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Highlights 

- Male androgen biosynthesis shows a significant peak at week 7 during minipuberty  

- Androgens in minipuberty are (at least in part) produced through the backdoor pathway 

- Steroid enzyme activities in the first year of life are all age-, some sex-specific 

- Steroid enzyme ratios obtained from urine GC-MS are comparable between laboratories 
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Androgen biosynthesis during minipuberty favors the backdoor pathway over the classic pathway: 1 
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Abstract 36 

The steroid profile changes dramatically from prenatal to postnatal life. Recently, a novel backdoor 37 

pathway for androgen biosynthesis has been discovered. However, its role remains elusive. Therefore, we 38 

investigated androgen production from birth to one year of life with a focus on minipuberty and on 39 

production of androgens through the backdoor pathway. Additionally, we assessed the development of the 40 

specific steroid enzyme activities in early life. To do so, we collected urine specimens from diapers in 43 41 

healthy newborns (22 females) at 13 time points from birth to one year of age in an ambulatory setting, 42 

and performed in house GC/MS steroid profiling for 67 steroid metabolites. Data were analyzed for 43 

androgen production through the classic and backdoor pathway and calculations of diagnostic ratios for 44 

steroid enzyme activities were performed. Analysis revealed that during minipuberty androgen production 45 

is much higher in boys than in girls (e.g. androsterone (An)), originates largely from the testis (An
boys

-46 

An
girls

), and uses predominantly the alternative backdoor pathway (An/Et; Δ5<Δ4 lyase activity). 47 

Modelling of steroid enzyme activities showed age-related effects for 21-, 11-, 17-hydroxylase and P450 48 

oxidoreductase activities as well as 3β-hydroxysteroid dehydrogenase, 11β-hydroxylase type 1/2 and 5α-49 

reductase activities. Sex-related characteristics were found for 21-hydroxylase and 5α-reductase activities. 50 

Overall, our study shows that androgen biosynthesis during minipuberty favors the backdoor pathway 51 

over the classic pathway. Calculations of specific diagnostic ratios for enzyme activities seem to allow the 52 

diagnosis of specific steroid disorders from the urinary steroid metabolome.  53 
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1. Introduction 54 

During the first year of life the steroid metabolome changes remarkably, mainly due to three 55 

developmental events (1). First, the fetal-placental-maternal unit, which is a steroid forming and 56 

metabolizing unit during pregnancy, is disrupted at birth. Second, the fetal adrenal, which produces 57 

predominantly dehydroepiandrosterone (DHEA) involutes in the first 3-6 months; and third, steroid 58 

organs develop. Within months postnatally the adult adrenal cortex is ready to produce mineralocorticoids 59 

and glucocorticoids, while the production of adrenal C19 steroids starts very slowly after birth and 60 

becomes clinically apparent only after 6-8 years of age at adrenarche (2). Similarly, androgen production 61 

in the testis, which is highly active in mid-gestation, decreases after birth, but reveals a postnatal surge 62 

during the so-called minipuberty. By contrast, the human ovary is thought to be steroidogenically 63 

quiescent during pregnancy and prepubertal years (3). 64 

Minipuberty, characterized by a transient surge of testosterone and its precursor androstenedione due to a 65 

transient activation of the hypothalamic-pituitary-gonadal axis, has been described in male neonates aged 66 

1-3 months many years ago (4), but its role remains unclear. Minipuberty may be important for early and 67 

late postnatal sexual differentiation in males. This differentiation includes, first, postnatal phallic growth 68 

(5) and an increase in testicular volume due to an increase in seminiferous tubules (6), Sertoli cell 69 

numbers and the number of germ cells (7,8) in preparation for future spermatogenesis (9). Second, during 70 

minipuberty masculinization of the brain is modulated. This is illustrated by studies showing an 71 

association between testosterone levels at 3-4 months of age and emotional regulation in early infancy 72 

(10), a relation between testosterone levels in the first six months of life with neurobehavioral sexual 73 

differentiation at 14 months (11), and an effect of testosterone on language function, hemispheric 74 

organization and lateralization of the brain as early as 4 weeks after birth (12). Third, minipuberty seems 75 

to correlate with somatic development, as testosterone and luteinizing hormone (LH) levels at 8 weeks of 76 

life correlate with body weight and body mass index (BMI) at six years of age (13). By contrast, the 77 

hormonal pattern during the time of minipuberty is highly variable and less clear in girls (14). Thus, 78 

further characterization of the event minipuberty is needed. 79 
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Recently, an alternative backdoor pathway for dihydrotestosterone (DHT) synthesis has been described, 80 

first in marsupials (15), then in humans (16). It has been suggested that this pathway is important for male 81 

sexual differentiation in utero and that it is functional in the fetal testis. We have shown that the genes of 82 

this backdoor pathway are differently expressed in the fetal compared to the adult testis (17), likely 83 

determining the flow through the classic and the alternative androgen biosynthetic pathways. The role of 84 

the backdoor pathway and its relationship to the classic pathway in minipuberty is unknown, but can be 85 

investigated by studying the profile of androgen metabolites excreted in the urine during the first 3-6 86 

months of life. 87 

Inborn errors of steroid biosynthesis and sex development are rare disorders. Steroid measurements are 88 

first line investigations for diagnosing specific disorders before performing genetic analysis (1,18). For 89 

many steroid biosynthetic defects caused by monogenic disorders, the steroid profile reveals characteristic 90 

changes, which may be recognized as a diagnostic pattern or as alterations of substrate to product 91 

conversion ratios correlating to specific enzyme activities and thus genes. For instance, the urine steroid 92 

profile of P450 oxidoreductase deficiency shows a pattern of increased 17-hydroxyprogesterone and 21-93 

deoxycortisol metabolites (due to 21-hydroxylase deficiency), increased corticosterone metabolites (due 94 

to 17-hydroxylase deficiency), and decreased excretion of androgen metabolites (19,20). However, 95 

pathologic steroid patterns and ratios as surrogate markers of enzyme activities may only be recognized 96 

with the knowledge of normal physiology. As genetic disorders of steroidogenesis mostly manifest in the 97 

first year of life, knowledge on normal changes of the steroid profile, the steroid patterns and the substrate 98 

to product ratios during this time period are essential to use urinary steroid profiling as a diagnostic tool. 99 

Therefore, the purpose of this study was twofold. First, to describe the characteristics of the urinary 100 

androgen metabolome during the time of minipuberty. Specifically, we aimed to investigate the possible 101 

role of the backdoor androgen biosynthesis pathway during minipuberty. Second, we analyzed the 102 

physiologic development of enzyme activities of steroidogenesis by calculating conversion ratios from 103 

urine metabolites during the first year of life. In a recent project, we have measured 67 steroids in the spot 104 

urine of 43 healthy, term-born neonates at 13 time points during the first year of life by gas GC-MS (21). 105 

This big, normative dataset was now analyzed to solve our specific questions. 106 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

6 

 

 107 

2. Materials and Methods 108 

2.1. Study population and urine collection procedures 109 

The study was approved by the medical ethics committee of the Kanton Bern, Switzerland. Parents gave 110 

written informed consent. In brief, 43 healthy Caucasian girls and boys born at term with normal weight 111 

and length were recruited. Spot urines were collected at weeks 1, 3, 5, 7, 9, 11, 13, 17, 21, 25, 33, 41 and 112 

