              |              |                |  |  |
| ACCESSION  | ACCESSION not yet submitted to GenBank |                                                              |              |              |              |                |  |  |
| SOURCE     | Miamira s                              | Miamira spec. Misp17Ba_1/NU395                               |              |              |              |                |  |  |
| ORGANISM   | 4 Miamira s                            | spec. Mispl                                                  | 7Ba_1/NU395  |              |              |                |  |  |
|            | Eukaryota                              | a; Metazoa;                                                  | Spiralia; 1  | Cophotrochoz | zoa; Molluso | ca;            |  |  |
|            | Gastropo                               | oda; Heterol                                                 | oranchia; Eu | uthyneura; 1 | Nudipleura;  | Nudibranchia;  |  |  |
|            | Doridina                               | a; Chromodo                                                  | ridoidea; Cl | nromodoridio | dae; Miamira | a              |  |  |
| FEATURES   |                                        | Location/Qu                                                  | alifiers     |              |              |                |  |  |
| sourc      | ce                                     | 1756                                                         |              |              |              |                |  |  |
|            |                                        | /organism='                                                  | 'Miamira spe | ec. Misp17Ba | a_1/NU395"   |                |  |  |
|            |                                        | /mol_type='                                                  | 'genomic DNA | 7            |              |                |  |  |
| CDS        |                                        | <1>756                                                       |              |              |              |                |  |  |
|            |                                        | /codon_star                                                  | ct=1         |              |              |                |  |  |
|            |                                        | /product="a                                                  | actin"       |              |              |                |  |  |
|            | /trans                                 | lation="VAPH                                                 | EEHPTLLTEAP  | LNPKANREKMT  | QIMFETFNSPAN | MYVAIQAVLSLYAS |  |  |
|            | G                                      | RTTGIVLDSGD                                                  | GVTHTVPIYEG  | YALPHAIMRLN  | LAGRDLTDYLM  | IKILTE         |  |  |
|            | R                                      | GYSFTTTAERE                                                  | IVRDIKEKLCY  | VALDFEQEMQI  | AASSSSLENSY  | ELPDG          |  |  |
|            | Q                                      | VITIGNERFRC                                                  | PEAMFQPSFLG  | MESAGIHETTY  | NSIMKCDVDIR  | KDLYA          |  |  |
|            | N                                      | TVLSGGSTMFP                                                  | GIADRMQKEIS  | ALAPPTMKIKI  | IAPPERKYSVW  | IGSSILV"       |  |  |
| ORIGIN     |                                        |                                                              |              |              |              |                |  |  |
| 1          | GTGGCACCTG                             | AGGAACATCC                                                   | CACCTTATTG   | ACGGAGGCTC   | CTCTCAACCC   | AAAAGCCAAC     |  |  |
| 61         | AGAGAAAAGA                             | TGACCCAAAT                                                   | CATGTTTGAG   | ACCTTTAACT   | CACCCGCCAT   | GTACGTGGCT     |  |  |
| 121        | ATTCAAGCTG                             | TGCTTTCTCT                                                   | CTATGCTTCA   | GGTCGTACCA   | CAGGTATTGT   | GCTGGATTCC     |  |  |
| 181        | GGAGATGGTG                             | TCACACACAC                                                   | TGTTCCCATC   | TATGAGGGAT   | ATGCTCTTCC   | CCATGCCATC     |  |  |
| 241        | ATGAGATTGA                             | ATTTGGCTGG                                                   | ACGTGACCTA   | ACCGATTACC   | TTATGAAGAT   | CCTTACGGAG     |  |  |
| 301        | AGAGGCTACA                             | GTTTCACCAC                                                   | CACTGCTGAA   | AGGGAAATTG   | TCCGTGATAT   | TAAAGAAAAG     |  |  |
| 361        | CTCTGCTACG                             | TTGCTCTTGA                                                   | TTTTGAACAA   | GAAATGCAAA   | CAGCTGCATC   | TTCTTCTTCT     |  |  |
| 421        | CTTGAAAATA                             | GTTACGAATT                                                   | ACCTGATGGC   | CAAGTCATCA   | CCATTGGAAA   | CGAGCGATTC     |  |  |
| 481        | AGGTGTCCTG                             | AAGCCATGTT                                                   | TCAACCATCT   | TTCTTGGGTA   | TGGAATCTGC   | TGGTATCCAT     |  |  |
| 541        | GAAACCACTT                             | ACAATTCTAT                                                   | TATGAAGTGT   | GATGTGGACA   | TCCGTAAAGA   | TTTGTATGCA     |  |  |
| 601        | AACACTGTCT                             | TGTCTGGAGG                                                   | CTCCACCATG   | TTCCCTGGTA   | TTGCTGACCG   | CATGCAGAAG     |  |  |

