
Climate Change
Vulnerability of
Washington Rare
Plants: A
Preliminary
Assessment

Walter Fertig
Botanist, WA
Natural Heritage
Program

Sticky sky-pilot (Polemonium viscosum)

Talking About Climate Change

Brendan Loper, The New Yorker, January 27, 2022

"I went back to warn them, but they already knew and didn't seem to care."

Climate Change in Pacific Northwest

Over next 80-100 years:

- Higher temperatures
- Changes in snowpack
- Lower precipitation
- Lower stream flows
- Shift from snow to rain
- Higher fire frequency
- High stochasticity

Abatzoglou et al. 2014, Halofsky et al. 2018, Mote 2006, Peterson & Halofsky 2019

Alaska yellow-cedar (*Callitropsis nootkatensis*)

How will Plant Species Respond?

- Changes in timing of flowering & emergence
- Asynchrony with pollinators
- Ranges shift/contract
- Loss of habitat
- More competition
- Responses often species-specific based on life history

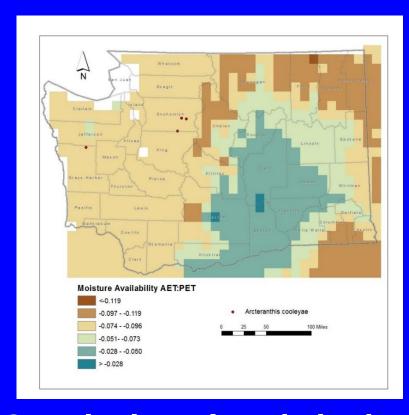
Marsh grass-of-Parnassus (*Parnassia palustris*)

How will Rare Plant Species Respond?

- Relatively few studies of rare plant spp in NW
- Case et al. 2015: 195
 NW species (27 plants)
- Alpine/subalpine & grassland plants vulnerable
- Rare species are more vulnerable than common species

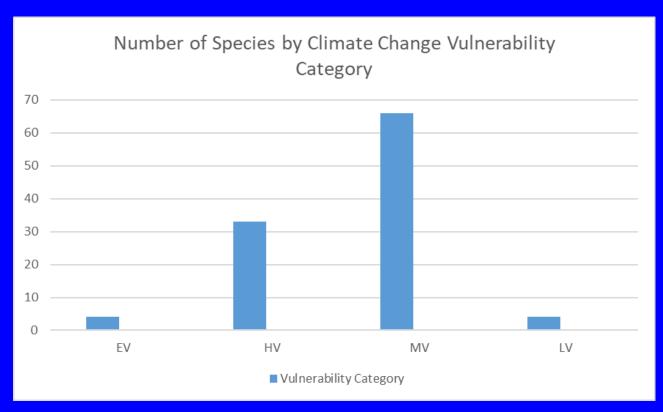
Spalding's catchfly (Silene spaldingii)

- Funding from USFWS, BLM, & USFS (ISSSSP)
- CCVI protocol developed by NatureServe to assess vulnerability of plant & animal species and plant communities to climate change


Guidelines for Using the NatureServe Climate Change Vulnerability Index

Young et al. 2016

- 29 environmental & biological variables
- Includes historical and projected temperature & precipitation change
- Habitat: snowpack, uncommon geology/landform, barriers


Quantitative values derived from location data Qualtitative scores from literature review (GI, I, SI, N, Unknown)

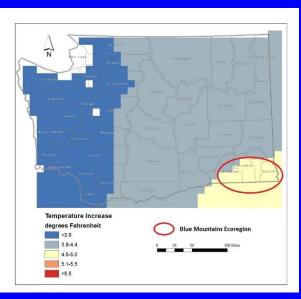
Life history traits:

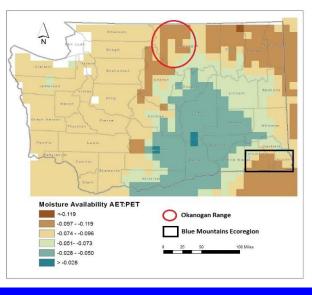
- Dispersal ability
- Pollinators
- Genetic variability & breeding system
- Competition
 Response to climate change
- Observed & Modeled

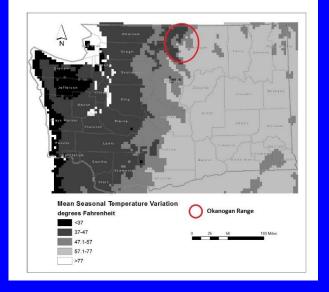
Cotton's milkvetch (Astragalus australis var. cottonii)

Completed CCVIs for 107/371 WA rare plants (28%)

 Four Summary Scores: Extremely Vulnerable, Highly Vulnerable, Moderately Vulnerable, Less Vulnerable


Extremely & Highly Vulnerable species:


- 1. Wetter habitats likely to become less predictable
- 2. Dependent on winter snow/ice
- 3. Stable temperatures and cool microhabitats that are likely to change
- 4. Uncommon geologic features, poor dispersal, few pollinators, low genetic variability
- 5. Alpine, peatland, or groundwaterdependent wetland species