49 of life. Details are described in (21). 113 

 114 

2.2. Measurement of urinary steroid metabolites by GC-MS and quality assessment 115 

Quantitative analysis of 67 urinary steroid hormone metabolites was performed by an in-house GC-MS 116 

method (21), adapted from reported methods (22). In brief, after medroxyprogesterone was added as a 117 

recovery standard, the urine sample was extracted on a Sep-Pak C18 column, then hydrolyzed with 118 

sulfatase and β-glucuronidase/arylsulfatase and free steroids were again extracted on a Sep-Pak C18 119 

cartridge. The two standards Stigmasterol and 3β5β-TH-aldosterone were added to the extract, then 120 

methoxyamine HCl 2% in pyridine was added and the sample was heated at 60°C for one hour. After 121 

evaporation of the solvent, trimethylsilylimidazole (TMSI) was added and the extracts were heated at 122 

100°C for 16 hours and then purified by gel filtration on Lipidex 5000 columns to remove the excess of 123 

derivatization reagent. The derivatized samples were analyzed by mass spectrometric analyses on a gas 124 

chromatograph 7890A from Agilent Technologies (La Jolla, California, USA) coupled to a mass selective 125 

detector Hewlett-Packard 5975C providing selected ion monitoring (SIM). For all steroids the signal-to-126 

noise-ratio was ≥3. Intra- and inter-assay variations are reported in Appendix Table B of (21). The 127 

QuantiChrom Creatinine Assay (DICT-500; BioAssay Systems, Hayward, CA, USA) was used to 128 

measure urinary creatinine by quantitative colorimetry. Measured steroids were standardized by urinary 129 

creatinine concentration and expressed in µg/mmol creatinine. Minimal urine volume required for steroid 130 

analysis was 200 μl, standard volume was 1.5 ml; for creatinine measurement 5 μl urine was used. The 131 

reproducibility of our in-house GC-MS method is continuously monitored by an internal quality control. 132 

In addition, our laboratory participates in regular external quality controls organized by the University 133 
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College London Hospitals (London, United Kingdom) and by the Foundation for Quality Medical 134 

Laboratory Diagnostics skml (Stichting Kwaliteitsbewaking Medische Laboratoriumdiagnostiek, 135 

Nijmegen, The Netherlands). 136 

 137 

2.3. Data analysis and statistics 138 

All calculations and statistical analyses were conducted using the R software, version 3.2.2 (23). The 139 

urinary steroid metabolites µg/mmol creatinine were converted to μmol/mol creatinine using the molar 140 

mass of each steroid compound (see Table 1 of Ref. (21)). 141 

To explore the role of the backdoor pathway for androgen biosynthesis, age- and sex-related changes of 142 

androsterone and of the steroid ratios of Table 1 were modeled by multivariable linear quantile mixed 143 

regression taking subject as random effect into account (24). Sex and age were included as fixed effects. 144 

We considered five age-effects: constant (corresponding to no age effect), linear and natural quadratic, 145 

natural cubic and natural quartic splines. Since we considered the presence of a sex effect, we fitted a total 146 

of 10 possible models for androsterone and each steroid ratio and selected that model minimizing the 147 

Akaike information criterion (AIC). Quantile regression makes no distributional assumption, thus, no 148 

transformation of the steroid ratio values were necessary. Continuous conditional 25
th
, 50

th
 and 75

th
 149 

quantiles were plotted by combined use of quantile regression and natural splines according to the 150 

selected model (Figure 1) (25). As the adrenals and the testes are active in producing androgens during 151 

minipuberty, while the ovaries seem rather quiescent, the contribution of the testes to androgen 152 

production was calculated by subtracting the median values in girls from the median values in boys and 153 

continuous conditional 25
th
, 50

th
 and 75

th
 quantiles were plotted (Figure 1). The median values of 154 

androsterone and of the steroid ratio androsterone/etiocholanolone in male infants were compared to 155 

female infants by Mann-Whitney U test for each time point. 156 

Urinary steroid metabolites expressed in μmol/mol creatinine were used to calculate the urinary steroid 157 

metabolite ratios or fluxes listed in Table 2. Sex and age specific dependencies were modeled by 158 

multivariable linear quantile mixed regression and were visualized by quantile regression and natural 159 

splines as described before (Figure 2 and Supplement Figures). The maximum value and the 97.5
th
 160 

http://www.nvkc.nl/kwaliteitsborging/skzl.php


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

8 

 

quantile were determined for each ratio at each week of life and, in case of a sex difference derived from 161 

the quantile regression mixed model, the values were calculated separately for boys and girls (Table 3). 162 

 163 

3. Results 164 

3.1. Androgen production through the backdoor pathway predominates during minipuberty 165 

To characterize the androgen biosynthesis from birth to one year of life, we analyzed the urinary steroid 166 

metabolome of 43 infants for sex- and age-dependent androsterone excretion (15,26-28). In a 167 

multivariable linear quantile mixed model, we found both a sex- and age-dependency. The continuous 168 

conditional 25
th
, 50

th
 and 75

th
 quantiles were plotted using quantile regression and natural splines (Figure 169 

1A). Urinary excretion of androsterone was similar between boys and girls at week 1, but increased 170 

significantly during minipuberty only in boys to a maximum at week 7, before decreasing to a baseline 171 

level as found in girls at week 17. Accordingly, higher median values of androsterone [μmol/mol 172 

creatinine] in male infants compared to female infants by Mann-Whitney U test were found at week 3 173 

(59.8 vs. 37.3; p=0.011), week 5 (59.9 vs. 48.6; p=0.11), week 7 (85.4 vs. 35.6; p=0.0083), week 9 (57.4 174 

vs. 33.5; p=0.012), week 11 (49.3 vs. 21.9; p=0.029) and week 13 (45.2 vs. 30.0; p=0.13). To assess the 175 

amount of androgen production that arises from the backdoor pathway in comparison to the classic 176 

pathway, we calculated the androsterone/eticholanolone ratio, which represents the backdoor pathway 177 

androgen synthesis after the 17,20-lyase reaction (27-29). This ratio showed a sex- and age-dependency. 178 

The quantile regression/natural splines plot showed no sex difference for the ratio at week 1, but an 179 

increase for boys until week 7 and a decline thereafter (Figure 1B). Higher median values in males were 180 

found at week 5 (6.1 vs. 2.8; p=0.19), week 7 (10.1 vs. 4.6; p=0.014), week 9 (7.7 vs. 4.3; p=0.18), week 181 

11 (4.5 vs. 3.2; p=0.16) and week 13 (5.6 vs. 3.5; p=0.12). 182 

Generally, both the gonads and the adrenals contribute towards the urinary metabolome. However, the 183 

prepubertal ovary is inactive. Thus, subtracting the androgen production found in females from the 184 

production in males (in the first year of life), will subtract the adrenal contribution and reveal the 185 

androgen production by the testis only. This calculation showed a significant increase of androsterone 186 
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production (Figure 1 C) and an increased ratio of androgen production through the backdoor pathway 187 

compared to the classic pathway during the time of minipuberty for the testis (Figure 1D).  188 

We also performed calculations for the 17,20 lyase activity, which is essential for any androgen 189 

production, but may follow the so-called Δ
5
- or Δ

4
-steroid pathway. The Δ

5
-pathway leads from 190 

pregnenolone to 17-hydroxy-pregnenolone to DHEA and thus directly to the classic androgen 191 

biosynthetic path; the Δ
4
-pathway leads to 17-hydroxyprogesterone as precursor, which is hardly 192 

converted to androstenedione (30), but may readily feed into the backdoor path. Our analysis revealed a 193 

steep decrease from a high level for the Δ
5
-pathway lyase activity after birth to week 11 (Figure 1E) and 194 

a steep increase from a very low level for the Δ
4
-pathway lyase activity (Figure 1F). While the Δ