721 AAATATTCTG TATGGATCGG AAGCTCCATC CTCGTC //

263

661 GAAATCTCAG CTCTTGCTCC ACCCACCATG AAGATCAAAA TCATCGCACC TCCAGAGCGT

| LOCUS                                                 | Miamira_spec(Misp17Ba_1/NU395) isoform 2 756 bp DNA               |  |  |  |  |  |
|-------------------------------------------------------|-------------------------------------------------------------------|--|--|--|--|--|
| DEFINITION                                            | Miamira_spec(Misp17Ba_1/NU395) isoform 2 actin, partial CDS       |  |  |  |  |  |
| ACCESSION not yet submitted to GenBank                |                                                                   |  |  |  |  |  |
| SOURCE                                                | Miamira spec. (Misp17Ba_1/NU395)                                  |  |  |  |  |  |
| ORGANISM                                              | Miamira spec. (Misp17Ba_1/NU395)                                  |  |  |  |  |  |
|                                                       | Eukaryota; Metazoa; Spiralia; Lophotrochozoa; Mollusca;           |  |  |  |  |  |
|                                                       | Gastropoda; Heterobranchia; Euthyneura; Nudipleura; Nudibranchia; |  |  |  |  |  |
|                                                       | Doridina; Chromodoridoidea; Chromodorididae; Miamira              |  |  |  |  |  |
| FEATURES                                              | Location/Qualifiers                                               |  |  |  |  |  |
| source 1756                                           |                                                                   |  |  |  |  |  |
|                                                       | /organism="Miamira spec. (Misp17Ba_1/NU395)"                      |  |  |  |  |  |
|                                                       | /mol_type="genomic DNA"                                           |  |  |  |  |  |
| CDS                                                   | <1>756                                                            |  |  |  |  |  |
|                                                       | /codon_start=1                                                    |  |  |  |  |  |
|                                                       | /product="actin"                                                  |  |  |  |  |  |
|                                                       | /translation="VAPEEHPTLLTEAPLNPKANREKMTQIMFETFNTPAFYVSIQAVLALYAS  |  |  |  |  |  |
|                                                       | GRTTGVVLDAGDGVTHIIPIYEGYALPHAIEKMNLAGRDLTDYLMKILTE                |  |  |  |  |  |
|                                                       | RGYSFTTTAEREIVRDIKEKLCYVALDFEQEMQTAASSSSLERSYELPDG                |  |  |  |  |  |
|                                                       | QVITIGNERFRCPEAMFQPSFLGMESAGIHETTYNSIMKCDVDIRKDLYA                |  |  |  |  |  |
| NTVLSGGSTMFPGIADRMQKELESLAPASNKIKIIAPPERKYSVWIGGSILV" |                                                                   |  |  |  |  |  |
| ORIGIN                                                |                                                                   |  |  |  |  |  |
| 1                                                     | TGGCACCTG AGGAACATCC CACCTTATTG ACAGAAGCTC CCCTGAATCC AAAGGCTAAC  |  |  |  |  |  |
| 61                                                    | GTGAGAAAA TGACCCAGAT TATGTTCGAG ACTTTCAACA CGCCAGCTTT CTACGTCAGT  |  |  |  |  |  |
| 121                                                   | TCCAGGCGG TTCTTGCTTT GTACGCTTCA GGGAGGACAA CAGGCGTGGT GTTGGATGCA  |  |  |  |  |  |
| 181                                                   | GAGATGGGG TGACTCATAT CATTCCAATA TACGAGGGCT ACGCTCTGCC CCATGCTATT  |  |  |  |  |  |
| 241                                                   | AAAAGATGA ACTTGGCTGG ACGTGACCTC ACCGATTACC TTATGAAGAT CCTTACGGAG  |  |  |  |  |  |
| 301                                                   | GAGGCTACA GTTTCACCAC CACTGCTGAA AGGGAAATTG TCCGTGATAT TAAAGAAAAG  |  |  |  |  |  |
| 361                                                   | TCTGCTACG TTGCTCTTGA TTTTGAACAA GAAATGCAAA CAGCTGCATC TTCTTCTTCT  |  |  |  |  |  |
| 421                                                   | TTGAGAGAT CTTACGAACT GCCCGATGGT CAAGTGATCA CCATTGGAAA CGAGCGATTC  |  |  |  |  |  |
| 481                                                   | GGTGTCCTG AAGCCATGTT TCAACCGTCT TTCTTGGGTA TGGAATCTGC TGGTATCCAC  |  |  |  |  |  |
| 541                                                   | AAACCACTT ACAATTCTAT TATGAAGTGT GATGTGGACA TCCGTAAAGA TTTGTATGCA  |  |  |  |  |  |
| 601                                                   | ACACTGTCT TGTCTGGAGG CTCCACCATG TTCCCTGGTA TTGCTGACCG CATGCAGAAG  |  |  |  |  |  |
| 661                                                   | AGCTGGAAT CCCTAGCCCC AGCCAGTAAC AAAATCAAGA TCATTGCCCC TCCCGAGCGC  |  |  |  |  |  |

