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AbstrAct: Although classified as higher plants, and the second biggest group of terrestrial plants, bryophytes 
remain less studied and even unknown in many biological processes. Here, an overview on 
developmental processes in bryophytes known until now is presented. Special emphasis on growth 
regulators and their influence in bryophytes is given.
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IntroductIon

The group of terrestrial plants jointly named bryophytes 
is paraphyletic by origin. Bryophytes (subkingdom 
of Plantae Bryobiotina) include mosses (Bryophyta), 
hornworts (Antocerotophyta) and liverworts 
(Marchantiophyta). Bryophytes represent a very diverse 
group which have in common a life cycle that comprises 
two alternating heterophasic and heteromorphic 
generations, ie. gametophyte and sporophyte. The 
gametophyte is the dominant generation in bryophytes 
represented by green plants. In contrast to seed plants, 
where sporophytes are dominant, these remain attached 
and completely or partly dependent on the gametophyte 
for nutritional supply. The sporophyte generation begins 
with zygote (2n) production which proliferates in seta 
(pedicel) attached or stalked within the gametophytic 
plant body (Fig. 1). There, within the capsules, haploid 
spores are produced by meiosis, which by germination 
will produce branched filamentous (most of the mosses) 
or thallous protonema (in Sphagnum). In filamentous 
protonema, two types of cells can be recognized: 
chloronema cells rich in chloroplasts with perpendicular 
walls and caulonema cells containing few chloroplasts 
and with oblique cell walls. Small rounded cells within 
the protonemal filaments can sometimes be found. They 
are termed tmema cells (abscission cells) and have a 
function in separating protonemal filaments for vegetative 

reproduction. Tmema cells are formed in other bryophyte 
organs and are responsible for abscission of gemmae, 
various diaspores for vegetative reproduction (e.g. tubers, 
clusters, brachycytes). Brachycytes are thick-walled, 
drought-tolerant brood cells or parts of brood bodies 
formed on primary or secondary protonema (usually on 
chloronema). In some species, protonema can be short-
lived while in others, they can be a long-living stage to 
persistent. In protonema, formation of meristematic 
buds with tree-faced apical cells represents the transition 
to the gametophore. A fully-developed gametophore 
can be regarded as an adult bryophyte plant. In mosses, 
gametophores developed from buds are shoot-like stems 
bearing phylloids and rhizoids at their base. Phylloids 
are leaf-shaped structures with similar function to but 
different anatomy from angiosperm leaves. Rhizoids are 
filaments, which play a role in attaching to substrate and 
no or less role in water or nutrient uptake of gametophores. 
Sex organs, female (archegonia) and male (antheridia) 
are usually produced at the tips of gametophores. If 
both sexes are produced in one gametophore, the plant 
is defined as a monoecious species, while if these are in 
different gametophores the species is dioecious. Within 
the antheridia, motile biflagellate spermathozoids are 
formed, that are capable of moving in the presence of a 
thin water film in the direction of archegonia (single egg 
cell). Fertilization occurs within the archegonium where 
the diploid zygote is embedded. Antheridia are often 
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protected by differentiated phyloids in mosses or a cup-
like sheath in liverworts (perichaetium) and archegonia 
(perigonium). In an apical spore capsule produced from 
the zygote, hundreds of haploid spores are produced, 
which can be differentially spread from mother plants 
upon capsule ripening, and with propagation the life cycle 
starts again.

Spore capsules often have a protective layer called the 
calyptra, which breaks after ripening and can be specific 
in shape. The capsule can open by decaying of the outer 
layer, rupture or simply by losing the operculum, a lid-like 
structure at the top of the capsule which falls off when 
the capsule ripens, leaving the capsule mouth, stoma, 
for releasing the spores. Some mosses have a tooth-like 
structure named the peristom, which has function in 
spore dispersal.