5
-195 

activity remained relatively low after week 11, the Δ4-activity showed a mild, continued increase beyond 196 

week 11, but at a low level (similar to Δ
5
-activity). 197 

 198 

3.2. Most steroid enzyme activities are age- but not sex-specific during the first year of life 199 

Forty-one formula for the calculation of substrate to product conversion ratios representing specific 200 

steroid enzyme activities were created based on published literature (Table 2). The respective calculations 201 

using our dataset are shown in Table 3. The maximum value and the 97.5
th
 quantile for each ratio at 13 202 

time-points stratified by sex in case of sex difference are presented. For the vast majority of ratios the 203 

maximum value and the 97.5
th
 quantile lied very close to each other, but in several cases the maximum 204 

value also exceeded the twofold or threefold of the 97.5
th
 quantile. In a mixed effect quantile regression 205 

model, age-related characteristics were generally found for all analyzed enzyme activities. Only for 21-206 

hydroxylase (21-OHase) and 3β-hydroxysteroid-dehydrogenase (3β-HSD) activities, some calculations 207 

did not reveal this effect (Table 3). In contrast, a sex-related effect was only found for 21-OHase and 5α-208 

reductase activities. Only 2/9 calculations for 3β-HSD and 1/5 calculations for 17α-hydroxylase (17-209 

OHase) activities revealed a sex effect, while no such effect was found for 11-hydroxylase, P450 210 

oxidoreductase and 11β-hydroxysteroid-dehydrogenase type 1/2 (Table 3). 211 

In addition to the maximum value and the 97,5
th
 quantile, the continuous conditional 25

th
, 50

th
 and 75

th
 212 

quantiles of all 41 steroid ratios were visualized according to the selected model (Supplemental Material 213 
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Figure 1). Figure 2 shows the developmental pattern of four ratios from birth to 12 months. Figure 2A 214 

represents the best ratio to discriminate 21-OHase deficiency from normal 21-OHase activity reported by 215 

Kamrath et al. using 6OH-THE as the denominator (31). The ratio shows an association with sex and age. 216 

Starting at a similar level after birth, the relative 21-OHase activity decreased faster in girls in the first 217 

three months of life (corresponding to an increase in the ratio), while the decrease in boys occurred later. 218 

Figure 2B shows the pattern for the 3β-HSD activity in the first year of life using again 6OH-THE as the 219 

denominator of the ratio. For this ratio an association with age, but not with sex was found. After birth, 220 

the relative 3β-HSD activity rapidly declined to 50% by week seven, then increased to a relative 221 

maximum by week eleven, and then declined again. 222 

A representative pattern for the 17-OHase activity is shown in Figure 2C. An age, but no sex effect was 223 

found for this ratio. The 17-OHase activity seemed to increase slightly after birth till week seven and 224 

decreased thereafter continuously. 225 

Finally, a representative ratio for the 5α-reductase activity is given in Figure 2D. Its ratio showed an 226 

association with sex and age. Relative 5α-reductase activity increased massively after birth in both sexes 227 

and was found highest between week seven and 17. Overall, 5α-reductase activity was higher in boys 228 

compared to girls, which corresponds to a lower ratio. 229 

 230 

4. Discussion 231 

The backdoor pathway for androgen biosynthesis is relatively novel and its exact role unclear (1). In 232 

previous work, we have shown through studies of human mutations in genes involved in the backdoor 233 

pathway that it is needed for normal fetal male sexual development, and that the gene expression profile 234 

of backdoor pathway genes changes from fetal to adult life in the human testis (16,17). Similarly, the role 235 

of the event minipuberty, which occurs predominantly in males around postnatal days 30-100, remains 236 

unclear (3). Therefore, we aimed to model the androgen production from birth to one year of life and 237 

calculated the contribution of the backdoor path to overall androgen biosynthesis using our steroid 238 

metabolome databank (21). Interestingly, we were able to model the event minipuberty by tracking the 239 

specific androgen metabolites in the urine. As expected, the rise in androgen production during 240 
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minipuberty is much more significant in boys than in girls, and the androgen source seems confined to the 241 

testis. As novel information, we found that androgen production during minipuberty seems to occur rather 242 

through the backdoor pathway than through the classic pathway. This is supported by calculations for the 243 

precursor/product ratio androsterone/etiocholanolone (An/Et) and by flux calculations looking at 17,20 244 

lyase activity, which is essential for any androgen production. Higher An/Et ratio during minipuberty 245 

suggests enhanced backdoor pathway activity. This An/Et ratio is also reported as a formula for assessing 246 

5α-reductase activity in the first year of life and showed an identical pattern as seen in our cohort (32). 247 

While lyse activity in the Δ5-path rather leads to the classic androgen biosynthesis, the Δ4-path produces 248 

17-hydroxyprogesterone, which rather feeds into the backdoor path. In our cohort, lyase activity in the 249 

Δ5-path was extremely high at birth and dropped massively after birth to 10 weeks of age. This likely 250 

reflects the involution of the fetal adrenal gland, which produces exclusively DHEA over the Δ5-path, 251 

while postnatally the adult adrenal cortex in the first year of life does not produce androgens. By contrast, 252 

a significant rise in lyase activity in the Δ4-path within the first 10 weeks postnatally in our cohort may 253 

reflect higher androgen biosynthesis through the backdoor pathway in the testis during minipuberty. 254 

Overall, our data suggest that during the first three months of life the human testis favors the backdoor 255 

over the classic pathway for producing androgens. As androgen production during minipuberty is needed 256 

for normal postnatal male sexual development (3), the backdoor pathway is not only crucial for prenatal 257 

male sexual development (16,17), but also plays an important role after birth. 258 

 259 

The second aim of this study was to model the development of steroid enzyme activities implicated in 260 

human disorders of steroidogenesis (e.g. congenital adrenal hyperplasia (CAH)) from data collected in 261 

our urinary steroid databank (21). The purpose of the calculation of a specific precursor to product ratio 262 

(as surrogate marker for an enzyme activity) is to obtain reliable cut-offs for diagnosing steroid disorders 263 

from the urinary steroid profile. An ideal diagnostic ratio should be able to discriminate a deficient 264 

enzyme activity from a normal one. As the calculated steroid metabolite ratios usually show a wide 265 

variability especially in the upper range, which represents a low enzyme activity, it has been suggested in 266 

the literature to describe the diagnostic ratios by the maximum values and the 97.5
th
 quantiles found in 267 
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controls (31). We did that accordingly and summarized our data of diagnostic ratios in Table 3. By 268 

contrast, to illustrate the development of the enzyme activities during the first year of life, we assessed the 269 

highly skewed distributed data by the median and IQR (Supplemental Figures). In principal, all ratios 270 

assessing 21-OHase, 3β-HSD, 11-OHase, 17-OHase, POR, 11-HSD1/2 and 5α-reductase activities are 271 

age-dependent in the first year of life. In addition, 21-OHase and 5α-reductase seem to be sex-dependent. 272 

For some ratios, we were able to find normative data for comparison in the literature (29,31-33). In 273 

general, calculated ratios for steroid enzyme activities of our study compared very well with other studies, 274 

indicating that comparisons of data between laboratories and methods are possible when using ratios. 275 

However, only for ratios describing the 21-OHase activity, we found two studies, in which data of 276 

controls were assessed in comparison with a group of affected CAH patients (31,33). In the bigger and 277 

more recent study comparing 21-OHase deficient patients (n=95) to controls (n=261), it has been shown 278 

that only steroid ratios with the 21-deoxycortisol metabolite pregnanetriolone (PTO) as the numerator in 279 

combination with urinary glucocorticoid metabolites as the denominator where able to discriminate 21-280 