Surprise: Extremely & Highly Vulnerable species associated with Okanogan & Blue Mountains

Lance-leaved draba (*Draba cana*) by B. Legler



Less Vulnerable species

- Often found in successional habitats (native "weeds")
- May actually benefit from anthropogenic changes

Coyote tobacco (Nicotiana attenuata)

Moderately Vulnerable Spp

- More likely to be from sites with more stable temperatures (often already warm, like Columbia Basin)
- Less associated with snow, uncommon geology
- Less limited by dispersal, pollinators, genetic variability

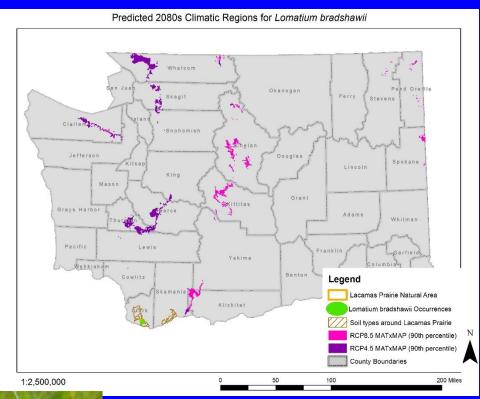
Snake River cryptanth (Cryptantha spiculifera)

Endemic & disjunct species tend to rank Extremely or Highly Vulnerable

- Often restricted to unusual geology, have specialized pollinators, low genetic diversity
- Some score Moderately Vulnerable when data are lacking on modeled change

Umtanum desert buckwheat (*Eriogonum codium*)

Climate Change Vulnerability Index (CCVI): Future Directions


- Complete CCVIs for all 371 state listed vascular plant species
- Conduct CCVIs for a cross section of more widespread & common native plant species

Intermediate sedge (Carex media)

Climate Change Vulnerability Index (CCVI): Future Directions

- Need better
 data on genetic
 diversity of rare
 plant species
- Model response to climate change for rare species & ecological systems

Bradshaw's Iomatium (Lomatium bradshawii)

- CCVI reports are a summary of current information
- Include brief rationale for each score & references
- Transparent
- Acknowledge data gaps
- Meant to be revised with new data

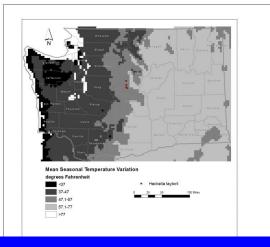
Climate Change Vulnerability Index Report

Hackelia taylorii (Taylor's stickseed)

Date: 11 February 2020

Assessor: Walter Fertig, WA Natural Heritage Program

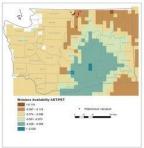
Geographic Area: Washington Heritage Rank: G2/S2
Index Result: Highly Vulnerable Confidence: Very High


Climate Change Vulnerability Index Scores

Section A	Severity	Scope (% of range)
Temperature Severity	>6.0° F (3.3°C) warmer	0
	5.6-6.0° F (3.2-3.3°C) warmer	0
	5.0-5.5° F (2.8-3.1°C) warmer	0
	4.5-5.0° F (2.5-2.7°C) warmer	0
	3.9-4.4° F (2.2-2.4°C) warmer	100
	<3.9° F (2.2°C) warmer	0
2. Hamon AET:PET moisture	< -0.119	O
	-0.097 to -0.119	50
	-0.074 to - 0.096	50
	-0.051 to - 0.073	0
	-0.028 to -0.050	О
	>-0.028	0
Section B		Effect on Vulnerability
1. Sea level rise		Neutral
2a. Distribution relative to natural barriers		Somewhat Increase
2b. Distribution relative to anthropogenic barriers		Neutral
3. Impacts from climate change mitigation		Neutral
Section C		
1. Dispersal and movements		Somewhat Increase
2ai Change in historical thermal niche		Somewhat Increase
2aii. Change in physiological thermal niche		Increase
2bi. Changes in historical hydrological niche		Neutral
2bii. Changes in physiological hydrological niche		Neutral
2c. Dependence on specific disturbance regime 2d. Dependence on ice or snow-covered		Somewhat Increase

3. Restricted to uncommon landscape/ge C2ai. Historical thermal niche: Somewhat Increase.

Figure 3 depicts the distribution of <u>Hackelia taylorit</u> in Washington relative to mean seasonal temperature variation for the period from 1951-2006 ("historical thermal niche"). All of the known occurrences (100%) are found in areas that have experienced slightly lower than average (47-1-57 F) 26-3-31.8 "C) temperature variation during the past 50 years and are considered at Somewhat Increased vulnerability to climate change.



Hackelia taylorii by Matt Below

- 107 CCVI reports and summary report posed on WNHP website: https://www.dnr.wa.gov/ /NHPclimatespecies
- Or google "Washington Natural Heritage Program Assessing Species Vulnerability"

WASHINGTON NATURAL HERITAGE PROGRAM

Climate Change Vulnerability Index Reports for Selected Washington State Rare Plant Species: Phase II

Prepared for US Forest Service, Region 6

Prepared by Walter Fertig January 26, 2022

Natural Heritage Report 2022-01