Plant growth regulators. Plant growth regulators 
(PGRs) are a varied group of molecules produced in 
plants in extremely low concentration that act in plant 
developmental process as signal molecules. PGRs 
include five groups of compounds commonly known as 
phytohormones - auxins, cytokinins, gibbellins, ABA and 
ethylene, as well as some other signal molecules. Without 
PGRs, plant cells would remain an undifferentiated 
mass. PGRs affect gene expression, transcription levels, 
cellular division and growth. Although they are naturally 
produced within plants, very similar compounds can 
be produced by bacteria and fungi. These can affect 

plant growth as well as some synthetically-produced 
compounds.  

Considering that recent investigations on 
phytohormone effects on bryophyte morphogenesis have 
focused on the model moss Physcomitrella patens (Hedw.) 
Bruch & Schimp., and Funaria hygrometrica Hedw. 
there are only a few reports bringing new information 
on other bryophyte species: Aloina aloides (Schultz) 
Kindb., Atrichum undullatum (Hedw.) P. Beauv., Bruchia 
vogesiaca Schwaegr., Bryum argenteum Hedw., Dicranum 
scoparium Hedw., Molendoa hornschuchiana (Hook.) 
Lindb. ex Limpr., Pogonatum urnigerum (Hedw.) P. 
Beauv. or Thamnobryum alopecurum Nieuwland ex 
Gangulee (Sabovljević et al. 2002, 2003; Bijelović & 
Sabovljević 2003; Bijelović et al. 2004; Vukojević et 
al. 2004; Cvetić et al. 2005; Sabovljević et al. 2005; 
Rowntree 2006).

A few moss species have been used to investigate the 
influence of phytohormones on their development in 
vitro. Bopp and co-workers (Bopp 1953, 1955, 2000; Bopp 
& Bohrs 1965; Bopp & Jacob 1986; Bopp et al. 1978, 
1991) concentrated on the physiology of F. hygrometrica, 
and Reski and coworkers (Reski 1998, 1999; Reski & 
Abel 1985; Reski et al. 1991, 1994; Decker et al. 2006) 
have carried out substantial research using P. patens. 
Several other species have also been used for such 
investigations, but reports are scattered and not detailed 
(Briere et al. 1977; Rahbar & Chopra 1982; Alcalde 
et al. 1996; Sastad et al. 1998). The present knowledge of 

Fig. 1. Scheme of developmental processes in the life-cycle of a model bryophyte.
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plant growth regulator interactions in mosses is mainly 
based on auxins and cytokinins. There is very little work 
on the influence of other groups of growth regulators in 
bryophytes to be found.

Auxins and cytokinins. From the five main groups of 
phytohormones, only auxins and cytokinins have been 
rather extensively studied in mosses as compared to other 
PGRs (Cove & Ashton 1984; Bhatla & Bopp 1985). Not 
only do both of these hormone groups exist in mosses, but 
they also have basic functions in the regulation of normal 
development. Previous investigations indicate that the 
hormonal system of mosses includes the sequential 
interaction of auxin and cytokinin as a main component.

The known effects to date of auxins on moss 
development include inhibition of protonema growth, 
stimulation of rhizoid formation, transformation of buds 
into filaments, torsion of young stems, complete supression 
of leaves on gametophores, and callus induction (Bopp 
1953; Sokal et al. 1997).

Bud formation, the number of buds and their position 
along the caulonema, and cell division in protonema are 
determined by cytokinins (Szweykowska et al. 1971).

Chemical control of protonemal differentiation and 
growth has been demonstrated in recent years. There 
are data concerning the correlation between protonemal 
growth and bud formation in mosses. In some moss 
systems the protonema must reach a “critical size” before 
bud formation starts, and in others, protonemal age 
rather than its size appears to be important (Chopra & 
Kumra 1988). There is a report that only low levels of 
auxin are necessary for the differentiation of caulonema 
and higher levels are required to induce the formation 
of gametophores (Cove & Ashton 1984). The effect of 
auxins on bud formation depends on their concentration. 
At lower levels, auxins stimulate bud induction, whereas 
at higher concentrations they cause complete inhibition 
of bud formation as well as de-differentiation of bud 
primordia.