721 AAATATTCTG TTTGGATTGG AGGATCAATC CTCGTC //

264

LOCUS Miamira sinuata (Misi16Bu1/NU92) 756 bp DNA DEFINITION Miamira sinuata (Misi16Bu1/NU92) ACCESSION not yet submitted to GenBank SOURCE Miamira sinuata ORGANISM Miamira sinuata Eukaryota; Metazoa; Spiralia; Lophotrochozoa; Mollusca; Gastropoda; Heterobranchia; Euthyneura; Nudipleura; Nudibranchia; Doridina; Chromodoridoidea; Chromodorididae; Miamira FEATURES Location/Qualifiers source 1..756 /organism="Miamira sinuata" /mol type="genomic DNA" CDS <1..>756 /codon\_start=1 /product="actin" /translation="VAPEEHPALLTEAPLNPKANREKMTQIMFETFNTPAFYVSIQAVLALYAS GRTTGVVLDAGDGVTHIIPIYEGYALPHAIEKMNLAGRDLTDYLMKILTH RGYSFTTTAEREIVRDIKEKLCYIALDFEQEMMTSSISSSLERSYELPDG QVITIGNERFRCPEAMFQPSFLGMENAGIHEMIYNSITKCDIDLRRDLYQ NIVLSGGTTMFPGIADRLHKEMESIAPPSNKIKVIAPPERKYSVWIGGSILV" ORIGIN 1 GTGGCACCTG AGGAACATCC CGCCTTATTA ACAGAGGCAC CCTTAAACCC AAAGGCCAAC 61 CGTGAGAAAA TGACCCAGAT AATGTTCGAA ACTTTCAACA CGCCAGCTTT TTACGTCAGC 121 ATTCAAGCAG TACTTGCTTT GTACGCTTCA GGGAGAACGA CAGGTGTGGT GTTGGACGCA 181 GGAGATGGTG TGACTCACAT CATTCCTATA TACGAGGGCT ACGCTCTTCC CCATGCTATT 241 GAAAAGATGA ACCTGGCTGG CCGTGATCTC ACAGATTACC TTATGAAAAT CCTTACGCAT 301 AGAGGCTACA GCTTCACAAC TACTGCCGAG AGGGAAATTG TCCGTGATAT AAAGGAAAAG 361 CTCTGCTACA TTGCTCTTGA TTTTGAACAA GAAATGATGA CATCTTCAAT ATCTTCATCT 421 CTTGAAAGAT CCTATGAACT GCCAGATGGA CAAGTTATCA CCATAGGGAA CGAGCGATTC 481 AGATGTCCTG AAGCCATGTT TCAACCGTCT TTCTTGGGTA TGGAAAACGC CGGTATCCAC 541 GAAATGATCT ACAACTCCAT AACCAAATGT GACATTGATC TTAGAAGAGA TCTGTACCAA 601 AATATCGTCT TGTCTGGCGG AACTACAATG TTCCCAGGTA TAGCTGATCG ATTACATAAA 661 GAAATGGAAT CCATCGCTCC ACCAAGTAAC AAGATCAAGG TCATTGCTCC TCCCGAGCGC 721 AAATACTCTG TTTGGATCGG AGGATCCATC CTCGTC //

| LOCUS                                              | Phyllidia           | a_coelestis_ | (ZFMKDNAFD)  | )2298087)    | 747 bp       | DNA            |
|----------------------------------------------------|---------------------|--------------|--------------|--------------|--------------|----------------|
| DEFINITION                                         | I Phyllidia         | a_coelestis_ | (ZFMKDNAFD)  | )2298087) ad | ctin, partia | al CDS         |
| ACCESSION                                          | not yet sı          | ubmitted to  | GenBank      |              |              |                |
| SOURCE                                             | Phyllidia coelestis |              |              |              |              |                |
| ORGANISM                                           | 1 Phyllidia         | a coelestis  |              |              |              |                |
|                                                    | Eukaryota           | a; Metazoa;  | Spiralia; I  | Cophotrochoz | zoa; Molluso | ca;            |
|                                                    | Gastropo            | oda; Heterol | oranchia; Eu | uthyneura; 1 | Nudipleura;  | Nudibranchia;  |
|                                                    | Doridina            | a; Phyllidio | oidea; Phyli | lidiidae; Pł | nyllidia     |                |
| FEATURES                                           | Location/Qualifiers |              |              |              |              |                |
| sourc                                              | ce                  | 1747         |              |              |              |                |
|                                                    |                     | /organism='  | 'Phyllidia d | coelestis"   |              |                |
|                                                    |                     | /mol_type='  | 'genomic DNA | <i>f</i>     |              |                |
| CDS                                                |                     | <1>747       |              |              |              |                |
|                                                    |                     | /codon_star  | rt=1         |              |              |                |
|                                                    |                     | /product="a  | actin"       |              |              |                |
|                                                    | /trans              | lation="VAPH | EEHPVLLTEAPI | LNPKANREKMT  | QIMFETFNSPAN | MYVAIQAVLSLYAS |
| GRTTGIVLDSGDGVSHTVPIYEGYALPHAIMRLDLAGRDLTDYLMKILTE |                     |              |              |              |              |                |
| RGYSFTTTAEREIVRDIKEKLCYVALDFEQEMQTAASSSSLEKSYELPDG |                     |              |              |              |              |                |
| QVITIGNERFRCPEAMFQPSFLGMESAGIHETTYNSIMKCDVDIRKDLYA |                     |              |              |              |              |                |
| NTVLSGGSTMFPGIADRMQKEISALAPPTMKIKIIAPPERKYSVWIGGS" |                     |              |              |              |              |                |
| ORIGIN                                             |                     |              |              |              |              |                |
| 1                                                  | GTTGCCCCAG          | AAGAACATCC   | TGTCCTTCTC   | ACAGAGGCTC   | CTCTCAACCC   | CAAGGCCAAC     |
| 61                                                 | AGAGAAAAGA          | TGACCCAAAT   | TATGTTTGAA   | ACCTTCAACT   | CACCAGCCAT   | GTACGTTGCT     |
| 121                                                | ATCCAAGCCG          | TACTGTCTCT   | GTACGCTTCA   | GGTCGTACCA   | CAGGTATCGT   | TCTGGACTCA     |
| 181                                                | GGAGATGGTG          | TCAGTCATAC   | TGTCCCCATC   | TATGAAGGTT   | ATGCTCTGCC   | TCATGCCATC     |
| 241                                                | ATGAGATTGG          | ATTTGGCCGG   | ACGTGATCTC   | ACAGATTACC   | TTATGAAAAT   | CCTCACTGAA     |
| 301                                                | AGAGGCTACA          | GCTTCACCAC   | CACTGCTGAA   | AGAGAAATTG   | TCCGTGACAT   | CAAGGAAAAG     |
| 361                                                | CTCTGTTATG          | TCGCTCTTGA   | CTTCGAACAA   | GAAATGCAAA   | CTGCAGCCTC   | ATCATCATCC     |
| 421                                                | CTTGAGAAGA          | GCTACGAATT   | GCCCGATGGA   | CAAGTCATCA   | CAATTGGAAA   | CGAGCGTTTC     |
| 481                                                | CGATGCCCCG          | AAGCCATGTT   | CCAACCATCT   | TTCTTGGGTA   | TGGAATCTGC   | TGGCATTCAT     |
| 541                                                | GAAACCACTT          | ACAACTCTAT   | CATGAAGTGT   | GACGTCGATA   | TCCGTAAAGA   | CTTGTATGCC     |
| 601                                                | AACACCGTCC          | TTTCTGGTGG   | CTCCACCATG   | TTCCCTGGCA   | TTGCTGATCG   | TATGCAAAAG     |
| 661                                                | GAAATCTCAG          | CTCTTGCTCC   | ACCCACCATG   | AAGATCAAGA   | TTATCGCTCC   | ACCAGAACGT     |