OHase deficiency from controls (31). The best diagnostic ratio was PTO to 6α-OH-tetrahydrocortisone, 281 

which was >8.5 fold higher in 21-OHase deficiency. Compared to this excellent study, which clearly sets 282 

the standard for future use of diagnostic ratios, our data are well in line with the control group. Thus, 283 

using our data, we should be able to diagnose 21-OHase deficiency from the urinary steroid profile 284 

unambiguously. Furthermore, it appears that once established, diagnostic ratios can be applied between 285 

labs and methods for the analysis of the urinary steroid profile with respect to steroid enzyme 286 

deficiencies. 287 

Unfortunately, there are no larger studies available assessing the specificity and the predictive value of 288 

diagnostic ratios for 3β-HSD, 11-OHase, 17-OHase, POR and 11-HSD1/2 deficiencies. Although many 289 

reported ratios have been labeled as being diagnostic in single patients, their discriminating value awaits 290 

testing in larger groups. This difficult task might only be solved through collaborations between 291 

laboratories assessing urinary steroid profiles, because those steroid disorders are very, very rare. In 292 

addition, diagnostic urine samples are only available at the very beginning, as most patients require 293 

(immediate) steroid replacement therapy, which will mask the diagnostic pattern of the disorder in the 294 
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urinary steroid profile. Also, urinary steroid profiling by GC-MS is not widely established as a diagnostic 295 

method. Thus, in many patients with a genetic steroid disorder, no diagnostic urine sample and steroid 296 

profile has been collected before treatment. Taking a patient off treatment for diagnostic purpose bears a 297 

certain risk and, therefore, mostly leads to a direct genetic work-up in undiagnosed patients under steroid 298 

therapy. Aware of those difficulties, we are collecting GC-MS generated urine steroid profiles of rare 299 

patients with steroid disorders in a local databank and recommend colleagues to do the same. 300 

Another limitation of studies in the field is that different formula for the estimation of enzyme activities 301 

are used according to individually measured urinary steroid metabolites. Although those formula may all 302 

characterize the same enzyme activity, they cannot be directly compared when not using identical 303 

precursors and products for the calculations. In our study, we encountered this problem for several ratios, 304 

which led to the creation of adapted ratios. In the future, it may be therefore recommended to define the 305 

diagnostic ratios precisely. This will require some standardization in GC-MS urinary steroid profiling, but 306 

will have the advantage that diagnostic ratios will be comparable between laboratories. 307 

 308 

In conclusion, studies of the urinary steroid metabolome are valuable for solving specific questions on 309 

easily available biomaterial. We show that androgen biosynthesis through the backdoor pathway 310 

predominates during minipuberty. Additionally, we provide longitudinal normative data for diagnostic 311 

ratios for steroid enzyme activities. 312 
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Figure Legends 418 
 419 

Figure 1 420 

Assessment of androgen production through the alternative backdoor pathway. All figures were created 421 

by the combined use of the quantile regression method and natural splines. The solid lines represent the 422 

50
th
 and the dashed lines the 25

th
 and 75

th
 quantiles. Figure A shows overall androgen production over the 423 

first 12 months of life using androsterone as a surrogate metabolite. Figure B shows the flux through the 424 

backdoor pathway using the established ratio androsterone/etiocholanolone (29). In Figure A and B black 425 

lines are used for boys and grey lines for girls. In Figure C and D the contribution to androgen production 426 

by testes only is depicted. In Figure E and F the 17,20 lyase activities of the Δ
5
- and the Δ

4
-steroid 427 

pathway are shown; age effects were found, but no sex differences. The ID number of the steroid 428 

compound /steroid ratio from Table 1 is indicated in square brackets. 429 

 430 

Figure 2 431 

Assessment of sex- and age-specific dependencies of urinary steroid metabolite ratios corresponding to 432 

specific enzymes of steroidogenesis. All figures were created by the combined use of the quantile 433 

regression method and natural splines. The solid lines represent the 50
th
 and the dashed lines the 25

th
 and 434 

75
th
 quantiles. Black lines are used for boys and grey lines for girls. A, sex- and age-specific pattern for a 435 

specific ratio representing the 21-hydroxylase. B, age-dependent pattern for the 3β-hydroxysteroid 436 

dehydrogenase. C, age-dependent pattern for the 17α-hydroxylase. D, age- and sex-dependent pattern for 437 

the 5α-reductase during the first 12 months of life. The ID number of the steroid ratio from Table 2 is 438 

indicated in square brackets. 439 
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Table 1. Urinary steroid metabolites and ratios for the evaluation of the flux through the alternative backdoor pathway 
for androgen production. Established formula and calculations. 

ID Metabolites/Ratios Abbreviation Reference 

  ANDROGEN GENERATED FROM THE CLASSIC AND THE ALTERNATIVE BACKDOOR PATHWAY 
 1 androsterone AT Auchus et al. 2004 (15)  

  ALTERNATIVE BACKDOOR PATHWAY AFTER THE 17,20 LYASE VS. CLASSIC PATHWAY ACTIVITY 

 2 androsterone/etiocholanolone AT/ET Kamrath et al. 2012 (29) 

  CYP17A1 (17,20 LYASE) ACTIVITY FOR THE Δ
5
-STEROID PATHWAY 

 3 (dehydroepiandrosterone+16α-OH-dehydroepiandrosterone+ 
  androstenediol)/pregnenetriol 

(DHEA+16OH-DHEA+ 
  Δ5-diol)/5PT 

Homma et al. 2006 (28) 

  CYP17A1 (17,20 LYASE) ACTIVITY FOR THE Δ
4
-STEROID PATHWAY 

 4 11β-OH-androsterone/pregnanetriol 11β-OH-AT/PT Homma et al. 2006 (28) 

 

Table1



Table 2. Formula to calculate for steroid conversion ratios representing relative steroid enzyme activities involved in genetic 
steroid disorders. 
 
 
 

ID Disorders and pathways and their diagnostic ratios Ratio abbreviation Reference
a
 

21-HYDROXYLASE DEFICIENCY (21OHD) 
  5 pregnanetriolone/TH-cortisone PTO/THE Kamrath et al. 2016 (31) 

  6 pregnanetriolone/6α-OH-TH-cortisone PTO/6OH-THE Kamrath et al. 2016 (31) 

  7 pregnanetriolone/ 
  (TH-cortisone+6α-OH-TH-cortisone) 

PTO/(THE+6OH-THE) Kamrath et al. 2016 (31) 

  8 pregnanetriolone/(TH-cortisone+ 
  6α-OH-TH-cortisone+6α-OH-β-cortolone) 

PTO/(THE+6OH-THE+6OH-β-Cl) Kamrath et al. 2016 (31) 

3β-HSD DEFICIENCY (3HSDD) 

  9 pregnenetriol/TH-cortisone 5PT/THE Caulfield et al. 2002 (33) 
Kamrath et al. 2016 (31) 

10 pregnenetriol/6α-OH-TH-cortisone 5PT/6OH-THE Caulfield et al. 2002 (33) 
Kamrath et al. 2016 (31) 

11 pregnenetriol/(TH-cortisone+6α-OH-TH-cortisone) 5PT/(THE+6OH-THE) Caulfield et al. 2002 (33) 
Kamrath et al. 2016 (31) 

12 pregnenetriol/(TH-cortisone+6α-OH-TH-cortisone+ 
  6α-OH-β-cortolone) 

5PT/(THE+6OH-THE+6OH-β-Cl) Caulfield et al. 2002 (33) 
Kamrath et al. 2016 (31) 

13 dehydroepiandrosterone/TH-cortisone DHEA/THE Krone et al. 2010 (34) 
Kamrath et al. 2016 (31) 