Studies on the morphogenetic effects of applied 
cytokinins have played an important role in better 
understanding of plant development. Cytokinin activity 
is restricted to a specific morphogenetic change during 
protonema development, the formation of buds on 
certain caulonemal cells. However, cytokinin does 
not act as a “trigger” (Ashton et al. 1979). It needs to 
be present for a critical period of time during which 
caulonema differentiation is “stabilized” (Brandes 
1973). According to the literature, in almost all cases 
with a short exposure to cytokinins, the induced buds 
have been abnormal and often-described as “callus-like” 
(Brandes 1973). In most moss species investigated, 
normal gametophore development occurs only when very 

low concentrations of cytokinins are used (Ashton et al. 
1979). Gametophytes are defective or abortive at extreme 
cytokinin concentrations (very low or very high) (Chopra 
& Kumra 1988).

The specific growth regulator bryokinin has been 
isolated from bryophytes. Bryokinin (a type of cytokinin) 
can replace kinetin as a growth factor in tissue culture 
of vascular plants. In mosses, bryokinin is physiologically 
active at several stages of development. At the caulonema 
stage it promotes bud formation. In the phase immediately 
before sexual maturation, it supports apogamous 
sporogonium formation. Bryokinin is a type of cytokinin 
found in moss callus cells and chemically corresponds to 
the free base N6-γ,γ dimethylallyladenine. 

To understand the hormonal effect in more detail, it 
is important to know more about such components as 
synthesis, metabolism, and transport. For this purpose, 
mutants have been introduced into moss research. As 
mutants having a low degree of auxin production are 
relatively insensitive to exogenously supplied cytokinins, 
it can be concluded that sensitivity to cytokinins for bud 
formation must be dependent on the presence of auxin, 
which must be present in sufficiently high concentrations 
(Cove & Ashton 1984; Schumaker & Dietrich 1998).

Gibberellins. Gibberellins (GAs) are a large family 
of phytohormones involved in an array of various 
responses throughout the life cycle of plants. The general 
role of GAs in vascular plants can be summarized in 
germination stimulation, flowering time regulation 
and cell expansion. They were isolated from the fungus 
Giberella but found afterwards in various bacteria 
(MacMillan 2001) and many plant species including 
unicellular and multicellular algae (Radley 1961; Kato 
et al. 1962; Mowat 1965; Tarakhovskaya et al. 2007). 
However, the role of gibberellins in bryophyte species is 
still unknown.

Hardly any effects of GAs have been reported for 
mosses, in contrast to ABA, cytokinins or auxins which 
are known to have an effect on the developmental 
stages of bryophytes (Decker et al. 2006; Yasumura 
et al. 2007). Chopra & Mehta (1992) and Chopra & 
Dhingra-Babbar (1984) reported the effect of GAs on 
moss growth. Chaban et al. (1998, 1999) reported on 
interference with gravitropism when GA was applied to 
Ceratodon purpureus (Hedw.) Brid. and Pottia intermedia 
(Turn.) Fürn.. Sabovljević et al. (2010) investigated the 
influence of GA on morphogenesis of the moss Bryum 
argenteum Hedw.. It was shown that both gibberellins 
(GA3 and GA7) aplied in vitro had a positive effect on 
B. argenteum morphogenesis. In experiments where 
gibberellin biosynthesis inhibitors were applied, it was 
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shown that these retardants had inhibitory effects on shoot 
multiplication in vitro. However, these substances have 
almost no negative effects on protonema morphogenesis, 
though in vascular plants these substances have extremely 
negative effects on morphogenesis (Sabovljević et al. 
2010). The above-mentioned results on GAs and GA 
inhibitors raise several questions, e.g. does protonemal 
growth increase due to cellular expansion or division; 
what can be expected when GAs and inhibitors are applied 
synergistically; or do GA inhibitors block the biosynthesis 
or the action of GAs. Further studies in bryophytes should 
provide answers to these questions.