721 AAATACTCTG TATGGATCGG AGGCTCA //

| LOCUS                                              | Pleurobra                                          | anchus peror           | nii 737 k    | p DNA        |              |                  |
|----------------------------------------------------|----------------------------------------------------|------------------------|--------------|--------------|--------------|------------------|
| DEFINITION                                         | N Pleurobranchus_peronii actin, partial CDS        |                        |              |              |              |                  |
| ACCESSION                                          | ACCESSION not yet submitted to GenBank             |                        |              |              |              |                  |
| SOURCE                                             | Pleurobra                                          | Pleurobranchus peronii |              |              |              |                  |
| ORGANISM                                           | 1 Pleurobra                                        | anchus peror           | nii          |              |              |                  |
|                                                    | Eukaryota                                          | a; Metazoa;            | Spiralia; I  | Cophotrochoz | zoa; Molluso | ca;              |
|                                                    | Gastropo                                           | oda; Heterol           | oranchia; Eu | uthyneura; 1 | Nudipleura;  | Pleurobranchida; |
|                                                    | Pleurob                                            | ranchdoidea            | ; Pleurobran | nchidae; Ple | eurobranchu  | 5                |
| FEATURES                                           |                                                    | Location/Qu            | ualifiers    |              |              |                  |
| sourc                                              | ce                                                 | 1737                   |              |              |              |                  |
|                                                    |                                                    | /organism='            | 'Pleurobrand | chus peronii | L"           |                  |
|                                                    |                                                    | /mol_type='            | 'genomic DNA | <i>Y</i>     |              |                  |
| CDS                                                |                                                    | <1>737                 |              |              |              |                  |
|                                                    |                                                    | /codon_star            | rt=1         |              |              |                  |
|                                                    |                                                    | /product="a            | actin"       |              |              |                  |
|                                                    | /trans                                             | lation="VAP            | ERHPVHLTEAP  | LNPKRNREKMT  | QILFETFNTPA  | FYVSIQAVLSLYSS   |
|                                                    | GRTTGIVLDSGDGVTHTVPIYEGYTLPHALNRIDLAGRDLTSYLQRILNE |                        |              |              |              |                  |
|                                                    | RGYSLTTTSEKEIVRDIKEKLCYTALDFDAEMNAASQSSSIEKSYELPDG |                        |              |              |              |                  |
| QIVTIGNERFRCTEVLFQPSFIGREDGGISELLYNSVMKCDIDIRRDLLT |                                                    |                        |              |              |              |                  |
| NSVISGGTTMFPGLADRLQKELTTLAPSSNKVRVIAPPERKYSVW"     |                                                    |                        |              |              |              |                  |
| ORIGIN                                             |                                                    |                        |              |              |              |                  |
| 1                                                  | GTTGCACCCG                                         | AGAGACATCC             | TGTGCATCTG   | ACAGAAGCTC   | CACTTAACCC   | TAAGCGTAAC       |
| 61                                                 | AGAGAAAAAA                                         | TGACACAAAT             | CCTCTTTGAG   | ACATTCAATA   | CCCCAGCTTT   | CTACGTGAGT       |
| 121                                                | ATCCAGGCTG                                         | TGCTGAGTTT             | GTATTCTTCC   | GGTCGAACGA   | CCGGAATTGT   | TTTGGATTCT       |
| 181                                                | GGGGACGGCG                                         | TTACACACAC             | AGTTCCTATA   | TACGAAGGTT   | ATACCCTCCC   | CCATGCACTC       |
| 241                                                | AATCGAATAG                                         | ATCTGGCTGG             | AAGAGACCTG   | ACCAGCTATC   | TTCAAAGGAT   | TCTTAACGAG       |
| 301                                                | AGAGGGTACA                                         | GTCTTACGAC             | TACGTCAGAA   | AAGGAAATCG   | TTAGAGACAT   | TAAAGAGAAA       |
| 361                                                | CTGTGCTATA                                         | CTGCTTTGGA             | CTTCGACGCT   | GAAATGAACG   | CTGCATCCCA   | ATCATCGTCG       |
| 421                                                | ATAGAAAAGT                                         | CATACGAACT             | GCCCGATGGA   | CAAATCGTTA   | CCATTGGCAA   | TGAACGCTTC       |
| 481                                                | CGCTGCACAG                                         | AGGTACTTTT             | TCAACCTTCC   | TTCATAGGGC   | GAGAAGACGG   | TGGAATTAGC       |
| 541                                                | GAGCTTCTGT                                         | ACAATTCAGT             | AATGAAATGC   | GACATTGACA   | TCCGTCGGGA   | CTTGCTCACT       |
| 601                                                | AATTCTGTGA                                         | TCTCAGGGGG             | AACGACCATG   | TTTCCAGGGC   | TTGCAGATCG   | ACTGCAGAAA       |