14 dehydroepiandrosterone/6α-OH-TH-cortisone DHEA/6OH-THE Krone et al. 2010 (34) 
Kamrath et al. 2016 (31) 

15 dehydroepiandrosterone/(TH-cortisone+ 
  6α-OH-TH-cortisone) 

DHEA/(THE+6OH-THE) Krone et al. 2010 (34) 
Kamrath et al. 2016 (31) 

16 dehydroepiandrosterone/(TH-cortisone+ 
  6α-OH-TH-cortisone+6α-OH-β-cortolone) 

DHEA/(THE+ 
  6OH-THE+6OH-β-Cl) 

Krone et al. 2010 (34) 
Kamrath et al. 2016 (31) 

RATIO TO DISTINGUISH 3β-HSD DEFICIENCY FROM 21-HYDROXYLASE DEFICIENCY 

17 pregnenetriol/pregnanetriolone 5PT/PTO Caulfield et al. 2002 (33) 

11β-HYDROXYLASE DEFICIENCY (11OHD) 

18 TH-11-deoxycortisol/TH-cortisone THS/THE Caulfield et al. 2002 (33) 
Kamrath et al. 2016 (31) 

19 TH-11-deoxycortisol/6α-OH-TH-cortisone THS/6OH-THE Caulfield et al. 2002 (33) 
Kamrath et al. 2016 (31) 

20 TH-11-deoxycortisol/ 
  (TH-cortisone+6α-OH-TH-cortisone) 

THS/(THE+6OH-THE) Caulfield et al. 2002 (33) 
Kamrath et al. 2016 (31) 

21 TH-11-deoxycortisol/(TH-cortisone+ 
  6α-OH-TH-cortisone+6α-OH-β-cortolone) 

THS/(THE+6OH-THE+6OH-β-Cl) Caulfield et al. 2002, (33) 
Kamrath et al. 2016 (31) 

17α-HYDROXYLASE DEFICIENCY (17OHD) 

22 (11-dehydro-TH-corticosterone+TH-corticosterone+ 
  allo-TH-corticosterone)/TH-cortisone 

THA+THB+5αTHB/THE Krone et al. 2010 (34) 
Kamrath et al. 2016 (31) 

23 (11-dehydro-TH-corticosterone+TH-corticosterone+ 
  allo-TH-corticosterone)/6α-OH-TH-cortisone 

THA+THB+5αTHB/6OH-THE Krone et al. 2010 (34) 
Kamrath et al. 2016 (31) 

24 (11-dehydro-TH-corticosterone+ 
  TH-corticosterone+allo-TH-corticosterone)/ 
  (TH-cortisone+6α-OH-TH-cortisone) 

THA+THB+5αTHB/(THE+6OH-THE) Krone et al. 2010 (34) 
Kamrath et al. 2016 (31) 

25 (11-dehydro-TH-corticosterone+TH-corticosterone+ 
  allo-TH-corticosterone)/(TH-cortisone+ 
  6α-OH-TH-cortisone+6α-OH-β-cortolone) 

THA+THB+5αTHB/ 
  (THE+6OH-THE+6OH-β-Cl) 

Krone et al. 2010 (34) 
Kamrath et al. 2016 (31) 

26 (11-dehydro-TH-corticosterone+ 
  TH-corticosterone+allo-TH-corticosterone)/ 
  (androsterone+etiocholanolone) 

(THA+THB+5αTHB)/(AT+ET) Krone et al. 2010 (34) 

P450 OXIDOREDUCTASE DEFICIENCY (PORD) 

27 (17-OH-pregnanolone+pregnanetriol)/ 
  (androsterone+etiocholanolone) 

(17HP+PT)/(AT+ET) Krone et al. 2010 (34) 

28 (17-OH-pregnanolone+pregnanetriol)/TH-cortisone (17HP+PT)/THE Krone et al. 2010 (34) 
Kamrath et al. 2016 (31) 

29 (17-OH-pregnanolone+pregnanetriol)/ 
  6α-OH-TH-cortisone 

(17HP+PT)/6OH-THE Krone et al. 2010 (34) 
Kamrath et al. 2016 (31) 

30 (17-OH-pregnanolone+pregnanetriol)/ 
  (TH-cortisone+6α-OH-TH-cortisone) 

(17HP+PT)/(THE+6OH-THE) Krone et al. 2010 (34) 
Kamrath et al. 2016 (31) 

31 (17-OH-pregnanolone+pregnanetriol)/ 
  (TH-cortisone+6α-OH-TH-cortisone+ 
  6α-OH-β-cortolone) 

(17HP+PT)/ 
  (THE+6OH-THE+6OH-β-Cl) 

Krone et al. 2010 (34) 
Kamrath et al. 2016 (31) 

32 pregnanediol/TH-cortisone PD/THE Krone et al. 2010 (34) 
Kamrath et al. 2016 (31) 

33 pregnanediol/6α-OH-TH-cortisone PD/6OH-THE Krone et al. 2010 (34) 
Kamrath et al. 2016 (31) 

Table2



34 pregnanediol/(TH-cortisone+6α-OH-TH-cortisone) PD/(THE+6OH-THE) Krone et al. 2010, (34) 
Kamrath et al. 2016 (31) 

35 pregnanediol/(TH-cortisone+6α-OH-TH-cortisone+ 
  6α-OH-β-cortolone) 

PD/(THE+6OH-THE+6OH-β-Cl) Krone et al. 2010, (34) 
Kamrath et al. 2016 (31) 

APPARENT MINERALOCORTICOID EXCESS (AME)/11β-HSD2 DEFICIENCY (11HSD2D)   

36 cortisol/cortisone F/E Krone et al. 2010 (34) 

37 (TH-cortisol+allo-TH-cortisol )/TH-cortisone (THF+5αTHF)/THE Krone et al. 2010 (34) 

38 (α-cortol+β-cortol)/(α-cortolone+β-cortolone) (α-C+β-C)/(α-Cl+β-Cl) Krone et al. 2010 (34) 

39 (α-cortol+β-cortol)/(α-cortolone+β-cortolone+ 
  6α-OH-α-cortolone+1β-OH-β-cortolone+ 
  6α-OH-β-cortolone) 

(α-C+β-C)/(α-Cl+β-Cl+6OH-α-Cl+ 
  1β-OH-β-Cl+6OH-β-Cl) 

Krone et al. 2010 (34) 

40 (cortisol+cortisone)/(TH-cortisol+allo-TH-cortisol+ 
  TH-cortisone) 

(F+E)/(THF+5αTHF+THE) Krone et al. 2010 (34) 

APPARENT CORTISONE REDUCTASE DEFICIENCY (ACRD)/HEXOSE-6-PHOSPHATE DEHYDROGENASE (H6PDH)/ 
CORTISONE REDUCTASE DEFICIENCY (CRD)/11β-HSD1 DEFICIENCY (11HSD1D) 

41 TH-cortisone/(TH-cortisol+allo-TH-cortisol ) THE/(THF+5αTHF) Krone et al. 2010 (34) 

42 (α-cortolone+β-cortolone)/(α-cortol+β-cortol) (α-Cl+β-Cl)/(α-C+β-C) Krone et al. 2010 (34) 

43 (α-cortolone+β-cortolone+6α-OH-α-cortolone+ 
  1β-OH-β-cortolone+6α-OH-β-cortolone)/ 
  (α-cortol+β-cortol) 

(α-Cl+β-Cl+6OH-α-Cl+1β-OH-β-Cl+ 
  6OH-β-Cl)/(α-C+β-C) 

Krone et al. 2010 (34) 

5α-REDUCTASE DEFICIENCY (5ARD) 

44 TH-cortisol/allo-TH-cortisol THF/5αTHF Krone et al. 2010 (34) 

45 TH-corticosterone/allo-TH-corticosterone THB/5αTHB Krone et al. 2010 (34) 
a
Glucocorticoid metabolites in some ratios indicated in the references were replaced by different combinations of fetal urinary 

glucocorticoid metabolites where appropriate by analogy with Kamrath et al. 2016 (31). 