Although Decker et al. (2006) reviewed phytohormones 
in the development of Physcomitrella patens, they did not 
mention any known role of gibberellins in developmental 
processes of P. patens. GAs in bryophytes have never 
been chemically identified (Anterola & Shanie, 2008). 
However, Ergun et al. (2002) reported that gibberellin-
like substances have been also detected in mosses, but 
the presence of GAs in an organism does not necessarily 
mean that it is responsive to these compounds. As GAs 
have not yet been clearly identified in mosses, Yasumura 
et al. (2007) stated that this hormonal signaling pathway 
developed later in land plant evolution, but was not 
completely de novo. Hence, it could be suggested that GA 
biosynthetic precursors, like entkaurene should be present 
in mosses (Vandenbussche et al. 2007). Anterola & 
Shanie (2008) reported that according to a survey of the 
Physcomitrella patens genome, at least this moss species 
may have a shorter version of the gibberellin biosynthetic 
pathway relative to that of vascular plants.

According to Anterola & Shanie (2008), with 
the identification of putative gibberellin biosynthetic 
genes in P. patens, it is now possible to knock them out 
and make a functional characterization of these genes 
to establish whether or not GAs are necessary for moss 
growth and development. Although the P. patens (a 
model bryophyte plant) genome has been published 
(Rensing et al. 2008), the researches presented up to now 
indicate the classical physiological effects of gibberellins 
in bryophyte development (bryophyte species other than 
P. patens) and the importance and usefullnes of further 
investigations in bryophytes to achieve more data on the 
role of gibberellins in the developmental processes of this 
group of land plants.

While it is still not known whether or not bryophytes 
produce GAs, there are reports that some of them contain 
GA-related diterpenoids as secondary metabolites. Von 
Schwarzenberg et al. (2004) reported that in the moss P. 
patens the tetracyclic diterpene 16-alpha-hydroxykaurane 
is produced in huge amounts as a secondary volatile 
compound, and Hayashi et al. (2006) found the 
bifunctional ent-kauren synthase in the same species.

AbA. Abscisic acid (ABA) is a unique molecule found 
in organisms across kingdoms from bacteria to animals, 
suggesting its ubiquitous and versatile role in physiological 
functions of various organisms. ABA is widely known to 
be one of the growth regulators of tracheophytes, and is 
also known universally for its hormonal involvement in 
stress processes. In this case, ABA shows stress-dependent 
biosynthesis, and is transported to target cells, enabling 
the plant to cope better with the stressful conditions. 
Its widespread occurrence across the entire tree of life 
suggests an ancient origin of ABA. Although it is difficult 
to determine common roles in various organisms, the 
predicted function of ABA implies that ABA plays a role in 
modulating cellular responses to environmental signals, 
e.g. water deficit stress. As for the regulation of cellular 
water content, a tonoplast localized aquaporin has been 
shown to be inducible by ABA (Cuming et al. 2007). In 
aquatic organisms that occasionally colonize terrestrial 
habitats (e.g. aquatic liverworts, aquatic mosses), it has 
been shown that this terrestrial colonization is followed 
by an increase in endogenous ABA, even under mild 
drought stress. Subsequently, the desiccation protecting 
mechanisms are stimulated and the formation of 
terrestrial organs is induced (Hartung 2010). In vascular 
plants, ABA plays a general role as a growth inhibitor, 
sex determination and desiccation stress tolerance. Also, 
ABA is known to improve tolerance against drought and 
osmotic stress in the moss Physcomitrella patens (Cuming 
et al. 2007; Khandelwal et al. 2010). In addition, 
Yasumura et al. (2012) suggested enhanced drought 
tolerance by increasing ABA sensitivity in vascular plants. 
Thus, plants differ in their ABA sensitivities.