721 AAGTATTCCG TGTGGAT //

661 GAACTCACCA CATTGGCTCC TTCCTCAAAC AAAGTACGCG TTATTGCTCC CCCTGAACGG

| LOCUS                                              | Thorunna_                                                      | furtiva_(Th  | nfu16Bu1/NU9 | 93) 784 k    | DNA DNA      |                |
|----------------------------------------------------|----------------------------------------------------------------|--------------|--------------|--------------|--------------|----------------|
| DEFINITION                                         | EFINITION Thorunna_furtiva_(Thfu16Bu1/NU93) actin, partial CDS |              |              |              |              |                |
| ACCESSION                                          | not yet su                                                     | lbmitted to  | GenBank      |              |              |                |
| SOURCE                                             | Thorunna                                                       | furtiva      |              |              |              |                |
| ORGANISM                                           | I Thorunna                                                     | furtiva      |              |              |              |                |
|                                                    | Eukaryota                                                      | ; Metazoa;   | Spiralia; I  | Cophotrochoz | zoa; Molluso | ca;            |
|                                                    | Gastropo                                                       | oda; Heterob | oranchia; Eu | uthyneura; 1 | Nudipleura;  | Nudibranchia;  |
|                                                    | Doridina                                                       | a; Chromodoi | ridoidea; Ch | nromodoridio | dae; Thorunn | na             |
| FEATURES                                           |                                                                | Location/Qu  | alifiers     |              |              |                |
| sourc                                              | e                                                              | 1784         |              |              |              |                |
|                                                    |                                                                | /organism='  | 'Thorunna fu | ırtiva"      |              |                |
|                                                    |                                                                | /mol_type='  | 'genomic DNA | <b>'</b> "   |              |                |
| CDS                                                |                                                                | <1>784       |              |              |              |                |
|                                                    |                                                                | /codon_star  | rt=1         |              |              |                |
|                                                    |                                                                | /product="a  | actin"       |              |              |                |
|                                                    | /transl                                                        | ation="VAPH  | EEHPVLLTEAPI | LNPKANREKMT  | QIMFETFNSPAN | MYVAIQAVLSLYAS |
|                                                    | G                                                              | RTTGIVLDSGD  | GVTHTVPIYEG  | YALPHAIMRLD  | LAGRDLTDYLM  | KILTE          |
|                                                    | RGYSFTTTAEREIVRDIKEKLCYVALDFEQEMGTAASSSTLEKSYELPDG             |              |              |              |              |                |
| QVITIGNERFRTPEAMFQPSFLGMESAGVHETTYNSIMKCDVDIRKDLYA |                                                                |              |              |              |              |                |
| NTVLSGGSTMYPGIADRMQKEITALAPSTMKIKIIAPPERKYSVWIGGSI |                                                                |              |              |              |              |                |
|                                                    | L                                                              | ASLSTFQQMW"  |              |              |              |                |
| ORIGIN                                             |                                                                |              |              |              |              |                |
| 1                                                  | GTTGCCCCTG                                                     | AGGAACATCC   | AGTTCTCCTC   | ACAGAGGCTC   | CTCTCAACCC   | TAAAGCCAAC     |
| 61                                                 | AGAGAAAAGA                                                     | TGACCCAAAT   | TATGTTTGAA   | ACCTTCAACT   | CACCAGCTAT   | GTACGTGGCT     |
| 121                                                | ATCCAAGCCG                                                     | TGCTGTCTCT   | CTACGCTTCA   | GGCCGTACCA   | CCGGTATCGT   | GCTGGATTCT     |
| 181                                                | GGGGACGGCG                                                     | TGACCCACAC   | AGTCCCCATC   | TATGAAGGGT   | ACGCCCTTCC   | CCACGCTATC     |
| 241                                                | ATGAGGCTGG                                                     | ACCTGGCAGG   | ACGGGACCTC   | ACCGACTACC   | TCATGAAAAT   | CCTCACGGAG     |
| 301                                                | AGAGGCTACA                                                     | GCTTCACCAC   | CACCGCGGAG   | AGAGAGATCG   | TTCGCGACAT   | CAAAGAGAAG     |
| 361                                                | CTCTGCTACG                                                     | TGGCCTTGGA   | TTTCGAACAA   | GAAATGGGCA   | CCGCGGCGTC   | CTCGTCCACC     |
| 421                                                | CTCGAGAAAA                                                     | GCTACGAGCT   | CCCGGACGGC   | CAGGTCATCA   | CCATCGGGAA   | CGAGAGGTTC     |
| 481                                                | AGAACTCCCG                                                     | AGGCCATGTT   | CCAGCCCTCG   | TTTCTGGGAA   | TGGAGTCGGC   | AGGGGTCCAC     |
| 541                                                | GAAACGACGT                                                     | ACAATTCCAT   | CATGAAGTGC   | GACGTGGACA   | TTCGGAAAGA   | CCTGTACGCC     |
| 601                                                | AACACGGTGC                                                     | TCTCCGGCGG   | CTCGACCATG   | TACCCGGGCA   | TTGCGGACCG   | CATGCAAAAG     |
| 661                                                | GAAATCACGG                                                     | CCCTTGCCCC   | GAGCACCATG   | AAGATTAAAA   | TCATCGCACC   | GCCCGAGAGG     |
| 721                                                | AAGTATTCGG                                                     | TTTGGATTGG   | AGGCTCCATC   | TTGGCCTCTC   | TGTCGACCTT   | CCAGCAGATG     |