 



Table 3. Specific urine steroid metabolite ratios at 13 time-points in the first year of life representing specific enzyme activities of the steroid metabolism. The highest ratio and the 97.5
th

 quantile in parenthesis are presented. Age and sex dependency of each steroid ratio were estimated by multivariable linear 
quantile mixed models and the respective results are indicated in the columns “Age” and “Sex”. 

ID Steroid metabolite ratios   Week 1 Week 3 Week 5 Week 7 Week 9 Week 11 Week 13 Week 17 Week 21 Week 25 Week 33 Week 41 Week 49 Age Sex 

21-HYDROXYLASE DEFICIENCY (21OHD) 
  5 PTO/THE   0.0279 (0.0235) 0.062 (0.0434) 0.0478 (0.0468) 0.0369 (0.028) 0.04 (0.0201) 0.0639 (0.0264) 0.1198 (0.0954) 0.0293 (0.0154) 0.0227 (0.0167) 0.0862 (0.0508) 0.0475 (0.0364) 0.5318 (0.2335) 0.0987 (0.0928) no no 

  6 PTO/6OH-THE boys 0.0047 (0.0044) 0.0145 (0.0107) 0.006 (0.0053) 0.0043 (0.0043) 0.0058 (0.0049) 0.0066 (0.0061) 0.0096 (0.0078) 0.0107 (0.0095) 0.009 (0.0086) 0.017 (0.0149) 0.0195 (0.0189) 0.0208 (0.019) 0.1153 (0.1002) yes yes 

girls 0.0056 (0.0052) 0.0035 (0.0035) 0.0057 (0.005) 0.006 (0.0057) 0.005 (0.005) 0.0261 (0.0175) 0.0705 (0.041) 0.0076 (0.0074) 0.0155 (0.0134) 0.0285 (0.0251) 0.0488 (0.0392) 0.057 (0.0406) 0.0282 (0.0267) 

  7 PTO/(THE+6OH-THE) boys 0.0035 (0.0034) 0.0107 (0.0084) 0.0037 (0.0037) 0.0039 (0.0036) 0.0036 (0.0031) 0.0039 (0.0038) 0.0089 (0.007) 0.0078 (0.0065) 0.0045 (0.0045) 0.0066 (0.0065) 0.012 (0.0109) 0.008 (0.0075) 0.0532 (0.0457) no yes 

girls 0.0043 (0.0042) 0.0033 (0.0029) 0.0039 (0.0036) 0.0045 (0.0039) 0.0036 (0.0036) 0.0185 (0.0123) 0.0402 (0.0245) 0.0046 (0.0045) 0.0092 (0.0077) 0.012 (0.0118) 0.0241 (0.018) 0.0515 (0.0351) 0.0175 (0.017) 

  8 PTO/(THE+6OH-THE+6OH-β-Cl) boys 0.0022 (0.0021) 0.0088 (0.0067) 0.0033 (0.0031) 0.0028 (0.0027) 0.0028 (0.0025) 0.0034 (0.0033) 0.0071 (0.0058) 0.0074 (0.0062) 0.0044 (0.0043) 0.0063 (0.0063) 0.0116 (0.0104) 0.0079 (0.0074) 0.0464 (0.04) no yes 

girls 0.0032 (0.0028) 0.0024 (0.0022) 0.0034 (0.0029) 0.0037 (0.0033) 0.0032 (0.0031) 0.0103 (0.0074) 0.0382 (0.0228) 0.0041 (0.004) 0.0086 (0.0072) 0.0116 (0.0115) 0.0233 (0.0175) 0.047 (0.032) 0.0169 (0.0163) 

3β-HSD DEFICIENCY (3HSDD) 

  9 5PT/THE   1.88 (1.786) 1.467 (0.5684) 1.498 (1.411) 0.8546 (0.7751) 0.8008 (0.5927) 0.9749 (0.3978) 0.5489 (0.3453) 0.3163 (0.1815) 0.3809 (0.3244) 0.9418 (0.428) 0.922 (0.3987) 0.3437 (0.2133) 0.5945 (0.3575) no no 

10 5PT/6OH-THE   0.36 (0.304) 0.107 (0.0846) 0.13 (0.0967) 0.1575 (0.1228) 0.3249 (0.1673) 0.398 (0.1711) 0.175 (0.11) 0.169 (0.1233) 0.1847 (0.1392) 0.1325 (0.0974) 0.3785 (0.2132) 0.0881 (0.0872) 0.1116 (0.104) yes no 

11 5PT/(THE+6OH-THE)   0.3021 (0.2598) 0.0778 (0.0466) 0.1196 (0.0904) 0.1186 (0.1031) 0.2311 (0.1287) 0.2826 (0.1187) 0.1092 (0.0737) 0.1101 (0.0732) 0.1244 (0.0736) 0.1162 (0.0717) 0.2683 (0.1321) 0.0502 (0.0446) 0.0817 (0.0681) yes no 

12 5PT/(THE+6OH-THE+6OH-β-Cl)   0.2257 (0.2077) 0.0557 (0.0384) 0.0845 (0.0706) 0.0901 (0.078) 0.1732 (0.1021) 0.1566 (0.0836) 0.0907 (0.062) 0.0908 (0.0671) 0.1031 (0.0669) 0.0921 (0.0621) 0.2127 (0.1107) 0.0465 (0.0406) 0.0735 (0.0606) yes no 

13 DHEA/THE   0.4194 (0.3393) 0.2101 (0.1852) 1.153 (0.6294) 0.2533 (0.2077) 0.2023 (0.1993) 0.0969 (0.0732) 0.3599 (0.1114) 0.062 (0.0476) 0.0637 (0.0499) 0.4753 (0.2553) 0.0887 (0.0485) 0.0899 (0.0476) 0.08 (0.0594) no no 

14 DHEA/6OH-THE   0.0976 (0.081) 0.0466 (0.031) 0.0384 (0.034) 0.0373 (0.0314) 0.1024 (0.0545) 0.04 (0.0308) 0.2713 (0.0659) 0.0282 (0.0259) 0.0589 (0.039) 0.0669 (0.0521) 0.0713 (0.0563) 0.0322 (0.028) 0.0935 (0.0598) yes no 

15 DHEA/(THE+6OH-THE) boys 0.0737 (0.0503) 0.017 (0.0156) 0.0353 (0.0277) 0.0267 (0.0202) 0.0051 (0.0049) 0.0145 (0.0125) 0.0105 (0.0098) 0.0066 (0.0066) 0.0096 (0.0086) 0.0068 (0.0068) 0.0395 (0.0309) 0.0039 (0.0036) 0.0431 (0.0368) no yes 

girls 0.0626 (0.056) 0.0382 (0.0305) 0.0297 (0.0237) 0.024 (0.0228) 0.0654 (0.0533) 0.0244 (0.0225) 0.1547 (0.0918) 0.0179 (0.0176) 0.0306 (0.0255) 0.0586 (0.0454) 0.0133 (0.0126) 0.0109 (0.0102) 0.0066 (0.0063) 