Although it was widely accepted that lunularic acid is a 
functional substitute for ABA in liverworts, and that ABA 
is not generally produced by this lineage of bryophytes 
(Goffinet & Shaw 2009), some studies have also reported 
the presence of ABA in thallose liverworts (Hartung & 
Gimmler 1994). Other studies also reported the presence 
of ABA in mosses (Werner et al. 1991; Ergün et al. 2002) 
and in hornworts (Hartung et al. 1987). Further indirect 
evidence of the presence of ABA in liverworts was reported 
by Hellwege & Hartung (1997). They detected phaseic 
acid, dihydrophaseic acid and the glucose ester of ABA 
in the thallose liverwort Riccia fluitans L., suggesting 
that degradation of ABA may occur through biochemical 
pathways similar  to those known for tracheophytes. 

The occurrence of 9’-cis-neoxanthin in bryophytes 
further indicates that an important precursor of the 
indirect biosynthetic pathway of ABA also exists in 
bryophytes (Takaichi & Mimuro 1998). Knowledge 
of the direct and indirect functional involvement of 
ABA in bryophytes is limited in comparison with our 
understanding of its functional roles in vascular plants 
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(Takezawa et al. 2011). For instance, the ABA-mediated 
biochemical processes in vascular plants include stomatal 
closure and protein synthesis (Gomez et al. 1988; Mundy 
& Chua 1988; Bartels et al. 1990). Generally, in non-
tracheophytes where ABA and ABA-like substances have 
been detected in bioassays, no clear physiological functions 
of ABA could be demonstrated, suggesting alternative 
functions to those in vascular plants (Hartung 2010). 

Ethylene and ethylene generators. Ethylene, unlike the 
rest of the other plant hormone compounds is a gaseous 
hormone. Of all the recognised plant growth substances, 
ethylene has the simplest structure. It is produced in all 
higher plants and is usually associated with fruit ripening 
and the triple response (slowing of stem elongation, 
stem thickening and curvature of stem) (Salisbury & 
Ross 1992). Ethylene production in bryophytes has been 
demonstrated for the liverwort Pellia epiphylla (Thomas 
et al. 1983) and the moss F. hygrometrica (Rowher & 
Bopp 1985). However, the physiological role of ethylene 
in bryophytes needs to be investigated as it is not clear at 
the moment (Von Schwarzenberg 2009). In the genome 
of P. patens, two putative genes encoding ACC-synthases 
(ethylene precursor, 1-aminocyclopropane-1-carboxylic 
acid) were detected (Rensing et al. 2008). It was also 
shown that six ETR-like ethylene receptors are encoded in 
P. patens, from which at least one is able to bind ethylene 
(Wang et al. 2006). 

other growth regulators
salicylic acid (sA). Salicylic acid is involved in endogenous 
signaling in plant cells, mediating plant defense against 
pathogens. Christianson & Duffy (2003) have shown 
that salicylic acid and acetylsalicylate can inhibit the 
later stages of bud formation in F. hygrometrica in a dose-
dependent manner. This indicates that mosses might 
use these substances as developmental signals. However, 
more data are necessary to understand their distribution 
and signal transduction mechanisms in the bryophytes.

Jasmonates (JA). JA are a group of plant hormones that 
have an important role in controlling defense responses 
to a wide range of biotic stresses (arthropod herbivores 
and necrotrophic pathogens, UV radiation and ozone, 
and depending on the plant species, male and female 
reproductive development) (Howe & Jander 2008; 
Glazebrook 2005; Browse 2005; Browse & Howe 2008). 
In general, JA promotes defense and reproduction while 
inhibiting growth-related processes such as cell division 
and photosynthesis. Jasmonic acid and its precursor (cis-
(+)-OPDA) are derived from oxygenated polyunsaturated 
fatty acids called oxylipins (Andreou et al. 2009). A few 
studies have described the occurrence and function of 