781 TGGA

LOCUS Verconia simplex NU396 (Nosi17Ba1/NU396 formerly Noumea simplex) 762 bp DNA DEFINITION Verconia simplex NU396 (Nosi17Ba1/NU396 formerly Noumea simplex) actin, partial CDS ACCESSION not yet submitted to GenBank SOURCE Verconia simplex ORGANISM Verconia simplex Eukaryota; Metazoa; Spiralia; Lophotrochozoa; Mollusca; Gastropoda; Heterobranchia; Euthyneura; Nudipleura; Nudibranchia; Doridina; Chromodoridoidea; Chromodorididae; Verconia FEATURES Location/Oualifiers 1..762 source /organism="Verconia simplex" /mol type="genomic DNA" CDS <1..>762 /codon start=1 /product="actin" /translation="VAPEEHPVLLTEAPLNLKANREKMTQIMFETFNAPAMYVAIQAVLSLYAS GRTTGMVLDSGDGVTHIIPIYEGYALPHAIDKLDLAGRDLTDYLKRILHE RGYNFASSSETEIVRDVKEKLAYVALDFEQEMDTAAKSSCMEKSYEIPDG QVITLGSERFRCPEAMFQPSFLGMESAGFHEIMYNSIMKCDVDIRRDLYG NIVLSGGSTMFPGITDRMQKEITTRAPSTMKIKMIASPEHKYSVWISSSI RVLL" ORIGIN 1 GTGGCCCCGG AAGAGCATCC AGTCCTACTC ACAGAGGCCC CCCTGAACCT CAAGGCCAAC 61 AGAGAAAAGA TGACGCAGAT CATGTTCGAG ACCTTCAATG CACCCGCCAT GTATGTCGCC 121 ATTCAGGCTG TGCTGTCCCT TTACGCGTCC GGTAGGACAA CAGGAATGGT GTTGGACTCT 181 GGTGATGGGG TAACTCACAT TATCCCAATC TATGAGGGAT ACGCTCTTCC TCATGCTATT 241 GATAAGTTGG ATTTGGCCGG GCGTGACCTT ACTGATTACC TGAAGCGAAT CCTTCACGAG 301 AGGGGCTATA ATTTTGCCTC GTCCTCTGAA ACCGAAATCG TCAGAGACGT TAAGGAAAAG 361 CTTGCGTACG TGGCTCTTGA TTTTGAACAG GAAATGGACA CAGCAGCCAA ATCGTCCTGT

361 CTTGCGTACG TGGCTCTTGA TTTTGAACAG GAAATGGACA CAGCAGCCAA ATCGTCCTGT
421 ATGGAGAAGT CCTACGAAAT ACCAGATGGT CAAGTGATCA CCCTGGGATC TGAGCGATTC
481 AGGTGTCCAG AAGCCATGTT TCAACCGTCT TTCTTAGGCA TGGAATCTGC GGGATTTCAT
541 GAAATCATGT ACAATTCTAT CATGAAATGT GATGTTGATA TCAGAAGAGA TTTGTACGGC
601 AACATCGTCT TGTCTGGGGG ATCCACGATG TTCCCAGGCA TCACCGACAG GATGCAGAAG
661 GAGATCACCA CCCGGGCACC TAGCACCATG AAGATCAAGA TGATCGCATC CCCAGAGCAC
721 AAGTACTCCG TGTGGATCAG CAGCTCCATC CGGGTTCTAC TA

Figure S3.8 Phyre2 prediction of secondary structure and disorder of the *in silico Chromodoris/Armina*-actin-hybrid-model.