16 DHEA/(THE+   
  6OH-THE+6OH-β-Cl) 

boys 0.0345 (0.0247) 0.0123 (0.0118) 0.0249 (0.0199) 0.0173 (0.0137) 0.0042 (0.0041) 0.0126 (0.0107) 0.0087 (0.0083) 0.0062 (0.0061) 0.0087 (0.0078) 0.0064 (0.0063) 0.0387 (0.0302) 0.0036 (0.0034) 0.0376 (0.0322) no yes 

girls 0.0379 (0.0304) 0.027 (0.0227) 0.0224 (0.0178) 0.0177 (0.0175) 0.0531 (0.0437) 0.0214 (0.0184) 0.1471 (0.0862) 0.0171 (0.016) 0.0277 (0.0236) 0.0465 (0.0362) 0.0126 (0.012) 0.0107 (0.01) 0.0063 (0.006) 

RATIO TO DISTINGUISH 3β-HSD DEFICIENCY FROM 21-HYDROXYLASE DEFICIENCY 

17 5PT/PTO   405.4 (106.4) 203 (49.89) 82.18 (41.31) 77.77 (72) 88.23 (66.22) 41.86 (37.58) 33.15 (30.27) 76.52 (44.36) 47.08 (37.43) 26.51 (23.62) 69.24 (35.44) 18.09 (17.92) 12 (11.8) yes no 

11β-HYDROXYLASE DEFICIENCY (11OHD) 

18 THS/THE   0.1391 (0.1241) 0.0926 (0.0887) 0.1087 (0.1075) 0.0339 (0.0306) 0.0306 (0.0223) 0.0341 (0.025) 0.104 (0.0553) 0.048 (0.0375) 0.0757 (0.0613) 0.227 (0.0969) 0.0663 (0.0657) 0.0783 (0.0676) 0.1084 (0.102) yes no 

19 THS/6OH-THE   0.0452 (0.0268) 0.0238 (0.02) 0.029 (0.0174) 0.0123 (0.0114) 0.0131 (0.0121) 0.0176 (0.0163) 0.0784 (0.0324) 0.0364 (0.0314) 0.0657 (0.0554) 0.0658 (0.061) 0.0833 (0.0792) 0.0817 (0.0734) 0.1283 (0.1071) yes no 

20 THS/(THE+6OH-THE)   0.0341 (0.0211) 0.0187 (0.016) 0.0126 (0.0101) 0.0067 (0.0064) 0.0073 (0.0073) 0.0101 (0.0087) 0.0447 (0.0175) 0.0184 (0.0175) 0.0306 (0.0297) 0.0277 (0.0276) 0.0318 (0.0283) 0.0316 (0.0301) 0.0449 (0.0413) yes no 

21 THS/(THE+6OH-THE+6OH-β-Cl)   0.016 (0.0144) 0.0135 (0.0102) 0.011 (0.0084) 0.0062 (0.0058) 0.0068 (0.0067) 0.0092 (0.0081) 0.0425 (0.0164) 0.0172 (0.0164) 0.0286 (0.0286) 0.0268 (0.0231) 0.0309 (0.0276) 0.0311 (0.029) 0.0441 (0.0399) yes no 

17α-HYDROXYLASE DEFICIENCY (17OHD) 

22 THA+THB+5αTHB/THE   1.592 (1.16) 0.814 (0.8001) 1.608 (0.9328) 1.172 (0.6845) 1.261 (0.7656) 0.7127 (0.596) 0.6943 (0.6644) 1.126 (0.6883) 1.133 (0.8644) 1.2 (1.155) 1.311 (1.178) 1.054 (0.9273) 1.208 (1.093) yes no 

23 THA+THB+5αTHB/6OH-THE   0.5168 (0.3189) 0.1942 (0.19) 0.2094 (0.1765) 0.2195 (0.2131) 0.5646 (0.4292) 0.467 (0.3029) 0.4984 (0.387) 0.5595 (0.334) 0.7406 (0.5888) 1.05 (0.7068) 1.287 (1.19) 1.396 (1.134) 1.898 (1.578) yes no 

24 THA+THB+5αTHB/(THE+6OH-THE)   0.3901 (0.2378) 0.1551 (0.1489) 0.1645 (0.1521) 0.179 (0.15) 0.39 (0.2779) 0.2821 (0.1909) 0.2842 (0.231) 0.3738 (0.2172) 0.3815 (0.3336) 0.5201 (0.3898) 0.6497 (0.5141) 0.5179 (0.4412) 0.7382 (0.6438) yes no 

25 THA+THB+5αTHB/ 
  (THE+6OH-THE+6OH-β-Cl) 

  0.1827 (0.1431) 0.1185 (0.1063) 0.1377 (0.1182) 0.1231 (0.1084) 0.3328 (0.2276) 0.2535 (0.1668) 0.2702 (0.2049) 0.3239 (0.1964) 0.3618 (0.3197) 0.4892 (0.3666) 0.6175 (0.4943) 0.4959 (0.4219) 0.7103 (0.6157) yes no 

26 (THA+THB+5αTHB)/(AT+ET) boys 47.83 (41.6) 22.25 (18.03) 46 (37.95) 19.26 (17.85) 34.34 (25.92) 22.51 (20.89) 23.8 (21.28) 26.25 (26.04) 38.17 (38.15) 65.24 (60.86) 60.72 (56.8) 103.9 (96.52) 131.3 (119.2) yes yes 

girls 18.99 (17.16) 26.23 (25.11) 26.62 (24.91) 37.15 (34.29) 119.8 (75.38) 68.22 (62.45) 96.02 (89.17) 67.67 (54.33) 93.58 (78.06) 123.6 (92.43) 52.84 (48.68) 52.71 (43.24) 119.4 (95.83) 

P450 OXIDOREDUCTASE DEFICIENCY (PORD) 

27 (17HP+PT)/(AT+ET)   3.995 (3.6) 5.826 (5.012) 4.228 (3.89) 3.086 (3.081) 6.044 (5.146) 5.2 (4.196) 4.528 (3.847) 6.938 (5.868) 7.227 (7.094) 6.678 (6.376) 7.536 (6.717) 5.363 (4.387) 6.62 (5.56) yes no 

28 (17HP+PT)/THE   0.305 (0.2503) 0.8103 (0.3641) 0.4091 (0.3638) 0.3157 (0.2919) 0.276 (0.1115) 0.2231 (0.1879) 0.5293 (0.5015) 0.342 (0.2918) 0.2763 (0.2308) 0.3979 (0.3963) 0.3015 (0.2118) 0.8954 (0.4857) 0.7659 (0.6574) yes no 

29 (17HP+PT)/6OH-THE   0.0787 (0.037) 0.0788 (0.0544) 0.0508 (0.0437) 0.0407 (0.0384) 0.065 (0.0412) 0.0911 (0.0862) 0.3764 (0.1391) 0.1574 (0.1317) 0.1882 (0.1496) 0.1821 (0.1522) 0.2658 (0.2102) 0.152 (0.1446) 0.3632 (0.2785) yes no 

30 (17HP+PT)/(THE+6OH-THE)   0.0594 (0.0317) 0.0537 (0.0492) 0.0339 (0.0331) 0.0313 (0.0248) 0.0526 (0.0277) 0.0647 (0.0546) 0.2146 (0.0946) 0.1006 (0.0933) 0.112 (0.0842) 0.079 (0.077) 0.0831 (0.0814) 0.0867 (0.0825) 0.1675 (0.1516) yes no 

31 (17HP+PT)/ 
  (THE+6OH-THE+6OH-β-Cl) 

  0.0278 (0.0178) 0.0414 (0.0371) 0.0266 (0.0256) 0.0254 (0.0205) 0.0441 (0.0227) 0.0453 (0.038) 0.2041 (0.0832) 0.0874 (0.0863) 0.1043 (0.0803) 0.0743 (0.0734) 0.0785 (0.0774) 0.0792 (0.0759) 0.146 (0.1363) yes no 