cyclopentanones and cyclopentenones as an important 
group of oxylipins in flowering plants (Browse 2009a, b). 
However, our knowledge of oxylipins in non-flowering 
plants is still scarce (Andreou et al. 2009). One of the 
important enzymes in oxylipin metabolism is AOC (allene 
oxide cyclase). As P. patens serves as a model system for 
nonflowering plants, Stumpe et al. (2010) investigated the 
formation of cyclopentanones and cyclopentenones by 
analyzing recombinant AOCs and putative functions of these 
AOC products via target-knockout mutants of P. patens. 
An EST library from P. patens harboured two sequences 
with similarity to AOCs. The recombinant PpAOC1 and 
PpAOC2 formed the corresponding cyclopentenone, but 
this cyclopentenone cannot be a precursor of JA because 
it has an octenyl instead of pentenyl side-chain. As P. 
patens is JA-deficient but able to accumulate cis-(+)-OPDA, 
Stumpe et al. (2010) investigated the possible function of 
cyclopentanones via targeted knockout mutants of PpAOC1 
and PpAOC2. Targeted disruption of single members of 
the two PpAOC genes resulted in reduced fertility and in 
defective sporogenesis. Both mutants developed capsules 
(sporophytes) that did not release mature meiospores. It 
seems that both genes are required for fertilization, spore 
maturation and for subsequent dehiscing of the capsules. 
Described phenotypes suggest that a role of oxylipins 
in reproductive development of plants is evolutionarily 
conserved, but is specified differentially in different 
branches of the plant kingdom, as was described for auxin 
(Ludwig-Mueller et al. 2009) and gibberellin signaling 
(Vandenbussche et al. 2007). 

brassinosteroids (brs). BRs are growth-promoting 
steroid hormones that regulate diverse physiological 
processes in plants. There is no report on brassinosteroid 
function in bryophytes. Kim et al. (2002) have 
demonstrated the occurrence of a BR, castasterone in a 
liverwort, Marchantia polymorpha L.. In addition, the 
presence of a brassinolide which is biosynthesized from 
castasterone, was suggested. Although physiological roles 
of BRs in bryophytes have not yet been established, the 
result implies that BRs are probably involved in regulation 
of some events in growth and differentiation of these 
plants.

strigolactones (sLs). SLs are implicated in inhibition 
of shoot branching. Both strigolactones and karrikins 
can regulate A. thaliana seed germination and seedling 
photomorphogenesis in a MAX2-dependent manner, but 
only strigolactones inhibit shoot branching. The moss 
Physcomitrella patens utilizes strigolactones and MAX2 
orthologs are present across the land plants, suggesting 
that this signaling system could have an ancient origin 
(Waters et al. 2011). 
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As the liverwort Marchantia polymorpha lacks the 
CCD8 gene (Carotenoid Cleavage Dioxygenase), it has 
been suggested that an alternative (more ancient) CCD8-
independent SL-biosynthesis pathway would operate 
in this basal embryophyte and in Charales (Delaux 
et al. 2012). Moreover, the MAX1 gene, encoding a 
cytochrome P450 (Booker et al. 2005) is present in all 
embryophytes except the moss P. patens and the liverwort 
M. polymorpha, and absent from algae genomes (Proust 
et al. 2011; Nelson & Werck-Reichhart 2011; de Saint 
Germain et al. 2013). As P. patens produces complex 
SLs another, P450 may ensure MAX1 function, or the 
final steps in SL synthesis are different in moss, again 
highlighting flexibility in the SL synthesis pathways. 
Genome sequencing and strigolactone quantification in 
other land plants (e.g. hornworts) and algae groups are 
needed for a better understanding of evolution of the SL 
pathway.

Karrikins (KA). This group of plant growth regulators 
is found in the smoke of burning plant material. They 
stimulate seed germination. However, there are no 
data so far on whether karrikins can influence moss 
spore germination or development, as do strigolactones 
(Waters et al. 2011).
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Briofite, iako spadaju u više biljke, i predstavljaju drugu grupu po brojnosti terestričnih biljaka posle cvetnica, 
neuporedivo su slabije istražene po pitanju brojnih bioloških procesa i fenomena. U ovom radu dat je pregled 

fenomena tokom procesa razvića kod briofita. Posebna pažnja je data regulatorima rastenja i njihovom uticaju na 
razviće briofita. 

Ključne reči: briofite, mahovine, jetrenjače, regulatori rastenja, razviće

regulatori rastenja kod briofita
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