## PUBLICATIONS, PARTICIPATION IN OTHER STUDIES, TALKS

## & CONFERENCE CONTRIBUTIONS

| PUBLICATIONS &<br>PARTICIPATION IN OTHER STUDIES  | (1) Hertzer, C.; Kehraus, S.; Böhringer, N.; Kaligis, F.; Bara, R.; Erpenbeck, D.; Wörheide, G.; Schäberle, T. F.; Wägele, H.; König, G. M. Antibacterial Scalarane from <i>Doriprismatica Stellata</i> Nudibranchs (Gastropoda, Nudibranchia), Egg Ribbons, and Their Dietary Sponge <i>Spongia</i> Cf. <i>Agaricina</i> (Demospongiae, Dictyoceratida). <i>Beilstein J. Org. Chem.</i> <b>2020</b> , <i>16</i> (1), 1596–1605. https://doi.org/10.3762/bjoc.16.132. |  |  |  |  |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                   | (2) Undap, N.; Papu, A.; Schillo, D.; Ijong, F. G.; Kaligis, F.; Lepar, M.;<br>Hertzer, C.; Böhringer, N.; König, G. M.; Schäberle, T. F.; et al. First Survey<br>of Heterobranch Sea Slugs (Mollusca, Gastropoda) from the Island Sangihe, North<br>Sulawesi, Indonesia. <i>Diversity</i> <b>2019</b> , <i>11</i> (9), 170.<br>https://doi.org/10.3390/d11090170.                                                                                                    |  |  |  |  |
|                                                   | (3) Fisch, K. M.; Hertzer, C.; Böhringer, N.; Wuisan, Z. G.; Schillo, D.; Bara, R.; Kaligis, F.; Wägele, H.; König, G. M.; Schäberle, T. F. The Potential of Indonesian Heterobranchs Found around Bunaken Island for the Production of Bioactive Compounds. <i>Mar Drugs</i> <b>2017</b> , <i>15</i> (12). https://doi.org/10.3390/md15120384.                                                                                                                       |  |  |  |  |
|                                                   | (4) Böhringer, N.; Fisch, K. M.; Schillo, D.; Bara, R.; Hertzer, C.; Grein, F.; Eisenbarth, JH.; Kaligis, F.; Schneider, T.; Wägele, H.; et al. Antimicrobial Potential of Bacteria Associated with Marine Sea Slugs from North Sulawesi, Indonesia. <i>Front. Microbiol.</i> <b>2017</b> , 8. https://doi.org/10.3389/fmicb.2017.01092.                                                                                                                              |  |  |  |  |
|                                                   | (5) <b>Bogdanov, A.; Hertzer, C.; Kehraus, S.; Nietzer, S.; Rohde, S.; Schupp, P.</b><br><b>J.; Wägele, H.; König, G. M.</b> Secondary Metabolome and Its Defensive Role in<br>the Aeolidoidean <i>Phyllodesmium Longicirrum</i> , (Gastropoda, Heterobranchia,<br>Nudibranchia). <i>Beilstein J Org Chem</i> <b>2017</b> , <i>13</i> , 502–519.<br>https://doi.org/10.3762/bjoc.13.50.                                                                               |  |  |  |  |
|                                                   | (6) Bogdanov, A.; Hertzer, C.; Kehraus, S.; Nietzer, S.; Rohde, S.; Schupp, P. J.; Wägele, H.; König, G. M. Defensive Diterpene from the Aeolidoidean <i>Phyllodesmium Longicirrum. J. Nat. Prod.</i> <b>2016</b> , <i>79</i> (3), 611–615. https://doi.org/10.1021/acs.jnatprod.5b00860.                                                                                                                                                                             |  |  |  |  |
| INVITED TALKS                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| 27 <sup>th</sup> January 2020                     | Seminar at The Zoological Research Museum Alexander Koenig, Leibniz-<br>Association for Animal Biodiversity, Bonn, Germany                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| 22 <sup>nd</sup> August 2018                      | Seminar at LOEWE Center for Insect Biotechnology & Bioresources, Giessen, Germany                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| CONFERENCE CONTRIBUTIONS                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| 1 <sup>st</sup> – 5 <sup>th</sup> September 2019  | XVI MaNaPro & XI ECMNP, Marine Natural Products,<br>Peniche, Portugal (Poster)                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 25 <sup>th</sup> – 27 <sup>th</sup> February 2019 | BIOPROSP_2019, Unlocking the potential of biomolecules from marine environment, Tromsø, Norway (Poster & Award Winner)                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 2 <sup>nd</sup> – 5 <sup>th</sup> September 2018  | 3 <sup>rd</sup> European Conference on Natural Products, DECHEMA, Frankfurt, Germany (Poster)                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| 3 <sup>rd</sup> – 7 <sup>th</sup> September 2017  | 10 <sup>th</sup> European Conference on Marine Natural Products,<br>Kolymbari, Greece (Talk)                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |

# CURRICULUM VITAE

### University Education

| 2009 - 2012 | Bachelor of Science, in Biology, Philipps-University, Marburg                                                                                                                                           |  |  |  |  |  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|             | Supervisor: Prof. Dr. Roland Brandl, General and Animal Ecology                                                                                                                                         |  |  |  |  |  |
|             | Thesis: "Chemical Ecology of Tannins and Other Phenolics. New Approach – Old<br>Results. No Support for Tannin Oxidation Hypothesis among European Temperate Tree<br>Genera" (Grade 1.0)                |  |  |  |  |  |
| 2013 - 2015 | Master of Science, in OEP-Biology, <i>Rheinische Friedrich-Wilhelms-University</i> , Bonn (Final Grade 1.2)                                                                                             |  |  |  |  |  |
|             | Supervisors: Prof. Dr. Gabriele M. König and Prof. Dr. Heike Wägele                                                                                                                                     |  |  |  |  |  |
|             | Thesis: "Nude but Not Defenceless: Isolation and Structure Elucidation of Terpenoids from <i>Phyllodesmium longicirrum</i> (Aeolidida, Nudibranchia, Gastropoda) and Their Role in Defence" (Grade 1.0) |  |  |  |  |  |
| 2016 – 2020 | PhD in Drug Sciences, Rheinische Friedrich-Wilhelms-University, Bonn                                                                                                                                    |  |  |  |  |  |
|             | Institute of Pharmaceutical Biology, AG König                                                                                                                                                           |  |  |  |  |  |
|             | Supervisors: Prof. Dr. Gabriele M. König and Prof. Dr. Heike Wägele                                                                                                                                     |  |  |  |  |  |
|             | Thesis: "Investigations on Marine Natural Products From Indo-Pacific Nudibranchia (Mollusca: Gastropoda): Chemoecology, Medicinal Potential & Toxin Resistance"                                         |  |  |  |  |  |

#### ACKNOWLEDGEMENTS / DANKSAGUNG

Ich möchte mich bei vielen Menschen bedanken, ohne die es diese Arbeit so nicht geben würde.

Zuerst möchte ich mich ganz herzlich bei Prof. Gabriele M. König und Prof. Heike Wägele für die jahrelange Betreuung und Unterstützung, während der Masterarbeit und der anschließenden Doktorarbeit, bedanken. Sie haben mir die Möglichkeit gegeben das spannende Thema der Meeresschnecken, insbesondere Nudibranchia, und ihrer Naturstoffe kennenzulernen und weiter zu erforschen, gaben mir stets den Freiraum eigene Ideen auszutesten und standen mir mit gutem Rat und Vorschlägen zur Seite.

Weiterhin möchte ich mich bei Prof. Evi Kostenis und Prof. Gabriele Bierbaum dafür bedanken, dass Sie sich dazu bereit erklärt haben die weiteren Gutachten dieser Arbeit zu übernehmen.

Außerdem möchte ich mich bei Prof. Till F. Schäberle, sowie allen Mitgliedern, Beteiligten und Kooperationspartnern des INDOBIO-Projekts bedanken. Dafür, dass ich Teil dieses internationalen Projekts sein und an einer der Forschungsreisen nach Indonesien teilnehmen durfte. Terima kasih.

Ganz besonders möchte ich mich auch bei Dr. Alexander Bogdanov und Dr. Stefan Kehraus bedanken, deren Anleitung, Hilfe und Humor mir die Durchführung dieser Arbeit, sowie die Betreuung der Kurse und Exkursionen, sehr erleichtert haben.

Ich möchte mich bei Ekaterina Egereva, Dr. Max Crüsemann und Dr. Mark Sylvester für die LC-MS-, HR-MS- und UPLC-HR-MS-Messungen bedanken. Außerdem gilt Ekaterina Egereva und Emilie Goralski auch mein Dank für all ihre Antworten und Hilfe in den Laboren.

Ebenfalls möchte ich mich sehr bei Dr. Dhaka Ram Bhandari und Prof. Bernhard Spengler dafür bedanken, dass ich bei und mit Ihnen die MALDI-MS-Imaging-Experimente durchführen durfte, sowie bei Dr. Stefan Aatz, Dr. Sebastian Franken und Prof. Hanns Häberlein dafür, dass ich bei und mit Ihnen die Zellkultur- und Fluoreszenzmikroskopie-Experimente durchführen konnte.

Allen Mitgliedern der Arbeitsgruppen AG König und AG Wägele gilt mein Dank für das tolle Arbeitsumfeld und dafür, dass sie mich so freundlich aufgenommen und unterstützt haben. Besonderer Dank geht an Nani Undap, Adelfia Papu, Dario Karmeinski, Gregor Christa, Carola Greve, Fatemeh Maniei, Elise Laetz und Juan Moles, für die ansteckende und geteilte Begeisterung für die Erforschung der Heterobranchia.

Ganz besonders möchte ich hierbei auch nochmal Sophie Klöppel, Wiebke Hanke, Benjamin Libor, Raphael Reher, Alexander Bogdanov, Paul Barac, Daniel Wirtz und Cornelia Hermes erwähnen und mich bei ihnen für die vielen schönen Abende, Feiern, gemeinsamen Konferenzen, Spielerunden, kreative Ideen und Gespräche, für die vielen fröhlichen und aufmunternden Momente im Labor und Büro bedanken.

Ein besonderer Dank gilt auch Isabel Kilian und allen Mitgliedern unserer "Scrum"-Gruppe, die mir gerade während den schwierigen Phasen der Pandemie geholfen haben, nicht die Motivation zu verlieren.

Vor allem möchte ich mich aber bei meinen Freunden, meiner Familie, meinem Partner, Komplizen, Fellnasen und allen, die wie Familie für mich sind, bedanken. Für all die Unterstützung und Ermutigung, gemeinsame Spielerunden, Reisen, Abenteuer, gefeierten Feste, gelöste Rätsel, jedes "2. Zuhause", Kaffee-Gespräche, "Bier-Tage", gemeinsames Tanzen, Klettern und Sinnieren. Ohne euch wäre ich nicht, wo ich heute bin.

Ihr wisst, wer gemeint ist. Danke!