32 PD/THE   0.3413 (0.2859) 0.1726 (0.1251) 0.2996 (0.146) 0.0787 (0.054) 0.1221 (0.1171) 0.0425 (0.0342) 0.7094 (0.4788) 0.1661 (0.0676) 0.1036 (0.0937) 0.1208 (0.1106) 0.0521 (0.0456) 0.0616 (0.0515) 0.1044 (0.1034) no no 

33 PD/6OH-THE   0.0489 (0.0375) 0.0336 (0.0181) 0.0342 (0.0237) 0.008 (0.0078) 0.0556 (0.0539) 0.0171 (0.0165) 0.3912 (0.3535) 0.1065 (0.0527) 0.0709 (0.0619) 0.1044 (0.0624) 0.0514 (0.0421) 0.0641 (0.0503) 0.0503 (0.0427) yes no 

34 PD/(THE+6OH-THE)   0.0428 (0.0332) 0.0262 (0.0146) 0.0228 (0.017) 0.0063 (0.0059) 0.0377 (0.0347) 0.0122 (0.0105) 0.2521 (0.2059) 0.0649 (0.0286) 0.0421 (0.0305) 0.0414 (0.029) 0.0227 (0.0219) 0.0217 (0.0186) 0.0251 (0.021) yes no 

Table3



35 PD/(THE+6OH-THE+6OH-β-Cl)   0.0354 (0.0173) 0.021 (0.0107) 0.017 (0.0132) 0.0052 (0.0049) 0.0338 (0.0286) 0.0111 (0.0093) 0.2325 (0.1947) 0.055 (0.0254) 0.0405 (0.0296) 0.0399 (0.0279) 0.0223 (0.0213) 0.0213 (0.018) 0.0237 (0.0201) yes no 

APPARENT MINERALOCORTICOIDEXCESS (AME)/11β-HSD2 DEFICIENCY (11HSD2D) 

36 F/E   76.61 (54.97) 38.95 (13.99) 10.19 (4.742) 14.66 (3.681) 28.3 (3.242) 35.22 (6.76) 51.993 (18.713) 16.349 (6.801) 1.681 (1.555) 11.061 (5.317) 3.019 (2.689) 20.805 (10.094) 4.239 (3.869) yes no 

37 (THF+5αTHF)/THE   0.27 (0.078) 0.2815 (0.1126) 0.2269 (0.1987) 0.2513 (0.213) 0.4203 (0.3314) 0.798 (0.6696) 1.356 (1.269) 2.105 (1.904) 2.162 (1.632) 3.614 (3.455) 4.331 (2.878) 2.609 (2.459) 4.999 (4.166) yes no 

38 (α-C+β-C)/(α-Cl+β-Cl)   2.746 (1.323) 1.1 (0.7428) 2.408 (1.493) 0.9456 (0.941) 1.232 (1.009) 0.5002 (0.4655) 0.8667 (0.8622) 0.8523 (0.7477) 0.6627 (0.5625) 0.8173 (0.7338) 1.424 (1.085) 0.6541 (0.6397) 0.8764 (0.8314) yes no 

39 (α-C+β-C)/(α-Cl+β-Cl+6OH-α-Cl+ 
  1β-OH-β-Cl+6OH-β-Cl) 

  0.0542 (0.0362) 0.0391 (0.0275) 0.0677 (0.0488) 0.0598 (0.0586) 0.0808 (0.0414) 0.0507 (0.0358) 0.2061 (0.1114) 0.075 (0.0522) 0.0726 (0.0553) 0.0524 (0.0497) 0.1359 (0.105) 0.0715 (0.0684) 0.1059 (0.0988) yes no 

40 (F+E)/(THF+5αTHF+THE)   0.8312 (0.8188) 0.4776 (0.4274) 1.032 (0.8279) 1.051 (0.6255) 1.033 (0.4796) 0.3264 (0.2954) 0.5463 (0.4871) 0.2268 (0.2013) 0.3098 (0.2645) 0.4643 (0.3087) 0.5877 (0.2672) 0.1251 (0.1024) 0.1288 (0.1262) yes no 

APPARENT CORTISONE REDUCTASE DEFICIENCY (ACRD)/HEXOSE-6-PHOSPHATE DEHYDROGENASE (H6PDH)/ 
CORTISONE REDUCTASE DEFICIENCY (CRD)/11β-HSD1 DEFICIENCY (11HSD1D) 

41 THE/(THF+5αTHF)   128.7 (118.4) 108.2 (101.9) 92.34 (80.94) 65.76 (40.87) 48.39 (41.2) 23.37 (21.85) 19.13 (16.02) 6.33 (6.266) 5.69 (3.828) 35.866 (10.195) 12.04 (5.853) 1.452 (1.418) 1.393 (1.374) yes no 

42 (α-Cl+β-Cl)/(α-C+β-C)   14.54 (13.19) 18.99 (14.15) 10.79 (9.641) 18.04 (12.58) 14.92 (14.5) 15.29 (11.95) 14.65 (13.92) 19.28 (13.88) 9.57 (8.913) 10.61 (8.578) 5.223 (4.688) 5.088 (4.922) 4.44 (4.047) yes no 

43 (α-Cl+β-Cl+6OH-α-Cl+1β-OH-β-Cl+ 
  6OH-β-Cl)/(α-C+β-C) 

  617.3 (468.2) 433.5 (301.7) 260.4 (231.5) 295.6 (219.7) 313.6 (280.9) 231.7 (175.9) 258.4 (241.5) 273 (179.7) 117.7 (116.1) 149 (139.4) 143.7 (103.5) 82.23 (75.44) 49.12 (48.34) yes no 

5α-REDUCTASE DEFICIENCY (5ARD) 

44 THF/5αTHF boys 4.164 (3.872) 3.094 (2.774) 1.093 (1.008) 0.4993 (0.4883) 0.5926 (0.5842) 0.508 (0.4299) 0.4859 (0.405) 0.4421 (0.4147) 0.384 (0.3722) 0.5647 (0.5486) 0.895 (0.7668) 0.4919 (0.4781) 0.6935 (0.6768) yes yes 

girls 3.285 (2.933) 3.831 (3.561) 4.385 (4.03) 0.9944 (0.9245) 0.6356 (0.5879) 0.567 (0.518) 0.9602 (0.7674) 0.3931 (0.3772) 0.4925 (0.474) 1.069 (0.9217) 0.4492 (0.4481) 1.084 (0.8839) 1.778 (1.53) 

45 THB/5αTHB boys 222.2 (137.9) 26.28 (19.46) 8.744 (8.38) 61.89 (47.37) 95.86 (91.44) 202 (155) 105.7 (99.16) 480.9 (432.8) 131.9 (129.5) 207.5 (207.4) 193.9 (186.1) 307.9 (282.5) 136.9 (136.5) yes yes 

girls 152.5 (137.9) 34.75 (23.85) 60.63 (38.52) 15.1 (14.89) 103.9 (86.98) 82.07 (80.31) 142.9 (126) 202 (185.5) 327.6 (304.5) 246.2 (192.5) 263.8 (260.8) 169.4 (161) 147.2 (137) 

Number of calculated ratios per week: week 1: 34-36; week 3: 36-38; week 5: 32-35; week 7: 32-35; week 9: 36-38; week 11: 31-35; week 13: 34-38; week 17: 32-33; week 21: 30-32; week 25: 30-32; week 33: 26-28; week 41: 21-24; week 49: 19-20. 
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